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Abstract

In this paper, we present the results of grain growth simulations in three-dimensions using an existing
level set method. Most of the previous grain growth studies have been either isotropic or, if they are not
isotropic, consider simplified models of anisotropy. We perform these simulations using three different
grain boundary (GB) energy functions (a realistic 5D GB energy function, a Read-Shockley energy
model that depends only on disorientation angle, and an isotropic GB energy model). We compare the
results in terms of several statistical microstructural descriptors (crystallographic texture, GB character
distribution, triple junction distribution (TJD), etc.). In addition to considering different energy models,
we also compare the evolution of microstructures that have different initial crystallographic textures
(fiber texture and random texture). We find that the morphological evolution of individual grains can be
completely different depending on the GB energy function employed. However, we also find that certain
spatially independent microstructural statistics (e.g. orientation distribution function, misorientation
distribution function, and TJD) are similar at steady state for all of the tested GB energy functions.
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1. Introduction

When a polycrystalline material is annealed, the
microstructure coarsens (some grains grow while
other shrink), resulting in an increase in the av-
erage grain size with time. This phenomenon is
known as grain growth. During grain growth, the
microstructure evolves to reduce the energy of the
system by reducing the grain boundary (GB) area.
GBs move toward their centers of curvature. In the
absence of pinning [1] or drag phenomena [2] and
if stored energy driving forces are neglected, the
local velocity of a GB is proportional to the local
curvature of the GB, and it is determined by the
equation:

v = Mγκ (1)
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where κ is the mean curvature of the GB, M is the
GB mobility, and γ is the GB energy (also referred
to as surface tension).

Due to the opacity of metals, experimental char-
acterization of grain growth in three-dimensions is
challenging. Recently developed non-destructive
4D characterization techniques like HEDM [3] and
labDCT [4] are shedding new light on the sub-
ject [5–7]; however, these are not yet ubiqui-
tous, and the vast majority of experimental mi-
crostructure characterization remains destructive
and two-dimensional. Therefore, studies of three-
dimensional grain growth have mainly relied on
computational simulations.

A GB is characterized by five macroscopic crys-
tallographic parameters. Three of the parame-
ters define the misorientation between the adjacent
grains, and the other two define the GB plane. The
grain growth studies that consider anisotropic GB
energy usually employ simplified models for which
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GB energy depends only on lattice misorientation.
Nevertheless, it has been observed [8] that the GB
plane also impacts the evolution of the GB network
during grain growth. Consequently, to have a bet-
ter understanding of anisotropic grain growth, it
is necessary to model microstructural transforma-
tions under realistic conditions—that is, consider-
ing the misorientation as well as the GB normal.

Algorithms for computational simulations of
grain growth include a variety of probabilistic and
deterministic methods. Probabilistic methods in-
clude Monte Carlo Potts models [9–13] and cellu-
lar automata [14]. Deterministic methods include
Phase field [15–22], Level set [23–32], and Front
tracking methods [33–36].

Classical theories of grain growth assume
isotropic conditions [37–39], and many simula-
tions have been performed under these assump-
tions [23, 24, 33–36, 40]. It has been shown that
the GB energy has a more significant effect on
grain growth than GB mobility [11, 12]; thus,
several simulations consider isotropic mobility but
with anisotropic GB energy. Most computational
anisotropic grain growth studies [9–13, 25–30, 32]
use the Read-Shockley relationship [41], which con-
siders the misorientation, but neglects the plane
normal. One of the main advantages of the Read-
Shockley function is that it is very computationally
inexpensive to use. Esedoḡlu et al. [27] proposed
a level set method that simulates the mean cur-
vature motion of networks of interfaces under ar-
bitrary GB energies. They used this algorithm to
perform anisotropic 3D grain growth simulations
using the Read-Shockley model of GB energy [25].

Only a few studies have performed simulations
using energy models that consider the dependence
of GB energy on all five crystallographic degrees of
freedom. For instance, Kim et al. [17] performed
three-dimensional simulations using a phase-field
model. They obtained the GB energies from a GB
energy database in BCC Fe [42]. The database con-
tained 91 data points for each misorientation for a
total of 69,251 GBs. To use the database during
their grain growth simulation, they first calculated
the normal vector of the point on a given GB for
which they wanted to calculate the energy. Then,
given the misorientation of that GB, they found

the three nearest data points to that GB normal in
the database. Finally, the desired GB energy was
computed as the weighted average of these three
data points. It is important to note that all the
GB normals and misorientations were discretized.

In another study, Salama et al. [22] performed
three-dimensional grain growth phase-field simula-
tions. They studied the influence of the plane nor-
mal in grain growth using a hypothetical GB energy
function proposed by Caginalp [43] and concluded
that the inclination dependence of the GB energy
has an impact on the microstructure evolution.

Recently, work has been done to develop fully
anisotropic structure-property models for GBs [44,
45]. Bulatov, Reed, and Kumar [44] developed a
continuous 5D interpolation function for GB energy
in FCC metals that considers both the GB misori-
entation and the GB plane. This function, which
we refer to as the BRK function, is built on the 5D
crystallography of FCC GBs and molecular stat-
ics GB energy calculations [46]. The development
of the BRK function has provided an opportunity
to perform anisotropic simulations that consider all
five degrees of freedom of a GB.

A recent grain growth study [47] suggested us-
ing the BRK function to explore the effects of
the GB energy dependence on microstructure evo-
lution. The BRK model has been incorporated
by Hallberg in a level set formulation they re-
cently developed [31]. They showed how a fully
anisotropic (5D) GB energy function can be in-
corporated in a grain growth simulation study. In
addition, by considering individual grains and in-
dividual triple-junctions, they demonstrated that
GB energy anisotropy has a significant effect on
the local microstructure, and that isotropic energy
models will not accurately reproduce local morpho-
logical features.

In the present work, rather than focus on the ef-
fect of anisotropic GB energy on local microstruc-
ture morphology, we investigate how GB energy
anisotropy affects global statistical descriptors and
their evolutionary pathways, which requires larger
polycrystalline simulations. Such fully anisotropic
simulations that consider all five degrees of freedom
in large polycrystalline microstructures for FCC
metals have not yet been reported, and in spite of
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almost seven decades of grain growth studies, there
is still much about this important phenomenon that
remains unknown. In particular: In what ways is
the evolution of a microstructure different (or the
same) when a realistic fully 5D GB energy function
is employed vs. traditional simplified models? And
how does the initial microstructure influence the
evolution and the final state of the microstructure?

We performed fully anisotropic grain growth sim-
ulations in three dimensions (3D) using an exist-
ing level set method developed by Esedoḡlu [27].
Full anisotropy was achieved by implementing the
BRK GB energy function. For comparison, we also
performed isotropic and partially anisotropic (us-
ing the Read-Shockley function) grain growth sim-
ulations using the same initial microstructure. For
each of the 3 GB energy functions (BRK, Read-
Shockley, isotropic) we performed two sets of sim-
ulations to investigate the influence of the initial
crystallographic texture. The first set used an ini-
tial microstructure with a random texture (typical
of rotation recrystallization, extrusion, and uniax-
ial compression, [48–50]) and the second set used an
initial microstructure with a perfect [001] fiber tex-
ture (typical of common manufacturing processes
such as drawing, plain-strain rolling, and additive
manufacturing [51–54]).

In Sections 2.1–2.3, we describe the level set
method and the implementation of the energy func-
tions. In Section 2.4, we provide validation exam-
ples. In Section 3, we present the statistical analy-
sis of the large-scale simulation results. Finally, in
Section 4, we discuss the influence of the initial tex-
ture on the resulting microstructure and the impact
of GB energy on the evolution of the GB network.

2. Methods

2.1. Level set model

In the present study, we built on a program de-
veloped by Esedoḡlu based on one of the algorithms
described in [27]. The algorithm models the grains
as distinct “phases,” Σi, of a domain in 3 dimen-
sions with periodic conditions. These phases inter-
act through their boundaries, and the energy of the
boundary equals the area of the boundary times
the GB energy between the two grains that form

the boundary. This algorithm simulates the mean
curvature motion of networks of interfaces under
arbitrary GB energies (i.e. GB energy models) in
two steps, performed iteratively, as shown in Algo-
rithm 1.

Algorithm 1: Original Algorithm [27]

At time step t = (δt)(k + 1):
1 Convolution step

φki = Gδt ∗
N∑
j=1

γi,j1Σk
j

(2)

2 Thresholding step

Σk+1
i =

{
x : φki (x) < min

j 6=i
φki (x)

}
(3)

The first step is a GB energy weighted convolu-
tion between characteristic functions, 1Σk

j
, and the

Gaussian kernel, Gδt. The convolution is performed
in the Fourier domain over a discretized version of
the microstructure (a grid of points that is equiva-
lent to a voxelized representation of the microstruc-
ture). The second step is thresholding (or redistri-
bution), which updates the state of the microstruc-
ture (i.e. the Σk+1

i , which define the grains).
In this algorithm, the GB energy determines the

equilibrium dihedral angle condition at the triple
junctions (TJs). Earlier work [11, 12] suggested
that many of the statistics appear not to depend
so much on the mobilities, but depend strongly on
the GB energies and the equilibrium dihedral an-
gle conditions at the junctions. The original algo-
rithm enables the use of arbitrary GB energy mod-
els that depend only on misorientation; therefore,
some adaptation was necessary to facilitate the use
of models that include the dependence of the GB
plane, as described in Section 2.2.2.

The algorithm we use leaves the convolution and
thresholding steps of Algorithm 1 essentially un-
changed, but adds two additional steps before them
as shown in Algorithm 2.

Before the convolution step, the GB normal at
each voxel that belongs to a GB is calculated. Thus
the normal of a GB is not constant, but varies
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Algorithm 2: Revised Algorithm

At time step t = (δt)(k + 1):
1 Calculate normals for every GB voxel

nS(r) = [M100(r) ,M010(r) ,M001(r)]ᵀ (4)

ni(r) = g−1
i nS(r) (5)

2 Calculate fully anisotropic GB energy for every
GB voxel

γi,j(r) = γ
(
gij ,n

i(r)
)

(6)

3 Convolution step

φki = Gδt ∗
N∑
j=1

γi,j(r)1Σk
j

(7)

4 Thresholding step

Σk+1
i =

{
x : φki (x) < min

j 6=i
φki (x)

}
(8)

over its surface (and consequently so does the GB
energy). Using the calculated normals and corre-
sponding misorientations, we then obtain the GB
energies of each GB voxel using the GB energy
function. The convolution and thresholding steps
are then performed as defined in the original algo-
rithm. A detailed explanation of each of the two
new steps is provided in Section 2.3 and Section 2.2,
respectively.

2.1.1. Simulation parameters

Using the level set method developed by
Esedoḡlu and the BRK function, we performed sev-
eral grain growth simulations using the same initial
microstructure to investigate the effects of the GB
energy and the texture on the evolution of the GB
network. Simulations were performed in 3D on a
cuboidal grid of 136×136×136 voxels with periodic
boundary conditions. The simulations were initial-
ized in two steps (Fig. 1): first a three-dimensional
polycrystalline microstructural template was con-
structed, then grain orientations were assigned be-
fore performing the actual anisotropic grain growth
simulations. We describe these two initialization

steps below.

Starting with a three-dimensional Voronoi tessel-
lation containing 10,000 grains (Fig. 1a), we per-
formed an initial stage of isotropic grain growth.
Then, when 7,500 grains remained, we stopped the
simulation and saved the resulting microstructure
as the polycrystalline microstructure template (the
starting point for the subsequent anisotropic sim-
ulations, as shown in Fig. 1b). By doing this, we
avoided the initial transition period from a Voronoi
microstructure to a grain growth microstructure
[12].

After obtaining the microstructure template,
each of the 7,500 grains were assigned a crystal-
lographic orientation from either a uniform orien-
tation distribution function (ODF) (Fig. 1c-e) or a
[001] fiber textured ODF (Fig. 1f-h).

Samples from a uniform ODF were obtained by
generating quaternions that were uniformly dis-
tributed over the half of S3 with positive first co-
ordinate, where the quaternion coordinates are de-
fined by

q =
[
cos
(ω

2

)
, sin

(ω
2

)
u
]

(9)

with ω representing the rotation angle and where
u is a vector representing the axis of rotation.

Samples from the fiber textured ODF were ob-
tained by generating rotation angles, ω, that were
uniformly distributed over S1. We then constructed
quaternions having those rotation angles and a ro-
tation axis of [001] (see Fig. 1f-h).

In both cases, the orientations were assigned uni-
formly at random to each grain. As we assign orien-
tations to each grain of the microstructure, crystal-
lographic constraints are satisfied by construction1.

The subsequent anisotropic simulations were run
until only ∼5 % (about 400) of the initial grains
remained.

1Crystallographic consistency requires that the product
of misorientations coordinating a triple junction result in
the identity [56, 57], i.e. g12g23g31 = I. Because we assign
grain orientations (rather than GB misorientations, which
are instead computed from the assigned orientations), this
relation is automatically respected by construction.
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Figure 1: (a) Initial microstructure (10,000 grains). (b) Microstructure after initial isotropic simulation to obtain grain
growth microstructure (7500 grains). Final microstructure from grain growth simulations assigning initial random texture
under (c) isotropic GB energy, (d) anisotropic GB energy (using Read-Shockley), and (e) fully anisotropic GB energy (using
BRK function). Final microstructure from grain growth simulations assigning initial fiber texture under (f) isotropic GB
energy, (g) anisotropic GB energy (using Read-Shockley), and (f) fully anisotropic GB energy (using BRK function).
Grain colors and corresponding color legend for (b)-(e) were constructed using MTEX [55].

2.2. Energy models

During the simulations, at each time-step, each
voxel that formed part of a GB was assigned a sur-
face tension (GB energy) based on the chosen con-
stitutive model. To understand how the use of a
realistic and fully 5D anisotropic model for GB en-
ergy compares to previous work, we employed three
different models for GB energy: isotropic, Read-
Shockley, and the BRK model. Although we use
different energy models, the underlying physics in
the simulations is the same: (1) the driving force
in each case is the same (minimization of the to-
tal GB energy), and (2) the GBs move according

to the same law (e.g. v = κ). To make quantita-
tive comparisons, we performed grain growth simu-
lations using all three models for every microstruc-
ture. For the isotropic model, all GBs were assigned
the same energy regardless of their misorientation
and GB normal. The other two energy models are
described in detail below.

2.2.1. Read-Shockley

The Read-Shockley model [41] has been used
extensively in previous simulations of anisotropic
grain growth [25–30, 32]. It takes into account the
GB misorientation but ignores the GB normal. It is
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accurate for low angle misorientations, but it does
not effectively predict the energy of high-angle mis-
orientations [8].

In our simulations, we used the same form of the
Read-Shockley function employed by Elsey [25]:

γij =

{
γmin + (1− γmin)

|αij |
αmax

[
1− log

(
|αij |
αmax

)]
, if |αij| ≤ αmax

1, if |αij| > αmax

(10)
where αij is the misorientation angle between the
i-th and j-th grains, and the value γmin was 0.1
according to [25]. αmax is the low-energy thresh-
old of the RS model and controls the population
of low-energy GBs. In computational studies, it is
common to use a low-energy threshold in the RS
model that is larger than the low-angle threshold
[9, 13, 25, 29]. In the present work, the purpose
of such a choice is to ensure that there is a non-
negligible fraction of low-energy GBs, which would
otherwise be artificially suppressed as a result of the
uncorrelated assignment of grain orientations. In
our simulations αmax = 30◦, consistent with other
works (c.f. [9, 13, 25, 29]).

2.2.2. BRK model

The energy model developed by Bulatov, Reed,
and Kumar [44] is an interpolation function for GB
energy in face-centered cubic metals that considers
all five crystallographic degrees of freedom. Their
approach was to model GB energy as a continu-
ous function that depends on five crystallographic
parameters and that any GB energy can be calcu-
lated by interpolating between known values from
a dataset. Rather than using simple linear interpo-
lation between data points (which would require a
larger dataset than was available at the time to be
accurate), they instead performed non-linear inter-
polation by incorporating prior information about
the 5D crystallographic symmetry of the GB char-
acter space together with an ansatz for the GB en-
ergy variation between certain high-symmetry GBs
referred to as scaffolding points.

Along with the original BRK publication [44],
a Matlab program was provided as supplemen-
tary data. This Matlab program, called ‘GB5DOF’,
takes two rotation matrices, P and Q, as an input.
The orientations of 2 grains that form a GB and

the GB normal between them are defined by these
rotation matrices. In this work, we employed the
BRK function by means of the ‘GB5DOF’ Matlab
routine to calculate the GB energies of each voxel
that is part of a GB during every time step of the
simulation.

2.3. Grain boundary normal calculation

The GB normal and the misorientation define a
GB. We need all five parameters to calculate the
GB energies of each GB in the microstructure dur-
ing the fully anisotropic simulations. As the level
set method performs the convolution in the Fourier
space, it was necessary to calculate the GB normal
of every GB voxel in the microstructure.

A common method to obtain GB normals from
voxelized microstructures is first to create a sur-
face mesh of the GB network and then calculate
the normal of each facet in that mesh. While there
are software programs such as Dream3D [58] (which
uses the ‘marching cubes method’ [59]) that can ac-
complish this, the resulting mesh is stair-stepped,
and post-processing is required to obtain a smooth
mesh. Available Hierarchical [60] or Laplacian [61]
smoothing algorithms can improve the quality of
the resulting mesh. However, it is possible to over-
or under-smooth depending on the number of itera-
tions. More importantly, meshing the GB network
at each time step is computationally expensive.

An alternative approach, which we employed in
this work, involves the calculation of GB normals
directly from the voxelized microstructure via a
method developed by Liberman et al. based on
first-order Cartesian moments [62]. The method is
based on the equation for finding general Cartesian
moments of order n:

Mabc(r) =
∑

(i,j,k)∈S

w(r) xai y
b
jz
c
kf(r) (11)

where r = [xi, yj, zk]
ᵀ is the position in the vol-

ume S (voxelized 3D microstructure), and w(r)
is a weighting function that depends on the po-
sition. In this application, the weight is 1 for every
point inside S. The order of a moment is given
by n = a + b + c, and f(r) is an indicator func-
tion that can take the values 1 or 0 depending on
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Figure 2: Steps in determining the GB normal for voxel in position (2,2). (a) Voxelized 2D image, grain IDs in the center,
and location of the voxels in the right bottom. (b) Values of the indicator function, f(r), generated at the voxel in position
(2,2). (c) Grain boundary (thick black line) and calculated normal vector (blue arrow) for voxel in position (2,2).

whether the particular point belongs to a grain we
are interested in or not.

As an example, consider the 2D microstructure
in Fig. 2, composed of a 3×3 grid of voxels. Fig. 2a
shows the voxel grain IDs (indicating which grain
each voxel belongs to) in the center of each square
and the position in the bottom-right corner. In
this example, we have grain 2 and grain 3. These
two grains form a GB (thick black line). Consider
the calculation of the GB normal for the voxel in
position (2,2). We begin by calculating the binary
indicator function for this voxel. We obtain the IDs
of the neighboring voxels, then all voxels with the
same grain ID as the voxel in position (2,2) will be
assigned a value of 0, while the voxels with the IDs
of a neighbor grain will be assigned a value of 1, as
illustrated in Fig. 2b.

In our simulations, there is an equal number of
voxels in every direction and each voxel is a cube,
meaning that the grid spacing is the same in every
direction. Under these conditions the vector r is
defined as:

r = [xi, yj, zk]
ᵀ = [i∆x, j∆y, k∆z]ᵀ (12)

where ∆x, ∆y, and ∆z represent the grid spacing.
After obtaining the value of the indicator func-

tion for each voxel, we calculate the components of
the GB normal using the gradient of the indicator
function [63] and the first-order moment with the

following formulation of Eq. 11 (complete deriva-
tion provided in [62]):

M100(r) =
1

∆x

∑
i

w(r) f(r) i

M010(r) =
1

∆y

∑
j

w(r) f(r) j

M001(r) =
1

∆z

∑
k

w(r) f(r) k

(13)

The GB normal in the sample reference frame,
S, is then obtained as

nS(r) = [M100(r) ,M010(r) ,M001(r)]ᵀ (14)

Finally, the GB normal is expressed in the crys-
tal reference frame of one of the incident grains
according to

ni(r) = g−1
i nS(r) (15)

2.4. Validation examples

Before performing the large-scale simulations, we
verified that the implementation of the BRK func-
tion on the level set method was successful. Vali-
dation of the level set method itself was performed
in [25]. In this section, we provide validation ex-
amples of our implementation of the BRK function
(including GB normal calculation).
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Figure 3: (a) Interface normals (red arrows) of a voxelized circular interface (black voxels) calculated using the first-order
Cartesian moment approach [62]. (b) Distribution of errors. (c) Example of calculated GB normals around triple junctions.

2.4.1. GB normal validation

In Fig. 3, we show the results of a simple test
of the method for a voxelized circular interface. In
this example, the circle has a radius of 45 voxels
in a 128× 128 grid. The interface normal for each
interface voxel was computed using the first-order
Cartesian moment approach. As the voxelized mi-
crostructure is an approximation of the true un-
derlying microstructure, the resulting normals are
also an approximation, but they show good agree-
ment with the expected normals, and the calcula-
tion is very fast. Liberman et al. compared surface
meshing and the Cartesian moment approach and
found that the resulting normals agreed on aver-
age to within 3◦ [62]. For the test case shown here,
the actual normal at each point along the interface
is known analytically from the equation of a circle
(so no meshing is required), and the distribution
of errors is shown in Fig. 3b. We found the aver-
age error to be 3.15◦ and the maximum error to be
13.6◦.

We followed the same procedure outlined in this
example to identify GB voxels and calculate their
respective GB normals for our large-scale grain
growth simulations. We then assigned the local
GB energy of each voxel from one of the GB en-
ergy models described in Section 2.2.

2.4.2. GB normals at triple junctions

The Cartesian moment method employed to cal-
culate the normals described in Section 2.3 works
for voxels that belong to a GB. However, where
three GBs meet at a triple junction, a GB normal
is technically undefined. To assign normals and
compute GB energies for voxels adjacent to a triple
junction, we define a small exclusion zone of a fixed
radius (5 voxels) surrounding the triple junction.
GB voxels within the exclusion zone are assigned
the normal of the first voxel along the correspond-
ing GB that falls outside of the exclusion zone.

For example, Fig. 3c shows a triple junction con-
structed using known analytical functions. GB13 is
the curve y = x2, GB23 is the curve y = (x− 5)2,
and GB12 is the line x = 1. The black circle illus-
trates the exclusion zone, and the black arrows in-
dicate the normals of voxels at its limits (five voxels
away from the triple junction). For validation, we
compute the angular deviation of the normals com-
puted in this fashion, relative to the known analyti-
cal normals at the triple junction. We find the error
between the calculated normal and the analytical
normal to be 3.5◦ degrees, which is comparable to
the angular deviation reported in Section 2.4.1 for
GB voxels far from triple junctions.
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Figure 4: Triple junction geometry and parameters as employed in Eqs. 16 and 17. (a) 3D triple junction. (b) 2D
orthogonal section of the 3D triple junction.

2.4.3. Grain boundary configuration at triple junc-
tions

While the level set algorithm developed by
Esedoḡlu [27] satisfies the Herring equation [64], we
performed additional validation to ensure that this
is still the case when the effect of the GB normal
and the BRK function are included.

The Herring equation describes the local equilib-
rium configuration of a GB triple junction. In [64],
the Herring equation is expressed as

3∑
i=1

(
γiti +

δγi
δβi

ni

)
= 0 (16)

where ti is the tangent vector and ni is the normal
vector. β is the GB inclination angle, measured
anti-clockwise with respect to an arbitrarily chosen
reference direction (at a TJ). The quantities of this
equation are shown in Fig. 4. In 3D, the triple
junction is a line. However, the Herring condition
applies at every point along the triple junction and
at any orthogonal 2D section of that 3D line [65].
For the isotropic case, when the GB energies of the
three GBs that form the TJ are equal, the dihedral
angles are 120◦. In the anisotropic case, for unequal
GB energies, the angles are different.

The first component in Eq. 16 will move the junc-
tion to shorten the highest energy boundary. The
second term, sometimes called the torque term, will
cause changes in the respective GB inclinations to

minimize the energy. The torque term is usually
neglected because it is typically small for general
GBs [64]. The simplified equation when neglecting
the torque term is

γiti + γjtj + γktk = 0, (17)

In this study, we do not neglect the torque term,
and we here verify that the full Herring conditions
are satisfied. In order to validate our implementa-
tion of the BRK function in the level-set-method,
we performed simulations on a single TJ. We per-
formed two simulations using the same initial mi-
crostructure and orientation. The first simulation
used the Read-Shockley energy function, and the
second used the BRK function. After performing
the simulations, we calculated the normal and tan-
gent vectors and the GB energies of the resulting
TJ configuration. With these values, we calculated
the left-hand side (LHS) of Eq. 16. The right-hand
side (RHS) of the Herring equation is a vector of
all zeros and therefore has a norm of zero. Previ-
ous authors verified that level-set simulations using
the method of Esedoḡlu together with the Read-
Shockley energy function satisfy the simplified Her-
ring equation shown in Eq. 17 [27].

To verify that the BRK simulation satisfies the
Herring conditions, we calculated the norm of the
calculated LHS vector of Eq. 16, which should be
close to zero. We repeated this for the Read-
Shockley simulation in order to have these values
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as a reference. We do not expect these values to
be precisely zero, as the discretization of the mi-
crostructure could introduce some errors when cal-
culating the normal and tangent vectors. However,
the result should be close to zero.

Figure 5: Distribution of magnitude of the LHS of the Her-
ring equation (Eq. 16) when using the Read-Shockley vs.
BRK GB energy functions.

Fig. 5 shows the results of 300 simulations using
different initial orientations. The average value of
the norm from the Read-Shockley simulations is
0.228, the average value of the norm from the BRK
(neglecting the torque term) simulations is 0.239,
and the average value of the norm from the BRK
(including the torque term) simulations is 0.224.
Since prior work confirmed that the present level-
set method satisfies the Herring conditions when a
Read-Shockley GB energy function is employed [27]
and we find that the average error is of comparable
magnitude when the fully anisotropic BRK energy
function is employed (it is 1.8% lower), we conclude
that the Herring conditions are also satisfied to the
same level of accuracy in the present work. We
note also that neglecting the torque term increases
the error by about 6.7%, though the magnitude of
the error remains small even in this case (a 6.7%
increase in a very small error remains a small error).

Additionally, wetting is an effect that could hap-
pen at triple junctions when using level set meth-
ods. Wetting occurs when a new phase nucleates

in an interphase between two existing phases. In
our simulations, the conditions to prevent wetting
are explicitly enforced, as suggested in [26]. When
assigning a phase to each voxel of the microstruc-
ture, we restrict that only existing phases around
the voxel are considered.

2.5. Experimental design

Table 1 summarizes the five simulations that we
performed. We used the same initial microstruc-
ture (i.e. there was one initial microstructure tem-
plate for random texture and another for fiber tex-
ture) for each GB energy function in order to make
quantitative comparisons on a grain-by-grain basis.

Table 1: Summary of simulations parameters for each of the
5 different simulations performed.

Initial Texture N/A Random Fiber

Energy function Isotropic RS BRK RS BRK
Initial # of Grains 7500 7500 7500 7500 7500
Final # of Grains 401 400 418 416 425

3. Results

Fig. 1c-e shows the final microstructure obtained
from the random texture simulations when less
than 5% of the initial grains remained for the
isotropic, Read-Shockley, and BRK simulations, re-
spectively. Of the less than 500 grains that re-
mained, the three simulations share 75% of the
same grains; the other 25% are grains that survive
in only one or two of the simulations. Thus a sig-
nificant fraction of the microstructure differs when
using different GB energy models.

Moreover, even for the 75% of grains that sur-
vived in all three simulations, we find that the
grain morphology (shape, dihedral angles at TJs,
etc.) varies significantly depending on the em-
ployed GB energy model. Such effects of GB en-
ergy anisotropy on the morphology and evolution
of individual grains have been observed in exper-
imental grain growth studies [66]. The following
subsections detail the similarities and differences
between the microstructures using various struc-
ture metrics and microstructural statistics across
GB energy models and initial crystallographic tex-
tures.
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Figure 6: Evolution of an individual grain. (a) Grain from the random textured initial microstructure. Same grain after
the microstructure has evolved for 100 time-steps under (b) Isotropic, (c) Read-Shockley, and (d) BRK simulations. Grains
colored by GB energy.

Figure 7: Normalized grain volume vs. time step. Initial
transient (first ∼ 25 time steps) corresponds to the initializa-
tion step of isotropic grain growth described in Section 2.1.1.

3.1. Morphology evolution

Fig. 6 shows an individual grain from the random
texture initial microstructure that survived in each
of the three simulations using different GB energy
functions. Fig. 6a shows the initial grain before the
simulation started. In Fig. 6b-d, we see how this
grain evolved into different grain morphologies de-
pending on the GB energy function used in the sim-
ulation. While this grain grows to larger than the
average grain size under isotropic conditions, the
grain did not grow as much when using anisotropic
energies. In addition, we can observe how the grain
has different shapes and different GBs depending
on the energy function.

Table 1 shows the number of remaining grains
when using different energy functions and starting

with different initial textures. Kim et al. [17] re-
ported that when using an energy function that
considers the misorientation and the plane normals,
the number of remaining grains is a little larger
than when using isotropic conditions. In agree-
ment with those results, the kinetics of our BRK
simulations appear to be slightly slower than the
Read-Shockley and isotropic simulations (i.e. there
are more grains in the final BRK microstructures,
indicating that the coarsening process has not pro-
ceeded as far as in the isotropic and Read-Shockley
simulations which omit the dependence on GB nor-
mal), though we cannot quantitatively compare the
rates.

3.2. Normalized grain growth and grain size distri-
bution

Fig. 7 shows the mean grain volume over the
course of the simulations, normalized by the initial
volume. The simulations seem to all reach steady
state (the plot becomes linear) after about 15-20
time steps. There also appears to be no signifi-
cant difference between the way the average volume
evolves using different GB energy functions. This
could be a manifestation of the fact that in this ver-
sion of Esedoḡlu’s Matlab implementation of the
level-set method v = κ which implies that Mγ = 1.
As a result, one limitation of the simulations is that
they do not capture independent mobility effects
(though, as noted earlier the effect of mobility is
expected to be small compared to the effect of the
GB energy). Nevertheless, the different GB energy
functions do result in different dihedral angles and
grain morphologies, and it is therefore notable that
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Figure 8: Normalized grain size distribution of 3 different times-steps when starting with a random texture microstructure
for (a) Isotropic, (b) Read-Shockley and (c) BRK simulations. Rv is the spherical equivalent grain radius, and 〈Rv〉 is the
average spherical equivalent grain radius.

the evolution of the average grain volume seems to
be largely independent of these morphological dif-
ferences.

Figure 8 shows the grain size distribution of the
initial microstructure and two later time-steps. We
can see that the distribution broadens in the later
time-steps, and the microstructure seems to reach
self-similarity (the distributions at time step 50 and
70 are nearly identical). To verify this, we ran a
two-sample Kolmogorov-Smirnov test for the ran-
dom texture (uniform ODF) simulations to evalu-
ate if the grain size distributions for the later time-
steps come from the same distribution. For each
case, the results confirm that the distributions are
statistically indistinguishable with p-values of 0.57;
0.76 and 0.63 for the isotropic, Read-Shockley and
BRK simulations, respectively. The grain size dis-
tributions for the fiber texture simulations exhib-
ited similar results and self-similarity was also ob-
served.

3.3. Grain boundary energy distribution

The GB energy function directly impacts the evo-
lution of the grain boundary energy distribution
(GBED). Fig. 9 shows the GBED of the initial and
final microstructure for the simulations using the
Read-Shockley function and the simulations using
the BRK function (the isotropic GBED is uniform
by definition at all times). When the initial mi-
crostructure has random texture, the GBED for
both the Read-Shockley simulation and BRK sim-
ulations (while different from each other) are very

similar between their respective initial and final
states. Most of the GB energies are in the inter-
val 0.9 – 1 J/m2 for the Read-Shockley simulation
and 1 – 1.4 J/m2 for the BRK simulation, respec-
tively. In both simulations, there are very few
GBs with energies in the interval 0.1 – 0.5 J/m2.
On the other hand, when the initial microstruc-
ture has a fiber texture (Fig. 9c-d), the GBED
exhibits a broader range of values—including a
significant proportion of low-energy GBs—and as
the microstructure evolves the population of low-
energy GBs increases for both the Read-Shockley
and BRK simulations. Thus, the initial texture
appears to have a qualitative influence on the evo-
lution of the GBED.

3.4. Orientation distribution function

In Fig. 10a-b, we present (001) and (111) pole
figure representations of the ODF of the initial and
final microstructure for the BRK simulation. The
ODF is essentially uniform in both cases. For the
fiber texture simulations, Fig. 10c-d shows that the
ODF changes in a non-negligible way. The initial
ODF shows that the [001] directions are aligned
with the sample Z-axis and that there is an equal
probability for any rotation having [001] parallel
to the Z-axis As the microstructure evolves during
grain growth, modest peaks emerge, indicating pre-
ferred orientations. The final ODF appears some-
what like a rotated cube texture mixed with a fiber
texture.

The fact that there is no change to the ODF
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Figure 9: GB Energy Distribution of the initial and final microstructure of the simulations when initial random texture
is assigned for the (a) Read-Shockley and (b) BRK simulations; and when initial fiber texture is assigned for the (c)
Read-Shockley and (d) BRK simulations.

when it is initially random suggests that the ODF
remains self-similar during evolution and that the
microstructure doesn’t have the opportunity (i.e.
there is no kinematic pathway) to minimize its en-
ergy by mechanisms that produce preferred orien-
tations.

3.5. Misorientation distribution function

Fig. 11 shows the misorientation distribution
function (MDF) for the simulations. As expected
for random texture (Fig. 11a-c) in the cubic system,
the initial distribution is very close to the Macken-
zie distribution [69]. The MDFs of the simulations’
final microstructures that start with random tex-
ture do not change significantly for any of the three
GB energy functions. As observed in [25] and [17],

when assigning random texture, the evolution of
the MDF is very slow as there are very few low-
energy boundaries to start with. As a result, it
is probably required to evolve the simulation for
long times to see significant changes. However, if
the simulation is run for a long time, most grains
would disappear. Therefore, it is unlikely that one
would ever be able see a change in the shape of the
MDF for this scenario.

In contrast to the random texture simulations,
the results of the MDF for the simulations using
an initial microstructure with fiber texture are very
different. Fig. 11d-f shows how the MDF of the ini-
tial microstructure is a uniform distribution for the
isotropic, Read-Shockley, and BRK simulations. In
this case, the final microstructure of the isotropic

13



Figure 10: Orientation Distribution Function of the (a) initial and (b) final microstructure of the BRK simulations with
initial random texture and the (c) initial and (d) final microstructure of the BRK simulations with initial fiber texture.
Pole figures were constructed using MTEX [55].

Figure 11: Misorientation Distribution Function of the initial and final microstructure of the simulations when initial
random texture is assigned for the (a) Isotropic, (b) Read-Shockley, and (c) BRK simulations; and when initial fiber
texture is assigned for the (d) Isotropic, (e) Read-Shockley, and (f) BRK simulations.
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Figure 12: Triple Junction Distribution evolution of the microstructures from the grain growth simulation using the
BRK GB energy function when the initial microstructure has initial (a) random and (b) fiber texture. Blue lines show
the uncorrelated TJD for random and fiber texture, respectively. Black squares in (a) are TJD from experimental data
[67, 68] with LAGB threshold of θ = 15◦.

simulation remains uniform. However, the distri-
bution shifts toward lower misorientations in the
Read-Shockley simulation and the BRK simulation.
This result is consistent with the GBED results
that show how the distribution moves towards low
energy boundaries for the fiber texture case.

3.6. Triple junction distribution

The triple junction fractions, denoted (Ji), indi-
cate the fraction of TJs in the microstructure coor-
dinated by i low-angle GBs (LAGBs). The values
[J0, J1, J2, J3] are sometimes referred to as the TJ
distribution (TJD), and the evolution of the TJD
is plotted in Fig. 12 for the BRK simulations. In
Fig. 12, p is the length-fraction of LAGBs, where
the traditional 15◦ threshold is used. We note that
the range of p values in the random texture case is
small (0.0212 – 0.0245 over the course of the grain
growth simulations). The TJs are predominantly
J0-type at the beginning of the simulation. As the
microstructure evolves it seems that there is no sig-
nificant change in the fraction of LAGBs and no
clear trend in the variation of the Ji. In addition,
the TJ fractions are very close to the uncorrelated
TJD (blue lines) [70–72].

Similarly, the evolution of the TJD for the fiber
texture grain growth simulation in Fig. 12b does
not deviate from the uncorrelated TJD. However,
in this case, the increase in the fraction of LAGBs,
p, as the microstructure evolves is appreciable,
roughly 6 %. In addition, there is a trend of de-
creasing J0 and increasing J2 and J3 as the sys-
tem evolves, while J1 remains approximately con-
stant. The decrease in J0 and increase in J2/J3

indicate an increase in the connectivity of LAGBs
and a reduction in the connectivity of high-angle
GBs (HAGBs). Finally, we analyze the evolution
of the GB network topological order parameters:
χ—which indicates the tendency of LAGBs to form
compact or elongated clusters—and σ—which indi-
cates the tendency for LAGBs and HAGBs to mix
or phase separate [70]. In the initial microstruc-
ture χ ≈ 0, so there is no preference for com-
pact vs. elongated clusters. On the other hand,
σ ≈ 0.32, indicating a preference for phase separa-
tion of the LAGBs and HAGBs. As the microstruc-
ture evolves, σ does not change significantly. How-
ever, χ increases slightly to σ ≈ 0.35, indicating
that the LAGB clusters appear to become more
elongated.
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Figure 13: GBCD for (a) Σ3, (b) Σ5, (c) Σ7 and (d) Σ9 of the fully anisotropic BRK simulations. The [001] direction
is normal to the page and [100] direction is horizontal and to the right. The number of observations (voxels) in the
microstructure for GBs exhibiting Σ3, Σ5, Σ7 and Σ9 disorientations were 8450, 5521, 4634 and 6163, respectively.
Figures were constructed using MTEX [55].

In Appendix A, we show the TJD of the isotropic
and Read-Shockley simulations. For the isotropic
simulations, as expected, there is essentially no
variation of LAGBs. The Read-Shockley simula-
tions reproduce the same qualitative trends ob-
served here for the BRK GB energy function, for
both the initial random texture and initial fiber
texture.

3.7. Grain boundary character distribution
(GBCD)

In this section, we present the results of the
GBCD for the resulting microstructures from the
BRK simulations that had random texture. As
the initial microstructure of the simulations started
with fully random orientations, the distributions of
plane normals for the initial time steps are essen-
tially uniform and are not shown here. However,
the GBCD changed significantly during the fully
anisotropic (BRK) grain growth simulations, and
we present the GBCD for several low-Σ misorienta-
tions after the microstructure reached steady-state
in Fig. 13.

The GBCDs obtained from the fully anisotropic
BRK simulations are similar to experimental
GBCD observations [8, 73]. In contrast, the
GBCDs for the isotropic and Read-Shockley sim-
ulations remained essentially random throughout
the simulations, which is expected due to the fact
that these energy functions do not consider the in-
fluence of the plane normal.

By construction, all misorientations in the fiber
texture simulations have a [001] rotation axis, so

only the GBCD of the Σ5 is relevant for these sim-
ulations. We found that the GBCD for the Σ5
misorientations from the BRK fiber texture simula-
tions (not shown) was similar to the Σ5 GBCD for
the BRK random texture simulations in the final
microstructures.

The favorable comparison between the GBCDs
observed for the fully anisotropic BRK simulations
and those for experimental measurements in the lit-
erature, together with the absence of preferred GB
normals in the Read-Shockley and isotropic simu-
lations, suggest that the microstructures produced
by the fully-anisotropic BRK simulations are more
faithful to experimental microstructures and should
be useful surrogates to study fully anisotropic grain
growth.

4. Discussion

As is apparent from the foregoing results, for an
initial random texture, every statistical microstruc-
ture descriptor remains essentially constant during
the evolution, while nearly all of the descriptors
change for an initial fiber texture. In addition,
apart from the GBCDs, the microstructure statis-
tics for the Read-Shockely and BRK simulations
are at least qualitatively similar to one another. In
this section, we explore possible explanations for
these observations.

To understand how the initial texture influences
the evolution of the GBED, recall that the system
can minimize its energy by following one or more
of the following four mechanisms:
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1. Coarsening (reducing the total GB area).

2. Replacing high-energy GBs with low-energy
GBs by the formation of low-energy GBs when
a grain disappears.

3. Expanding the size of low-energy GBs at the
expense of high-energy GBs by the motion of
TJs.

4. Changing GB character through reorientation
of the GB plane2.

Mechanism 1 applies to all of our simulations
(isotropic, read-Shockley and BRK). Regardless of
the GB energy function employed, as the average
grain size increases, the GB area decreases, and
consequently, the total GB energy is reduced.

Mechanisms 2 and 3 are only relevant for
the partially- and fully-anisotropic cases (Read-
Shockley and BRK, respectively). During the
anisotropic simulations, a shift toward LAGB mis-
orientations was expected. We see this trend in
the fiber texture simulations. However, the MDF
and GBED for the simulations that started with a
random texture did not change significantly.

The contribution of mechanism 2 to the varia-
tion of the various statistical descriptors is prac-
tically zero. A new GB is created when a grain
disappears, and two grains (that did not share a
boundary before) become neighbors. If these newly
formed GBs tend to be LAGBs, the microstructure
will reduce its energy by this mechanism, and we
would see this difference in the MDF and GBED.
However, for both the initial random and fiber tex-
tures, the probability that the newly created GBs
at each time step happen to be LAGBs is very
small. In fact, the newly created GBs show a simi-
lar MDF to the initial microstructure (see Fig. 14).
Therefore, the newly created GBs are essentially
sampled form the same distribution as the initial
MDF and GBED so these statistical microstruc-
ture descriptors remain unchanged. This is at least
partially due to the fact that these microstructures
did not exhibit any spatial correlations in grain ori-
entation (the orientations were assigned uniformly
at random). It is conceivable that if certain types of

2GB character can also change by grain rotation under
certain conditions [74–76].

strong spatial correlations in grain orientation ex-
ist, the distribution of newly created GBs could dif-
fer from the parent distribution and one might ob-
serve microstructural changes by this mechanism.

The lack of change in the random texture simu-
lations could also be explained by the fact that the
percentage of LAGBs in the initial microstructure
is extremely low. When grain growth starts in a
situation where most GBs are HAGBs, as seen in
the random texture cases, the few initial LAGBs
will probably be preserved (mechanism 3) as the
microstructure coarsens. This implies that the frac-
tion of LAGBs is actually increasing. However, be-
cause the proportion of LAGBs is negligible com-
pared to that of the HAGBs, the change is insignif-
icant, and the final MDF, GBED, ODF and TJD
are indistinguishable from the initial distributions.
By way of illustration, in the present simulations,
the initial fraction of LAGBs for the initial random
textured microstructure was 0.018. At the end of
the simulation, the fraction of LAGBs increased by
17 % to 0.021, which, in spite of representing a large
percent increase, is still practically indistinguish-
able from the initial fraction.

In contrast, for the fiber texture cases there is
a higher proportion of LAGBs in the initial mi-
crostructure. As this initial proportion of LAGBs
increases during grain growth it has a noticeable
impact on the MDF, GBED and TJD. Continu-
ing the previous comparison, the initial fraction of
LAGBs for the initial fiber textured microstructure
was 0.321. In this case, the LAGB fraction in-
creased by 22 % to 0.392. Though a similar percent
increase to the random textured simulations (22 %
compared to 17 %), this represents a much larger
and more noticeable absolute increase (0.071 com-
pared to 0.003). Thus, it is possible that both the
random and fiber texture simulations benefit from
mechanisms 2 and 3, but the effect is only observ-
able for the fiber textured microstructures because
they have a significant fraction of LAGBs to be-
gin with. Similar observations have been made in
[17, 25].

Mechanism 4 is only available to the BRK sim-
ulations as these do not neglect the influence of
the GB plane normal. Considering the influence
of the GB energy anisotropy for different GB nor-
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Figure 14: MDF of the initial microstructure and MDF of the GBs created at different time-steps for (a) random texture
– Read-Shockley simulation, (b) random texture – BRK simulation, (c) fiber texture – Read-Shockley simulation and (d)
fiber texture – BRK simulation.

mals should open up another path by which GBs
can reduce their energies by reorientation of the GB
plane. However, the shape of the BRK function is
such that, for most misorientations, changing the
normal only changes the GB energy by a small per-
centage (cf. [44]).

Finally, we compare the contribution of each
mechanism to the reduction of the total interfacial
energy of the microstructures from the BRK sim-
ulations. If the energy had been isotropic the per-
cent reduction in energy would have been entirely
due to the percent reduction in GB area which was
60.37% for the random texture case and 60.09% for
the fiber texture case. The total reduction of en-
ergy for the BRK simulations was 62.72% for the
random texture case and 64.78% for the fiber tex-

ture case. In the BRK simulations, the reduction
is a combination of mechanisms 1, 3, and 4. If we
assume that the contribution from mechanism 1 is
the same as the percent reduction in GB area, we
obtain the combined percent reduction from mech-
anisms 3 and 4 to be 2.35% and 4.69% for the ran-
dom and fiber texture cases, respectively. There-
fore, even though the system does take advantage
of energy reductions via changing GB characters,
as evidenced by the significant evolution of the
GBCD, the amount that the total interfacial energy
is reduced by this mechanism is small compared to
how much it is reduced by coarsening. More de-
tails regarding the evolution of the total interfacial
energy with time are provided in Appendix B.

This dominance of the purely geometrical coars-
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ening effect may explain, at least in part, why many
of the spatially independent macroscopic statistical
descriptors (grain size distribution, GBED, MDF)
evolved similarly—largely independent of the de-
tails of the underlying GB energy function. While
the contribution of the GB energy anisotropy to
the total reduction of interfacial energy is much
smaller, it nevertheless has significant effects on the
spatially dependent details of the microstructure
evolution, including grain morphology and even
which grains persist and which are eliminated from
the microstructure.

5. Conclusion

In this work, we performed fully anisotropic grain
growth simulations for 3D polycrystals with 7500
initial grains. We evaluated the effect of different
grain boundary (GB) energy functions and initial
crystallographic textures on microstructural evolu-
tion during grain growth. We considered isotropic,
Read-Shockley, and fully anisotropic GB energy
models; and initial random or fiber texture orien-
tation distribution functions (ODFs). Our obser-
vations are summarized below:

1. Individual grains exhibited different morpho-
logical evolution (as well as disappearance
or persistence) depending on the GB energy
model employed. However, certain non-spatial
statistical descriptors (grain size distribution,
GBED, MDF) exhibited striking similarity in-
dependent of the GB energy model employed.
This suggests that while the detailed mi-
crostructural evolution depends strongly on
the GB energy function, many spatially inde-
pendent statistical properties do not, and that
statistical observations from simple isotropic
simulations may be good approximations of
fully anisotropic grain growth for some at-
tributes of the microstructure (even when the
detailed microstructural evolution is not).

2. The effect of the initial crystallographic tex-
ture is significant. When the initial texture is
random, most statistical microstructural de-
scriptors (GBED, MDF, ODF, TJD) remain
essentially constant during grain growth. In

contrast, when the initial crystallographic tex-
ture is a fiber texture, there are significant
changes in all of the statistical microstructural
descriptors. Moreover, the evolution is such
that the statistics of the fiber textured mi-
crostructures do not simply evolve to resemble
those of a random texture, but rather most
of them evolve to become more and more dif-
ferent from it (e.g. the GBED, ODF, MDF,
and TJD). This suggests that the evolution-
ary pathways of different initial microstruc-
tural states may diverge (or at least remain
distinct) rather than converging.

3. The initial population of low energy bound-
aries impacts the apparent evolution of the
GBED, MDF and the TJD. When there is a
low population of low energy boundaries to be-
gin with, there is not a significant change in
this proportion at the end of the simulation.
However, if there is a high population of low
energy boundaries in the initial microstruc-
ture, the increase in that population will be
more noticeable.

4. The system lowers its energy much more by
coarsening than by changes induced by GB
energy anisotropy. However, the GB energy
anisotropy has a significant impact on the spa-
tially dependent details of the microstructure.
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A. Appendix A

In this section, we present the results of the TJD
evolution for the Read-Shockley and isotropic simu-
lations. Fig. 15 shows that for the isotropic simula-
tions the respective TJ fractions remain relatively
constant and do not follow any trend during the
simulation. This lack of change was expected be-
cause the MDF didn’t change significantly for any
of the isotropic simulations.
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Figure 15: Triple Junction Distribution evolution of the microstructures from the grain growth simulation under isotropic
GB energy conditions when the initial microstructure has initial (a) random and (b) fiber texture.

On the other hand, the TJD evolution for the
Read-Shockley simulations, shown in Fig. 16, is
qualitativly similar to the BRK simulations. In the
random texture case, as most GBs are HAGBs (see
the MDF in Fig. 11), most of the TJs are of type-0,
and there are very few type-1,2, or 3 TJs. For the
fiber texture case, which exhibits a higher fraction
of LAGBs to begin with, there is a noticeable in-
crease in the length-fraction of LAGBs, as well as
an increase in J2 and J3.

B. Appendix B

In this section, we present the results of the total
interfacial energy evolution during the simulations
for the different energy models. Fig. 17 shows the
total energy vs. time steps for the isotropic, Read
Shockley, and BRK simulations. The purpose of
these plots is to show that the energy decays mono-
tonically during the simulations. The three figures
are for the random texture case. Similar trends
were observed in the fiber texture case.

6. Data availability

The raw data required to reproduce these find-
ings cannot be shared at this time as the data also

forms part of an ongoing study. The processed
data required to reproduce these findings cannot
be shared at this time as the data also forms part
of an ongoing study.
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