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Abstract—Researchers are looking into solutions to support the
enormous demand for wireless communication, which has been
exponentially increasing along with the growth of technology. The
sixth generation (6G) Network emerged as the leading solution
for satisfying the requirements placed on the telecommunications
system. 6G technology mainly depends on various machine
learning and artificial intelligence techniques. The performance
of these machine learning algorithms is high. Still, their security
has been neglected for some reason, which leaves the door open to
various vulnerabilities that attackers can exploit to compromise
systems. Therefore, it is essential to evaluate the security of
machine learning algorithms to prevent them from being spoofed
by malicious hackers. Prior research has shown that the decision
tree is one of the most popular algorithms used by 80% of
researchers for classification problems. In this work, we collect
the dataset from a laboratory testbed of over 100 Internet of
things (IoT) devices. The devices include smart cameras, smart
light bulbs, Alexa, and others. We evaluate classifiers using
the original dataset during the experiment and record a 98%
accuracy. We then use the label-flipping attack approach to
poison our dataset and record the output. As a result, flipping
10%, 20%, 30%, 40%, and 50% of the poison data generated
accuracies of 86%, 74%, 64%, 54%, and 50%, respectively.

Keywords— Adversarial Machine Learning, Internet of Every-
thing (IoE), Internet of Things (IoT), wireless communication, label-
flipping, decision tree.

I. INTRODUCTION

The technological revolution resulted in an ecosystem where
everything can be connected to everything. To fulfill the dire need
for all-around connectivity, intelligence, and cognition, the concept of
the Internet of Things (IoT) evolved into the Internet of Everything
(IoE). In essence, IoE, defined as the intelligent connection of people,
processes, data, and things aims to foster a common interrelated
ecosystem that improves experiences and facilitates smarter decision-
making. The concept of IoE relies on interdisciplinary technical
innovations such as sensor and embedded technologies, low-power
communication, and big data analytics [I]. The paradigm of the
Internet of Everything is generally used in large applications such as
smart manufacturing, smart agriculture, and intelligent transportation
systems [2]. Emerging technologies such as artificial intelligence
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(AD), 3D media, and Virtual and Augmented reality (VAR) are
booming. Today, artificial intelligence systems can monitor their
environment, analyze it, and take action. For instance, autonomous
vehicles can drive themselves from a starting point to a predetermined
destination without any human interaction.

The advancement of emerging technologies increased the volume
of data traffic. According to Edholm’s law, proven to be true since
1970, telecommunication bandwidth doubles every 18 months [3].
Hence, the introduction of 6G. Some of the key motivations behind
the introduction of 6G communication systems are high bit rate, high
reliability, low latency, high energy efficiency, high spectral efficiency,
new spectra, green communication, intelligent networks, network
availability, communications convergence, localization, computing,
control, sensing, and enabling fully digital connectivity [4]. With
the success of Machine Learning (ML) in different domains, there
has been an increasing interest in the development of artificial
intelligence-driven solutions for wireless communication. In the lit-
erature, Deep Neural Network (DNN) models have been used for
spectrum sensing and prediction [5]. In addition, to DNN various
ML models including Convolutional Neural Networks (CNN), Feed-
forward Neural Networks (FNN) and Long Short-Term Memory
(LSTM) models have been developed for device fingerprinting and
identification [6], channel decoding [7] and modulation recogni-
tion [8]. Artificial Intelligence and machine learning play a crucial
role in wireless 6G networks as they enable real-time analysis and
automated zero-touch operation and control in 6G networks [9].
Numerous studies also focus on exploring the feasibility of detecting
network attacks by utilizing machine learning techniques. In recent
years, utilization of machine learning technologies in anomaly-based
IDS has gained a lot of popularity [10], [11], [12], [13], [14].

For the past decades, researchers have focused on improving
the accuracy of machine learning models while overlooking the
security aspect. As machine learning is at the forefront of today’s
technological revolution, it is extremely important to investigate the
security of these algorithms and develop countermeasures to prevent
systems from being spoofed. Thus, the introduction of Adversarial
Machine Learning (AML). Unlike traditional jamming attacks that
emit electromagnetic waves to jam the channel [15], AML attacks
are crafted to mislead the model and are more difficult to detect.
Many studies have proven that AML can effectively disrupt wireless
networks by causing the misclassification of signals [16]. AML
attacks in wireless networks may lead to disruptions, performance
losses, and eventually failures. Hence it is essential to ensure the



security and robustness of ML-based systems in the presence of
adversaries. In this work, we evaluate the robustness of the decision
tree (DT) algorithm by implementing a label-flipping attack on an
intrusion detection system (IDS) dataset collected from the CAP
Center testbed. The goal of our work is threefold. First, we present
a brief overview of IOE. Then, we survey the current state of ML,
AML, and IDS. Finally, we discuss our case study. Our experiment
illustrates how a label-flipping attack influences the ML model
metrics such as accuracy, precision, recall, and F1 score.

II. THE INTERNET OF EVERYTHING (6G, WIFI,
BLUETOOTH, AND I0T)

The exponential technological development has fostered an en-
vironment where everything is connected to everything. This in-
terconnection between humans, data, and devices has forced the
Internet of Things (IoT) to evolve into the concept of the Internet
of Everything (IoE) [!7]. The Internet of Everything is the global
network through which people, things, and intelligent devices are
connected and can share information and services [18]. IoE aims to
realize a hyperconnected society by collecting and exchanging bilat-
eral information among millions of Internet-connected devices [19].
While similar to IoT, the IoE expands from examining only device-to-
device communication and focuses on the human element. With more
relevant connections than machine-to-machine communications, IoE
has enabled the global democratization of skills, including person-to-
machine and person-to-person connections [20]. The IoE paradigm
can extract and analyze real-time data collected from diverse and
heterogeneous IoE systems, ranging from simple sensors and ac-
tuators to complex robotic devices, and from autonomous service
agents to human actors [21]. The growing communication need
of IOE systems imposes multi-dimensional requirements on wireless
communication, sensing, and security [22]. Wireless networks play
a vital role in IOE since they enable data transfer between systems.
Wireless Communication, also referred to as unguided media, is the
transmission of information between two or more points without
any physical connection. It uses the radio spectrum to transmit
signals through the atmosphere. In wireless communication systems,
electromagnetic energy is coupled to the propagation medium by
an antenna which serves as the radiator [23]. The inception of
wireless communication can be traced back to the 19th century
when scientists started experimenting with electromagnetic waves.
The most recent evolution in network capabilities is 6G. By contrast
with the existing 5G networks, the sixth generation (6G) networks
offer less latency and high frequency. As the scale at which data is
broadcasted constantly grows, a network with an expanded capacity
to handle this load is necessary. Another critical aspect of the IOE
is the modes of communication. There are many ways devices can
communicate across the network; these are called communication
protocols. Communication protocols transmit packet data from one
device to another on the network. These protocols include TCP, FTP,
ZigBee, Z-Wave, Wi-Fi, Bluetooth, Thread, and more. Communica-
tion protocols can send data from one device to another over the local
network and the Internet.

Intrusion detection systems are widely used to protect IOE net-
works from malicious activities. Intrusion occurs when a set of
actions compromise the confidentiality, integrity, and availability of
a system. Two (2) methodologies are generally used in intrusion de-
tection: the signature-based method and the anomaly-based method.
Signature-based detection relies on pattern (signature) comparison;
thus, it can hardly detect new malware attacks. Anomaly-based uses
machine learning to detect suspicious behaviors and therefore can
be trained to detect unknown malware attacks and even zero-day
attacks [24].

III. MACHINE LEARNING

The term Machine Learning was coined by Arthur Samuel in
1959, who defines it as the ability of computers to perform tasks

without being explicitly programmed to do so [25]. Machine learning
is an Artificial Intelligence technique that uses algorithms to analyze
data, identify hidden patterns, and predict future outcomes. The
concept of machine learning is very similar to data mining and
predictive modeling. Depending on the training technique, machine
learning models are subdivided into four (4) main groups: super-
vised, unsupervised, semi-supervised, and federated learning. The
supervised learning technique uses labeled data to train algorithms
that predict outcomes accurately. Supervised ML is separated into
classification and regression algorithms. Classification algorithms are
used to predict values (good or bad) while regression algorithms are
used to predict quantities such as home prices. The classification
works by assigning data to specific categories. The classification
algorithm recognizes features that impact the data category, then uses
that assumption to predict different labels. One such classification
model is the Decision Tree (DT) Classifier. A DT classifier functions
by establishing a set of rules and makes its predictions based on those
rules. DT algorithm uses features in the dataset to find differences. By
identifying differences in data, the DT determines the points where
each data point differs from one another to identify different classes.
In the same way, the DT also identifies similarities to find data points
that belong to the same class. Each difference creates a branch in the
DT; multiple branches are created until the model is 100% certain to
which class a data point belongs [26].

Different metrics are used to evaluate and monitor the performance
of ML models. For classification models, the following metrics are
generally estimated:

- Confusion Matrix is a tabular visualization of the ground-truth
labels versus the model predictions. It is a two-dimensional table
showing actual and predicted values.

Actual

1 True Positive (TP) False Positive (FP)

Predicted

0 False Negative (FN) | True Negative (TN)

Fig. 1. Confusion Matrix

-Accuracy is defined as the fraction of correct predictions that
our model made. It is the proportion of the total number of correct
predictions.

Accuracy = (TP+TN)/(TP+TN+FP+FN) (1)

-Precision is essentially the proportion of positive cases that were
correctly identified by the machine learning model.

Precision = TP/(TP + FP) 2)

-Recall or Sensitivity is the proportion of actual positive cases
which are correctly identified.

Recall =TP/(TP+ FN) 3)

-F1 score combines the precision and recall of a classifier into a
single metric by taking their harmonic mean.

Flscore = 2 x (Precison * Recall)/(Precision + Recall) (4)



IV. ADVERSARIAL MACHINE LEARNING

Adversarial Machine Learning (AML) is a threat that puts all ML-
based systems at risk. It is the art of misleading ML models by
providing deceptive inputs. AML aims to change a predicted output
or gather sensitive information from the Al. Unlike traditional cyber-
attacks introduced by bugs in the code, Al attacks are made possible
by the limitations of Al algorithms that currently cannot be fixed [27].
These attacks can be targeted or untargeted. A targeted attack results
in the model making a specific mistake while an untargeted attack
leads to a reduction of the model’s overall accuracy [28]. Attacks
on machine learning can be categorized based on the amount of
knowledge the adversary has about the model. In a white-box attack,
the adversary has full knowledge of the system (the training data,
the architecture, the algorithm, and the optimization techniques). In
a gray-box attack, the attacker has limited knowledge of the system,
and in a black-box attack, the perpetrator does not know the system.

We can also categorize attacks based on the attack phase. When
performed during the training phase, the main purpose of the attacker
is to perturb the model or the dataset by injecting fake data (poisoning
attack) or modifying the dataset (data access). On the other hand, we
have attacks performed during the testing phase also called inference
attacks as shown in Figure 2. These attacks are performed when the
ideal has already been trained. The goal of the hacker is either to find
adversarial examples able to evade proper outputs (evasion attacks) or
to infer some information on the model or the training dataset (oracle
attacks). The main purpose of the attacker is to perturb the model or
the dataset by injecting fake data (poisoning attack) or modifying the
dataset (data access). On the other hand, we have attacks performed
during the testing phase also called inference attacks as presented
in Figure 2. These attacks are performed when the model has been
already trained and the goal of the hacker is either to find adversarial
examples able to evade proper outputs (evasion attacks) or to infer
some information on the model or the training dataset (oracle attacks).

In traditional machine learning, attacks are more effective when
implemented during the training phase rather than the testing
phase [29]. During the training phase, the ML model is mainly
exposed to poisoning attacks. Poisoning occurs when the inputs of
the ML model are changed in some way to cause the model to give
incorrect outputs. Label-flipping occurs when an attacker changes a
portion of the training labels [30]. Label flipping occurs when an
attacker takes a small number of training labels and manipulates
them. By making small changes unnoticed by the ML algorithm,
the label-flipping attack poisons the model and changes the expected

output.
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Fig. 2. Adversarial Machine Learning Architecture

V. LITERATURE REVIEW

The security of ML models is currently a major concern that
prevents the deployment of ML applications in critical environments.
For this reason, recent studies have focused on understanding how
ML can be attacked and how we can secure these models. AML

has been extensively studied in various industries. Catak et al. [31]
investigated vulnerabilities of ML models used in 6G wireless net-
works, particularly for Wave Beam prediction. They concluded that
the Fast Gradient Sign Method is a powerful type of attack that can
hinder the security of deep learning models. In their work, Nassar
et al investigated adversarial printable patches and have proven that
they can be used to fool deep learning models into misclassifying item
prices in cashier-less stores [32]. This work illustrates how adversarial
tags could be created to perturb image classifiers causing real-world
threats to smart stores and their operation. Koosha et al. [33] provide
an in-depth analysis of securities issues in Machine Learning systems.
They assessed different attack strategies and defense mechanisms.
They determined that label contamination is a serious issue and
finding effective defense strategies to prevent attacks and protect
intelligent systems remains a challenge.

Xiaofeng, one of the pioneers of the secure ML concept, concluded
that understanding what an attack can and cannot do to a learning
system is one of the foundations of securing ML applications [34].
Almost a decade later, MINGFU et al. [35] reviewed AML attacks
in real-world conditions and demonstrated that these threats are
real concerns in the physical world. Their work encompasses all
stages of ML attacks and proves that exploiting vulnerabilities of
ML models can lead to serious consequences, especially in security
and safety-critical applications such as autonomous driving and
smart healthcare. In recent years, the utilization of machine learning
technologies in anomaly-based IDS has also gained popularity. Kunal
et al. [10] surveyed studies on machine learning-based algorithms and
presented a comparison based on the dataset used, the data reduction
approaches, the type of classifiers used, and the outcome achieved.

Saranya et al. [36] compared different ML algorithms such as Lin-
ear Discrimination Analysis (LDA), Classification And Regression
Trees (CART), and Random Forest (RF) used for network traffic
classification tasks. The experimental results show RF algorithm
yields better accuracy (99.65%) than LDA (98.1%) and CART (98%)
algorithms.

Rohit et al. [37]presented an ensemble approach to ML-based
intrusion detection systems. They examined three -classification
schemes: Naive Bayes, PART (Partial Decision Tree), and Adaptive
Boost. First, they evaluated the performance of the classifiers with all
41 features leveraging normalization. The result showed that PART
(99.96% accuracy) was more performant in that case. Then, in the
second experiment, they performed feature selection using entropy-
based analysis to decide on satisfactory factors. The outcomes con-
firmed that PART (99.95% accuracy) was more performant than the
other two. Finally, they implemented an ensemble-based approach.
Multiple classifiers were combined using average or majority vot-
ing. The Bagging method was used to reduce the variance error.
In addition to improving the data imbalance issue, better results
were achieved with the ensemble approach (99.97% accuracy) in
comparison to other classifiers.

Yedukondalu et al. [38] applied SVM (Support Vector Machine)
and ANN (Artificial Neural Networks) algorithms and evaluated the
performance of these algorithms. Though ANN does not provide
fast computational capabilities, it was proven to be more accurate
(96%) compared to SVM (48.73%). Maede et al. [39] employed
seven different techniques to implement a machine learning-based
IDS for backdoor attacks, SQL injection, and command injection
attacks in SCADA (supervisory control and data acquisition): SVM,
KNN, Naive Bayes (NB), RF, DT, logistic regression (LR) and ANN.
RF was determined to be the most performant model and NB the
worst in the case of imbalanced datasets.

VI. METHODOLOGY

The main goal of our research is to evaluate the influence of label
poisoning attacks on the decision tree machine learning model. First,
we collect anomaly detection data from our testbed. The collected
dataset is then used to train our network classification model. Finally,



we implement the label-flipping attack on the dataset and then
evaluate ML metrics such as accuracy, precision, F1 score, and recall
to determine the influence of the attack on the classifier.

A. Experimental Setup

The CAP center’s Internet of Things testbed is a state-of-the-art
network security testbed. The purpose of this testbed is to evaluate
the Confidentiality, Availability, and Integrity (CIA triad) of different
smart devices. The testbed currently has more than 100 connected
devices and supports multiple communication protocols such as Wi-
fi, Zigbee, and Bluetooth. This testbed can perform various tests to
evaluate the vulnerability of IoT devices. For this work, we collected
network traffic data from the testbed and then used it to build a ML
classification model.

B. Intrusion detection Data Collection
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Fig. 3. Data Distribution by Communication Protocol

Mirai is a type of malware that infects IoT devices running on
ARC(Argonaut RISC Core) processors and turns them into a network
of connected bots. This network of connected devices, also called
a botnet, can later be used to infect other devices or servers [40].
Mirai botnets are specifically used to conduct Distributed Denial of
Service (DDoS) attacks [41]. Mirai attacks particularly target IoT and
embedded devices that have few built-in cybersecurity controls. These
devices are mostly smart home gadgets such as routers, printers,
refrigerators, IP cameras, and Digital Video recorders (DVR) [42].
For this work, we launched a Mirai Host brute-force, a Transmission
Control Protocol (TCP) flooding, a HTTP flooding, and an ACK
flooding attacks to create a Distributed Denial of Service (DDoS).

We also implemented a Denial of service (DoS) SYN flooding
attack. In SYN flooding-based DoS attacks, the attacker sends many
spoofed SYN packets which overflow the target buffer and creates a
network congestion.DoS attacks are generally meant to either exhaust
certain resources such as battery and memory or shut down the entire
network, preventing legitimate users from accessing services offered
on the network [43]. SYN flooding exploits the TCP three-way
handshake procedure to interrupt and repudiate the normal network
traffic [44]. SYN flood sends a request to connect to a server but
never completes the handshake. Spoofed requests are sent iteratively
until all ports are saturated and unavailable for legitimate requests.
In the Man In The Middle (MITM) attack, adversaries can intercept
and alter data traveling between two or more channels. There are
various methods to perform MITM attacks. For this experiment, we
performed MITM Address Resolution Protocol (ARP) spoofing attack
and recorded traffic data. ARP is a communication protocol used
to ensure network communication reaches a specific device in the
network [45].In ARP spoofing attacks, perpetrators send malicious
packets onto a local area network (LAN) to trick the victim’s
device into sending messages to the hacker instead of the intended
recipient [46]. Port scanning is a technique used by adversaries to

detect open ports in the network that they can use as attack vectors.
For this implementation, we used a Network mapper (Nmap) utility to
detect available hosts on the network and determine what Operating
System (OS) they are running. For this purpose, we send packets
to specific ports on the host and analyze the response to identify
vulnerabilities.

Network traffic data
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Fig. 4. Data Distribution by attack type

After implementing network attacks, we collect traffic data for each
attack. Figure 4 shows the distribution of the data collected and the
different protocols used. We then categorize the traffic as normal or
abnormal as seen in Figure 5 and use the dataset to build a machine
learning model for intrusion detection. We use the DT classifier to
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Fig. 5. Data Distribution by category

build a network traffic classifier. Taking in network traffic data, the
classifier identifies whether the traffic is normal or abnormal. We use
the ratio of 80% to 20% to divide the dataset into training and testing
datasets respectively. As described in figure 6, we first clean the data,
analyze it, and select the features that we will use to train our model.
The next step is to develop, train and evaluate the model. Lastly, we
execute a label-flipping attack on the dataset and use the poisoned
data to train a classification model. We evaluate the performance
of each model and then compare their performance. A percentage
n of this dataset was flipped using the python bitwise operator. The
resulting perturbed dataset is used to train a machine-learning network
traffic classification model. We performed our attack evaluation on the
widely used Decision Tree (DT) algorithm machine learning model
. After acquiring and processing our data from the testbed, we then
use it to develop a poisoned machine-learning classification model.
We select n% of the dataset by targeting the row index. Through this
process, we generate attack datasets with 10%, 20%, 30%, 40%, and
50% of labels flipped. Each dataset is analyzed and then preprocessed
to improve the model’s performance and accuracy. These metrics are
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compared and analyzed for each dataset used in the experiment to
determine the influence of label flipping on the performance of our
model.

A percentage n of this dataset was flipped using the python bitwise
operator. The resulting perturbed dataset is used to train a machine
learning network traffic classification model. We performed our
attack evaluation on the widely used decision tree algorithm machine
learning model. After acquiring and processing our data from the
test bed, we then use it to develop a poisoned machine learning
classification model. We select the dataset by targeting the row index.
Through this process we generate attack datasets with 10%, 20%,
30%, 40% and 50% of labels flipped. Each dataset is analyzed
then preprocessed in order to improve the model’s performance and
accuracy. These metrics are compared and analyzed for each datasets
used in the experiment to determine the influence of label flipping
on the performance of our model.

C. The attack scenario

In this adversarial Machine Learning attack scenario, we imple-
ment a causative attack, also called a poisoning attack, to manipulate
the training process of the ML models. We fool our model into
miscategorizing traffic data by injecting vulnerabilities such as false
training data into the ML models. Therefore, we increase the chances
that the model misclassifies abnormal traffic as normal traffic. This
model can then be packaged and publicly distributed on open-source
platforms such as PyTorch which facilitates model sharing. The
victims, unaware that the model is altered will download and use
it in their day-to-day classification tasks

Add oo
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Fig. 7. Attack Scenario

D. Analysis/ Discussion

Table I shows the performance of our classification model on
the IDS dataset collected from our testbed based on the poisoning
rate. We recorded 98%, 96%, 92%, and 88%, respectively, for the
accuracy, precision, fl score, and recall of our classification model
with no attack on the dataset. These metrics indicate that our model
can effectively classify network traffic. However, we noticed that the
accuracy, the precision, fl score, and recall decreased significantly

as the flipping rate increased. By flipping 40% of the dataset labels,
the accuracy, precision, f1 score, and recall dropped to 54%, 42%,
33%, and 27%, respectively. Thus, we can infer that label-flipping
introduces higher rates of false positives and false negatives.

TABLE I
PERFORMANCE OF THE DECISION TREE CLASSIFIER UNDER ATTACK

Classifiers Poisoning rate | Accuracy Precision F1 Score Recall
Results (%0)

Decision Tree 0 098 0.96 092 0.88
Decision Tree 10 0.86 058 042 033
Decision Tree 20 0.74 0.44 030 023
Decision Tree 30 0.64 0.40 029 022
Decision Tree 40 054 042 033 027
Decision Tree 50 0.50 0.50 0.53 056

The performance metrics have been recorded and plotted. Figure 8
is a visual representation of the results. We observe that for attack
rates of 0% and 50%, the accuracy drops linearly from 98% to 50%,
respectively. The precision, on the other hand, dwindles from 96%
to 50%. The same is valid for the F1 score and recall which go from
92% to 53% and from 88% to 56%. This experiment confirms that
the label-flipping attack negatively impacts the performance of our
decision tree model.

Relationship between ML metrics and label flip rate

e——accuracy === precision F1score Recall

Fig. 8. Influence of Label-Flipping Attack on ML metrics

This work demonstrates that adversaries can easily fool decision
tree models into misclassifying network traffic data. By flipping 50%
of the dataset’s label, we lead our model to randomly classify normal
and abnormal traffic. Using such a model for a classification task
represents a huge cybersecurity risk.

VII. CONCLUSION AND FUTURE WORK

Machine Learning models are increasingly used in today’s systems.
ML significantly impacts how present-day systems function and play
critical roles in decision-making. In this age of big data and its con-
tinuing expansion, tools that take information and use it productively
are increasingly in demand. From autonomous vehicles to medical
diagnostics, ML has become prominent in vital areas of our lives
and represents the future of 6G and wireless communication. Greater
influence comes with greater risk, and securing these algorithms is
crucial. With a vital role placed on ML systems to help navigate the
IOE data space, these algorithms have become prime targets for hack-
ers. In this work, we created a classification model and demonstrated
how label-flipping attacks are executed against it. The attack results in
a drop in accuracy for the model, yielding a reduction in correlation
as the attack intensity increases. The evaluation for the classifier using
the original dataset recorded a 98% accuracy. After the attack, the
accuracy percentages decreased to 86%, 74%, 64%, 54%, and 50%.
This work confirms the effectiveness of label-flipping attacks and
how they can be used to fool ML models into misclassifying network
traffic. Future work will explore countermeasures for such attacks.
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