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Although brute-force Monte Carlo (BFMC) sampling has been commonly used in performance-based wind
engineering (PBWE) due to its robustness and efficiency, the computing cost required by the considerable
amounts of repetitious, stochastic realizations for situations that involve large structures and a multitude
of uncertainties is still prohibitive. To alleviate the computational burden, this communication proposes
a surrogate modeling approach, based on artificial neural networks (ANNs), to evaluate the probabilistic
integral required to quantify wind-induced fragilities. The resultant ANN models form a computationally viable
alternative between input and output variables, based on a database of observations obtained through BFMC
stochastic simulations. A preliminary study is conducted to examine the fragility of a slender, monopole tower
structure under the excitation of multidirectional, mixed-climate wind loads. The ANN-powered surrogate
results show adequate accuracy while drastically reducing the computing time to less than 1% of the cost

of BFMC approach. It is promising to incorporate the surrogate ANN modeling in a PBWE framework.

1. Introduction
1.1. State of the art

Performance-based wind engineering (PBWE) has emerged as an
appealing approach to evaluate environmental risks on civil structures
and infrastructures, induced by wind-related hazards [1-9]. Adapted
from the methodology of performance-based engineering that was ini-
tially developed for seismic structural design by the Pacific Earthquake
Engineering Research (PEER) Center [10], the probabilistic approach
termed PBWE provides a rational and consistent analysis method for
addressing uncertainties [11] arising from the natural hazard, the struc-
ture and their complex interactions [12-14]. It consists of deriving a se-
ries of logical elements associated with hazard analysis, structural/non-
structural analysis, damage analysis and loss analysis [15]. Contrary
to conventional prescriptive-based approaches, PBWE focuses on the
construction of a structure to meet pre-selected performance objectives
or limit states.

Uncertainties examined by PBWE incorporate aleatory uncertainties
(e.g., related to the inherently random nature of wind load proper-
ties) and epistemic uncertainties (e.g., inappropriate simplification of
analysis models, incomplete definition of structural parameters or in-
adequate modeling of fragilities). Quantification of these uncertainties

needs evaluating the PEER probabilistic integral and normally relies on
Monte Carlo sampling because of its robustness; more importantly, no
constraints are imposed on the complexity of the assumed numerical
and probability models [16,17]. However, it is still extremely expensive
to generate the required number of repetitions or stochastic realiza-
tions, despite the recent growth in computational power. Sampling
often involves large nonlinearity and multi-dimensionality in the design
variables, hazard intensity measures and their mutual interaction, and
hence requires considerable amounts of dedicated computer time.

To address this limitation, surrogate modeling (also known as meta-
modeling) has been proposed as a feasible alternative to accelerate
the evaluation of the structural dynamic response. It has been suc-
cessfully incorporated in simulation-based frameworks for structural
performance assessment, subject to natural hazards [18-20]. Using a
dataset of initial observations, obtained through a high-fidelity sim-
ulation model, surrogate models offer a computationally inexpensive
approach to reproduce the mapping between input and output variables
of the original system [21]. The most commonly used surrogate model-
ing scheme that reproduces the mapping is regression or interpolation
using, e.g., polynomials [22-24], radial basis functions and Kriging [19,
25-27], support vector machines [27-29] and artificial neural networks
(ANNs) [28,30-34].
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Surrogate modeling has gained its popularity in the wind engi-
neering community for the rapid evaluation of wind-excited responses.
Le and Caracoglia [35] proposed an ANN-based model to investigate
the performance of structures exposed to tornadic wind loads. Micheli
et al. [36] examined Kriging surrogate models and adaptive wavelet
networks for the design of tall buildings under extreme wind loads.
Chuang and Spence [37] proposed a surrogate model that combines
nonlinear, auto-regressive with exogenous input (NARX) models and
modal-basis reduction to estimate the nonlinear response of a multi-
degree-of-freedom structure subject to multivariate stochastic wind
loads. Since the duration of wind excitation is relatively long, the
sequence-to-sequence mapping between wind loads and wind-induced
response can be captured by long-short term memory (LSTM) neural
networks. Surrogate modeling through physics-informed LSTM net-
work, where the physical information derives from the equation of
motion, exhibits a satisfactory accuracy in simulating the dynamics of
wind-excited structures [38,39]. In addition, the LSTM network com-
bined with model order reduction that preserves the coupling effects
by further increasing the computational efficiency, has been used to
model nonlinear dynamic systems subject to stochastic excitation [40,
41]. A convolutional neural network-based surrogate model was also
employed to predict response time histories of a transmission tower
under complex wind load conditions [42].

1.2. Motivation and objectives

Despite the extraordinary predictive capabilities of ANNs and their
numerous applications in civil engineering [43], the surrogate neural
network modeling in the context of PBWE is still rare. Thus, this work
presents a preliminary study using ANN to conduct surrogate fragility
analysis in a PBWE simulation framework, with the goal to alleviate
the computational burden accompanying standard brute-force Monte-
Carlo based simulations. This study illustrates and examines systematic
implementation of ANN surrogate models to facilitate computationally
inexpensive evaluation of structural fragility. In particular, the study
will examine the performance of a slender, monopole tower (plate)
structure subjected to turbulent wind loads. The study utilizes a slender,
monopole tower structure with concentrated wind load against multi-
directional, mixed-climate winds; the goal is to build more efficient
PBWE simulations that can efficiently analyze risks for structural sys-
tems susceptible to wind hazards. The dataset of initial observations
is obtained from stochastic simulations using a detailed physics-based
model, which needs high up-front cost. Nevertheless, once the ANN
models are calibrated (i.e., trained, validated, and tested), they enable
evaluation of structural performance under a similar type of excita-
tion with minimum effort. Numerical ANN results are verified against
fragility results obtained from high-fidelity BFMC simulations, and
subsequently compared to the results found by the Layered Stochastic-
Approximation Monte-Carlo (LSAMC) algorithm, a method recently
proposed by the authors [44] to evaluate the PEER probabilistic inte-
gral for risk assessment. In summary, this study entails the execution
of the following objectives:

1. Generate a low-fidelity, low-resolution dataset and a high-
fidelity, high-resolution dataset, featuring differentiated sample
sizes, used for the calibration and the validation of the surrogate
neural network models.

2. Verify the surrogate ANN results in the context of wind-induced
fragility of a monopole structure through comparison against
two Monte-Carlo based methods: BFMC sampling and LSAMC
method.

3. Investigate the feasibility of including surrogate ANN models in
a PBWE framework with reduced computational cost.
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2. Background theory
2.1. Multi-directional aerodynamic load and response analysis

As a linear elastic model that accounts for turbulence wind ef-
fects is adequate for dynamic response of a tall, slender structure
subjected to wind loads [45], the standard aerodynamic quasi-steady
theory [46], based on random vibration theory and frequency do-
main analysis, can be used. Capitalizing on the multi-directional wind
aerodynamic analysis that incorporates along-wind, across-wind and
torsional load effects [47], the power spectral density (PSD) of the
generalized buffeting forces Sy, ,,, induced by turbulent wind with
mean-wind, horizontal incidence angle ¥, is summarized in Egs. (1a)
and (1b) below. Note that the vortex shedding loads are separately
addressed in Sy ¢ by suitable correlation length L, [47]:
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In the previous equations, Sp, o, and Sy o are the PSD matrices
of the generalized buffeting forces and vortex shedding forces, respec-
tively; U(z) is the mean wind speed at elevation z; @ is the mode
shape matrix which may account for inter-modal coupling due to non-
uniplanar, complex structural modes shapes [47]; Cp(¥), C.(¥) and
C),(¥) are the aerodynamic static coefficients of horizontal drag force,
horizontal transverse lift force and torque, respectively, at mean-wind
incidence angle ¥; the derivatives with respect to ¥ are C;J(‘I’), C’L(’I’)
and C,’W(T), respectively; S, and S, are the cross PSD functions
of the along-wind and across-wind horizontal turbulence components,
respectively; p is the air density; D is a reference, horizontal width of
the body fixture. C‘L is the standard deviation (STD) of C; needed for
vortex-shedding analysis; B,, is the bandwidth of Sp ¢ ; n, = S,0(z)/D
is the vortex-shedding frequency of the wake excitation load with S,
being the Strouhal number; n;, and @, are the fundamental-mode
natural frequency and the mode shape function in the y-z plane.

2.2. Fragility modeling and assessment

Following the general PBWE framework, composed of workflow
steps that are associated with aerodynamic analysis, structural analysis,
damage and loss analysis [4], fragility F, of a structure is defined
as the conditional probability that a particular engineering demand
parameter, EDP, exceeds a pre-selected threshold T of a performance
objective (i.e., limit state LS), if the hazard event has intensity measure
IM:

Fr(IM)=P(EDP > LS|IM) 2)

The EDPs for a slender monopole structure subjected to wind loads,
can be chosen as the lateral deflection at the top of the tower z = A since
it can be directly related to the maximum overturning moment at the
base and hence controls the structural design. According to the specifi-
cations for cantilevered vertical support structures in ASSHTO [48], the
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Fig. 1. Illustration of a 2-4-1 fully connected three-layer neural network.

maximum lateral deflection should be less than 10% of the total height
h. Two IMs, used for the description of wind loads in a mixed-climate
wind load, are defined: mean wind speed U,,, evaluated at z = h and
horizontal mean-wind incidence angle ¥.

3. Surrogate modeling with ANN

An ANN is a computer model composed of parallel processing units,
i.e., neurons, interconnected by modifiable weights represented by links
between units, aggregated in consecutive layers, i.e., an input layer,
hidden layer(s), and an output layer [49]. Only basic descriptions
will be presented, but more extensive mathematical concepts powering
these computational systems are described by [50]. The input units
represent the components of a feature vector, i.e., the independent
variables of the problem to be solved; the output units emit a vector
of final outputs, i.e., the structural response predictions. Each unit
in the hidden layer computes the inner product of the inputs from
the previous layer (append x, = 1) with its weights (append a bias
wyo), and then passes it through a nonlinear activation function that
leads to the next layer. For an ANN with the architecture illustrated in
Fig. 1, the generic output of the kth unit is computed as in Eq. (3) by
feed-forward propagation with notation adapted from [51]:

ny d
=f <2 wy; f (2 wjix; + bj) + bk) 3
j=1 i=1

In Eq. (3), ; denotes the output of the kth unit in the output layer;
x; denotes the ith unit in the input layer and w);; denotes the input-
to-hidden layer weights at the hidden unit j, while w,; denotes the
hidden-to-output layer weights at the hidden unit k; b; and b, denote
the bias added to the input layer and the hidden layer, respectively; d
and ny denote the size of the input vector and hidden layer, respec-
tively. f(-) is a transfer or activation function, a nonlinear function
that nonlinearly maps inputs into a new variable space. Several options
for the transfer function are available: the sigmoid function, hyperbolic
tangent and the rectified linear unit (RELU) function, depending on the
specific problem and training performance.

The training error, computed as the summation of the squared
difference between the predicted output and the reference output, is
propagated backwards using the chain rule, to determine the gradients
of the error with respect to the weights and biases of the hidden
units, following the iterative gradient-related optimization methods
(i.e., gradient descent, stochastic gradient descent).

The task of evaluating fragilities for a structure subjected to wind
loads via surrogate modeling with ANNS, is then reduced to a standard
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supervised learning problem. The goal is to train an ANN model, i.e., to
find its optimal values for the weights and biases, such that the error
between the fragilities offered by the model and those given by the
reference database, is minimal. In actual training of such an ANN
model, the reference dataset is divided into three parts, i.e., training
set, validation set and testing set, where the training set and the
validation set are explored during feedforward propagation and error
backpropagation to obtain an ANN that has maximum accuracy but
avoids overfitting, and the testing set is then used for performance
measure on the model’s generalization property.

The topology of the neural network for this study has an input
layer of size equal to the number of intensity measures (i.e. d = 2),
and an output layer consisting of just one output unit representing the
structural fragility (i.e. k = 1). The activation function used in this
study is the sigmoid function as its co-domain matches well with that
of fragility. The number of neural network’s hidden layers and hidden
units is determined through trial and error, but is limited to small
values that are associated with a shallow neural network, to avoid the
problem of over-fitting that is likely to occur if unnecessarily complex
models are employed for the simple case examined herein.

4. Numerical study

In this preliminary study, the fragility function of a generalized
monopole point-like (plate) structure with two horizontal degrees of
freedom (DOFs), subjected to turbulent wind loads induced by mixed
wind climate (typical of mid-Atlantic states, with hurricanes and extra-
tropical depressions), is examined. A higher-fidelity, higher-resolution
dataset of structural response is first generated for fragility approxima-
tion through the BFMC method with the sampling size N g = 5000;
i.e.,, each combination of the mean wind speed U, at the reference
elevation z = /4 and the mean wind horizontal direction ¥ entails a total
of 5000 realizations. A second, lower-fidelity, lower-resolution dataset
of structural response is subsequently generated as the reference dataset
for the calibration (training, validation and testing) of surrogate ANNs,
whose sampling size is just 10% of the first one, i.e. Nyc 4nny = 500.
Finally, the LSAMC method with the sampling size N; ¢ ¢ = 5000
is applied to evaluate fragilities of the structure whose results are also
compared with those of ANNs.

4.1. Generalized monopole tower, point-like (plate) structure

As illustrated in Fig. 2(a), the general behavior of a slender, vertical
monopole point-like (plate) structure, typical of roadway signboards
and high-mast lighting structures, is described by a cantilever beam
model with lumped mass m at height h, subjected to a concentrated
wind load acting on the projected area A of the large fixture. It is noted
that linear analysis is adequate to examine the overturning moment
at base at first yielding of the tower structure and that, exceeding the
yield limit of the bending stresses in the base cross section implies loss
of use of the tower, and basically incipient collapse. Thus, nonlinear
structural analysis is unnecessary in this study. The two-DOF, horizon-
tal lateral motion components in the along-wind (x) and across-wind (y)
directions are represented by corresponding fundamental frequencies
of 0.7 Hz. Torsional effects about the z axis are neglected. The wind
incidence angle ¥, as depicted in 2(b), indicates the horizontal angle
between the x-axis of the coordinate centered at the lumped mass
and the direction of the concentrated drag force, ignoring other wind
forces for the sake of simplicity, e.g., the static, transverse lift force
and the influence of vertical turbulence component. The parameters
related to vortex shedding force, as calculated by Eq. (1b), are derived
through procedures recommended in ESDU 90036 [52], for a standard
plate’s rectangular cross section with dimensions of 4.0 m x 0.4 m.
The main properties of the generalized monopole structural and load
model are available in Table 1. It is noted that this simple structure is
specifically selected and will suffice for the purpose of shedding light on
the adaptive modeling capabilities of ANNs. A more complex structure
with multiple DOFs will be examined in future studies by the authors.
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(b)

Fig. 2. Generalized monopole tower, point-like (plate) structure: (a) schematic of the structure; (b) generalized model and motion coordinates.

Table 1

Properties of the generalized 2DOF monopole (plate) structure.
Quantity Symbol Unit Value
Lumped mass at z = h m [kgl 600.0
Projected area of board (or luminaire fixture) A [m?] 8.0
Height h [m] 35.0
Reference width D [m] 4.0
Fundamental frequency o5 Moy [Hz] 0.70
Structural damping ratio in x-plane Eox - 0.02
Structural damping ratio in y-plane oy - 0.01
Strouhal number S, - 0.125
STD of vortex shedding lift coeff. at ¥ = 0° Cro - 0.245
Vortex shedding excitation correlation length L, [m] 1.06
Vortex shedding excitation bandwidth parameter B, - 0.06
Friction velocity when U, = 50 m/s u, [m/s] 2.45
Roughness length Zy [m] 0.01

4.2. Description of wind load uncertainty

To account for one of the principal uncertainty sources in wind
design, the drag force coefficient Cp, of the wind load, as expressed
in Eq. (5), is modeled as a random parameter that depends on the
horizontal mean wind incidence angle ¥, where C,,, denoting the drag
coefficient at zero incidence angle, is assumed as a random variable de-
scribed by a normal distribution with mean y, = 1.2 and coefficient of
variation COV = 0.1 [53]. The logarithmic profile is used to model the
horizontal, mean wind speed U(z) with roughness length z, ( Table 1).
The Kaimal’s model [54] is used to replicate the turbulence power
spectral density function in the horizontal, along-wind and cross-wind
directions, as expressed in Egs. (4a) and (4b), respectively:

nS,(z,n) _ 200f

u2 5 (4a)
* (1+50/)3
nSu(zz m__ 1f : (4b)
* (1+95/)3

where u, denotes the friction velocity and f = nz/U(z) denotes the
Monin coordinate.

During the simulation of stochastic wind loads generated by Monte-
Carlo sampling, the mean-wind incidence angle is set to 19 evenly
distributed values in the range of [0°, 90°] to incorporate wind direc-
tionality effects, i.e., ¥ € {0°,5°10°,...,80°85°90°}, while the wind
speed U, is set to the range of 0 ~ 90 m/s with an increment of 5 m/s.

Cp(P) = Cpy — 0.20(1 — cos 2F) 5)
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Fig. 3. “Optimized” ANN architecture with three fully connected hidden layers, found
using the reference dataset.

4.3. Training of ANNs

The reference dataset for ANN calibration, comprises 1710 low-
fidelity model output fragilities, i.e. 19 incidence angles x 18 mean wind
velocities x 5 repetitions. The ANN training is implemented using the
open source computer platform, PyTorch [55]. Specifically, the training
epoch, i.e., the number of full iterations over the entire training set,
is set to 200; the gradient descent algorithm utilizes a “minibatch” of
size 32, a technique designed to achieve a balance between speed and
accuracy of model updates [i.e., weights and biases in Eq. (3)]. The
training error is quantified by the mean squared error (MSE) computed
over the training set; the generalization and accuracy of the trained
ANNs to unseen data is evaluated through the relative full-field error
e [56] given by Eq. (6)

Iy -l
ly*Il2
where y* is the reference exact value and ||-||, denotes £, norm.
The ANN architectures, used in this study, are those with a small
number of fully connected hidden layers. It has been found that a single
hidden layer can capture most features of complex and nonlinear prob-
lems [57]. By adjusting the number of hidden layers and the neurons

(6)



L. Zhang and L. Caracoglia

1.0

Engineering Structures 278 (2023) 115515

0.8 B

0.6 |- \ B

Fr

0.4

0.2 |

0.0

1.0

0.8

0.6 -

Fr

0.4

0.2

0.0

1.0

0.8

0.6

Fr

04

0.2

0.0

1.0

0.8

0.6

Fr

0.4

0.2

0.0
45

Fig. 4. Comparison of fragility F, obtained by BFMC sampling, via ANN-based surrogate modeling and by LSAMC method.

in each layer, it is possible to find a combination that minimizes the
ANN training error, based on the reference dataset generated from the
low-fidelity model outputs. The procedure returned an ANN consisting
of 3 hidden layers with 35 neurons each, which is illustrated in Fig. 3.
As introduced earlier, the two independent, input variables are IMs
associated with wind loads, i.e., the mean wind speed U,, at z = h and
the mean-wind incidence angle ¥; the dependent output variable is the
fragility or conditional exceedance probability F;.

4.4. Examination of structural fragility results

To validate the predictions of fragility F; found by ANN-based
surrogate model, results are compared against the “exact” F;- values ob-
tained by BFMC sampling. Comparisons are also extended to fragilities
evaluated numerically by LSAMC method, which operates by layered
sampling over the range of each input random variable [44], i.e., Cp
in this example. Fig. 4 presents the collection of Fpresults found by
the various simulation methods. As an example, only 11 out of 19
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Fig. 5. Comparison of relative computing time among BFMC, LSAMC and surrogate
ANN methods.

examined wind incidence angles ¥ are illustrated in the figure. The
ANN-generated curves in dashed lines agree well with the reference,
solid lines found by BFMC. It is also noted that LSMAC predictions
in dash-dotted lines are also adequate for all the incidence angles
presented. This remark confirms the promising ability of ANN-based
surrogate models to capturing “unseen” features shared by the results of
a higher-fidelity, higher-resolution dataset. Furthermore, even though
ANNs are calibrated using a sparsely-sampled reference dataset, ANN
models can still reasonably and accurately evaluate F, depending on
the IMs. Finally, the encouraging propensity to model generalization of
a properly calibrated ANN can be superior in evaluating high-fidelity
interpolations of fragility with multi-dimensional input variables.

A closer examination near the tail of the fragility curves in Fig. 4
reveals certain discrepancies between the ANN results and the reference
results. This behavior may be primarily due to the lack of data points
specifically near the transition range of fragility curves where slope
drops quickly, resulting in a temporary “shutdown” of ANNs to fully
capture the sharp transition in fragilities before leveling out at 1.0.
Improvements can be made by using more complex network architec-
tures with a larger number of hidden layers and more neurons in each
layer, but this would risk over-fitting. Another measure is to increase
the local resolution around the transition area of fragilities without
increasing the resolution of the reference database, thus avoiding the
accompanying significant rise in computing cost. As the priority of this
study focuses on the application of ANNs within the PBWE framework,
differences of the ANN results will be further investigated in future
studies.

Fig. 5 presents the average computing time, performed on a 32-core
standard workstation, relative to the BFMC method. It is revealing that
the LSAMC method has achieved an extraordinary computational gain
by reducing the computing time to just 2.8% of the BFMC method.
More interestingly, the ANN powered surrogate models performed
even better by cutting the computing time to less than 1% of the
brute-force approach. The primary contribution to the savings of ANN
model comes from the fact that the computing cost needed to derive
a low-resolution database is much smaller, compared to that of a
high-resolution database.

5. Conclusions

This communication examined the systematic applicability of ANNs
as surrogate models to alleviate the computational burden of the stan-
dard PBWE simulation framework. A slender monopole tower structure
subjected to mixed-climate wind load was examined. Two datasets of
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wind-induced structural response were separately generated: a high-
fidelity, high-resolution dataset used by both BFMC and LSAMC meth-
ods, and a low-fidelity, low-resolution dataset derived for the calibra-
tion of ANN-based surrogate models. A shallow ANN with two inputs,
the mean wind velocity and direction at the tower top, and internal
layers composed of 3 fully connected layers with 35 neurons each, was
determined through optimization. The ANN-powered surrogate results
exhibit adequate accuracy compared with the high-fidelity results while
cutting the computing time to less than 1% of the high-fidelity re-
sults; this suggests the great promise to incorporate the surrogate ANN
modeling in a PBWE framework. Future investigation is anticipated
to expand application of surrogate ANN models to more complex
structures.
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