

Procedural Shading for Rendering the Appearance of Feathers

Jessica Baron jrbaron@clemson.edu Clemson University North Charleston, SC, USA Daljit Singh Dhillon djsingh@clemson.edu Clemson University Clemson, SC, USA Eric Patterson ekp@clemson.edu Clemson University North Charleston, SC, USA

Figure 1: An osprey feather photographed (left portion) and modeled as curves and rendered as hair (middle) and with simulated microstructures using the proposed shading technique (right). Note the variation in specularity exhibited by microstructures in the photograph that the proposed technique captures in comparison with the hair-fiber approach.

ABSTRACT

The appearance of a real-world feather is the result of light interactions with complex, patterned structures of varying scale; however, these have not yet been modeled for accurate rendering of feathers in computer graphics. Previously published works have presented simplified curve models for feather appearance. Using imaging from real feathers, we suggest why these approaches are not sufficient and provide motivation for building an appearance model specific to feathers. In that vein we demonstrate a new technique that takes into account the substructures of feathers during shading calculations to produce a more accurate far-field appearance.

CCS CONCEPTS

Computing methodologies → Reflectance modeling.

KEYWORDS

Appearance Modeling, Biological Modeling, Natural Phenomena, Reflectance & Shading Models

ACM Reference Format:

Jessica Baron, Daljit Singh Dhillon, and Eric Patterson. 2021. Procedural Shading for Rendering the Appearance of Feathers. In Special Interest Group on Computer Graphics and Interactive Techniques Conference Posters (SIG-GRAPH '21 Posters), August 09-13, 2021. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3450618.3469161

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

SIGGRAPH '21 Posters, August 09-13, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-8371-4/21/08.

ACM ISBN 978-1-4503-8371-4/21/08. https://doi.org/10.1145/3450618.3469161

1 INTRODUCTION

Feathers are a complex assembly of multi-scale structures where each component contributes to the appearance. Published techniques for feathers rely on simplified structures and often bidirectional curve scattering distribution functions (BCSDFs) borrowed from hair models [2016; 2010]. Here we argue that such BCSDFs do not well represent light scattering of feather substructures in most cases. Also, a physically based model of the light-surface interactions of feathers has not yet been introduced. Such a model would eventually need to account for wave-optics effects to simulate structural coloration exhibited by some feathers. Ahead of that, though, we suggest that a more fundamental model is needed for the significant effects that ray-optics can describe, and we propose a render-time method to better represent the multi-scale assembly found in nearly all feathers.

2 BACKGROUND AND RELATED WORK

A feather's hierarchical structure includes a central *shaft* and two *vanes* composed of hundreds of adjacent *barbs*, each of many *barbules* extending from a *ramus* (pl. *rami*). Barbules possess *pennulae* which act as interlocking hooks and rods [1966].

Feathers in computer graphics have been most often modeled only to the barb level [2019] and rendered as hair fibers [2016; 2010] with the Marschner BCSDF [2016; 2003; 2015] or with a BTF [2002].

Harvey et al. [2013] studied specimens of an iridescent species regarding avian visual signaling and mating. Their work did not present a scattering model but raised an important idea that we build upon – certain substructures contribute significant reflected radiance. Contrarily, the most-often used BCSDF curve representation can only represent the central ramus of each barb and not the significant substructures. We propose a substructure-based method that embodies more of the multi-scale light interactions during shading calculations.

3 APPROACH

As a preparation stage, feather specimens were imaged with scanning electron microscopy (SEM, see Figure 3) and photographed in a controlled lighting environment to observe specular highlights of the barbules and rami. We created matching geometry of the major substructures of the specimens based on procedural generation of curves [2019] and a virtual scene simulating the light conditions.

In the shading and rendering of feathers, we compare two approaches: (1) rendering only barb curves along the shaft, using a Marschner-hair BCSDF and (2) rendering the barbs with the new substructure-based technique that procedurally simulates some of the effects of the reflectance from barbules and rami. The proposed substructure-based technique incorporates the reflectance of barbules that lie within the outer simplified cylindrical representation for a given barb. (Base color in both is driven by low-frequency albedo derived from cross-polarized photography of the original feathers.)

Figure 3 depicts the aforementioned substructures that we represent at shading time using the proposed substructure-based technique. Parametric (u,v) coordinates at points sampled with pathtracing along the barb curve determine the substructure, and we simulate sampling for this substructure instead by modifying the shading frame. Radiance is calculated as if each substructure is a unique fiber, evaluating the same hair model but with eccentricity and shading orientation chosen based on which substructure. Samples from neither barbules nor ramus are evaluated as pure transparency. Parameters include barbule and ramus radii and two angles for planar rotation and lift of the barbule in respect to the barb. A geometric term applies this information along with parametric coordinates and orientation sampled along the barb curve to determine if the sample lies on a ramus, barbule, or neither.

In justification of simplifications, the Marschner BCSDF was chosen due to its common use. The ramus shape, though, differs greatly from a hair strand, and thus future work should derive better models. The shape and periodic placement of barbules are also simplified in this early work.

RenderMan was chosen for the rendering and development environment, leveraging the material interface, Maya plugin, and PxrMarschnerHair material [2015]. The substructure-based technique is implemented as a variation of PxrHair, a simplified, public version of PxrMarschnerHair.

Figure 2: Turkey Vulture (TD) and Rock Dove (RD) photos (a) with new-technique (b) and hair-fiber (c) renders.

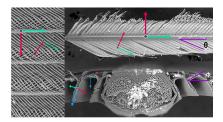


Figure 3: SEM images of interlocking barbs (left), a single barb (top), and shaft and barb cross sections (bottom). Annotations depict conventions for describing barbules.

4 RESULTS AND CONCLUSION

Figure 1 displays an osprey feather from original photo (left), barb curves shaded with hair BCSDF (middle), and new technique simulating substructures (right). Note the variation in specularity in the photo that the middle hair-fiber approach does not represent, but the proposed method demonstrates at least partially. Figure 2 provides similar visual comparison. The proposed method creates far-field glints more similar to those photographed.

We show that representing light reflected from substructures is significant for photorealistic renders. Traditionally used, a simple hair model does not accurately represent the far-field specular contributions of the barbules and rami of barbs. This is due to a large portion of reflected radiance originating from barbules that is not included. Including radiance contributions from these microstructures represents a fundamental improvement in rendering the appearance of non-structural-color feathers.

In future work we seek a more elaborate scattering distribution term that matches the non-cylindrical shapes, improved models for each feather component, a far-field aggregated BSDF, and waveoptics models.

REFERENCES

Jessica Baron and Eric Patterson. 2019. Procedurally Generating Biologically Driven Feathers (Lecture Notes in Computer Science). Springer.

Yanyun Chen, Yingqing Xu, Baining Guo, and Heung-Yeung Shum. 2002. Modeling and Rendering of Realistic Feathers. In *Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques* (San Antonio, Texas) (SIGGRAPH '02). ACM, New York, NY, USA, 630–636. https://doi.org/10.1145/566570.566628

Trent Crow, Jonathan Hoffman, Maria Lee, and Kiki Poh. 2016. Shading Dory's New Friends. In ACM SIGGRAPH 2016 Talks (Anaheim, California) (SIGGRAPH '16). ACM, New York, NY, USA, Article 76, 2 pages. https://doi.org/10.1145/2897839.2927440

Rasmus Haapaoja and Christoph Genzwürker. 2019. Mesh-Driven Generation and Animation of Groomed Feathers. In ACM SIGGRAPH 2019 Talks (Los Angeles, California) (SIGGRAPH '19). Association for Computing Machinery, New York, NY, USA, Article 61, 2 pages. https://doi.org/10.1145/3306307.3328178

Todd Alan Harvey, Kimberly S. Bostwick, and Steve Marschner. 2013. Directional reflectance and milli-scale feather morphology of the African Emerald Cuckoo, Chrysococcyx cupreus. J. R. Soc. Interface (2013). https://doi.org/10.1098/rsif.2013. 0391

Brian Karis. 2016. Physically Based Hair Shading in Unreal. SIGGRAPH 2016 Course Notes (2016).

James Leaning and Damien Fagnou. 2010. Feathers for Mystical Creatures: Creating Pegasus for Clash of the Titans. In ACM SIGGRAPH 2010 Talks (Los Angeles, California) (SIGGRAPH '10). ACM, New York, NY, USA, Article 52, 1 pages. https://doi.org/10.1145/1837026.1837094

Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat Hanrahan. 2003. Light Scattering from Human Hair Fibers. In ACM SIGGRAPH 2003 Papers (San Diego, California) (SIGGRAPH '03). ACM, New York, NY, USA, 780–791. https://doi.org/10.1145/1201775.882345

Leonid Pekelis, Christophe Hery, Ryusuke Villemin, and Junyi Ling. 2015. A Data-Driven Light Scattering Model for Hair. Pixar Technical Memo 02 (2015).

A. A. Voitkevich. 1966. The Feathers and Plumage of Birds. October House.