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Abstract
Feature selection is an important step in the data science pipeline, and it is critical to 
develop efficient algorithms for this step. Mutual Information (MI) is one of the impor-
tant measures used for feature selection, where attributes are sorted according to descend-
ing score of MI, and top-k attributes are retained. The goal of this work is to develop a 
new measure Attribute Average Conflict to effectively approximate top-k attributes, without 
actually calculating MI. Our proposed method is based on using the database concept of 
approximate functional dependency to quantify MI rank of attributes which to our knowl-
edge has not been studied before. We demonstrate the effectiveness of our proposed meas-
ure with a Monte-Carlo simulation. We also perform extensive experiments using high 
dimensional synthetic and real datasets with millions of records. Our results show that our 
proposed method demonstrates perfect accuracy in selecting the top-k attributes, yet is sig-
nificantly more efficient than state-of-art baselines, including exact methods for computing 
Mutual Information based feature selection, as well as adaptive random- sampling based 
approaches. We also investigate the upper and lower bounds of the proposed new measure 
and show that tighter bounds can be derived by using marginal frequency of attributes in 
specific arrangements. The bounds on the proposed measure can be used to select top-k 
attributes without full scan of the dataset in a single pass. We perform experimental evalu-
ation on real datasets to show the accuracy and effectiveness of this approach.
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1  Introduction

Feature or attribute selection is considered to be a time-consuming yet highly essen-
tial step inside a data science pipeline, where the goal is to select a subset of features 
or attributes that exhibit high correlation with the class label to be predicted. Indeed, 
an effective small number of features play pivotal role in reducing computation time, 
and facilitates an enhanced understanding and improved efficacy of the underlying 
model. One of the important feature selection techniques is the filtering based method 
(Guyon & Elisseeff, 2003; Jović et  al., 2015), which leverages scoring functions 
involving statistical property of the data to select features. Mutual Information (MI) 
(Vergara & Estévez, 2014; Hoque et al., 2014) is one such popular measure and has 
been extensively studied in recent works (Chen & Wang, 2021; Wang & Ding, 2019; 
Salam et al., 2019), due to its information theoretic interpretation, and ability in quan-
tifying the predictive power of the attributes in a model agnostic fashion.

Our study unfolds in a classical data exploration setting inside data science pipe-
line, where given to us is a large database with millions of records designed over a 
hundreds of attributes (or features) and a class label Z. Given an attribute X and the 
class label Z, MI between X and Z measures the reduction in uncertainty for Z, given 
a known value of X. Our goal is to select top-k attributes with k-highest MI with the 
class label Z (Section 3). The aim of this work is to perform MI based feature selec-
tion without actually calculating the MI. The motivation is to avoid some computa-
tional overhead for the exact MI calculation. The novelty of the proposed approach 
is to connect Functional Dependency and Approximate Functional Dependency from 
database literature to compute the MI based ranking of attributes. This work makes 
several contributions in this regard.

Contribution (1) - Connecting Functional Dependency with MI Approxima-
tion. We connect the database concept of Functional Dependency (FD) to estimate 
MI-based feature ranking. An attribute will not have exact one-to-one mapping with 
target variable in a real dataset and hence perfect FD merely exists. We investigate 
how this imperfection can be effectively quantified and correlated with MI. Con-
tribution (2)- A New measure to approximate MI. We investigate Approximate 
Functional Dependency (AFD) from literature (Kivinen & Mannila, 1995; Dalkilic 
& Roberston, 2000; Giannella & Robertson, 2004; Mandros et  al., 2020; Liu et  al., 
2010; Lee, 1987) and find deficiency of one popular measure G3 − error (Kivinen & 
Mannila, 1995) to approximate MI based feature ranking. We propose a new measure 
Attribute Average Conflict (Section 4) that effectively approximates MI, while being 
much faster computationally. Contribution (3)- Experimental Evaluations We per-
form extensive evaluations (Section 5) using multiple synthetic and real world data-
sets (with millions of records and hundreds of attributes) and compare our solutions 
with multiple methods, including state-of-the-art solution (Chen & Wang, 2021). 
Our experimental results convincingly corroborate the superiority of our proposed 
approach as, we always achieve the exact top-k attributes considering precision and 
ndcg-score, while being 2x faster than exact MI calculation. Adaptive uniform sam-
pling (Chen & Wang, 2021) ends up consuming the entire dataset and turns out to be 
considerably slower (4 − 7x) than us. We are also 1.3x faster than uniform random 



Journal of Intelligent Information Systems	

1 3

sampling with better precision and ndcg-score. Similar observation holds for real 
world data that shows that even though our proposed method brings some approxi-
mation in the top-k order, the produced attributes still have highly comparable MI 
with the exact calculation, while being faster than the exact calculation and other 
comparable methods. Contribution (4)- Efficient algorithm using bounds on pro-
posed measure We investigate the upper and lower bounds of the proposed meas-
ure Attribute Average Conflict (Aac) (Section 6) by first exploring the maximum and 
minimum value of Aac for an attribute. First we show that a loose upper and lower 
bound can be derived by using only the domain size information of attributes. Then 
we derive tighter bounds by considering a setting where we have prior information 
of attribute (X) and target (Z) value frequency. This setup is possible for relational 
databases where the data dictionary, or metadata can be used to get the marginal fre-
quency of attributes and target variable. Our proposed approach is able to use mar-
ginal frequency of attribute and target variable to find the possible arrangement that 
yields the maximum and minimum value of Aac. We show that finding the minimum 
value of Aac is NP-Complete and use a greedy approach that works well in practice. 
We develop the criteria for minimum number of records needed to scan using the 
established upper and lower bounds. Then we develop an efficient algorithm that can 
select the top-k attributes using the proposed bounds of the new measure in a single 
pass without scanning the full dataset. We show the accuracy and effectiveness of 
this improved algorithm by experimental evaluation on real datasets. Our experiment 
illustrates that for a real world dataset with 299K records and 28 attributes, our pro-
posed bound based algorithm scans only 65% of the records in a single pass to find 
the top-10 attributes with perfect accuracy.

2 � Related works

Feature selection  Feature selection is an important topic for machine learning and 
data mining discipline, where a subset of input variables is computed to efficiently 
describe the input data while reducing effects from noise or irrelevant variables 
ensuring good prediction results (Chandrashekar & Sahin, 2014). A plethora of work 
exists for various feature selection techniques. A review of feature selection methods 
with application can be found in Guyon and Elisseeff (2003) and Jović et al. (2015). 
Various feature selection methods can be broadly categorized under - Wrapper, Fil-
ter, and Embedded methods. The performance of the predictor is used as the feature 
selection criterion in wrapper methods (Chandrashekar and Sahin, 2014). In case of 
Filter methods, features are ranked using some criteria and highly ranked features are 
selected and applied to the predictor. Embedded methods include variable selection 
as part of the training process without splitting the data into training and test sets 
(Chandrashekar & Sahin, 2014). Variable ranking techniques are used as the princi-
pal criteria for selection of variable in Filter methods. Ranking methods are simple 
and effective for Filter techniques. Variables are scored through a suitable ranking 
criterion and only those variables are retained that are at least equal to a predefined 
threshold. As the ranking methods are applied before classification to filter out the 
less relevant variables, hence they are identified as Filter methods. Two popular cri-
teria for ranking methods are Correlation and Mutual Information (MI). Correlation 
only detects linear dependencies between variable and target, whereas MI is able to 
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capture non-linear relationship as well (Chandrashekar and Sahin, 2014). MI based 
feature selection is a Filter method where features are ranked according to MI score 
with respect to the class variable. Advantage of MI is that it does not rely on learning 
algorithm and hence avoids overfitting. One of the drawbacks of this approach is that 
the selected subset might not be optimal and the variables in the subset can be highly 
correlated (Chandrashekar & Sahin, 2014). Vergara and Estévez (2014) presents a 
review of feature selection methods based on MI. Main focus of these works are on 
effectively using MI to get more accurate top-k features while addressing the issue 
of relevancy and redundancy, but our aim is to devise a faster method without actu-
ally calculating MI . MI has been used for feature engineering tasks as well (Salam 
et  al., 2019). Recent works have proposed sampling based techniques for selecting 
top-k features using empirical MI (Wang & Ding, 2019; Chen & Wang, 2021). Chen 
and Wang (2021) focuses on improving speed of the calculation compared to Wang 
and Ding (2019), but they still compute MI on samples. We develop a new measure 
for faster computation of the top-k features without calculating MI which differenti-
ates our work from these works.

Approximate functional dependency (AFD)  AFD concept is related to FD which 
has been widely used by researchers and practitioners in database community for 
schema design. An initial work on approximately inferring functional dependencies 
using sampling is provided in Kivinen and Mannila (1995), where some important 
definitions on error measurement for AFD is introduced that stand as a reference for 
later works. Some alternative techniques on inferring full and approximate functional 
dependency have been proposed in later works (Novelli & Cicchetti, 2001; Lopes 
et al., 2000; Huhtala et al., 1999). A notion of information dependency has been intro-
duced in Dalkilic and Roberston (2000) which is used to explore AFD. (Dalkilic & 
Roberston, 2000) provides new definition for measuring AFD and shows how their 
measure compares with the one provided by the earlier work of Kivinen and Mannila 
(1995). Methods for quantifying approximation degree of AFD have been proposed 
in Giannella and Robertson (2004) based on prior work of Dalkilic and Roberston 
(2000). A recent work proposed method for discovering dependencies using reliable 
MI (Mandros et al., 2020). Main focus of these line of works are on devising fast and 
comprehensive methods for finding AFD in the dataset. The main difference between 
these works and ours is that we take the idea of AFD and devise a new measure to 
compute MI based top-k features.

3 � Preliminaries and definitions

Example 1  We describe a toy example in Table 1 with 10 records and 2 attributes (predic-
tors) - Ethnicity and Age < 30 and one Boolean class label PlaysBasketball. The recor-
dId column contains the unique identifier for the record. For the simplicity of exposition, 
we consider binary predictors and class labels. Table 2 lists the measures for this example 
which will be discussed later in this section.
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3.1 � Notations and prior definitions

Attributes, records, and target variable/class label  A given dataset D is comprised of a 
set A of m categorical attributes {X1,X2,...,Xm} or features and n records, as well as an addi-
tional class label/target variable (column) Z. The target variable Z contains the class label 
of an instance. Using Example 1, n = 10, m = 2, A = {Ethnicity,Age < 30} , X1 = Ethnic-
ity, X2 = Age < 30, Z = PlaysBasketball.

Mutual Information (MI) (Cover & Thomas, 1991)  Mutual Information (MI) captures 
information theoretic “correlation” Li (1990) between two random variables that quan-
tifies the amount of information obtained about one through the other. When X and Z 
are discrete 1,

MI(X,Z) is defined as follows:

where p(x,z) is the joint probability distribution function of X and Z, and p(x) and p(z) 
are the marginal probability distribution functions of X and Z respectively. We use MI(X) 

(1)MI(X,Z) =
∑
x∈X

∑
z∈Z

p(x, z) log
p(x, z)

p(x)p(z)

Table 1   Running Example 1 record Ethni Age Plays
Id city < 30 BasketBall

r1 Black Yes Yes
r2 Black Yes Yes
r3 Black Yes Yes
r4 Black Yes No
r5 Black Yes No
r6 Black Yes No
r7 Black No No
r8 Black No No
r9 Asian No No
r10 Asian No No

Table 2   Measures for Example 1 Ethnicity Age < 30

G3-error 3 3
Aac 2.4 1.8
MI 0.1916 0.2812

1  We consider the numeric variables are appropriately discretized, when needed
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for brevity instead of MI(X,Z). Using entropy of Z denoted as H(Z) and conditional entropy 
between Z and X denoted as H(Z∣X) (Cover and Thomas, 1991), MI(Z,X) is defined as

MI is symmetric, that is MI(X,Z) = MI(Z,X) (Cover & Thomas, 1991). In Example 1, 
MI(Ethnicity,PlaysBasketball) = 0.1916, and MI(Age < 30,PlaysBasketball) = 0.2812. 
Next, we define 3 key terms from Database literature that have been used for schema 
design.

Functional Dependency (FD) (Elmasri & Navathe, 2011)  A functional dependency 
between X and Z, denoted by X → Z , is a constraint on the possible tuples that can form a 
relation state r over A . The constraint is that for any two tuples t1 and t2 in r that have t1[X] 
= t2[X], they must also have t1[Z] = t2[Z]. In Example 1, Ethnicity = Black is associated 
with PlaysBasketBall = Yes in r1, r2, r3, but the same value for Ethnicity is associated with 
PlaysBasketBall = No in r4. Similarly, Age < 30 = Yes is associated with different values of 
PlaysBasketBall in different tuples. Hence, there is no FD from either Ethnicity or Age < 30 
to PlaysBasketball.

Approximate Functional Dependency (AFD) (Huhtala et  al., 1999)  Given an error 
threshold 𝜖, 0 ≤ 𝜖 ≤ 1, X → Z is an Approximate Function Dependency (AFD) if and only 
if e(X → Z) is at most 𝜖. Here e(X → Z) = min{|s| ∣ s ⊆ r and X → Z holds in r ∖ s } / |r| . 
This definition is based on the minimum number of tuples ( |s| ) needed to be removed from 
relation r for X → Z to hold in r (Huhtala et al., 1999). In Example 1, each value in Ethnic-
ity has one-to-one mapping with PlaysBasketball for records r4 through r10, but not for all 
the records as r1, r2, r3 violate this rule. We say AFD holds from Ethnicity to PlaysBasket-
ball. Similarly, AFD holds from Age < 30 to PlaysBasketball.

G3‑error (Kivinen & Mannila, 1995)  The number of tuples need to be deleted from rela-
tion r to achieve FD is defined as G3-error (Kivinen & Mannila, 1995).

In Example 1, G3 − error(Ethnicity → PlaysBasketball, r) = 3 , G3 − error(Age < 30 → PlaysBasketball, r) = 3.

3.2 � Problem statement

Our aim is to select top-k attributes from m given attributes (k ≤ m) in decreasing order of 
MI wrt binary target Z , such that the MI of k-th attribute will not be less than the MI of 
any of the m − k attributes. The problem statement is formally defined below.

(2)MI(Z,X) = H(Z) − H(Z ∣ X)

G3 − error(X → Z, r) = |r| − max{|s| ∣ s ⊆ r, s ⊧ X → Z}
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4 � Developing a new measure

In this section we discuss various steps in MI exact calculation, connecting the AFD meas-
ure for MI approximation, and finally propose our new measure to efficiently and effec-
tively approximate MI.

4.1 � MI calculation steps

Taking a close look at equation (1), we observe that there are three components to 
calculate MI(X,Z) - joint probability distribution p(x,z), marginal probability distribu-
tion of distinct values of X and Z - p(x) and p(z) where x ∈ X and z ∈ Z. We note that 
p(z) can be computed once and reused later. We need to compute the co-occurrence 
count of distinct (x,z) values along with the count of x values for each distinct x. In 
each of these steps one logarithm function is applied along with one division and 
two multiplication. We investigated the opportunity to reduce the number of opera-
tions in each step (i.e. for each (x,z) value combination). Our motivation is that, if 
we can avoid applying the logarithm function and approximate it with some other 
basic arithmetic operation, we may be able to speedup the process of MI calculation. 
During our investigation we observed that for two attributes X1 and X2, if most of the 
values of X1 can determine a unique Z value, but most of the values of X2 cannot do 
so, then MI(X1,Z) tends to be larger than MI(X2,Z). This intuitively aligns with the 
database concept of Functional Dependency (FD), and we proceed with investigating 
this connection.

4.2 � Proposed measure: Attribute average conflict

There has been previous works in database and data mining community regarding 
various measures for Approximate Function Dependency (AFD) (Kivinen & Man-
nila, 1995; Dalkilic & Roberston, 2000; Giannella & Robertson, 2004). We define 
a new measure Attribute Average Conflict in such a way that it captures the degree 
of AFD as well as the weight of attribute value frequency that influences MI score 
of that attribute. As the MI formula (1) captures co-occurrence of (X,Z) by comput-
ing the joint distribution of (X,Z) in the numerator and has the marginal of X and 
Z in the denominator, by considering attribute value frequency in defining our new 
measure, we incorporate the effect of the frequency distribution present in MI calcu-
lation. In prior works on AFD, the term G3 − error has been defined (see Section 3), 
which quantifies the number of changes required to attain FD, so smaller value of 
G3 − error should indicate larger MI. But G3 − error does not consider the weight 
of attribute value frequency and hence cannot approximate the MI based ranking of 
attributes correctly in many cases. We will explain one such scenario later in this sec-
tion. Next we define some key terms which will be important ingredients of our final 
proposed measure Attribute Average Conflict.

Attribute Value Conflict (AV‑conflict)  For a specific attribute value xv ∈ X, the minimum 
number of tuples where Z value need to be changed to establish one-to-one relationship 
with corresponding xv is defined as AV − conf﻿﻿lict. In Example 1, AV − conf﻿﻿lict(Ethnicity = 
Black) = 3.
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Attribute Value Average Conflict (AV‑average‑conflict)  Multiplying AV − conf﻿﻿lict by the 
probability of that specific attribute value in the dataset yields AV − average − conf﻿﻿lict for 
that attribute.

Here nxv denotes the number of records where X has value v. In Example 1, AV − aver-
age − conf﻿﻿lict(Ethnicity = Black) = 3 × 0.8 = 2.4;

Attribute Average Conflict (Aac)  The sum of AV-average-conflict for all values of an 
attribute is the Attribute Average Conflict (Aac) for that attribute.

In Example 1, Aac(Ethnicity) = 2.4 + 0 = 2.4; Aac(Age < 30) = 1.8 + 0 = 1.8. G3 − error 
is not able to capture the weight of co-occurrence of attribute and target value in the data-
set, and hence the score remains same for Ethnicity and Age < 30 although the MI is dif-
ferent. On the other hand, Aac decreases when MI increases. Aac enables us to overcome 
the deficit of G3 − error in capturing MI relationship between attributes. We investigated 
this case for different highly skewed data distributions, and found that Aac holds inverse 
relationship with MI, that is, for { X1,X2} ∈ A , MI(X1) > MI(X2) ⇒ Aac(X1) < Aac(X2) and 
vice versa.

4.3 � Implications of using proposed measure

Using proposed measure Aac, we can skip computing the logarithm function and 
reduce the number of arithmetic operations as discussed in Section 4.1. Aac provides 
us with the answer to the Top-K() query faster than the exact MI based method.

As illustrated in Algorithm  1, Aac for each attribute Xi ∈ A is calculated, and 
attributes are sorted in ascending order of Aac. The first k attributes in this sorted list 
will be the top-k attributes based on highest MI. Asymptotically, both our method and 
MI-based feature selection method runs in O(mn) times, but empirically, our proposed 
method is faster than MI-based method as we avoid the step of computing logarithm 
and division. We perform extensive experiments and present our finding in Section 5.

(3)AV − average − conflict(xv) = AV − conflict(xv) ×
nxv

n

(4)Aac(X) =
∑
xv∈X

AV − average − conflict(xv)

Algorithm 1   Algorithm topK-Aac.



Journal of Intelligent Information Systems	

1 3

4.4 � Monte‑Carlo simulation

We conduct a Monte-Carlo simulation (Mooney, 1997) that demonstrates for any two 
attributes X1 and X2 and a target variable Z, how Aac(X1) and Aac(X2) relate to MI(X1) and 
MI(X2) considering all probable attribute value combinations of X1, X2, Z.

4.4.1 � Model setup

Let L  denote the number of combinations satisfying all possible combinations of X1, X2, 
and Z. Given two binary attributes X1, X2 and a binary target variable Z, L = 8 , as there are 
8 possible attribute value combinations involving these three. Let ni denote the fraction of 
the respective attribute value combinations in n records, where n1 corresponds to X1 = 0, X2 
= 0, Z = 0, n2 corresponds to X1 = 0, X2 = 0, Z = 1, to n8 corresponding to X1 = 1, X2 = 1, Z 
= 1. Let, t1,t2 denote the fraction of records that map a specific value of an attribute to Z 
= 0,Z = 1 respectively. If t1 = 0, or t2 = 0, then AV − average − conf﻿﻿lict(X1 = 0) = 0. If t1 
≤ t2, then AV − average − conflict(X1 = 0) = t1 ×

t1+t2

n
= t1 × (t1 + t2) (here, n = 1), other-

wise AV − average − conf﻿﻿lict(X1 = 0) = t2 × (t1 + t2). Aac(X1) can be derived by summing 
these values. Similarly, G3 − error could also be calculated.

4.4.2 � Generating all possible probability distributions

We assign probability values to each ni such that 
∑

ni = 1 . We deliberately assign zero 
values for some fractions of n to mimic the scenario that not all attribute value com-
binations appear in real datasets. This process runs in a loop, where we systematically 
vary fraction of zero values (from 10% to 90% to demonstrate sparsity/skewness). For 
each run, with a specific zero fraction value y%, we consider ⌈L × y%⌉ of attribute 
value combinations to be 0 that are uniform randomly chosen. For the remaining com-
binations, we uniform randomly assign real numbers between [0,1] such that the non-
zero combinations add up to 1. For each run, MI(X1) > MI(X2) ⇒ Aac(X1) < Aac(X2), 
or vice versa. If that happens, then we count it as support, otherwise count it as con-
tradiction. We repeat each run 100,000 times and calculate the percentage of support 
and contradiction of Aac and G3 − Error.

4.4.3 � Simulation results

Table 3 illustrates the simulation results for binary attributes. Here, y = 0.6 means that 60% 
of the possible attribute value combinations are assigned 0 probability and the probability 
assignment for rest of the 40% combinations add up to 1. We observe that Aac performs 
better than G3 − error for y from 0.1 to 0.6, and shows similar performance for 0.7 to 0.9 ; 
For smaller y, Aac performs significantly better than G3 − error. For binary attributes the 
lowest support for Aac is 85.4% whereas the highest support is 100%. Table 4 illustrates 
the simulation results for various domain sizes where y is fixed at 0.3. Consistently, Aac 
outperforms G3 − Error for domain size < 10, whereas G3 − Error is slightly better than 
Aac for domain size ≥ 10. This exercise is another evidence that demonstrates the effective-
ness of our proposed measure. We conduct experimental evaluation on real world datasets 
that support this observation as well.
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5 � Experiments

All the experiments are conducted on a 8-core 3.06GHZ machine with 16 GB RAM. We 
use Python 3 to implement the algorithms in the experiments and the numbers are pre-
sented as the average of 5 runs. The code and the data could be found in https://​github.​
com/​linsa​l26/​aac-​featu​re-​selec​tion. The goal of our experimental evaluation is to effec-
tively answer the following questions.

•	 How does our proposed method compare with the baselines both qualitatively and effi-
ciency wise by varying n, m, k, and skew λ in data distribution.

•	 How does our proposed method compare with the baselines both qualitatively and effi-
ciency wise considering real datasets.

Table 3   Simulation results for binary values

y G3-error support % G3-error contradiction % Aac support % Aac contradiction %

0.1 66.568 33.432 85.493 14.507
0.2 64.1 35.9 85.069 14.931
0.3 62.427 37.573 86.755 13.245
0.4 66.652 33.348 93.836 6.164
0.5 66.56 33.44 93.88 6.12
0.6 81.01 18.99 100 0
0.7 100 0 100 0
0.8 100 0 100 0
0.9 100 0 100 0

Table 4   Simulation results varying domain size; y = 0.3

Domain size G3-error support % G3-error contradiction % Aac support % Aac contradiction %

2 62.427 37.573 86.755 13.245
3 81.892 18.108 90.397 9.603
4 88.172 11.828 92.054 7.946
5 90.231 9.769 92.694 7.306
6 91.495 8.505 93.187 6.813
7 92.261 7.739 93.338 6.662
8 92.769 7.231 93.373 6.627
9 93.224 6.776 93.359 6.641
10 93.535 6.465 93.44 6.56
15 94.414 5.586 93.429 6.571
20 94.88 5.12 93.212 6.788
25 95.052 4.948 93.171 6.829

https://github.com/linsal26/aac-feature-selection
https://github.com/linsal26/aac-feature-selection
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5.1 � Experimental setup

Datasets 

•	 Synthetic data: We generate highly skewed binary datasets for experimental eval-
uation. Here a dataset is considered highly skewed if a small number of attrib-
ute values perfectly correlate with target value and all the attributes show some 
degree of this skewness. For example, in a dataset of 1 Million records, if X1 = 1 
appers in 1 record, X2 = 1 appears in 2 records,..., X50 = 1 appears in 50 records 
and all of these records correlate with Z = 1, then we consider this as a case of 
highly skewed dataset. We use a fixed probability distribution for target Z (p(Z 
= 0) = 0.000005, p(Z = 1) = 0.999995) and vary the distribution of attributes Xi 
to generate highly skewed dataset. We use λ to denote the skew. λ = 0.999999 
indicates that p(X1 = 0) = 0.999999, p(X2 = 0) = 0.999998 and so on. We decrease 
the probability of 0-value of an attribute by 0.000001 from the previous attribute 
and continue in this fashion for all the attributes. An example distribution for λ 
= 0.999999 is provided in Table 5. Here the column p(X = 0) and p(X = 1) indicate 
the probability of 0 and 1 for the attribute respectively.

•	 Real world data: We report our findings on three real world datasets from UCI 2 , Keel 3 
and OpenML4 repository. The Datasets are summarized in Table 6.

–	 Census Income (Dua & Graff, 2017): US Census dataset containing 40 attributes 
including integer and categorical types out of which 28 categorical attributes are 
used. The target has binary class label indicating whether a person has income 
> 50K or not.

Table 5   Synthetic Dataset p(X = 0) p(X = 1)

X1 0.999999 0.000001
X2 0.999998 0.000002
X3 0.999997 0.000003
... ... ...
X50 0.99995 0.00005

Table 6   Real Datasets Dataset n m

Census Income 299,285 28
Kick Car 72,983 17
Connect-4 67,557 42

2  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets.​php

4  https://​www.​openml.​org/​home

3  https://​sci2s.​ugr.​es/​keel/​datas​ets.​php

https://archive.ics.uci.edu/ml/datasets.php
https://www.openml.org/home
https://sci2s.ugr.es/keel/datasets.php
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–	 Kick Car: This dataset contains attributes for various cars from auction and the tar-
get class is either kick (bad buy) or not. There are 33 attributes in the original data-
set out of which 17 categorical attributes are used in this experiment. Data source 
- https://​www.​openml.​org/d/​41162

–	 Connect-4 (Dua & Graff, 2017): This dataset contains all legal positions in the 
game of connect-4 for a 6x7 grid, in which neither player has won yet, and in 
which the next move is not forced. Original dataset has 42 categorical attrib-
utes all of which are used in the experiment. The target has 3 labels in original 
data - win, loss and draw, which is converted to 2 labels - won (1), not won (0). 
Data source - https://​sci2s.​ugr.​es/​keel/​datas​et.​php?​cod=​193

Implemented baselines  Our proposed measure in Section 4 Attribute Average Conflict, 
Aac is compared against the baseline, and 3 other implemented algorithms as follows.

•	 MI-based method, MI. We implement MI-based method for feature selection that com-
putes exact MI score for each attribute in the dataset and provides top-k attributes based 
on the highest MI score. This is used as the baseline method to compare against for 
both performance and runtime improvement.

•	 Uniform random sampling, Urs. We implement a uniform random sampling based 
method that computes MI of attributes on sampled data after taking uniform ran-
dom sample, and returns top-k attributes based on this MI. We use 65% of the data 
as the sample size to achieve high precision for the highly skewed synthetic data.

•	 Adaptive sampling based method, Swope. We implement the Swope method proposed 
in (Chen & Wang, 2021) to find top-k attributes using MI. The Swope algorithm uses 
random sampling at its core and adaptively expands the sample size until certain 
bounds are met.

•	 G3-error based method, G3. The G3 − error based method is implemented by using 
G3 − error score instead of Aac in Algorithm 1.

Performance measures  For computing the accuracy of the proposed approach, we 
present precision (Han et  al., 2011), ndcg-score (Baeza-Yates et  al., 1999), and the 
total MI ( 

∑k

i=1
MI(Xi) ). Efficiency is presented as speedup. Given two algorithms A 

and B (where B is the baseline), Speedup(A) wrt B is computed as, RunningTime(B)
RunningTime(A)

 . For 
example, if running time of MI and Aac is 5s, and 2s respectively, then speedup of 
Aac wrt MI is 5

2
= 2.5.

Default parameters  Unless otherwise stated, n, m, k, skew parameter λ is set to n = 106, 
m = 50, k = 10, λ = 0.999999. For Swope algorithm, we set 𝜖 = 0.5 (Chen & Wang, 2021) , 
and for Urs sample size = 0.65n. Unless otherwise stated, speed up is presented wrt base-
line MI.

5.2 � Summary of results

Our first and foremost observation is, our proposed method Aac and Swope achieve 
perfect precision and ndcg-score considering all settings for the highly skewed syn-
thetic data. However, Aac is 4x − 6x faster than Swope. Urs has lower precision for 

https://www.openml.org/d/41162
https://sci2s.ugr.es/keel/dataset.php?cod=193
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some k, and ndcg-score is not perfect. G3 displays worst precision and ndcg-score. 
Considering speedup, Aac is 2x faster than MI, 1.3x faster than Urs, and has similar 
speedup compared to G3. These observations conclusively corroborate the superior-
ity of Aac compared to all the baselines. Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 
illustrate the experimental result for synthetic data.

Similar observation holds in the real data experiments. The experimental results 
are illustrated in Figs.  13,  14,  15,  16,  17,  18,  19,  20,  21,  22,  23 and  24. Aac does 
not achieve perfect precision and ndcg-score, but achieves highly comparable total-
mi score compared to exact baseline MI. Swope shows perfect precision, ndcg-score 
and total-mi for all the datasets in the experiment, but is much slower compared to 

Fig. 1   Precision; m = 50, k = 10

Fig. 2   Ndcg-score; m = 50, k 
= 10
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Aac. This is because Swope uses exact equation for computing MI whereas Aac is 
approximating MI based ranking. Urs has better precision and ndcg-score, but slower 
than Aac. Total MI of Aac stays close to baseline MI. G3 shows inferior precision, 
ndcg-score and Total MI compared to Aac for datasets Census Income and Connect-4 
, where most of the attributes (> 50%) have small domain size (< 10). But for dataset 

Fig. 3   Speedup; m = 50, k = 10

Fig. 4   Precision; n = 106, k = 10
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where most of the attributes (> 50%) have larger domain size (≥ 10), G3 achieves 
slightly better precision and ndcg-score than Aac which is observed for Kick car data-
set. For speedup comparison, on average Aac is 2x faster than MI, 1.3x faster than Urs 
and 6.7x faster than Swope across all 3 datasets. Thus, Aac turns out to be the unani-
mous choice considering both accuracy and efficiency.

Fig. 5   Ndcg-score; n = 106, k 
= 10

Fig. 6   Speedup; n = 106, k = 10
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6 � Upper and lower bounds of new measure

We investigate the upper and lower bounds of the proposed new measure Aac by first 
exploring the maximum and minimum value of Aac for an attribute. A loose upper and 
lower bound can be derived by using only the domain size information of attributes. 
Tighter bounds can be achieved by considering a setting where we have prior infor-
mation of attribute and target value frequency. This setup is possible for relational 

Fig. 7   Precision; n = 106, m = 50

Fig. 8   Ndcg-score; n = 106, m 
= 50
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databases where the data dictionary, or metadata can be used to get the marginal fre-
quencies of attributes and target variable. Table  7 summarizes the notations used to 
derive the bounds. We first investigate when maximum and minimum value of Aac 
can be achieved for an attribute X. At the beginning when no records have been read, 
Aac(X,0,1,n) denotes the Aac of attribute X for n unseen records. Theorems 1 and 2 pro-
vide the minimum and maximum values for Aac(X,0,1,n).

Fig. 9   Speedup; n = 106, m = 50

Fig. 10   Precision; n = 106, m = 
50,k = 10
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Theorem 1  Aac(X,0,1,n)min = 0

Proof  if X → Z , then there is a one-to-one mapping between distinct values of X with Z. 
Hence AV − conf﻿﻿lict(xi) = 0 ∀xi ∈ X, putting this value in equation (3), AV − average − con
f﻿﻿lict(xi) = 0, and using this in equation (4), Aac(X) = 0. 

Lemma 1  For |Dom(X)| = 1 , Aac(X,0,1,n)max is achieved if fxiz0 =
n

2

Proof  In this case, we consider only one value for attribute X (X = i), denoted as xi. So, 
fxi = n . If fxi has equal splits with Z = 0 and Z = 1, then fxiz0 =

n

2
 . So, 

Aac(X, 0, 1, n) = AV − average − conflict(xi) =
1

2
fxi ×

n

n
=

1

2
fxi . For any 0 < 𝜖 <

1

2
 , other 

Fig. 11   Ndcg-score; n = 106,m = 
50,k = 10

Fig. 12   Speedup; n = 106, m = 
50,k = 10
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possible splits of fxi with Z are (
1

2
+ �)fxi and (

1

2
− �)fxi . For any such split, 

Aac(X, 0, 1, n) =
(

1

2
− 𝜖

)
fxi ×

n

n
= (

1

2
− 𝜖)fxi <

1

2
fxi . Hence, Aac(X,0,1,n)max is acheived if 

fxiz0 =
n

2
. 

Theorem 2  Aac(X, 0, 1, n)max =
n

2

Proof  For |Dom(X)| = 1 , Aac(X, 0, 1, n)max =
1

2
fxi =

n

2
 . For |Dom(X)| = 2 (let, X 

= {0,1}) , Aac(X,0,1,n)max is achieved if AV − average − conf﻿﻿lict(xi) is maximum 
for each xi ∈ X. Let, AV − average − conf﻿﻿lict(xi)max denote this maximum value for xi. 

Fig. 13   Precision:Census Income

Fig. 14   Ndcg-score:Census 
Income
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Let, fx0 = n1 , fx1 = n2 . From Lemma 1, AV − average − conflict(x0)max =
n1
2
×

n1
n
=

n2
1

2n
,and 

AV − average − conflict(x1)max =
n2

2
×

n2

n
=

n2
2

2n
 . So, Aac(X, 0, 1, n)max =

n2
1
+n2

2

2n
 . Let, 

n2
1
+n2

2

2n
>

n

2
 . There can be 2 cases. Case-(a) n1 = n2 =

n

2
 . Then n

2
1
+n2

2

2n
=

n2∕4+n2∕4

2n
=

n

4
<

n

2
 

which is a contradiction. Case-(b) n1 =
n

2
+ � , n2 =

n

2
− � , where 1 < 𝜖 <

n

2
 . Then 

n2
1
+n2

2

2n
=

(
n

2
+𝜖)2

2n
+

(
n

2
−𝜖)2

2n
=

n2−2(
n2

4
−𝜖2)

2n
=

n

2
−

n2

4
−𝜖2

n
<

n

2
 which is a contradiction.

Fig. 15   Total-MI:Census Income

Fig. 16   Speedup:Census Income
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Similarly, it can be shown for any |Dom(X)| > 1 , Aac(X,0,1,n)max will be less than Aac(X

,0,1,n)max for |Dom(X)| = 1 . Hence Aac(X, 0, 1, n)max =
n

2
.

Using the maximum and minimum values of Aac, we can define upper and lower 
bounds of Aac for an attribute X.

(5)
UB − Aac(X, l, 1, n) = Aac(X, l, 1, l) + Aac(X, l, l + 1, n)max

= Aac(X, l, 1, l) +
n−l

2

Fig. 17   Precision:Kick Car

Fig. 18   Ndcg-score:Kick Car
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For two attributes X and Y, we can find whether Aac(X) > Aac(Y ) by reading l 
records, if the following relationship holds

Hence, the minimum number of records l that need to be processed to determine the 
relationship between Aac(X) and Aac(Y ) can be specified by equation (7)

(6)
LB − Aac(X, l, 1, n) = Aac(X, l, 1, l) + Aac(X, l, l + 1, n)min

= Aac(X, l, 1, l)

LB − Aac(X, l, 1, n) > UB − Aac(Y , l, 1, n)

⇒ Aac(X, l, 1, l) > Aac(Y , l, 1, l) +
n−l

2

⇒
n−l

2
< Aac(X, l, 1, l) − Aac(Y , l, 1, l)

Fig. 19   Total-MI: Kick Car

Fig. 20   Speedup:Kick Car
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The upper and lower bounds in equations (5) and (6) are loose as they only consider the 
extreme cases for maximum and minimum values of Aac for unseen records. In realistic 
scenario, when dealing with a dataset with thousands of records, after reading a few hun-
dred records, it is quite unlikely that there will be only one value for all the unseen records 
of an attribute X if |Dom(X)| > 2 . Similarly, one-to-one mapping from X to Z for large 
number of unseen records will also be rare. Hence, the upper and lower bounds derived 
in (5) and (6) might not work well in practice, resulting in a large value for l close to n in 
equation (7). Next, we derive tighter upper and lower bounds to address this issue.

(7)l > n − 2[Aac(X, l, 1, l) − Aac(Y , l, 1, l)]

Fig. 21   Precision: Connect-4

Fig. 22   Ndcg-score:Connect-4
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6.1 � Tighter upper and lower bounds

In a relational database, the data dictionary contains metadata about the marginal fre-
quency of attributes. We can use this information to devise possible arrangements of 
attribute-target pairs that can yield maximum and minimum value of Aac for an attribute. 
Our investigation finds that we do not need to have the joint distribution of attribute-target 
value pair for such arrangements, rather the marginal frequencies are sufficient for predict-
ing the relevant joint distribution to find maximum and minimum value of Aac. This suits 
well with the relational database model as joint distribution of attribute value pairs are not 
stored in the metadata by default. Our proposed arrangement helps to derive tighter upper 
and lower bounds as we are not limited to using only the domain size information for n − l 
unread records.

Fig. 23   Total-MI: Connect-4

Fig. 24   Speedup: Connect-4
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Let us consider attributes X, Y and target Z where |Dom(X)| = s , |Dom(Y)| = t , 
|Dom(Z)| = 2 ; that is , X (i.e. Y ) can take s (i.e. t) distinct values where s(i.e. t) ≥ 2, and 
Z ∈{0,1}. Let fxi , fyj denote frequency of X = i, Y = j respectively, so 

∑s

i=1
fxi = n , ∑t

i=1
fyj = n . Let, fz0 , fz1 denote the frequency of Z = 0 and Z = 1 respectively; 

cmax = max(fz0 , fz1 ), cmin = max(fz0 , fz1 ).

Lemma 2  if fx1 > fx2 , then AV − avearge − conf﻿﻿lict(x1)max > AV − avearge − conf﻿﻿lict(x2)max

Proof  From Lemma 1, AV − avearge − conflict(x1)max =
fx1
2

×
fx1
n

 , and AV − avearge − conflict(x2)max =
fx2
2

×
fx2
n

 . As 
fx1 > fx2 , hence AV − avearge − conf﻿﻿lict(x1)max > AV − avearge − conf﻿﻿lict(x2)max. 

Using Lemma 1 and 2 we can derive the following equation for Aac(X,l,l + 1,n)max

where, fx1 ≥ fx2 ≥ ... ≥ fxb , and 
∑b

i=1
fxi ≥ 2cmin.

Proof  From Lemma 2, we can see that larger attribute value frequencies will contribute 
more to the Aac of an attribute. Hence, we arrange fxi ’s in descending order and try to split 
each frequencies evenly with two Z values until we cover all the cmin values. Let, cmin = fz0 . 
If cmin ≤

fx1

2
 , then all other fxi (2 ≤ i ≤ s), will have one-to-one mapping with Z = 1. The AV 

(8)Aac(X, l, l + 1, n)max =

⎧⎪⎨⎪⎩

cmin ×
fx1

n−l
if cmin ≤

fx1

2∑b−1

i=1
f 2
xi

2(n−l)
+ (cmin −

∑b−1

i=1
fxi

2
) ×

fxb

n−l
otherwise

Table 7   Notations used for deriving bounds

Symbol Explanation

n Total number of records
l Number of records already processed
n − l Number of unseen records
|Dom(X)| Number of distinct values for attribute X
fxi Frequency of X = i 
fxiz0 Joint frequency of (X = i,Z = 0)
SFX

 Set of distinct value frequency of attribute X. For example, 
SFX

= {fx1 , fx2 , ..., fxs} where |Dom(X)| = s

Z Target binary variable with values {0,1}
SFZ

 Set of distinct value frequency of target Z. Here, SFZ
= {fz0 , fz1} as Z ∈{0, 1}

cmax  max(fz0 , fz1 )
cmin  min(fz0 , fz1 )
Aac(X)max/Aac(X)min Maximum/Minimum value of Aac for attribute X
Aac(X,l,s,e) Aac(X) after processing l records starting from s-th and ending in e-th position
Aac(X,l,l + 1,n)max Maximum attainable value of Aac(X) for n − l records
Aac(X,l,l + 1,n)min Minimum attainable value of Aac(X) for n − l records
UB − Aac(X,l, 1,n) Upper Bound of Aac(X) after processing l records
LB − Aac(X,l, 1,n) Lower Bound of Aac(X) after processing l records
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− average − conf﻿﻿lict(x1) will be the maximum Aac for the attribute X. Figure 25 illustrates 
this case.

Otherwise, we can find one fxb such that 
∑b

i=1

fxi

2
≥ cmin ⇒

∑b

i=1
fxi ≥ 2cmin . Then 

fx1 , fx2 , ..., fxb−1 will have equal split with Z values for maximum AV − average − conf﻿﻿lict, 

and cmin −
∑b−1

i=1
fxi

2
 will be the minimum split value with Z for fxb . Figure 26 illustrates this 

scenario. Hence, Aac(X, l, l + 1, n)max =

∑b−1

i=1
f 2
xi

2(n−l)
+ (cmin −

∑b−1

i=1
fxi

2
) ×

fxb

n−l
. 

Examples 2 and 3 illustrates the two cases for equation (8) for n = 100, Aac(X,0,1,n)max 
= Aac(X)max.

Example 2  Let, SFX
= {40, 30, 20, 10} , SFZ

= {15, 85} . Here, cmin = 15, fx1 = 40, fx2 = 30 , 
fx3 = 20, fx4 = 10 . cmin <

fx1

2
 . So, Aac(X)max = cmin ×

fx1

n
= 15 ×

40

100
= 6.

Example 3  Let, SFX
= {40, 30, 20, 10} , SFZ

= {30, 70} . Here, cmin 
= 30, fx1 = 40, fx2

= 30 , fx3
= 20, fx4

= 10 . cmin >
fx1

2
 , and fxb = 30 . Hence, 

Aac(X)max =

∑b−1

i=1
f 2
xi

2n
+ (cmin −

∑b−1

i=1
fxi

2
) ×

fxb

n
=

402

2×100
+ (30 −

40

2
) ×

30

100
= 11

From Theorem 1 as Aac(X)min = 0, we need to find an assignment of fxi ’s with cmin 
and cmax such that there is a one-to-one mapping from each xi to Z value. This is equiva-
lent to finding an arrangement that requires checking all the fxi to see if there exists an 
a st 

∑a

i=1
fxi = cmax . But the marginal frequency of attribute and target values may have 

such a distribution that a one-to-one mapping from X to Z is not possible. In that case, 
we want to find an arrangement that will ensure minimum Aac(X) > 0. To satisfy this 

Fig. 25   Arrangement for Aac(X)max when cmin ≤
fx1

2
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criteria, we need to find an a such that 
∑a

i=1
fxi > cmax , and the AV − average − conf﻿﻿lict(

xa) will be the Aac(X)min.

Theorem  3  Finding the arrangement for Aac(X)min = 0 using marginal frequency of 
attribute and target variable is NP-Complete

Proof  Given an integer a ∈{1,2,..s}, an instance of fxi and cmax, it can be checked in poly-
nomial time if 

∑a

i=1
fxi = cmax . We can reduce the subset sum problem to finding such an 

a to satisfy 
∑a

i=1
fxi = cmax . Subset-sum is NP-Complete (Garey & Johnson, 1979) which 

completes the proof. 

A simple 1/2 -approximation algorithm (Caprara et al., 2000) for Subset-sum prob-
lem can be obtained by ordering the inputs in descending order, and then putting the 
next-largest input into the subset as long as it fits there. Following this approach, we can 
derive equation (9) for finding Aac(X,l,l + 1,n)min

(9)Aac(X, l, l + 1, n)min =

�
(
∑a

i=1
fxi − cmax) ×

fxa

n−l
if
∑a

i=1
fxi − cmax ≤

fxa

2

(cmax −
∑a−1

i=1
fxi ) ×

fxa

n−l
otherwise

Fig. 26   Arrangement for Aac(X)max, cmin >
fx1

2
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where, fx1 ≥ fx2 ≥ ... ≥ fxa , and 
∑a

i=1
fxi ≥ cmax.

Proof  Let, cmax = fz1 . For Aac(X,l,l + 1,n)min > 0 to hold, 
∑a

i=1
fxi > cmax . In this scenario, 

fx1 , fx2 , ...fxa−1 will have one-to-one mapping with Z = 1, hence the AV − average − conf﻿﻿lict 
for each of these fxi where i ∈{1,2,..,a − 1} will be 0. Only fxa will have mapping with Z = 1 
and Z = 0 values. All fxi where i ∈{a + 1,..s} will have one-to-one mapping with Z = 0 and 
hence the AV − average − conf﻿﻿lict will be 0 for all such fxi . Figures 27 and 28 illustrates the 
scenario for such arrangements when ∑a

i=1
fxi − cmax ≤

fxa

2
 and 

∑a

i=1
fxi − cmax >

fxa

2
 respec-

tively. Hence, AV − average − conf﻿﻿lict(xa) will be equal to Aac(X,l,l + 1,n). 

Examples 4 and 5 illustrates the two cases of equation (9) for n = 100, Aac(X,0,1,n)min = 
Aac(X)min.

Example 4  Let, SFX
= {40, 30, 20, 10} , SFZ

= {85, 15} . Here, cmax = 85, fx1 = 40, fx2 = 30 , 
fx3 = 20, fx4 = 10 . fx1 + fx2 + fx3 = 90 > cmax , so, fxa = 20.Now, 

∑a

i=1
fxi − cmax = 5 <

fxa

2
 . 

Hence,
Aac(X)min = (

∑a

i=1
fxi − cmax) ×

fxa

n
= 5 ×

20

100
= 1

Example 5  Let, SFX
= {40, 30, 20, 10} , SFZ

= {75, 25} . Here, cmax = 75, fx1 = 40, fx2 = 30 , 
fx3 = 20, fx4 = 10 . fx1 + fx2 + fx3 = 90 > cmax , so, fxa = 20.Now, 

∑a

i=1
fxi − cmax = 15 >

fxa

2
 . 

Hence,
Aac(X)min = (cmax −

∑a−1

i=1
fxi ) ×

fxa

n
= (75 − 70) ×

20

100
= 1

Fig. 27   Arrangement for Aac(X)min > 0, 
∑a

i=1
fxi − cmax ≤

fxa

2
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Using maximum and minimum values of Aac from (8) and (9), we can update upper and 
lower bounds of Aac in (5) and (6) and yield tighter bounds. For two attributes X and Y, there 
can be four cases when LB − Aac(X,l,1,n) > UB − Aac(Y,l,1,n).

Case a:
∑a

i=1
fxi − cmax ≤

fxa

2
 , cmin ≤

fy1

2

Case b : 
∑a

i=1
fxi − cmax ≤

fxa

2
 , cmin >

fy1

2

Aac(X, l, 1, l) +

�
a∑
i=1

fxi − cmax

�
×

fxa

n−l
> Aac(Y , l, 1, l) + cmin ×

fy1

n−l

⇒
fy1

cmin

(n−l)
−

fxa (
∑a

i=1
fxi
−cmax)

n−l
< Aac(X, l, 1, l) − Aac(Y , l, 1, l)

(10)⇒ n − l >
fy1cmin − fxa (

∑a

i=1
fxi − cmax)

Aac(X, l, 1, l) − Aac(Y , l, 1, l)

Aac(X, l, 1, l) +

�
a∑
i=1

fxi − cmax

�
×

fxa

n−l
> Aac(Y , l, 1, l) +

∑e−1

j=1
f 2
yj

2(n−l)
+

(cmin −

∑e−1

j=1
fyj

2
) ×

fye

n−l

⇒ Aac(X, l, 1, l) − Aac(Y , l, 1, l) >∑e−1

j=1
f 2
yj
+(2cmin−

∑e−1

j=1
fyj
)fye−2fxa (

∑a

i=1
fxi
−cmax)

2(n−l)

Fig. 28   Arrangement for Aac(X)min > 0, 
∑a

i=1
fxi − cmax >

fxa

2
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Case c : 
∑a

i=1
fxi − cmax >

fxa

2
 , cmin ≤

fy1

2

Case d : 
∑a

i=1
fxi − cmax >

fxa

2
 , cmin >

fy1

2

Using the upper and lower bounds, top-k attributes of a dataset can be derived by read-
ing l < n records. Algorithm 2 illustrates the steps to find the top-k attributes using the 
bounds. As we are adopting a greedy approach for finding Aac(X,l,l + 1,n)min using equa-
tion (9), the returned list of top-k attributes using l records might not always achieve perfect 
precision compared to that derived using all the n records of database. The algorithm pro-
cesses l records instead of all the n records to find the top-k attributes, where l can be found 
using one of the equations in (10)-(13) .

6.2 � Experimental evaluation

Algorithm  2 has been implemented in Python 3 and ran on real datasets from Table  6. 
The result summarized in Table 8 illustrates that although using a greedy approximation 
approach to find Aac(X,l,l + 1,n)min, proposed method derives top-k attributes with perfect 
precision for all the 3 different datasets. Here precision is computed with respect to the 
top-k attributes found using Algorithm 1. Depending on the data distribution and attribute 
value domain size, the number of records need to be processed varies. The best result is 
observed for Census Income dataset with 299,285 records. Our proposed method needs to 
read only 65% of the total records to derive the top-k attributes for k = 10.

(11)⇒ n − l >

∑e−1

j=1
f 2
yj
+ (2cmin −

∑e−1

j=1
fyj )fye − 2fxa (

∑a

i=1
fxi − cmax)

2[Aac(X, l, 1, l) − Aac(Y , l, 1, l)]

Aac(X, l, 1, l) +
(cmax−

∑a−1

i=1
fxi
)fxa

n−l
> Aac(Y , l, 1, l) +

cminfy1

n−l

⇒ Aac(X, l, 1, l) − Aac(Y , l, 1, l) >
cminfy1

n−l
−

(cmax−
∑a−1

i=1
fxi
)fxa

n−l

(12)⇒ n − l >
cminfy1 − (cmax −

∑a−1

i=1
fxi )fxa

Aac(X, l, 1, l) − Aac(Y , l, 1, l)

Aac(X, l, 1, l) +

�
cmax −

a−1∑
i=1

fxi

�
×

fxa

n−l
> Aac(Y , l, 1, l) +

∑e−1

j=1
f 2
yj

2(n−l)
+

(cmin −

∑e−1

j=1
fyj

2
)
fye

n−l

⇒ Aac(X, l, 1, l) − Aac(Y , l, 1, l) >

∑e−1

j=1
f 2
yj

2(n−l)
+

(2cmin−
∑e−1

j=1
fyj
)fye

2(n−l)
−

(cmax−
∑a−1

i=1
fxi
)fxa

n−l

(13)⇒ n − l >

∑e−1

j=1
f 2
yj
+ (2cmin −

∑e−1

j=1
fyj )fye − 2fxa (cmax −

∑a−1

i=1
fxi )

2[Aac(X, l, 1, l) − Aac(Y , l, 1, l)]
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7 � Conclusion

The goal of this work is to develop a new measure Attribute Average Conflict , Aac to 
effectively approximate top-k attributes for MI based feature selection, without actu-
ally calculating MI. This approximation avoids some of repetitive expensive opera-
tions involved in the original MI calculation, such as, logarithms and divisions. Our 
proposed method is based on using the database concept of approximate functional 
dependency to quantify MI rank of attributes which to our knowledge has not been 
studied before. We perform extensive experiments using multiple high dimensional 
synthetic and real datasets with millions of records and implement several baseline 
algorithms. Our experimental results demonstrate an average of 2x speed up com-
pared to the exact method for Mutual Information based feature selection process, 
while demonstrating highly accurate precision and ndcg. We also demonstrate, on an 
average, our proposed measure is 4 − 7x faster than the state-of-the art method based 
on adaptive random sampling while exhibiting identical precision and accuracy. We 

Algorithm 2   Algorithm top-k-Aac-UB-LB.

Table 8   Experimental evaluation 
of Algorithm 2 for k = 10

Dataset n l (%) records 
processed

precision

Census Income 299,285 193,109 64.52 1
Connect-4 67,557 67,396 99.76 1
Kick Car 72,983 72,925 99.92 1
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turn out to be superior to uniform random sampling based baseline in both running 
time and precision as well. We investigate and establish the upper bound and lower 
bound of Aac to develop an efficient algorithm that finds top-k attributes without 
scanning the full dataset in a single pass. Our experimental evaluation illustrates the 
applicability of this efficient algorithm.
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