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Abstract

The design of microstructures that are optimized for a given engineering applications requires explo-
ration of a rough and high-dimensional configuration space. Gradient-based algorithms are efficient, but
suffer from a propensity to get stuck in local minima. Global-optimization algorithms are better at find-
ing global minima, but are generally slow to converge. We developed and tested a Human Computation
Game (HCG) for microstructure design where players interactively manipulate the microstructure to op-
timize an effective macroscopic material property. We investigate the impact of various game mechanics
on solution quality and efficiency, and compare the HCG player solutions to those of a traditional global
optimization algorithm—Simulated Annealing (SA). We show that organizing players into Synchronous
teams performed better on more complex problems on average than players working Asynchronously
or Solo. We also show that in the best cases, players can find microstructures that outperform those
obtained by SA by up to 25% using the same number of computations, or achieve the same performance
using up to 307 times fewer computational steps. By studying the optimization strategies employed by
HCG players, we anticipate that improved optimization algorithms for microstructure design (and other
configurational optimization problems) can be developed.
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1. Introduction property models for GBs have been improving to
encapsulate all 5 crystallographic degrees of free-
dom [9-11], and techniques have been developed to
analyze networks of boundaries and their effects on
macroscopic properties [12]. These successes open

the way for improved mesoscopic materials design

Materials design studies have utilized grain
boundary engineering (GBE) to great success in
recent years. Examples of this include increasing
the thermoelectric figure of merit (ZT) of BisSs

by a factor of five [1], avoiding cracking in nickel-
based superalloy additive manufacturing [2], and
increased cycling stability of nickel-based cathodes
in batteries even at high voltages [3]. These suc-
cesses show the promise in GBE and suggest that
many more such successes remain to be discovered
[4-T7].

Simulation has increasingly been considered for
GBE as high throughput and big data tools have
been developed [8]. In particular, structure-
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through simulation.

However, significant computational challenges
still remain. The number of parameters needed to
fully define the network of GBs in a polycrystalline
microstructure is large, making the design problem
very high-dimensional. Moverover, the multitude
of local minima and maxima make the optimiza-
tion landscape rough [13], which makes it difficult
to employ efficient gradient-based optimization al-
gorithms.

Stochastic global methods, such as simulated an-
nealing (SA), are useful for addressing rough opti-



mization landscapes, but they are inherently slow
to converge, requiring increased computational re-
sources. This slow convergence is exacerbated
by the high-dimensionality of the design problem
[9, 11, 14, 15].

One pathway for solving the problem of high-
dimensionality is to construct dimensionality re-
ducing heuristics to minimize the number of de-
grees of freedom [14, 16]. In the context of high-
dimensional configurational optimization problems
that appear in other fields (e.g. biology, quantum
computing), studies have been conducted using hu-
man input and intuition as sources of these heuris-
tics [17-19]. Notable examples of these studies in-
clude the citizen science video games Foldit [20], in
which players solved the folding of a specific protein
better than contemporary solutions, and Quantum
Moves [21], in which players solved quantum com-
puting tunneling problems resulting in a low level
heuristic that optical tweezer movement optimiza-
tions could leverage.

To obtain these heuristics, the studies framed the
underlying problem of interest as a video game. A
major benefit of this approach is that it provides
large data sets of user output. However, obtaining
quality data and efficient use of resources (human,
computational, and developmental) is challenging
and requires careful construction of the video game
platform [17, 22-24].

In this work, we solve a microstructure design
problem using a human computation game (HCG).
To identify effective game mechanics for this appli-
cation and to utilize human resources most effec-
tively, we test the effects of several multiplayer col-
laboration modalities, and the availability of Com-
putational Assistance (defined later), on the qual-
ity and efficiency of the resulting microstructure
design solution. We find that, on average, giv-
ing players Computational Assistance results in the
greatest increase in Solution Quality, and that play-
ers working together synchronously generate better
solutions on more complex microstructures. We
also find that, compared to SA, the HCG players’
microstructure design solutions are up to 25.04%
higher quality (for the same number of computa-
tional steps) and require up to 307 times fewer com-
putational steps (for the same Solution Quality).

2. Background

The use of video games in collecting scientific
data has increased in recent years, studied under
the title of Human Computation Games (HCGs),
Games with a Purpose, or Serious Games [17, 19,
25-33].

This is different from crowdsourcing applications
such as Amazon’s Mechanical Turk (MTurk), where
groups of MTurk users complete small, compart-
mentalized tasks for small monetary compensation
[29, 34-36]. Crowdsourcing tasks can include data
entry and classification tasks, as well as surveys
and focus groups. Each of these tasks do not need
to be a complete task by themselves, and multi-
ple contributions can be made necessary to com-
plete the underlying problem. Omne problem with
crowdsourcing is the motivational intent of the hu-
man inputting the data. Studies have found that
MTurk users will often create solutions or answers
that minimize the human effort required to gen-
erate them, and that increasing monetary rewards
does not guarantee quailty solutions [18, 35]. This
makes crowdsourcing a poor fit for optimization
problems as the users will not willingly spend ex-
tra effort to generate high quality answers [29]. The
ability to generate this intrinsic motivation is one of
the reported advantages of HCG’s, as players will-
ingly spent more time in a HCG formatted problem
than a purely data driven citizen science problem
[23].

Much of the current body of HCG research fo-
cuses on classification problems such as computer
vision, label sets, and visual data classification
[17, 37, 38]. CAPTCHA is an example of classi-
fication research, where user input is used to both
classify objects in an image and validate user input
against a gold standard [39].

Many early HCGs had similar objectives, where
users were given classification tasks under condi-
tions of interest. A study by Gundry and Deterding
highlights that specific design decisions such as in-
terfaces, error checking, and aesthetic elements af-
fect not only game outcomes such as player engage-
ment and retention, but also scientific outcomes
such as classification error percentages and task
completion time [40]. Other studies reinforce this



conclusion that game mechanic design choices im-
pact the quality of data generated by users [35, 41—
44].

Design choices during the creation of HCGs have
been shown to change the quality and efficiency of
player output [22-24, 41]. An example of this is a
study by Prestopnik and Tang, which investigated
the effect of narrative elements on user engagement
and output quality [23]. They found that narrative
elements could increase player engagement, lead-
ing to longer player retention, and player compe-
tence, which positively affected their perception of
difficulty. Gaston and Cooper studied the effects
of showing visual feedback on user performance
[45]. They found that players given visual feed-
back used fewer actions and replayed levels more
often to achieve better results. Multiple literature
reviews state that successful encapsulation of a re-
search task within a game is highly dependent on
the research task itself, but agree that tasks in-
volving randomness, autonomy, and engaged prob-
lem solving can be a good match for gamification
[24, 29, 40, 46].

Building on this foundation of HCG design
studies, multiple studies have successfully utilized
HCGs to solve high dimensional configurational op-
timization problems. Omne notable example is the
protein folding game Foldit [20], mentioned earlier.
The game used user inputs to manipulate protein
structure models to minimize the Rosetta energy
function, which in theory represents a protein’s
structural morphology [47]. Game players success-
fully constructed a folded M-PMV protein struc-
ture which had previously eluded computation due
to the high dimensionality [20, 47].

In cooperative gaming, studies have employed
three strategies for leveraging players as sepa-
rate computing processes: Solo play, Asynchronous
play, and Synchronous play. This may be compared
to serial vs parallel computation in traditional com-
putation, with a single person acting as a proces-
sor core. Solo play uses large player numbers as
redundant computation, taking the best solution
from the population [19, 26, 35, 48]. Quantum
Moves uses this strategy, as players depend on their
own skills to compete for the best scores, unable
to see other players’ strategies beyond the qual-

ity metric result [21]. Asynchronous play allows
players to see and build on other players strategies
sequentially. This collaboration modality is em-
ployed in games such as in Foldit and EyeWire [46],
where groups work together sequentially to create
the best quality solutions and check each other’s
strategies [20, 33, 47]. Synchronous play is found
in most modern multiplayer games, such as Little
Big Planet [49] and Minecraft [50], where players
simultaneously work together in the same space to
complete goals. It is currently unknown which, if
any, of these strategies have the most positive effect
on optimization HCG results, and if these strategies
interact with previously studied game mechanics.

Criticisms of using HCGs for data generation in-
clude that while certain scientific problems are a
good match for gameplay, the gameplay may not
contribute useful information to the scientific prob-
lem [22, 23, 29]. Of specific note, player results from
Quantum Moves did not outperform a stochastic
gradient ascent algorithm in a study by Sels [21].
They concluded that if a game is to be used to
solve optimization problems, it’s mechanical con-
struction should produce data that enhances or im-
proves optimization algorithms or is generalizable
to similar problems.

Taking these successes and criticisms into con-
sideration, we have developed an HCG, Operation:
Forge the Deep, in which players manipulate poly-
crystalline microstructures to optimize GB sensi-
tive properties. In this work, we use this HCG
platform to answer the following questions:

e Can the quality and/or efficiency of mi-
crostructure design solutions be improved
through the use of HCGs?

e Are better and/or more efficient microstruc-
ture design solutions obtained when Solo,
Asynchronous, or Synchronous collaboration
modalities are employed?

3. Methods

3.1. Microstructure Design Problem

For this study, the physical phenomenon of in-
terest is intergranular diffusion. The objective of



the microstructure design problem is to manipulate
the microstructure of a 3D polycrystal to maximize
its effective diffusivity in a type-C kinetic regime—
where diffusion is restricted to the grain boundary
network (GBN) [51].

For each design problem (microstructure), the
geometry is fixed and the design variables are the
crystallographic orientations of each constituent
grain. The orientation of a given grain, A, is de-
fined using the quaternion parameterization,

(1)

where r, and w, are the rotation axis and angle,
respectively.

The misorientation between two grains is defined
as

qa = [cos (wa/2),sin (wa/2)7 4]

qaB = ¢4 qB = [cos (wap/2),sin (wap/2)T 48] (2)

and the disorientation, §ap, is the misorientation
having the smallest rotation angle among all sym-
metrically equivalent misorientations, and possess-
ing a rotation axis lying in the standard stereo-
graphic triangle [52, 53].

When the orientation of a particular grain is
changed, the lattice disorientations of the GBs sur-
rounding it are modified and consequently their
properties—diffusivities in this case—also change,
subject to the chosen structure-property model.
Changes in the diffusivities of the constituent GBs
finally result in a change of the effective diffusivity
of the polycrystal. Thus, as the grain orientations
are manipulated the effective diffusivity (D.yss) of
the polycrystal is modified. In the absence of a pub-
lished 5D GB diffusivity model, a linear toy model
was used to facilitate testing of the HCG method.
We define this toy model as a function of GB dis-
orientation angle and GB plane normal:

D(@wap,map) =
a(Wap + [nage| + [napyl + [nas:| + ) (3)

where n 4 is the unit plane normal in the lab frame
and wyp is the disorientation angle. The constants
« and 3 are arbitrary scaling factors chosen to have
values of 107 and 1, respectively, so that the Total
Score (See Section 3.3.3) had values greater than 1
and maximum values less than 10.

3.2. Model Definition and Simulation Setup

Non-periodic synthetic 3D polycrystals, respec-
tively containing 10 or 20 Grains, were generated
using the Neper polycrystal generation/meshing
software [54]. Combined Dirichlet and Neumann
boundary conditions were applied, as illustrated in
Fig. 1a, so that the macroscopic diffusion flux oc-
curred in the positive x direction.

The effective diffusivity of each polycrystal was
calculated using the finite volume method (FVM)
employed in Johnson et al. [12]. A surface mesh of
the GBN was constructed using the frontal mesh-
ing algorithm in Neper (which promotes low-aspect
ratio elements) [54], as shown in Fig. 1c. The ge-
ometry and position dependent properties of the
GBN mesh are encoded in the GBN Laplacian ma-
trix [12, 55, 56:

( DzmAzm

' I ifi=j
ij = D;; Aij e 4
L:J _ IJ/ij J if 7~ j ( )
0 otherwise

where £;; is the ij-th element of the GBN Lapla-
cian matrix, D;; is the GB diffusivity from Eq. 3
assigned to the edge connecting mesh vertices ¢
and j (see Fig. 1lc), L;; is the edge length, and
Ai; = Weapci; is the effective cross-sectional area
of the ij-th edge (through which the flux between
nodes ¢ and j flows), with Wgp a constant GB
thickness and c¢;; being the distance between the
centroids of the incident triangular elements, as
shown in Fig. 1d. For simplicity, we neglect dif-
fusion along the triple junctions, and we assume
steady-state conditions. The effective diffusivity of
the microstructure was calculated using the spec-
tral formulation of the FVM according to [12]:

Degy = (N )~ m P (5)

k>1

where D,y is the effective diffusivity of the poly-
crystal, L is the length of the microstructure in the
x-direction , A is the cross-sectional area of the
microstructure orthogonal to the z-direction. A
and wuy are the eigenvalues and eigenvectors of the
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Figure 1: (a) Boundary conditions for diffusion through the simulation cell. The green planes employ the Dirichlett
condition with fixed concentrations, while all other planes (red) have Neumann (zero-flux) boundary conditions. (b)
Microstructure with grain orientations assigned. (¢) Meshing of the internal GBs, with the resulting property colored on
the edges (d) Representation of an edge element with the dual of the mesh used for FVM calculations.

Laplacian matrix respectively, and a and b are the
combined Dirichlet condition diffusion source and
sink nodes, respectively (see [12]).

3.8. Solution Methods

The solution of the design problem consists of
assigning crystallographic orientations (Fig. 1b) to
each of the constituent grains such that the effective
diffusivity is maximized. This constitutes a high-
dimensional configurational optimization problem
with 3Ngqeins degrees of freedom, where Nyqins is
the number of grains in the polycrystal, and each
requires 3 parameters to specify the 3D rotation
defining its crystallographic orientation.

3.3.1. Simulated Annealing

We employed two different approaches to solve
this microstructure design problem. The first was
a simulated annealing (SA) algorithm. This is a
common stochastic global optimization algorithm
employed for problems with large configurational
spaces such as GBNs [13, 57] and was used as a
gold standard to compare against the HCG results.

In SA, at each Monte Carlo (MC) step, a ran-
dom grain is selected and assigned a new orienta-
tion. The new orientation was selected in one of
two ways (to facilitate comparison with the HCG):
(i) uniformly at random, or (ii) via a local gradient
ascent that maximized the diffusivities of the inci-
dent GBs (i.e. without consideration of the global
effective diffusivity).

The new grain orientation assigned at each step
was accepted if either the evaluated objective func-
tion (D.sr) improved, or if a randomly-generated
number fell within the current acceptance inter-
val defined by the annealing schedule [13]. We
employed a convergence criterion of 1000 rejected
steps.

3.3.2. Human Computation Game

The second solution strategy was the HCG that
is the focus of this work. The goal of solving
this microstructure design problem via an HCG
is to leverage human 3D spatial reasoning [19,
20] and intuited dimensionality reducing heuris-
tics [15]. However, players are anticipated to be
non-experts with no background in crystallography;,



microstructures, or grain boundaries. Therefore,
the microstructure optimization problem needed to
be abstracted and represented in an understand-
able manner while retaining the required crystallo-
graphic inputs.

To facilitate the interpretation of the problem by
non-experts, we simplified the visualization of the
full 3D microstructure (Fig. 2a) to a minimalistic
representation (Fig. 2c). The orientation of each
grain was represented by a cube (reflecting cubic
crystal symmetry) positioned at the grain center.
GBs were implicitly represented by a “connection”
(rods shown in Fig. 2¢) between adjacent grain cen-
ters. Admittedly, to an expert this may appear con-
fusing in that it might suggest transgranular trans-
port; however, to non-experts this visually commu-
nicated the dependence of the boundary’s property
on the neighboring grains’ orientations.

To visually communicate the magnitude of the
diffusivity of a GB between two grains (and how
users’ moves affect it), the length, diameter, and
color of these connections were set to scale propor-
tionally to the respective GB diffusivity. Note that
when a user rotates a grain’s orientation cube, all
of the incident connections are updated simultane-
ously because all of its surrounding GB disorien-
tations, and hence GB diffusivities change. A full
view of the in-game user interface can be seen in
Fig. 3.

Compared to a direct literal representation of
the polycrystal (Fig. 2b), this simplified structure
(Fig. 2c and Fig. 3) achieved greater visual clar-
ity and learnability for players in our early testing,
which is why it was chosen for our final implemen-
tation.

To play the game, players select one of the avail-
able cubes, which is then highlighted yellow for
identification (see Fig. 3). Players then rotate
their chosen cube by clicking and dragging the
mouse. As described earlier, as the grain’s orienta-
tion changes, the disorientations, and consequently
diffusivities, of its GBs are updated. The effective
diffusivity of the entire polycrystal (which is the un-
derlying objective function) is also updated and is
displayed to the user as the Total Score (see Fig. 3),
which they attempt to maximize by iteratively re-
peating this procedure (selecting a cube and then

rotating it, selecting another cube and rotating it,
etc.).

In addition to manual rotation, players are also
presented with an Optimize Current Grain button
(labeled Auto in Fig. 3). If a player clicks this but-
ton, a gradient ascent algorithm is applied to the
currently selected grain, which attempts to rotate it
into the orientation that maximizes the diffusivities
of the incident grain boundaries (i.e. it performs
a local optimization step on the currently selected
grain). Importantly, this is done without regard for
the Total Score, so the resulting orientation may
be locally optimal, but globally sub-optimal, since
the interaction between local cube orientation and
quality of the global configuration is complex, and
changes made to a single grain will affect multiple
grain boundaries (all those that are incident to it).
A similar mechanic of optional Computational As-
sistance was employed in the game Foldit, where
the computer agent is called, on-demand, to find
local solutions [20, 47].

Prior to beginning a game session, players com-
pleted a 5 minute in-game tutorial, where they
learned how to select and rotate the cubes, how
to use the Optimize Current Grain button, and be-
came familiar with the visual and numerical feed-
back mechanisms.

3.3.3. Quantifying Human Performance

We employed two metrics to quantify the per-
formance of the HCG (and the SA algorithm) in
solving the microstructure design problem: Solu-
tion Quality, and Computational Efficiency. The
Solution Quality is simply the value of the objective
function, D.ys, (displayed to the user as the Total
Score, as shown in Fig. 3). The Computational Ef-
ficiency was evaluated at the end of a game, and is
defined by:
- TotalNScore (6)
where 7 is the Computational Efficiency and N is
the number of computational steps (i.e. the num-
ber of times the objective function was evaluated).
The objective function, D.s¢ or Total Score, was
evaluated only (i) when the player committed a
move by lifting their mouse button after rotating
a cube, or (ii) after the Optimize Current Grain
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Figure 2: Representation of grain boundary networks. (a) A simulated 3D polycrystal generated with Neper Polycrystal
[54]. (b) A simulation with cubes at the grain centers representing the respective grain orientations. (¢) Abstracted visual
representation of the microstructure in which the “connections” between cubes represent the magnitude of the property
on the corresponding GB defined by those two grains.
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Figure 3: Full game view of a 3D grain boundary network in-game. Players are able to maneuver through the 3D space
to manipulate the orientations of grains, and receive visual feedback on how their changes affect both the local properties
of the incident GBs and the effective macroscopic material property. The view shown here represents current version of
the HCG. Players participating in the study were given a visually simplified yet functionally identical version.

button finished its action (recall that this button step—which may reduce with gratuitous or random
activates a local optimization routine, which never decisions and may increase with effective strategic
evaluates the global objective function). The value decisions.

of n is essentially a measure of the average improve-

ment in the objective function per computational
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Figure 4: Visual representation of the full factorial study, including the three factors (collaboration modality, problem
complexity, and Computational Assistance), with each of their respective levels enumerated.

3.4. Ezxperimental Design

To answer our two motivating questions, we fit-
ted a Linear Mixed Model (LMM) of three categori-
cal variables (2-3 levels each) and their interactions
as shown in Fig. 4, with the dependent variable
being D.ry (when evaluating Solution Quality) or
n (when evaluating Computational Efficiency), re-
spectively. A LMM was employed due to the pres-
ence of both fixed and random variables.

The factors included the multi-player collabora-
tion modality (with levels corresponding to Solo,
Asynchronous, or Synchronous), the complexity of
the puzzle (with levels of either 10 or 20 Grains),
and the availability of Computational Assistance
(with levels of true or false, corresponding to
whether or not the Optimize Current Grain but-
ton was available to the player). The coefficients of
this model represent the estimated contribution of
each factor level (or their interactions) on D,y (or
n).

The multi-player collaboration modalities were
respectively defined as follows. Solo play consisted
of a single player manipulating the microstruc-
ture. In Synchronous collaboration, two players
were connected to the same microstructure design
problem hosted on a remote server and simultane-

ously manipulated the microstructure. The players
could select and rotate any cube except the one that
their partner was actively manipulating. In Asyn-
chronous collaboration, each player began working
on a puzzle, and then swapped with their partner
after half of their allotted time had elapsed. The
players then built on their partner’s work attempt-
ing to further optimize the microstructure in the
time remaining.

The complexity of each microstructure design
problem was approximated by the number of grains
in the microstructure, which defines the dimension-
ality of the configuration/design space. This rep-
resents a simple test for the scalability of human
input against simulation size. For this study, play-
ers were presented with microstructures containing
either 10 or 20 Grains.

We used a randomized blocking structure to or-
ganize subjects into a mixed study. Each group of
two subjects in a session played every combination
of complexities and collaboration modalities in ran-
dom order (within-subjects). Each group was ran-
domly placed in either a Computational Assistance
available condition or a Computational Assistance
not available condition (between-subjects). Two
groups, one with and one without Computational



Assistance, made up a single block in the random-
ized blocking structure (consisting of a total of 4
players). This was done to mitigate the learning
effect, block the effects of individual groups, and
reduce the number of subjects needed for statis-
tical power [58]. In every test condition, players
had 8 minutes to complete a given microstructure
design problem.

Players were recruited strictly on a volunteer ba-
sis, with no compensation given. Players were in-
structed on gameplay through an automated tu-
torial and proctored through a session by script.
During all sessions, player input (i.e. each action
taken in the game) was captured in the background
for future reconstruction and analysis.

A session on average took 50 minutes to com-
plete. There were a total of 32 participants, taken
from the student body of a large university. This
led to a total of 96 data points, or 9 replicates of
every experimental condition. After completion of
the study, participants were given an exit survey
to collect qualitative feedback. Due to the class
of IRB approval employed, no demographic data
was collected from subjects. We do not anticipate
that variations in demographics impact the results
in any significant way:.

After data collection was completed, the data
was analyzed using the LMM. The model included
a constant intercept, all three fixed effects (see
Fig. 4), their interactions, and the blocking vari-
able (which group a participant was assigned to),
which was designated as a random variable.

4. Results

The LMM was analyzed using a reduced maxi-
mum likelihood (REML) method. Analysis of the
statistical model found significant effects in the fac-
tors for both the Solution Quality, and the Compu-
tational Efficiency.

4.1. Solution Quality

Table 1 shows the LMM coefficients and the sta-
tistical significance (P-value) of the effect of the
various factors (and their interactions) on the So-
lution Quality. The intercept, considered alone,

represents the baseline test condition, which con-
sisted of Synchronous collaboration, a 20 Grain
microstructure, and no Computational Assistance
(no Optimize Current Grain button). The paren-
thetical identifier indicates the factor level that was
changed from the baseline condition, and the corre-
sponding coefficient represents the resulting change
in Solution Quality (i.e. the change in D.ss). For
example, under the baseline conditions the model
predicts that the average HCG player score would
be 7.0924 (the value of the intercept). If the Com-
putational Assistance factor is changed to “Yes”
then the model predicts an increase in the aver-
age HCG player score of +0.1095 (the value of the
corresponding model coefficient.). Or if Computa-
tional Assistance is changed to “Yes” and the Col-
laboration Modality is changed to “Solo” there is a
predicted decrease in the average score of —0.0858
(the value of the corresponding model coefficient).
Note that the coefficients for the factor levels of
the baseline condition are by definition zero and
are therefore not included in the table.

This regression had an adjusted R? value of
0.869, implying a good fit to our data. The pro-
vided P-value represents the result of a t-test where
the null-hypothesis is that the respective coefficient
has a value of zero (which would imply that it has
no influence on the average player score). The co-
efficients whose values show statistical significance
are the intercept, Complexity (10 Grains), Com-
putational Assistance (Yes), and the interaction of
Computational Assistance (Yes) and Collaboration
Modality (Solo). The random effect (individual
groups) accounted for only 3.09% of the total vari-
ance in the model.

Using Tukey honestly significant difference
(HSD) post-processing [58], we can more robustly
evaluate the effects of the interactions. From the
post processing, Tukey HSD found no statistical
differences between any of the cases with 10 Grains,
suggesting that neither collaboration modality nor
availability of Computational Assistance truly af-
fected D.ys in the 10 Grain condition. How-
ever, HSD showed that for the 20 Grain com-
plexity level one test condition exhibited a sta-
tistically significant performance difference from
the rest. Groups engaged in Synchronous collab-



Table 1: List of coefficients and P-values found by the LMM model for Solution Quality.

Factors on Solution Quality Model Coefficient P-value
Intercept 7.0924 <0.0001*"
Collaboration Modality (Solo) —0.0694 0.0941
Collaboration Modality (Async) —0.0184 0.6545
Complexity (10 Grains) —0.7031 <0.00017"
Computational Assistance (Yes) 0.1095 0.0003™
Computational Assistance (Yes) x Collaboration Modality (Solo) —0.0858 0.0395"
Computational Assistance (Yes) x Collaboration Modality (Async) 0.0018 0.9653
Computational Assistance (Yes) x Complexity (10 Grains) 0.0060 0.8356
Collaboration Modality (Solo) x Complexity (10 Grains) 0.0401 0.3311
Collaboration Modality (Async) x Complexity (10 Grains) 0.0151 0.7125
Computational Assistance (Yes) x Collaboration Modality (Solo) x Complexity (10 Grains) 0.0593 0.1513
Computational Assistance (Yes) x Collaboration Modality (Async) x Complexity (10 Grains) 0.0462 0.2622

(*) represents significance at the 0.05 level, and (**) represents significance at the 0.001 level.

oration, which also had Computational Assistance
available, were found to perform significantly better
than other test conditions for the 20 Grain prob-
lems.

In summary, there is a statistically significant ef-
fect of the problem complexity with larger prob-
lems (the 20 Grain case) resulting in higher effective
diffusivity than smaller ones (the 10 Grain case).
For the lower complexity problem (the 10 Grain
case) there was no significant effect of collabora-
tion modality or availability of Computational As-
sistance (the Solution Quality did not show a statis-
tically significant difference for any of the levels of
these factors). Thus, for low-complexity problems
the benefits of particular collaboration modalities
and even Computational Assistance are not appar-
ent (such problems can apparently be solved just
as well without them). However, for the higher
complexity problem (the 20 Grain case) a statis-
tically significant improvement in Solution Quality
was observed when the Collaboration Modality was
Synchronous and when Computational Assistance
was available.

4.2. Computational Efficiency

Our second measure of interest was the Compu-
tational Efficiency of the HCG. Table 2 shows the
significant effects and interactions of the factors on
the Computational Efficiency.

This model performed much poorer than the So-
lution Quality model with an adjusted R? value
of just 0.359. The blocking factor accounted for
13.6% of the total variance in this case. Tukey’s

HSD post-processing found significant differences
only in the Collaboration Modality. There was
no significant difference between the Solo and the
Asynchronous cases, but the Synchronous case was
statistically less efficient than either of the other
collaboration modalities. This suggests that the
Synchronous collaboration modality was less effi-
cient than Asynchronous collaboration or Solo play.
Thus, while differences in the effect of different fac-
tors on Computational Efficiency were less conclu-
sive than their effects on Solution Quality, it does
appear that while Synchronous collaboration leads
to better Solution Quality on average, it does so at
some cost to Computational Efficiency. However,
the relative magnitudes of these costs and benefits
must be weighed. This, together with comparison
of the results for the HCG with those of SA will be
described in Section 5.2.

4.3. User Feedback

In the exit survey, the players were asked to
select their most and least favorite collaboration
modality. The players overwhelmingly voted for the
Synchronous case as their favorite (55%), with the
Asynchronous case being the next favorite (24%),
with 10% of respondents showing no preference.
The least favorite had a much narrower spread,
with Solo being the least favorite (34%), then Asyn-
chronous (27%), with 24% of respondents showing
no preference. If these responses are taken as the
most and least motivational cases respectively, the
responses suggest that there may be a trade-off be-
tween player motivation and Computational Effi-
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Table 2: List of coefficients and P-values found by the LMM model for Computational Efficiency.

Factors on Computational Efficiency Model Coefficient P-value
Intercept 0.1142 <0.0001™
Collaboration Modality (Solo) 0.0195 0.0036™"
Collaboration Modality (Async) 0.0116 0.0775
Complexity (10 Grains) —0.0122 0.0096"
Computational Assistance (Yes) 0.0110 0.0184"
Computational Assistance (Yes) x Collaboration Modality (Solo) —0.0023 0.7260
Computational Assistance (Yes) x Collaboration Modality (Async) 0.0081 0.2138
Computational Assistance (Yes) x Complexity (10 Grains) —0.0041 0.3702
Collaboration Modality (Solo) x Complexity (10 Grains) —0.0029 0.6609
Collaboration Modality (Async) x Complexity (10 Grains) —0.0037 0.5713
Computational Assistance (Yes) x Collaboration Modality (Solo) x Complexity (10 Grains) 0.0019 0.7684
Computational Assistance (Yes) x Collaboration Modality (Async) x Complexity (10 Grains) —0.0106 0.1049

(*) represents significance at the 0.05 level, and (**) represents significance at the 0.001 level.

ciency. Specifically, players may prefer to play Syn-
chronously, but Asynchronous and Solo modalities
appear to result in more efficient solutions on av-
erage. This trade-off is somewhat mitigated by the
fact that Synchronous play showed the potential to
produce higher quality solutions (even if it was less
efficient), thus average Solution Quality and player
motivation may be correlated.

5. Discussion

5.1. Effects on Solution Quality

In answer to our question about whether mi-
crostructure design problems can benefit from
HCGs, Table 1 and Section 4.1 show that there
are sets of game mechanics that tend to produce
higher quality solutions than others. In the context
of our HCG, the set of game mechanics that pro-
duced the highest quality solutions on average was
Synchronous collaboration with Computational As-
sistance applied to more complex microstructure
design problems.

This optimal set of mechanics relies on the pos-
itive interaction between groups working together
and the availability of Computational Assistance.
Without Computational Assistance, this set of
game mechanics did not produce solutions of im-
proved quality.

The effect of the microstructure design problem
complexity on the Solution Quality on its own,
while large (0.7031), is not particularly interesting,
as it simply reflects the fact that microstructures
with more grains will have more GBs and therefore
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an increased number of pathways for intergranular
diffusion, leading to a higher effective diffusivity
[59]. Consequently, the more complex (20 Grain)
design problems simply exhibited a higher maxi-
mum achievable Total Score. The players were,
however, ignorant of this relationship, being non-
experts, and yet were able to achieve these higher
scores within the same time limit as the less com-
plex puzzles. In other words, their performance
did not decrease as the complexity increased even
though the time limit remained fixed. This is ad-
ditional evidence supporting Yildirim’s hypothesis
that time pressure can increase the quality of player
inputs [60].

It is important to note that the LMM charac-
terized the average Solution Quality (or Compu-
tational Efficiency) for the various test conditions.
As will be discussed later, it is of even greater im-
portance to know which conditions have the po-
tential to produce the best performance (even if
the corresponding average performance is subopti-
mal). To place the Solution Quality improvement
into the context of microstructure optimization, we
also compared the best HCG results to the best out-
put of 5 trials of the corresponding SA algorithm
(i.e. we compared the HCG with Computational
Assistance to SA with Computational Assistance,
or the HCG without Computational Assistance to
SA without Computational Assistance).

We consider three methods for fair comparisons:
equal step percentage improvement, where Solu-
tion Quality is evaluated when the shorter of the
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Figure 5: (a) Best-in-class player optimization paths, with the x axis as a logarithmic scale, compared to the best of 5 SA
optimizations for 10 Grains, and (b) the same for 20 Grains. As an example, the vertical line visually defines the equal
step percent quality increase, and the horizontal line indicates the equal quality percent reduction in steps for one HCG
trajectory.
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two optimizations end; equal quality percentage,
where the ratio of steps taken to achieve the same
SA quality is determined at the peak HCG qual-
ity; and percentage of maximum quality, where the
maximum Solution Quality for both HCG and SA
are considered (See Fig. 5 and Table 3). Table 3
lists the best Solution Quality (i.e. Total Score or,
equivalently, D.rr) and Computational Efficiency
achieved for each HCG experimental condition, as
well as percent change relative to the best of the
corresponding SA algorithms.

Fig. 5 shows the individual optimization path-
ways (i.e. the time history of the objective func-
tion) resulting from HCG optimization and SA.
Each line reflects the exploration players did to con-
verge to their solution. One feature of interest is
the similar shape of the convergence trajectories
for both SA and HCG, starting with a transient
rapid increase before transitioning to a more grad-
ual steady state (approximately linear) improve-
ment. However, the transition to steady state for
the HCG players, while occurring at a similar num-
ber of computational steps, jumped to a higher So-
lution Quality than SA in all cases. This is espe-
cially visible for the more complex (20 Grain) mi-
crostructure design problems (Fig. 5b). This higher
steady state Solution Quality indicates that the
strategies employed by the human HCG players are
more effective than the SA optimization rules. This
suggests the possibility of a hybrid optimization al-
gorithm in which something like SA is used, but
with the selection and modification rules (selecting
grains at random and changing their orientation at
random) replaced by the corresponding rules intu-
ited by the humans. The evidence for the effective-
ness of the human-intuited strategies is strength-
ened by the existence of HCG player trajectories
that outperform SA even without Computational
Assistance (i.e. the performance improvement is
not due simply to the use of local gradient-based
optimization).

By comparing the best performance of each test
condition, we find that the best quality solutions
were obtained when Solo players had assistance
in the 10 Grain case, and Asynchronous players
had assistance in the 20 Grain case (Fig. 5 and
Table 3). The corresponding best-in-class player

Solution Quality was 6.940 for the 10 Grain case
and 8.522 for the 20 Grain case, which represents a
12.32% improvement over SA for the same number
of computational steps for 10 Grains, and 25.04%
improvement for 20 Grains (see the dashed verti-
cal lines in Fig. 5 and the numerical values in Ta-
ble 3). Thus, in the best quality HCG simulations,
players were able to reach higher quality solutions
for the same number of computational steps when
compared against SA.

It is interesting to note that, consistent with the
LMM predictions and the results of Section 4.1,
on average the 20 Grain Synchronous collaboration
condition with Computational Assistance scored
0.5 higher than the 10 Grain cases (see Table 1).
However, the best solution for the 20 Grain mi-
crostructure was obtained under the other two col-
laboration modalities. This suggests that while, on
average, Synchronous players may generate better
solutions, other conditions may still generate use-
ful, or even better, solutions. This also highlights
the fact that the best performance (which is not
captured in the LMM) is likely of greater interest
than the average performance, especially when the
conditions that maximize average performance dif-
fer from those that maximize the best performance.

5.2. Effects on Computational Efficiency

In the context of Computational Efficiency, the
most efficient solutions for a fixed Solution Quality
were obtained under the conditions of Solo player
without assistance for the 10 Grain case and Syn-
chronous players with assistance for the 20 Grain
case (see horizontal line in Fig. 5 and numerical
values in Table 3).

On average, increasing complexity was corre-
lated with increasing Computational FEfficiency
(+0.01218 Table 2). However, the highest effi-
ciency was observed for the 10 Grain case, where
the player outperformed the SA with gradient as-
cent results. The shape of the corresponding opti-
mization trajectory reflects the effects of the time
limit on the number of computations more than
the complexity itself. In other words, with the less
complex design problem, players plateaued in their
progress (seen in Fig. 5), and then iterated around
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Table 3: Comparison of best-in-class Solution Quality and Computational Efficiency relative to cor-

responding SA.

Equal Step Equal Quality

% Increase % Reduction % of Maximum

Factor Case Solution Quality Solution Efficiency in Quality in Steps SA Quality
Solo, 10, CA 6.940 0.2169 12.32 816.44 101.07
Solo, 10, NCA 6.446 0.0962 13.62 30706.3* 92.07
Solo, 20, CA 8.014 0.0871 17.46 778.26 88.60
Solo, 20, NCA 7.854 0.0793 15.65 367.68 86.37
Asynch, 10, CA 6.829 0.0936 24.42 877.78 99.47
Asynch, 10, NCA 6.361 0.3348 14.60 1142.11 90.86
Asynch, 20, CA 8.522 0.1235 25.04 1814.49 94.21
Asynch, 20, NCA 7.898 0.1295 12.53 829.51 86.85
Synch, 10, CA 6.773 0.1075 20.30 328.36 98.64
Synch, 10, NCA 6.567 0.5970 12.64 3700.00 93.81
Synch, 20, CA 8.395 0.2332 15.49 2769.44 92.80
Synch, 20, NCA 7.836 0.1285 11.64 596.72 86.17

(*) This is a conservative lower-bound, estimated using SA ending point because player outperformed SA given the stated con-

straints.

their nominal solution attempting to find small im-
provements to their Total Score with the remaining
time. The increased complexity simply delays the
performance plateau because there are more vari-
ables to be optimized, which in turn reduces the
Computational Efficiency. This suggests that there
may be an optimal time limit for a given complex-
ity, and supports the results from a study on player
performance by Yildirim that found evidence of an
optimal time pressure for performance [60].

The most important finding is the large differ-
ence between the efficiencies of the HCG players
and SA. We find that players were up to 307 times
more efficient than the SA algorithm for a fixed
Solution Quality. Thus we find that non-expert,
novice players of this HCG were able to learn pat-
terns and generate efficient strategies for solving
this high-dimensional configurational microstruc-
ture design problem, reaching up to 101.07% of the
gold standard’s (SA) Solution Quality, and doing
so 307 times more efficiently than SA. We there-
fore conclude that microstructure design problems
can benefit significantly from the use of a HCG as
an optimization engine.

5.3. Generalization

It is important to note that the construction of
an HCG represents a significant capital and time in-
vestment. Consequently, it is likely impractical to
develop a custom HCG for each new microstructure

design problem. In some cases, new design prob-
lems can be added to an existing HCG (like the
one presented here) as new levels. For example,
if the design objective changes (e.g. maximizing
elastic modulus instead of GBN diffusivity, or per-
haps optimizing the tradeoff between them), but
the design variables are similar (grain orientations)
then extending an existing HCG is straightforward.
In other cases, the design problem may involve de-
sign variables that are so different that it would re-
quire impractical modification of an existing HCG,
or the difference may be a thematic one such that
the problem is simply out of place in the existing
game.

However, we find that the optimization heuris-
tics discovered by HCG players converge much
better than SA, as seen in Fig. 5. Thus, it is
still desirable to leverage the best performing al-
gorithms developed by HCG players for a broader
range of design problems than can be accommo-
dated in a given HCG, without the cost of build-
ing a custom HCG for each problem. If the HCG
player strategies could be understood and com-
putationally recreated, then a more efficient al-
gorithm than the traditional SA algorithm could
be constructed for high-throughput GBN optimiza-
tion, and other high-dimensional configurational
optimization problems. The reductions to needed
computational resources will allow for larger sim-
ulations and/or more complex structure-property

14



models. This is especially important if the under-
lying structure-property model or homogenization
calculation is expensive to evaluate.

Thus, in future work we intend to analyze the
HCG player strategies and translate the most effec-
tive strategies into novel optimization algorithms
that may be generalized and applied to arbitrary
configurational optimization problems, similar to
the way that SA is used now. Indeed, this could
lead to the most significant advancements that re-
sult from microstructure design HCGs, far beyond
the results of any one HCG.

6. Conclusions

We have developed a human computation game
(HCG) for the solution of microstructure design
problems. We used this platform to investigate
whether the quality and /or efficiency of microstruc-
ture design solutions can be improved through the
use of HCGs compared to traditional global op-
timization strategies—Simulated Annealing (SA).
We also investigated which game mechanics (col-
laboration modalities, microstructure complexities,
and availability of Computational Assistance) pro-
duce the highest quality and most efficient design
solutions. Our major findings include:

e Synchronous collaboration leads to increased
Solution Quality on average, while the maxi-
mum observed Solution Quality was achieved
by a Solo player with Computational Assis-
tance for 10 Grains, and Asynchronous players
with Computational Assistance for 20 Grains.

e In the context of a video game, non-expert hu-
man players found microstructure design solu-
tions that performed up to 25% better than
those obtained by SA, for the same number of
computational steps.

e Human players were able to reach their high
scores with up to 307 times fewer computa-
tional steps than SA for the same Solution
Quality.

e Even when SA was given vastly more compu-
tational resources (i.e. considering the asymp-
totic performance of SA), players were still

able to reach solutions whose quality was com-
parable to (94.21% for the best 20 Grain HCG
solution) or exceeded (101.07% for the best 10
Grain HCG solution) that of SA solutions.

In summary, we observe that the optimization
strategies employed by the HCG players outper-
form SA in both Solution Quality and Computa-
tional Efficiency. If these heuristics can be charac-
terized and incorporated into new automated op-
timization algorithms it may be possible to lever-
age them for improved solution of a broad array
of microstructure design and other configurational
optimization problems.
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