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Abstract

Variance reduction techniques such as SPIDER/SARAH/STORM have been ex-
tensively studied to improve the convergence rates of stochastic non-convex op-
timization, which usually maintain and update a sequence of estimators for a
single function across iterations. What if we need to track multiple functional
mappings across iterations but only with access to stochastic samples of O(1)
functional mappings at each iteration? There is an important application in solving
an emerging family of coupled compositional optimization problems in the form
of >, fi(9:(w)), where g; is accessible through a stochastic oracle. The key
issue is to track and estimate a sequence of g(w) = (g1(W), ..., gm(W)) across
iterations, where g(w) has m blocks and it is only allowed to probe O(1) blocks to
attain their stochastic values and Jacobians. To improve the complexity for solving
these problems, we propose a novel stochastic method named Multi-block-Single-
probe Variance Reduced (MSVR) estimator to track the sequence of g(w). It is
inspired by STORM but introduces a customized error correction term to alleviate
the noise not only in stochastic samples for the selected blocks but also in those
blocks that are not sampled. With the help of the MSVR estimator, we develop
several algorithms for solving the aforementioned compositional problems with im-
proved complexities across a spectrum of settings with non-convex/convex/strongly
convex/Polyak-t.ojasiewicz (PL) objectives. Our results improve upon prior ones
in several aspects, including the order of sample complexities and dependence
on the strong convexity parameter. Empirical studies on multi-task deep AUC
maximization demonstrate the better performance of using the new estimator.

1 Introduction

This paper is motivated by solving the following Finite-sum Coupled Compositional Optimization
(FCCO) problem that has broad applications in machine learning [Wang and Yang, 2022]:

m

min F(w) = 3" fi(gi(w)) M

Rd
we i=1

where f; : RP — R is a simple deterministic function. We assume that only noisy estimations
of g;(+) and its Jacobian Vg;(-) can be accessed, denoted as ¢;(-;&;) and Vg;(+;&;), where &;
represents the random sample(s) drawn from a stochastic oracle such that E [g;(+; &;)] = ¢;(-) and
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E[Vgi(:;&)] = Vgi(+). A special case to be considered separately is when each &; has a finite
support and is uniformly distributed. In this case, the problem can be represented as:

m
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These problems are different from classical stochastic compositional optimization (SCO) problems
E¢[fc(Eeg(w;€))] and its finite-sum variant 1/m Y7 | fi(1/n 377 g(w;&;)) [Wang et al., 2017],
because the inner function is coupled with the outer index in FCCO.

A striking difference in solving FCCO problems is that we need to deal with multiple functional
mappings of g;(w) fori = 1,...,m. A challenge emerges when it is not possible to draw data sam-
ples for all blocks ¢ = 1,...,m at each iteration due to some restrictions (e.g., limited memory and
computational budget per-iteration). Wang and Yang [2022] studied this problem comprehensively
and proposed an algorithm named as SOX. A key to their algorithmic design is to maintain and selec-
tively update a sequence of estimators u = (u!,. .., u™) for tracking g(w) = (g1 (W), ..., gm(W))

by exponential moving average, i.e.,

wi = | A=Bugy +Bgi (wi &) i€B) .
S i¢ Bt
where & and B; C {1,...,m} denote a set of sampled blocks. With u, the gradient estimator is

computed by exponential moving average as well. As a result, they establish a sample complexity
of O(me~*) for non-convex objectives, O(me~?) for convex objectives and O(mu~2e~!) for u-
strongly convex objectives. However, there are several caveats of these results: (i) the sample
complexities (e.g., O(me*) for a non-convex objective) are no better than probing all blocks at
each iteration, for which Ghadimi et al. [2020] have established an O(¢~*) iteration complexity and
an O(me~*) sample complexity; (ii) when m = |B}| = 1, the problem reduces to a special case of
classic SCO problems; however, the complexities are worse than the state-of-the-art (SOTA) sample
complexities for non-convex, convex and strongly convex objectives, which are O(e~3), O(e~2) and
O(u~te™1), respectively [Zhang and Xiao, 2019, Jiang et al., 2022]. A useful technique for achieving
these complexities in prior works is by using variance reduction techniques, so a straightforward
approach is to change the update of u! by using a variance reduced estimator and do similarly for the
gradient estimator. In particular, one can change the update for ué according to STORM [Cutkosky
and Orabona, 2019]:

) (1 - 5)‘1%—1 + Bgs (Wt;ff) + (1 - B)(gi (Wﬁfi) —Gi (Wt—1§§§)) (XS Bi
u; = error correction ' (4)
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However, this simple change does not improve the complexities over that obtained by Wang and Yang
[2022]. The reason is that the standard error correction term marked above in STORM only accounts
for the randomness in g;(wy; &) but not in the randomness caused by sampling i € BY. So, a major
question remains:

How can we further improve the complexities for solving FCCO to match the SOTA results of
SCO by using variance reduction techniques via probing only O(1) blocks at each iteration?

To address this issue, we propose a novel variance reduction technique by selectively updating u? for
tracking g(wy), to which we refer as Multi-block-Single-probe variance-reduced (MSVR) estimator.
It employs a similar update as STORM for selected u} but with a different customized error
correction term to deal with the randomness in both g;(w; £!) and that in Bf. Based on MSVR,
we develop several algorithms for FCCO problems with different ways to compute the gradients,
and analyze the sample complexities across a spectrum of settings with non-convex/convex/strongly
convex/PL objectives and finite/infinite support of £;. We summarize our contributions and our results
below:

* We develop a novel MSVR estimator for tracking a sequence of multiple blocks of functional
mappings by only probing O(1) blocks via random samples at each iteration.



Table 1: Sample complexities needed to find an e-stationary point or e-optimal point. Here NC means
non-convex, C means convex, SC indicates p-strongly convex, PL means the u-PL condition. By
denotes the outer batch size, i.e., B; = |Btl| and By denotes the inner batch size. T assumes that f is
convex and monotone, and g is convex but possibly not smooth. * applies when inner function is in

the form of the finite-sum. O(-) hides logarithmic factors. In all results, we assume m < O(e™1).

Method NC C SC/PL B, Bs
BSGD 6 5 O (p'e3) 0(1), 0 (e 2)(NC)
[Hu et al., 2020] 0 (") 0(e?) (SC) O(1), O (e71)(CISC)
BSpiderBoost _5 . -
[Hu et al., 2020] 0(e?) O (e71),0(e72)
SOX o (me’4) O (me™?) (@] (mp’zefl) 0(1),0(1)
SOX (8=1) f
[Wang and Yang, 2022] o (mBge 2) O(1),0(1)
MSVR-v1 O (max(By, By)e) O (max(Bl By)e™®) O (max(By,By)p % !) 0(1),0(1)
MSVR-v2 ] (m\/Bge_?’) ( Boe™ ) (@] (mx/Bzu‘le‘l) O(1),0(1)
MSVR-v3* O (mv/nBae™?) O (myv/nBae™ ) O (my/nBap™t) 0(1), 0(1)

* By applying the MSVR estimator, we develop three algorithms for FCCO by using different
methods for computing the gradients, and establish improved complexities for non-convex,
convex, strongly convex, and PL objectives. A comparison between our algorithms and
existing methods is shown in Table 1, where we also exhibit the dependence on B, which
is the size of the inner batch for estimating each g;(w).

* The complexity of our first method (i.e., MSVR-v1) enjoys the same order on € as SOX, but
does not depend on m; MSVR-v2 improves the dependence on ¢, and its complexities match
the SOTA results for SCO when m = 1; our MSVR-v3 further reduces the dependence on e
for the finite support of £, and also attains the SOTA complexities when m = 1.

* We conduct experiments on multi-task deep AUC maximization to verify the theory and
demonstrate the advantage of the proposed algorithms.

2 Related work

This section briefly reviews related work on variance-reduced methods and stochastic compositional
optimization (SCO) problems.

Variance-reduction (VR) techniques for improving the convergence of stochastic optimization orig-
inate from Roux et al. [2012] for solving convex finite-sum empirical risk minimization (ERM)
problems. Since then, different VR techniques have been proposed for convex finite-sum ERM, e.g.,
SVRG [Johnson and Zhang, 2013, Zhang et al., 2013] and SAGA [Defazio et al., 2014]. These works
have improved the complexity for solving smooth and strongly convex problems to a logarithmic
complexity. For non-convex ERM problems, Fang et al. [2018] invents the SPIDER estimator similar
to its predecessor SARAH [Nguyen et al., 2017], and improve the complexity of standard SGD from
O(e1) to O(e=3) and O(y/ne~2) in stochastic and finite-sum settings, respectively, where n is the
number of components in the finite-sum. Algorithmic improvements have been made to SPIDER
by using a constant step size in SpiderBoost [Wang et al., 2018] and using a constant batch size in
STORM [Cutkosky and Orabona, 2019].

Several classes of SCO have been studied. The first class is the two-level SCO whose objective is
given by E¢[fe(E, [g.,(W)])], where € and w are random variables. While the study of two-level
compositional functions dates back to the 70s, the most recent comprehensive study was initiated by
Wang et al. [2017]. They proposed a two time-scale classic algorithm named SCGD and establish
its asymptotic guarantee and non-asymptotic convergence rates. Following this work, many studies
have been devoted to improving the convergence rates or algorithmic design of two-level SCO [Wang
et al., 2016, Ghadimi et al., 2020, Zhang and Lan, 2021]. In particular, recent works have used
variance-reduction techniques based on SPIDER/SARAH/STORM to estimate the inner values and
the gradients [Liu et al., 2018, Yuan et al., 2019a, Zhang and Xiao, 2019, Chen et al., 2021, Qi et al.,
2021a]. Similar efforts have been extended to the second class of SCO, i.e., multi-level SCO with an



objective Eg, [f2 (Ee, [fZ, (- .- (e [fE, (w))] .. .)])] [Yang et al., 2019]. Recent studies have been
focused on further improving the sample complexity and reducing the dependence on the number of
levels K [Balasubramanian et al., 2021, Chen et al., 2021, Zhang and Lan, 2021, Zhang and Xiao,
2021, Jiang et al., 2022]. These works also employed variance reduction techniques to design their
own methods. However, directly applying these algorithms of two-level and multi-level SCO to
FCCO requires probing all m blocks in g(w), which is prohibitive in many applications.

The third class of SCO is the Conditional Stochastic Optimization (CSO) whose objective is in the
form of E¢ [ f¢(Ey|eg.(w; €)])] [Hu et al., 2020], where w|{ means that the distribution of w might
depend on £. The FCCO problem can be considered as a special case of CSO. The key difference from
the first class of SCO discussed above is that the inner function g depends on the random variable
& of the outer level. For CSO, Hu et al. [2020] proposed two algorithms with and without using
the variance-reduction technique (SpiderBoost) named BSGD and BSpiderboost, and established
complexities for non-convex, convex and strongly convex functions, which are shown in Table 1.
However, their algorithms require a large batch size for estimating the inner functions.

Recently, a novel class (the fourth class) of SCO was studied, which is referred to as the finite-sum
coupled compositional optimization (FCCO) [Wang and Yang, 2022]. The finite-sum structure makes
it possible to develop more practical algorithms without relying on huge batch size per-iteration.
It was first studied by Qi et al. [2021b] for maximizing the point-estimator of the area under the
precision-recall curve. Recently, it was comprehensively investigated by Wang and Yang [2022]
and more applications of FCCO have been demonstrated in machine learning. Nevertheless, their
algorithm—SOX does not use variance reduction techniques and hence suffers from the limitations
discussed in the previous section.

3 Proposed Algorithms and Convergence

First, we introduce the notations and assumptions used in this paper. Then we describe the MSVR
estimator in detail and develop algorithms based on the proposed estimator.

3.1 Notations and Assumptions

Let [m] = {1, ..., m}. The definition of sample complexity is given below, which is widely used to
measure the efficiency of stochastic algorithms.

Definition 1 The sample complexity is the number of samples needed to find a point satisfying
E[||VF(w)|]] < € (e-stationary) or E [F(w) — infy, F(w)] < € (e-optimal).

Next, we make following assumptions throughout the paper, which are commonly used in the studies
of SCO [Wang et al., 2016, 2017, Yuan et al., 2019a, Zhang and Xiao, 2019, 2021].

Assumption 1 (Smoothness and Lipschitz continuity) We assume that each f; is Ly-smooth and
C'¢-Lipchitz continuous, each g; is Lg-smooth and Cg4-Lipschitz continuous.

Remark: This implies F'(w) is C'p-Lipchitz continuous and L p-smooth, where Cr = C;Cy,
Lr = C}Lg + Cf Ly [Zhang and Xiao, 2021].
Assumption 2 (Bounded variance)
E [9:(x:&)] = gi(x); E [Vgi(x:€)] = Vgi(x):
E {Hgi (x:¢1) — gi(X)Hz} <o0?/By; E [||Vg7: (x:¢) — in(X)HQ} < 0% /By;
where the random variable & denotes a batch of samples with batch size By > 1.
Assumption 3 (Average Lipchitz continuity of g; and its Jacobian)

E [lo: (&) — g (v:€)|°] < C2lx — v
E[|IVo: (x:€) - Vi (v €)[°] < E2lx -y
Remark: Although this assumption seems strong at the first sight, it is quite standard and widely

used in the recent compositional optimization literature [Yuan et al., 2019a, Zhang and Xiao, 2019,
2021, Jiang et al., 2022].

Assumption 4 F, = infy, F(w) > —oco and F (w1) — F. < Ap for the initial solution w1.



3.2 Multi-block-Single-probe Variance Reduced (MSVR) Estimator

Assume that we have a budget to probe only B; out of m mappings in g(w). To this end, at the
t-th iteration we sample a set of blocks B! C [m], where |B!| = By, and probe the corresponding
gi(w) by accessing the noisy estimates g;(wy; &) fori € BY. Then, we just update the corresponding
block in our estimator u;. Specifically, we update u’ for i € B! in a new way and keep other blocks
unchanged. The whole estimator is shown below:

(L=Bui_y + Bigi (We; &) + % (95 (wi; &) — gi (wi13€])) i€ B
ul = N G)

ui_, ' i ¢ B
The first line of our estimator is inspired by STORM [Cutkosky and Orabona, 2019]. The difference

is that the STORM estimator sets 7, = (1 — (;), while for MSVR, 7 is set as BZ”(’%% +(1—=p5)
according to our analysis. We name equation (5) as Multi-block-Single-probe Variance Reduced
(MSVR) estimator. By multi-block, we mean the estimator can track multiple functional mappings
(91,92, - , gm), simultaneously; by single-probe, we indicate the number of sampled blocks B,
for probing can be as small as one. It is notable that when B; = m, i.e., all blocks are probed at
each iteration, 74 = 1 — 3; and MSVR reduces to STORM applied to g(w). The additional factor in

Ve, 1.€., ,yto = ]371"(;7% is to account for the randomness in the sampled blocks and noise in those

blocks that are not updated. To briefly understand the additional factor 72, we consider bounding
lue — g(we)]|? = 300 [Jul — gi(wy)||. Let us focus on a fixed i € [m]. Then we have

; B
E [} — gi(wo)[?] = —

=i B, i
E [”ut - gz'(Wt)HQ} +(1 - E)]E “|ut—1 - gi(wt)”2] .
Aq Az
Note that the first term A; in the R.H.S. can be bounded similarly as STORM by building recurrence
with ||ul_; — g;(w;_1)||?. However, there exists the second term due to the randomness of B¢, which
can be decomposed as

af_y — gi(wi—1) + gi(wi1) — gi(wy)

I? 2

= iy — gi(we1) |12 + |l (We1) — gi(we)
Aoy Aso
+2(uy_; = gi(Wi-1))  (9:(Wi1) — gi(wy)) -
Ass
The first two terms in R.H.S. (Ao; and Ass) can be easily handled. The difficulty comes from

the third term, which cannot be simply bounded by using Young’s inequality. If doing so, it will
end up with a non-diminishing error of u}. To combat this difficulty, we use the additional factor
brought by %0 (g (wt; 5;) —g; (wt,l; 5;)) in A; to cancel Asg. This is more clear by the following
decomposition of Aj.

A =E[||(1 = B)(uj_; — gi(Wi1)) + 77 (9: (W) — gi(Wi—1))

Aqq Aqa
+ Be(gi(wWe: &) — gi(We)) + 72 (9:(We: &) — gi(We—13€1) — 9i(We) + gs(wi—1)) [|7]
Az Aqa

<E[||A11 + A12|*] + E [|| 415 + A14]?] -

In light of the above decomposition, we can bound E[||A1; + A12||?] < E[||A11]]? + [|A12])* +
2A{, Ao and E[|| A3 + A14]|%] < 2E[||A13]|?] + 2E[|| A14]|?]. The resulting term E[2A], A;5] has
a negative sign as A,3. Hence, by carefully choosing +?, we can cancel both terms. The remaining
terms can be organized similarly as in the analysis for STORM. We give a technical lemma for
building the recurrence of MSVR’s error below. All the proofs are deferred to the supplementary
material due to space limitations.

Lemma 1 By setting v, = % + (1= By), for B < %, we have:

B 2B, B20?
B [Jn— g 0l”] < (1= 22 ) B [luees = g )] + 2205
m B2
8m2 2
+ Bl g E |:||Wf — Wt_1||2:| .



Algorithm 1 MSVR-v1 and MSVR-v2 method
: Input: time step T, parameters «v, 3¢, 7, learning rate 7, and initial points (w1, uy, z1).

—_

2: for time stept = 1to 7 do
3:  Sample a subset B} from {1,2,--- ,m}
4:  Compute estimator u; according to equation (5) or (6) ¢ Use MSVR or MSVR-SP update
5:  (vl) Compute estimator z; according to equation (7) ¢ Use moving average update
6:  (v2) Compute estimator z; according to equation (8) o Use STORM update
T Wiy = Wy — 142
8: end for
9: Choose 7 uniformly at random from {1,...,7}
10: Return w,

Remark: The above recursion is similar to that of STORM for tracking a sequence of a single-block
functional mapping. Since the last term ||w; — w;_1||* can be offset in the future analysis, intuitively
the estimation error ||u; — g (w)||* would reduce after each iteration.

Single Point Version. A limitation of the MSVR estimator is that it needs to probe selected blocks
at two different points, i.e., g;(wy; &) and g;(wy—1; &} ). With a more careful analysis, we can probe
a selected block at a single point similar to that used by Balasubramanian et al. [2021] and Chen et al.

[2021]. Specifically, we replace g; (w¢;&f) — gi (Wi—1;&}) with Vg; (wy; gg‘)T (Wi —wi_1). Asa
result, we propose a single-point version of MSVR (named as MSVR-SP) estimator below:
) ) T .
ui = 4 (U= 8wl + Bigi (Wis &) + Vi (Wi &) (We —wi1) i€ B] (6)
¢ u;71 i ¢ B{
The MSVR-SP estimator enjoys the similar recurrence for the estimation error.
Lemma 2 Sety, = -2—5L_ 4 (1= By). If |Wis1 — wi||? < n2C% and ny < /i, we have:

B1(1-8¢)
B 2B, B20?
B [J = atw) "] < (1= 222 ) B [Jeos — gt )|?] + 225
m By
802\ m?
+ (42203 + 003 + ) B [lwe - wea ).

Remark: If there is a constraint on the range of g;, we can add a projection to the update of u’ such
that it always resides in the range, which will not affect the analysis of Lemma 1 and Lemma 2.

3.3 Leveraging the MSVR Estimator for solving the FCCO Problem

Now, we are ready to present our proposed algorithms for solving problem (1). The first two
algorithms (named MSVR-v1l and MSVR-v2) are presented in Algorithm 1. These two methods
differ in how to estimate the gradient.

Let us first consider MSVR-v1. At each time step ¢, we first use the proposed MSVR or MSVR-SP
estimator u, to estimate the inner function value. Then, following the previous literature [Wang et al.,
2021, Wang and Yang, 2022], we use the moving average estimator z, to estimate the gradient as:

« ) )
zy =e, [(1—ap)ze—1 + Bftl Z Vfi(ui_1)Vgi(we &) | @)
ieBt

where I, denotes the projection onto the ball with radius C'r. This projection is optional for using
MSVR, but is required for using MSVR-SP to ensure ||w;1 — w;||? < n?C% as used in Lemma 2.
Since the true gradient V F is also in this ball, i.e., |[VF|| < CF, the projection will not affect
the future analysis. Also note that when computing the estimator z;, we use V f;(u_,) instead of
V fi(u?) to avoid the dependence on the random variable £}, which may lead to dependent issues
otherwise. Finally, we use the estimated gradient z; to update the parameter w; ;. Now, we provide
the theoretical guarantee for the MSVR-v1 method.



Theorem 1 Our MSVR-vI algorithm with a1 = O (n), Bry1 = O(mégf ), a = (9(”?91?2) and
1
=\ 2/3 .
7; = min { (&TL&) (a+t)~13 \/min{By, Ba}(a + t)l/Q}, can find an e-stationary point

inO (max {

me > e’ iterations
B1v/By’ min{B1,B2} :

Remark: This complexity is strictly better than previous SOTA method SOX, which enjoys an
—4 —4 -2
gleBQ ? min{gBl,Bg} ? mél
tained by multiplying the iteration complexity with B Bo. We can see that larger By or By yields a
smaller iteration complexity, which means that from the computational perspective, if samples can be
processed in parallel (e.g., in GPU), there is a benefit of using large By and/or By. However, from
the sample complexity perspective, using B; = By = 1 is the best. The same discussion holds for

other theorems below.

iteration complexity of O (max { }) The sample complexity can be ob-

However, the complexity of MSVR-v1 is still on the order of O(¢~*). Due to the biased nature
of the estimated gradient, using the moving average update is not enough for achieving the SOTA
complexity of O(e~3). So, we use the technique of STORM [Cutkosky and Orabona, 2019] to update
z; as follows:

ze =, |(1—ae)ze—1 + OéBil Z Vfi(ui_)Vgi(wi; &)
ieBy )
+ (1- Oét)i Z (Vfi(ui_)Vgi(wi; &) — Vfi(ui_o)Vai(we1;€)) |

By ~—~
i€By

where the projection operation is needed if using the MSVR estimator. Now, we prove this new
method (i.e., MSVR-v2) can obtain the optimal complexity of O(e~3).

Theorem 2 Our MSVR-v2 algorithm with a; 1 = (’)("”“2 ), Ber1 = O (mznf ), a= O(mB—??) and

B B?
B.VB - . o -3\ . .
n =0 ((%)2/3((1 +t) 1/3), can find an e-stationary point in O (%) iterations.

Remark: When m = 1 and f is the identity function, problem (1) reduces to the standard stochastic
non-convex optimization, whose lower bound is {2 (6*3) [Arjevani et al., 2019], indicating our
MSVR-v2 is optimal.

Next, we show that the complexity can be further improved when the objective function is convex or
strongly convex. We note that Polyak-Lojasiewicz (PL) [Karimi et al., 2016] objectives are more
general than strongly convex functions, since p-strong convexity implies the p-PL condition. So, we
will consider the PL condition and introduce its definition below.

Definition 2 F'(w) satisfies the u-PL condition if there exists o > 0 such that:

2u (F(w) = F.) < ||[VF(w)]*.

Then, we derive improved rates for convex or PL objectives by using the stage-wise design given in
Algorithm 3 in the supplement.

Theorem 3 If the objective function satisfies the convexity or u-PL condition, MSVR-v1 derives a
sample complexity of O(max(By, Ba)e~3) or O(max(By, Ba)u~2e~1), separately. For MSVR-v2,
the complexity can be further improved to O (m\/Bge_2) or O (m\/Bg,u_le_l).

Remark: The complexities for MSVR-v2 are optimal, since they match the 2 (e72) and Q (= 'e™!)

lower bound for stochastic convex and strongly convex optimization [Agarwal et al., 2012].

Remark: The algorithms proposed in this paper can also use adaptive (Adam-style) learning rates
and obtain the same complexity using the techniques proposed by Guo et al. [2021]. The details are
provided in the supplementary.



Algorithm 2 MSVR-v3 method

1: Input: time step T, parameters «, 3,7, I, learning rate 7 and initial points (w1, uy, z1).
2: for time stept = 1to 7 do

3:  ift mod I == 0 then

4 Sett =t

5 Compute and save g;(w,), V fi(ul_,) foreveryiand L Y™ Vf;(ul_;)Vg;i(w,)
6: endif
7.
8

Sample a subset B} from {1,2,--- ,m}
: Compute function value estimator u; according to equation (9)
9:  Compute gradient estimator z; according to equation (10)
10: Wiy = Wy — N2y
11: end for
12: Choose 7 uniformly at random from {1,...,T}
13: Return w,

4 An Improved Rate for the Finite-sum Case

In this section, we consider the case that inner function g; is in the form of the finite-sum, i.e.,
gi(w)=1 Z?Zl gi(w; &), so that we can compute the exact value of g;(w) in some iterations. We
first modify our MSVR estimator to utilize the finite-sum structure. Inspired by SVRG [Johnson and
Zhang, 2013, Zhang et al., 2013], we compute a full version of the inner function value for every 1
iterations at w, i.e., g; (W;) = %Z;’L:l gi(wr; &) fori =1,--- ,m, where 7 mod I = 0. Then,
in each step, we use

Gi(wi; &) = gi(We; &) — 9:(Wr; &) + gi(w-)
to replace g; (wy; &) in the origin estimator. In this way, our MSVR estimator is changed to:
i (1_ — B)u)_; + Bgs (Wt§§ti) +7 (gi (Wt§f§) — i (Wt—1§§§)) i€ Bj
u; = i . ()|
;g i ¢ B
For this estimator, we have the following guarantee.
Lemma3 If3 <1 5 and BI < 5+ 5., by setting v =

B 10m2C?
[”utﬂ — g (W) } (1 —~ ;f) E [||ut —g(w)l?| + %E [

B 5) + (1= B), we have:

[Wer1 — Wt\ﬂ .

2316 0‘

Remark: Compared with Lemma 1, we remove the term, which is the key to reduce the

complexity since we can now use a larger parameter 3.
To attain the optimal complexity, we modify the gradient estimator z; in a similar way:

Zy = (1 — Oz)Zt_1 + O(ht
+(1- O‘%l > (Vi) Vai(we &) — VFiu)_5)Vai(wio1:6))) (10)

ieBt

where h; involves both the full gradient and the stochastic gradient (we also need to save each
V f;(u;—_1) and calculate the full version of - 3" V f;(u’_,)Vg;(w,) at those steps 7) :

1 : ;

by = o Y (Vi(uy 1) Vai(wi &) = Vfi(ul 1) Vgi(wri ) Zsz _)Vgi(w).
! ieBt

The whole method is summarized in Algorithm 2 (named as MSVR-v3). Next, we show that

MSVR-v3 is equipped with an optimal complexity of O(y/ne~2).

Theorem 4 Our MSVR-v3 with I = g%, o = O (2:82), 8 = 0 (£2) and n = O (B1/E),

—2
can obtain an e-stationary pointin T = O (7;;\/3% ) iterations.
1 2
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Figure 1: Results for Multi-task AUC Optimization.

Remark: When m = 1 and f is the identity function, problem (2) reduces to the stochastic finite-sum
optimization, whose optimal complexity is O (\/56_2) [Fang et al., 2018, Li et al., 2021], indicating
our complexity is optimal in terms of € and n.

Similarly, a better complexity can be obtained under the convexity or PL condition.
Theorem 5 [f the objective function satisfies the convexity or u-PL condition, the sample complexity

—1 —1
can be improved to O (% log %) or O (% log %), respectively.

Remark: It is notable that we achieve a linear convergence rate O (log l) under the PL condition,
matching the current result in the single-level finite-sum problem [Li et al., 2021]

5 Experiments

In this section, we conduct experiments on the multi-task deep AUC maximization to evaluate the
proposed methods and we will consider more applications in the long version of the paper. For binary
classification (label y = 1 or y = —1), AUC maximization can be formulated as minimizing the
following composite loss [Zhu et al., 2022]:

i By [ () ~0)?] + Byt [ (h () = 0)°] + fa(w) — blow))

where a(w) = E [hw(x) | y = 1], b(w) = E [hw(x) | y = —1] and £(-) is a surrogate function. The
above objective recovers the pairwise square loss and the min-max margin loss proposed by Yuan et al.
[2020] for deep AUC maximization by setting £(-) as the square function or squared hinge function,
respectively. When applied to multi-task classification (e.g., multiple classes), we can optimize the
averaged AUC losses over all tasks, i.e., AUC = >t AUC(i). The nested structure only comes

from the term ¢(a(w) — b(w)), and we can rewrite it as the form of FCCO problem, where

1 1
gi(w) = @ Z hw (%) — @ Z hw (x), f(gi(w)) = £(gi(w)).

x€Di, xeDL
where Dﬁr /- denots the positive/negative datasets of the i-th task.

Configurations. In the experiment, we follow the setup in Zhu et al. [2022] and set the surrogate func-
tion £ as squared hinge /() = (max{c+x,0})2. We use ResNet18 as backbone network, and train



on six datasets: STL10 [Coates et al., 2011], CIFAR10 [Krizhevsky, 2009], CIFAR100 [Krizhevsky,
2009], MNIST [LeCun et al., 1998], Fashion-MNIST [Xiao et al., 2017], and SVHN [Netzer et al.,
2011]. We compare our methods with previous SOTA algorithm SOX [Wang and Yang, 2022]. For
our methods, parameters « and (3 are searched from {0.1,0.5,0.9,1.0}. For SOX algorithm, its
parameters 3 and «y are searched from the same set. B is set as 50 for CIFAR100 and 5 for other
datasets. Inner batch size By is chosen as 128 for all methods. We tune the learning rate from the set
{le—4,1e — 3,2e — 3,5e — 3, 1e — 2} and pick the best one for each method. The experiments are
conducted on single NVIDIA Tesla M40 GPU.

Results. Figure 1 shows the loss against the number of samples drawn by different methods, and all
curves are averaged over 5 runs. We observe that MSVR-V1 is better than SOX on the CIFAR100
dataset, and close to it on other datasets. MSVR-v2 converges faster than SOX and MSVR-v1, and
the loss of MSVR-v3 decreases most rapidly, demonstrating a low sample complexity.

6 Conclusion and Future Work

In this paper, we develop a novel MSVR estimator for tracking multiple functional mappings by
probing only O(1) blocks. Equipped with this estimator, we design three algorithms for FCCO
problems and obtain improved complexities across a spectrum of settings. Experimental results on
multi-task deep AUC maximization also verify the effectiveness of our methods. In future work, we
will investigate other applications that can be solved by using the proposed estimator.
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A Analysis

A.1 Proof of Lemma 1

Proof Denote u} = (1 — Byy1)u + Bir19i(Wis1; Eiq1) + ve1 (9i(Wer13641) — 9i(Wes €l yq))-
) B ) B .
E {|fuiss - gulwer)|*] =E [a = =) fJuf = ga(we) [+ = g - gawe) || A

For the first term, we can decompose it as:

(1= 2008 ([~ v

=(1- %)E {Hui - gi(wt)||2} +(1- %)E [”gi(wt) - gi(Wt+1)||2}
201 = 2L [(uf - gi(wn) (0:(We) — gi(wer))]

O]

12)

Also, the second term can be written as:

1E [[la; - gi(wis)|]
=B [[[(1 - Ben) (] = g (W) + (1= Brer) (9:(Wr) = gi(Wes1)

e (9(Wer1i 1) = i (W) + 71 (0(Wer1 €)= 9:(wis €))7
Z%E (11 = Beg) (W) = gs(we)) + (1= Beyr) (9:(we) — gi(Wis1))

4 , B.1j}
et (9i(Wea136001) — 9i(Wei ) TtHE

n 2B1 Bt+1Vt+1
m

HQ} + “|gi<wt+1§5§+1) _gi<wt+1)|‘2}

E [(gi(wt+1§§§+1) - gi(WtJrl)) (gi(wt+1§§§+1) - gz‘(Wﬁsz))]

:?nlIE {(1 — Bis1)? H(UIf - gi(wt))HZ]
- %E “|(1 = Bea1) (9i(We) = 9i(Wer1)) + 41 (96(Wes1:641) — 9i(Wes €141)) HQ}
+ 2WBl(l = Bir1)(1 = Berr — e+ 1)E [(uf — g5(We)) (95 (W) — gi(wig1))]

@)

B p? '
+ %E M (95 (Wer1:€041) — 9i(Wis1)) HQ}

n 2B1 B 11741

- E [(gi(Wer156111) — 9i(We1)) (9i(Wegn: €6 41) — 9w €141)) ]

(13)

The second equation is because of E [gi (Wet1s §§+1) - gi(th)] = 0. The last equation is due to
E [gi(Wit15 € 41) — gi(we; €41)] = 9i(Wig1) — 9i(Wy) and u} is independent of & . We want to
ensure ) + @ = 0, which requires that 2(1 — 21) + 251(1 — 8,1 )(1 — By41 — Ye41) = 0. Solve

mel

Ver1 and we have i1 = =5,y + (1 — Bi41)- According to equation (12) and equation (13),
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the equation (11) can now be written as:
E [|futsr - gilwesn)|”]
B 1—B11)’B . 2 B
—ﬂ@—g+(””1NM—mMm+a—gme%mme

m
B1ﬁt+1 [

+ (gi( (Wer156041) — gi(WHl))HQ

+ E ||(1 — Bea1) (9:(We) = gi(wer1)) + g1 (96(Wer13 6040) — 9i(wes €144)) ||2
B ) . .
+ zlﬁtmﬁ (9i(Weg1:€041) — 9i(Weg1)) (9i(Weg13€40) — 9i(Wes €4p))

:E[ (1 _ B + (1_5:;1)31) |uf — gi(wt)”2 +(1— %) llgi(we) — gi(Wes1)])?

B Bi(1— g

, @“MQMH@H>wwmmf+4Lﬁ&imwmwmwmmF
2B

- 2B Bet) i) — gr(wea )P (14)
B .

+ 1%“ H(gz Wt+17£t+1) gi(WﬁfZH))HQ

2315t+1%+1
2B (o
m

9i(Weg13:6 1) — 9i(wig1)) (9i(Weg136141) — gz‘(Wt;EfH))]

B .
< (1- 2222 8 [ — g ] + 2228 [ (g wirns ) — i) ]

4mC?
B E [ — ]

B ) . .
+ %ﬁﬂﬂ [(9i(Wes13€41) — 9i(Wit1)) (9s(Wega3 €04) — gi(wis E4)) |

) 2B
< (1222 8 [ — gt ] + 2220 [ g i) - i) ]

8mC?
B E [ — ]

The second equation is due to
i i 2
E [(9s(Weg156011) — 9i(Wei &41)) (9i(Wer) — gi(we))| = [lgi(wega) — gi(we)|”
The first inequality is because of i1 < %—"f (since Biy1 < %) and 1 — % + %(1 — Bir1)? <
2%(1 — Bia1)Vex1. The last inequality is due to the fact that

2B : ' '

%E [(9i(Wer1:€41) = 9i(Wes)) (9i(Wer13€641) — 9i(Wes €i41)) ]

2B : ' :
S%E g (Werrs 1) = gi(wern) || |9 (Wer1: €ar) — gi(wis €40)||]

B 5 ‘ B 2 . .
S%E [!|gi(wt+1;£§+1) — gi(th)Hﬂ + ME {Hgi(wt+1§5z+1) - gi(Wt;EZH)HQ]

B 62 ; mC
S%E [’|gi(wt+1§£t+1) — gi(weg)|| } + TE [Hwt“ WtHQ}

Finally, we have:

E [||ut+1 —g(wira)| } ZE [Hut+1 gi(we)| }

B 8m?2(C? 2B,02%3?
s@—@“])EMm—mmmﬂ+ LE [l — wi|?] + =5
m B By
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A.2  Proof of Lemma 2
Proof We will start with single block and them sum over multiple blocks. To start, we have
; 2
Hu1Zt+1 - gi(wt+1)H
B i 2
(1= 21t - st

Bl H2

H (1= B )i + Br19i(Wer13 € 41) + 1 V9i(Wes15601) T (Wer — W) — gi(Wegr)

= (1= 2 | = oo+ 20— 000 00500 = o)) o) — o)
Ap

Bl 2
H (1= B )i + Br19i(Wer1: € 1) + 11 V9i(Wer156001) T (Wesn — W) — gi (W) |

A

Next, we will proceed to decompose A.

(1= Be1)(uf = gi(we)) + (1 = Bey1)(9:(we) — gi(Weg1))

+ Big1(9i(Wegr; §§+1) = 9i(We1)) + ver1(9i(Wig1) — gi(we))
2

A:

+ Ve 1(9:(We) — gi(Wit1) + Vi (Wes13:641) T (Wepr — wy)

=H<1 — Br) (= ga(we)) + (s + Ber — 1)(ga(Wen) — gu(wi)

+ Yeg1 (9:(We) — gi(Wig1) + Vgi(wipr) T (Weg1 — wy))
A

+ Bir1(9:i(Weg1; §§+1) — gi(Wit1))

+ 7041 (Vg (Wir1;6041) — Vaiwign) T (wigr — wy)

By taking expectation over A, we have
E[A] =E|(1 = Bes1)?[0; = gs(We) |* + 21 1A + (verr + Berr — 1) [lgi(Wes) — gi(we) ||
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Ay
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262, 0° N 277,102
By B
1 m—B

= (7[%1) the terms involving Aq, A1 will cancel. As a result, we have
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Since Vi1 + Bri1 —
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Since || ]| < min( 5 w1 — wil|%,2C[[wi 1 — wi|) and ||gi(wir1) — gs(w)l| < Cyllwii —
2 h
1%, we have

E {[[ui — gi(wern) ]
B .
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26710 27410
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Finally, we have:
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212 2 2
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A.3 Proof of Lemma 3
Proof Note that we have:
E [H@:(wtﬂ;fiﬂ) - gi(Wt+1)H2}
=E [Hgi(wt-i-ﬁd-&-l) = 9i(Wri &) + gi(wr) — gi(Wt+1)H2}
= {llg:(wesns€ia) = 0:(wrs &) [*] + laatwn) — gulwr) I a5
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Since T is the closest small index such that T mod I = 0, we have:

T t 2

> lwesr = wo | < Z 2 (Wei1 =

t=1 k=1
T T (16)
<N Iwigr — wi||? < 12 > Wi — wi?
t=1 k=71 t=1
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We can then apply the same analysis as in Section A. 1, until equation (14):
i 2
E {[[ufr = gs(wein) ]

B X B, 32 .
< (1 - ﬁml) E [Hui - gi(Wt)Hﬂ + 2 71116 E {H(/g\i(WHIQﬂJrl) - gi(WHl))Hz}

8mC?

+ BilgE [||Wt+1 - Wt||2]

B ) 2B,C?B%1? 8m(C?
s(l—ﬁml)E[Huz—gxw»!Fh( LR g)E{lel—wth]

m Bl

B ) 10mC?
< (1= 2 & i — ]+ 22 [l — ]

The last inequality is due to BI < 5. Finally, we have:

m
E [Hut-&-l —4g (Wt+1)|ﬂ :ZE {Hui-i-l - Qi(Wt+1)H2}
=1

B.s

9 m2C?
<(1- 208 [, — g (wi) ] + 2o

B, ! [Wet1 *Wt||2
A.4 Proof of Theorem 1

We denote constant C' = max {1, C;, L%, CE 0%, L3508, L2CF, L3Cy, L3 C202, O3 (0* + Cg)}.

Lemma 4 (Lemma 2 in Li et al. [2021]) Suppose function F is L-smooth and consider the update
Wit = Wi — NiZy. With ntL S %, we have:

F(wiia) < F(wi) = ZIVEW)[? + 2 = VE(wo)|” = 7 Izl
Lemma § Denote [[u;—g(w:)||* = 27", [jui—gu(w)[[2 and [jus—u,a |2 = 557 uj—ui 42

2 ;SO ||

E [[|ze41 — VF(wei1)[I?] < (1= a1)E [l|lze — VE(we)|]?] + o
t+

412C? 207,02 (62 + C2)  bayy1LAC?

f~g 2 t+1Vf g 1y _ 2

E [ — 2] + = 5 o) E [l = g(wo)|P’

Proof According to Lemma 1 in Wang and Yang [2022], if a < % we have:

2L 7E (|2
2 2
E [lloear = VE (W) 7] € (1= ) [Jloe = VE(w) ] 4 —————
t+

3L2C? 207,02 (62 + C2)  bayy1LAC?
LR [ -]+ PR [lur - g(wii) 7]

1

15, we have the above lemma.

By setting o <

Lemma 6 If 3,11 < %, we have:

QBlﬁt2+10'2 n 431,8§+1E 9mQC§
m B

E [ fugr —wl?] < B, [us — g(we)|*| + E [[[wiy1 — wel?]
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Proof Note that with 5111 < %, we have vi11 < QB—I
E [[luss1 — ugl?]
B |- i i i i 2
= ZE [||5t+1 (9:(Weg15€041) — ) + Yo (9i(Wern: €61) — gi(wis €140)) || ]
i=1
B - i il|2 i i
<E ZE {2@2—5—1 ||gi(Wt+1§§t+1) - ut” + 2'Yt2+1||9i(wt+15 §iy1) — gi(wt5€t+1)”2}

i=1

<E

2B152 m . -2
T Wi 6h) — w2897 O wis — wal |

i=1
S% i (E “|gi(wt+1§£z+1) - gi(wt+1)||2] TE [Hgi(wt“) B H%HQD

+ QBﬂ’tQJrngQE w1 — WtHQ]

2B1682, 02 2Bi1B2 ., & , 8m2(C2
< E e B [l =il ]+ R s — ]
2Bi5E10% | 4B 1B &
S T N Y LCAR

8 202

n;l E [[lwig1 — wel?]
2B 2 2 4B m 9 02
< 1,6;;10 + 1ﬁt+1ZE[Hglwt — ] + ";1 E [[wesr — will?].

=1

The third inequality is due to E I:gi(Wt_l,_l; &1) —gi (wt+1)] =0.

The rest proof of Theorem 1 LetI', = F(wt) + B lu, — g(wy)|I* + i”zt — VE(wy)|%

cong—1m?
By setting 7; = at“ ,Co =T72C, 1y < £+ we have:
E[Ty1 — Pt]
[ 1
=E _F(Wt+1) — F(w,) + o s — g(we)l* + aHZtH — VF(wei)|?
B s 1 )
= — — |z - VF
o o = = ol = VP
2, Mt 2 Mt 2 Q4 2
<E *HVF(Wt)H + *||Zt — VF(wy)[|” - i [|ze]|” — |z: — VEF(wy)]
T O . L/ A G L5
ozt 1€o Ze b+l t min { By, Bz} ¢o ¢
5at+1LfC'g By B} B B, 2 | 2B} 07
+ 5 3 - P} ||ut - g(wt)” + 372
mco Come™ meCcoTt CoNt—1m 2M=CoT)t
212 2@2 02 (0.2 +02)
Mt 2 g t+1vf g Nt 2
<E|-2|vF - G
<8 - ZITEeI + S g — 4 LT L)
li%e" 10 Bl 325 1 Bl 23262 O'2
+( S 5 ) Il — g(wa) |* + S
mco Come™m mecomt CoNt—1m 2M~=CoTt
<e[ - B ywriw P+ i 100
- 2 K min {By, Bo}cg  BamZcon:
5a441C By BB 41 By 168,52, ,C )
b (Pl A A By SR - gt
0 CoTlem m2con CoMe—1Mm m=co
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By setting ;11 = M (and note that cq = 72C, ;11 = 36C1n;), we have:

202, ,C AB2R2,,C
E [Ty —Ty) <E |:—||VF(Wt)2 m{B?IBZ}CO Bginzt;)lnt}
Tt > 36C%n; 164m>C
<E|-M|vF
= { Sy INEWOI B B T 8B

2/3
This means that, by setting 77, = min{/min{B;, Bo}(a + )~ /2, (BIT‘/E> (a+1)~1/3%

- 9 T 4, 2014 T
- , 36C 2| , 16'm*C 3
e F <E[l't =T —— L TN
; Z:IIV (wi)[|”| <E[I'y T+ﬂ+min{31,32} ;”t " 8B, ;m
T
<E[[y] + 16°C*E | (a+ )"
t=1

2
<Ar+ 20 +16°C*In (14 T)
Co7o

Similar to the proof of Theorem 1 in STORM [Cutkosky and Orabona, 2019], denote M = Ap +
Cigo +162C*1n (1 + T). Using Cauchy-Schwarz inequality, we have:

T
S IVE (w)|?| <E[1/nr]E

w3 IVE (w0 ] 5|2

t=1 i

max B a 1/2 mn o a 1/3
SE[M : {\/min{B17B2}( +0 7(le/Bi2> @+7) }]7

which indicate that

Y IVE W)

o\ /3
<v/'M max {(min {Bl,BQ})_1/4 (a + T)1/4, <) (a + T)l/ﬁ} .

B1v/ By

Finally, using Cauchy-Schwarz we have Zthl IVF (wy)|| /T < \/Ethl IVF (we)||*/VT so that:

maxx { v/ (min Sa @+ DV m \Y2 @+ 1)V
) { (B2 D ()

< max {\/M(min{Bl,Bz})l/4 <?;/T4 + T11/4> VM (Bl%>l/3 (Ci;; " Tll/g) }

<o (w{ (inpir) (mor) )

where the last inequality is due to (a + b)'/? < a'/3 + /3. So, we can achieve the stationary point
withT = O (max{

m 1
Biv/Bge3’ min{Bl,BQ}e4 }) °
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A.5 Proof of Theorem 2

2= > V(W) V(i)

Lemma 7 Denote |[u;—g(w,)||> = Y27 [[uj —gi(we)||* and [[u;—u; 1 [|* = 3777 fluj—uj_, >
1=1

2]
4C2L3 20213
TR [y — wea ]+ =2 E [l — g(we)1]

E [||lze — VF(w,)||*] <4E

Proof

E [l|z: — VF(w)|]
=25 ||z — 3" Vgu(w) Vi)

i=1

i zH;Zv%(m)wi(uw - %Zv9i<wze>Vfi<gi<Wt>>

2]
- m 2
<E |2||z¢ — —Zng (w)Vfi(u Vgi(we)V fi(u') = Vgi(we)V fi(gi(we)) ]

i=1

r 2 2 m 2
<E |2||z; — *valv w)Vfi(u' ;:1 Z — 9i(We) ‘|
=1

[ AN 4C2L§ > 20215 2
<E |4||z; — — Z Vgi(w)Vfi(ui )| + w—woq|| + u, — g(we)
L nli:l
Lemma 8
1 & ’ 1 :
E [ Ze = — ; Vai(we)V fi(uj_y) <E l(l — o) ||Ze-1 — — ; Vgi(wi—1)V fi(u;_,)

2@?02 4CQL2
+
By

Lllugoy — w—a||® + 4C3L2 Wy — thﬂ
Proof

E ||lz: — Tlnzvgi(wt)vfi(ui—ﬁﬂ

i=1

H 1-a) ( B 2>>

i=1

+ou ( Z Vyi thft)VfZ(ut 1)~ 7ngz Wy Vfl(ut 1))

263’5 i=1

+(1 _Oét ( Z Vgi thft)vfz(ut 1 Z sz Wi 1»ft)vfz(ut 2)

ieBt i€B]
2‘|

—% Z Vai(w)V fi(uj_y) + % Z Vgi(th)Vfi(u§2)>

i=1 i=1
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We assume that T [|| = $,c; Voi(wis )V filwi_y) — & 0, Vai(wo)V filui_y) 2] <

Due to the fact that the expectation over the last two terms equals zero, we have:

2
R ,
E|||lze—— > Vai(w)V fi(ui_y)
=1
1 & - ? 20202
<E (1 — Ozt)Q Zi—1 — E Z Vgi(wt—l)vfi(uf‘/—Q) + él
=1
1 i i i i 2
+2(1 — at)QE D I Vaiwi )V fi(wi_y) = Vai(wi 156V fi(u_,)
ieBt
1 « ; ’ 20202
<E|(1-ay)||ze—1 — - ngi(wtfl)vfi(ut—ﬂ + B,
i=1
1 - - o
+4(1 - at)2§ Z Vgi(wi; &) (VSi(ui_q) — Vfi(ui_s))
! ieBt
1 | : Nk
41— ) == D |[VSilwio) (Vai(we &) — Vaa(wi1: 7))
By
2
1 — . 20202 4CZL3
SE[(—a) |zr— o 3 Vailwe ) Viluiy)| + =5+ 2

i=1

+ 40)20L£2]||Wt — W1 ||2]

Lemma 9 Suppose that § < % and B1 5111 < mayy1. Then, we have:

2

1 1 — ,
E|—lui—g (Wi )|* + |[zer1 — - > V(W) V(i)

i=1
< 20y L g o?] S0 w7 4 20
(1 —un)E |||z — ;ivyi(wt)vfi(ui—l) 2 2(1%1102
Zlc;iL?E [luy — ut,lHQ] + 4C?L§IE [lwe1 — wt||2]
<= 20 | L g el - - 30w v i) 2
L i=1 d
LA La R [
ST e LT ML SR e
L i=1 J
B0 s il 4 I C 20
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A, where A; =

The rest proof of Theorem 2 Set 7, < . Denote I'y = F(w;) +
) mco contm
% lae — g(we)||” + Hzt — % S Vgi(we)V fi(al_y H . We have:

E[q —TY]
B B
CoTem CoTlt—1M
Mt Uiz Uiz 2
<E| - 5HVF(Wt)H2 + 5 llze — VF(w)|? - =+ il
B B? B 48C 10B?5%2 ,C  2a2,,C
< 1 - 12ﬁt+1 7 1 )A + ||Wt+1 WtH2+ 1/§t+1 + t+1
Comem  2mPcony  CoMe—1m Comt Bam?2comy mcony
[ 66C 14B382 ,C 202, ,C
<E| = GIVEwIP =5 lall® o+ 2w = wall® + - tghe s 4 =
| 2 4 com. Bom?2con, meone
B B B
e (aone B BB,
comem  2mecone  CoMe—1m
By setting 264C = cg, n? = %, Qg1 = % and By < m, we have:
“0

14B7 57,0 n 20‘%+1C]

Nt 2
E[T — I <E | —=||VF(w
[Ce+1 ] < [ 2 IVEGw)I” + Bom?Zcon; meony

2,34
mntco]

Un 2
<E|-L|VF(w
= [ 2” (Wi +512323%

(2

3
B

This means that, by setting 7, = Yi(a+1t)"3

T

n

SE D IVE(w)®
t=1

It —Tpypr +

micd o 4
512B, B} po ¢

A T
‘o
1“14-f2 Ela+t
cA

1
Ap+—t O Iny(1+T
r+ S + 12 (1+7)
Denote M = Ap + ﬁ + 5°1°2 In (1 + T). Using Cauchy-Schwarz inequality, we have:
d M
B[\ SIVF(w)I?| <E[/mlE nTZHVF ol | <B |2
t=1

. 2/3
<E M() (a+T)"3],
By

VB:

which indicate that

T , 1/3 e
B || SIvF I < VAT (5 7) @+

Finally, using Cauchy-Schwarz we have Zthl IVF (wy)|| /T < \/Zthl |IVF (wy)||?/v/T so that:

T
IVE(w)ll| _ VM@+D)" ( m \'° al/SV/M m_ \?
Pl ey (31\/37) SO\ +(BMB?T)

() ).

where the last inequality is due to (a + b)'/? < a'/3 + b/3. So, we can achieve the stationary point
withT = O (m/B1 3263).

23



Algorithm 3 Stage-wise MSVR method
Input: initial points (wq, ug, zo)
for stage s = 1 to S do
Wy, Ug, Z2g = MSVR (with T, as, Bs» Ns and (sth Us—1, Zsfl))
end for
Return wg

A.6 Proof of Theorem 3

We would show that the complexity can be further improved if the objective function satisfies the
Polyak-t.ojasiewicz (PL) condition or convexity. To achieve this, we utilize the previous analysis and
use a stage-wise version method [Yuan et al., 2019b]. In the new algorithm, we decrease o and (3,
after each stage and increase the number of iterations 7. At the end of each stage, we save the output
and use it to restart the next stage. With these modifications, we can obtain a better convergence
guarantee under the PL condition or convexity. The new method is summarized in Algorithm 3,
named Stage-wise MSVR. Next, we will show the proof for optimal MSVR-v2 with Stage-wise
version, and the proof for MSVR-v1 is nearly the same as the MSVR-v2.

Note that in below the numerical subscripts denote the stage index {1,...,S}. Denote A, =
|zs — = >0, Vgi(ws)Vf,»(ué_l)H2 + L Jlus — g(wy)|*. Let’s consider the first stage, A; <
2C = pey and F(wy) — Fy < €1, where ¢; = max{%, Ap}. Starting form the second stage, we
would prove by induction.

Suppose at stage s — 1, we have Ag_1 < pes—1 and F (ws_1) — F < €5-1. Then at s stage, by

setting 264C' = ¢y, 775 = 3232 f“, g = BlTﬁs and By < m, we have:
m2n3cd
E[T I <E|-2|VF 2y L0
i~ T < E |- ZIVFe| + 2
. . o mc? mca _ 8B1vVBaoues
This means that by setting 7 = max { Bm\/[gwes, B Bose }, Ne = 1m7%w we have:
1 T
=[S Imrr
t=1
_ 24,2
SE Q(Fl FT+1) + m 607’]82
nsT 256 B2 B5
<E 2(F(ws—1) — F.)  2B1A,_ m2cgn?
- nsT C()T]QTm 256B2B%
<2ps€s

Due to the PL condition, we have:

F(ws) —

T
Z IVF(w; ||2] <e

On the other hand, by setting 35 = Bopes and g = 2 15 = we have:

30C
2m 96m20 20[33 4mafC’
As Smﬁ BQBS Z||Wf+1 wil|* + B3

2mpes_q 96m27]fC’ 20[3g 4mo¢§C’
< 2 Z || t” 2
BlﬁsT B?3,T Bip

Spies
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So, we proved that F' (w,) — F, < ¢,. Thatis to say, F' (w,) — F, < e when S = log, (%), and
the iteration complexity is computed as:

S S
Z n>e Z m
SRPIEE 0( Bl\/Bi2,Uf€s>

s=2 s=2

<0 (m )
BV Bspe
When F(w) is convex, we define F'(w) = F(w) + + L lw||2. We know that F(w) is p-strongly
convex, which implies y-PL condition. We have proved: for any § > 0, there exist 7' = O (“ 5)

such that F'(wyp) — F, < 6. It indicates that F(WT) F, <0+ &llw.|* = §llwrl* <o+ 4D.
For any € > 0, if we choose y1 = & and § = §, we get F(wp) — F, < ¢, forsome T = O (3%).

A.7 Proof of Theorem 4

Lemma 10 If 3 < 1 and I < £, we have:

T
AB 6
E [E i —w?| < — E [u; — g(we)|?
t=1

Proof Following the analysis of Lemma 6, we have.
2B ~ i 7
E [[lus1 — uy?] ﬂ Z ( [Hgi(WHl; i) — gz’(Wt+1)HZ] +E [Hgi(wt+1) - ut||2])

8 202
By

202 T

Z (Wi — wel|®

||Wt+1 Wt||2

So, we have:

2B, 52
E [[lugr — wlf] §2315202 [Wepr — Wopa||” + 7711
8771202
By

E [llg(wisr) = wl]

||Wt+1 Wt||2

So, with B2I? < m? /B2, we have:

T
_2B ﬂ
E Y s —wl?| <= Z lg(Wis1) — | ]
t=1
2 8m 202 T
+ 231/32032 T Z W1 —wel?
t=1
43152
Z lg(we) — ugl|®
T 2 202 T
+ 2B1620312 Z HWt_A,_l — Wt” B Z ||Wt+1 Wt”
t=1
43152 202 T

ZHQ wi) — ug Z|\Wt+1 w||®

We can also replace Lemma 8 with following lemma.
Lemma 11 With ol <1, we have:

T
t=1

2 2

m

z¢ — % > V(W) V fi(uy_y)

=1

%Z gz Wi sz(uo)

i=1

T
Z [Wes1 — Wt||2]

<

Q|r

C?L

8
g [Z Juy —wea |*] +

2L2
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Proof First, since hy is an unbiased estimation of = 3" | Vg;(w)V f;(ui_,), we have:

_ - 2
E htf%ZVgi(Wt)Vfi(ui—ﬂ ]

i=1

E\|5 S V) Vaiwe ) - Zsz _)Vgi(wes &)

ieBt LeB’

+— vaz Vgl(WTagt ZVgl Wi vfl(ut 1)

|

=1
2
<E Z Vfi(ai_ 1) Vgi(wi; &) — Z Vfi(uh ) Vgi(wes &)
By ieBt ZEB’
i NIk
<E |5 3 IV i) Vaiwis &) Vil ) Vailwes €| ]
ieBt
2 2
ZQC‘?L?] Hwt W-,—” + T ||ut 1— Ur— 1”
Next, we have:
1 & ;
lze = — ZVgi(Wt)vfi(ut—l)HQ]
i=1
1 & ;
=E H (1-« (zt 1— — Z;ng Wi 1)Vf1(ut 2)) + (ht - ;Vgi(wt)Vfi(ut1)>

_|_(1 —« (Bl Z Vg; Wt>§t)vf1(ut 1 - = Z ng Wi lagt)vfzalt 2)

ieBt zer
2]

—% Z Vai(we)V fi(uj_,) + % Z Vgi(th)Vfi(u§2)>

i=1 i=1

2
1 & ,
<[ = e~ o Y Vv ) VA )|+ 402 CHEE e w |
i=1
102C2L3
+—2 L g —uy?

+2(1 - CV)zBi Z HVgi(Wt; §z)vfi(ui71) - Vgi(wtugf)vfi(uiz)uﬂ

ieBt

1 ,
| < (1= 0)lms = o 3 Vet )Vl )P + 140G v — e
=1
40&202112 2L2
ey w2

||llt 1 — We— 2H2+4CfL2||Wt Wt1|2:|

The first inequality is due to the fact that the last two terms equal zero in expectation.

26



Summing up, we have:

2

9

Z gz Wi sz ut 1)

2 T
1 S 2
a Z Vg; Wl)vfz(uo) + 4050]%[/!2] Z ||Wt - WT”
P t=1
4aC’2L2 T 212 T 40212 -
fZHut e+ % fz |ut—ut_1||2+$;||wt+1*WtH2
1 ’ -
2
<a Zy — — Zv% w1)Vfi(uh)| + 40‘01%[’5]2 Z Wit — we
=1 t=1
4@02L2[2 T 2 2 T 2 2 T
gif —_ 2 g f - 2 g - ?
+ . tzzl |, — up_q| + Z lluy — weq || + g [[Wer1 — wel|
2
1 1 m 802 T T
<z z;vgt w1)V fi(uf) %ty Z Juy — a1 |* + Z (Wi —wi|”
. -

The last inequality is due to ol < 1.

The rest proof of Theorem 4 According to Lemma 7, we have:

2

2= > VoW Vi)
i=1

T T
DNz = VEw)|* < 42
t=1

46’2

2 2 T
! onuruf P+ 2 f2|ur DI

We use Lemma 11 to replace 3, |ze — 2 >0, Vgi(wt)Vfi(uLl)sz

T
E|> llze = VF(w)|?
t=1

2
4 1 & ) 32C2L2 )
< zl—Eg;v%(wl)wxua) T 2 e el
3202/:2 r T r
Zuwtﬂ w? + fZ [y — w || + Z [u; — g(wy)||?
— —
4 1 P 36 L? T
<= Z1—E§V9¢(W1)Vfi(u6) f ZIIut—ut 1|21

Z (Wi —wel|*| +

320302 [&
t=1

ZT:HUt g(wi) ]
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Set 5B; < ma. We use Lemma 10 to replace E [23:1 [luy —wp—y \\2} (set ug = uy):

T
E [Z e VF<wt>||2]

2

4 1 « ; 144(C2L3)B1 8% [ &
<=z = — > Vai(w)Vfi(ug) +— Znut g(wo)|l?
i=1
396m C4L2 02L2 T
+—— anm wi |+ QIElwa+1 wi|?
202L2 T
fE[Z g — ]
4 1 & * sosme. [&
i m 2
< a EZV%(WI)VJ%(UO) + aB; E ;Hwtﬂ—wtll ]

14602L2

ilut g(w: II]

We use Lemma 3 to replace E {thl luy — g(wy) ||2} :

T
E|> Il — VF(wy)|?
t=1
< |m = D Valwa) Vi(u) lewm will”
i=1
146C2L2E {Hul*g(wl)H } 1460m?CA L3 & 2
+ B1B MR Z”Wt“ e
2 212
A L | 146C2L3E |:||u179(wl)||]
e i(w1)V fi(ug
<= m;Vg (w)Vfi(ug)|| + B3

1888m2C
BQB Z||Wt+1 Wt||

2
<aA190 5A79 18838;”; < Z Wi — wel|”
Set % < 1. We have:

T
D llze = VEw)|?| <
t=1
According to Lemma 4, we have:

Z IVE ()|

<0y Z 2]

E

T T
<) 4 S 8 [ - VEOOI] - 3 3

L2EW1) Do Ao
oo aly By

Finally,

2F(W1) AO AO
77T + CkToT + BT()T

T
Z IVF(w)|?| <
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Note that the sample complexity is (31 BT + m"T) To ensure the first term and the second term at

the same order, we set [ = ( B”f&) Also, since we assume that o < 1 and 51 < < 5, we directly

set v = B1B2 and g = B2 This setting also satisfies the requirement B; 5 < ma. We also require
mn n

% < 5. So, we setnp = O(B;l\?) WithT = O (B:'\’/‘]/?’ZEQ) and Ty = O (\/LB%), We

have: LE [thl IVE(w)|?] < e

A.8 Proof of Theorem 5

The analysis is very similar form Theorem 3. We still use Algorithm 3 but employ MSVR-v3 instead.
Also, we do not need to decrease «, 3, 7 and increase T’ during each stage. Let’s consider the first stage,

m il 146Cg
4 Hz1 — %21:1 Vgi(w)Vfi(uh)||” <4C < pe, i [[u; — g(wl)H2 < 146C < pe; and
F(wy) — F. < Ap < ¢, where we set ¢ = max{Ap, 1450}. Note that in below the numerical

subscripts denote the stage index {1,...,5}. Set a = BiB2 g — Bz 4 — (’)(37;7‘/37

mn n2 \/H ) and
T=0 (maX{BlB2, uBu/BT})'

Starting form the second stage, we would prove by induction. Suppose at the stage s — 1,

: 2

we have F(we_1) — F. < €1, 4jzem1 — 2307, Vegi(w)Vfi(ul_y)||” < pes—q, and

146C2 L5 Hu
m

o1 — g(w3_1)||2 < pes_1. Then at s stage, we have:

1
F(w,) - F, < 20 IVE(w,)|*

€s—1 €s—1 mes—1
<=y
—pnT T BBT

On the other hand, following the very similar analysis in Theorem 3, we have:
2

1 — ,
4 s — — v 7 V 7 ;_ S s
2 o 2 Ve VA <pe
146C7 L3 5
||u9 - g(we)” S HEs

m

We proved that F' (w,)—F, < €,. Thatis to say, F' (wg)—F, < e when S = log, (22) = log, (£),
and the iteration Complexity until this stage is computed as:

mn_ myn_ 1
E T, < -log =
O (maX{BlBQ ‘uBl\/B } o8 6)

s=1

When F(w) is convex, we define F'(w) = F(w)+4 £{|w||?. We know that F(w) is p-strongly convex,

which implies u-PL condition. We have proved: for any § > 0, there exist T = O ( myn_ log %)

A . wB1vBs
such that F'(wr) — F, < 4. It indicates that F(wy) — F, < 6 + &|w.[]? — &|lwr|* <6+ 4D.
For any ¢ > 0, if we choose u = 5 and 6 = 5, we get F(wr) — F. < ¢, for some T" =

0 (eBlﬁ log ¢ )
B MSVR with Adaptive Learning Rates

Now we show that the proposed MSVR method can be extended to adaptive learning rates and
remains the same sample complexity. To use adaptive learning rates, we can revise the weight update
step wyy1 = Wy — 1;2 in origin MSVR method as follows:

Tt
_ g
i (17)

hi = (1 -8 h;_, + Bz,

Wir1 = Wi —
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where § > 0 is a parameter to avoid dividing zero, Iz, denotes the projection onto the ball with
radius Ly and hy = h} (Adam-style) or hy = max (h;_1,h}) (AMSGrad-style). Inspired by the
recent study of Adam-style methods [Guo et al., 2021], we can give the sample complexity of the
Adaptive MSVR using similar analysis. We show the proof of adaptive MSVR-v2 for example:

2, 2
Theorem 6 If we choose parameters a1 = (9( ) Bevr1 = (MB?" ) a = O(%Jf?) and

n =0 ((M)Q/?’(a + t)_1/3>, Adaptive MSVR-v2 with learning rate defined in (17), can obtain

a stationary point in O ( B, F) iterations.

Remark: The sample complexity is still at the order of O (6’3 ) For MSVR-v1 and MSVR-v3, or
under the convexity or PL condition, adaptive method can still get the same complexity as the origin
rate using a very similar analysis.

Proof Note that since the norm of estimated gradient ||z || is bounded, the value of the learning rate
scaling factorc =1/ (\/ht + 5) is also upper bounded and lower bounded, which can be presented
as ¢; < |||, < cu. (Note that projection onto a ball of radius C'r does not change the analysis,
since V F' is also in this ball.) With this property, We have:

Lemma 12 (Lemma 3 in [Guo et al., 2021]) For w1 = Wy — 124, with nye; < 1y < nycy and
Ly < ¢;/2c2, we have following guarantee:

Nt Cuy 2 77tCl 2 7]tCl
F(wip1) < F(wy) + 2“ IVE(we) —z]|” — [VE(w)|” — |z .

Then very similar to the proof to Theorem 2. Denote T'y = F(wy) +
2 ] i 2
2wy — g(wo)|I° + ||ze — & Y0, Vai(we)V fi(ui_y)||". We have:
Fipr — 1T

A;, where Ay =

CO"']t 1m

B
Apgr — ——— A,
CoTem CoNg—1M

7761 Nt 770l
< — | VE(w)|? + f“H ¢ = VE(w)|? = = ||z
+< Bi  Bifin By ) 480 2, 10B?3? +1() 202,,C

:F(Wt+1> - F(Wt) +

Ay + — \|Wf+1 w||” +

comem  2m2con;  Cofe—1m BzmQCom mcony

c c 64Ccu 14B2B2,,Cec, 202, ,Cey,
< = BRIVEw)I? = 22 e]|* + == [[wig = w [P 4 L 4
2M=CoT}t mcot
B B B
+ <QCcunt+ - — 12ﬁt+1 - ! )At
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By setting 256C'c,, /¢, = co, 17 = %, Q1 = Blffl and By < m, we have:
2al
C 14B25% Cc,  2a2. ,Ccy
Per = Dy < =TV (w)|? 4 — L i
2M=CoMt mcomnt
3.4.3
ﬁtCl 2y m*n}cge
< - VF —
< BV Ew | + FE
This means that, by setting 1, = (&T\/E)% (a+1t)"3
T 242 T
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Figure 2: Results for Multi-task AUC Optimization.
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Figure 3: Results with different networks.

Denote M = 22 4 _L

cy 8nocy

+ 16°

4 2
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Then following the same analysis, we will finally have :

E <

\/M(a—i—T)l/6

T IVF (w,
;II 7(j)ll

VT

m

(le/Biz)l/g_

7 ((m)/>

where the last inequality is due to (a + b)1/3 < a'/3 4+ b'/3. So, we can achieve the stationary point

with T = O (m/Byv/Bae?).

C More Experimental Results

In this section, we provide more experimental results and ablation studies. We will consider more

applications in the long version of the paper.

C.1 Ablation Study on Algorithm Design

In this subsection, we conduct the ablation study for our algorithm design. Specially, we verify
the effects of our customized error correction term. To compare with traditional variance reduced

<o<

)

aV/5\/I
+

(c) DenseNet121

In (1 + T). Using Cauchy-Schwarz inequality, we have:

T
<E[1/n7]E [nr Y IVF (wy)|?

t=1

+T)1/3

)

VT

(Bl%T>l/3>

estimator, we can design an estimator using STORM [Cutkosky and Orabona, 2019] as follows:

u, =

(1- 5)“@—1
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Figure 4: Results with varying Bj.
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Figure 5: Results with varying Bs.

To show the effects of our customized error correction term, we replace the MSVR estimator in our
MSVR-vl and MSVR-v2 algorithm, and use equation (18) instead. We name these two methods
Variant-v1 and Variant-v2. For the finite-sum case, we modify the estimator similarly:

ut = (1- 5)11%—1 + 5,3&1@1: (Wt;fz) +(1- B)Bﬂl (Qi (Wt;ff) —Gi (Wt—1§§§)) i € Bf (19)
=By, i ¢ By

where G; (w; &) = gi(wi; &) — gi(wr; €D + gi(w,). So, for MSVR-v3, we replace the MSVR
estimator with equation (19) and keep other parts unchanged. This new method is named as Variant-
v3.

Results. We compare different methods on the CIFAR100 dataset and plot the results in Figure 2. As
can be seen, all methods perform worse than the origin algorithms, indicating the effectiveness of our
customized error correction term in the proposed algorithm.

C.2 Results with Different Networks

In this subsection, we conduct experiments on SVHN data set with different networks, ResNet18,
ResNet34 and DenseNetl121, respectively. As can be seen in Figure 3, with all three networks,
MSVR-V1 performs closely to SOX, MSVR-v2 converges faster than SOX and MSVR-v1, and the
loss of MSVR-v3 decreases most rapidly, indicating the effectiveness of our methods with different
networks.

C.3 Results with Different Batch size

In this subsection, we explore the effect of different batch sizes. First, we fix the inner batch size
By = 128 and vary By in the range {2,5,9}. Then, we fix the outer batch size B; = 5 and vary Bs
in the range {32, 64, 128}. We conduct the experiments on the Fashion-MNIST data set and show the
results in Figure 4 and 5. As can be seen, in terms of iteration complexities, the larger batch size (B,
or Bsy), the faster the convergence, which is consistent with our theory.
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