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Abstract

While solar-like oscillations in red giants have been observed at massive scales by the Kepler mission, few features
of these oscillation mode frequencies, other than their global properties, have been exploited for stellar
characterization. The signatures of acoustic glitches in mode frequencies have been used for studying main-
sequence stars, but the validity of applying such techniques to evolved red giants, particularly pertaining to the
inclusion of nonradial modes, has been less well examined. Making use of new theoretical developments, we
characterize glitches using the π modes associated with red giant stellar models, and use our procedure to examine
for the first time how the properties of the He II acoustic glitch—specifically its amplitude and associated acoustic
depth—vary over the course of evolution up the red giant branch, and with respect to other fundamental stellar
properties. We find that the acoustic depths of these glitches, in conjunction with other spectroscopic information,
discriminate between red giants in the first-ascent and core-helium-burning phases. We critically reexamine
previous attempts to constrain acoustic glitches from nonradial (in particular dipole) modes in red giants. Finally,
we apply our fitting procedure to Kepler data, to evaluate its robustness to noise and other observational
systematics.

Unified Astronomy Thesaurus concepts: Asteroseismology (73); Red giant stars (1372); Computational
methods (1965)

1. Introduction

While data from the Kepler mission have yielded volumi-
nous asteroseismic observations for red giants, analysis of this
asteroseismology has so far been largely limited to catalogs of
global seismic and spectroscopic parameters. This in turn has
proven its worth, e.g., by permitting differentiation between
first-ascent red giant branch (RGB) and red clump (RC) stars,
which are otherwise observationally similar (e.g., Bedding
et al. 2010; Pinsonneault et al. 2018; Yu et al. 2018). However,
these seismic observations provide more information than are
encapsulated in the global parameters, and this information has
yet to be exploited at a similar scale. Red giant stars behave as
solar-like oscillators, exhibiting stochastically excited modes of
oscillation. Some of these modes are acoustic (pressure) modes,
which can be described by a comb-like eigenvalue equation:
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The quantities Δν and òp (considered as averaged constant
values) are global properties that summarize the overall
structure of this comb. While òp is indeed close to constant
for very simple stellar structures, the actual mode frequencies
observed in solar-like oscillators exhibit minute deviations
from a strict frequency comb. These deviations between the
predicted comb structure and the actual frequencies may, to
first order in perturbation theory, be described as combinations
of oscillatory components. These components are the signature
of “glitches,” which are sharp variations in the adiabatic sound

speed within the stellar structure. The apparently oscillatory
morphology of such glitches lends them easily to being
modeled by sinusoidal functions with varying amplitudes (see,
e.g., Verma et al. 2014a and references therein). Within such
descriptive frameworks, glitch signatures may be approxi-
mately specified using phenomenological parameters, such as
the local amplitude and period of the apparently sinusoidal
signature, which may then be used to constrain the stellar
structure indirectly. When the glitch lies close to the stellar
surface, the period P has been shown to be related to the
acoustic depth τ of the corresponding localized variations in the
sound-speed profile (see Gough 1990) as
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where R is the stellar radius, cs is the adiabatic sound speed,
and rglitch is the radial position of the glitch feature. Thus,
measurements of the morphology of the observed glitches
permit the locations of features in the sound-speed profile to be
inferred. Since the adiabatic sound speed cs is tied to the first
adiabatic index Γ1, knowing the acoustic depth allows for an
understanding of the variations in the thermal structure of the
star as well. Variations in cs thus correspond to distinct features
of the Γ1 profile. There are two kinds of glitches in the sound-
speed profile which are pertinent to discussions of solar-like
oscillators: those arising from boundaries between convective
and radiative regions, as well as depressions in Γ1 in ionization
zones (notably the H I/He I and He II ionization zones).
Whereas these characterizations of acoustic glitches were

originally developed for describing main-sequence stars, metho-
dological complications arise when extending these methods to
evolved solar-like oscillators. In red giant oscillators, the above
description of acoustic modes serves well for both the observed
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radial and quadrupole modes, but does not for the observed dipole
modes; those exhibit mixed character instead. These mixed dipole
modes arise when core-bound gravity waves couple to pressure
waves in the envelope (e.g., Osaki 1975; Aizenman et al. 1977).
Pure gravity modes are known to satisfy a separate asymptotic
relation,
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
associated with period spacing ΔΠl and gravity-mode phase
offset òg, in an analogous fashion to Equation (1). However,
modes of such strongly mixed character as are observed are not
well described by either Equation (1) or Equation (3). As such,
the mixed nature of these modes makes them difficult to use
even for determining this reduced set of phenomenological
glitch parameters: while only the acoustic components of these
modes are affected by the glitch, this information is not easily
extracted from the observational set of mixed modes. Even the
nominally p-like quadrupole mixed modes of red giant models,
which do satisfy Equation (1) well, have hitherto been
accessible only at significant, and in many cases prohibitive,
computational expense.

Consequently, the accuracy of observational prescriptions
for constraining pure acoustic glitches from mixed modes has
so far not been well interrogated. The theoretical relationships
between these acoustic signatures and the interior structures of
mixed-mode oscillators has also not been subjected to nearly
the same amount of scrutiny as compared to over the course of
their development for main-sequence stars. These considera-
tions are of critical importance in light of ongoing observa-
tional efforts to apply glitch characterization to red giants (e.g.,
Vrard et al. 2015; Dréau et al. 2021), notwithstanding such
unresolved open questions.

These theoretical and computational difficulties have been
alleviated by recent analytic developments. In particular, Ong
& Basu (2020) (following Ball et al. 2018) provide a
prescription by which the notional pure p-modes of a stellar
model (π-modes, in the sense of Aizenman et al. 1977) may be
recovered, which significantly reduces the computational
burden of evaluating the frequencies of the p-dominated
quadrupole modes. Access to such pure p-modes also permits
us to examine critically previously claimed improvements to
the technique, stemming from proposals for deriving pure
dipole p-modes from the observed mixed modes (e.g., Dréau
et al. 2020).

In this paper, we examine the potential for using the
properties of the helium glitch for constraining some properties
of evolved (in particular first-ascent red giant) solar-like
oscillators, using techniques inherited from the study of these
glitches in main-sequence stars. In Section 2 we discuss the
fitting procedure and the chosen parametric model. We use said
procedure in Section 3 to examine the relationships between
spectroscopic stellar properties and seismic parameters, as well
as how the fitted model localizes the He II glitch within the
adiabatic structure of the model. In Section 4, we assess the
benefits of including dipole modes in this procedure, and in
Section 5 we consider the sensitivity of this procedure to
observational uncertainties. Finally, in Section 6 we summarize
our key results and potential follow-up work.

2. Methods

We first implemented an automated procedure with a
restricted parameterization adapted for use on red giants,
which we benchmark on mode frequencies returned from
evolutionary models. The development of this fitting pipeline
anchors our current study; all of our results (and subsequent
analysis of Kepler data) rely upon it. We describe in particular
our selection of a specific parameterization to fit the glitch
signature, the imposition of various cutoffs for numerical
conditioning, and numerical optimization.

2.1. Parameterization

The He II glitch may be characterized via second differences
of the frequencies, which are taken in order to reduce the
impact of slowly varying components and isolate the
oscillatory signal. For an input set of mode frequencies, our
pipeline computes these second differences in the usual fashion
as in Gough (1990)

d n n n n= - ++ -2 . 4n ℓ n ℓ n ℓ n ℓ
2
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
Various parameterizations of these second differences have
been proposed in the literature (see, e.g., Verma et al. 2014a).
Existing parameterizations generally include two sinusoidal
components: an interior term with more rapid oscillations to
describe an acoustic glitch at the base of the convection zone,
and an exterior term with slower oscillations to describe the
He II glitch. However, the morphology of these red giants
differs significantly from those of the main-sequence stars for
which these parameterizations were developed; in particular,
red giants exhibit very compact radiative cores. Consequently,
the periodicity of their convective-boundary glitch signatures
yields not their acoustic depths, as in Equation (2), but rather
their acoustic radii (i.e., with the integral limits going from the
center of the star to the convective boundary), which are small
(see Mazumdar & Antia 2001). Accordingly, when adapting
existing parameterizations to red giants, we omitted terms
corresponding to the convective boundary, whose slow
variations are effectively detrended away by other terms in
these parameterizations.
We tested several parameterizations for the He II term from

Basu et al. (2004) and Verma et al. (2014a) and adopt a
Gaussian-envelope model, which has the lowest number of
parameters, to fit the oscillatory glitch signature in our
subsequent analysis
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is a slowly varying component. This is included to account for
the frequency variations arising from the glitch produced at the
base of the convection zone, as well as other smooth
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components arising from core- and surface-boundary effects
also seen in main-sequence stars, as well as higher-order terms
ordinarily neglected in the asymptotic expansion for p-mode
frequencies. We found that while the fits were significantly
improved by accounting for this slow component, additional
terms of degree higher than 2 did not further improve the
quality of the fit.

2.2. Fitting Process

Given a set of measurement errors on the mode frequencies,
a best-fitting model with respect to our parameterization may
be found by minimizing the cost function

åc d n n d n n= - --G C G , 7
i j

i i ij j j
2

,

2 1 2( ( )) ( ( )) ( )
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where C−1 is the inverse covariance matrix for the second
differences, found by propagating uncertainties in the mode
frequencies. In principle, uncertainties for the fitting parameters
may be determined from the Hessian matrix of this cost
function. However, given the highly nonlinear structure of the
optimization problem, we instead elected to determine
uncertainties in the glitch amplitude by a Monte-Carlo
bootstrapping approach, in which the fit to obtain the
parameters was performed repeatedly under many realizations
of random perturbations to the input data specified by the
measurement uncertainties. The final reported uncertainties
were taken as the sample standard deviations of the fitted
parameters across 100 realizations. We found that using such a
Monte-Carlo procedure rendered our results essentially insen-
sitive to the off-diagonal elements of the covariance matrices;
hence, we restricted ourselves to only the diagonal elements to
accelerate the computation.

When fitting to these second differences, we restricted our
mode sets to second differences within a frequency interval
6Δν wide, centered on nmax. We implemented this by
weighting modes in the fitting procedure with a soft cutoff
function, via tanh functions centered at ±3Δν, with a softening
length scale of 0.1Δν; we did this so as to avoid discontinuous
behavior over the course of evolution as modes enter and leave
this fixed window, which is the case with a hard cutoff (i.e.,
giving modes weights of either 0 or 1). No attempt to fit a glitch
function was made when the number of second differences
within this interval was fewer than the number of free
parameters.

In certain cases, we found that fits would get stuck in local
optima (e.g., at aliases of the true glitch period). We found that,
along each evolutionary track, this problem can be somewhat
alleviated by using the fitted parameters from the previous
timestep as initial guesses in the fitting process. However,
doing so would not be an option when confronted with
observational data. As a more general means of avoiding local
optima, we used the differential evolution algorithm for
gradient-free optimization, as implemented in the python
package yabox (Mier 2017). As a further precaution against
local optima, we perform an explicit parameter sweep over a
grid of possible period values, since the period is the most ill-
conditioned parameter. The period grid is bound by the total
frequency range on one end, and on the other by a demand that
the acoustic depth of the helium glitch be in the outer half of

the star:

t
nD

1

4
. 8( )
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The additional parameters of our glitch model, Equation (5),
are fitted independently with the glitch period held fixed at each
point in the grid, and the grid period which produced the lowest
χ2 is chosen to seed a final optimization run where the period,
too, is permitted to vary freely. We show a sample result from
this procedure in Figure 1.

3. Results for Evolutionary Models

We now seek to understand the relationships between the
spectroscopic and glitch parameters over the course of stellar
evolution, by applying this glitch-fitting procedure to synthetic
stellar models. For this purpose, we construct a grid of
evolutionary models, and use the above procedure to conduct a
parameter study of how the helium abundance, metallicity, and
stellar mass each affect the amplitudes and periods of the fitted
glitch signature.

3.1. Parameter Grid

We generated evolutionary tracks of red giant stellar models
using MESA (Paxton et al. 2011, 2013, 2015, 2018, 2019) with
element diffusion and a small amount of step convective
overshoot ( fstep= 0.0016). The stellar models were first
generated on a coarsely equisampled grid of input parameters
over the ranges 1Me�M� 2Me (in steps of 0.2Me),
0.25� Y0� 0.3 (in steps of 0.025), and [Fe/H]0 ä {−0.30, 0,
+0.30} dex. We consider stellar models from =N1
n nD DP = 5max

2
1 up to core-helium exhaustion (at the end

of the core-helium-burning phase). Mode frequencies were
generated using the pulsation code GYRE (Townsend &
Teitler 2013), with the nonradial modes evaluated according to
the π-mode prescription of Ong & Basu (2020). The glitch-
fitting algorithm was run for each stellar model (i.e., at every
timestep) to relate the glitch amplitude and period to the global
properties of the model.

Figure 1. Second differences of a sample glitch signature fitted against
frequency. The colored circles indicate the ℓ = 0, 1, and 2 modes of the MESA
model star. The solid curve shows the fit to all three of these modes. The dotted
line represents the location of nmax on which the fit is centered. The shaded
region illustrates the ±3Δν area from which modes were utilized in the fit.
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We supplemented this coarse grid with a further set of
evolutionary tracks with much finer sampling, with perturbations
to the values of Mi, Yi, and [Fe/H]i intended to match the
uncertainties in these parameters typically reported from stellar
modeling. The input parameters were sampled at M=
1.2Me± 2.5%, Y0= 0.275± 0.0125, and [Fe/H]0= 0± 0.08
dex. We use this “fine” grid to assess how the errors in our glitch-
fitting amplitudes, were they to be used as inputs to stellar
modeling, would otherwise compare with the variations associated
with propagating the uncertainties on spectroscopic stellar
parameters.

The frequencies of stellar models do not have any
uncertainties. For the sake of further discussion, in order to
make a quantitatively commensurate comparison between our
results and real data, we assign artificial measurement errors to
the mode frequencies using a fixed frequency measurement
error of 0.01 μHz, representative of a typical frequency
measurement error in these quantities, and similarly adopted
by Dréau et al. (2020).

3.2. Results

Similar parameter studies conducted for main-sequence stars
(e.g., Verma et al. 2014a) have considered the relation between
the properties of the glitch, the global stellar properties M, Y,
and [Fe/H], as well as the internal thermodynamic structures of
stellar models. We therefore examine the relationships between
the same stellar properties as in those studies, and the glitch
amplitudes and periods returned by our glitch-fitting pipeline.

3.2.1. Glitch Amplitude

In Figure 2 we show the fitted glitch amplitude as plotted
against the effective temperature, varying the stellar mass,
helium abundance, and metallicity, respectively. While the
glitch signature is ordinarily considered to be a property of the
instantaneous surface abundances, these do not substantially
change over the course of RGB evolution, particularly since the
deep convection zones bring the gravitationally settled helium
back to the surface. Consequently, while we show evolutionary
tracks coded by surface rather than initial composition, these do
not appear to change significantly over each track in our
figures.

The amplitude of the glitch signature can be seen to increase
with evolution, relative to Δν, as the stars ascend the RGB; it
therefore appears to serve well as an evolutionary diagnostic
(supplementing constraints from Δν and nmax). This result is
complementary to that reported in Broomhall et al. (2014), who
reported amplitudes decreasing with nmax. While this is true in
absolute frequency units, and is also the case with our results,
we submit that it is the phases òp which carry information about
the structure of the star in the mode frequencies, whereas Δν
merely describes the overall size of the mode cavity; as such, it
is the dimensionless glitch amplitude (as normalized by Δν)
which should be taken to be the fundamentally informative
quantity. In each of these cases, we see that the different
evolutionary tracks are displaced from each other laterally on
this diagram. We attribute this to temperature effects resulting
from the differences in stellar mass and composition, rather
than differences in the fitted amplitudes: at the same glog ,
higher stellar masses, higher helium abundances, and lower
metallicities each lead to higher effective temperatures.

We represent the uncertainty in the glitch amplitude in
Figure 2 by the red crosshatching, shown for one evolutionary
track in each figure, in order to avoid visual clutter.
Heuristically, the size of this crosshatched area indicates

Figure 2. The fitted glitch amplitude at nmax plotted against the effective
temperature, for series of evolutionary tracks of varying (a) initial mass, (b)
YCZ, and (c) [Fe/H]. The red crosshatching represents the glitch amplitude
uncertainty calculated on the central track. The gray lines represent the models
from the “fine” grid, which approximate the differences in spectroscopic
parameters representative of observational errors.
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whether the central track can be distinguished from its
neighboring tracks. For less- evolved red giants, the cross-
hatched regions representing our uncertainties can be seen not
to overlap with the adjacent tracks in either the coarse or the
fine grids. Over the course of stellar evolution, the uncertainties
in the glitch amplitude increase, so that the tracks become
statistically indistinguishable from each other close to the tip of
the RGB. Since these fine grids were sampled at a spacing
corresponding to typical reported uncertainties in these
quantities, this implies that supplementing traditional aster-
oseismology with additional constraints using the glitch
amplitude may not substantially improve the precision of the
estimates of these parameters (except perhaps for the least-
evolved red giants), although they may be used as evolutionary
constraints in their own right.

3.2.2. Glitch Period

We plot in Figure 3 the period of the glitch, 1/τ in μHz,
against the effective temperature, in a manner similar to
Figure 2. The period decreases as the star moves along the
RGB and increases slightly in the helium-core-burning RC
phase. The color bar indicates how the spectroscopic stellar
parameters impact the glitch period. We discuss this only for
the red giant phase; the RC is included in the figure, but there is
no obvious relationship between the spectroscopic parameters
and the period of the glitch signature as the stars relax toward
the RC. We note that this is tied to the quality of these fits; the
stellar structure changes rapidly between each fit during the
relaxation period, as the timescale for significant relaxation is
smaller than the temporal spacing between each fit. Since our
study predominantly focuses on first-ascent red giant stars, we
chose not to modify our functional approximation to the glitch
signature to ensure the fitting process worked as well on RC
stars and stars in the relaxation period. The outlying points
above the curves are examples of these ill-fitted glitch
signatures.

The red giant phase is well represented by the smooth curves
in the figure, which follow the trend of a decreasing glitch
period (or increasing acoustic depth) with decreasing temper-
ature. M and Y have a similar qualitative impact on the glitch
period; the colored curves show that higher M and Y both result
in a lower glitch period at a given temperature, while the
opposite is true for [Fe/H] (by the same evolutionary effect as
in the previous section). The red crosshatching is again used to
represent the uncertainty visually; the glitch period uncertain-
ties appear significantly smaller than those of the glitch
amplitude. We thus conclude that the glitch period appears far
better constrained than the amplitude by our procedure.
Nevertheless, there is clear overlap between the error and the
neighboring tracks at low temperatures, just as with the glitch
amplitude. We assert that the M, Y, and [Fe/H] measurements
are also not substantially improved from use of the glitch
period. Nevertheless, given our particular parameterization and
fitting procedure, the period is a better choice for relating glitch
properties to spectroscopic parameters due to the lower
uncertainty.

We observe a separation between the RGB and the RC in
Figure 3 as well. In each case, at around 4400–4800 K, the RC
is distinguishable from the curves representing the periods of

Figure 3. The fitted glitch period, 1/τ plotted against the effective temperature
for stellar models of varying (a) initial mass, (b) YCZ, and (c) [Fe/H]. The red
crosshatching (appears as a red line here, due to low uncertainty) represents the
glitch period uncertainty calculated on the central track. We include the RC in
the figure. The gray lines represent the models from the “fine” grid, which
approximate differences in the spectroscopic parameters representative of
observational errors.
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the first-ascent red giant stars. This is complementary to the
discrimination between RGB and RC stars using Δν and the
radial p-mode phase offset first described by Kallinger
et al. (2012).

3.2.3. Glitch Structure

We plot the first adiabatic index Γ1 against temperature and
identify the location of the He II glitch, relating the period to
the acoustic depth of the glitch as given in Equation (2),
computed from the MESA structure file and the fitted period.
We see that this localization corresponds to the peak between
the two dips in Γ1 (see Figure 4), as shown in Verma et al.
(2014b; for main-sequence stars) and Broomhall et al. (2014;
for radial modes and p-dominated mixed modes in red giants).
Fits from our procedure, which include π-mode frequencies,
may thus be interpreted similarly to those done with pure
p-modes or p-dominated mixed modes. This continues to be the
case when varying the stellar properties across the grid (see
Figure 5), yielding only some minor variations in the
localization of the glitch based on M, Y, or [Fe/H]. We may
treat these minor variations as an estimate of the systematic
error incurred in interpreting the glitch period as an acoustic
depth, which can be seen to be relatively small. However, we
will see that these results are only robust in phases of evolution
where the helium glitch lies in the outer half of the star by the
sound travel time (see Section 4.3). We also examine structural
changes caused by evolution on the RGB in Figure 5. The
thermal structure of the star is clearly impacted by evolution,
with the acoustic depth of the He II glitch increasing with
decreasing T. The localization of the He II glitch is consistent
with our other findings; at each of the three evolutionary stages
plotted, the acoustic depth corresponds to the peak in the Γ1

profile between the two depressions.

4. Dipole Modes

We now examine the significance of the inclusion of dipole
modes in modeling the glitch. While Broomhall et al. (2014)
reported only marginal improvements from supplementing
radial modes with quadrupole ones in their glitch-fitting
procedure, they were unable to infer dipole p-mode frequencies
consistently from dipole mixed modes, and thus reported no
improvements from using dipole modes. Claiming to be able to
perform this inference, Dréau et al. (2020) assert that the
inclusion of dipole modes substantially modifies the results of
the glitch-fitting procedure for red giant stars. Since pure dipole
π-modes are available for our synthetic stars, we are now in a
position to validate various aspects of their claims.

4.1. π Versus p-dominated Mixed Modes

The derivation of the underlying pure p-modes associated
with an observed set of mixed modes, absent access to the
stellar structure, remains an open methodological problem.
While the frequencies of the most p-dominated mixed modes
are a good approximation to those of the pure p-modes for
high-luminosity red giants (e.g., in the sample of Dréau
et al. 2021), Broomhall et al. (2014) found that, in general,
attempts to use the p-dominated mixed modes directly to
constrain acoustic glitches yielded contradictions between the
dipole modes and modes of even degree. Restricting their
attention to a single stellar model, Dréau et al. (2020) proposed
and demonstrated one prescription by which these pure modes
may be recovered. However, since this work predated the
theoretical developments of Ong & Basu (2020), they were
unable to evaluate the accuracy of this prescription critically.
We are now in a position to assess the generalizability of these
results better, which we do by performing a noise-free analysis
of a similar kind.
For the purposes of discussion, we first limit our attention to

a comparable stellar model (of similar mass and radius;
Δν∼ 10 μHz) to that used in Dréau et al. (2020). We compare
in Figure 6(a) the second differences in the mode frequencies of
that model, computed with several different prescriptions for
the recovery of p-modes from the dipole mixed modes (see
their Figure 2). In particular, the filled circles show the second
differences of the radial p-modes and nonradial π-modes of the
stellar model, while the square markers indicate quantities
inferred from dipole mixed modes. The solid black curve in
Figure 6(a) shows our fiducial parameterization, Equation (5),
as fitted to the second differences of only the radial p-modes
(blue circles). The second differences of the nonradial π-modes
(orange and gray circles) lie very close to the fitted curve,
despite not contributing to the fit. This is consistent with the
analytical properties of acoustic glitches: the inclusion of
nonradial modes does not (and indeed should not) materially
modify the fitted curve in this noise-free analysis. Conversely,
this indicates that we may assess the performance of any
observational prescription for deriving p-mode glitch obser-
vables from the mixed modes of a stellar model, by way of their
consistency with those derived directly from the π-modes of
that stellar model.
The square markers in Figure 6(a) show the second

differences of dipole modes calculated using the two prescrip-
tions for finding dipole p-modes from mixed modes considered
in Dréau et al. (2020): the open squares show the results of
taking mode frequencies at the local minima of period

Figure 4. The first adiabatic index Γ1 of a sample MESA stellar model plotted
against the effective temperature. The vertical dashed line marks the location of
the acoustic depth of the He II glitch, as inferred from the fitted model in
Equation (5).
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differences, while the filled squares show p-mode frequencies
fitted using the asymptotic parameterization of the local period
differences described in Cunha et al. (2019). As we expect,
taking the local minima of period differences (open squares)
yields second differences which depart significantly from the
glitch profile generated by the pure pressure modes; the
resulting fit (red dashed curve) is highly inconsistent with them.
The fitting procedure of Cunha et al. (2019) is intended to
remedy this, and indeed can be seen to yield good agreement
with the dipole π-modes at low frequencies. However, this
agreement is degraded at higher frequencies, where the g-mode
forest is sparser than required to oversample the approximate
mode-mixing function ζ accurately (see Ong & Gehan 2023).
Consequently, a glitch signature fitted against both radial
modes and these approximate dipole modes (red solid curve)
remains visibly different from that which would be constrained
with access to the ground-truth π-modes.

As such, we expect our characterizations of the helium glitch
using only pure p-modes, and the evolutionary dependences we
have described above, to differ significantly from those which
might be returned when using the approximate dipole p-mode
recovery prescription of Cunha et al. (2019). This was indeed
the case with the analysis of the single stellar model in Dréau
et al. (2020). This divergence was interpreted in that work as a
failure of the radial modes to constrain the glitch signature

adequately. However, our access to the underlying nonradial π-
modes (as in the preceding discussion) clearly indicates that
this not the case. Instead, it is rather the inferred nonradial
constraints from mixed modes which are biased, and these
differences are almost certainly a property of this methodolo-
gical approximation, rather than being of genuine astrophysical
significance. It is possible that the putative improvements in
accuracy (rather than precision) that Dréau et al. (2020) suggest
to result from the inclusion of dipole modes are perhaps merely
fortuitous systematic artifacts of this methodology for dipole
mixed modes.
In addition to the dipole modes, we also examine the

accuracy of various approximations for recovering p-mode
glitches from the quadrupole modes in Figure 6(b). We show
with blue markers in Figure 6(b) the second differences of the
frequencies of the most p-dominated quadrupole mixed modes,
which are often used to approximate those of the underlying
quadrupole p-modes. The blue dashed curve shows Equation (5)
as fitted to them in combination with the radial modes. We see
that it is very significantly discrepant from the actual glitch
signature implied by the radial p- and nonradial π-modes. As
such, we conclude that this commonly used approximation may
not be sufficiently accurate for the purposes of constraining the
acoustic glitch. Since the mode coupling for dipole modes is
stronger, and the period spacings are larger, this means that the

Figure 5. (a) Γ1 plotted against the effective temperature for stars at a given fixed surface temperature of 4400 K. Each curve is colored by the varying Me values. The
vertical dashed lines represent the acoustic depth of the He II glitch as computed from our fitted glitch parameters. These are similarly colored by the Me value of the
star. (b) The same, but for varying Ycz values. (c) The same, but for varying [Fe/H] values. (d) The same, but for various Teff values, or different stages in red giant
evolution.
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use of a similar approximation for the dipole modes is even less
appropriate than for the quadrupole modes.

We note that these differences emerge from a noise-free
analysis, whereas in principle, this bias could potentially be
reduced by downweighting the quadrupole modes in the fit
(i.e., artificially inflating the associated measurement errors) to
account for the fact that the frequencies of these minimal-
inertia mixed modes necessarily deviate from those of the
underlying p-modes. A priori, this deviation is at most
δν2∼ ν2ΔΠ2; we use it informally as an implied estimate of
the systematic error associated with this approximation. We
show the size of this systematic error with the gray shaded
region (centered at 0) in Figure 6(b). We see that it is so large
as to be comparable to the amplitude of the glitch signature
itself. Accordingly, were this downweighting to occur, the
quadrupole modes would have essentially no meaningful
constraining power on the properties of the acoustic glitch.

Similar arguments should also apply to the minimum-period-
difference technique for the dipole mixed modes.
Next, we consider the above approaches to deriving pure

p-modes from mixed modes, applied to the quadrupole mixed
modes of the same model. These are shown using red symbols
in Figure 6(b), with the same meaning as in Figure 6(a). We see
now that the use of the asymptotic parameterization of Cunha
et al. (2019) now yields results (red filled squares and solid
curve) that are in very close agreement with those arising from
the quadrupole π-modes (gray circles). To our knowledge, the
application of these methods to quadrupole modes has not been
well investigated, as observations of these modes have not been
reported. This paucity of observations is caused by the
difficulty of exciting more than the one p-dominated quadru-
pole mixed mode per radial order to observable amplitudes.
Finally, we examine the limiting behavior of these

constructions in the regime of high-luminosity RGB stars,

Figure 6. Comparison of different constructions for nonradial p-modes and their second differences, focusing in particular on dipole modes in (a) and (c), and
quadrupole modes in (b). The values in (a) and (b) are from the same stellar model (Δν ∼ 10 μHz). The colored circles indicate the second differences of the radial
p-modes and nonradial π-modes computed directly from the stellar structure, while the red squares show the second differences of the notional nonradial p-modes as
inferred indirectly from mixed modes of the same degree in two different ways, as described in Dréau et al. (2020). The red arrows join these indirectly determined
quantities to the corresponding values from the π modes. The solid black curve shows Equation (5) as fitted to only the radial modes, while the red curves are fitted to
the radial modes supplemented with nonradial modes of the corresponding degree (see the text for a full description). In (b), the blue squares show the second
differences of the most p-dominated quadrupole mixed modes, and the blue dashed curve shows a fit to them and the radial p-modes. The gray shaded region shows
the implied systematic error interval corresponding to the g-mode period spacing, δν ∼ ν2ΔΠℓ/2. In (c) we show the quantities derived from dipole modes recovered
from a substantially more-evolved red giant model (Δν ∼ 4 μHz) using the same prescriptions, which can be seen to be in much better agreement with the pure π-
modes.
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where coupling between the p- and g-mode cavities becomes
extremely weak, and the density of g-modes becomes
extremely high. For such red giants, coupling between the
two mode cavities is typically neglected, and the p-dominated
dipole mixed modes are treated as p-modes for glitch analysis
(e.g., Dréau et al. 2021). We show in Figure 6(c) these
constructions applied to the recovery of dipole modes in a
substantially more-evolved RGB stellar model (Δν∼ 4 μHz).
In this regime of evolution the most p-dominated mixed-mode
frequencies are assumed to be good approximations to those of
the underlying pure p-modes, and indeed the second differ-
ences of the inferred p-mode frequencies can be seen to be in
very close agreement with the π-modes of this stellar model.
The systematic errors incurred from neglecting mode coupling
(gray shaded region) are also considerably smaller in this
regime, even for the dipole modes.

4.2. Influence of the Dipole Modes on the Fitted Properties

Figure 6 shows that in some cases, the inclusion of pure
dipole p-modes does not change the results obtained with only
pure p-modes of even degree. A priori we expect this not
necessarily always to be the case, and we investigate such
differences in this section. We compare in Figures 7(a) and (b)
the quality of fit with and without the use of dipole modes, at
two different ages along the same evolutionary track. The two
fitted curves are nearly identical around nmax, but trend away
from each other at high and low frequencies. This result is more
pronounced for the fits done at a later evolutionary stage, as is
visible in Figure 7(b). We conclude that, on a model-by-model
basis, the inclusion of dipole modes in the fitting procedure
results in a fit largely consistent with the one produced using
only even-degree modes.

We examine in more detail in Figure 8 how these differences
change over the course of stellar evolution. The fitted
amplitudes with and without dipole modes can be seen to
differ slightly from each other: the amplitudes fitted with dipole
modes evolve smoothly, while those fitted without them exhibit
small oscillatory excursions. These excursions increase in
magnitude (i.e., fits without dipole modes become increasingly
inaccurate) for more-evolved models at lower temperatures,
coinciding with where Broomhall et al. (2014) find that even-
degree modes alone cease to constrain the fitted amplitudes and
depths robustly. We conclude from this that the inclusion of
dipole p-modes, were they available, would in general
significantly improve the robustness of the glitch modeling
procedure in red giants. However, given the methodological
issues involved with inferring p-mode frequencies from the
mixed modes that we have considered in Section 4.1, we feel it
important to qualify that such constraints on dipole p-modes
should only be introduced where their availability is considered
reliable. We do not believe this to be the case with present
techniques for the analysis of dipole mixed modes.

4.3. Localization of the Helium Glitch

When fitting for the acoustic depth of the glitch, we have
assumed (in keeping with the usual practice for main-sequence
stars) that the glitch is localized in the outer half of the star, by
sound travel time. This assumption is enforced by the hard
cutoff used in our initial parameter sweep—see Equation (8).
However, this assumption may not necessarily hold in the
most-evolved red giants, where the convective envelope

becomes extremely distended. In practical terms, this assump-
tion is also motivated by the fact that modes of each degree
sample the glitch signature at approximate intervals ofΔν, and,
since Δν∼ 1/2T (T being the acoustic radius), would therefore
by themselves have difficulty distinguishing between localiza-
tions of the glitch at its correct location τ, or at the alias T− τ
(i.e., so that the sinusoidal frequency provides an acoustic
radius rather than depth). In principle, the use of modes of
different l (and in particular different parity of l) should
significantly alleviate this degeneracy.
We show with the solid gray curve in Figure 9 the notional

location of the glitch, as determined from stellar models by
directly evaluating the acoustic depth at which the adiabatic
index Γ1 attains a local maximum (as shown in Figure 4). The
gray dashed curve shows the same quantity, but aliased against
a notional repetition rate of Δν to yield values always less than
T/2 (marked out with the horizontal dotted line). Correspond-
ingly, the colored curves indicate the locations of the glitch

Figure 7. (a) The second differences of a sample glitch signature for an early
RGB star, fitted via two different methods. The colored circles indicate the
ℓ = 0, 1, and 2 modes. The solid blue line is a fit using the ℓ = 0, 1, and 2
modes, while the red line is a fit without the ℓ = 1 modes. The dashed vertical
line represents the location of nmax. (b) The same, but for a more-evolved
RGB star.
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implied by the fitted sinusoidal frequency, either using the hard
cutoff in our parameter sweep (as in Equation (8), shown with
dashed curves), or with the parameter sweep widened to
encompass potential aliases (solid curves).

As was the case with the fitted amplitudes, the fitted acoustic
depths of the glitch can be seen to exhibit oscillatory variations
over the course of stellar evolution when only even-degree
modes are used, compared to when dipole modes are included
in the constraint. However, the overall qualitative character-
istics in both cases remain similar. Again, these results are
different from the findings of Dréau et al. (2020), for reasons
that we have already examined.

We see also that the constraint imposed by Equation (8)
remains largely a valid description of the true localization of

the glitch until very far up the RGB, past the luminosity bump
(Δν 3 μHz); only there do analyses with and without the
cutoff of Equation (8) diverge. While relaxing this constraint
does permit our methodology to be applied to more-evolved
stars, we see that this is only efficacious within a narrow range
of evolutionary states; far beyond the luminosity bump, the true
acoustic depth of the enhancement in Γ1 increases sharply.
However, in this regime, our fitting procedure does not usually
succeed in returning glitch parameters. The scaling between
nmax and Δν is such that the radial order np of modes near nmax
decreases with evolution, yielding fewer modes within our
chosen frequency window centered on Δν than would be
available for less-evolved ones (Stello et al. 2014). For these
highly evolved stars, the number of available modes has
decreased to such an extent that the number of free parameters
in our parameterization is larger than can be constrained by the
data. While using dipole modes does increase the number of
available second differences, this phase of evolution is
sufficiently rapid that their use here does not substantially
assist in resolving this issue.

5. Observational Systematics

In order to assess the usefulness of our parameterization in
analyzing real data, a handful of stars were selected from light
curves produced using the KEPSEISMIC pipeline (García
et al. 2011; Pires et al. 2015) and passed through our glitch-
fitting process. Our interest in this section is methodological,
rather than astrophysical; as such, we selected bright stars
(<8.5 Kepler magnitude) in the first-ascent red giant phase.
Our selection of bright stars is not intended to be representative
of red giants collectively, but rather to avoid interactions
between systematic issues caused by having a larger proportion
of intrinsic noise in the data. We then sorted the stars by the
length of the time series and took those with the longest time
series, since our analysis relies on slicing said time series into
numerous different lengths. Stars without well-defined ℓ= 0
and ℓ= 2 mode ridges were excluded from the study.
Peakbagging was done using the PBJam code (Nielsen
et al. 2021). An additional manual step followed the initial
generation of the acoustic modes: we vetted PBJamʼs ridge
identification of the radial orders, and thus eliminated from our
sample those stars with a low signal-to-noise ratio (S/N) and
incorrect identifications. From these considerations, we settled
on nine stars, from which we used a 55 day light-curve filter.
These stars are given in Table 1. In addition to their posterior
median Δν, as determined by PBJam’s “asymptotic peakbag-
ging” routine, we also report their single-mode height-to-
background ratios (which for brevity we will refer to as
anS/N) as defined by the maximum height-to-background
ratio of any radial mode fitted by PBJam, which normalizes
mode heights with respect to the colored-noise components of
the power spectrum. We note that this construction is defined
with respect to individual modes, rather than to the power
spectrum as a whole. As such, it is considerably more sensitive
to local stochasticity in the power spectrum than the usual
definition of the height-to-background ratio, which involves
smoothing out the power spectrum to yield an averaged
amplitude (e.g., Kjeldsen et al. 2008; Huber et al. 2011; Mosser
et al. 2012). This local sensitivity is necessary, since our
primary concern here is the robustness of measurements of the
glitch properties (derived from individual mode frequencies),
rather than of the amplitudes of the seismic power excess per

Figure 8. The glitch amplitude at nmax plotted against the effective temperature
across RGB evolution for a MESA-generated stellar model. The blue points
represent amplitudes fitted with the use of ℓ = 1 modes, while the orange points
represent amplitudes fitted without ℓ = 1 modes. The luminosity bump is
visible at around 4500 K.

Figure 9. The fractional acoustic depth of the helium glitch, τHe, along an
evolutionary track of solar composition at 1.2 Me, shown as a function of Δν
(i.e., with evolution going from right to left), as determined from different
variations of our method. The locations implied by two different glitch fits
(with and without dipole modes) are shown with the blue and orange curves,
respectively, while the gray curve shows the “true” location of the glitch as
determined directly from the stellar structure. The horizontal dotted line shows
the sampling rate of Δν, while the gray dashed curve shows the alias of the
gray curve around this sampling rate.
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se. We report this S/N to characterize the information content
of the power spectrum as a point of comparison for the
computed glitch parameters of different stars. In the actual
fitting procedure, we use eight radial orders around nmax as is
standard with PBJam. The rest of the pipeline is fully
automated, taking the generated frequencies and fitting them,
just as with the artificial data. The same model parameterization
given in Equation (5) was used. The only notable difference
was that dipole modes were not returned by PBJam, and so
were not used in the fitting process.

In the following sections, we consider the response of the
fitted glitch properties to simulated progressive degradation of
the observing conditions. Accordingly, we also show in Table 1
the median S/N for each star at the end of each of these
simulated degradation exercises. In particular, in Section 5.1
we consider how the glitch parameters are modified when the
observation window is truncated; in Table 1 we therefore report
the median S/N for each star over all truncated windows of the
shortest duration used in the exercise. Likewise, in Section 5.2
we consider how they change when noise is injected into the
light curve; we therefore report the median S/N taken over all
realizations of the largest amount of injected Gaussian noise
used in the exercise. In both cases, we then take the ratios of
these median maximally degraded S/Ns, compared to the ones
returned from the unmodified Kepler data, to indicate the
change in the information content of the seismic signal
heuristically within each Kepler light curve, under the action
of each kind of degradation. In our following discussion we
will refer to these as the “truncation” and “degradation” ratios,
respectively.

5.1. Dependence of the Amplitude Uncertainty on the Length of
the Time Series

We first examine how the uncertainties in the fitted glitch
amplitudes change as the available duration of the time series is
decreased. For this exercise, we consider window lengths of
varying durations (from 27 days up to 2 yr, in increments of 27
days). For each duration, we prepare 10 randomly chosen slices
of the Kepler time series for each star. We then pass each slice
through the fitting pipeline described in Section 2. The final
uncertainties in the glitch amplitudes (for this exercise) are then
found as the standard deviation of the fitted value across all
windows of the same duration.

Figure 10 illustrates that this uncertainty in the amplitude
marginally decreases as the length of the time series increases.
The numerous fluctuations for each given star (colored by the

truncation ratio) indicate that this relationship is not determi-
nistically linear. We examine this more closely in Figure 11,
which shows how the differences in the reported amplitudes
depend on the duration, for two stars with different truncation
S/Ns. Despite both of these stars having very similar intrinsic
S/Ns in their unmodified Kepler data, they can be seen to
respond very differently to this simulated progressive
degradation.
In both cases, we see that the fitted amplitudes are fairly

inaccurate for the shortest-duration windows, and converge
toward limiting values as the durations of the windows
increase. In both cases, we also see that the fitted values of
the glitch amplitude appear overestimated on average for the
most-truncated windows; this appears to be a common feature
of the sample that we have considered. For KIC 8631401
(where the peakbagging was least affected by truncation in our
sample), we find that the uncertainties in the fitted glitch
amplitude are consistently smaller, and the distribution of fitted
amplitudes are more centered around the median, than appears
to be the case for KIC 7668613 (whose data were the most
sensitive to truncation of our sample). Surprisingly, despite the
truncation ratios indicating that KIC 8631401 should be least
affected by truncation, we find that its fitted glitch amplitude
changes far more, as the amount of available data increases.

Table 1
KIC Numbers of Selected Stars Whose Stellar Light Curves Were Produced from the KEPSEISMIC Pipeline along with Various Measures of Their S/N (Defined in

the Main Text)

KIC Number Δν/μHz S/N Ratio

Raw Truncated Degraded Truncation Degradation

7286856 14.7 61.436 20.000 3.195 0.33 0.05
8631401 11.5 35.256 16.858 3.586 0.48 0.10
6144777 11.0 81.685 17.452 8.104 0.21 0.10
11352446 7.7 45.498 9.766 4.874 0.21 0.11
11618103 9.4 52.735 16.472 7.634 0.31 0.14
8328178 8.6 64.325 15.113 16.365 0.24 0.25
5790837 4.7 24.415 7.593 7.744 0.31 0.32
7668613 4.3 31.926 3.750 10.990 0.12 0.34
7944142 7.1 33.809 14.470 12.398 0.43 0.37

Figure 10. The standard deviation in the glitch amplitudes of nine stars whose
light curves were produced using the KEPSEISMIC pipeline, plotted against
the duration of the time series. The points represent each standard deviation
calculation, and the lines connect a given star for visual clarity. The lines are
colored based on the star’s truncation S/N.
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One possible reason for this is that KIC 7668613 is the most-
evolved star (smallest Δν) of our bright sample. Prima facie,
we should therefore expect its glitch amplitude to be the
smallest in absolute frequency units, from the homology
scaling considerations that we have discussed in our modeling
exercise. However, we can see that the fitted amplitudes are
uniformly larger than those of KIC 8631401, which is
considerably less evolved. Thus, one likely explanation for
this is that even a 2 yr temporal baseline, which is the longest
that we have considered in this exercise, remains insufficient to
provide the data quality required to constrain the properties of
the helium glitch in KIC 7668613 adequately.

5.2. Dependence of the Amplitude Uncertainty on Background
Noise

Next, we examine the relationship between the uncertainty in
the fitted amplitude and the statistical properties of the
nonoscillatory components in the input time series. Gaussian
noise was injected into each time series to simulate progressive
degradation of the intrinsic photometric noise of each target.
Given that the duration of the original Kepler time series for
each star was slightly different, we chose an arbitrary fixed
length of 180 days to standardize the total amount of
information available between stars. Ten different input
standard deviations in the range of 50–500 ppm were used to
generate temporally uncorrelated noise, which was then
injected into the flux of each time series prior to mode
identification via PBJam. We considered 10 independent
realizations of this white noise for each simulated degraded
S/N. This gave us 100 uniquely altered light curves for each
star, for which the mode identification and fitting process was
redone ab initio as described in Section 5.1. In Figure 12, we
show how the uncertainties in the glitch amplitude depend on
the standard deviation of the injected photometric noise. As
expected, the injection of noise increases the uncertainties in
the resulting fitted glitch amplitudes. We see that the
degradation ratio does not strongly correlate with the overall
normalization of the amplitude uncertainties in a deterministic
fashion. However, the degradation ratio can be seen to correlate

well with the overall slope of the relation between the scatter in
the fitted amplitudes, and the amount of injected Gaussian
noise. Moreover, we find that the errors in the glitch amplitude
have a clearer monotonic dependence on the injected noise than
they do on the duration of the associated time series.

5.3. Discussion

We have examined how our ability to recover glitch
parameters for red giant stars is affected by the time-domain
properties of the input data, specifically the duration and
noisiness of the associated time series, by way of simulating the
progressive degradation of observing conditions. We have used
the ratios of single-mode height-to-background ratios (HBRs)
to quantify the amount by which the seismic component of the
input data is modified under both kinds of degradation. We find
that stars with similar intrinsic Kepler S/Ns respond differently
in these exercises.
Informally speaking, we should obtain the most drastic

changes to the power spectrum (and so the smallest degradation
ratios) for data sets which are most informative, while data sets
which are already noise dominated should change the least (and
so yield the largest degradation ratios). Although increasing the
amount of white noise in the input data can be directly seen to
worsen the quality of the fitted glitch parameters, the
dependence on the length of the input time series is less clear;
correspondingly, the interpretation of the truncation ratios is
somewhat less straightforward. In principle, we should expect
that the truncation ratio should depend onΔν, to the extent that
longer temporal baselines are required to resolve smaller
frequency spacings. However, we find at best only a weak
positive correlation with the values of Δν that we report in
Table 1. While the truncation ratio does appear to parameterize
the rate at which the fitted properties approach their limiting
values as the length of the available time series is increased
(e.g., Figure 11), the relationship between this truncation ratio
and the photometric properties of the time series (i.e., the raw
single-mode HBR) is also unclear.
As far as seismic characterization of glitch signatures is

concerned, the relative importance of photometric stability of

Figure 12. The standard deviation in the glitch amplitudes of nine stars whose
light curves were produced using the KEPSEISMIC pipeline, plotted against
the standard deviation of the added Gaussian noise. The points represent each
standard deviation calculation, and the lines connect a given star for visual
clarity. The lines are colored based on the star’s degradation S/N.

Figure 11. Violin plot of the glitch amplitudes of two selected stars plotted
against the time series duration. The blue lines represent the amplitudes of the
star in our sample whose S/Ns were least affected by truncation, and the
shaded regions represent the probability distributions around each median. The
orange lines are of the same nature, but for the star in our sample most affected
by truncation.
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the time-series data, compared to the duration of the time
series, appears to depend on the regime of evolution of the
intended targets. A long time series is fundamentally necessary
to obtain a reliable amplitude for high-luminosity red giants.
However, for less-evolved stars, this improvement in the fitted
parameters saturates as the duration of the available data
increases. On the other hand, a large amount of photometric
noise makes such a determination impossible, regardless of the
length of the time series.

This tradeoff may have implications for the design of future
asteroseismic surveys. The results of our modeling exercise,
e.g., Figure 2, are suggestive of evolutionary thresholds for
both the minimal duration of time series, as well as for the
maximal permissible amount of photometric noise, required for
reliable extraction of the properties of the glitch. For example,
for the most-evolved stellar models on our computational grids,
the fitted glitch amplitudes are of order ∼0.1 μHz; heuristically,
Figure 10 suggests that time series longer than 300 days, and
(as seen in Figure 12) having no more than 300 ppm of
photometric noisepresent per exposure, will be correspond-
ingly required to characterize reliably the glitches for stars in
similar phases of evolution. More detailed diagnostics will
naturally depend on the precise instrumental characteristics and
observing strategy for the survey under consideration, which
we believe to lie beyond the scope of this work.

6. Conclusion

In this paper, we have developed a fitting procedure for the
He II glitch of first-ascent red giant stellar models. We then use
it to assess the potential use of glitch parameters to constrain
stellar properties, as well as methodological systematics
associated with the inclusion or omission of dipole modes in
improving the fits of red giant He II glitches.

Using a grid of evolutionary models, we identify relation-
ships between the glitch parameters and other spectroscopic
parameters. Under reasonable assumptions about the observa-
tional uncertainties in the mode frequencies, we find that the
inferred uncertainties in the glitch amplitude and period
(derived via the mode frequencies generated with the stellar
models) increase with evolution as well. Thus, measurements
of Y, M, and [Fe/H] do not appear to be substantially improved
with the constraint of the glitch amplitude or period, except
perhaps for the least-evolved red giants. In contrast, we find
that the period of the glitch signature can differentiate the RC
and red giant stages, in conjunction with measurements of the
effective temperature. Dréau et al. (2021) distinguish the RC
and red giant evolutionary stages on the basis of the fitted phase
parameter of the glitch, rather than the period. However, by
construction, a glitch signature fitted to the second differences
of the mode frequencies will have a different phase parameter
from one fitted directly to phased frequencies, particularly if the
chosen parameterization of the amplitude function is different.
Thus, the phases we obtain are incommensurate with those in
Dréau et al. (2021). The computation of τ from our fitted period
also conforms to earlier results (Broomhall et al. 2014; Verma
et al. 2014b) that the He II glitchʼs localization corresponds to
the peak between the two depressions in the Γ1 diagram. This
statement appears to hold for evolutionary models of varying Y,
M, and [Fe/H].

Following Dréau et al. (2020), we investigate the effects of
including dipole modes using the π-mode isolation scheme of
Ong & Basu (2020). We find that the use of dipole modes does

not significantly alter individual fits, though they become
important when fitting entire evolutionary tracks approximately
at the luminosity bump and beyond. Our results highlight
shortcomings in present methods in inferring dipole and
quadrupole p-modes from the available mixed modes.
Finally, we tested our fitting procedure on Kepler light

curves in order to benchmark the study and understand the
limitations imposed by the frequency errors of real data. We
found that our fitting procedure applied itself smoothly to these
data. We then explored how the fitted properties of the glitch
are modified under different kinds of degradation of observing
conditions.
In conclusion, we have investigated the evolutionary

properties of the He II glitch in red giants, and demonstrated
that under ideal conditions, fitting for it using only the ℓ= 0
and 2 modes may not produce substantially different results
from those obtained including dipole modes. However, the use
of dipole modes will naturally improve the robustness of any
application of this procedure to observational data, and
therefore remains a pressing methodological concern—espe-
cially seeing that present techniques yield uncertainties in the
glitch amplitudes too large to be of use as constraints on stellar
properties. Future improvements to the technique—from better
treatment of dipole mixed modes, or potentially from further
constraints using modes of higher angular degree—may yet
prove to be of diagnostic value. We leave this discussion to
potential follow-up work in this direction.

This research made use of Lightkurve, a Python package for
Kepler and TESS data analysis. This work is partially
supported by NSF grant AST-2205026 to S.B.
Software:MESA (Paxton et al. 2011, 2013, 2015, 2018,

2019), GYRE (Townsend & Teitler 2013), lightkurve
(Lightkurve Collaboration et al. 2018), astropy (Astropy
Collaboration et al. 2013; Price-Whelan et al. 2018), pandas
(Reback et al. 2021), pbjam (Nielsen et al. 2021), yabox
(Mier 2017).
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