

The engineering and scientific challenges of environmental justice organizations in the US: A qualitative study

Madison Macias ^a, Jorge Morales Guerrero ^a, Edwfin A. Schmittle ^{a,b,*}, Anthony M. Levenda ^c, Jean Léon Boucher ^d, Darshan M.A. Karwari ^a

^a Arizona State University, USA

^b California Public Utilities Commission, USA

^c The Evergreen State College, USA

^d Dublin City University, Ireland

ARTICLE INFO

Handling Editor: Jing Meng

ABSTRACT

While there is increased interest among engineers and scientists to collaborate with environmental justice organizations (EJOs), and while there are well-known programs that facilitate collaborations between engineers, scientists, and underserved communities, little is known systematically about the engineering and scientific challenges faced by EJOs. We lay the foundation for such a systematic understanding through exploratory research in which we conducted 47 semi-structured interviews with EJO staff across the United States to ask what the engineering and scientific challenges to combatting environmental injustice are. Using deductive-inductive coding we discover that EJOs are looking for support to engineering and scientific challenges that fit specific topical areas and methods. Using the words of our informants, we then unpack the qualitative themes of select topical areas (air quality, public and environmental health, fossil fuel infrastructure, clean and just energy transitions, environmental restoration, and indigenous groups) and methods (data collection, data dissemination, data analysis, spatial analysis, online platform building, networking of experts). We explore the patterns of how these themes overlap with five different strategies (policy change, utilizing the media, educating the public, providing legal advice, and developing collaborative projects) used by the EJOs in our study. We show that EJOs want to collaborate with engineers and scientists to solve technical problems, mitigate harm to their communities, and create positive futures. Our research informs the conception of strategic efforts to expand the impact of engineering and scientific work done to address EJ challenges, particularly given the limited resources that currently exist to support collaborative efforts in this space.

1. Introduction

Engineering and science play a central role in the creation, diagnosis, and addressing of environmental justice (EJ) challenges (Ottinger and Cohen, 2011). For example, notwithstanding the political and policy failures that led to the Flint Water Crisis, engineering and scientific practice related to water quality testing and drill and environmental engineering were critical to both how children—largely poor and Black—across Flint were poisoned with lead, and, along with pediatrics and epidemiology, to creating policies and infrastructures to hopefully avoid such disasters in the future. Climate science, oceanography, and engineering play synergistic roles in understanding and coping with the increasing frequency and strength of hurricanes in the Gulf of

Mexico, which, as evidenced by the impact of Hurricane Katrina in New Orleans, can more significantly affect marginalized communities. The work of a diversity of engineering and scientific professionals is thus implicated in EJ challenges, whether explicitly acknowledged or not.

There have been increasing calls for engineers and scientists to exhibit greater social responsibility (Bielefeldt, 2018) and do work in direct service of underserved communities (Lubchenco and Rapley, 2020). Such work could include collaborating with environmental justice organizations (EJOs) in underserved communities to address environmental injustices the communities face related to pollution, energy infrastructures, and climate change. It turns out that many engineers and scientists are interested in such work (e.g., Ottinger and Cohen, 2011; Boucher et al., 2020). While there are many cases spanning the

* Corresponding author. Arizona State University, USA.

E-mail address: edwfin.schmittle@asu.edu (E.A. Schmittle).

success-failure spectrum of such efforts, as described below, existing engineering and scientific efforts to build effective collaborations with EJOs require scaling up to address the widespread nature of EJ challenges. But before we can create such scaled up efforts, we must understand the nature of the engineering and scientific challenges that EJOs are trying to tackle. Our paper begins to answer the question: What are the engineering and scientific challenges of EJOs in the US? Through exploratory qualitative research, we contribute to creating the foundation of more systematic efforts to address the diversity of engineering and scientific challenges faced by EJOs.

2. Intersections between environmental justice organizations, engineering, and science

2.1. Understanding environmental justice organizations: formation and strategies

The social movement referred to as the “environmental justice” (EJ) movement, which spans the activist, academic, legal, and policy arenas, seeks to understand and address the disparate social distribution of environmental benefits and burdens (Cfiflinton, 1994), and to create environments where people live, work, and play that are safe and promote thriving human-biotic communities (Bryant, 1995). In order to achieve these ends, EJ scholars, activists, and advocates stress a greater recognition of the diversity of communities affected by environmental challenges, and more thoughtful and strategic community participation in creating and managing environmental policy (Schlosberg, 2004). The US Environmental Protection Agency’s definition of EJ that focuses on the “fair treatment and meaningful involvement of all people” is widely used and comes from the EJ movement’s origins related to pollution and toxic substances (Lee, 2021: 332). Recent advances in EJ scholarship have tied environmental policy to diverse arenas like energy, climate, community development, gentrification, indigenous rights, and beyond (Schlosberg, 2007, Baptista et al., 2022). For our work, we thus recognize the expansive nature of EJ, not only in terms of what constitutes the “environment,” but also in terms of what constitutes “justice.” Justice has to do with the removal of systemic barriers (Lee, 2021) that cause recognition, procedural, and distributive injustice (Schlosberg, 2007), and restorative efforts to repair the harm of injustices (Forsyth et al., 2021).

As community-based organizations focused on EJ issues and policy change, EJOs are critical actors in the EJ movement. This means EJOs can choose to operate in a manner exactly the same as an environmental non-governmental organization (NGO) including applying for long-term funding, which encourages many EJOs to register as non-profits and some even cooperate with NGOs (Rios, 2015; Perez et al., 2015). Following Partlow, Winkler and Thaler’s (2020) typology of NGOs, we describe the organizations within our study as EJOs because they engage with a justice discourse in their work and that is how our interviewees described their organization. The EJOS may have members and staff who identify themselves as part of the community they seek to serve. While EJOs often focus on local-scale issues within a community, over the past 30 years EJOs have formed nationwide coalitions with other EJOs and occasionally NGOs to share resources and expertise (Perez et al., 2015).

As Martinez-Alier et al. (2014) assert, EJOs do not arise from something read in a book or a report; they arise from concrete experiences that have affected community members directly. For instance, such experiences might be public health issues due to contaminated water (Brown, 1992) or locally unwanted toxic dumping (Buford, 1990). An EJO might also arise to assist a government with forest management (Davies et al., 2020) or some other type of natural resource stewardship (Abrams et al., 2016, p. 2). A number of citizen science efforts have arisen to address environmental injustice in their local community (Ottinger, 2010; Kinchy, 2017). As the EAtlas attests (Temper et al., 2015; EJOLT, 2020), there are EJOs across the world

arising in response to environmental, climate, and energy injustice. The EJOS who participated in our study described five strategies to help them achieve their objectives: (1) engaging with policy change, (2) utilizing the media to promote their cause, (3) educating the public about the EJ movement, (4) providing legal services for those dealing with environmental injustice; and (5) developing collaborative projects to mitigate or raise awareness of environmental injustice. After discovering these five strategies in the analysis of our interviews, we found that they have been discussed to a certain degree within the academic literature. However, as far as we know, this is the first time all five strategies have been analyzed systematically together. We provide brief examples of each strategy to illustrate the contexts within which different specializations of and methodological approaches in engineering and science can be integrated.

2.1.1. Engaging with policy

Many EJOS are established in an attempt to create policy change that would resolve or prevent environmental injustices from taking place in a community. The Community Action to Fight Asthma Initiative based in California is focused on policy advocacy that would encourage state representatives to pass laws protecting school-aged children from developing asthma due to exposure to air pollution (Kreger et al., 2011). This coalition also draws support from media experts, demonstrating how EJOS can use multiple strategies to achieve their goals. Perez et al. (2015) discovered that in recent years, as EJOS have become more formalized, there have been more attempts to achieve policy-making by engaging with academics essential to conducting quality EJ research. Rios (2015) has noted that 99% of EJOS in the US have incorporated as 501(c)(3)s, allowing them to participate in policymaking processes by serving on advisory boards, identifying problems and proposing solutions. However, incorporation also means EJOS representing minority groups that register as formal non-profits must be careful in how they advocate for their disenfranchised constituents because registered non-profits are prevented from lobbying (Berry and Aron, 2001).

2.1.2. Utilizing media

Given these possible legal constraints, EJOS might need to be media savvy to advocate for their causes. A prominent example was the Computer TakeBack Campaign organized by multiple EJOS that targeted Dell Computer across campuses in the United States (Wood and Schneidler, 2006), which resulted in a collaboration with the Chronicle of Higher Education (Carlson, 2003) and eventually led Dell to create a responsible recycling program for their computers. Similarly, the Basel Action Network (BAN) was able to attract a great deal of media attention to e-waste recycling sites because, as an EU think tank put it, they are able to “reduce every issue to a one sentence sound bite” (quoted in Littlefield and Lucier, 2017: 208).

2.1.3. Public education

Many EJOS also use educational means to achieve their goals. For instance, the University of Texas Medical Branch in Galveston collaborates with T.e.j.a.s., a Houston-based EJO, to teach the public about environmental toxicology by using theatrical performances developed by Augusto Boal (Sullivan and Parras, 2008).

2.1.4. Legal strategies

While challenging to mitigate, environmental statutes and civil rights laws provide the option for communities to hold governments to account (Fricke, 2011), and EJOS can also mobilize legal resources when cash and other material resources are limited (Aspinwall, 2021). Interestingly, the Center for Health, Environment and Justice has advised against using litigation as the core EJ strategy, and instead, encouraged organizations to consider how to use lawyers to their benefit without having the lawyers overshadow their mission to claim control over the knowledge needed to resolve environmental injustice (Marshall, 2010).

2.1.5. Developing collaborative projects

The *A Day in the Life* project sponsored by three EJOs in Southern California enlisted 18 youths to wear air monitoring equipment for a day and pair that with photography to create a narrative of their experience with air pollution and raise awareness of its risk to local communities. (Johnston et al., 2020). Similar EJO projects exist for promoting water quality, such as the Bowman Creek Project in South Bend Indiana that was meant to restore a waterway in collaboration with community groups, schools, and the University of Notre Dame (Bulum et al., 2018). Energy-focused projects created by Empower Kentucky to help small communities transition to a more sustainable way of life are a good example of how energy justice is being addressed by EJOS in states that are largely dependent on coal mining as an economic resource (Carley et al., 2021). It is in synergy with these strategies that the engineering and scientific challenges of EJOS need to be addressed.

2.2. Existing engineering and scientific efforts in addressing EJ challenges

Within the broad environmental, climate, and energy challenges being addressed with EJOS, there have been numerous calls for those with expertise to acknowledge and address the engineering and scientific challenges in communities (Bielefeldt, 2018; Lubchenco and Rappley, 2020). Pandya (2014) suggests “closing the gap” between science and society and describes how those who participate in defining scientific questions would dictate “whether science results are pushed out from scientists or pulled into community priorities” (2014, p. 56).

Over the past decade, professional societies and advocacy organizations have created programs to engage engineers and scientists in community-based work, oftentimes focused on EJ challenges and in collaboration with EJOS. For example, the American Geophysical Union (AGU)’s Thriving Earth Exchange has connected engineers and scientists to over 140 projects, many in underserved communities, that address issues from heat vulnerability and indoor air quality to flood risk (AGU, 2020). The American Association for the Advancement of Science’s (AAAS) On-Career Scientists program has also connected hundreds of engineers and scientists and human rights organizations in the United States and abroad (AAAS, 2020). Engineers Without Borders recently started Community Engineering Corps (CEC), which leverages a network of more than 200,000 professional engineers, to address water, energy, social, and structural engineering challenges for communities that generally cannot afford professional engineering services (CEC, 2019). As far as we know, however, there exist no systematic studies on the engineering and scientific work done across such programs.

There are four key points regarding engineering and scientific work within the EJ movement that helps frame and motivate our work. First, significant bodies of research have paid close attention to and critiqued the role of engineering and scientific expertise in EJ struggles, with a particular focus on how engineers and scientists have oftentimes exacerbated EJ challenges, to the detriment of the work of EJOS (Ottinger and Cohen, 2011; Bryant, 1995; Lambrinidou, 2016). Second, as discussed by Boucher et al. (2020), engineers and scientists must be able to find EJOS to collaborate with, and they may not be aware of the diversity of ways in which they might be able to engage. Third, centering equity and justice in the framing of science and environmental communication can provide an entry for EJ communities—and thereby EJOS in those communities—to use their voice to engage with scientific and environmental findings and knowledge and increase the social relevance of scientific findings (Poflik and Diver, 2020; Pezzullo and Cox, 2017). Vice versa, thoughtful and sustained listening to EJ communities can bring scientists, engineers, and communities into partnerships of mutual learning, decision-making, and trust, and build new knowledge relationships (Lambrinidou, 2016; Irwin, 1995). Fourth, existing EJ-focused engineering and scientific projects have oftentimes been scoped for local—often hyperlocal—contexts. EJ challenges, however, are widespread, and while the particularities of challenges might be specific to a given location, many aspects of an EJ challenge in one

location might overlap with those in another. For example, lead in drinking water is a well-documented US-wide EJ challenge (Muñoz et al., 2021), as are heat vulnerability and air pollution exposure (Clark et al., 2014), access to renewable energy (Sunter et al., 2019) and so on. Thus, in order to scale engineering and scientific efforts to address EJ challenges, it is important to understand these commonalities based on the perspectives of EJOS.

As far as we are aware, there is no systematic analysis of engineering and scientific challenges from the EJO perspective. Systematically clarifying the EJO perspective on these challenges could support the formation of a new and scalable approach for streamlining collaborations between EJOS and engineers and scientists. It can inform the development of matching approaches to create more thoughtful collaborations between EJOS, engineers, and scientists, as well as the transferability of knowledge created and interventions proposed in one EJ context to other similar EJ contexts. In other words, the scalability of the impact of engineering and scientific work is predicated on systematically identifying the ways in which EJOS see the need for engineers and scientists. Through an exploratory study of the question *What are the engineering and scientific challenges of EJOS in the US?* we begin an approach to systematically characterize the ways in which engineers and scientists can support efforts that move beyond individualized efforts. As we show below, despite the documented challenges of working with engineers and scientists, EJOS indeed recognize the need for engineering and scientific expertise.

3. Methods & data collection

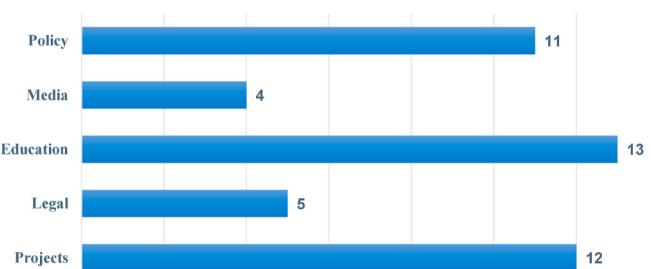
Our approach is an exploratory qualitative study based on semi-structured interviews with representatives of EJOS. Informed by the literature discussed above, we conducted a US-wide search for EJOS, broadly construed (i.e., environmental, energy, or climate justice organizations), to answer the above question. We identified EJOS working on EJ issues and compiled a database through three methods: internet searches (including the IRS registered 501(c)(3) organizations database), institutional networks (like the National Environmental Justice Conference and through the Office of Environmental Justice at the EPA), and snowball sampling. After this, we had over 3000 potential contacts.

We then selected groups using several criteria. First, we determined whether the group’s focal areas and mission included EJ. We did this by reviewing their websites, social media pages, and affiliated materials. Groups that did not substantially focus on environmental, climate, and/or energy challenges through the lens of justice were not included. For example, our search often included conservation groups who were concerned about biodiversity conservation, which we did not classify as EJ. Second, we defined groups by their status, active or inactive. Using the same review of materials, websites and social media, we looked for the latest posts, updates, or changes. If they were older than three years, we assumed the group was no longer active. Finally, we emailed the listed contacts at least three times. Those who responded were asked if they would sign up for an interview where they consented via electronic and verbal formats. After this initial process, our database was narrowed to 426 groups and a brief digital survey was sent to this list in September 2018 that allowed us to collect basic details about the organization (i.e. location, number of employees, number of volunteers, role of interviewee). With a \$75 incentive, we then conducted interviews with 47 different groups between October 2018 and May 2019. Interviews lasted between 30 and 90 min, were conducted by phone, and recorded for analysis. Our semi-structured interview protocol focused on key questions about the engineering and scientific challenges faced by the EJOS (see Appendix A). We did not systematically collect information on the background of our interviewees, primarily to protect their privacy and to keep the interview protocol concise. We use the word “technical” in the interview protocol (Appendix A) for the sake of brevity. In actuality, we provided examples to the interviewees about what we meant by “technical” to include the nature and diversity of engineering and

scientific challenges the groups might face. Two participants agreed to do an interview and promised to complete the survey, but they never did despite repeated follow-ups by e-mail.

Once the interviews were transcribed, we used a deductive-inductive approach to categorize the engineering and scientific challenges faced by these EJOS. The deductive portion aligns with some of a Framework (Srivastava and Thomson, 2009; Gable et al., 2013) or Template (Brooks et al., 2015) Analysis. We then "filled in" these templated areas by coding in the manner of Grounded Theory (Glaser and Strauss, 1967). A team of three analysts coded the interviews and a codebook was created. In reporting our results, we use the gender-neutral terms "them/their." As with most qualitative studies, these findings are not broadly generalizable, though they offer a rich insight into the participants of our sample, and a framework to begin to characterize the engineering and scientific challenges of EJOS. We emphasize that given the wide-ranging nature of our interview protocol the results we present below form only a fraction of what we have learned from the interviews.

4. Results


4.1. Descriptive statistics

Before reviewing the qualitative results of our interviews ($n = 47$), we first review some descriptive statistics of the sample collected in our digital survey ($n = 45$). We paid attention to some more salient attributes: 49% of our respondents identified as the Executive Director, 56% of their organizations had less than ten employees, 49% of the organizations had more than 200 volunteers, and 42% of these EJOS resided around the EPA designated region of Philadelphia. [Appendix B](#) assembles the detailed attributes of the EJOS that participated in this study ([Table B1](#)).

As discussed in Section 2.1, we discovered in our online survey that the EJOS we interviewed used one of five strategies, namely engaging with policy, utilizing media, public education, legal strategies, and collaborative projects. While some of the organizations might occasionally use an alternative strategy, all of the organizations indicated to us in our survey that they engaged with one primary strategy, which reflected in [Fig. 1](#). [Fig. 1](#) provides a distribution of these strategies across the 45 organizations that responded to our survey. In the discussion below, we explore how the strategies used by the EJOS are related to the challenges of technical expertise that emerged from our interviews.

4.2. Qualitative results

Coding of transcripts revealed two sets of themes related to the engineering and scientific challenges faced by EJOS. The first set of 15 themes were topical in nature ([Fig. 2](#)) while the second set of 13 themes exhibited a focus on the methods ([Fig. 3](#)) used to address engineering and scientific challenges. Our figures help signify that there is not necessarily a hierarchical relationship among the themes discovered in the analysis of the interviews. The fact that some of the themes appear more than others ([Appendix C](#)) could be the result of the sampling procedure we used for identifying EJOS relevant to our study.

Fig. 1. The number of EJOS that utilize a certain strategy ($n = 45$).

In the following two sections we will use the words of our informants to unpack examples from these topical areas and methods to give the reader a more nuanced understanding of how EJOS understand the technical challenges they face.¹ Not all of these challenges are necessarily directly related to engineering or science, but given that the interviewees brought them up in response to Question 8 in the interview protocol ([Appendix A](#)), we have included them here.

4.2.1. The topical areas of EJO technical challenges

During our interviews, informants often designated their technical challenges according to a specific topic. By unpacking the following examples, we want the reader to see how EJOS perceive experts as potential sources of support for solving these topical challenges. Not all of these challenges can be resolved solely by engineers or scientists, but we will begin with a few where their expertise is highly relevant, such as air quality.

Air Quality: During the interviews a number of informants expressed interest in technical support around the common topics of environmental quality, namely air, water and soil. For instance, the director of an EJO focused on environmental health on the East Coast discussed the challenge of finding scientists to study air pollution as a health problem to reduce costs to society. As they said, a scientist could help them show the relationship between air pollution in different states and the large budget allocated to treat asthma. Then their organization could:

go to those policymakers and be like, 'Look ... you're paying all this money to treat it, but if we could reduce air pollution and support the Clean Air Act, you're going to be reducing these costs significantly.'²

Here we can see an example where EJOS interest in collaborating with scientists to study the health impacts of air pollution could affect policy change. The EJO is aware that success is dependent on using science to demonstrate to policymakers that said policy change will save taxpayers money on healthcare expenses in the long-run.

Public and Environmental Health: The interest in collaborating with engineers and scientists on public health issues was one of the more common topics in our interviews. In some cases, EJOS expressed regret that their previous campaigns were lacking technical support and how that may have been a barrier to their success. When talking about how a chemical leak affected health equity issues in their community, the former spokesperson of an EJO on the East Coast told us:

We definitely could have used some engineers during the [X] chemical leak ... helping us understand what the different requirements were for the tanks. [We] were working with a civil engineer that did a lot of work on water infrastructure and water safety ... And helping us understand all that.³

After their experience with this chemical leak, the informant had entered a Ph.D. program focused on occupational and environmental health science because they recognized communities want this expertise. Through this example there is anecdotal evidence that exposure to a lack of technical expertise in an EJO may motivate activists to obtain that expertise themselves.

Fossil Fuel Infrastructure: EJOS also expressed an interest in technical expertise on how to deal with aging fossil fuel infrastructure. Coal mining in particular was a concern among EJOS in the northeastern US. When asked how scientists and engineers could help out their work in the long-term, one director of an organization focused on coal mining issues explained that:

¹ See [Appendix D](#) for additional select quotes for remaining Topical Areas and Methods.

² Interview #7 conducted on Sept. 21st 2018.

³ Interview #17 conducted on Oct. 16th, 2018.

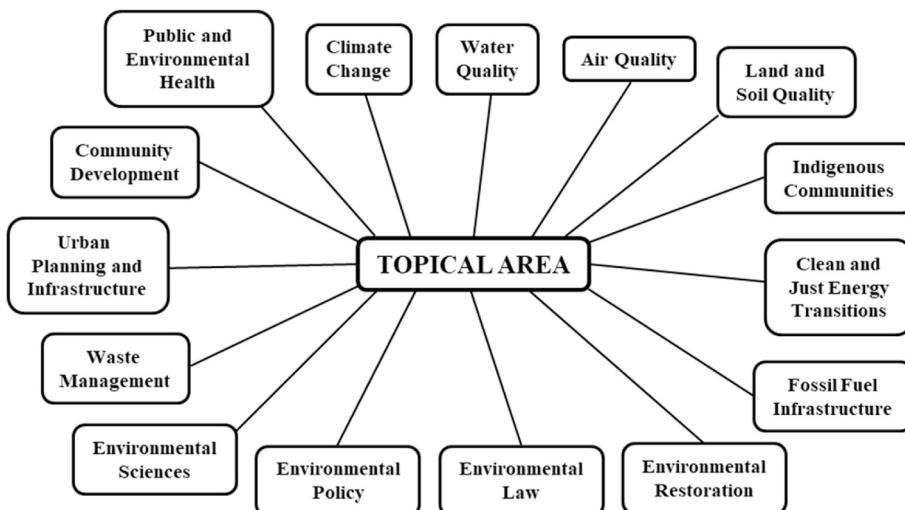


Fig. 2. Topical categorization of respondent identified engineering and scientific challenges.

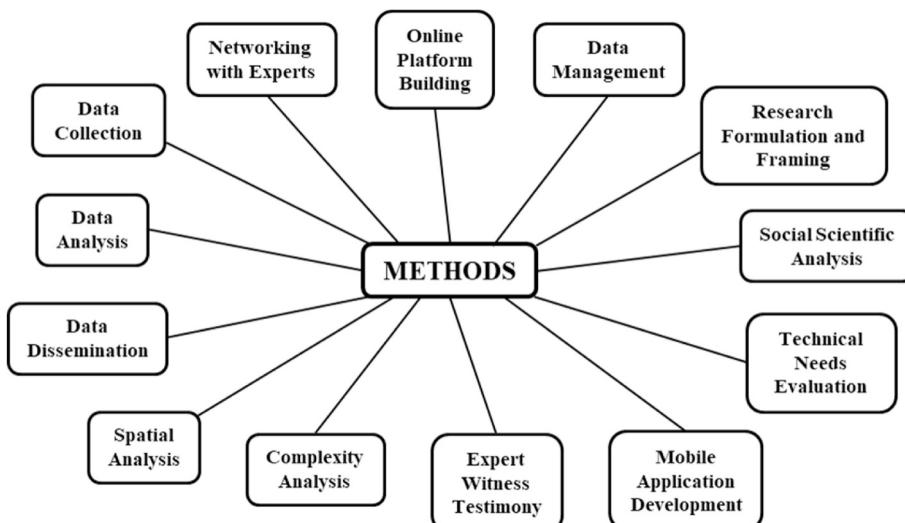


Fig. 3. Engineering and scientific challenges categorized by generalized methods of work and activity.

There's huge reclamation questions, particularly with coal ... How can it be cleaned up in a way that actually provides economic benefit as well as reduces the harm it's creating?⁴

This informant is drawing our attention to the legacy of fossil fuel infrastructure that is making it difficult to keep the community safe. EJOS hope to find engineers and scientists who can help solve these issues, but also recognize that any solution must be equitable and help provide economic security for these communities as they cope with the shock of transitioning to a new way of life.

Clean and Just Energy Transitions: The topic of transitioning to a clean and just energy system also came up repeatedly in our interviews. We asked informants to provide us with examples of transformational projects in their community that would be useful to talk about with scientists and engineers. The president of one EJO that focuses on educating the public about a range of environmental issues excitedly explained that:

Yes! Any kind of alternative energy projects could be piloted here. We need to ... use those abandoned lands as brownfields for

solar panel farms. We need to change the laws in the state to allow for community solar, so that people can benefit ... So, you know, we've got a lot of work to do, especially on the legislative level, but also on the ideological level. The culture is very resistant to change, and very resistant to scientific evidence.⁵

It is important to include this long quote because here we can start to see that interest in technical expertise is interdisciplinary, including lawyers and social scientists who can help the public understand the importance of scientific evidence. It may be that expertise beyond a photovoltaic system engineer would be helpful to an EJO that wants to create a solar farm on an abandoned brownfield.

Environmental Restoration: Brownfields and Superfund sites are widespread across the US, with recent estimates suggesting more than 450,000 brownfields⁶ and close to 1400 Superfund sites scattered across the US.⁷ In spite of how widespread issues related to land pollution are, one informant suggested that it was still difficult to find engineering or

⁴ Interview #40 conducted on Dec. 6th, 2018.

⁵ Interview #10 conducted on Oct. 2nd, 2018.

⁶ <https://www.epa.gov/brownfields/overview-epas-brownfields-program>.

⁷ <https://www.epa.gov/superfund/superfund-national-priorities-list-npl>.

scientific experts to help envision environmental restoration:

It is so hard for us to help groups find experts who are willing to help them evaluate different cleanup options and clarify their goals related to the cleanup and develop their vision for kind of the best possible scenario. I don't know why that is, but it's been like almost entirely impossible for us to find expert help for communities that need that type of assistance.⁸

This quote suggests that there might not be enough environmental remediation and restoration experts in the local community to go around and/or those who could provide expertise are difficult to connect with.

Indigenous Communities: Some EJOS are also engaged with indigenous communities in the United States. One organization in New England described the EJ struggles faced by indigenous communities. When we specifically asked about the technical challenges they faced, the founder of this EJO explained:

doing a survey across the country is one thing, but partnering with a group that has a reservation or is working with indigenous groups about land issues and environmental stuff, to me that's powerful.⁹

In other words, EJOS working with indigenous communities do see a place for technical expertise in their work, but they want to see more equitable co-laborations with direct partnerships. It may be that our use of snowball sampling resulted in a dearth of EJOS working with indigenous communities in our study. Regardless, we see a need for future research to look more closely at the interests of indigenous communities and how they might be different from other organizations in the United States.

4.2.2. Methods to support EJO strategies

In discussing EJOS challenges as a function of topical areas, our interviewees often brought up engineering and scientific methods and approaches that could support the strategy used by their EJO. Often-times, interviewees imagined these methods and approaches as being useful in carrying out the strategy of the EJO. While the particularities of deploying these methods are different for different kinds of engineers and scientists, conceptually, they are the same regardless of engineering or scientific expertise area.

Data Collection: EJOS recognize that scientific data is an important source of support for their strategies to resolve environmental injustice issues, particularly given the role of data in regulatory decision-making (Jasanoff, 1990). EJOS also recognize that oftentimes, data important to their cause might not exist, and that those data need collecting. As an executive director of one organization that developed projects on exposure to environmental pollution in New England explained, they would like to collaborate with more experts but:

... some groups need to take matters into their own hands and do their own testing ... we've, we also often partnered with citizen science organizations ... we've brought them in to train community groups how to do their own air testing.¹⁰

EJOS know that even without engineers and scientists it is still possible for communities to begin their own data collection under the concept of "citizen science" (Bonney et al., 2009). Communities may desire to collaborate more with experts but if none are available they might organize to collect data that speaks to their experiences. However, EJOS are also well aware of the politics of scientific data collection, including data standards for regulatory decisions that are difficult to meet.

Data Dissemination: One key method mentioned repeatedly by the organizations in our study is finding more expedient ways to engage

with the public through proper data dissemination. A very straightforward point about dissemination was made by a director working for an EJO focused on education around the Appalachian Plateau: "You know, relying on journalists to interpret studies, there's just not enough of them to go around." From the director's perspective, there is not just an interest in experts on science and engineering, but also people who know how to explain the complexities of these challenges to the general public. Later on, when discussing their goals in the coming years he explained that they also want to collaborate with those who can interpret the large number of scientific studies already published:

... like with mountaintop removal, we have links to many of the studies and we don't have them all disseminated. We had an intern that was working on disseminating some of them ... we have just like a list of all the studies about mountaintop removal and human health.¹¹

While some EJOS may disseminate scientific information to the public simply by creating lists of published studies, here we can see that the director of this organization feels inundated with data relevant to the issue that is affecting their community. They also could use interpretations of that data in order to improve dissemination.

Data Analysis: EJOS also recognize the necessity to analyze existing and new data to better understand the EJ challenges they face. For an EJO that is connected to a larger nationwide network focused on education about energy justice issues, data analysis needs to be not only accurate, but timely. As a coordinator for the organization explained, residents in the community they work with want someone to analyze how much pollution will be emitted from a factory that received an air quality permit and what it means for their health:

[I]t would be really helpful to work with somebody that could come up with those answers quickly. As much as I love doing that kind of research and kind of digging in and finding those things out, ... it can be really challenging ... to do all the other aspects of our work whenever we have to do research in areas that we don't specialize in.¹²

Even though this informant is connected to a nationwide network that we would assume has more access to scientific expertise, they still feel that their organization would benefit from being connected to a wider network of scientists and engineers who could provide expert analysis faster and more accurately than they could conduct that analysis themselves. Collaborating with technical experts is necessary for EJOS because without it they have to sacrifice other aspects of their work like engaging directly with the community. Here we should emphasize that while those working in EJOS may be perfectly capable of understanding and utilizing science and engineering, or developing that capability, they are also very aware that this expertise already exists and it would save them a great deal of time to collaborate with those experts rather than working on their own.

Spatial Analysis: A good example of where expertise could be beneficial to an EJO working throughout the state of New York is in the field of mapping and geographic information systems (GIS). While this EJO tends to engage in collaborative projects, they also want to work with cities that can demonstrate the spatial relationships that structure the injustices in the communities where they work. As one program manager for the organization said:

Those are the same exact neighborhoods that are experiencing the concentration of brownfield issues, lack of wealth, high concentrations of poverty, high concentrations of preventable health issues related to air quality, water quality, exposure to environmental contaminants, things like that. So, the GIS capacity is tremendous.

⁸ Interview #19 conducted on Oct. 17th, 2018.

⁹ Interview #36 conducted on Nov. 30th, 2018.

¹⁰ Interview #19 conducted on Oct. 17th, 2018.

¹¹ Interview #11 conducted on Oct. 3rd, 2018.

¹² Interview #22 conducted on Oct. 18th, 2018.

And cities just vary in their capacity to do GIS. Some have a department. Some have one guy or one woman.¹³

EJOS see spatial analysis and other visualization tools as powerful modes of expression that are capable of changing the minds of people in positions of authority. They recognize that GIS requires technical expertise and if done properly could be instrumental in promoting a successful project.

Online Platform Building The final method to discuss touches on the benefit for organizations to create an online presence to support EJ activities. While EJOS might be good at engaging with communities, they feel less comfortable trying to reach a global audience. There is an interest in working with engineers and coders to help them build a website that would make the story of their struggle easily accessible but perhaps also allow others beyond the community to learn from their experiences. For instance, the executive director for the organization that developed projects on exposure to environmental pollution in New England explained how they are sharing their experiences so that other groups:

don't have to be as reliant on actual individual experts. So, one example is our partnership with TERC,¹⁴ a math and science education organization, where together we developed our statistics for action projects ... We have a lot of [resources] on our website, but there's also a national website that's up called sfa.terc.edu.¹⁵

Once again, we can see how some EJOS are engaging very directly with the science and engineering that is behind the injustice they are fighting. In fact, here they are innovating digital resources that will ensure other EJOS are not so dependent on finding experts with which to collaborate. The fact they built this website demonstrates quite clearly that EJOS recognize the importance of science and engineering and that there is currently a dearth of experts who can or are willing to support their organization.

Networking with Experts: Some interviewees provided us with suggestions about what could be done to help resolve the disconnect between community groups and engineers and scientists. Many informants described how important it would be for engineers and scientists to develop a method for networking experts together with EJOS. Similar with the method of Online Platform Building, interviewees suggested these solutions would require support from engineers and scientists familiar with computer programming. For instance, a program manager promoting climate justice issues through the media around Washington D.C. mentioned an online networking application may be the best way to solve this disconnect.

Eventually our hope is ... to develop ... a platform to connect communities with those technical resources, whether that be an expert in computer systems, computer science software, those kinds of things, or like, environmental monitoring experts, etc.¹⁶

Our interviewees recognized that there are existing social networking platforms for academics (i.e. academia.edu, ResearchGate), but they are not amenable to supporting collaborations with organizations outside of academia. In other words, the development of methods for networking experts with EJOS could be a powerful way to solve the engineering and scientific challenges discussed in this article.

5. Discussion

As demonstrated by the success of projects implemented by AGU's Thriving Earth Exchange, AAAS's On-Call Scientists, and Community

Engineering Corps, engineering and scientific projects to address EJ challenges in service of underserved communities and EJOS can be scoped and executed with measurable impact. We are motivated to understand how engineers and scientists can collaborate with EJOS and address EJ challenges at larger scales. This is because, as our interviews suggest, there is widespread desire on the part of EJOS to collaborate with engineers and scientists, and, following Boucher et al. (2020), we know there is reciprocal desire on the part of engineers and scientists. Our exploratory research approach and findings are important to laying the groundwork for this larger effort.

Our study systematically analyzed the perspectives of EJOS that use strategies of engaging with policy, media, education, legal, and projects. Our study also for the first time brings together the various themes of topical areas and methods mentioned by the EJOS in our study, which reflects narrower studies of EJOS on energy, climate, water, and land uses (Njue et al., 2019; EWB-USA, 2020; Schefidek et al., 2020); environmental impacts and monitoring (Conrad and Helfley, 2011), conservation and GIS mapping (Kuflkenberg and Kasperowsky, 2016), and data management (Sharpe and Conrad, 2006; Newman et al., 2011). Broadly, the results captured in Fig. 2 highlight how EJOS think about the topical areas in expansive and intersectional ways.

What is unique from our analysis is what we find regarding how different strategies taken by EJOS relate to the different ways in which engineering and science might be useful for them (see Table E1 in Appendix E). For example, a large majority of the EJOS mentioned a key engineering/scientific challenge they faced was data collection. However, while 60% of the organizations employing a legal strategy wanted to collaborate with more expert witnesses to testify for them, surprisingly none of the policy-oriented organizations mentioned looking for expert witnesses but instead were mainly concerned about data collection. Our sample size of these different strategy-oriented organizations is somewhat small, and thus our findings stimulate future work on why policy-oriented organizations seem singularly focused on data collection at the expense of recruiting more expert witnesses.

Further study could illuminate more robust trends in the kinds of engineering and scientific expertise and skills necessary as a function of EJO strategies. We note that the results captured in Fig. 3 provide evidence that EJOS can benefit from a multitude of engineering and scientific methods being at their disposal. In short, Figs. 2 and 3, E1, and E2 provide a framework for us to understand what kinds of engineering and scientific expertise might be helpful to different kinds of EJOS. As mentioned below, further research can leverage the framework provided by these exploratory findings.

It has been said that EJOS engage with scientific and technical experts because of a perceived need to have increased credibility in order for their concerns over environmental injustice to be resolved by regulatory change (Ottfinger, 2010). This was not a common concern among the organizations in our study. For most of the EJOS we interviewed, technical expertise was primarily focused on completing a task or supporting a project that would improve conditions in their communities. This could be the result of our sampling, but regardless, this finding is important, because most previous studies have focused on a small number of EJOS who may only engage in a single strategy to solve environmental injustice in their community. This means there is still ample room to innovate ways in which engineers and scientists could provide benefit by collaborating with a wider variety of EJOS—and in the words of Boucher et al. (2020), help create a *field of collaboration*—and to do so in ways that effectively engage with asymmetric power relations between engineers, scientists, and EJOS, and the differential valuation of the technical knowledge that engineers and scientists have versus the cultural and local knowledge EJOS have. (To this point, while the scope of this paper does not allow for us to use all of the data we gathered and analyzed through our interviews, we simply highlight here that many EJOS shared stories with us about how previous collaborations with engineers and scientists were not successful.) Overall, we tend to agree with Fernandez-Bou et al. (2021) that

¹³ Interview #16 conducted on Oct. 16th, 2018.

¹⁴ TERC originally stood for Technical Education Research Centers, but the company has legally changed their name to the acronym.

¹⁵ Interview #19 conducted on Oct. 17th, 2018.

¹⁶ Interview #1 conducted on Aug. 28th 2018.

scientific research is most effective at solving environmental injustice if it is able to leverage the local knowledge of residents living in the community.

While our sampling size and approach reflects the exploratory nature of our study, the themes that have emerged from our research lay the foundation for future work that can take at least three paths: (1) More quantitative depth into particular kinds of EJ groups (an example of a research question could be: What are the data collection needs of EJOs that address air quality challenges across the US?); (2) A broader quantitative survey that could provide insight into the relative importance of each of the themes that have emerged (an example of a research question could be: According to EJOs addressing water quality across the US, what are the most important activities and skills engineers and scientists bring to collaborations?); and (3) Understanding the transferability of engineering and scientific skills across topical areas identified by EJOS. For example, it might absolutely be the case that a water quality engineer with expertise in data collection and analysis can quickly learn and address the data collection and analysis needs of an EJO addressing fossil fuel infrastructure. These paths together can continue to build an action-oriented understanding of how engineers and scientists can systematically help address EJ challenges at the scale that these challenges exist.

6. Conclusions

EJ challenges are widespread, and will likely not be adequately addressed at scale with scientific and technical interventions and collaborations that are piecemeal and focused on highly localized contexts. We envision the building of strategic and systematic efforts to expand the impact of engineering and scientific work done to address these challenges that are the *raison d'être* of EJOS. Such efforts may be motivated by policy developments that may themselves be outcomes of the efforts of EJOS. Our exploratory research builds on the history of EJOS collaborating with engineers and scientists to address EJ challenges, and pushes the possibilities for more of such work by creating a framework to guide more systematic research and action to address the engineering and scientific challenges of EJOS. The methods we identify can help inform how programs run by professional societies and non-profits, like AAAS, AGU, and Community Engineering Corps, can begin to classify the projects undertaken under their auspices, and create more clarity for engineers and scientists on how more of them can be involved in such work.

Facilitated by increasing their ability to engage across asymmetric power relations with EJOS, investments by engineers and scientists in the methods and the topical areas mentioned through our interviews can serve EJOS across strategy type. Through collaborative work with EJOS that leverage the skills perspectives, and knowledge that engineers and scientists have deployed readily for decades in more typical contexts for them, engineers and scientists may also learn to improve their scientific and environmental communications to center equity and justice (Poflik and Diver, 2020), thereby increasing the social relevance of technical work. Importantly, by scoping the scientific and engineering challenges of EJOS as we have done here, we ensure the transferability of knowledge gained, so that other EJOS and by extension EJ communities facing similar challenges can benefit.

Author statement

Conceptualization: Guerrero, Levenda, Karwat, Data curation: Macfias, Guerrero, Levenda, Schmiedt, Boucher, Formal analysis: Macfias, Guerrero, Schmiedt, Funding acquisition: Karwat, Investigation: Levenda, Methodology: Macfias, Guerrero, Levenda, Schmiedt, Boucher, Project administration: Schmiedt, Karwat, Supervision: Karwat, Validation: Macfias, Guerrero, Schmiedt, Visualization: Schmiedt, Karwat, Roles/Writing - original draft: Macfias, Guerrero, Schmiedt, Writing - review & editing: Schmiedt, Karwat.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgements

First and foremost, we would like to thank all of the participants working in environmental justice organizations across the US for taking the time to talk with us. We thank the reviewers for their helpful comments, which led to the strengthening of the manuscript. This study was partially supported by an EAGER Germantion Grant from the National Science Foundation (Award #: 2016108) titled: Project Confluence: Engineering and Science to Address Community Needs.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.jclepro.2022.134463>.

References

- AAAS (American Association for the Advancement of Science), 2020. On-call scientists. <https://oncallscientists.aaas.org/>. (Accessed 14 October 2021).
- Abrams, J., Daviss, E.J., Elliston, A., et al., 2016. Community-based Organizations in the US West: Status, Structure, and Activities. Ecosystem Workforce Program, University of Oregon.
- AGU (American Geophysical Union), 2020. All projects. In: Thriving Earth Exchange. <https://thriveingearthexchange.org/projects/>. (Accessed 14 October 2021).
- Aspinwall, M., 2021. Legal mobilization without resources? How diff society organizations generate and share alternative resources in vulnerable communities. *J. Law Soc.* 48, 202–225.
- Baptista, A.I., Jesudason, S., Greenberg, M., Perovich, A., 2022. Landscape Assessment of the US Environmental Justice Movement: Transformative Strategies for Climate Justice. *Environmental Justice*.
- Berry, J., Aron, D., 2001. A Voice for Nonprofits. Brookings Institution Press, Washington DC.
- Bifielder, A.R., 2018. Professional social responsibility in engineering. In: Ingrid Muenstermann. <https://doi.org/10.5772/intechopen.73785>. Social Responsibility. IntechOpen.
- Bilum, S.D., Barnes, A., Huggins, K., Haanstad, E., 2018. Practicing anthropology and "ethnographic engineering" in a community-based ecological project. *Pract. Anthropol.* 40, 26–28.
- Bonney, R., Cooper, C.B., Dickinson, J., et al., 2009. Citizen science: a developing tool for expanding science knowledge and scientific literacy. *Bioscience* 59, 977–984.
- Boucher, J.L., Levenda, A.M., Morales-Guerrero, J., et al., 2020. Establishing a field of collaboration for engineers, scientists, and community groups: incentives, barriers, and potential. *Earth's Future* 8, 1–19.
- Brooks, J., Mccluskey, S., Turley, E., King, N., 2015. The utility of template Analysis in qualitative psychology research. *Qual. Res. Psychol.* 12, 202–222.
- Brown, P., 1992. Popular epidemiology and toxic waste contamination: lay and professional ways of knowing. *J. Health Soc. Behav.* 33, 267–281.
- Bryant, B., 1995. Environmental Justice: Issues, Policies, and Solutions. Island Press, Washington D.C.
- Bullock, R.D., 1990. Dumping in Dixie: Race, Class, and Environmental Quality. Westview Press, Boulder.
- Carley, S., Engle, C., Konisky, D.M., 2021. An analysis of energy justice programs across the United States. *Energy Pol.* 152, 112219.
- Carlson, S., 2003. Old Computers Never Die—They Just Cost Oceans Money in New Ways." *Chronicle of Higher Education*. February 14.
- CEC (Community Engineering Corps) (2019) About Us. <https://www.communityengineeringcorps.org/about-us/>. Accessed 5 October 2022.
- Clifton, W.J., 1994. Executive Order 12898. Federal actions to address environmental justice in minority populations and low-income populations. *Fed. Regist.* 59, FR7629.
- Clark, L.P., Maffet, D.B., Marshall, J.D., 2014. National patterns in environmental injustice and fine-grained outdoor NO₂ air pollution in the United States. *PLoS One* 9 (4), e94431.
- Conrad, C.C., Hifichey, K.G., 2011. A review of citizen science and community-based environmental monitoring: issues and opportunities. *Environ. Monit. Assess.* 176, 273–291.

- Davies, E.J., Hajjar, R., Charnley, S., et al., 2020. Community-based forestry on federal lands in the western United States: a synthesis and call for renewed research. *For. Pol. Econ.* 111, 102042.
- EJOLT (Environmental Justice Organizations International and Trade), 2020. Mapping environmental justice | EJAtlas. In: Environmental Justice Atlas. <https://ejatlas.org/>. (Accessed 16 November 2020).
- EWB-USA (Engineers Without Borders USA), 2020. Community engineering Corps (CECorps) projects. In: Dig Deeper | Our Impact. <https://app.powerbfi.com/view?r=eyJrJlofINGRflZDlyMWYtMTYxNC00NDFlkZWtNDY2NmJzTCyNGZfllfiwfIdC6ljkwNTflfNmUzLTxzYzgtNGQzYS05ZDNfLWU2YTFKyzQODDE3NSlsImMfOjF9>. (Accessed 4 November 2021).
- Fernandez-Bou, A.S., Ortíz-Partida, J.P., Dobbins, K.B., Flores-Landeros, H., Bernacchi, L.A., Medellín-Azuara, J., 2021. Underrepresented, understudied, underserved: gaps and opportunities for advancing justice in disadvantaged communities. *Environ. Sci. Pol.* 122, 92–100.
- Forsyth, M., Cleland, D., Tepper, F., Holfingworth, D., Soares, M., Nafim, A., Wifflin, C., 2021. A future agenda for environmental restorative justice? The International Journal of Restorative Justice 4 (1), 17–40.
- Fricke, S., 2011. Who are the experts of environmental health justice? In: Ottfing, G., Cohen, B.R. (Eds.), *Technoscience and Environmental Justice: Expert Cultures in a Grassroots Movement*. MIT Press, Cambridge, MA, pp. 21–40.
- Gale, N.K., Heath, G., Cameron, E., et al., 2013. Using the framework method for the analysis of qualitative data in multi-disciplinary health research. *BMC Med. Res. Methodol.* 13, 117. <https://doi.org/10.1186/1471-2288-13-117>.
- Glaser, B.G., Strauss, A.L., 1967. *The Discovery of Grounded Theory: Strategies for Qualitative Research*. Aldine, Chicago.
- Irwin, A., 1995. *Citizen Science: A Study of People, Expertise and Sustainable Development*. Routledge, New York, NY.
- Jasanoff, S., 1990. *The Fifth Branch: Science Advisers as Policymakers*. Harvard University Press, Cambridge, MA.
- Johnston, J.E., Juarez, Z., Navarro, S., Hernandez, A., Gutschow, W., 2020. Youth engaged participatory air monitoring: a 'day in the life' in urban environmental justice communities. *Int. J. Environ. Res. Publ. Health* 17 (1), 93.
- Kinchy, A., 2017. Citizen science and democracy: participatory water monitoring in the Marcellus shale fracking boom. *Sci. Cult.* 26 (1), 88–110.
- Kreger, M., Sargent, K., Arons, A., Standfish, M., Brindis, C.D., 2011. Creating an environmental justice framework for policy change in childhood asthma: a grassroots to treetops approach. *Am. J. Publ. Health* 101, S208–S216.
- Kuffner, C., Kasperowski, D., 2016. What is citizen science? – a scientometric meta-analysis. *PLoS One* 11, e0147152.
- Lambrinidou, Y., 2016. On listening, science, and justice: a call for exercising care in what lessons we draw from life. *EnvIRON. Sci. Technol.* 50 (22), 12058–12059.
- Lee, C., 2021. Evaluating environmental protection agency's definition of environmental justice. *EnvIRON. Justice* 14 (5), 332–337.
- Littler, P.C., Lucier, C., 2017. Global electronic waste, third party certification standards, and resisting the undoing of environmental justice policies. *Hum. Organ.* 76, 204–214.
- Lubchenco, J., Rapley, C., 2020. Our moment of truth: the social contract redefined? *EnvIRON. Res. Lett.* 15 (11), 110201.
- Marshall, A.M., 2010. Environmental justice and grassroots legal action. *EnvIRON. Justice* 3, 147–151.
- Martinez-Alier, J., Anguelovski, I., Bond, P., et al., 2014. Between activism and science: grassroots concepts for sustainability coined by environmental justice organizations. *Journal of Political Ecology* 21, 19–60. doi.org/10.2458/v21i1.21124.
- Mulholland, K., 2021. Causes and effects of lead in water. <https://www.nrdc.org/stories/causes-and-effects-lead-water>. (Accessed 23 November 2021).
- Newman, G., Graham, J., Craft, A., Lafituri, M., 2011. The art and science of multi-scale citizen science support. *Ecol. Inf.* 6, 217–227.
- National Integrated Heath Health Information System (NIHHIS), 2021. Extreme heat vulnerability map tool. noaa.gov. <https://nlihhs.cpo.noaa.gov/vulnerability-mappin> g. (Accessed 23 November 2021).
- Njue, N., Stenfert Kroese, J., Graf, J., et al., 2019. Citizen science in hydrological monitoring and ecosystem services management: state of the art and future prospects. *Sci. Total Environ.* 693, 1–16.
- Ottfing, G., 2010. Buckets of resistance: standards and the effectiveness of citizen science. *Sci. Technol. Hum. Va.* 35, 244–270.
- Ottfing, G., Cohen, B.R. (Eds.), 2011. *Technoscience and Environmental Justice: Expert Cultures in a Grassroots Movement*. MIT, Cambridge, MA.
- Pandya, R.E., 2014. Community-driven research in the anthropocene. In: Dahlbotten, D., Roehrig, G., Hamilton, P. (Eds.), *Future Earth: Advancing Civic Understanding of the Anthropocene*. American Geophysical Union, Hoboken, NJ, pp. 53–66.
- Partelow, S., Winkler, K.J., Thaler, G.M., 2020. Environmental non-governmental organizations and global environmental discourse. *PLoS One* 15 (5), e0232945.
- Pezzullo, P.C., Cox, R., 2017. *Environmental Communication and the Public Sphere*. SAGE Publications, Los Angeles.
- Perez, A.C., Grafton, B., Mohai, P., et al., 2015. Evolution of the environmental justice movement: activism, formalization and differentiation. *EnvIRON. Res. Lett.* 10 (10), 105002.
- Polk, E., Diver, S., 2020. Situating the scientist: creating inclusive science communication through equity framing and environmental justice. *Frontiers in Communication* 5, 6.
- Rios, J.M., 2015. Towards policy advocacy—activism, advocacy and political empowerment: an exploratory study on Hispanic environmental justice nonprofits. *J. Publ. Manag. Soc. Pol.* 21, 60–76.
- Schefide, A., Del Bene, D., Liu, J., et al., 2020. Environmental conflicts and defenders: a global overview. *Global EnvIRON. Change* 63, 102104.
- Schlossberg, D., 2004. Reconceptualizing environmental justice: global movements and political theories. *EnvIRON. Pol.* 13 (3), 517–540.
- Schlossberg, D., 2007. *Defining Environmental Justice: Theories, Movements, and Nature*. Oxford University Press, Oxford.
- Sharpe, A., Conrad, C., 2006. Community based ecological monitoring in nova scotia: challenges and opportunities. *EnvIRON. Monit. Assess.* 113, 395–409.
- Srivastava, A., Thomson, S.B., 2009. Framework analysis: a qualitative methodology for applied policy research. *Journal of Administration and Governance* 4, 72–79.
- Sullivan, J., Parras, J., 2008. Environmental justice and Augusto Boal's Theatre of the Oppressed: a unique community tool for outreach, communication, education and advocacy. *Theory in Action* 1, 20–39.
- Sunter, Deborah A., Castellanos, Sergio, Kammen, Daniel M., 2019. Disparities in rooftop photovoltaics deployment in the United States by race and ethnicity. *Nat. Sustain.* 2 (1), 71–76.
- Temper, L., Del Bene, D., Martinez-Alier, J., 2015. Mapping the frontiers and front lines of global environmental justice: the EJAtlas. *Journal of Political Ecology* 22, 255–278.
- Wood, D., Schneidler, R., 2006. ToxicDude.com: the Delf campaign. In: Smith, T., Sonnenfeld, D.A., Peffley, D.N. (Eds.), *Challenging the Chip: Labor Rights and Environmental Justice in the Global Electronics Industry*. Temple University Press, Philadelphia, PA, pp. 285–298.