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Abstract

Spanners for metric spaces have been extensively studied, perhaps most notably in low-
dimensional Euclidean spaces � due to their numerous applications. Euclidean spanners can be
viewed as means of compressing the

(︁
n
2

)︁
pairwise distances of a d-dimensional Euclidean space

into O(n) = Oϵ,d(n) spanner edges, so that the spanner distances preserve the original distances
to within a factor of 1 + ϵ, for any ϵ > 0. Moreover, one can compute such spanners e�ciently
in the standard centralized and distributed settings. Once the spanner has been computed, it
serves as a �proxy� overlay network, on which the computation can proceed, which gives rise to
huge savings in space and other important quality measures.

The original metric enables us to �navigate� optimally � a single hop (for any two points)
with the exact distance, but the price is high � Θ(n2) edges. Is it possible to e�ciently
navigate, on a sparse spanner, using k hops and approximate distances, for k close to 1 (say
k = 2)? Surprisingly, this fundamental question has been overlooked in Euclidean spaces, as
well as in other classes of metrics, despite the long line of work on spanners in metric spaces.

We answer this question in the a�rmative via a surprisingly simple observation on bounded
hop-diameter spanners for tree metrics, which we apply on top of known, as well as new, tree
cover theorems. Beyond its simplicity, the strength of our approach is three-fold:

� Applicable: We present a variety of applications of our e�cient navigation scheme, in-
cluding a 2-hop routing scheme in Euclidean spaces with stretch 1+ ϵ using O(log2 n) bits
of memory for labels and routing tables � to the best of our knowledge, all known routing
schemes prior to this work use Ω(log n) hops.

� Uni�ed: Our navigation scheme and applications extend beyond Euclidean spaces to
any class of metrics that admits an e�cient tree cover theorem; currently this includes
doubling, planar and general metrics, but our approach is uni�ed.

� Fault-Tolerant: In Euclidean and doubling metrics, we strengthen all our results to
achieve fault-tolerance. To this end, we �rst design a new construction of fault-tolerant
spanners of bounded hop-diameter, which, in turn, relies on a new tree cover theorem for
doubling metrics � hereafter the �Robust Tree Cover� Theorem, which generalizes the
classic �Dumbbell Tree� Theorem [Arya et al., STOC'95] in Euclidean spaces.
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1 Introduction

1.1 Background and motivation

Let MX = (X, δX) be an n-point metric space, viewed as a complete weighted graph whose weight
function satis�es the triangle inequality. For a parameter t ≥ 1, a subgraph H = (V,E′, w) of MX

(E′ ⊆
(︁
V
2

)︁
) is called a t-spanner for MX if for all u, v ∈ V , δH(u, v) ≤ t ·δX(u, v). (Here δX(u, v) and

δH(u, v) denote the distances between u and v in MX and the spanner H, respectively.) In other
words, for all u, v ∈ V , there exists a path in H between u and v whose weight (sum of edge weights
in it) is at most t · δX(u, v); such a path is called a t-spanner path and the parameter t is called the
stretch of H. Since their introduction in the late 80s [PS89, PU89a], spanners have been extensively
studied, and by now they are recognized as a graph structure of fundamental importance, in both
theory and practice.

There are a few basic properties of spanners that are important for a wide variety of practical
applications; in most applications, a subset of these properties need to be satis�ed while preserving
small stretch. Although the exact subset of properties varies between applications, perhaps the
most basic property (besides small stretch) is to have a small number of edges (or size), close to
O(n); the spanner sparsity is the ratio of its size and the size n− 1 of a spanning tree. Second, the
spanner weight w(H) :=

∑︁
e∈E′ w(e) should be close to the weight w(MST (MX)) of a minimum

spanning tree MST (MX) of the underlying metric; we refer to the normalized notion of weight,
w(H)/w(MST (MX)), as the spanner lightness. Third, the hop-diameter of a spanner should be
close to 1; the hop-diameter of a t-spanner is the smallest integer k such that for all u, v ∈ V , there
exists a t-spanner path between u and v with at most k edges (or hops). Finally, the degree of a
spanner, i.e., the maximum number of edges incident on any vertex, should be close to constant.

The original motivation of spanners was in distributed computing. For example, light and sparse
spanners have been used in reducing the communication cost in e�cient broadcast protocols [ABP90,
ABP92], synchronizing networks and computing global functions [Awe85, PU89a, Pel00], gather-
ing and disseminating data [BKR+02, VWF+03, KV02], and routing [WCT02, PU89b, ABLP89,
TZ01b]; as another example, spanners with low degree can be used for the design of compact rout-
ing schemes [ABLP90, HP00, AM04, Tal04, Sli05, AGGM06, GR08a, CGMZ16]. Since then, graph
spanners have found countless applications in distributed computing as well as various other areas,
from motion planning and computational biology to machine learning and VLSI-circuit design.

Spanners have had special success in geometric settings, especially in low-dimensional Eu-
clidean spaces. Spanners for Euclidean spaces, namely Euclidean spanners, were �rst studied by
Chew [Che86] in 1986 (even before the term �spanner� was coined). Several di�erent constructions of
Euclidean spanners enjoy the optimal tradeo� between stretch and size: (1+ ϵ) versus O(ϵ−dn), for
n-point sets in Rd [LS19]; these include Θ-graphs [Cla87, Kei88, KG92, RS91], Yao graphs [Yao82],
path-greedy spanner [ADD+93, CDNS92, NS07], and the gap-greedy spanner [Sal92, AS97]. The
reason Euclidean spanners are so important in practice is that one can achieve stretch arbitrarily
close to 1 together with a linear number of edges (ignoring dependencies on ϵ and the dimension
d). In general metrics, on the other hand, a stretch better than 3 requires Ω(n2) edges, and the
best result for general metrics is the same as in general graphs: stretch 2k − 1 with O(n1+1/k)
edges [PS89, ADD+93]. Moreover, Euclidean spanners with the optimal stretch-size tradeo� can be
built in optimal time O(n log n) in the static centralized setting, and they can be distributed in the
obvious way in just one communication round in the Congested Clique model.

Driven by the success of Euclidean spanners, researchers have sought to extend results obtained
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in Euclidean metrics to the wider family of doubling metrics.1 The main result in this area is
that any n-point metric of doubling dimension d admits a (1 + ϵ)-spanner with both sparsity and
lightness bounded by O(ϵ−O(d)) [GGN04, CGMZ16, CG09, HPM06, Rod12, GR08a, GR08b, Smi09,
ES15, CLNS15, Sol14, Got15, BLW17, FS20].2 Moreover, here too there are e�cient centralized
and distributed algorithms, also under some practical restrictions such as those imposed by Unit
Ball Graphs [DPP06b, DPP06a, EFN20, EK21].

A fundamental drawback of spanners. Di�erent spanner constructions suit di�erent needs
and applications. However, there is one common principle: Once the spanner has been computed,
it serves as a �proxy� overlay network, on which the computation can proceed, which gives rise to
huge savings in a number of quality measures, including global and local space usage, as well as in
various notions of running time, which change from one setting to another; in distributed networks,
spanners also lead to additional savings, such as in the message complexity.

Alas, by working on the spanner rather than the original metric, one loses the key property of
being able to e�ciently �navigate� between points. In the metric, one can go from any point to
any other via a direct edge, which is optimal in terms of the weighted distance and the unweighted
(or hop-) distance. However, it is unclear how to e�ciently navigate in the spanner: How can we
translate the existence of a �good� path into an e�cient algorithm �nding it?

Moreover, usually by �good� path we mean a t-spanner path, i.e., a path whose weight approxi-
mates the original distance between its endpoints � but a priori the number of edges (or hops) in the
path could be huge. To control the hop-length of paths, one can try to upper bound the spanner's
hop-diameter, but naturally bounded hop-diameter spanners are more complex than spanners with
unbounded hop-diameter, which might render the algorithmic task of e�ciently �nding good paths
more challenging. We stress that most existing spanner constructions have inherently high hop-
diameters. In particular, any construction with constant degree must have at least a logarithmic
hop-diameter, and in general, if the degree is ∆, then the hop-diameter is Ω(log∆ n).

In Euclidean spaces, the Θ-graph [Cla87, Kei88, KG92, RS91] and the Yao graph [Yao82] are
not only simple spanner constructions, but they also provide simple navigation algorithms, where
for any two points p and q, one can easily compute a (1 + ϵ)-spanner path between p and q. Alas,
the resulting path may have a hop-length of Ω(n), and the query time is no smaller than the path
length. There is a (1+ ϵ)-approximate distance oracle for low-stretch spanners [GLNS08], and while
it achieves constant query time, it does not report the respective paths, whose hop-length can be
Ω(n). In doubling metrics, there are (1+ ϵ)-approximate distance oracles with constant query time
[HM06, BGK+11]. In [BGK+11] the respective paths are not part of a sparse overlay network (such
as a spanner); in other words, the union of paths returned by the distance oracle of [BGK+11]
may comprise a spanner of Θ(n2) edges. Using [HM06], one can return paths that are part of a
sparse spanner, but their hop-length is Θ(log ρ), where ρ � the metric aspect ratio, can be arbitrarily
large. This is where bounded hop-diameter spanners may come into play � e�cient constructions
are known in Euclidean and doubling metrics [CG09, Sol13]. In low-dimensional Euclidean spaces,
it is possible to build a (1 + ϵ)-spanner with hop-diameter 2 and O(n log n) edges. In general,
for any k ≥ 2, one can get hop-diameter k with O(nαk(n)) edges, in optimal O(n log n) time
[Sol13]; the function αk(n) is the inverse of a certain function at the ⌊k/2⌋th level of the primitive

1The doubling dimension of a metric is the smallest d s.t. every ball of radius r for any r in the metric can be
covered by 2d balls of radius r/2. A metric space is called doubling if its doubling dimension is constant.

2In the sequel, for conciseness, we shall sometimes omit the dependencies on ϵ and the dimension d.
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recursive hierarchy, where α0(n) = ⌈n/2⌉, α1(n) = ⌈
√
n⌉, α2(n) = ⌈log n⌉, α3(n) = ⌈log log n⌉,

α4(n) = log∗ n, α5(n) = ⌊12 log
∗ n⌋, etc. (For k ≥ 4, the function αk is close to log with ⌊k−2

2 ⌋
stars.)

Two points on the tradeo� curve between hop-diameter k and size O(nαk(n)) deserve special
attention: (1) k = 4 vs. O(n log∗ n) edges; in practice log∗ n ≤ 10, i.e., one can achieve hop-
diameter 4 with e�ectively O(n) edges. (2) k = O(α(n)) vs. O(nαk(n)) = O(n) edges, where α
is a very slowly (more than log∗) growing function; so to achieve a truly linear in n edges, one
should take a hop-diameter of O(α(n)) (which is e�ectively a constant). Refer to Section 2.2 for
the formal de�nitions of the functions αk and α. In some applications where limiting the hop-
distances of paths is crucial, such as in some routing schemes, road and railway networks, and
telecommunication, we might need to minimize the hop-distances; for example, imagine a railway
network, where each hop in the route amounts to switching a train � how many of us would be willing
to use more than, say, 4 hops? Likewise, what if each hop amounts to traversing a tra�c light,
wouldn't we prefer routes that minimize the number of tra�c lights? In such cases, the designer
of the system, or its users, might not be content with super-constant hop-distances, or even with
a large constant, and it might be of signi�cant value to achieve as small as possible hop-distances.
Motivated by such practical considerations, we are primarily interested in values of hop-diameter k
that �approach� 1, mainly k = 2, 3, 4, as there is no practical need in considering larger values of k
(again, O(nα4(n)) = O(n log∗ n) edges is e�ectively O(n) edges).

One can achieve the same result, except for the construction time, also for doubling metrics.
However, as mentioned, the drawback of bounded hop-diameter spanner constructions is that they
are far more complex than basic spanners; hence, although there exist k-hop t-spanner paths between
all pairs of points, the crux is to �nd such paths e�ciently.

While the original metric enables us to navigate optimally � a single hop (for any two points)
with the exact distance, the price is high � Θ(n2) edges. The following question naturally arises.

Question 1.1. Can one e�ciently navigate, on a sparse spanner, using k hops and approximate
distances, for k approaching 1? In particular, can we achieve 2, 3 or 4 hops on an o(n2)-sized
spanner in Euclidean or doubling metrics?

Surprisingly, despite the long line of work on spanners in Euclidean and doubling metrics, Ques-
tion 1.1 has been overlooked. By �e�ciently navigate� we mean to quickly output a path of small
weight, where ideally: (1) �quickly� means within time linear in the hop-length of the path, and (2)
�small weight� means that the weight of the path would be larger than the original metric distance
by at most the stretch factor of the underlying spanner.

Clearly, Question 1.1 can be asked in general, for any class of metrics. To the best of our
knowledge, this fundamental question was not asked explicitly before. For general graphs, the
classic Thorup-Zwick distance oracle [TZ01a] reports (2ℓ− 1)-approximate distance queries in O(ℓ)
time, using a data structure of expected size O(ℓn1+1/ℓ); it is immediate that their distance oracle,
when applied to metric spaces, can report 2-hop paths of stretch 2ℓ− 1 in query time O(ℓ), which
are all part of the same (2ℓ − 1)-spanner with size O(ℓn1+1/ℓ). The following question is copied
from [MN06]:

�Since for large values of distortion (i.e., stretch) the query time of the Thorup-Zwick oracle
is large, the problem remained whether there exist good approximate distance oracles whose query
time is a constant independent of the distortion (i.e., in a sense, true "oracles")�. Mendel and
Naor [MN06] gave two distance oracles with O(1) query time and stretch of 128ℓ (the stretch was
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improved later to 16ℓ [NT12]), the �rst has size O(n1+1/ℓ) and the respective paths can use any edge
of the underlying metric and may thus form a network of size Ω(n2), whereas the second has size
O(n1+1/ℓ · ℓ) and the respective paths have hop-lengths Θ(log ρ). Wul�-Nilsen [Wul13] improved
the query time of the Thorup-Zwick distance oracle [TZ01b] to O(log ℓ). Using the Mendel-Naor
distance oracle [MN06], Chechik [Che14, Che15] showed how to improve query time of [TZ01b] to
O(1), but this approach su�ers from the same drawback � the respective paths may have hop-
lengths Θ(log ρ). Mendel-Naor question can thus be strengthened as:

Question 1.2 (Strengthening Mendel-Naor question [MN06]). Is there a good approximate distance
oracle for general metric spaces that can report within constant time a constant-hop small-stretch
path?

Interestingly, for planar and minor-free graphs, it is immediate that the respective distance
oracles ([Tho04, KKS11, AG06]), when applied to the respective metrics, can provide 2-hop paths
within constant query time.

Related work (in a nutshell). Thorup [Tho92] introduced the problem of diameter-reducing
shortcuts for digraphs; the goal is to �nd a small subset of edges taken from the transitive closure
of a digraph so that the resulting digraph has small hop-diameter. Cohen [Coh00] introduced the
notion of hopsets; informally, an hopset H is an edge set that, when added to a graph G, provides
small-stretch small-hop paths between all vertex pairs. (See [BP20, KP22] and references therein
for details.) There are also various other related problems, such as low-congestion shortcuts [GH16,
GH21, KP21]. For all these problems, the focus is on achieving a graph structure in which there
exist �good� paths, i.e., with small hop-length and possibly additional useful properties, between
vertex pairs in the graph; the existence of such paths found a plethora of applications in distributed,
parallel, dynamic and streaming algorithms, such as to the computation of approximate shortest-
paths, DFS trees, and graph diameter [Ber09, Nan14, MPVX15, HKN18, HL18, GP17, LP19].
However, to the best of our knowledge, the computational problem of e�ciently reporting those
paths � which is the focus of our work � has not been the focus of any prior work.

1.2 Our contribution

A key contribution of this work is a conceptual one, in (1) realizing that it is possible to e�ciently
navigate on a much sparser spanner than the entire metric space, and (2) unveiling some of applica-
bility of such a navigation scheme. We start by considering tree metrics; a tree metric is a metric for
which the distance function is obtained as the shortest-path distance function of some (weighted)
tree. For any tree metric, when we relax the navigation requirement to use only k = 2 hops (instead
of a single hop as in the original metric), we can navigate on a spanner of size Θ(n log n), using 2
hops and stretch 1. If we relax the hop-length requirement a bit more, to k = 3, we can navigate on
a yet sparser spanner, of size Θ(n log log n). In general, our navigation scheme achieves the same
tradeo� between hop-diameter and size as the 1-spanner of Solomon [Sol13]. Our result for naviga-
tion on trees is stated in the following theorem (proved in Section 3.1); the stretch bound is 1 and
one cannot improve the tradeo� between hop-diameter k and size Θ(nαk(n)), due to lower bounds
by [AS87] and [LMS22] that apply to 1-spanners and (1+ϵ)-spanners for line metrics, respectively.

Theorem 1.1. Let MT be any tree metric, represented by an n-vertex edge-weighted tree T , let
k ≥ 2 be any integer, and let GT = (V (T ), E) be the 1-spanner for MT with hop-diameter k and
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O(nαk(n)) edges due to [Sol13]. Then we can construct in time O(nαk(n)) a data structure DT

such that, for any two query vertices u, v ∈ V (T ), DT returns a 1-spanner path in GT (which is also
a shortest path in MT ) between u and v of hop-length ≤ k in O(k) time.

The runtime of the 1-spanner construction for tree metrics of [Sol13] is O(nαk(n)), hence the
data structure provided by Theorem 1.1 can be built from scratch in time O(nαk(n)). When it
comes to 1-spanners for tree metrics, we can restrict attention to unweighted trees; indeed, for any
two vertices u and v in tree T , if Pu,v denotes the unique path between u and v in T , any 1-spanner
path between u and v is a subpath of Pu,v in the underlying tree metric.

Alon and Schieber [AS87] gave an algorithm for the online tree product that requires O(nαk(n))
time, space and semigroup operations during preprocessing. Their algorithm answers queries fol-
lowing paths of length 2k, thus achieving 2k operations. This result is equivalent to a linear-time
1-spanner for tree metrics with O(nαk(n)) edges and hop-diameter 2k, and their query algorithm is
in fact a navigation algorithm on top of the underlying 1-spanner. They also discuss some applica-
tions to MST veri�cation, �nding maximum �ow values in a multiterminal network, and updating
a minimum spanning tree after increasing the cost of one of its edges. [Sol13] presents an improved
linear-time construction of 1-spanners for tree metrics, with a hop-diameter of 2k rather than k
for the same size bound. Since the 1-spanner construction of [Sol13] is more complex than that
of [AS87], obtaining a navigation algorithm on top of the 1-spanner of [Sol13] is technically much
more intricate than doing so on top of the 1-spanner of [AS87]. A central contribution of our work
is in obtaining such a navigation algorithm, and then in realizing that, one can extend it to various
families of metrics. Moreover, we demonstrate further applicability of our navigation scheme, and
also strengthen our results for Euclidean and doubling metrics to achieve fault-tolerance.

To extend the navigation result of Theorem 1.1 from tree metrics to wider classes of metrics, we
apply known results for tree covers, and also design a new robust tree cover scheme (see Theorem 4.1).
Let MX = (X, δX) be an arbitrary metric space. We say that a weighted tree T is a dominating
tree for MX if X ⊆ V (T ) and it holds that δT (x, y) ≥ δX(x, y), for every x, y ∈ X. For γ ≥ 1 and
an integer ζ ≥ 1, a (γ, ζ)-tree cover of MX = (X, δX) is a collection of ζ dominating trees for MX ,
such that for every x, y ∈ X, there exists a tree T with dT (u, v) ≤ γ · δX(u, v); we say that the
stretch between x and y in T is at most γ, and the parameter γ is referred to as the stretch of the
tree cover. A tree cover is called a Ramsey tree cover if for each x ∈ X, there exists a �home� tree
Tx, such that the stretch between x and every other vertex y ∈ X in Tx is at most γ.

The celebrated �Dumbbell Theorem� by Arya et al. [ADM+95] provides a (1+ϵ, O( log(1/ϵ)
ϵd

))-tree

cover in O( log(1/ϵ)
ϵd

· n log n+ 1
ϵ2d
· n) time, for d-dimensional Euclidean spaces. For general metrics,

the seminal work of Mendel-Naor [MN06] provides a Ramsey (γ, ζ)-tree cover with O(ζn2+1/ζ log n)
time, where γ = O(ℓ), ζ = O(ℓ · n1/ℓ) for any ℓ ≥ 1. Additional tree cover constructions are given
in [BFN19], including a (1 + ϵ, (1/ϵ)Θ(d))-tree cover for metrics with doubling dimension d. (See
Table 1 in Section 2.1.) Plugging Theorem 1.1 on these tree cover theorems, we obtain:

Theorem 1.2. For any n-point metric MX = (X, δX) and any integer k ≥ 2, one can construct
a γ-spanner HX for MX with hop-diameter k and O(nαk(n) · ζ) edges, accompanied with a data
structure DX , such that for any two query points u, v ∈ X, DX returns in time τ a γ-spanner path
in HX between u and v of at most k hops, where

� γ = (1 + ϵ), ζ = (1/ϵ)Θ(d), τ = O(k/ϵΘ(d)), if the doubling dimension of MX is d.

� If MX is a general metric, there are two possible tradeo�s, for any integer ℓ ≥ 1:

� γ = O(ℓ), ζ = O(ℓ · n1/ℓ), τ = O(k).
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� γ = O(n1/ℓ · log1−1/ℓ n), ζ = ℓ, τ = O(k).

� γ = (1 + ϵ), ζ = O(((log n)/ϵ)2), τ = O(k · ((log n)/ϵ)2), if MX is a �xed-minor-free metric.

If MX is doubling, the running time is O(n log n), for �xed ϵ and constant dimension d.

The navigation algorithms provided by Theorem 1.2 work by �rst determining the right tree
for the query points u, v ∈ X, and then applying the tree navigation algorithm of Theorem 1.1 on
that tree. This two-step navigation scheme might be advantageous over navigation algorithms that
don't employ trees, as navigation on top of a tree could be both faster and simpler to implement
in practice. Theorem 1.2 implies that in low-dimensional and doubling metrics, one can navigate
along a (1+ϵ)-spanner with hop-diameter k and O(nαk(n)) edges, within query time O(k), ignoring
dependencies on ϵ and d. Result of this sort was not known before even in Euclidean spaces, and
it a�rmatively settles Question 1.1. In metrics induced by �xed-minor-free graphs (e.g., planar
metrics), we get a similar result, with the number of edges and query time growing by a factor of
log2 n. For such metrics, as mentioned, there are already e�cient navigation algorithms, implicit
in [Tho04, KKS11, AG06], so we do not achieve improved bounds here; however, as argued above,
our two-step navigation scheme might still be advantageous. Finally, in general metrics, the stretch
and size of the spanners on which we navigate nearly match the best possible stretch-size tradeo� of
spanners in general metrics, and the number of hops in the returned paths approaches 1. Here too,
there are already e�cient navigation algorithms, which achieve better bounds on stretch and size,
implicit in the works of [TZ01b, MN06, NT12, Che14, Che15]. However, our two-step navigation
scheme in general metrics is advantageous over previous ones since it reports an actual path that
belongs to the underlying spanner in constant time, which also settles Question 1.2; moreover, it
uses a Ramsey cover, and is thus of further applicability (e.g., for routing protocols, see below).

A uni�ed approach. Although our original motivation was in Euclidean spaces, our two-step
navigation scheme extends far beyond it. Our technique for e�ciently navigating 1-spanners for tree
metrics, as provided by Theorem 1.1, provides a uni�ed reduction from e�cient navigation schemes
in an arbitrary metric class to any tree cover theorem in that class; in other words, any new tree
cover theorem will directly translate into a new navigation scheme.

A fault-tolerant spanner and navigation scheme. In Euclidean and doubling metrics, we
design a fault-tolerant (FT) navigation scheme, where we can navigate between pairs of non-faulty
points in the network even when a predetermined number f of nodes become faulty, while incurring
small overheads (factor of at most f) on the size of the navigation data structure and other param-
eters. We �rst generalize the Euclidean �Dumbbell Tree� Theorem [ADM+95] for doubling metrics;
this generalization is nontrivial and is perhaps the strongest technical contribution of this work. At
a high-level, the �Dumbbell Tree� Theorem is quite robust against adversarial perturbations of input
points; speci�cally, any internal node in any tree in the cover can be assigned any descendant leaf as
its associated point without a�ecting the stretch bound. This property is not achieved by the tree
cover of [BFN19] in doubling metrics. Building on our robust tree cover theorem, we design a new
construction of FT sparse spanners of bounded hop-diameter; this construction achieves optimal
bounds on all involved parameters for �xed f , and is of independent interest. Our FT navigation
scheme is obtained from our new FT spanner just as our basic navigation scheme is obtained from
the basic spanner of [Sol13]. See Section 4 for the full details.
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Broad applicability. We argue that an e�cient navigation scheme is of broad potential applica-
bility, by providing a few applications and implications; we anticipate that more will follow.

Perhaps the main application of our navigation technique is an e�cient routing scheme, where
we achieve small bounds on the local memory at all nodes, even though the maximum degree is huge,
which is inevitable for spanners of tiny hop-diameter. Due to space constraints, in this discussion we
provide details only on this application. In a nutshell, other applications of our navigation scheme
include: (1) E�cient sparsi�cation of light-weight spanners, where we start from an arbitrary light-
weight but possibly dense spanner and transform it into a spanner that has the original stretch
and weight but is also sparse. (2) E�cient computation on the spanner, where we are able to
compute basic graph structures (such as MST and SPT) e�ciently on top of a spanner rather than
the underlying metric (which is not as part of our input). (3) Online tree product queries and
applications, where our basic navigation scheme can be used as a query algorithm for the online tree
product problem, which �nds applications to MST veri�cation and other problems. More details
on these applications are deferred to Section 1.3 (introductory details) and Section 5 (full details).

Our basic result on routing schemes is in providing a routing scheme of stretch 1 on tree metrics,
for k = 2 hops and using labels and local routing tables of O(log2 n) bits and headers of O(log n)
bits. The routing scheme works in the labeled, �xed-port model (see Section 5.1 for the de�nitions).
The bound on the number of hops is best possible without routing on the complete graph. We
employ this basic routing scheme in conjunction with the aforementioned tree covers and obtain
e�cient routing schemes for doubling, general and �xed-minor-free metrics. For doubling metrics,
we strengthen the result to achieve a fault-tolerant routing scheme, where packets can be routed
e�ciently even when a predetermined number of nodes in the input metric become faulty.

Theorem 1.3. For any n-point metric MX = (X, δX), one can construct a γ-stretch 2-hop routing
scheme in the labeled, �xed-port model with headers of ⌈log n⌉ bits, labels of bl bits, local routing
tables of bt bits, and local decision time τ , where:

� γ = (1 + ϵ), bl = bt = O(ϵ−O(d) log(n) log(n/ϵ)), τ = O(ϵ−O(d)), for doubling dimension d.

� If MX is a general metric, there are two possible tradeo�s, for any integer ℓ ≥ 1:

� γ = O(ℓ), bl = O(log2 n), bt = O(ℓ · n1/ℓ log2 n), τ = O(1).

� γ = O(n1/ℓ · log1−1/ℓ n), bl = O(log2 n), bt = O(ℓ log2 n), τ = O(1).

� γ = (1 + ϵ), bl = bt = O((log n/ϵ)3 log n), τ = O((log n/ϵ)2), for a �xed-minor-free metric.

If MX has doubling dimension d, the running time is O(n log n), for �xed ϵ and d. In this case, one
can achieve an f -fault-tolerant routing scheme, with the bounds on bl and bt growing by a factor of
f .

This provides the �rst routing schemes in Euclidean as well as doubling metrics, where the
number of hops is as small as 2, and the labels have near-optimal size. To the best of our knowledge,
no previous work on routing schemes in Euclidean or doubling metrics achieve a sub-logarithmic
bound on the hop-distances, let alone a bound of 2. Some previous works [GR08a, CGMZ16] obtain
their routing schemes by routing on constant-degree spanners, which means that the hop-diameters
of those spanners are at least Ω(log n), hence the hop-lengths of the routing paths are Ω(log n) too.
The other routing schemes [HP00, AM04, Tal04, Sli05, AGGM06] do not work in this way, but
still have a hop-diameter of Ω(log n) or even Ω(log ρ). We also stress that our routing scheme is
fault-tolerant, which is of practical importance, and we are not aware of any previous fault-tolerant
routing scheme in Euclidean or doubling metrics.
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There are many works on routing in general graphs [ABLP90, AP92, Cow01, TZ01b, EGP03,
Che13, RT15, ACE+20, Fil21]. In metrics, it is much easier to get an e�cient routing scheme. The
Thorup-Zwick routing scheme [TZ01b] can achieve two hops in general metrics with stretch 4ℓ− 5
(improved to 3.68ℓ [Che13]), labels of O(ℓ log n) bits, and table sizes of Õ(n1/ℓ). These approaches,
when modi�ed to work in metrics, incur a decision time of O(ℓ), and it is not clear whether it can be
improved. Our result for general metrics from Theorem 1.3, while inferior in terms of the stretch (a
constant factor), the label sizes (a log n/ℓ factor) and table size (a log nℓ factor), achieve constant
decision time, which might be an important advantage in real-time routing applications.

1.3 Further discussion on Applications

E�cient sparsi�cation of light spanners. Let MX = (X, δX) be an arbitrary n-point metric
space and let G be any m-edge spanner for MX of light weight. Our goal is to transform G into a
sparse spanner for MX , without increasing the stretch and weight by much. Let DX be the data
structure provided by Theorem 1.2. For each edge in G, we can query DX for the k-hop path
between its endpoints and then return the union of the paths over all edges. It is not di�cult to
verify that the resulting graph is a spanner for MX , whose stretch and weight are larger than those
of G by at most a factor γ, but it includes at most O(nαk(n) · ζ) edges � thus it is not only light
but also sparse. The runtime of this transformation is O(m · τ). (As in Theorem 1.2, we denote by
γ the stretch of the tree cover, ζ bounds the number of trees in the cover, and τ bounds the query
time � which is O(k log2 n) for �xed-minor-free graphs, and O(k) for all other metric classes.) For
further details, see Section 5.3.

E�cient computation on the spanner. As mentioned already, once a spanner has been con-
structed, it usually serves as a �proxy� overlay network, on which any subsequent computation can
proceed, in order to obtain savings in various measures of space and running time. This means
that any algorithm that we may wish to run, should be (ideally) run on top of the spanner it-
self. Furthermore, in some applications, we may not have direct access to the entire spanner, but
may rather have implicit and/or local access, such as via labeling or routing schemes, or by means
of a data structure for approximate shortest paths within the spanner, such as the one provided
by Theorem 1.2.

Suppose �rst that we would like to construct a (possibly approximate) shortest path tree (SPT).
An SPT for the original metric space is simply a star (in any metric). But the star is (most likely) not
a subgraph of the underlying spanner. How can we e�ciently transform the star into an approximate
SPT in the spanner? If we have direct, explicit access to the spanner, we can simply compute an
SPT on top of it using Dijkstra's algorithm, which will provide an approximate SPT for the original
metric. Dijkstra's algorithm, however, will require Ω(n log n) time (for an n-vertex spanner), even if
the spanner size is o(n log n); there is also another SPT algorithm that would run in time linear in
the spanner size, but it is more complex and also assumes that log n-bit integers can be multiplied in
constant time [Tho99]. Using our navigation scheme, as provided by Theorem 1.2, we can do both
better and simpler, and we don't even need explicit access to the underlying spanner (though we
do need, of course, access to the navigation scheme). The data structure provided by Theorem 1.2
allows us to construct, within time O(nτ), an approximate SPT. In particular, for low-dimensional
Euclidean and doubling metrics, we can construct a (1 + ϵ)-approximate SPT (for a �xed ϵ) that
is a subgraph of the underlying spanner within O(nk) time, where k = 2, 3, . . . , O(α(n)). Refer to
Section 5.4 for further details.
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Suppose next that we would like to construct an approximate minimum spanning tree (MST).
In low-dimensional Euclidean spaces one can compute a (1 + ϵ)-approximate MST (for a �xed ϵ)
in O(n) time [Cha08], but again this approximate MST may not be a subgraph of the spanner.
Running an MST algorithm on top of the spanner would require time that is at least linear in the
spanner size; moreover, the state-of-the-art deterministic algorithm runs in super-linear time and is
rather complex [Cha00], and the state-of-the-art linear time algorithms either rely on randomiza-
tion [KKT95] or on some assumptions, such as the one given by transdichotomous model [FW94].
Instead, using our navigation scheme, as provided by Theorem 1.2, we can construct an approxi-
mate MST easily, within time O(nτ). In particular, for low-dimensional Euclidean spaces, we can
construct in this way a (1+ ϵ)-approximate MST (for a �xed ϵ) that is a subgraph of the underlying
spanner within O(nk) time, where k = 2, 3, . . . , O(α(n)). Refer to Section 5.5 for further details.

The same principle extends to other metric spaces, but some of the guarantees degrade. In
particular, for metric spaces, the approximation factor increases far beyond 1+ ϵ, at least assuming
we would like the size of the underlying spanner to be near-linear. We stress that (approximate)
SPTs and MSTs are two representative examples, but the same approach can be used for e�ciently
constructing other subgraphs of the underlying spanner; we also note that a shallow-light tree (SLT)
[ABP90, ABP92, KRY93, Sol14], which is tree structure that combines the useful properties of an
SPT and an MST, can be constructed in linear time given any approximate SPT and MST, and the
resulting SLT is also a subgraph of these input trees [KRY93]. Thus, after constructing approximate
SPT and MST as described above, we obtain, within an additional linear time, an SLT that is a
subgraph of the underlying spanner.

Online tree product and MST veri�cation. The paper by [AS87] focuses on the following
problem. Let T be a tree with each of its n vertices being associated with an element of a semigroup.
One needs to answer online queries of the following form: Given a pair of vertices u, v ∈ T , �nd the
product of the elements associated with the vertices along the path from u to v. They show that
one can preprocess the tree using O(nαk(n)) time and space, so that each query can be answered
using at most 2k semigroup operations. They also showed several applications of their algorithm,
such as to �nding maximum �ow in a multiterminal network, MST veri�cation, and updating the
MST after increasing the cost of its edges [AS87].

One can show that the result of [AS87] gives rise to a construction of 1-spanners for tree metrics
with O(nαk(n)) edges and hop-diameter 2k. This is inferior to the spanner of [Sol13], since it
achieves a twice larger hop-diameter (2k instead of k) for the same number of edges, O(nαk(n)). In
particular, their construction cannot be used to achieve hop-diameters 2 and 3, which is the focus of
this paper. We stress that some of the applications that we discussed above cannot be achieved using
this weaker result. As a prime example, our routing scheme crucially relies on having hop-diameter
2. Paths of hop-distance 2 have a very basic structure (going through a single intermediate node),
which our routing scheme exploits. As a result, the underlying spanner has O(n log n) edges, which
ultimately requires us to use O(log2 n) bits of space. Whether or not one can use a spanner of larger
(sublogarithmic and preferably constant) hop-diameter for designing compact routing schemes with
o(log2 n) bits is left here as an intriguing open question. Exactly the same obstacle should render the
construction of [AS87] infeasible for constructing e�cient routing schemes, since the hop-distances
provided by the result of [AS87] are larger than 2.

In Section 5.6.1, we show that our navigation scheme (provided by Theorem 1.1) can be used
as a query algorithm that supports all the applications supported by [AS87], but within a factor
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2 improvement on the hop-distances (or on other quality measures that are derived from the hop-
distances). One such application is to the online MST veri�cation problem, which is the main
building block for randomized MST algorithms. For this problem, Pettie [Pet06] shows that it
su�ces to spend O(nα2k(n)) time and space and O(n logα2k(n)) comparisons during preprocessing,
so that each subsequent query can be answered using 4k − 1 comparisons.3 Our algorithm takes
O(nα2k(n)) time and space and O(n logα2k(n)) comparisons during preprocessing, so that each
subsequent query is answered using 2k − 1 comparisons in O(k) time. The result of [Pet06] can
also achieve a query time of O(k), by building on [AS87], but using 4k− 1 comparisons rather than
2k − 1 as in our result. Concurrently and independently of us, Yang [Yan21] obtained a similar
result.

2 Preliminaries

This section contains de�nitions and results required for the rest of the paper. In particular,
Section 2.1 summarizes known tree cover theorems which we rely on and Section 2.2 introduces
variants of Ackermann function which we use.

2.1 Summary of known results on tree covers

The following table summarizes known results on tree cover theorems.

Stretch (γ) Num. of trees (ζ) Metric family Construction time Authors

1 + ϵ (1/ϵ)Θ(d) with doubling dim. d O(n log n) [ADM+95, BFN19]

1 + ϵ O(((log n)/ϵ)2) �xed-minor-free (e.g., planar) nO(1) [BFN19]

O(ℓ) O(ℓ · n1/ℓ) general O(ℓ · n2+1/ℓ log n) [MN06]

O(n1/ℓ · log1−1/ℓ n) ℓ general nO(1) [BFN19]

Table 1: Summary of the tree cover results used throughout the paper. The last two results provide
Ramsey tree covers for any integer ℓ ≥ 1.

2.2 Ackermann functions

Following standard notions [Tar75, AS87, Cha87, NS07, Sol13], we will introduce two very rapidly
growing functions A(k, n) and B(k, n), which are variants of Ackermann's function. Later, we also
introduce several inverses and state their properties that will be used throughout the paper.

3In fact, Pettie [Pet06] claimed that the preprocessing time is O(n logα2k(n)), and that each subsequent query
can be answered using 2k − 1 comparisons. This is inaccurate, as we elaborate in Section 5.6.2.
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De�nition 2.1. For all k ≥ 0, the functions A(k, n) and B(k, n) are de�ned as follows:

A(0, n) := 2n, for all n ≥ 0,

A(k, n) :=

{︄
1 if k ≥ 1 and n = 0

A(k − 1, A(k, n− 1)) if k ≥ 1 and n ≥ 1

B(0, n) := n2, for all n ≥ 0,

B(k, n) :=

{︄
2 if k ≥ 1 and n = 0

B(k − 1, B(k, n− 1)) if k ≥ 1 and n ≥ 1

We now de�ne the functional inverses of A(k, n) and B(k, n).

De�nition 2.2. For all k ≥ 0, the function αk(n) is de�ned as follows:

α2k(n) := min{s ≥ 0 : A(k, s) ≥ n}, for all n ≥ 0,

α2k+1(n) := min{s ≥ 0 : B(k, s) ≥ n}, for all n ≥ 0.

It is not hard to verify that α0(n) = ⌈n/2⌉, α1(n) = ⌈
√
n⌉, α2(n) = ⌈log n⌉, α3(n) = ⌈log log n⌉,

α4(n) = log∗ n, α5(n) = ⌊12 log
∗ n⌋, etc.

The spanner construction of [Sol13] (and thus also our navigation algorithm) uses a slight variant
α′
k of the function αk.

De�nition 2.3. We de�ne function α′
k(n) as follows:

α′
0(n) := α0(n), for all n ≥ 0,

α′
1(n) := α1(n), for all n ≥ 0,

α′
k(n) := αk(n), for all k ≥ 2 and n ≤ k + 1,

α′
k(n) := 2 + α′

k(α
′
k−2(n)), for all k ≥ 2 and n ≥ k + 2.

By Lemma 2.4 from [Sol13] we know that the functions α′
k and αk are asymptotically close �

for all k, n ≥ 0, αk(n) ≤ α′
k(n) ≤ 2αk(n) + 4.

Finally, for all n ≥ 0, we introduce the Ackermann function as A(n) := A(n, n), and its inverse
as α(n) = min{s ≥ 0 : A(s) ≥ n}. In [NS07], it was shown that α2α(n)+2(n) ≤ 4.

Following [Pet06], we introduce a slight variant of Ackermann's function as follows:4

P (1, j) := 2j for j ≥ 0,

P (i, 0) := P (i− 1, 1) for i ≥ 2,

P (i, j) := P (i− 1, 22
P (i,j−1)

) for i ≥ 2, j ≥ 1.

Then, its inverse of the ith row is de�ned as:

λi(n) := min{j ≥ 0 : P (i, j) ≥ n}.

Lemma 2.1. For any i ≥ 1, if λi(n) > 0, then 1
3α2i(n) ≤ λi(n) ≤ α2i(n).

4In [Pet06], the function was denoted by letter A.

13



3 Navigating metric spaces

In this section we present the navigation algorithm for metric spaces. Section 3.1 is devoted to
proving Theorem 1.1, which concerns navigation on 1-spanner with bounded hop-diameter for tree
metrics by [Sol13]. In Section 3.2, we use tree cover theorems (cf. Table 1) and prove Theorem 1.2,
which concerns navigation on metric spaces.

3.1 Navigating the tree spanner

Our navigation algorithm consists of two parts. In Section 3.1.1, we present a preprocessing algo-
rithm, which takes a tree T and an integer parameter k ≥ 2; it constructs [Sol13] 1-spanner GT

with hop-diameter k for a tree metric MT = (V (T ), δT ) induced by T , together with data necessary
for e�ciently navigating it. Next, in Section 3.1.2, we present a query algorithm which, given any
two vertices u, v ∈ T , outputs in O(k) time a 1-spanner k-hop path between u and v in GT .

The result of [Sol13] considers a generalized problem of constructing 1-spanners for Steiner tree
metrics. Speci�cally, suppose that in a given tree T , a subset R(T ) ⊆ V (T ) of the vertices are set as
required vertices. The other vertices S(T ) := V (T ) \ R(T ) are called Steiner vertices. We say that
a 1-spanner GT for MT has hop-diameter k if it contains a 1-spanner path for MT that consists of
at most k edges, for every pair of vertices in R(T ).

We next give high-level explanation of the [Sol13] spanner construction algorithm. It relies on
the following two procedures, which we shall also use in our preprocessing algorithm.

� Prune((T, rt(T )), R(T )): Takes as an input a tree T , its root rt(T ), and the set of required
vertices R(T ). Outputs an edge-weighted tree (Tpnd, rt(Tpnd)), which contains R(T ) and has
at most |R(T )| − 1 Steiner vertices. We set the weight wTpnd

(u, v) = δT (u, v) for every edge
(u, v) ∈ V (Tpnd). Informally, the procedure keeps the intrinsic properties of T , while reducing
the number of Steiner vertices. For more details, see Section 3.2 in [Sol13]. The running time
is O(|V (T )|).

� Decompose((T, rt(T )), R(T ), ℓ): Takes as an input a rooted tree (T, rt(T )), the set of re-
quired vertices R(T ), and an integer parameter ℓ ≥ 1. (The parameter ℓ will be set to
α′
k−2(n).) Outputs, in O(|V (T )|) time, a set of cut vertices, denoted by CVℓ ⊆ V (T ), such

that every connected component (tree) of T \ CVℓ contains at most ℓ required vertices. The

size of CVℓ satis�es |CVℓ| ≤ ⌊ |V (T )|
ℓ+1 ⌋.

At the beginning of the spanner construction, we �nd a subset of vertices CVℓ ⊆ V (T ), using
Decompose((T, rt(T )), R(T ), ℓ). We then compute the set of edges E′, which interconnects vertices
in CVℓ. The algorithm distinguishes several cases:

� If k = 2, then |CVℓ| = 1 and E′ = ∅.

� If k = 3, then connect every pair of vertices in CVℓ, i.e., E
′ = CVℓ × CVℓ.

� If k ≥ 4, then make a copy T ′ of T , set CVℓ as its required vertices and prune it, by invoking
Prune((T ′, rt(T ′)), CVℓ); let E

′ be the set of edges returned by recursive spanner construction
on T ′ with hop-diameter set to k − 2.

Denote by T1, . . . , Tp the trees in T \CVℓ. The algorithm computes the set of edges E′′ that connects
the cut vertices of CVℓ with the corresponding subtrees. Given a subtree Ti ∈ T , we say that a
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vertex u ∈ T is a border vertex of Ti if u /∈ V (Ti) is adjacent to a vertex in Ti. Let border(Ti) denote
the set of all border vertices of Ti. With a slight abuse of notation, we let border(v) = border(Ti)
for all v ∈ Ti; in addition, for c ∈ CVℓ, let border(c) = {v ∈ T | c ∈ border(v)}. For every c ∈ CVℓ,
we add an edge from c to all the required vertices in border(c). Finally, for each i in [p], we let Ei

be the set of edges obtained by recursive spanner construction on Ti. The set of spanner edges is
E′∪E′′∪

⋃︁
i∈[p]Ei. This concludes the high-level description of algorithm for constructing spanner.

The construction guarantees that between any two vertices u, v ∈ R(T ), there is a path of length
δT (u, v) in GT consisting of at most k edges. This path is a shortcut of the path between u and
v in T . More formally, denote by PT (u, v) the unique path in T between a pair u, v of vertices in
T . A path P in GT between u and v is called T -monotone if it is a subpath of PT (u, v), that is, if
PT (u, v) = (u = v0, v1, . . . , vt = v), then P can be written as P = (u = vi0 , vi1 , . . . , viq = v), where
0 = i0 < i1 < · · · < iq = t. For any two vertices u, v ∈ R(T ), there is a T -monotone path in GT of
at most k edges.

Despite the guarantee of existence of a k-hop path between any two vertices in R(T ), it is not a
priori clear how one can e�ciently �nd such a path. Consider k = 2, as the most basic setting. It
is shown in [Sol13] that for any two u and v, there exists an intermediate cut vertex w on the path
PT (u, v), such that (u,w) and (w, v) are in GT . (For simplicity, we omit some technical details of
handling the corner cases.) But this cut vertex can be anywhere on PT (u, v) and (at least naively)
�nding it could take number of steps linear in the length of the path.

Our key idea is to rely on the recursion tree of the spanner construction algorithm. Since the
edges (u,w) and (w, v) are in GT and w is a cut vertex, there must be a recursive call which had
CVℓ = {w}. We explicitly build the recursion tree of the spanner construction, and store with each
of its vertices the data required for e�cient navigation. We call such a tree augmented recursion tree,
and denote it by Φ. For each vertex v in R(T ), we keep track of the vertex in Φ which corresponds to
the recursive call when v was chosen to be a cut vertex. To answer a query for k-hop path between
u and v, we can �nd an intermediate cut vertex w as follows. First, we identify two vertices αu and
αv corresponding to u and v in Φ. Then, we �nd their lowest common ancestor β in Φ. Vertex β
corresponds to a recursive call in which some cut vertex w splits the tree so that u and v are in
di�erent subtrees. Clearly, w is on PT (u, v). Since u and v are both required vertices and w is a
cut vertex, the edges (w, u) and (w, v) are added to the spanner in this recursive call. Hence, we
have found a T -monotone 2-hop path between u and v in GT .

When k = 3, the set of cut vertices at each recursion level contains more than one cut vertex.
The 1-spanner path between u and v contains two intermediate cut vertices, say u′ and v′, which
are on PT (u, v). (Here too, we omit technical details of handling the corner cases.) Let T ′ be a tree
which is passed as an argument to a recursive call in which u′ and v′ were in CVℓ. Since u′, v′ are
on PT (u, v), tree Tu ∈ T ′ \ CVℓ containing u and Tv ∈ T ′ \ CVℓ containing v are di�erent. At that
point, u (resp. v) could have many cut vertices in border(u) (resp., border(v)). To avoid checking
every possible pair of cut vertices in border(u) and border(v), we construct another tree, called
contracted tree which facilitate �nding the corresponding pair of cut vertices.

Fix a vertex β ∈ Φ, corresponding to a recursive call of spanner construction where a tree
(T ′, rt(T ′)) is passed as an argument, and let CVℓ denote the set of cut vertices chosen for this
level. Furthermore, let T1, . . . , Tp = T ′ \ CVℓ be the subtrees obtained by removing vertices in CVℓ

from T ′. The set of vertices of the contracted tree Tβ , corresponding to vertex β in Φ, consists of p
vertices, t1, . . . , tp, corresponding to T1, . . . , Tp, and |CVℓ| vertices corresponding to cut vertices in
CVℓ. For each vertex ti ∈ Tβ , we add an edge between ti and all the vertices in Tβ corresponding
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to cut vertices in border(Ti). Intuitively, the augmented tree Tβ identi�es every subtree ti with a
single vertex and keeps the tree structure of given tree T .

We now explain how Tβ facilitates �nding cut vertices u′ and v′ corresponding to vertex β ∈ Φ
which are on PT (u, v). First, we �nd the vertex tu (resp., tv) in Tβ corresponding to subtree Tu

(resp., Tv) which contains u (resp., v). (Here too, we consider then most general case, when neither
u nor v are in CVℓ.) Cut vertex u′ ∈ CVℓ is the �rst vertex on the path from tu to tv in Tβ . In
other words, it can be either parent of tu or the �rst child on the path from tu to tv in Tβ . In both
cases, u′ can be found using level ancestor data structure. We can similarly �nd vertex v′. This
completes the high-level overview of our navigation algorithm.

3.1.1 Preprocessing

Algorithm description. We proceed to give a detailed description of the preprocessing algo-
rithm. It takes as an input a rooted tree (T, rt(T )) which induces a tree metric MT . Notice that
T can be transformed in linear time into a pruned tree (Tpnd, rt(Tpnd)) by invoking the procedure
Prune((T, rt(T )), R(T )). Also, any 1-spanner for pruned tree Tpnd provides a 1-spanner for the
original tree T with the same diameter. We may henceforth assume that the original tree T is
pruned.

Our preprocessing algorithm construct two types of trees � augmented recursion trees and
contracted trees. We preprocess every such tree in linear time so that subsequent lowest common
ancestor (henceforth, LCA) and level ancestor (henceforth, LA) queries can be answered in constant
time. For more details on these algorithms, refer to [BFC00, BFC04].

We now give details of the procedure PreprocessTree((T, rt(T )), R(T ), k). For pseudocode,
see Algorithm 1. This procedure takes as parameters a rooted tree (T, rt(T )), the set R(T ) of
required vertices of T , and an integer k ≥ 2, representing the hop-diameter. It outputs the set of
edges of [Sol13] spanner for T , together with the augmented recursion tree (Φ, rt(Φ)). In addition,
it creates a data structure DT which supports subsequent queries for k-hop 1-spanner paths in GT

between any two vertices u, v ∈ R(T ).
Let n denote the number of required vertices in T , that is, n := |R(T )|. When n ≤ k + 1,

the algorithm invokes HandleBaseCase((T, rt(T )), R(T ), k), which we proceed to describe. If
n = k + 1 and rt(T ) has exactly two children, u and v, the edge set of spanner, E, consists of
the edges of T , denoted by E(T ), together with edge (u, v); otherwise, it consists of E(T ) only.
Every vertex v ∈ V (T ) initializes its special adjacency list, v.adj containing only edges in E. The
recursion tree returned by this step, Φ, consists of a single vertex β. For each vertex v in R(T ) we
create its copy and assign it as an inner vertex v′ of β. At this stage, we keep a pointer from v to
v′ and vice-versa. Keeping inner vertices of each vertex in recursion tree will facilitate answering
the queries later on. The procedure returns E as the edge set of the spanner, together with a
(single-vertex) tree Φ rooted at β.

In what follows, we consider the case n > k + 1. The set of cut vertices, CVℓ is determined
by calling the aforementioned procedure Decompose((T, rt(T )), R(T ), ℓ), with parameter ℓ set to
α′
k−2(n). We create a new vertex β and make it a root of the recursion tree Φ. This is done via a

call to procedure NewVertex(CVℓ), which assigns to β as its inner vertices all the cut vertices in
CVℓ. The procedure also keeps track of all the relevant pointers.

The algorithm PreprocessTree((T, rt(T )), R(T ), k) returns as its output the set of spanner
edges, which consists of edges interconnecting the cut vertices, denoted by E′, the edges connecting
each cut vertex to required vertices in the tree, denoted by E′′, and the edges Ei, for each of the
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subtrees Ti, i ∈ [p]. If k = 2, then there is exactly one vertex v in CVℓ and we keep E′ empty.
For k = 3 the set E′ consists of an edge between every two cut vertices, i.e., E′ = CVℓ × CVℓ. For
k ≥ 4, we �rst create a tree isomorphic to T , which has as its required vertices the inner vertices of
β. The edge set E′ is then obtained invoking PreprocessTree((T ′, rt(T ′)), CVℓ, k − 2).

We next compute the trees T1, . . . , Tp in T \ CVℓ and the set of edges E′′ consisting of edges
between c and every vertex in border(c) for all c ∈ CVℓ. For each tree Ti, we recursively preprocess
it by calling PreprocessTree((Ti, rt(Ti)), R(T ) ∩ V (Ti), k). Let Ei be the edge set returned by
this procedure and (Φi, rt(Φi)) be the recursion tree for each of the subtrees. We make rt(Φi) a
child of β.

Finally, if k ≥ 3 we construct the contracted tree Tβ which corresponds to β. This is done via a
call to procedure CreateContracted(β, {Ti}i∈[p], {Φi}i∈[p]). This procedure creates representa-
tive vertex ti for each tree Ti, i ∈ [p]. In addition, for every inner vertex c of β it creates a vertex
c′ corresponding to it. (Recall that β has inner vertices corresponding to vertices CVℓ.) At this
stage, it creates a pointer from c to c′ and vice versa. At this stage, we have constructed a vertex
set for Tβ ; it remains to add the edges to it. For every vertex c′ corresponding to inner vertex c
of β, the algorithm connects it to every representative ti which represents at least one vertex in
border(c). Finally, the root rt(Tβ) is the vertex corresponding to the vertex of the lowest level in
T . The procedure returns (Tβ, rt(Tβ)).

The algorithm returns the set of edges E′ ∪ E′′ ∪
⋃︁

i∈[p]Ei together with the recursion tree
(Φ, rt(Φ)). The data structure DT consists of all the vertices of T , all the vertices in every recursion
tree, and all the vertices in every contracted tree, together with the data assigned to them.

An example of the preprocessing algorithm is given in Figure 1. Tree T is depicted on the left.
Its number of (required) vertices is n = 48, and it is split into �ve subtrees T1, . . . , T5 using the set
of four cut vertices, marked green inside of the dotted area. The size of each subtree is at most
α′
k−2(n) = α′

2(48) = 10. Tree T1 has size 4 ≤ k + 1 and it corresponds to base case of the spanner
construction. Trees T2, . . . , T5 have size 10 and are recursively split into subtrees of size at most
α′
2(10) = 6. Finally, one of the subtrees of T3 (the subtree on the bottom) has size 6 and gets split

using a single cut vertex into two subtrees of size 2 and 3. The four cut vertices used in the �rst
level of recursion (inside of the dotted region) are interconnected using the construction for k = 2.
Before the spanner construction for k = 2 is invoked, the algorithm makes the cut vertices required
and all the other vertices Steiner vertices and prunes the tree. The pruned tree (as depicted inside
of the dotted region) has as its root a Steiner vertex and has four vertices corresponding to the cut
vertices; its edges are represented by dashed lines. Since its size is greater than (k − 2) + 1 = 3, it
gets split using the cut vertex (which is the Steiner vertex) into two subtrees, each of size 2.

The recursion tree Φ corresponding to the spanner construction is depicted on the right towards
the bottom. Each non-leaf vertex of Φ has a contracted tree associated to it. The root of ΦT ,
denoted by β has a contracted tree Tβ associated to it. Its vertices are the cut vertices of T and
the vertices t1 to t5 corresponding to subtrees T1 to T5. In the image, the root of Φ points (via an
arrow with a dotted line) to another recursion tree with two vertices, corresponding to the recursive
construction for k = 2.

Algorithm guarantees. We shall use the following lemma from [Sol13] which bounds the number
of cut vertices returned by Decompose((T, rt(T )), R(T ), ℓ).

Lemma 3.1 ([Sol13]). Let n be the number of required vertices of the tree, and ℓ = α′
k−2(n).

Then, the size of CVℓ returned by Decompose((T, rt(T )), R(T ), ℓ) satis�es: |CVℓ| = 1 if k = 2,
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Algorithm 1 Constructs spanner, together with necessary data required for e�cient navigation.
Each constructed tree is preprocessed for answering LCA and LA queries.

1: procedure PreprocessTree((T, rt(T )), R(T ), k) ▷ The main algorithm.
2: Prune((T, rt(T )), R(T ))
3: if n ≤ k + 1 then return HandleBaseCase((T, rt(T )), R(T ), k) ▷ n = |R(T )|
4: CVℓ ← Decompose((T, rt(T )), R(T ), ℓ) ▷ ℓ← α′

k−2(n)
5: create Φ consisting of a single vertex β ← NewVertex(CVℓ)
6: if k = 3 then ▷ When k = 2, E′ is empty.
7: E′ ← CVℓ × CVℓ

8: else if k ≥ 4 then
9: make T ′, a copy of T , with inner vertices of β as required vertices
10: (E′, (Φ′, rt(Φ′)))← PreprocessTree((T ′, rt(T ′)), CVℓ, k − 2)

11: {T1, T2, . . . , Tp} ← T \ CVℓ ▷ root rt(Ti) of Ti is the vertex of the lowest level in Ti

12: E′′ ← ∪u∈CVℓ
{u} × border(u)

13: for i ∈ [p] do
14: (Ei, (Φi, rt(Φi))← PreprocesTree((Ti, rt(Ti)), R(T ) ∩ V (Ti), k)
15: make rt(Φi) child of β

16: if k ≥ 3 then (Tβ, rt(Tβ))← CreateContracted(β, {Ti}i∈[p], {Φi}i∈[p])
17: return (E′ ∪ E′′ ∪

⋃︁
i∈[p]Ei, (Φ, β))

18: procedure HandleBaseCase((T, rt(T )), R(T ), k) ▷ Base case when n ≤ k + 1.
19: E ← E(T )
20: if n = k + 1 and rt(T ) has exactly two children, u and v, then E ← E ∪ (u, v)
21: create Φ consisting of a single vertex β ← NewVertex(R(T ))
22: for each v ∈ T , create v.adj based on edges in E
23: return (E, (Φ, β))

24: procedure NewVertex(U) ▷ Creates a new vertex for Φ.
25: create a new vertex β
26: for all v ∈ U do

27: create a copy v′ of v and make it inner vertex of β
28: v.ptr(Φ)← v′, v′.ptr(T )← v.ptr(T ), v′.h← β ▷ If |U | = 1, let β.ptr(T )← v.ptr(T )

29: return β

30: procedure CreateContracted(β, {Ti}i∈[p], {Φi}i∈[p])▷ Creates a contracted tree for β ∈ Φ.
31: E(Tβ)← ∅, V (Tβ)← ∅
32: for all i ∈ [p] do
33: create a new vertex ti corresponding to Ti, add it to V (Tβ)
34: rt(Φi).ptr(T )← ti

35: for all inner vertices c of β do

36: create a new vertex c′ corresponding to c, add it to V (Tβ)
37: c.ptr(T )← c′, c′.ptr(Φ)← c
38: add to E(Tβ) an edge between c′ and every ti such that border(c) ∪ Ti ̸= ∅
39: return (Tβ, rt(Tβ)) ▷ rt(Tβ) ∈ V (Tβ) corresponds to vertex of the lowest level in T .
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Figure 1: Result of the preprocessing algorithm.

|CVℓ| ≤
√
n if k = 3, and |CVℓ| ≤ ⌊ |V (T )|

ℓ+1 ⌋ if k ≥ 4.

In the following lemma, we bound the preprocessing time of the algorithm in Algorithm 1.

Lemma 3.2. Let T be a tree with required size |R(T )| = n and |V (T )| = O(n). Algorithm
PreprocessTree((T, rt(T )), R(T ), k) in time O(nαk(n)) outputs a k-hop 1-spanner GT for R(T )
with O(nαk(n)) edges and the corresponding navigation data structure DT .

Proof. First, we note that GT is the same as the 1-spanner in the construction of Solomon [Sol13],
which was shown to have O(nαk(n)) edges.

Let f(n, k) be the running time of PreprocessTree((T, rt(T )), R(T ), k). Observe that, ex-
cluding the recursive calls in lines 14 and 10, the running time is O(n). When k = 2, we have that
CVℓ = 1 and |R(Ti)| ≤ α′

0(n) = ⌈n/2⌉. Thus, f(n, 2) =
∑︁

i∈[p] f(|R(Ti)|, 2) + O(n) which resolves

to f(n, 2) = O(n log n) = O(nα2(n)). When k = 3, we have that |R(Ti)| ≤ α′
1(n) = ⌈

√
n⌉, and

hence, f(n, 3) =
∑︁

i∈[p] f(|R(Ti)|, 3) + O(n) which resolves to O(n log log(n)) = O(nα3(n)). When

k ≥ 4, recall that ℓ = α′
k−2(n), |R(Ti)| ≤ ℓ and |CVℓ| ≤ ⌊ n

ℓ+1⌋ by Lemma 3.1. Thus, we have:

f(n, k) =
∑︂
i∈[p]

f(|R(Ti)|, k) + f

(︄
n

α′
k−2(n)

, k − 2

)︄
+O(n) (1)

which resolves to f(n, k) = O(nαk(n)); see Theorem 3.12 in [Sol13] for a detailed inductive proof.

We next list several properties of the preprocessing algorithm, which follow from the algorithm
description. These properties are used in Section 3.1.2, where the query algorithm is presented.
Recall that we use DT to denote the data structure which consists of all the vertices of T , all the
vertices in every recursion tree, and all the vertices in every contracted tree, together with the data
assigned to them. See Table 2 for the summary of data stored in DT .

Property 1. Every tree constructed by the algorithm is preprocessed for answering LCA and LA
queries in constant time.
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Property 2. For every vertex x ∈ DT , pointer x.ptr(T ) is either ∅ or it points to the vertex
corresponding to x in T . In particular, it is de�ned in the following cases: (i) x ∈ T , (ii) x is a
non-leaf vertex in some augmented recursion tree for construction with k = 2, (iii) x is an inner
vertex in some augmented recursion tree.

Property 3. For every vertex x ∈ DT , pointer x.ptr(Φ) is either ∅ or it points to its corresponding
inner vertex in some recursion tree. In particular, it is de�ned in the following cases: (i) x ∈ T ,
(ii) x corresponds to a cut vertex in some contracted tree, (iii) x is an inner vertex of a non-leaf in
some augmented recursion tree for construction with k ≥ 4.

Property 4. For every vertex x ∈ DT , pointer x.ptr(T ) is either ∅ or it points to its corresponding
vertex in some augmented recursion tree. In particular, it is de�ned in the following cases: (i) x is
an inner vertex of a non-leaf in some augmented recursion tree for construction with k ≥ 3, (ii) x
is a non-root in some recursion tree for construction with k ≥ 3.

Property 5. For every vertex x ∈ DT , pointer x.h is either ∅ or it points to its corresponding
vertex in some augmented recursion tree. In particular, it is de�ned if x is an inner vertex of a
vertex in some recursion tree.

Property 6. Whenever a vertex x is considered in procedure HandleBaseCase() with parameter
k, its entry x.adj contains only adjacency list in the subgraph of GT induced by vertices considered
in the same base case. Moreover, this subgraph contains O(k) vertices.

Property 7. Every contracted tree Tβ , corresponding to a vertex β in some recursion tree Φ satis�es
the following:

(i) It only contains representative vertices and cut vertices.

(ii) There is no edge between two representative vertices.

(iii) There is an edge between a cut vertex c and a representative vertex ti i� c ∈ border(Ti).

Observation 3.1. Given a tree T of required size n and an integer k, the depth of augmented
recursion tree corresponding to T is O(αk(n)).

Proof. The depth of augmented recursion tree satis�es recurrence D(n, k) = D(αk−2(n), k)+1, with
a base case D(n, k) = 1, whenever n ≤ k+1. This recurrence has solution D(n, k) = O(αk(n)).

3.1.2 Query algorithm

The algorithm which �nds a k-hop path between u and v in 1-spanner GT of tree T is presented
in Algorithm 2. It takes two vertices u and v and a parameter k, representing the hop-diameter of
GT .

Algorithm description. We proceed to give details of the query algorithm. It takes as an input
two vertices u and v and an integer parameter k ≥ 2, representing the hop-diameter. Let Φ denote
the recursion tree corresponding to spanner construction which considered u and v with parameter
k. The algorithm �rst checks whether u and v were considered in the same base case corresponding
to the call to HandleBaseCase() during the construction of GT . This check is performed in line 2.
We check if u and v point to the same leaf in Φ. The inner vertex corresponding to u (resp., v)
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�eld meaning
de�ned for vertices in

T Φ, inner Φ T
ptr(T ) pointer to vertex in T yes yes if non-leaf & k = 2

ptr(Φ) pointer to inner vertex in Φ yes if non-leaf host & k ≥ 4 if cut vertex

ptr(T ) pointer to vertex in T if non-leaf host & k ≥ 3 if non-root & k ≥ 3

h pointer to home vertex in Φ yes

adj adjacency table yes yes

level level in the tree yes yes yes

Table 2: Summary of data stored with every vertex in x ∈ DT . Unde�ned entries take value ∅. Note
that the preprocessing algorithm constructs more than one augmented recursion tree when k ≥ 4
and more than one contracted tree when k ≥ 3.

in Φ obtained via u.ptr(Φ) (resp., v.ptr(Φ)). We use u.ptr(Φ).h (resp., v.ptr(Φ).h) to obtain the
actual vertex in Φ, which contains u.ptr(Φ) (resp., v.ptr(Φ)) as its inner vertices. If u.ptr(Φ).h is
equal to v.ptr(Φ).h, the algorithm returns the path found by BFS on the subgraph of spanner GT

induced on all the vertices corresponding to the same base case (line 3). This BFS uses adjacency
list u.adj stored with vertex u, which contains only the edges of the spanner corresponding to this
base case. In other words, the algorithm will only visit the subgraph of GT induced on the vertices
corresponding to the same base case as u and v.

When u and v do not correspond to the same vertex in Φ, the algorithm �nds LCA in Φ of
u.ptr(Φ).h and v.ptr(Φ).h, denoted by β (line 4). If k = 2, then, by Property 2, β corresponds to a
single vertex in T ; its corresponding vertex in T is β.ptr(T ). The algorithm returns path consisting
of at most three vertices in T , namely {u.ptr(T ), β.ptr(T ), v.ptr(T )}. We use braces to denote that
consecutive duplicates are removed from it. For example, when u = β, then u.ptr(T ) = β.ptr(T )
and the algorithm returns two vertices: {u.ptr(T ), v.ptr(T )}.

When k ≥ 3, the algorithm proceeds to �nd cut vertices corresponding to u and v. For that
purpose, it considers contracted tree Tβ , corresponding to β. First of all, it locates vertices corre-
sponding to u (resp., v) in Tβ , via a call to LocateContracted(u, β). If u points to β in Φ, it
means that u is a cut vertex at the required level; all we need to do is to �nd its corresponding
vertex in Tβ , which is obtained via u.ptr(Φ).ptr(Tβ). If u is not a cut vertex at the required level,
we use level ancestor data structure to �nd child of β on the path to vertex corresponding to u. By
Property 4, this child corresponds to a unique vertex u′ in Tβ , which is a representative of connected
component containing u. Vertex v′ corresponding to v is found analogously.

Next, we would like to �nd the �rst cut vertex x on the path from u′ to v′ (resp., the �rst
cut vertex y on the path from v′ to u′) in the contracted tree Tβ . First the algorithm �nds lowest
common ancestor c of u′ and v′ (cf. line 9). Then, it invokes FindCut(u, u′, v′, β, c), which we
explain next. If u′ already corresponds to a cut vertex, we assign u′ to x. If that is not the case,
when v′ is a descendant of u′, we let x be the child of u′ on the path to v′ and otherwise we let it be
the parent of u′; in both cases, we can �nd x using level ancestor data structure on Tβ . Vertex y is
found similarly, using a call to FindCut(v, v′, u′, β, c). When k = 3 the algorithm reports vertices
corresponding to u, x, y, v in T (line 13). Otherwise, it proceeds recursively to �nd a (k − 2)-hop
path between inner vertices of β in Φ corresponding to x and y (line 15).

We refer reader to Figure 1 for an illustration of a query algorithm. Upon a query to navigate
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between the red vertex u ∈ T and the blue vertex v ∈ T , the algorithm uses u.ptr(Φ) and v.ptr(Φ) to
�nd the corresponding vertices in ΦT , denoted by αu and αv. Since αu ̸= αv, this means that u and
v were not considered together in a base case (corresponding to invocation of HandleBaseCase()).
Next, the algorithm �nds LCA(αu, αv), which is the root rt(Φ), denoted by β in the picture. Using
the level ancestor data structure, we �nd children α1, α2 of β, on the path to αu and αv, respectively.
Vertex α1 points to t4 in the contracted tree Tβ ; similarly, vertex α2 points to t3. The LCA of t3
and t4 is the root of Tβ and the cut vertices corresponding to t3 and t4 are their parents. Finally, we
recursively �nd the path (of at most 2 hops) between the chosen cut vertices using the augmented
recursion tree for construction with k − 2 (pointed to by a dotted arrow).

Algorithm 2 Query for a k-hop path in tree 1-spanner GT between two vertices u and v.

1: procedure FindPath(u, v, k) ▷ The query algorithm.
2: if u.ptr(Φ).h = v.ptr(Φ).h and u.ptr(Φ).h is a leaf of Φ then

3: return BFS(u, v) ▷ BFS on GT induced on {w ∈ V (T ) | w.ptr(Φ).h = u.ptr(Φ).h}.
4: β ← LCA(u.ptr(Φ).h, v.ptr(Φ).h)
5: if k = 2 then
6: return {u.ptr(T ), β.ptr(T ), v.ptr(T )}
7: u′ ← LocateContracted(u, β)
8: v′ ← LocateContracted(v, β)
9: c← LCA(u′, v′)
10: x← FindCut(u, u′, v′, β, c)
11: y ← FindCut(v, v′, u′, β, c)
12: if k = 3 then
13: return {u.ptr(T ), x.ptr(Φ).ptr(T ), y.ptr(Φ).ptr(T ), v.ptr(T )}
14: else

15: return {u.ptr(T ),FindPath(x.ptr(Φ), y.ptr(Φ), k − 2), v.ptr(T )}
16:

17: procedure LocateContracted(u, β) ▷ Locates u′ corresponding to u in Tβ .
18: if u.ptr(Φ).h = β then

19: return u.ptr(Φ).ptr(Tβ)
20: else

21: return LA(u.ptr(Φ).h, β.level + 1).ptr(Tβ)
22:

23: procedure FindCut(u, u′, v′, β, c) ▷ Finds the �rst cut vertex x on the path from u′ to v′.
24: if u.ptr(Φ).h = β then

25: return u′

26: else if u′ = c then
27: return LA(v′, u′.level + 1)
28: else

29: return LA(u′, u′.level − 1)

Algorithm guarantees. We next argue the correctness of the query algorithm.
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Lemma 3.3. Given a tree T preprocessed by PreprocessTree((T, rt(T )), R(T ), k), and two ver-
tices u, v ∈ R(T ), the algorithm FindPath(u, v, k) outputs a 1-spanner path between u and v in GT

consisting of at most k edges.

Proof. We will prove the lemma by structural induction.
The �rst base case is when the condition in line 2 is true and the algorithm uses BFS to report

the path (line 3). By Properties 3 and 5, we know that u.ptr(Φ).h and v.ptr(Φ).h point to vertices
corresponding to u and v in Φ. Moreover, since they correspond to a leaf in Φ, this means that u
and v were in the same tree Tbase processed by HandleBaseCase((Tbase, rt(Tbase)), R(Tbase), k).
By Property 6, we know that vertex u contains adjacency list v.adj restricted to GT induced on
V (Tbase); same holds for v and every other vertex in V (Tbase). This ensures that BFS will �nd the
shortest path from u to v, which is guaranteed in [Sol13] to be the 1-spanner path of at most k
edges.

The second base case is when k = 2. The algorithm returns path {u.ptr(T ), β.ptr(T ), v.ptr(T )},
which, by Property 2 correctly map to corresponding vertices in a given tree T . We next argue
that this path is a valid 1-spanner path in GT . Among the common vertices on the paths from
rt(Φ) to u.ptr(Φ).h and from rt(Φ) to u.ptr(Φ).h, vertex β has the lowest level. After removing
β.ptr(T ) from T , vertices u and v are not in the same subtree. In other words, β.ptr(T ) is on the
path PT (u, v). Suppose that u ̸= β.ptr(T ) and v ̸= β.ptr(T ) and let Tu (resp. Tv) be the tree
containing u (resp., v) after β.ptr(T ) has been removed. By the previous argument, it must be
that Tu ̸= Tv. From the inductive statement, we know that u.ptr(T ) (resp., v.ptr(T )) is a required
vertex in Tu (resp., Tv). This means that GT contains an edge between (u.ptr(T ), β.ptr(T )) and
(v.ptr(T ), β.ptr(T )). Hence, the path (u, β.ptr(T ), v.ptr(T )) exists in GT and is a valid 1-spanner
path in T . Cases when u = v, u = β.ptr(T ), and v = β.ptr(T ) are handled similarly.

The third base case is when k = 3. The algorithm �rst �nds vertices u′ and v′ corresponding
to u and v in the contracted tree Tβ . The correctness follows by Property 4. Finding relevant cut
vertex for u′ is done in procedure FindCut(u, u′, v′, b, c). Correctness follows by Property 7. Hence,
x (resp., y) is the closest cut vertex to u (resp. v) on PT (u, v). Recall that by inductive statement,
u and v are required vertices. Since x is in border(u) and similarly y in border(v), there are edges
(x, u) and (y, v) in GT . In addition, since x and y are cut vertices, they are connected via an edge.
This concludes the analysis of base cases.

We take k ≥ 4 for an inductive step. From the analysis of the base case k = 3, we know that cut
vertices x and y in Tβ are correctly computed, andGT contains edges (u, x) and (y, v). By Property 3
the pointers x.ptr(Φ), y.ptr(Φ) point to inner vertices of β in Φ. Since x.ptr(Φ) and y.ptr(Φ) are
required vertices for Φ′ corresponding to construction with hop-diameter k − 2 (cf. lines 9 to 10 in
PreprocessTree()), by the inductive hypothesis the recursive call in line 15 returns a 1-spanner
path between x.ptr(Φ) and y.ptr(Φ) of at most k − 2 hops. Recalling that we have at most two
more hops, i.e., if u /∈ CVℓ, (u.ptr(T ), x.ptr(Φ).ptr(T )) and if v /∈ CVℓ, (y.ptr(Φ).ptr(T ), v.ptr(T )),
the statement follows.

The following lemma states the running time of our query algorithm.

Lemma 3.4. Algorithm FindPath(u, v, k) runs in time O(k).

Proof. Procedures LocateContracted and FindCut access pointer values and perform LCA
and LA queries; the number of such operations is constant, allowing us to conclude that both
procedures run in O(1) time. The only nontrivial operation in FindPath is performing BFS in
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line 3. By Property 6, this BFS visits only the subgraph of GT induced on the vertices which
correspond to the same base case as u and v. The number of vertices in this subgraph is O(k),
hence the running time of BFS is also O(k).

In conclusion, the algorithm either performs O(k) operations and does not continue recursively,
or it performs constant number of operations and proceeds recursively with parameter k − 2. This
allows us to conclude that the running time of FindPath is O(k).

3.2 Navigating tree covers

To prove Theorem 1.2, we rely on tree cover theorems summarized in Table 1. Let ζ denote the
number of trees in the cover and γ the stretch of the cover; let MX = (X, δX) be the metric space
we are working on. For each of the ζ trees in the cover, we employ Theorem 1.1 and construct a
spanner GTi and a data structure DTi . For Ramsey tree covers, in the preprocessing step we store a
mapping from every point x in the metric space to its �home� tree. Upon a query for a path between
u and v, for the Ramsey tree covers it is su�cient to use this information to �nd the corresponding
tree in constant time. Otherwise, for each of the ζ trees, we query DTi for the distance between u
and v in Ti in O(1) time. (This step takes O(ζ) time.) Once the tree with the smallest distance
between u and v, T ∗, has been found, we query for the k-hop shortest path in T ∗ between u and v
in O(k) time using the result from Theorem 1.1.

4 Fault tolerance in doubling metrics

In this section we strengthen the navigation scheme of Section 3 to achieve fault-tolerance in doubling
metrics. We start with required de�nitions, move on to presenting a new construction of tree covers
in doubling metrics, and then build on this tree cover to get a fault-tolerant (FT) spanner of
bounded hop-diameter. Equipped with such a spanner, obtaining an FT navigation scheme follows
along similar lines to the one presented Section 3 for a non-FT spanner.

Let X = (X, δX) be an n-point metric of doubling dimension d. An f -fault-tolerant (FT) t-
spanner of X is a t-spanner for X such that, for every set F ⊆ X of size at most f, f ≤ n−2, called
a faulty set, it holds that δH\F (x, y) ≤ t · δX(x, y), for any pair of x, y ∈ X \ F . An f -FT spanner
H is said to have hop-diameter k if the hop-diameter of H \ F is at most k for any faulty set F
of size at most f , and thus there is a non-faulty t-spanner path in H of at most k hops for any
pair of non-faulty points. The main result of this section is a construction of an f -FT spanner with
bounded hop-diameter for doubling metrics whose size matches the size bound for non-FT spanners
(up to the dependency on f). Our construction relies on the notion of a robust tree cover that we
introduce below. This new tree cover notion generalizes the Euclidean �Dumbbell Tree� theorem
(Theorem 2 in [ADM+95]). In what follows, we shall use PT (u, v) to denote the path between leaves
x and y in a rooted tree T . We denote by Tv a subtree of T rooted at a vertex v ∈ T .

De�nition 4.1 (Robust Tree Cover). A robust (γ, ζ)-tree cover T for a metric (X, δX) is a collection
of ζ trees satisfying:

(1) For every tree T ∈ T , there is a 1-to-1 correspondence between points in X and leaves of T .

(2) For every x ̸= y ∈ X, there exists a tree T ∈ T such that the path from x to y obtained
by replacing each vertex v in PT (x, y) with an arbitrary leaf point of Tv has weight at most
γ · δX(x, y). We say that T covers x and y.

24



Property (2) in De�nition 4.1, which we call robustness, implies that we can obtain an (ordinary)
tree cover by replacing any internal vertex of a tree T ∈ T with a point associated with an arbitrary
leaf in the subtree rooted at that vertex. The robustness is the key in our construction of an f -FT
spanner with a bounded hop-diameter. In the following theorem, we show that doubling metrics
have robust tree covers with a few trees; the proof is deferred to Section 4.2.

Theorem 4.1. For any metric (X, δX) of doubling dimension d and any parameter ϵ > 0, we can
construct a robust (1 + ϵ, ϵ−O(d))-tree cover T for (X, δX) in Od,ϵ(n log n) time.

The Od,ϵ notation hides the dependency on d and ϵ. The tree cover theorem by [BFN19] for
doubling metrics generalizes all but the robustness of the dumbbell tree theorem. By examining
the proof closely, we observe that, in the tree cover of [BFN19], each internal vertex of the tree is
replaced by a speci�c point chosen from the leaves in the subtree rooted at that vertex; in particular,
Claim 8 in [BFN19] fails if the point is chosen arbitrarily from the leaves.

In the following, we show how to construct a FT spanner with a bounded hop-diameter from a
robust tree cover.

4.1 Construction of fault-tolerant spanners with bounded hop-diameter

Theorem 4.2. Given an n-point metric (X, δX) of doubling dimension d, a parameter ϵ > 0, and
integers 1 ≤ f ≤ n − 2, and k ≥ 2, we can construct an f -FT spanner with hop-diameter k and
ϵ−O(d)nf2αk(n) edges in Od,ϵ(n(log(n) + f2αk(n))) time.

Proof. Let T be a robust (1 + ϵ, ϵ−O(d))-tree cover constructed as in Theorem 4.1. For each tree
T ∈ T , we construct a graph HT and then form an f -FT spanner H as H = ∪T∈T HT .

Initially, the vertex set of HT contains points in X, and the edge set of HT is empty. We then
construct a 1-spanner for T with k hops and O(nαk(n)) edges in O(nαk(n)) time, denoted by KT ,
using the algorithm of Solomon [Sol13]. Note that edges in T are unweighted. For every vertex
v ∈ T , we choose a set R(v) of (arbitrary) f+1 points associated with leaves of Tv; if Tv has strictly
less than f + 1 leaves, R(v) includes all the leaves. For every edge (u, v) ∈ KT , we add to HT

edges between points in R(u) and R(v) to make a biclique. The weight of each edge is the distance
between its endpoints in X. This completes the construction of HT and hence of H.

Observe by the construction that |E(HT )| = O(f2|E(KT )|) = O(f2nαk(n)). It then follows that
|E(H)| = |T |O(f2nαk(n)) = ϵ−O(d)nf2αk(n). Observe also by the construction that the running
time to construct HT is O(f2nαk(n)). Thus, the running time to construct H is Od,ϵ(n log(n)) +
O(f2nαk(n)), as claimed.

Finally, we bound the stretch and the hop-diameter of H. Let x ̸= y be any two non-faulty
points in X, and T be a tree in T that covers x and y. Let Q be any k-hop 1-spanner path between
x and y in KT . Let x = v0, . . . , vk = y be vertices of Q. We claim that for every i ∈ [k], there
exists a non-faulty point in R(vi). If |R(vi)| = f + 1, then clearly it contains a non-faulty point.
Otherwise, R(vi) ∩ {x, y} ≠ ∅. This is because Q is a 1-spanner path and hence, any vertex in Q is
either an ancestor of x or an ancestor of y or both.

We now construct a k-hop path P for Q as follows. For every i ∈ [k], we replace vi by a non-
faulty point pi ∈ R(vi). Thus, P is a path in HT (and hence in H) of hop-diameter k. Furthermore,
by property (2) in De�nition 4.1 and the fact that Q is a 1-spanner path, P has stretch (1 + ϵ), as
desired.
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4.2 Construction of Robust Tree Covers

In this section, we prove Theorem 4.1. Our construction follows the construction of tree covers of
Bartal et al. [BFN19]. An r-net of a metric space (X, δX) is a subset of points N ⊆ X such that (a)
for every two di�erent points x ̸= y ∈ N , δX(x, y) > r and (b) for every point x ∈ X, there exists
a point y ∈ N such that δX(x, y) ≤ r. We introduce the notion of pairing cover for nets (formally
de�ned in De�nition 4.2), which is the key to achieving the robustness of our tree cover. We �rst
review the construction of Bartal et al. [BFN19], and then describe how the pairing cover can be
used to construct a robust tree cover.

The construction of Bartal et al. [BFN19] can be divided into two steps.
(Step 1) They consider a hierarchy of nets N0 ⊇ N1 ⊇ N2 ⊇ . . ., where Ni is a 2i-net of (X, δX).5

Each net Ni is then partitioned into σ = ϵ−O(d) well-separated sets Ni1, . . . , Niσ in the sense that
for every x ̸= y ∈ Nit, δX(x, y) = Ω(2i/ϵ) for any t ∈ {1, . . . , σ}.

(Step 2) They construct a collection of O(σ log(1/ϵ)) trees {Tj,p} where j ∈ {1, 2, . . . , σ} and
p ∈ {0, 1, . . . , log(1/ϵ)−1}. Each tree Tj,p is constructed by considering levels i of the net hierarchy
such that i ≡ p mod log(1/ϵ) and marking points as clustered along the way. Speci�cally, for every
point x ∈ Nij that is unclustered, add all unclustered points at distance O(2i/ϵ) from x to the tree
rooted at x as the children of x; these points are then marked as clustered.

It follows from the construction that every internal node of each tree is associated with a unique
point x ∈ X. To achieve the robustness, we modify the construction of Bartal et al. [BFN19] in
two ways. In Step 1, we construct a cover (instead of a partition) of size ϵ−O(d) for Ni that has a
pairing property : each point x in a set Cij in the cover has at most one point y ∈ Cij such that
δX(x, y) ≤ 2i/ϵ; y is said to be paired with x. (See De�nition 4.2 for a formal de�nition.) In Step
2, for each point x ∈ Cij , we connect the subtree containing x and all other subtrees containing
vertices within distances O(2i) from x, and the subtree containing y where y is paired with x in
Cij .

We now give the details of the construction of a robust tree cover. In this section, our focus is
primarily on describing the algorithms and proving various properties of the cover. The implemen-
tation is discussed in Section 4.3. We say that a collection of subsets C of a set S is a cover for S
if ∪C∈CC = S.

De�nition 4.2 (Pairing Cover). A cover Ci of a 2i-net Ni is a pairing cover if:

(1) For every set C ∈ Ci and every x ∈ C, there exists at most one point y ̸= x in C such that
δX(x, y) ≤ 2i/ϵ.

(2) For every x ̸= y ∈ Ni such that δX(x, y) ≤ 2i/ϵ, there exists a set C ∈ Ci such that both x, y
are in C. We say that x and y are paired by C.

Next, we construct a pairing cover for Ni with a small number of sets. We use the following
well-known packing lemma.

Lemma 4.1 (Packing Lemma). Let P be a point set in a metric (X, δX) of doubling dimension d

such that for every x ̸= y ∈ P , r < δX(x, y) ≤ R. Then |P | ≤
(︁
4R
r

)︁d
.

Step 1: Constructing a pairing cover of Ni. The construction has two smaller steps. First,
we construct a well-separated partition Pi of Ni following Bartal et al. [BFN19]. Then in the second
step, we construct a pairing cover Ci from Pi.

5We chose indices to start from 0 for the ease of presentation; cf. [BFN19].
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� Step 1a. Initially Pi = ∅. We consider each point x ∈ Ni in turn, and if there exists a set
P ∈ Pi such that δX(x, y) > (3/ϵ)2i for every y ∈ P , then we add x to P . Otherwise, we add
a new set {x} to Pi. Let σ1 = |Pi|.

� Step 1b. Let σ2 = maxx∈Ni |{y ∈ Ni : δX(x, y) ≤ 2i/ϵ}|. For each set P ∈ Pi, we construct
a collection C(P ) = {P1, . . . , Pσ2} of σ2 sets as follows. For each x ∈ P , let ⟨y1, y2, . . . , yσ2⟩
be a sequence of all points (in arbitrary order) in Ni that have distances at most 2i/ϵ from x.
(Possibly, there could be strictly less than σ2 such points, and in this case, we duplicate some
points to get exactly σ2 points in the sequence.) We then construct the set Pj = ∪x∈P {x, yj}
for each j ∈ {1, 2, . . . , σ2}. That is, Pj contains every point x in P and the j-th point in its
sequence. Finally, we set: Ci = ∪P∈PiC(P ).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Figure 2: Pairing cover of a net.

An example of a pairing cover is presented in Figure 2. Fix level i = 0 for simplicity. We have a
net N of 12 points on a line, x1, . . . , x12. The partition P consists of σ1 = 3 sets: green, black and
white points. For the set of green points, we construct two sets. In the �rst set, we add x1 and its
closest point within distance 1/ϵ, x2, and similarly {x4, x5}, {x7, x8}, and {x11, x12}. In the second
set, for every green point, we add it together with its second-closest point within distance 1/ϵ.

In the following lemma, we show that Ci is a paring cover of Ni.

Lemma 4.2. Ci is a pairing cover of Ni of size ϵ−O(d).

Proof of Lemma 4.2. First, we bound the size of Ci. Observe by the construction that |Ci| = σ1 ·σ2.
In what follows, we show that σ1 = ϵ−O(d) and σ2 = ϵ−O(d), implying the bound on |Ci| as claimed
in the lemma.

Observe that we add a new set {x} to Pi in Step 1a if every point in Ni considered before x and
within a distance of (3/ϵ)2i from x belongs to an existing partition of Pi. By the packing lemma
(Lemma 4.1), there are at most τ = ϵ−O(d) such points. Once we make τ + 1 sets, the algorithm
will not add any new set. It follows that σ1 = τ +1 = ϵ−O(d). Also by the packing lemma, since Ni

is a 2i-net, σ2 = ϵ−O(d), as claimed.
Next, we show the pairing property of Ci. Observe by construction that Ci is a cover of Ni.

Furthermore, for every C ∈ Ci, C = Pj for some Pj ∈ C(P ) constructed from a set P ∈ Pi, for
some j ∈ [σ2]. Recall by the construction in Step 1a that the distance between every two points
in P is at least (3/ϵ)2i. It follows that for every x ∈ C, if there exists y ∈ C such that y ̸= x and
δX(x, y) ≤ 2i/ϵ, then either (a) y = xj where xj is the j-th point in the sequence of x and x ∈ P or
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(b) x = yj where yj is the j-th point in the sequence of y and y ∈ P . In either case, there is only
one such y.

Finally, consider any pair of points x ̸= y ∈ Ni such that δX(x, y) ≤ 2i/ϵ. Since Pi is a partition
of Ni, there exists a set P ∈ Pi such that x ∈ P . Since δX(x, y) ≤ 2i/ϵ, y must be some point xj
in the sequence of x for some j ∈ {1, 2, . . . , σ}. Thus, {x, y} ∈ Pj . That is, there is a set in Ci that
contains both x and y.

Step 2: Constructing a robust tree cover T . Let N0 ⊇ N1 ⊇ . . . be the hierarchy of nets of
(X, δX) where Ni is a 2

i-net of X and the last net in the sequence contains a single point. By scaling,
we assume that the minimum distance in X is larger than 1/(4ϵ). For each net Ni, we construct a
pairing cover Ci, and form a sequence ⟨C1, C2, . . . , Cσ3⟩ of sets in Ci; here σ3 is the size of Ci, which is
ϵ−O(d) by Lemma 4.2. For each j ∈ {1, 2, . . . , σ3} and each p ∈ {0, 1, . . . , ⌈log(1/ϵ)⌉−1}, we construct
a tree Tj,p and form the cover: T = {Tj,p : j ∈ {1, 2, . . . , σ3}∧p ∈ {0, 1, . . . , ⌈log(1/ϵ)⌉−1}}. Clearly
the size of the cover is O(σ3 log(1/ϵ)) = ϵ−O(d).

We now focus on constructing Tj,p; the construction is in a bottom-up manner as follows. Tj,p has
n leaves which are in 1-to-1 correspondence with points in X. Let I = {i : i ≡ p mod ⌈log(1/ϵ)⌉}
be the set of levels congruent to p modulo ⌈log(1/ϵ)⌉. For each level i ∈ I from lower levels to higher
levels, let Cj be the j-th set in the sequence of the pairing cover Ci. Let i′ = i− ⌈log(1/ϵ)⌉, and Fi′

be the collection of trees constructed at level i′. (F0 contains leaves of T .) For each point x ∈ Cj ,
let Tx ∈ Fi′ be the tree containing x, and Fx ⊆ Fi′ be a collection of subtrees such that each tree
T ∈ Fx contains a point z within distance 2i from x.

For every two points x, y that are paired by Cj , we add a new node v and make the roots of
trees in {Tx, Ty}∪Fx ∪Fy children of v. The resulting forest after this process is denoted by Fi. At
the top level imax, if Fimax contains more than one tree, we merge them into a single tree by creating
a new node, and making the roots of the trees in Fimax children of the new node. The resulting tree
is Tj,p, and this completes the construction of Step 2.

In the following lemma, we argue that Fi is a forest and bound the diameter of trees in Fi.

Lemma 4.3. For every level i the following statements are true:

(i) Fi is a forest.

(ii) Let T be a tree in Fi, and diam(T ) be the diameter of the set of points associated with leaves
of T . Then diam(T ) ≤ (1/ϵ+ 20)2i when ϵ ≤ 1/12.

Proof of Lemma 4.3. We prove the lemma by induction. The statement is vacuously true for F0.
We assume that the statement is true for Fi′ , where i′ = i− ⌈log(1/ϵ)⌉, and prove it for Fi.

(i) Let x′ be a point in Cj \ {x, y}. Recall that by construction δX(x, x′) > 2i/ϵ. It su�ces to
argue that: (a) Tx cannot contain x′ and (b) no tree in Fx can be in Fx′ . For (a) we use
induction hypothesis and observe that for any other z ∈ Tx, we have δX(x, z) ≤ diam(Tx) ≤
(1/ϵ + 20)2iϵ < 2i/ϵ. For (b) induction hypothesis and observe that for any point z in
Fx, we have dX(x, z) ≤ 2i + (1/ϵ + 20)2iϵ. From triangle inequality, we have d(x′, z) ≥
d(x, x′)− dX(x, z) > 2i/ϵ+ 2i + (1/ϵ+ 20)2iϵ > 2i.

(ii) By construction, either (a) T ∈ Fi′ , and in this case diam(T ) ≤ (1/ϵ + 20)2i
′ ≤ (1/ϵ + 20)2i

by induction, or (b) T is formed by merging trees in {Tx, Ty} ∪ Fx ∪ Fy where x and y are
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paired by Cj . Recall that δX(x, y) ≤ 2i/ϵ, and that for every tree A ∈ Fx ∪ Fy, there exists a
leaf z such that δX(x, z) ≤ 2i or δX(y, z) ≤ 2i. Thus, by triangle inequality and induction, it
follows that:

diam(T ) ≤ 2i/ϵ+ diam(Tx) + 2 · 2i + 2 max
A∈Fx

diam(A)

+ diam(Ty) + 2 · 2i + 2 max
B∈Fy

diam(B)

≤ 2i/ϵ+ 6(1/ϵ+ 20)2i
′
+ 4 · 2i

≤ 2i/ϵ+ 6(1/ϵ+ 20)2iϵ+ 4 · 2i

≤ (1/ϵ+ 10 + 120ϵ)2i ≤ (1/ϵ+ 20)2i

when ϵ ≤ 1/12, as desired.

We now show the robustness of the tree cover T assuming that ϵ ≤ 1/12. We will show that the
stretch is 1 +O(ϵ); one can achieve stretch 1 + ϵ by scaling ϵ.

Let x ̸= y be any two points in (X, δX). Let i be the non-negative integer such that:

2i−2/ϵ < δX(x, y) ≤ 2i−1/ϵ . (2)

Recall that we assume that the minimum distance in X is larger than 1/(4ϵ) and hence i exists.
Let p and q be two net points of Ni closest to x and y, respectively. By the triangle inequality and
Equation (2), it holds that:

δX(p, q) ≤ δX(x, y) + 2 · 2i ≤ (1/2ϵ+ 2)2i ≤ 2i/ϵ since ϵ ≤ 1/12

δX(p, q) ≥ δX(x, y)− 2 · 2i > (1/4ϵ− 2)2i > 0 since ϵ ≤ 1/12
(3)

It follows from the second inequality in Equation (3) that p ̸= q. Since δX(p, q) ≤ 2i/ϵ, by property
(2) of paring cover, there exists a set Cj ∈ Ci such that p and q are paired by Cj . Let Tp, Tq be the
trees in Fi′ and Fp, Fq ⊆ Fi′ associated with p and q as described in the construction. Let T be the
tree in Fi resulting from merging trees in {Tp, Tq}∪Fp∪Fq by the algorithm. Since δX(x, p) ≤ 2i, x
is a leaf of some tree Tx ∈ {Tp}∪Fp. By the same argument, y is a leaf of some tree Ty ∈ {Tq}∪Fq.
Thus, both x and y are leaves in T .

Let P be the path from x to y in T . Let r, rx, ry be the roots of T , Tx, and Ty, respectively.
Then P consists of two paths Tx[x, rx], Ty[y, ry] and two edges (rx, r) and (ry, r). Let Q be the
path obtained from P by replacing each internal vertex v of P with a point chosen from a leaf in
Tv. We denote by S(v) the leaf point chosen to replace each vertex v ∈ P . Let Qx (resp., Qy) be
the subpath of Q from x (resp., y) to S(rx) (resp., S(ry)). We have:

w(Q) ≤ w(Qx) + w(Qy) + δX(S(rx), S(r)) + δX(S(r), S(ry)) (4)

In the following claim, we bound the weight of each term in Equation (4).

Claim 4.1. max{w(Qx), w(Qy)} ≤ (2 + 40ϵ)2i and δX(S(rx), S(r)) + δX(S(ry), S(r)) ≤ δX(x, y) +
4(5 + 60ϵ)2i.
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Proof of Claim 4.1. Recall that Tx, Ty are trees in Fi′ , where i′ = i − ⌈log(1/ϵ)⌉. By Lemma 4.3,
we have:

w(Qx) =
∑︂
j≤i′

(1/ϵ+ 20)2j ≤ (1/ϵ+ 20)2i
′+1 ≤ (1/ϵ+ 20)2ϵ2i ≤ (2 + 40ϵ)2i

w(Qy) ≤ (2 + 40ϵ)2i (by the same argument)

(5)

The summation for computing Qx in Equation (5) is due to the fact that for T ∈ Fj , we have
diam(T ) ≤ (1/ϵ+20)2j . Let Y and Z be the sets of leaves of {Tp}∪Fp and {Tq}∪Fq, respectively.
Then we have:

diam(Y ) = diam(Tp) + 2 · 2i + 2 max
A∈Fp

diam(A)

≤ 3(1/ϵ+ 20)2i
′
+ 2 · 2i ≤ 3(1/ϵ+ 20)ϵ2i + 2 · 2i = (5 + 60ϵ)2i

diam(Z) ≤ (5 + 60ϵ)2i (by the same argument)

(6)

Observe that if S(r) ∈ Y , then δX(S(r), S(rx)) ≤ diam(Y ) ≤ (5 + 60ϵ)2i by Equation (6).
Otherwise, S(r) ∈ Z and hence δY (S(r), S(rx)) ≤ (5 + 60ϵ)2i. In either case, by the triangle
inequality, we have:

δX(S(rx), S(r)) + δX(S(ry), S(r))

≤ δX(S(rx), S(ry)) + 2min{δX(S(rx), S(r)), δX(S(ry), S(r))}
≤ δX(S(rx), S(ry)) + 2(5 + 60ϵ)2i

≤ δX(x, y) + diam(Y ) + diam(Z) + 2(5 + 60ϵ)2i (by the triangle inequality)

≤ δX(x, y) + 4(5 + 60ϵ)2i (by Equation (6))

(7)

By Equation (4) and Claim 4.1, we have that:

w(Q) ≤ 2(2 + 40ϵ)2i + δX(x, y) + 4(5 + 60ϵ)2i

≤ δX(x, y) +O(1)2i (since ϵ ≤ 1/12)

≤ δX(x, y) +O(1)4ϵδX(x, y) (by Equation (2))

= (1 +O(ϵ))δX(x, y) ,

(8)

as claimed.

4.3 Implementing Robust Tree Cover in O(n logn) time

To make our construction of a robust tree cover e�cient, we need two data structures:

(a) An implicit representation of a hierarchy of nets using Oϵ,d(n) space. Let N̂ i ⊆ Ni be the
subset of the net points that are explicitly stored in the hierarchy at level i. We have that∑︁

i≥0 |N̂ i| = Oϵ,d(n).
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(b) For each net point p ∈ N̂ i, store all the points in Ni ∪ Ni′ within a distance O(1/ϵ)2i from
p, assuming that there is at least one such point other than p. (If there are no such points,
then p will not be explicitedly store at level i in the hierarchy.) Recall that i′ = i−⌈log(1/ϵ)⌉
and hence the pairwise distance of points stored at p in (b) is at least 2i−log⌈1/ϵ⌉ = Ω(ϵ2i). It
follows from the packing lemma (Lemma 4.1) that the number of stored points is ϵ−O(d).

Both data structures (a) and (b) can be constructed in Oϵ,d(n log n) time using the result by Cole
and Gottlieb [CG06].

Given these data structures, in Step 1, constructing partition Pi can be done in Oϵ,d(|N̂ i|) time

following exactly the algorithm where N̂ i ⊆ Ni is the set of points stored explicitly in the hierarchy
of nets. Thus, constructing C(Pi) can also be done in Oϵ,d(|N̂ i|) time. Note that

∑︁
i≥0 N̂ i = Oϵ,d(n)

by (a). It follows that the total running time of Step 1 is Oϵ,d(n). For Step 2, to construct the tree
Tj,p, we need to identify for each point x ∈ Cj the tree Tx and forest Fx. For Tx, we can store a
pointer to Tx at x. For quickly identifying Fx, we (i) relax the de�nition of Fx to contains subtrees
of Fi′ such that each contains a net point of Ni′ within distance O(2i) from x, (ii) guarantee that
each tree in Fi′ contains at least one point in Ni′ . Thus, we can identify Fx in O(ϵ−d) = Oϵ,d(1)
time by looking at all points stored at x in data structure (b). To guarantee (ii) inductively, in Step
2, we not only merge trees from pairs x, y in Cj , but also merge trees in Fi′ that contain points close
to points in Ni. Speci�cally, for each point z ∈ N̂ i, which might not be in Cj , we merge the tree
containing z and all the (unmerged) trees in Fi′ containing points of Ni′ within distance 2i from z.
This can be done in Oϵ,d(|N̂ i|) time. Thus, the total running time of both steps is Oϵ,d(n), and the
�nal running time is Oϵ,d(n log(n)).

4.4 Deriving a fault-tolerant navigation (and routing) scheme

In the navigation scheme presented in Section 3, we did not exploit a crucial property of the tree cover
theorem in doubling metrics [BFN19]: For every pair u, v of points in MX , there is a (1+ ϵ)-spanner
path in one of the trees in the cover � such that the path starts and ends at leaves corresponding
to u and v. To achieve FT navigation algorithm, we must rely on this property. For any two points
from a doubling metric, the navigation algorithm from Section 3 locates points, which are now the
leaves in the corresponding tree of the tree cover. Then, it uses the navigation scheme for that
particular tree to navigate between these points. Every vertex in the tree is associated with a single
point in the metric space, hence while navigating the tree we can directly obtain the information
about the path in the metric space. In the case of FT navigation, every vertex in the tree stores (or
is associated with) f + 1 points (rather than one) that correspond to its descendant leaves. This
is the case for all the vertices, except for ones with less than f + 1 descendant leaves (including
the leaves themselves); such vertices store all their descendant leaves. To navigate between any
two non-faulty points u and v (corresponding to leaves in the tree), we apply the same navigation
scheme as given in Section 3, but for every vertex that we traverse along the path in the tree, we
pick a non-faulty point stored in that vertex arbitrarily, if it stores f + 1 points. For every vertex
with less than f + 1 leaves in its subtree, it must store either u or v, since all the nodes along the
path in the tree are ancestors of either u or v. Since both u and v are non-faulty, we will have a
non-faulty point to choose from (u or v or both). The query time of the navigation scheme remains
O(k). The basic (non-FT) routing scheme is deferred to Section 5.1; however, equipped with the
FT-navigation scheme that we've just described, it is straightforward to strengthen the basic routing
scheme to achieve fault-tolerance (with the size bounds growing by a factor of f).
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5 Applications

We argue that an e�cient navigation scheme is of broad potential applicability, by providing several
applications. The �rst and perhaps the most important application is an e�cient compact routing
scheme, which is given in Section 5.1. Next, in Section 5.3 we show that our navigation technique
can be used for e�cient spanner sparsi�cation without increasing its stretch and lightness by much.
In Sections 5.4 and 5.5 we show that one can use the navigation technique to compute the SPT and
MST on top of the underlying spanner. Finally, in Section 5.6, we address two related problems:
online tree product and MST veri�cation.

5.1 Compact routing schemes

A routing scheme is a distributed algorithm for delivering packets of information from any given
source node to any speci�ed destination in a given network. Every node has a routing table, which
stores local routing-related information. In addition, every node is assigned a unique label (some-
times called address). Given a destination node v, routing algorithm is initiated at source u and is
given the label of v. Based on the local routing table of u and the label of v, it has to decide on
the next node w to which the packet should be transmitted. More speci�cally, it has to output the
relevant port number leading to its neighbor w. Each packet of information has a header attached
to it, which contains the label of the destination node v, but may contain additional information
that may assist the routing algorithm. Upon receiving the packet, any intermediate node w has at
its disposal its local routing table and the information stored in the header. This process continues
until the packet arrives at its destination (node v).

We consider routing in metric spaces, where each among n points in the metric corresponds to
a network node. Initially, we choose a set of links that induces an overlay network over which the
routing must be performed. We would like the overlay network size to be small and yet to be able to
route using very few hops. The challenge is to do so while also optimizing the tradeo� between the
storage (i.e., size of routing tables, labels, and headers) and the stretch (i.e., the ratio between the
distance packet traveled in the network and the distance in the original metric space). In addition,
one may try to further optimize the time it takes for every node to determine (or output) the next
port number along the path, henceforth decision time, and other quality measures, such as the
maximum degree in the overlay network.

There are two models, based on the way labels are chosen: labeled, where the designer is allowed
to choose (typically polylog(n)) labels, and name-independent, where an adversary chooses labels.
Depending on the way the port numbers are assigned, we distinguish between the designer-port
model, where the designer can choose the port number, and the �xed-port model, where the port
numbers are chosen by an adversary. For an additional background on compact routing schemes,
we refer the reader to [Pel00, TZ01b, FG01, AGGM06, Che13].

Our basic result is an e�cient routing scheme for tree metrics, which we present in Section 5.1.1.
Our routing scheme works in the labeled, �xed-port model. Next, in Section 5.1.2, we apply the
routing scheme for tree metrics on top of the collection of trees provided by any of the aforementioned
tree cover theorems (cf. Table 1) and obtain routing schemes for various metrics. This application
is nontrivial for general graphs, as it aims at optimizing the label sizes.

32



5.1.1 Routing scheme for tree metrics

We show that one can construct an e�cient 2-hop routing scheme for tree metrics. The guarantees
are summarized in the following theorem.

Theorem 5.1. Let MT be a tree metric represented by an edge-weighted tree T with n vertices. We
can preprocess T it in O(n log n) time and construct a routing scheme which works on the overlay
network with O(n log n) edges. The routing scheme works in the labeled, �xed-port model, uses
routing tables and labels of O(log2 n) bits and headers of ⌈log n⌉ bits and routes in at most 2 hops
and in O(1) decision time.

The �rst step of the preprocessing phase consists of constructing spanner GT of T and the navi-
gation data structure DT as described in Theorem 1.1. The number of edges of GT is O(nαk(n)) =
O(n log n) for k = 2. In addition to GT , we obtain an augmented recursion tree Φ for navigating
GT . By Observation 3.1, the depth of Φ is O(log n). (More details on this construction can be
found in Section 3.1.) We will show how to construct a routing scheme for spanner GT using the
augmented recursion tree Φ. Recall that, when k = 2, every non-leaf vertex in Φ corresponds to
exactly one vertex in T .

We shall assume that each vertex in T is assigned a unique identi�er between 1 and n, which
can be justi�ed via a straightforward linear time procedure. At the beginning, we preprocess the
augmented recursion tree Φ using the lowest common ancestor (LCA) labeling scheme by [AHL14].6

This scheme uses linear preprocessing time to assign O(log n)-bit label to each vertex in the tree
so that any subsequent LCA query can be answered in constant time. Recall from Section 3.1 that
every vertex u in T uniquely corresponds to a vertex in Φ, denoted by u.ptr(Φ). For every u in T ,
let lca(u) be the LCA label of u.ptr(Φ).

We start by describing the label of each vertex in T . Fix a vertex u ∈ T and denote by α its
corresponding vertex in Φ, i.e., α := u.ptr(Φ). Recall from Section 3.1 that we use α.level to denote
the level of α in Φ. Let βj be the ancestor of α at level j in Φ, so that β0 = rt(Φ) and βα.level = α.
Let vj := βj .ptr(T ) be the vertex in T which corresponds to βj for all 0 ≤ j ≤ α.level − 1. Denote
by hu a 2-level hash table with key lca(vj) and value port(vj , u) for each 0 ≤ j ≤ α.level− 1. This
table occupies space linear in the size of all its key-value pairs. Since there is at most O(log n)
ancestors (the depth of Φ is O(log n) by Observation 3.1) and each ancestor takes O(log n) bits of
space to store, the total memory required for hu is O(log2 n). Any subsequent query for an element
in hu takes worst-case constant time. Details of implementation can be found in [FKS84, AN96].
Label of u, denoted by label(u), consists of label(u) = (lca(u), hu). Its size is O(log2(n)) bits.

The routing table of node u, denoted by table(u) contains information similar to its label. Denote
by h′u a 2-level hash table with key lca(vj) and value port(u, vj) for each 0 ≤ j ≤ α.level− 1. Note
that in hu, we store port numbers leading to u from its ancestors (with respect to Φ), whereas
in h′u we store port number from u to its ancestors. In addition, if u corresponds to a leaf in the
augmented recursion tree, we add to table(u) an array base(u) containing a constant number of pairs
(v,port(u, v)) for every other node v corresponding to the same leaf. Since u might not be directly
connected to v, port(u, v) denotes the port number leading to the �rst vertex on the shortest path
from u to v. Recall that, by Property 6, there can be at most O(k) = O(1) vertices corresponding to
the same base case, meaning that base(u) contains a constant number of O(log n)-bit entries. The
routing table of u consists of table(u) = (lca(u), h′u, base(u)), which takes O(log2 n) bits to store.

6This scheme is usually known as nearest common ancestor (NCA) scheme, but we use term lowest common
ancestor (LCA) in order to be consistent with the rest of the paper.
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We note that labels and routing tables can be computed in O(n log n) time using the augmented
recursion tree and techniques similar to those in Section 3.

We now specify the routing protocol. Recall that, upon a query to route from u to v, the
algorithm is executed on node u, has access to the local routing table of u (denoted by table(u)),
and is passed the label of the destination v (denoted by label(v)). We shall assume that u ̸= v,
since otherwise there is nothing to do. First, we check if u and v correspond to the same base case
in Φ. We do so by looking for v in base(u), if base(u) is nonempty. This can be done in constant
time since the number of entries in base(u) is constant. If an entry corresponding to v has been
found, we extract from base(u) the information about the port corresponding to the �rst edge on
the shortest path from u to v and forward the packed with an empty header. By the guarantees of
GT , there exist a path of at most 2 hops between u and v in the subgraph induced by the vertices
corresponding to the same base case as u and v. Hence, the packet is either forwarded directly to
v, in which case the algorithm successfully terminates, or it is forwarded to an intermediate node
w which corresponds to the same base case and has a direct link to v. In the latter case, the
corresponding port can be extracted from base(w), using the local routing table at node w.

If u and v do not correspond to the same base case, we look for the lowest common ancestor,
λ, of u.ptr(Φ) and v.ptr(Φ). Let lca(λ) denote the LCA label of this vertex. At this stage, we
distinguish between several cases. If u.ptr(Φ) = λ (which can be checked using their LCA labels),
then u.ptr(Φ) is an ancestor of v.ptr(Φ) in Φ and the underlying spanner GT contains an edge
between u and v. The corresponding port can be found in hv, which is in label(v). If v.ptr(Φ) = λ,
then λ is an ancestor of u.ptr(Φ) and there is an edge between u and v. The corresponding port
can be found in h′u, which is in table(u). If none of the above is the case (recall that we assumed
that u ̸= v), by the design of GT , there is edge between u and the vertex w corresponding to λ and
from w to v. From label(v), we extract port(w, v), store it in the header and forward the packet to
port(u,w), which can be found in table(u). This completes the description of the routing algorithm.

5.1.2 Routing in metric spaces

We proceed to show how to employ the described routing scheme for metric spaces, thus proving
Theorem 1.3.

Similarly to what has been done in Section 3, for a given metric MX = (X, δX) we �rst construct
one of the tree covers from Table 1. Denote the stretch of this cover by γ and the number of the trees
by ζ. The underlying graph H is the union of the trees in the cover � it has the same vertex set
as MX , denoted by X, and has an edge set obtained as a union of the edges of ζ trees in the cover.
At this stage, port numbers are assigned (by an adversary) for every vertex v in {1, . . . ,degH(v)},
where degH(v) is the degree of v in H. Then, for each tree in the cover, we construct a 2-hop
routing scheme as provided by Theorem 5.1. We distinguish between cases where we use tree covers
and Ramsey tree covers.

Routing using tree covers. In addition to the routing schemes, we employ the distance labeling
scheme with a stretch of (1 + ϵ), given by [FGNW17]. Their labeling scheme uses O(log(1/ϵ) log n)
bits of space per vertex and achieves a constant query time. In our routing scheme, each node
stores ζ distance labels, one per tree in the cover, both as a part of its routing table and as a part
of its label. In addition, for each of the trees in the cover, we store label and routing table, as
described in Section 5.1.1. This means that the memory consumed by the routing table at each
node is O(ζ · log2 n+ ζ · log(1/ϵ) log n) = O(ζ · log n · log(n/ϵ)).
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The routing algorithm executed at node u �rst queries the distance labeling scheme for the
approximate distance between u and the destination node v in each of the trees. Since each query
takes constant time, this step requires time proportional to ζ. The routing proceeds using the
routing information of the tree which has the smallest stretch. Suppose that such a tree had index
i. We �nd the next port using the ith entry of the routing table of u and the label of v. If the next
step in tree routing correspond to the base case, we only transfer the index i in the header. From the
algorithm in Section 5.1.1, we know that the next step is either v, or we route via an intermediate
node w which has port number port(w, v) in its routing table corresponding to the ith tree. If the
next step does not correspond to the base case, we either route directly, in which case there is no
need to store anything in the header, or route via an intermediate node w. In the latter case, we
can extract the information on port(u,w) and port(w, v) from the entries in table(u) and label(v)
(corresponding to the ith tree) and route to port(u,w), while sending only port(w, v) in the header.
In both cases, the header size is ⌈log n⌉. Finally, notice that we are using the labeling schemes which
return (1 + ϵ)-approximate distances, meaning that this step incurs an additional (1 + ϵ) factor to
the stretch of our routing path. The stretch of (1 + ϵ) can be achieved by appropriate scaling.

Routing using Ramsey tree covers. When using Ramsey tree covers, we know for each node
which of the trees in the cover achieves the desired stretch. The label of a node is now comprised of
its label in the routing table for that particular tree, together with the index of that tree. Routing
table of every node contains routing tables for each of the ζ trees in the cover. Hence, the label sizes
of this scheme are O(log2 n), which is the size of routing schemes for tree spanners in Theorem 5.1,
and the routing tables have size O(ζ · log2 n). Given a source node u and the label of destination v,
the algorithm uses routing table corresponding to the tree which index is in the label of v. In other
words, we can in constant time decide which among the ζ routing tables stored at u to use.

In conclusion, we have proved Theorem 1.3, whose guarantees are summarized in the Table 3.

stretch
storage

time metric
table label

1 O(log2 n) O(1) tree

1 + ϵ O(ϵ−O(d) log(n) log(n/ϵ)) O(ϵ−O(d)) doubling dim. d

1 + ϵ O((log n/ϵ)3 log(n)) O((log n/ϵ)2) �xed-minor-free

O(ℓ) O(log2 n) O(ℓn1/ℓ log2 n) O(1) general

O(n1/ℓ log1−1/ℓ n) O(log2 n) O(ℓ · log2 n) O(1) general

Table 3: Summary of our results for 2-hop routing schemes. For each result, header size is ⌈log n⌉.
In the last two results, parameter ℓ ≥ 1 is an arbitrary integer.

5.2 Fault-tolerant routing

Fault-tolerant routing in trees. We describe a fault-tolerant routing scheme for trees of the
robust tree cover presented in Section 4. Given a tree T from the robust tree cover, we �rst compute
a spanner for it, as described in Section 4.1. Recall that for every v ∈ T , we choose a set R(v)
corresponding to (at most) f + 1 leaves of the subtree of T rooted at v. We show how to route
between any two leaves of this tree, by slightly modifying the tree routing scheme presented in
Section 5.1.1.
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For every leaf in u ∈ T (corresponding to some point in the metric), let α be its corresponding
vertex in Φ, i.e., α = u.ptr(Φ). We construct a 2-level hash table hu for u as follows. For the jth
ancestor of α in Φ, let vj be its corresponding point in T and let w1, . . . , wℓ be the leaves in T from
R(vj), ordered increasingly by their identi�ers. We add to the hash table hu an entry with key
lca(vj) and value ⟨port(w1, u), . . .port(wℓ, u)⟩. The label of u is label(u) = (lca(u), hu); it requires
O(f log2 n) bits of space.

We next describe the routing table of u, denoted by table(u). Let h′u be a 2-level hash table,
where for the jth ancestor of α, we store key lca(vj) and value ⟨port(u,w1), . . .port(u,wℓ)⟩. If u
corresponds to a base case of the spanner construction, we keep a routing table base(u) for every
other node v corresponding to the same leaf in Φ. In particular, let w1, . . . , wℓ be the leaves in
T in R(v). We add an entry (v, ⟨port(u,w1), . . . ,port(u,wℓ)⟩) to base(u). The routing table of u,
denoted by table(u) consists of (lca(u), h′u, base(u)); it requires O(f log2 n) bits of space.

Given two leaves u and v in T , the routing algorithm is similar to the one from Section 5.1.1. The
only di�erence is that when we route via an intermediate vertex w ∈ T , we scan entries corresponding
to R(w) to �nd a non-faulty vertex. Since the entries in R(w) are ordered increasingly by their
identi�ers, we can �nd a port to a non-faulty vertex in R(w) in O(f) steps. This concludes the
description of the fault-tolerant routing scheme for trees.

Fault-tolerant routing in metric spaces. Suppose we are given a metric MX = (X, δX) with
doubling dimension d. First, we construct a fault-tolerant spanner for MX , as described in Sec-
tion 4.1, and assign port numbers according to spanner edges. The rest of the construction re-
mains the same as for the routing using tree covers described in Section 5.1.2. For each of the
ζ = O(ϵ−O(d)) trees in the cover, we keep labels and routing tables of size O(f log2 n). In addi-
tion, for each tree, we construct a distance labeling scheme given by [FGNW17]. Labels for this
scheme occupy O(log(1/ϵ) log n) bits of space. Hence, the total memory per vertex in the tree is
O(ζ ·log n·(log(1/ϵ)+f log n)) = O(ϵ−O(d) ·log n·(log(1/ϵ)+f log n)). The routing algorithm remains
the same. This concludes the description of the fault-tolerant routing; the result is summarized in
the following theorem.

Theorem 5.2. For any n-point metric MX = (X, δX) with doubling dimension d, one can construct
a (1 + ϵ)-stretch 2-hop routing scheme in the labeled, �xed-port model with headers of ⌈log n⌉ bits,
labels and local routing tables of O(ϵ−O(d) · log n · (log(1/ϵ) + f log n)) bits, and local decision time
O(f).

5.3 Spanner sparsi�cation

Let MX = (X, δX) be an arbitrary n-point metric space and let GX be any light m-edge spanner
for MX . Let k ≥ 2 be an integer and let Hk be a k-hop spanner for MX and Dx data structure for
Hk provided by Theorem 1.2. Our goal is to transform G into a sparse spanner for MX , without
increasing the stretch and weight by much.

The transformation is as follows. For each edge (u, v) in E(GX), we query the data structure
DX for a k-hop path Pu,v between u and v in Hk; the output is G

′
X := (X,∪(u,v)∈E(GX)Pu,v). The

following theorem summarizes the guarantees of this sparsi�cation procedure. See also Table 4.

Theorem 5.3. Let GX be a k-hop spanner for an n-point metric space MX = (X, δX), with size
m, stretch β, and lightness L; let Hk be a spanner for MX equipped with a data structure DX as in
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Theorem 1.2. Then, one can in O(m · τ) time transform GX into spanner G′
X with stretch γ · β,

lightness γ · L and O(nαk(n) · ζ) edges.

Proof. For each edge of GX we perform a query as in Theorem 1.2, and each query takes O(τ)
time, so the total running time of the transformation is O(|E(GX)| · τ). The stretch of a spanner
is equal to the maximum stretch between any two adjacent points in it; hence, stretchG′(u, v) ≤
γ · stretchG(u, v) ≤ γ ·β, where the �rst inequality follows since each edge (u, v) in GX got replaced
by a path of total weight γ · w(u, v), and the second inequality follows since the stretch of G is β.
Similarly, since each edge (u, v) of GX got replaced by a path Pu,v of weight at most γ ·w(u, v), the
lightness of the resulting spanner is at most γ · L. The resulting spanner is a subgraph of Hk so it
has at most O(nαk(n) · ζ) edges.

Stretch Size Lightness Time Metric family

(1 + ϵ)β O(nαk(n)/ϵ
O(d)) (1 + ϵ)L O(mk/ϵO(d)) doubling dim. d

(1 + ϵ)β O(nαk(n)ϵ
−2 log2 n) (1 + ϵ)L O(mkϵ−2 log2 n) �xed-minor-free

O(ℓ · β) O(nαk(n)ℓn
1/ℓ) O(ℓ · L) O(m · k) general

O(βn1/ℓ log1−1/ℓ n) O(nαk(n) · ℓ) O(Ln1/ℓ log1−1/ℓ n) O(m · k) general

Table 4: Summary of our result for sparsi�cation of spanner GX for an n-point metric space. We
use β to denote the stretch of GX , which m edges and lightness L. In the last two entries, ℓ ≥ 1
denotes an arbitrary integer.

Remark 5.1. For �xed ϵ and doubling dimension d, Theorem 5.3 gives rise to a transformation that
works in O(mk) time and produces a spanner of size O(nαk(n)) with stretch and lightness increased
by a factor of (1+ ϵ). Similarly, for �xed ϵ and �xed-minor-free metrics, we obtain a transformation
that works in O(mk log2 n) time and produces a spanner of size O(nαk(n) log

2(n)) with stretch and
lightness increased by a factor of (1 + ϵ).

5.4 Approximate shortest path trees

Once a spanner has been constructed, it usually serves as a �proxy� overlay network, on which any
subsequent computation can proceed, in order to obtain savings in various measures of space and
running time. Thus, we shall focus on devising e�cient algorithms that run on the spanner itself.
In some applications, we may not have direct access to the entire spanner, but may rather have
implicit and/or local access, for example by means of a data structure for approximate shortest
paths within the spanner, such as the one provided by Theorem 1.2.

In this section, we explain how our navigation technique can be used for e�ciently computing an
approximate shortest-path tree (SPT) that is a subgraph of the underlying spanner. In any metric,
its SPT is simply a star, which is most likely not a subgraph of the underlying spanner. Assuming
that we have direct, explicit access to the spanner, we can simply compute an SPT on top of it using
Dijkstra's algorithm, which will provide an approximate SPT for the original metric. For an n-vertex
spanner, this approach will require Ω(n log n) time, even if the spanner size is o(n log n). There is
also an SPT algorithm that runs in time linear in the spanner size, but it is more complex and also
assumes that log n-bit integers can be multiplied in constant time [Tho99]. Using our navigation
scheme, as provided by Theorem 1.2, we can do both better and simpler, and we don't even need
explicit access to the underlying spanner (though we do need, of course, access to the navigation

37



scheme). The data structure provided by Theorem 1.2 allows us to construct, within time O(nτ),
an approximate SPT. In particular, for low-dimensional Euclidean and doubling metrics, we can
construct a (1 + ϵ)-approximate SPT (for a �xed ϵ) that is a subgraph of the underlying spanner
within O(nk) time, where k = 2, 3, . . . , O(α(n)).

In what follows, we will assume that we are given a metric (X, δX), with |X| := n and that we
have constructed spanner Hk and the data structure DX for (X, δX) as in Theorem 1.2. Recall that
we use γ to denote the stretch of the path returned by DX and τ denotes the time spent per query.
The algorithm for computing an approximate SPT rooted at given vertex rt is stated in procedure
ApproximateSPT(rt).

Algorithm 3 Computing approximate shortest path trees.

1: procedure ApproximateSPT(rt)
2: for v ∈ V do let π(v)← ∅
3: for v ∈ V \ {rt} do let dist(v)←∞
4: Let dist(rt)← 0
5: Let V (T )← {rt} and E(T )← ∅
6: for v ∈ V \ {rt} do
7: Query for the k-hop γ-approximate shortest path Prt,v from rt to v;
8: For each edge e = (x, y), ordered from rt to v along Prt,v, invoke Relax(x, y)

9: procedure Relax(u, v)
10: if dist(u) =∞ then

11: V (T )← V (T ) ∪ {v}
12: E(T )← E(T ) ∪ {(u, v)}
13: dist(v)← dist(u) + w(u, v)
14: π(v)← u
15: else if dist(u) + w(u, v) < dst(v) then
16: E(T )← (E(T ) \ {(π(v), v)}) ∪ {(u, v)}
17: dist(v)← dist(u) + w(u, v)
18: π(v)← u

We shall prove three claims which will imply the guarantees of the algorithm in Algorithm 3.
Intuitively, Claim 5.1 proves that, throughout the execution, the graph T maintained by the algo-
rithm is a tree. Then, Claim 5.2 shows that the value dist for each vertex v ∈ T will be an upper
bound on its distance from the root, denoted by δT (rt, v). Finally, Claim 5.3 implies that upon
termination, all the vertices have a γ-stretch path to the root.

Claim 5.1. Throughout the execution of ApproximateSPT(rt), graph T is a tree.

Proof. Initially, the claim holds vacuously, since T consists of vertex rt and no edges. The structure
of T changes in lines 14 and 18. It is important to notice that the order of relaxations performed
at line 8 allows us to assume that whenever Relax(u, v) is executed, u is in T . We will assume T
is a tree before the relaxation and prove that it will also be the case after the relaxation. If v was
in T earlier, then T changes a parent of v, thus remaining connected while preserving the number
of vertices and edges. If v was not in T , then T grows by one vertex and one edge. In both cases,
T is a connected graph with |V (T )| vertices and |V (T )| − 1 edges, so it is a tree.
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Claim 5.2. For each vertex v ∈ T and for each ancestor u of v, the algorithm ApproximateSPT(rt)
maintains invariant dist(u) + δT (u, v) ≤ dist(v).

Proof. At the beginning of the execution, the invariant is trivially satis�ed. The values dist change
in lines 13 and 17. Similarly, the values δT change in lines 14 and 18, due to the change of edges
in T . We assume that the invariant was true before relaxation along (u, v) and would like to show
that it holds after. In particular, it su�ces to show that (i) it holds for v and all its ancestors, (ii)
it holds for v and all its descendants, and (iii) it holds for any ancestor x of v and any descendant
w of v. As for (i), the invariant trivially holds for v as its own ancestor. Also, after the relaxation,
we know that dist(v) = dist(u) + w(u, v) = dist(u) + δT (u, v) so the claim holds for u as a parent
of v. The invariant was true before the relaxation, so for any ancestor x of u (and thus ancestor
of v), dist(x) + δT (x, u) ≤ dist(u). Adding δT (u, v) to both sides of inequality completes this case.
For (ii), the invariant implies that dist′(v) + δT (v, w) ≤ dist(w), where dist′(v) was the value before
the relaxation. After the relaxation, dist(v) decreased, so the invariant remains true. Finally, (iii)
holds since dist(x) + δT (x,w) = dist(x) + δT (x, v) + δT (v, w) ≤ dist(v) + δT (v, w) ≤ dist(w).

Claim 5.3. Upon termination of ApproximateSPT(rt), for any v ∈ V , δT (rt, v) ≤ γ · δX(rt, v).

Proof. We know that after the iteration of line 6 for vertex v, dist(v) is within γ factor of δX(rt, v).
In the subsequent iterations, dist(v) might only decrease due to relaxations. Finally, by Claim 5.2
we know that δT (rt, v) ≤ dist(v) throughout the execution of the algorithm.

Claims 5.1 and 5.3 imply that T is a γ-SPT for given metric with root at rt. The running time
of the algorithm is dominated by n− 1 queries of the path oracle, each of which takes O(τ) time as
in Theorem 1.2. Thus, we have proved the following theorem.

Theorem 5.4. Given a data structure DX for an n-point metric space MX = (X, δX) as in The-
orem 1.2, one can construct a γ-approximate shortest path tree for MX rooted at any point rt ∈ X
in time O(nτ).

Remark 5.2. WhenMX is a metric of doubling dimension d, Theorem 5.4 gives rise to a construction
of (1 + ϵ)-approximate SPTs in time O(nk/ϵd) time. If MX is a �xed-minor-free metric, the result
is a (1 + ϵ)-SPT in time O(nkϵ−2 log2 n). For general metrics and an integer parameter ℓ ≥ 0, one
can construct an O(ℓ)-SPT in time O(nk).

5.5 Approximate Euclidean minimum spanning trees

Suppose that we would like to construct an approximate minimum spanning tree (MST). Here too,
we shall focus on �nding an approximate MST that is a subgraph of the underlying spanner. In low-
dimensional Euclidean spaces one can compute a (1 + ϵ)-approximate MST (for a �xed ϵ) in O(n)
time [Cha08], but again this approximate MST may not be a subgraph of the spanner. Running an
MST algorithm on top of the spanner would require time that is at least linear in the spanner size;
moreover, the state-of-the-art deterministic algorithm runs in super-linear time and is rather com-
plex [Cha00], and the state-of-the-art linear time algorithms either rely on randomization [KKT95]
or on some assumptions, such as the one given by transdichotomous model [FW94]. Instead, using
our navigation scheme, as provided by Theorem 1.2, we can construct an approximate MST easily,
within time O(nτ), where τ is the query time as in Theorem 1.2. In particular, for low-dimensional
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Euclidean spaces, we can construct in this way a (1 + ϵ)-approximate MST (for a �xed ϵ) that is a
subgraph of the underlying spanner within O(nk) time, where k = 2, 3, . . . , O(α(n)).

In what follows, we will assume that we are given a Euclidean metric (X, δX), with |X| := n and
that we have constructed spanner Hk and the data structure DX for (X, δX) as in Theorem 1.2.
The MST construction is as follows. Initially, compute a (1 + O(ϵ)) minimum spanning tree T on
(X, δX) using [Cha08]. For each edge (u, v) ∈ T , query DX for a k-hop path Pu,v of weight at most
(1+ϵ)w(u, v). Let H := (X,∪(u,v)∈E(T )Pu,v) be the union of the obtained paths. Return a spanning
tree of H.

Theorem 5.5. Given an n-point Euclidean space MX = (X, δX) and its (1+ϵ)-spanner Hk equipped
with a data structure DX as in Theorem 1.2, one can compute a (1 + ϵ)-approximate minimum
spanning tree for (X, δX) in O(n · k/ϵd) time.

Proof. Computing a (1+O(ϵ))-approximate minimum spanning tree using Chan's algorithm [Cha08]
takes O(n/ϵd) time. For each edge (u, v) ∈ T we query DX for path Pu,v in Hk in time O(k/ϵd) as
in Theorem 1.2; altogether, it takes O(n ·k/ϵd) time to compute H. Since the edges graph H consist
of union of k-hop paths Pu,v, the size of E(H) is O(n · k). Every path Pu,v is within a factor (1+ ϵ)
of w(u, v), so the total weight of E(H) is within a (1 + ϵ) of the w(T ). Computing a spanning tree
of H can be done in O(|E(H)|) = O(n · k) time using BFS.

Remark 5.3. When ϵ is constant, the running time in Theorem 5.5 becomes O(n · k).

5.6 Online tree product and MST veri�cation

The online tree product problem [Tar79, Cha84, AS87, Pet06] is de�ned as follows.7 Let T be an
n-vertex tree with each of its edges being associated with an element of a semigroup (S, ◦). One
needs to answer online queries of the following form: Given a pair of vertices u, v ∈ T , �nd the
product of the elements associated with the edges along the path from u to v. A slight variant of
this problem is the online MST veri�cation problem where the edge weights of T are real numbers.
One needs to answer online queries of the following form: Given a weighted edge (u, v) not in E(T ),
report if the weight of (u, v) is larger than each edge weight along the path between u and v in
T . In both problems, the goal is to design e�cient (in terms of time and space) preprocessing
and query algorithms which use as few as possible semigroup operations (or binary comparisons).
In Section 5.6.1, we show that our navigation algorithm from Theorem 1.1 can be easily modi�ed
to support the online tree product problem. Then, we further optimize it for the online MST
veri�cation problem in Section 5.6.2.

5.6.1 Online tree product

Given a tree T and its 1-spanner GT , the algorithm from Theorem 1.1 builds a data structure DT

such that, for any two vertices u, v ∈ V (T ), it returns a 1-spanner path of at most k hops in GT

in O(k) time. We proceed to show how to preprocess the spanner GT and data structure DT so
that each spanner edge (u, v) ∈ E(GT ) has assigned to it a value from semigroup (S, ◦). This
value corresponds to the product of the edge values along the path from u to v in T . Using this
information assigned to the edges of GT , we can answer online tree product queries between two

7This problem is sometimes called the online tree sum problem.
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vertices u and v in V (T ) by querying DT for a k-hop path in GT . This results in online tree product
algorithm which uses k − 1 semigroup operations and O(k) time per query.

The algorithm we proceed to explain uses the notions introduced in Section 3.
We start by describing the preprocessing algorithm for the spanner construction when k =

2. In this case, all the spanner edges are either added from from a cut vertex u to every other
required vertex in tree T considered in the current level of recursion, or in a base case of the
recursive construction (see the description of procedure HandleBaseCase((T, rt(T )), R(T ), k) in
Section 3.1.1). For the spanner edges added from cut vertex u, we perform DFS traversal on T from
u and precompute the semigroup products to every other vertex in T . (Note that (S, ◦) might not
be commutative and we have to precompute the values both from u to v and from v to u.) During
the DFS traversal, we use stack to maintain the semigroup product (in both directions) along the
path from u to the vertex currently visited. This traversal requires time linear in the number of
required vertices in T , meaning that it does not asymptotically increase the running time of the
preprocessing algorithm (cf. Lemma 3.2). The spanner edges added in a base case always shortcut
paths of length 2, so we can precompute and store the edge information in the adjacency lists of its
endpoints with a constant overhead in time and space per edge. This concludes the description for
the case when k = 2.

When k = 3, at each each recursion level there is Θ(
√
n) cut vertices, denoted by CVℓ, where

n is the number of required vertices in the tree considered at that level, T . The spanner consists
of edges from each cut vertex u ∈ CVℓ to vertices in border(u), those in CVℓ × CVℓ, and the edges
added when the recursion ends in a base case. To precompute the information associated with
edges from each cut vertex u ∈ CVℓ to vertices from border(u), we perform one DFS traversal per
cut vertex. For cut vertex u, DFS precomputes the semigroup products from u to all the vertices
in border(u), in the same way as when k = 2. This information is stored together with the edge
information in DT . The running time of DFS from u is linear in the number of spanner edges added
from u to vertices in border(u). From Lemma 3.13 in [Sol13], we know that the union over all
vertices in CVℓ contains at most O(n) spanner edges of this type, meaning that the total running
time spent is linear in n. For the same reason as in the proof of Lemma 3.2, this step does not
a�ect the asymptotic running time of the preprocessing algorithm. We proceed to explain how to
precompute the values associated with the spanner edges between vertices in CVℓ ×CVℓ. First, we
set all the vertices in CVℓ as required and all the other vertices in T as Steiner and invoke pruning
procedure Prune((T, rt(T )), R(T )) from Section 3.1.1 (cf. Section 3.2 in [Sol13]). The output of
this procedure is tree Tpnd which satis�es: (i) it has at most 2|CVℓ| − 1 vertices, and (ii) each edge
(x, y) ∈ E(Tpnd) has associated to it semigroup products in both directions along the path between
x and y in T . This step requires O(n) time. For each cut vertex u ∈ CVℓ, we perform one DFS on
Tpnd (starting from u) and precompute the semigroup products from u to every other vertex in Tpnd.
Each DFS call requires size linear in |T ′| so the overall complexity of this step is Θ(|Tpnd|2) = Θ(n).
We have described how to preprocess all the semigroup products along the edges in CVℓ × CVℓ

within a linear time. Preprocessing for the edges added in a base case is handled in the same way
as when k = 2 � for every spanner edge, we store the semigroup product associated with it in the
adjacency arrays of its endpoints.

Finally, when k ≥ 4, the spanner edges are either added from a cut vertex u to vertices in
border(u), or when the recursion reaches a base case (cf. HandleBaseCase((T, rt(T )), R(T )), k)
in Section 3.1.1), or via recursive call using the construction for k − 2. Precomputing the values
associated with the edges in {u} × border(u) is done in the same way as we described for the
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case when k = 3. The edges in the base case are handled in the same way as when k = 2 and
k = 3. Finally, recall that each composite vertex in Φ keeps a pointer to a data structure containing
recursively precomputed information for k−2. We can use this data and recursively precompute the
values associated with the spanner edges there. In summary, we have proved the following theorem.

Theorem 5.6. Let T be an n-vertex tree having edges associated with elements of semigroup (S, ◦)
and let k ≥ 2 be any integer. We can preprocess T and build a data structure in O(nαk(n)) time
and space, such that upon a query for any two vertices u, v ∈ V (T ), it returns the semigroup product
along the path from u to v using k − 1 semigroup operations and in O(k) time.

Remark 5.4. For given parameter k ≥ 2, the online tree product algorithm by [AS87] achieves
preprocessing time O(nαk(n)) but each query follows a path with 2k (instead of k) hops, thus
requiring 2k − 1 semigroup operations.

Finally, we note that [AS87] shows several applications of their algorithm due to [Tar79]: (i)
�nding maximum �ow values in a multiterminal network, (ii) verifying minimum spanning trees,
and (iii) updating a minimum spanning tree after increasing the cost of one of its edges. We can
naturally support all these applications using smaller complexity per query while maintaining the
same preprocessing time and space guarantees.

5.6.2 Online MST veri�cation

We now restrict our attention to the online MST veri�cation problem, i.e., to a variant of the tree
sum problem where the edges of the tree are elements of the semigroup (R,max). We note that some
works considered vertex-weighted versions of this problem, but the two are equivalent up to a linear
time transformation which preserves the size of the original tree to within a factor of 2. Indeed, if
we are given a vertex-weighted tree T with any weight function wT : V (T )→ R, then we can build
an (edge-weighted) tree T ′ such that V (T ′) := V (T ) and E(T ′) := E(T ), and assign the weight of
an edge (u, v) ∈ E(T ′) to be max(wT (u), wT (v)). Conversely, if we are given an edge-weighted tree
T ′ with any weight function wT ′ : E(T ′)→ R, then we can build a (vertex-weighted) tree T , where
for each edge (u, v) ∈ E(T ′), we add to T the two edges (u,w) and (w, v), and set wT (u) := −∞,
wT (v) := −∞, wT (w) = wT ′(u, v). The tree T ′ has 2|V (T )| − 1 vertices and this transformation
works in linear time. Using these transformations, any algorithm for the edge-weighted variant of
the problem can be used for solving the vertex-weighted variant within the same up to constant
factors preprocessing and query complexities, and vice versa. Thus, we may henceforth consider the
two variants of the problem as equivalent.

Komlós [Kom85] showed that for any tree T with values associated with its n vertices and a given
set of m simple paths (queries) on T , one can �nd the maximum value for each of the m queries
using only O(n log((m + n)/n)) comparisons; this algorithm was presented without an (e�cient)
implementation. The �rst implementation was given by [DRT92], and subsequently simpler ones
were proposed [Kin97, BKRW98, Hag09]. These implementations run in time O(n + m) while
achieving the same bound O(n log((m+n)/n)) on the number of comparisons during preprocessing.
We can use this result to reduce the number of comparisons during preprocessing in Theorem 1.1.
Speci�cally, for any tree T , we �rst construct a 1-spanner GT = (V (T ), E) and the data structure
DT as in Theorem 1.1, and then apply an implementation of Komlós' algorithm [DRT92, Kin97,
BKRW98, Hag09] with the set of queries being (paths between) the endpoints of edges in E. We
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store the precomputed information together with the spanner edges. As a direct corollary, the
navigation scheme from Theorem 1.1 can be precomputed in O(nαk(n)) time and space while using
only O(n logαk(n)) comparisons. Given a query edge (u, v), we �rst query DT for a k-hop 1-spanner
path between u and v. Using k − 1 comparisons we �nd the maximum weight along the path and
using another comparison we compare this maximum weight against that of the query edge. Overall,
this requires k comparisons. The runtime of the query algorithm remains O(k), as in Theorem 1.1.

When k is even, the number of comparisons per query can be reduced by one using an idea
suggested in [Pet06]. We next describe this idea for completeness. As before, for any n-vertex
tree T , we start by constructing a 1-spanner GT = (V (T ), E) and the data structure DT from
Theorem 1.1.

Consider �rst the case k = 2. We store the n − 1 edges of T in an array, which we denote by
S. We sort S using O(n log n) comparisons and to each edge e in T we assign a unique integer in
{1, . . . , n − 1}, obtained as the position of e in S. We call this position the order of e in S. Next,
we assign to each edge (u, v) in E(GT ) a number corresponding to the maximum among the edge
orders (in S) on the path between u and v in T . This step can be done in time linear in the spanner
size using an implementation of Komlós' algorithm. By using the edge orders in the sorted array S,
rather than their weights, we are not spending any comparisons in this step. Given a query edge
(u, v), we �rst query DT for a 2-hop 1-spanner path between u and v. Let the two edges of this path
be (u,w) and (w, v). Without using any weight comparison, we can �nd which of the two edges
have larger order associated to them. We then �nd the edge e in S having this order and using one
comparison compare the weight of e to the weight of the query edge, (u, v). Overall the number of
comparisons made is k − 1 = 1.

Suppose now that k ≥ 2 is an even integer. Whenever PreprocessTree((T, rt(T )), R(T ), k)
for constructing DT executes a recursive call for some tree T ′ with parameter k = 2, we preprocess
the spanner edges added for T ′ using what we explained in the previous paragraph for the case
k = 2. Using a recurrence similar to that in Lemma 3.2 (see also the proof of Theorem 3.12 in
[Sol13]), it is easy to verify that for k > 2, the total number of comparisons over all the trees
considered in recursive calls with parameter k = 2 is linear in the size of given tree T . For the
other spanner edges in E(GT ), we apply an implementation of Komlós' algorithm and store the
precomputed information alongside the edges. This step requires O(nαk(n)) time and space and
uses O(n logαk(n)) comparisons. Thus, the total time and space complexity for preprocessing is
O(nαk(n)) and the number of comparisons used is O(n logαk(n)). Given a query edge (u, v), we
�rst query DT for a k-hop 1-spanner path between u and v. From procedure FindPath(u, v,Φ, k),
we know that this path either contains less than k edges or it contains k edges, two edges of which,
e1, e2, belong to some tree T ′ that was preprocessed with parameter k = 2. (See line 6 in procedure
FindPath(); the edges e1 and e2 correspond to (u, ϕT ′(β)) and (ϕT ′(β), v).) In the former case,
the number of comparisons required is clearly at most k − 1. If the latter case, i.e., the number of
edges on the spanner path between u and v is equal to k, we save one comparison by comparing the
orders of edges e1 and e2 in S for T ′, which reduces the number of comparisons from k to k − 1.

The following theorem summarizes the guarantees of our online MST veri�cation algorithm.

Theorem 5.7. Let T be an edge-weighted tree with n vertices and let k ≥ 2 be any integer. We
can preprocess T and build a data structure in O(nαk(n)) time and space and using O(n logαk(n))
comparisons, such that it answers online MST veri�cation queries on T in O(k) time and using at
most k − 1 comparisons.

43



Remark 5.5. Alon and Schieber [AS87] gave an algorithm for the online MST veri�cation prob-
lem that requires O(nαk(n)) time, space and comparisons during preprocessing. Their algorithm
answers queries following paths of length 2k, thus achieving 2k comparisons. (The number of com-
parisons is 2k, rather than 2k−1, since the query edge must be compared against the tree weights.)
Our algorithm improves this tradeo� both in terms of the number of comparisons required for pre-
processing (O(n logαk(n)) rather than O(nαk(n))) and the number of comparisons per query (k−1
rather than 2k − 1). Pettie [Pet06] shows that it su�ces to spend O(nα2k(n)) time and space and
O(n logα2k(n)) comparisons during preprocessing, so that each subsequent query can be answered
using 4k − 1 comparisons. In fact, [Pet06] uses a di�erent variant of a row-inverse Ackermann
function, λk, which satis�es λk(n) = Θ(α2k(n)) (see Lemma 2.1). This result of [Pet06] builds on
[AS87] (and [Cha84]), which requires 4k comparisons (rather than 2k claimed in [Pet06]) following
a preprocessing time of O(nλk(n)) = O(nα2k(n)). To reduce the resources required for prepro-
cessing, Pettie [Pet06] used Komlós' algorithm [Kom85], which reduces the number of comparisons
to O(n logα2k(n)), but not the running time, since the algorithm is information-theoretic, and all
known implementations of Komlós' algorithm take time linear in the number of queries (which is
Θ(nα2k(n)) in this case) [DRT92, Kin97, BKRW98, Hag09]. In this regime, our algorithm requires
O(nα2k(n)) time and space and O(n logα2k(n)) comparisons during preprocessing, so that each
subsequent query can be answered using 2k−1 comparisons in O(k) time. The result of [Pet06] can
also achieve a query time of O(k) (though not claimed), by building on [AS87], but using 4k − 1
comparisons rather than 2k−1 as in our result. Concurrently and independently of us, Yang [Yan21]
obtained a result similar to ours; the two techniques are inherently di�erent. Interestingly, Yang
[Yan21] de�nes yet another variant of a row-inverse Ackermann function, under the notation λk,
which is similar to the function used by Pettie [Pet06].
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A Proof of Lemma 2.1

This appendix is dedicated to proving the following lemma stated in Section 2.

Lemma 2.1. For any i ≥ 1, if λi(n) > 0, then 1
3α2i(n) ≤ λi(n) ≤ α2i(n).

Let T (·, ·) be slightly di�erent Ackermann function as de�ned by Tarjan [Tar75].

T (0, j) = 2j for j ≥ 0

T (i, 0) = 0 for i ≥ 1

T (i, 1) = 2 for i ≥ 1

T (i, j) = T (i− 1, T (i, j − 1)) for i ≥ 1 and j ≥ 2

In the following lemma, we show that A and T are almost equal (except for the �rst column).

Claim A.1. For all i ≥ 0 and j ≥ 1, A(i, j) = T (i, j).

Proof. We will show the claim inductively.
Base case i = 0. For all j ≥ 0, it follows by de�nition that A(0, j) = T (0, j) = 2j.
Base case j = 1. For any i > 0,it follows by de�nition that A(i, 1) = A(i− 1, A(i, 0)) = A(i− 1, 1).
Since A(0, 1) = 2 it follows by induction that for every i ≥ 0, A(i, 1) = 2, and so A(i, 1) = T (i, 1).
Inductive step. We proceed to show the inductive step for i ≥ 1, j ≥ 2, assuming that the claim
holds for any pair i′ ≥ 0, j′ ≥ 1 lexicographically smaller than (i, j).

A(i, j) = A(i− 1, A(i, j − 1))

= A(i− 1, T (i, j − 1)) from inductive hypothesis

= T (i− 1, T (i, j − 1)) since T (i, j − 1) ≥ 2 for j ≥ 2

= T (i, j)

We are ready to prove Lemma 2.1.

Proof of Lemma 2.1. Pettie [Pet06] shows that for any i ≥ 1 his variant of Ackermann function P
(cf. Section 2.2) satis�es:

� T (i, j) ≤ P (i, j) for j ≥ 0,

� P (i, j) ≤ T (i, 3j) for j ≥ 1.

From the de�nition of λi(·):

λi(n) = min{j : P (i, j) ≥ n}
≤ min{j : T (i, j) ≥ n}
= min{j : A(i, j) ≥ n} for j ≥ 1

= α2i(n).
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On the other hand:

λi(n) = min{j : P (i, j) ≥ n}
≥ min{j : T (i, 3j) ≥ n} for j ≥ 1

= min{j : A(i, 3j) ≥ n}

≥ 1

3
α2i(n)
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