
Multi-block-Single-probe Variance Reduced
Estimator for Coupled Compositional Optimization

Wei Jiang1, Gang Li2, Yibo Wang1, Lijun Zhang1,∗, Tianbao Yang3,∗
1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

2Department of Computer Science, the University of Iowa, Iowa City, USA
3Department of Computer Science and Engineering, Texas A&M University, College Station, USA

jiangw@lamda.nju.edu.cn, gang-li@uiowa.edu.cn, wangyb@lamda.nju.edu.cn
zhanglj@lamda.nju.edu.cn, tianbao-yang@tamu.edu

Abstract

Variance reduction techniques such as SPIDER/SARAH/STORM have been ex-
tensively studied to improve the convergence rates of stochastic non-convex op-
timization, which usually maintain and update a sequence of estimators for a
single function across iterations. What if we need to track multiple functional
mappings across iterations but only with access to stochastic samples of O(1)
functional mappings at each iteration? There is an important application in solving
an emerging family of coupled compositional optimization problems in the form
of
∑m
i=1 fi(gi(w)), where gi is accessible through a stochastic oracle. The key

issue is to track and estimate a sequence of g(w) = (g1(w), . . . , gm(w)) across
iterations, where g(w) has m blocks and it is only allowed to probeO(1) blocks to
attain their stochastic values and Jacobians. To improve the complexity for solving
these problems, we propose a novel stochastic method named Multi-block-Single-
probe Variance Reduced (MSVR) estimator to track the sequence of g(w). It is
inspired by STORM but introduces a customized error correction term to alleviate
the noise not only in stochastic samples for the selected blocks but also in those
blocks that are not sampled. With the help of the MSVR estimator, we develop
several algorithms for solving the aforementioned compositional problems with im-
proved complexities across a spectrum of settings with non-convex/convex/strongly
convex/Polyak-Łojasiewicz (PL) objectives. Our results improve upon prior ones
in several aspects, including the order of sample complexities and dependence
on the strong convexity parameter. Empirical studies on multi-task deep AUC
maximization demonstrate the better performance of using the new estimator.

1 Introduction

This paper is motivated by solving the following Finite-sum Coupled Compositional Optimization
(FCCO) problem that has broad applications in machine learning [Wang and Yang, 2022]:

min
w∈Rd

F (w) :=
1

m

m∑
i=1

fi(gi(w)), (1)

where fi : Rp 7→ R is a simple deterministic function. We assume that only noisy estimations
of gi(·) and its Jacobian ∇gi(·) can be accessed, denoted as gi(·; ξi) and ∇gi(·; ξi), where ξi
represents the random sample(s) drawn from a stochastic oracle such that E [gi(·; ξi)] = gi(·) and

∗Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
7.

08
54

0v
4

 [c
s.L

G
]

30
 D

ec
 2

02
2

mailto:jiangw@lamda.nju.edu.cn
mailto:gang-li@uiowa.edu.cn
mailto:wangyb@lamda.nju.edu.cn
mailto:zhanglj@lamda.nju.edu.cn
mailto:tianbao-yang@tamu.edu

E [∇gi(·; ξi)] = ∇gi(·). A special case to be considered separately is when each ξi has a finite
support and is uniformly distributed. In this case, the problem can be represented as:

min
w∈Rd

F (w) :=
1

m

m∑
i=1

fi

 1

n

n∑
j=1

gi(w; ξij)

 . (2)

These problems are different from classical stochastic compositional optimization (SCO) problems
Eζ [fζ(Eξg(w; ξ))] and its finite-sum variant 1/m

∑m
i=1 fi(1/n

∑n
j=1 g(w; ξj)) [Wang et al., 2017],

because the inner function is coupled with the outer index in FCCO.

A striking difference in solving FCCO problems is that we need to deal with multiple functional
mappings of gi(w) for i = 1, . . . ,m. A challenge emerges when it is not possible to draw data sam-
ples for all blocks i = 1, . . . ,m at each iteration due to some restrictions (e.g., limited memory and
computational budget per-iteration). Wang and Yang [2022] studied this problem comprehensively
and proposed an algorithm named as SOX. A key to their algorithmic design is to maintain and selec-
tively update a sequence of estimators u = (u1, . . . ,um) for tracking g(w) = (g1(w), . . . , gm(w))
by exponential moving average, i.e.,

uit =

{
(1− β)uit−1 + βgi

(
wt; ξ

i
t

)
i ∈ Bt1

uit−1 i /∈ Bt1
, (3)

where ξit and B1
t ⊆ {1, . . . ,m} denote a set of sampled blocks. With u, the gradient estimator is

computed by exponential moving average as well. As a result, they establish a sample complexity
of O(mε−4) for non-convex objectives, O(mε−3) for convex objectives and O(mµ−2ε−1) for µ-
strongly convex objectives. However, there are several caveats of these results: (i) the sample
complexities (e.g., O(mε−4) for a non-convex objective) are no better than probing all blocks at
each iteration, for which Ghadimi et al. [2020] have established an O(ε−4) iteration complexity and
an O(mε−4) sample complexity; (ii) when m = |B1

t | = 1, the problem reduces to a special case of
classic SCO problems; however, the complexities are worse than the state-of-the-art (SOTA) sample
complexities for non-convex, convex and strongly convex objectives, which are O(ε−3), O(ε−2) and
O(µ−1ε−1), respectively [Zhang and Xiao, 2019, Jiang et al., 2022]. A useful technique for achieving
these complexities in prior works is by using variance reduction techniques, so a straightforward
approach is to change the update of uit by using a variance reduced estimator and do similarly for the
gradient estimator. In particular, one can change the update for uit according to STORM [Cutkosky
and Orabona, 2019]:

uit =


(1− β)uit−1 + βgi

(
wt; ξ

i
t

)
+ (1− β)(gi

(
wt; ξ

i
t

)
− gi

(
wt−1; ξit

)
)︸ ︷︷ ︸

error correction

i ∈ Bt1

uit−1 i /∈ Bt1
. (4)

However, this simple change does not improve the complexities over that obtained by Wang and Yang
[2022]. The reason is that the standard error correction term marked above in STORM only accounts
for the randomness in gi(wt; ξ

i
t) but not in the randomness caused by sampling i ∈ Bt1. So, a major

question remains:

How can we further improve the complexities for solving FCCO to match the SOTA results of
SCO by using variance reduction techniques via probing only O(1) blocks at each iteration?

To address this issue, we propose a novel variance reduction technique by selectively updating uit for
tracking g(wt), to which we refer as Multi-block-Single-probe variance-reduced (MSVR) estimator.
It employs a similar update as STORM for selected uit but with a different customized error
correction term to deal with the randomness in both gi(wt; ξ

i
t) and that in Bt1. Based on MSVR,

we develop several algorithms for FCCO problems with different ways to compute the gradients,
and analyze the sample complexities across a spectrum of settings with non-convex/convex/strongly
convex/PL objectives and finite/infinite support of ξi. We summarize our contributions and our results
below:

• We develop a novel MSVR estimator for tracking a sequence of multiple blocks of functional
mappings by only probing O(1) blocks via random samples at each iteration.

2

Table 1: Sample complexities needed to find an ε-stationary point or ε-optimal point. Here NC means
non-convex, C means convex, SC indicates µ-strongly convex, PL means the µ-PL condition. B1

denotes the outer batch size, i.e., B1 = |B1
t | and B2 denotes the inner batch size. † assumes that f is

convex and monotone, and g is convex but possibly not smooth. ∗ applies when inner function is in
the form of the finite-sum. Õ(·) hides logarithmic factors. In all results, we assume m ≤ O(ε−1).

Method NC C SC/PL B1, B2

BSGD
[Hu et al., 2020] O

(
ε−6
)

O
(
ε−3
) O

(
µ−1ε−3

)
(SC)

O(1), O
(
ε−2
)
(NC)

O(1), O
(
ε−1
)
(C/SC)

BSpiderBoost
[Hu et al., 2020] O

(
ε−5
)

- - O
(
ε−1
)
, O
(
ε−2
)

SOX O
(
mε−4

)
O
(
mε−3

)
O
(
mµ−2ε−1

)
O(1), O(1)

SOX (β = 1)
[Wang and Yang, 2022] - O

(
mB2ε

−2
)†

- O(1), O(1)

MSVR-v1 O
(
max(B1, B2)ε−4

)
O
(
max(B1, B2)ε−3

)
O
(
max(B1, B2)µ−2ε−1

)
O(1), O(1)

MSVR-v2 O
(
m
√
B2ε

−3
)

O
(
m
√
B2ε

−2
)

O
(
m
√
B2µ

−1ε−1
)

O(1), O(1)

MSVR-v3∗ O
(
m
√
nB2ε

−2
)

Õ
(
m
√
nB2ε

−1
)

Õ
(
m
√
nB2µ

−1
)

O(1), O(1)

• By applying the MSVR estimator, we develop three algorithms for FCCO by using different
methods for computing the gradients, and establish improved complexities for non-convex,
convex, strongly convex, and PL objectives. A comparison between our algorithms and
existing methods is shown in Table 1, where we also exhibit the dependence on B2, which
is the size of the inner batch for estimating each gi(w).

• The complexity of our first method (i.e., MSVR-v1) enjoys the same order on ε as SOX, but
does not depend on m; MSVR-v2 improves the dependence on ε, and its complexities match
the SOTA results for SCO when m = 1; our MSVR-v3 further reduces the dependence on ε
for the finite support of ξ, and also attains the SOTA complexities when m = 1.

• We conduct experiments on multi-task deep AUC maximization to verify the theory and
demonstrate the advantage of the proposed algorithms.

2 Related work

This section briefly reviews related work on variance-reduced methods and stochastic compositional
optimization (SCO) problems.

Variance-reduction (VR) techniques for improving the convergence of stochastic optimization orig-
inate from Roux et al. [2012] for solving convex finite-sum empirical risk minimization (ERM)
problems. Since then, different VR techniques have been proposed for convex finite-sum ERM, e.g.,
SVRG [Johnson and Zhang, 2013, Zhang et al., 2013] and SAGA [Defazio et al., 2014]. These works
have improved the complexity for solving smooth and strongly convex problems to a logarithmic
complexity. For non-convex ERM problems, Fang et al. [2018] invents the SPIDER estimator similar
to its predecessor SARAH [Nguyen et al., 2017], and improve the complexity of standard SGD from
O(ε−4) to O(ε−3) and O(

√
nε−2) in stochastic and finite-sum settings, respectively, where n is the

number of components in the finite-sum. Algorithmic improvements have been made to SPIDER
by using a constant step size in SpiderBoost [Wang et al., 2018] and using a constant batch size in
STORM [Cutkosky and Orabona, 2019].

Several classes of SCO have been studied. The first class is the two-level SCO whose objective is
given by Eξ[fξ(Eω[gω(w)])], where ξ and ω are random variables. While the study of two-level
compositional functions dates back to the 70s, the most recent comprehensive study was initiated by
Wang et al. [2017]. They proposed a two time-scale classic algorithm named SCGD and establish
its asymptotic guarantee and non-asymptotic convergence rates. Following this work, many studies
have been devoted to improving the convergence rates or algorithmic design of two-level SCO [Wang
et al., 2016, Ghadimi et al., 2020, Zhang and Lan, 2021]. In particular, recent works have used
variance-reduction techniques based on SPIDER/SARAH/STORM to estimate the inner values and
the gradients [Liu et al., 2018, Yuan et al., 2019a, Zhang and Xiao, 2019, Chen et al., 2021, Qi et al.,
2021a]. Similar efforts have been extended to the second class of SCO, i.e., multi-level SCO with an

3

objective Eξ1 [f1
ξ1

(Eξ2 [f2
ξ2

(. . . (EξK [fKξK (w))] . . .)])] [Yang et al., 2019]. Recent studies have been
focused on further improving the sample complexity and reducing the dependence on the number of
levels K [Balasubramanian et al., 2021, Chen et al., 2021, Zhang and Lan, 2021, Zhang and Xiao,
2021, Jiang et al., 2022]. These works also employed variance reduction techniques to design their
own methods. However, directly applying these algorithms of two-level and multi-level SCO to
FCCO requires probing all m blocks in g(w), which is prohibitive in many applications.

The third class of SCO is the Conditional Stochastic Optimization (CSO) whose objective is in the
form of Eξ[fξ(Eω|ξgω(w; ξ)])] [Hu et al., 2020], where ω|ξ means that the distribution of ω might
depend on ξ. The FCCO problem can be considered as a special case of CSO. The key difference from
the first class of SCO discussed above is that the inner function g depends on the random variable
ξ of the outer level. For CSO, Hu et al. [2020] proposed two algorithms with and without using
the variance-reduction technique (SpiderBoost) named BSGD and BSpiderboost, and established
complexities for non-convex, convex and strongly convex functions, which are shown in Table 1.
However, their algorithms require a large batch size for estimating the inner functions.

Recently, a novel class (the fourth class) of SCO was studied, which is referred to as the finite-sum
coupled compositional optimization (FCCO) [Wang and Yang, 2022]. The finite-sum structure makes
it possible to develop more practical algorithms without relying on huge batch size per-iteration.
It was first studied by Qi et al. [2021b] for maximizing the point-estimator of the area under the
precision-recall curve. Recently, it was comprehensively investigated by Wang and Yang [2022]
and more applications of FCCO have been demonstrated in machine learning. Nevertheless, their
algorithm—SOX does not use variance reduction techniques and hence suffers from the limitations
discussed in the previous section.

3 Proposed Algorithms and Convergence

First, we introduce the notations and assumptions used in this paper. Then we describe the MSVR
estimator in detail and develop algorithms based on the proposed estimator.

3.1 Notations and Assumptions

Let [m] = {1, . . . ,m}. The definition of sample complexity is given below, which is widely used to
measure the efficiency of stochastic algorithms.
Definition 1 The sample complexity is the number of samples needed to find a point satisfying
E [‖∇F (w)‖] ≤ ε (ε-stationary) or E [F (w)− infw F (w)] ≤ ε (ε-optimal).

Next, we make following assumptions throughout the paper, which are commonly used in the studies
of SCO [Wang et al., 2016, 2017, Yuan et al., 2019a, Zhang and Xiao, 2019, 2021].
Assumption 1 (Smoothness and Lipschitz continuity) We assume that each fi is Lf -smooth and
Cf -Lipchitz continuous, each gi is Lg-smooth and Cg-Lipschitz continuous.

Remark: This implies F (w) is CF -Lipchitz continuous and LF -smooth, where CF = CfCg,
LF = C2

fLg + C2
gLf [Zhang and Xiao, 2021].

Assumption 2 (Bounded variance)
E
[
gi(x; ξit)

]
= gi(x); E

[
∇gi(x; ξit)

]
= ∇gi(x);

E
[∥∥gi (x; ξit

)
− gi(x)

∥∥2
]
≤ σ2/B2; E

[∥∥∇gi (x; ξit
)
−∇gi(x)

∥∥2
]
≤ σ2/B2;

where the random variable ξit denotes a batch of samples with batch size B2 ≥ 1.
Assumption 3 (Average Lipchitz continuity of gi and its Jacobian)

E
[∥∥gi (x; ξit

)
− gi

(
y; ξit

)∥∥2
]
≤ C2

g‖x− y‖2;

E
[∥∥∇gi (x; ξit

)
−∇gi

(
y; ξit

)∥∥2
]
≤ L2

g‖x− y‖2.

Remark: Although this assumption seems strong at the first sight, it is quite standard and widely
used in the recent compositional optimization literature [Yuan et al., 2019a, Zhang and Xiao, 2019,
2021, Jiang et al., 2022].
Assumption 4 F∗ = infw F (w) ≥ −∞ and F (w1)− F∗ ≤ ∆F for the initial solution w1.

4

3.2 Multi-block-Single-probe Variance Reduced (MSVR) Estimator

Assume that we have a budget to probe only B1 out of m mappings in g(w). To this end, at the
t-th iteration we sample a set of blocks Bt1 ⊆ [m], where |Bt1| = B1, and probe the corresponding
gi(w) by accessing the noisy estimates gi(wt; ξ

i
t) for i ∈ Bt1. Then, we just update the corresponding

block in our estimator ut. Specifically, we update uit for i ∈ Bt1 in a new way and keep other blocks
unchanged. The whole estimator is shown below:

uit =


(1− βt)uit−1 + βtgi

(
wt; ξ

i
t

)
+ γt

(
gi
(
wt; ξ

i
t

)
− gi

(
wt−1; ξit

))︸ ︷︷ ︸
ūt

i

i ∈ Bt1

uit−1 i /∈ Bt1
. (5)

The first line of our estimator is inspired by STORM [Cutkosky and Orabona, 2019]. The difference
is that the STORM estimator sets γt = (1− βt), while for MSVR, γt is set as m−B1

B1(1−βt)
+ (1− βt)

according to our analysis. We name equation (5) as Multi-block-Single-probe Variance Reduced
(MSVR) estimator. By multi-block, we mean the estimator can track multiple functional mappings
(g1, g2, · · · , gm), simultaneously; by single-probe, we indicate the number of sampled blocks B1

for probing can be as small as one. It is notable that when B1 = m, i.e., all blocks are probed at
each iteration, γt = 1− βt and MSVR reduces to STORM applied to g(w). The additional factor in
γt, i.e., γ0

t = m−B1

B1(1−βt)
is to account for the randomness in the sampled blocks and noise in those

blocks that are not updated. To briefly understand the additional factor γ0
t , we consider bounding

‖ut − g(wt)‖2 =
∑m
i=1 ‖uit − gi(wt)‖2. Let us focus on a fixed i ∈ [m]. Then we have

E
[
‖uit − gi(wt)‖2

]
=
B1

m
E
[
‖ūit − gi(wt)‖2

]︸ ︷︷ ︸
A1

+(1− B1

m
)E
[
‖uit−1 − gi(wt)‖2

]︸ ︷︷ ︸
A2

.

Note that the first term A1 in the R.H.S. can be bounded similarly as STORM by building recurrence
with ‖uit−1−gi(wt−1)‖2. However, there exists the second term due to the randomness of Bt1, which
can be decomposed as
‖uit−1 − gi(wt−1) + gi(wt−1)− gi(wt)‖2 = ‖uit−1 − gi(wt−1)‖2︸ ︷︷ ︸

A21

+ ‖gi(wt−1)− gi(wt)‖2︸ ︷︷ ︸
A22

+ 2(uit−1 − gi(wt−1))>(gi(wt−1)− gi(wt))︸ ︷︷ ︸
A23

.

The first two terms in R.H.S. (A21 and A22) can be easily handled. The difficulty comes from
the third term, which cannot be simply bounded by using Young’s inequality. If doing so, it will
end up with a non-diminishing error of uit. To combat this difficulty, we use the additional factor
brought by γ0

t (gi
(
wt; ξ

i
t

)
− gi

(
wt−1; ξit

)
) in A1 to cancel A23. This is more clear by the following

decomposition of A1.
A1 =E[‖(1− βt)(uit−1 − gi(wt−1))︸ ︷︷ ︸

A11

+ γ0
t (gi(wt)− gi(wt−1))︸ ︷︷ ︸

A12

+ βt(gi(wt; ξ
i
t)− gi(wt))︸ ︷︷ ︸
A13

+ γt(gi(wt; ξ
i
t)− gi(wt−1; ξit)− gi(wt) + gi(wt−1))︸ ︷︷ ︸

A14

‖2]

≤E[‖A11 +A12‖2] + E
[
‖A13 +A14‖2

]
.

In light of the above decomposition, we can bound E[‖A11 + A12‖2] ≤ E[‖A11‖2 + ‖A12‖2 +
2A>11A12] and E[‖A13 +A14‖2] ≤ 2E[‖A13‖2] + 2E[‖A14‖2]. The resulting term E[2A>11A12] has
a negative sign as A23. Hence, by carefully choosing γ0

t , we can cancel both terms. The remaining
terms can be organized similarly as in the analysis for STORM. We give a technical lemma for
building the recurrence of MSVR’s error below. All the proofs are deferred to the supplementary
material due to space limitations.
Lemma 1 By setting γt = m−B1

B1(1−βt)
+ (1− βt), for βt ≤ 1

2 , we have:

E
[
‖ut − g (wt)‖2

]
≤
(

1− B1βt
m

)
E
[
‖ut−1 − g (wt−1)‖2

]
+

2B1β
2
t σ

2

B2

+
8m2C2

g

B1
E
[
‖wt −wt−1‖2

]
.

5

Algorithm 1 MSVR-v1 and MSVR-v2 method
1: Input: time step T , parameters αt, βt, γt, learning rate ηt and initial points (w1,u1, z1).
2: for time step t = 1 to T do
3: Sample a subset Bt1 from {1, 2, · · · ,m}
4: Compute estimator ut according to equation (5) or (6) � Use MSVR or MSVR-SP update
5: (v1) Compute estimator zt according to equation (7) � Use moving average update
6: (v2) Compute estimator zt according to equation (8) � Use STORM update
7: wt+1 = wt − ηtzt
8: end for
9: Choose τ uniformly at random from {1, . . . , T}

10: Return wτ

Remark: The above recursion is similar to that of STORM for tracking a sequence of a single-block
functional mapping. Since the last term ‖wt −wt−1‖2 can be offset in the future analysis, intuitively
the estimation error ‖ut − g (wt)‖2 would reduce after each iteration.

Single Point Version. A limitation of the MSVR estimator is that it needs to probe selected blocks
at two different points, i.e., gi(wt; ξ

i
t) and gi(wt−1; ξit). With a more careful analysis, we can probe

a selected block at a single point similar to that used by Balasubramanian et al. [2021] and Chen et al.
[2021]. Specifically, we replace gi

(
wt; ξ

i
t

)
− gi

(
wt−1; ξit

)
with ∇gi

(
wt; ξ

i
t

)>
(wt −wt−1). As a

result, we propose a single-point version of MSVR (named as MSVR-SP) estimator below:

uit =

{
(1− βt)uit−1 + βtgi

(
wt; ξ

i
t

)
+ γt∇̂gi

(
wt; ξ

i
t

)>
(wt −wt−1) i ∈ Bt1

uit−1 i /∈ Bt1
. (6)

The MSVR-SP estimator enjoys the similar recurrence for the estimation error.

Lemma 2 Set γt = m−B1

B1(1−βt)
+ (1− βt). If ‖wt+1 −wt‖2 ≤ η2

tC
2
F and ηt ≤

√
βt, we have:

E
[
‖ut − g(wt)‖2

]
≤
(

1− B1βt
m

)
E
[
‖ut−1 − g(wt−1)‖2

]
+

2B1β
2
t σ

2

B2

+

(
4L2

gC
2
F + 9C2

g +
8σ2

B2

)
m2

B1
E
[
‖wt −wt−1‖2

]
.

Remark: If there is a constraint on the range of gi, we can add a projection to the update of uit such
that it always resides in the range, which will not affect the analysis of Lemma 1 and Lemma 2.

3.3 Leveraging the MSVR Estimator for solving the FCCO Problem

Now, we are ready to present our proposed algorithms for solving problem (1). The first two
algorithms (named MSVR-v1 and MSVR-v2) are presented in Algorithm 1. These two methods
differ in how to estimate the gradient.

Let us first consider MSVR-v1. At each time step t, we first use the proposed MSVR or MSVR-SP
estimator ut to estimate the inner function value. Then, following the previous literature [Wang et al.,
2021, Wang and Yang, 2022], we use the moving average estimator zt to estimate the gradient as:

zt = ΠCF

(1− αt)zt−1 +
αt
B1

∑
i∈Bt

1

∇fi(uit−1)∇gi(wt; ξ
i
t)

 , (7)

where ΠCF
denotes the projection onto the ball with radius CF . This projection is optional for using

MSVR, but is required for using MSVR-SP to ensure ‖wt+1 −wt‖2 ≤ η2
tC

2
F as used in Lemma 2.

Since the true gradient ∇F is also in this ball, i.e., ‖∇F‖ ≤ CF , the projection will not affect
the future analysis. Also note that when computing the estimator zt, we use ∇fi(uit−1) instead of
∇fi(uit) to avoid the dependence on the random variable ξit , which may lead to dependent issues
otherwise. Finally, we use the estimated gradient zt to update the parameter wt+1. Now, we provide
the theoretical guarantee for the MSVR-v1 method.

6

Theorem 1 Our MSVR-v1 algorithm with αt+1 = O (ηt), βt+1 = O(
m2η2t
B2

1
), a = O(mB2

B1
) and

ηt = min

{(
B1

√
B2

m

)2/3

(a+ t)−1/3,
√

min{B1, B2}(a+ t)−1/2

}
, can find an ε-stationary point

in O
(

max
{

mε−3

B1

√
B2
, ε−4

min{B1,B2}

})
iterations.

Remark: This complexity is strictly better than previous SOTA method SOX, which enjoys an
iteration complexity of O

(
max

{
mε−4

B1B2
, ε−4

min{B1,B2} ,
mε−2

B1

})
. The sample complexity can be ob-

tained by multiplying the iteration complexity with B1B2. We can see that larger B1 or B2 yields a
smaller iteration complexity, which means that from the computational perspective, if samples can be
processed in parallel (e.g., in GPU), there is a benefit of using large B1 and/or B2. However, from
the sample complexity perspective, using B1 = B2 = 1 is the best. The same discussion holds for
other theorems below.

However, the complexity of MSVR-v1 is still on the order of O(ε−4). Due to the biased nature
of the estimated gradient, using the moving average update is not enough for achieving the SOTA
complexity ofO(ε−3). So, we use the technique of STORM [Cutkosky and Orabona, 2019] to update
zt as follows:

zt = ΠCF

(1− αt)zt−1 + α
1

B1

∑
i∈Bt

1

∇fi(uit−1)∇gi(wt; ξ
i
t)

+ (1− αt)
1

B1

∑
i∈Bt

1

(
∇fi(uit−1)∇gi(wt; ξ

i
t)−∇fi(uit−2)∇gi(wt−1; ξit)

) ,
(8)

where the projection operation is needed if using the MSVR estimator. Now, we prove this new
method (i.e., MSVR-v2) can obtain the optimal complexity of O(ε−3).

Theorem 2 Our MSVR-v2 algorithm with αt+1 = O(
mη2t
B1

), βt+1 = O
(
m2η2t
B2

1

)
, a = O(mB2

B1
) and

ηt = O
(

(B1

√
B2

m)2/3(a+ t)−1/3
)

, can find an ε-stationary point in O
(
mε−3

B1

√
B2

)
iterations.

Remark: When m = 1 and f is the identity function, problem (1) reduces to the standard stochastic
non-convex optimization, whose lower bound is Ω

(
ε−3
)

[Arjevani et al., 2019], indicating our
MSVR-v2 is optimal.

Next, we show that the complexity can be further improved when the objective function is convex or
strongly convex. We note that Polyak-Łojasiewicz (PL) [Karimi et al., 2016] objectives are more
general than strongly convex functions, since µ-strong convexity implies the µ-PL condition. So, we
will consider the PL condition and introduce its definition below.

Definition 2 F (w) satisfies the µ-PL condition if there exists µ > 0 such that:

2µ (F (w)− F∗) ≤ ‖∇F (w)‖2.

Then, we derive improved rates for convex or PL objectives by using the stage-wise design given in
Algorithm 3 in the supplement.

Theorem 3 If the objective function satisfies the convexity or µ-PL condition, MSVR-v1 derives a
sample complexity of O(max(B1, B2)ε−3) or O(max(B1, B2)µ−2ε−1), separately. For MSVR-v2,
the complexity can be further improved to O

(
m
√
B2ε

−2
)

or O
(
m
√
B2µ

−1ε−1
)
.

Remark: The complexities for MSVR-v2 are optimal, since they match the Ω
(
ε−2
)

and Ω
(
µ−1ε−1

)
lower bound for stochastic convex and strongly convex optimization [Agarwal et al., 2012].

Remark: The algorithms proposed in this paper can also use adaptive (Adam-style) learning rates
and obtain the same complexity using the techniques proposed by Guo et al. [2021]. The details are
provided in the supplementary.

7

Algorithm 2 MSVR-v3 method
1: Input: time step T , parameters α, β,γ, I , learning rate η and initial points (w1,u1, z1).
2: for time step t = 1 to T do
3: if t mod I == 0 then
4: Set τ = t
5: Compute and save gi(wτ),∇fi(uiτ−1) for every i and 1

m

∑m
i=1∇fi(uiτ−1)∇gi(wτ)

6: end if
7: Sample a subset Bt1 from {1, 2, · · · ,m}
8: Compute function value estimator ut according to equation (9)
9: Compute gradient estimator zt according to equation (10)

10: wt+1 = wt − ηzt
11: end for
12: Choose τ uniformly at random from {1, . . . , T}
13: Return wτ

4 An Improved Rate for the Finite-sum Case

In this section, we consider the case that inner function gi is in the form of the finite-sum, i.e.,
gi(w) = 1

n

∑n
j=1 gi(w; ξij), so that we can compute the exact value of gi(w) in some iterations. We

first modify our MSVR estimator to utilize the finite-sum structure. Inspired by SVRG [Johnson and
Zhang, 2013, Zhang et al., 2013], we compute a full version of the inner function value for every I
iterations at wτ , i.e., gi (wτ) = 1

n

∑n
j=1 gi(wτ ; ξij) for i = 1, · · · ,m, where τ mod I = 0. Then,

in each step, we use

ĝi(wt; ξ
i
t) = gi(wt; ξ

i
t)− gi(wτ ; ξit) + gi(wτ)

to replace gi(wt; ξ
i
t) in the origin estimator. In this way, our MSVR estimator is changed to:

uit =

{
(1− β)uit−1 + βĝi

(
wt; ξ

i
t

)
+ γ

(
gi
(
wt; ξ

i
t

)
− gi

(
wt−1; ξit

))
i ∈ Bt1

uit−1 i /∈ Bt1
. (9)

For this estimator, we have the following guarantee.

Lemma 3 If β ≤ 1
2 and βI ≤ m

B1
, by setting γ = m−B1

B1(1−β) + (1− β), we have:

E
[
‖ut+1 − g (wt+1)‖2

]
≤
(

1− B1β

m

)
E
[
‖ut − g (wt)‖2

]
+

10m2C2
g

B1
E
[
‖wt+1 −wt‖2

]
.

Remark: Compared with Lemma 1, we remove the 2B1β
2σ2

B2
term, which is the key to reduce the

complexity since we can now use a larger parameter β.

To attain the optimal complexity, we modify the gradient estimator zt in a similar way:

zt = (1− α)zt−1 + αht

+ (1− α)
1

B1

∑
i∈Bt

1

(
∇fi(uit−1)∇gi(wt; ξ

i
t)−∇fi(uit−2)∇gi(wt−1; ξit)

)
, (10)

where ht involves both the full gradient and the stochastic gradient (we also need to save each
∇fi(uτ−1) and calculate the full version of 1

m

∑m
i=1∇fi(uiτ−1)∇gi(wτ) at those steps τ) :

ht =
1

B1

∑
i∈Bt

1

(∇fi(uit−1)∇gi(wt; ξ
i
t)−∇fi(uiτ−1)∇gi(wτ ; ξit)) +

1

m

m∑
i=1

∇fi(uiτ−1)∇gi(wτ).

The whole method is summarized in Algorithm 2 (named as MSVR-v3). Next, we show that
MSVR-v3 is equipped with an optimal complexity of O(

√
nε−2).

Theorem 4 Our MSVR-v3 with I = mn
B1B2

, α = O
(
B1B2

mn

)
, β = O

(
B2

n

)
and η = O

(
B1

√
B2

m
√
n

)
,

can obtain an ε-stationary point in T = O
(
m
√
nε−2

B1

√
B2

)
iterations.

8

0.0 0.5 1.0 1.5 2.0 2.5
of samples ×105

0.25

0.50

0.75

1.00

1.25

1.50

Tr
ai

ni
ng

lo
ss

SOX
MSVR-v1
MSVR-v2
MSVR-v3

(a) STL10

0.0 0.5 1.0 1.5 2.0 2.5
of samples ×105

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

lo
ss

SOX
MSVR-v1
MSVR-v2
MSVR-v3

(b) CIFAR10

0.00 0.25 0.50 0.75 1.00
of samples ×106

0.1

0.3

0.5

0.7

0.9

Tr
ai

ni
ng

lo
ss

SOX
MSVR-v1
MSVR-v2
MSVR-v3

(c) CIFAR100

0.0 0.5 1.0 1.5 2.0 2.5
of samples ×105

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

lo
ss

SOX
MSVR-v1
MSVR-v2
MSVR-v3

(d) MNIST

0.0 0.5 1.0 1.5 2.0 2.5
of samples ×105

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

lo
ss

SOX
MSVR-v1
MSVR-v2
MSVR-v3

(e) Fashion-MNIST

0.0 0.5 1.0 1.5 2.0 2.5
of samples ×105

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

lo
ss

SOX
MSVR-v1
MSVR-v2
MSVR-v3

(f) SVHN

Figure 1: Results for Multi-task AUC Optimization.

Remark: Whenm = 1 and f is the identity function, problem (2) reduces to the stochastic finite-sum
optimization, whose optimal complexity is O

(√
nε−2

)
[Fang et al., 2018, Li et al., 2021], indicating

our complexity is optimal in terms of ε and n.

Similarly, a better complexity can be obtained under the convexity or PL condition.
Theorem 5 If the objective function satisfies the convexity or µ-PL condition, the sample complexity
can be improved to O

(
m
√
nε−1

B1

√
B2

log 1
ε

)
or O

(
m
√
nµ−1

B1

√
B2

log 1
ε

)
, respectively.

Remark: It is notable that we achieve a linear convergence rate O
(
log 1

ε

)
under the PL condition,

matching the current result in the single-level finite-sum problem [Li et al., 2021]

5 Experiments

In this section, we conduct experiments on the multi-task deep AUC maximization to evaluate the
proposed methods and we will consider more applications in the long version of the paper. For binary
classification (label y = 1 or y = −1), AUC maximization can be formulated as minimizing the
following composite loss [Zhu et al., 2022]:

min
w,a,b

Ex|y=1 [(hw(x) −a)2
]

+ Ex′|y′=−1

[
(hw (x′)− b)2

]
+ `(a(w)− b(w)),

where a(w) = E [hw(x) | y = 1], b(w) = E [hw(x) | y = −1] and `(·) is a surrogate function. The
above objective recovers the pairwise square loss and the min-max margin loss proposed by Yuan et al.
[2020] for deep AUC maximization by setting `(·) as the square function or squared hinge function,
respectively. When applied to multi-task classification (e.g., multiple classes), we can optimize the
averaged AUC losses over all tasks, i.e., AUC = 1

m

∑m
i=1AUC(i). The nested structure only comes

from the term `(a(w)− b(w)), and we can rewrite it as the form of FCCO problem, where

gi(w) =
1

|Di+|
∑

x∈Di
+

hw(x)− 1

|Di−|
∑

x∈Di
−

hw(x), f (gi(w)) = `(gi(w)).

where Di+/− denots the positive/negative datasets of the i-th task.

Configurations. In the experiment, we follow the setup in Zhu et al. [2022] and set the surrogate func-
tion ` as squared hinge `(x) = 1

2 (max{c+x, 0})2. We use ResNet18 as backbone network, and train

9

on six datasets: STL10 [Coates et al., 2011], CIFAR10 [Krizhevsky, 2009], CIFAR100 [Krizhevsky,
2009], MNIST [LeCun et al., 1998], Fashion-MNIST [Xiao et al., 2017], and SVHN [Netzer et al.,
2011]. We compare our methods with previous SOTA algorithm SOX [Wang and Yang, 2022]. For
our methods, parameters α and β are searched from {0.1, 0.5, 0.9, 1.0}. For SOX algorithm, its
parameters β and γ are searched from the same set. B1 is set as 50 for CIFAR100 and 5 for other
datasets. Inner batch size B2 is chosen as 128 for all methods. We tune the learning rate from the set
{1e− 4, 1e− 3, 2e− 3, 5e− 3, 1e− 2} and pick the best one for each method. The experiments are
conducted on single NVIDIA Tesla M40 GPU.

Results. Figure 1 shows the loss against the number of samples drawn by different methods, and all
curves are averaged over 5 runs. We observe that MSVR-V1 is better than SOX on the CIFAR100
dataset, and close to it on other datasets. MSVR-v2 converges faster than SOX and MSVR-v1, and
the loss of MSVR-v3 decreases most rapidly, demonstrating a low sample complexity.

6 Conclusion and Future Work

In this paper, we develop a novel MSVR estimator for tracking multiple functional mappings by
probing only O(1) blocks. Equipped with this estimator, we design three algorithms for FCCO
problems and obtain improved complexities across a spectrum of settings. Experimental results on
multi-task deep AUC maximization also verify the effectiveness of our methods. In future work, we
will investigate other applications that can be solved by using the proposed estimator.

Acknowledgments and Disclosure of Funding

W. Jiang, Y. Wang and L. Zhang were partially supported by NSFC (62122037, 61921006). G. Li
and T. Yang were partially supported by Amazon research award. The authors would like to thank
the anonymous reviewers for their helpful comment.

References
A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds

on the oracle complexity of stochastic convex optimization. IEEE Transactions on Information
Theory, 58(5):3235–3249, 2012.

Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, N. Srebro, and B. E. Woodworth. Lower bounds
for non-convex stochastic optimization. ArXiv e-prints, arXiv:1912.02365, 2019.

K. Balasubramanian, S. Ghadimi, and A. Nguyen. Stochastic multi-level composition optimization
algorithms with level-independent convergence rates. ArXiv e-prints, arXiv:2008.10526, 2021.

T. Chen, Y. Sun, and W. Yin. Solving stochastic compositional optimization is nearly as easy as
solving stochastic optimization. IEEE Transactions on Signal Processing, 69:4937–4948, 2021.

A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning.
In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, pages
213–223, 2011.

A. Cutkosky and F. Orabona. Momentum-based variance reduction in non-convex SGD. In Advances
in Neural Information Processing Systems 32, pages 15210–15219, 2019.

A. Defazio, F. R. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support
for non-strongly convex composite objectives. In Advances in Neural Information Processing
Systems 27, pages 1646–1654, 2014.

C. Fang, C. J. Li, Z. Lin, and T. Zhang. Spider: Near-optimal non-convex optimization via stochastic
path integrated differential estimator. ArXiv e-prints, arXiv:1807.01695, 2018.

S. Ghadimi, A. Ruszczynski, and M. Wang. A single timescale stochastic approximation method for
nested stochastic optimization. SIAM Journal on Optimization, 30(1):960–979, 2020.

10

Z. Guo, Y. Xu, W. Yin, R. Jin, and T. Yang. On stochastic moving-average estimators for non-convex
optimization. ArXiv e-prints, arXiv:2104.14840, 2021.

Y. Hu, S. Zhang, X. Chen, and N. He. Biased stochastic first-order methods for conditional stochastic
optimization and applications in meta learning. In Advances in Neural Information Processing
Systems 33, 2020.

W. Jiang, B. Wang, Y. Wang, L. Zhang, and T. Yang. Optimal algorithms for stochastic multi-level
compositional optimization. ArXiv e-prints, arXiv:2202.07530, 2022.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In Advances in Neural Information Processing Systems 26, 2013.

H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient methods
under the Polyak-Łojasiewicz condition. In Machine Learning and Knowledge Discovery in
Databases, pages 795–811, 2016.

A. Krizhevsky. Learning multiple layers of features from tiny images. Masters Thesis, Deptartment
of Computer Science, University of Toronto, 2009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

Z. Li, H. Bao, X. Zhang, and P. Richtarik. Page: A simple and optimal probabilistic gradient estimator
for nonconvex optimization. In Proceedings of the 38th International Conference on Machine
Learning, pages 6286–6295, 2021.

L. Liu, J. Liu, C. Hsieh, and D. Tao. Stochastically controlled stochastic gradient for the convex and
non-convex composition problem. ArXiv e-prints, arXiv:1809.02505, 2018.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural
images with unsupervised feature learning. In Advances in Neural Information Processing Systems
Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A novel method for machine learning
problems using stochastic recursive gradient. In Proceedings of the 34th International Conference
on Machine Learning, pages 2613–2621, 2017.

Q. Qi, Z. Guo, Y. Xu, R. Jin, and T. Yang. An online method for a class of distributionally robust
optimization with non-convex objectives. ArXiv e-prints, arXiv:2006.10138, 2021a.

Q. Qi, Y. Luo, Z. Xu, S. Ji, and T. Yang. Stochastic optimization of areas under precision-recall
curves with provable convergence. In Advances in Neural Information Processing Systems 34,
pages 1752–1765, 2021b.

N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In Advances in Neural Information Processing Systems 25,
pages 2672–2680, 2012.

B. Wang and T. Yang. Finite-sum coupled compositional stochastic optimization: Theory and
applications. ArXiv e-prints, arXiv:2202.12396, 2022.

G. Wang, M. Yang, L. Zhang, and T. Yang. Momentum accelerates the convergence of stochastic
AUPRC maximization. ArXiv e-prints, arXiv:2107.01173, 2021.

M. Wang, J. Liu, and E. Fang. Accelerating stochastic composition optimization. In Advances in
Neural Information Processing Systems 29, pages 1714–1722, 2016.

M. Wang, E. X. Fang, and H. Liu. Stochastic compositional gradient descent: algorithms for
minimizing compositions of expected-value functions. Mathematical Programming, 161(1-2):
419–449, 2017.

Z. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh. Spiderboost: A class of faster variance-reduced
algorithms for nonconvex optimization. ArXiv e-prints, arXiv:1810.10690, 2018.

11

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: A novel image dataset for benchmarking
machine learning algorithms. ArXiv e-prints, arXiv:1708.07747, 2017.

S. Yang, M. Wang, and E. X. Fang. Multilevel stochastic gradient methods for nested composition
optimization. SIAM Journal on Optimization, 29(1):616–659, 2019.

H. Yuan, X. Lian, C. J. Li, J. Liu, and W. Hu. Efficient smooth non-convex stochastic composi-
tional optimization via stochastic recursive gradient descent. In Advances in Neural Information
Processing Systems 33, pages 14905–14916, 2019a.

Z. Yuan, Y. Yan, R. Jin, and T. Yang. Stagewise training accelerates convergence of testing error over
sgd. In Advances in Neural Information Processing Systems, pages 2604–2614, 2019b.

Z. Yuan, Y. Yan, M. Sonka, and T. Yang. Robust deep auc maximization: A new surrogate loss and
empirical studies on medical image classification. ArXiv e-prints, arXiv:2012.03173, 2020.

J. Zhang and L. Xiao. A stochastic composite gradient method with incremental variance reduction.
In Advances in Neural Information Processing Systems 33, pages 9075–9085, 2019.

J. Zhang and L. Xiao. Multilevel composite stochastic optimization via nested variance reduction.
SIAM Journal on Optimization, 31(2):1131–1157, 2021.

L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number independent access of
full gradients. In Advance in Neural Information Processing Systems 26, pages 980–988, 2013.

Z. Zhang and G. Lan. Optimal algorithms for convex nested stochastic composite optimization. ArXiv
e-prints, arXiv:2011.10076, 2021.

D. Zhu, X. Wu, and T. Yang. Benchmarking deep AUROC optimization: Loss functions and
algorithmic choices. ArXiv e-prints, arXiv:2203.14177, 2022.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [No]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This work

is mainly theoretical.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.1.
(b) Did you include complete proofs of all theoretical results? [Yes] The complete proofs

are provided in the supplementary.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 5

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]

12

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We use the public benchmark datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We use the public benchmark datasets.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

A Analysis

A.1 Proof of Lemma 1

Proof Denote ūit = (1− βt+1)uit + βt+1gi(wt+1; ξit+1) + γt+1

(
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)
.

E
[∥∥uit+1 − gi(wt+1)

∥∥2
]

=E
[
(1− B1

m
)
∥∥uit − gi(wt+1)

∥∥2
+
B1

m

∥∥ūit − gi(wt+1)
∥∥2
]

(11)

For the first term, we can decompose it as:

(1− B1

m
)E
[∥∥uit − gi(wt+1)

∥∥2
]

=(1− B1

m
)E
[∥∥uit − gi(wt)

∥∥2
]

+ (1− B1

m
)E
[
‖gi(wt)− gi(wt+1)‖2

]
+ 2(1− B1

m
)E
[(
uit − gi(wt)

)
(gi(wt)− gi(wt+1))

]
︸ ︷︷ ︸

1©

(12)

Also, the second term can be written as:

B1

m
E
[∥∥ūit − gi(wt+1)

∥∥2
]

=
B1

m
E
[∥∥(1− βt+1)

(
uit − gi(wt)

)
+ (1− βt+1) (gi(wt)− gi(wt+1))

+βt+1

(
gi(wt+1; ξit+1)− gi(wt+1)

)
+ γt+1

(
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)∥∥2
]

=
B1

m
E
[∥∥(1− βt+1)

(
uit − gi(wt)

)
+ (1− βt+1) (gi(wt)− gi(wt+1))

+γt+1

(
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)∥∥2
]

+
B1β

2
t+1

m
E
[∥∥gi(wt+1; ξit+1)− gi(wt+1)

∥∥2
]

+
2B1βt+1γt+1

m
E
[(
gi(wt+1; ξit+1)− gi(wt+1)

) (
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)]
=
B1

m
E
[
(1− βt+1)2

∥∥(uit − gi(wt)
)∥∥2
]

+
B1

m
E
[∥∥(1− βt+1) (gi(wt)− gi(wt+1)) + γt+1

(
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)∥∥2
]

+
2B1

m
(1− βt+1)(1− βt+1 − γt+1)E

[(
uit − gi(wt)

)
(gi(wt)− gi(wt+1))

]
︸ ︷︷ ︸

2©

+
B1β

2
t+1

m
E
[∥∥(gi(wt+1; ξit+1)− gi(wt+1)

)∥∥2
]

+
2B1βt+1γt+1

m
E
[(
gi(wt+1; ξit+1)− gi(wt+1)

) (
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)]
(13)

The second equation is because of E
[
gi(wt+1; ξit+1)− gi(wt+1)

]
= 0. The last equation is due to

E
[
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

]
= gi(wt+1)− gi(wt) and uit is independent of ξit+1. We want to

ensure 1©+ 2© = 0, which requires that 2(1− B1

m) + 2B1

m (1− βt+1)(1− βt+1 − γt+1) = 0. Solve
γt+1 and we have γt+1 = m−B1

B1(1−βt+1) + (1− βt+1). According to equation (12) and equation (13),

14

the equation (11) can now be written as:

E
[∥∥uit+1 − gi(wt+1)

∥∥2
]

=E
[(

1− B1

m
+

(1− βt+1)2B1

m

)∥∥uit − gi(wt)
∥∥2

+ (1− B1

m
) ‖gi(wt)− gi(wt+1)‖2

+
B1β

2
t+1

m

∥∥(gi(wt+1; ξit+1)− gi(wt+1)
)∥∥2

+
B1

m

∥∥(1− βt+1) (gi(wt)− gi(wt+1)) + γt+1

(
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)∥∥2

+
2B1βt+1γt+1

m

(
gi(wt+1; ξit+1)− gi(wt+1)

) (
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)]
=E
[(

1− B1

m
+

(1− βt+1)2B1

m

)∥∥uit − gi(wt)
∥∥2

+ (1− B1

m
) ‖gi(wt)− gi(wt+1)‖2

+
B1β

2
t+1

m

∥∥(gi(wt+1; ξit+1)− gi(wt+1)
)∥∥2

+
B1(1− βt+1)2

m
‖(gi(wt)− gi(wt+1))‖2

− 2B1(1− βt+1)

m
γt+1 ‖(gi(wt)− gi(wt+1))‖2

+
B1γ

2
t+1

m

∥∥(gi(wt+1; ξit+1)− gi(wt; ξ
i
t+1)

)∥∥2

+
2B1βt+1γt+1

m

(
gi(wt+1; ξit+1)− gi(wt+1)

) (
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)]
≤
(

1− βt+1B1

m

)
E
[∥∥uit − gi(wt)

∥∥2
]

+
B1β

2
t+1

m
E
[∥∥(gi(wt+1; ξit+1)− gi(wt+1)

)∥∥2
]

+
4mC2

g

B1
E
[
‖wt+1 −wt‖2

]
+

2B1βt+1γt+1

m
E
[(
gi(wt+1; ξit+1)− gi(wt+1)

) (
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)]
≤
(

1− βt+1B1

m

)
E
[∥∥uit − gi(wt)

∥∥2
]

+
2B1β

2
t+1

m
E
[∥∥(gi(wt+1; ξit+1)− gi(wt+1)

)∥∥2
]

+
8mC2

g

B1
E
[
‖wt+1 −wt‖2

]

(14)

The second equation is due to

E
[(
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)
(gi(wt+1)− gi(wt))

]
= ‖gi(wt+1)− gi(wt)‖2 .

The first inequality is because of γt+1 ≤ 2m
B1

(since βt+1 ≤ 1
2) and 1 − B1

m + B1

m (1 − βt+1)2 ≤
2B1

m (1− βt+1)γt+1. The last inequality is due to the fact that
2B1βt+1γt+1

m
E
[(
gi(wt+1; ξit+1)− gi(wt+1)

) (
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)]
≤2B1βt+1γt+1

m
E
[∥∥gi(wt+1; ξit+1)− gi(wt+1)

∥∥ ∥∥gi(wt+1; ξit+1)− gi(wt; ξ
i
t+1)

∥∥]
≤B1β

2
t+1

m
E
[∥∥gi(wt+1; ξit+1)− gi(wt+1)

∥∥2
]

+
B1γ

2
t+1

m
E
[∥∥gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

∥∥2
]

≤B1β
2
t+1

m
E
[∥∥gi(wt+1; ξit+1)− gi(wt+1)

∥∥2
]

+
4mC2

g

B1
E
[
‖wt+1 −wt‖2

]
Finally, we have:

E
[
‖ut+1 − g(wt+1)‖2

]
=

m∑
i=1

E
[∥∥uit+1 − gi(wt+1)

∥∥2
]

≤
(

1− βt+1B1

m

)
E
[
‖ut − g(wt)‖2

]
+

8m2C2
g

B1
E
[
‖wt+1 −wt‖2

]
+

2B1σ
2β2
t+1

B2

15

A.2 Proof of Lemma 2

Proof We will start with single block and them sum over multiple blocks. To start, we have∥∥uit+1 − gi(wt+1)
∥∥2

=

(
1− B1

m

)∥∥uit − gi(wt+1)
∥∥2

+
B1

m

∥∥(1− βt+1)uit + βt+1gi(wt+1; ξit+1) + γt+1∇gi(wt+1; ξit+1)>(wt+1 −wt)− gi(wt+1)
∥∥2

=

(
1− B1

m

)∥∥uit − gi(wt)
∥∥2

+ 2(uit − gi(wt))
>(gi(wt)− gi(wt+1))︸ ︷︷ ︸
A0

+ ‖gi(wt)− gi(wt+1)‖2


+
B1

m

∥∥(1− βt+1)uit + βt+1gi(wt+1; ξit+1) + γt+1∇gi(wt+1; ξit+1)>(wt+1 −wt)− gi(wt+1)
∥∥2︸ ︷︷ ︸

A

Next, we will proceed to decompose A.

A =

∥∥∥∥(1− βt+1)(uit − gi(wt)) + (1− βt+1)(gi(wt)− gi(wt+1))

+ βt+1(gi(wt+1; ξit+1)− gi(wt+1)) + γt+1(gi(wt+1)− gi(wt))

+ γt+1(gi(wt)− gi(wt+1) +∇gi(wt+1; ξit+1)>(wt+1 −wt)

∥∥∥∥2

=

∥∥∥∥(1− βt+1)(uit − gi(wt)) + (γt+1 + βt+1 − 1)(gi(wt+1)− gi(wt))

+ γt+1 (gi(wt)− gi(wt+1) +∇gi(wt+1)>(wt+1 −wt))︸ ︷︷ ︸
∆t

+ βt+1(gi(wt+1; ξit+1)− gi(wt+1))

+ γt+1(∇gi(wt+1; ξit+1)−∇gi(wt+1))>(wt+1 −wt)

∥∥∥∥2

By taking expectation over A, we have

E[A] =E
[
(1− βt+1)2‖uit − gi(wt)‖2 + γ2

t+1‖∆t‖2 + (γt+1 + βt+1 − 1)2‖gi(wt+1)− gi(wt)‖2

+ 2(1− βt+1)(γt+1 + βt+1 − 1)(uit − gi(wt)
>(gi(wt+1)− gi(wt))︸ ︷︷ ︸

A1

+ 2γt+1(γt+1 + βt+1 − 1)∆>t (gi(wt+1)− gi(wt))

+ 2(1− βt+1)γt+1(uit − gi(wt))
>∆t +

2β2
t+1σ

2

B2
+

2γ2
t+1σ

2

B2
‖wt+1 −wt‖2

]
Since γt+1 + βt+1 − 1 = m−B1

B1(1−βt+1) , the terms involving A0, A1 will cancel. As a result, we have

E
[∥∥uit+1 − gi(wt+1)

∥∥2
]

=E
[(

1− B1

m

)∥∥uit − gi(wt)
∥∥2

+ ‖gi(wt)− gi(wt+1)‖2

+
B1

m
(1− βt+1)2(1 + βt+1)‖uit − gi(wt)‖2 + (2 +

1

βt+1
)γ2
t+1‖∆t‖2

+ 2(γt+1 + βt+1 − 1)2‖gi(wt+1)− gi(wt)‖2 +
2β2

t+1σ
2

B2
+

2γ2
t+1σ

2

B2
‖wt+1 −wt‖2

]

16

Since ‖∆t‖ ≤ min(
Lg

2 ‖wt+1−wt‖2, 2Cg‖wt+1−wt‖) and ‖gi(wt+1)− gi(wt)‖ ≤ Cg‖wt+1−
wt‖2, we have

E
[∥∥uit+1 − gi(wt+1)

∥∥2
]

=E
[(

1− B1

m

)
(uit − gi(wt))

2 + C2
g‖wt+1 −wt‖2

+
B1

m
(1− βt+1)‖uit − gi(wt)‖2 + (2 +

1

βt+1
)γ2
t+1

L2
g‖wt+1 −wt‖2

4
‖wt+1 −wt‖2

+ 2(γt+1 + βt+1 − 1)2C2
g‖wt+1 −wt‖2 +

2β2
t+1σ

2

B2
+

2γ2
t+1σ

2

B2
‖wt+1 −wt‖2

]

Note that we have ‖wt+1 −wt‖2 ≤ η2
t+1C

2
F , γt+1 ≤ 2m

B1
and ηt+1 ≤

√
βt+1. Therefore

E
[∥∥uit+1 − gi(wt+1)

∥∥2
]

≤
(

1− B1βt+1

m

)
E
[∥∥uit − gi(wt)

∥∥2
]

+
2B1β

2
t+1σ

2

mB2

+ E

[
4mL2

g

βt+1B1
‖wt+1 −wt‖4 +

9mC2
g

B1
‖wt+1 −wt‖2 +

8mσ2

B1B2
‖wt+1 −wt‖2

]

≤
(

1− B1βt+1

m

)
E
[∥∥uit − gi(wt)

∥∥2
]

+
2B1β

2
t+1σ

2

mB2

+

(
4L2

gC
2
F + 9C2

g +
8σ2

B2

)
m

B1
E
[
‖wt+1 −wt‖2

]
Finally, we have:

E[‖ut+1 − g(wt+1)‖2] ≤
(

1− B1βt+1

m

)
E
[
‖ut − g(wt)‖2

]
+

2B1β
2
t+1σ

2

B2

+

(
4L2

gC
2
F + 9C2

g +
8σ2

B2

)
m2

B1
E
[
‖wt+1 −wt‖2

]
A.3 Proof of Lemma 3

Proof Note that we have:

E
[∥∥ĝi(wt+1; ξit+1)− gi(wt+1)

∥∥2
]

=E
[∥∥gi(wt+1; ξit+1)− gi(wτ ; ξit+1) + gi(wτ)− gi(wt+1)

∥∥2
]

=E
[∥∥gi(wt+1; ξit+1)− gi(wτ ; ξit+1)

∥∥2
]

+ ‖gi(wτ)− gi(wt+1)‖2

+ 2E
[
gi(wt+1; ξit+1)− gi(wτ ; ξit+1)

]
[gi(wτ)− gi(wt+1)]

=E
[∥∥gi(wt+1; ξit+1)− gi(wτ ; ξit+1)

∥∥2
]
− ‖gi(wτ)− gi(wt+1)‖2

≤C2
g ‖wt+1 −wτ‖2

(15)

Since τ is the closest small index such that τ mod I = 0, we have:

T∑
t=1

‖wt+1 −wτ‖2 ≤
T∑
t=1

∥∥∥∥∥
t∑

k=τ

(wk+1 −wk)

∥∥∥∥∥
2

≤
T∑
t=1

t∑
k=τ

I ‖wk+1 −wk‖2 ≤ I2
T∑
t=1

‖wt+1 −wt‖2
(16)

17

We can then apply the same analysis as in Section A.1, until equation (14):

E
[∥∥uit+1 − gi(wt+1)

∥∥2
]

≤
(

1− βB1

m

)
E
[∥∥uit − gi(wt)

∥∥2
]

+
2B1β

2

m
E
[∥∥(ĝi(wt+1; ξit+1)− gi(wt+1)

)∥∥2
]

+
8mC2

g

B1
E
[
‖wt+1 −wt‖2

]
≤
(

1− βB1

m

)
E
[∥∥uit − gi(wt)

∥∥2
]

+

(
2B1C

2
gβ

2I2

m
+

8mC2
g

B1

)
E
[
‖wt+1 −wt‖2

]
≤
(

1− βB1

m

)
E
[∥∥uit − gi(wt)

∥∥2
]

+
10mC2

g

B1
E
[
‖wt+1 −wt‖2

]
The last inequality is due to βI ≤ m

B1
. Finally, we have:

E
[
‖ut+1 − g (wt+1)‖2

]
=

m∑
i=1

E
[∥∥uit+1 − gi(wt+1)

∥∥2
]

≤(1− B1β

m
)E
[
‖ut − g (wt)‖2

]
+

10m2C2
g

B1
‖wt+1 −wt‖2

A.4 Proof of Theorem 1

We denote constant C = max
{

1, C2
g , L

2
F , C

2
F , σ

2, L2
fC

2
g , L

2
gC

2
f , L

2
fC

4
g , L

2
fC

2
gσ

2, C2
f (σ2 + C2

g)
}

.

Lemma 4 (Lemma 2 in Li et al. [2021]) Suppose function F is LF -smooth and consider the update
wt+1 := wt − ηtzt. With ηtL ≤ 1

2 , we have:

F (wt+1) ≤ F (wt)−
ηt
2
‖∇F (wt)‖2 +

ηt
2
‖zt −∇F (wt)‖2 −

ηt
4
‖zt‖2

Lemma 5 Denote ‖ut−g(wt)‖2 =
∑m
i=1 ‖uit−gi(wt)‖2 and ‖ut−ut−1‖2 =

∑m
i=1 ‖uit−uit−1‖2.

E
[
‖zt+1 −∇F (wt+1)‖2

]
≤ (1− αt+1)E

[
‖zt −∇F (wt)‖2

]
+

3Cη2
tE
[
‖zt‖2

]
αt+1

+
4L2

fC
2
g

m
E
[
‖ut+1 − ut‖2

]
+

2α2
t+1C

2
f

(
σ2 + C2

g

)
min {B1, B2}

+
5αt+1L

2
fC

2
g

m
E
[
‖ut − g(wt)‖2

]
Proof According to Lemma 1 in Wang and Yang [2022], if α ≤ 2

7 , we have:

E
[
‖zt+1 −∇F (wt+1)‖2

]
≤ (1− αt+1)E

[
‖zt −∇F (wt)‖2

]
+

2L2
F η

2
tE
[
‖zt‖2

]
αt+1

+
3L2

fC
2
g

m
E
[
‖ut+1 − ut‖2

]
+

2α2
t+1C

2
f

(
σ2 + C2

g

)
min {B1, B2}

+
5αt+1L

2
fC

2
g

m
E
[
‖ut+1 − g(wt+1)‖2

]
.

By setting α ≤ 1
15 , we have the above lemma.

Lemma 6 If βt+1 ≤ 1
2 , we have:

E
[
‖ut+1 − ut‖2

]
≤ 2B1β

2
t+1σ

2

B2
+

4B1β
2
t+1

m
E
[
‖ut − g(wt)‖2

]
+

9m2C2
g

B1
E
[
‖wt+1 −wt‖2

]

18

Proof Note that with βt+1 ≤ 1
2 , we have γt+1 ≤ 2m

B1

E
[
‖ut+1 − ut‖2

]
=
B1

m

m∑
i=1

E
[∥∥βt+1

(
gi(wt+1; ξit+1)− uit

)
+ γt+1

(
gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)

)∥∥2
]

≤B1

m

m∑
i=1

E
[
2β2

t+1

∥∥gi(wt+1; ξit+1)− uit
∥∥2

+ 2γ2
t+1‖gi(wt+1; ξit+1)− gi(wt; ξ

i
t+1)‖2

]
≤E

[
2B1β

2
t+1

m

m∑
i=1

∥∥gi(wt+1; ξit+1)− uit
∥∥2

+ 2B1γ
2
t+1C

2
g‖wt+1 −wt‖2

]

≤2B1β
2
t+1

m

m∑
i=1

(
E
[∥∥gi(wt+1; ξit+1)− gi(wt+1)

∥∥2
]

+ E
[∥∥gi(wt+1)− uit

∥∥2
])

+ 2B1γ
2
t+1C

2
gE
[
‖wt+1 −wt‖2

]
≤2B1β

2
t+1σ

2

B2
+

2B1β
2
t+1

m

m∑
i=1

E
[∥∥gi(wt+1)− uit

∥∥2
]

+
8m2C2

g

B1
E
[
‖wt+1 −wt‖2

]
≤2B1β

2
t+1σ

2

B2
+

4B1β
2
t+1

m

m∑
i=1

‖gi(wt+1)− gi(wt)‖2 +
4B1β

2
t+1

m

m∑
i=1

E
[∥∥gi(wt)− uit

∥∥2
]

+
8m2C2

g

B1
E
[
‖wt+1 −wt‖2

]
≤2B1β

2
t+1σ

2

B2
+

4B1β
2
t+1

m

m∑
i=1

E
[∥∥gi(wt)− uit

∥∥2
]

+
9m2C2

g

B1
E
[
‖wt+1 −wt‖2

]
.

The third inequality is due to E
[
gi(wt+1; ξit+1)− gi(wt+1)

]
= 0.

The rest proof of Theorem 1 Let Γt = F (wt) + B1

c0ηt−1m2 ‖ut − g(wt)‖2 + 1
c0
‖zt−∇F (wt)‖2.

By setting ηt = 2αt+1

c0
, C0 = 72C, ηt ≤ B1

4m we have:

E [Γt+1 − Γt]

=E
[
F (wt+1)− F (wt) +

B1

c0ηtm2
‖ut+1 − g(wt+1)‖2 +

1

c0
‖zt+1 −∇F (wt+1)‖2

− B1

c0ηt−1m2
‖ut − g(wt)‖2 −

1

c0
‖zt −∇F (wt)‖2

]
≤E
[
− ηt

2
‖∇F (wt)‖2 +

ηt
2
‖zt −∇F (wt)‖2 −

ηt
4
‖zt‖2 −

αt+1

c0
‖zt −∇F (wt)‖2

+
3Cη2

t

αt+1c0
‖zt‖2 +

4L2
fC

2
g

mc0
‖ut+1 − ut‖2 +

2α2
t+1C

2
f

(
σ2 + C2

g

)
min {B1, B2} c0

+
8Cηt
c0
‖zt‖2

+

(
5αt+1L

2
fC

2
g

mc0
+

B1

c0ηtm2
− B2

1βt+1

m3c0ηt
− B1

c0ηt−1m2

)
‖ut − g(wt)‖2 +

2B2
1β

2
t+1σ

2

B2m2c0ηt

]

≤E
[
− ηt

2
‖∇F (wt)‖2 +

4L2
fC

2
g

mc0
‖ut+1 − ut‖2 +

2α2
t+1C

2
f

(
σ2 + C2

g

)
min {B1, B2} c0

− ηt
8
‖zt‖2

+

(
5αt+1C

mc0
+

B1

c0ηtm2
− B2

1βt+1

m3c0ηt
− B1

c0ηt−1m2

)
‖ut − g(wt)‖2 +

2B2
1β

2
t+1σ

2

B2m2c0ηt

]
≤E
[
− ηt

2
‖∇F (wt)‖2 +

2α2
t+1C

min {B1, B2} c0
+

4B2
1β

2
t+1C

B2m2c0ηt

+

(
5αt+1C

mc0
+

B1

c0ηtm2
− B2

1βt+1

m3c0ηt
− B1

c0ηt−1m2
+

16B1β
2
t+1C

m2c0

)
‖ut − g(wt)‖2

]

19

By setting βt+1 =
256m2C2η2t

B2
1

(and note that c0 = 72C, αt+1 = 36Cηt), we have:

E [Γt+1 − Γt] ≤E
[
−ηt

2
‖∇F (wt)‖2 +

2α2
t+1C

min {B1, B2} c0
+

4B2
1β

2
t+1C

B2m2c0ηt

]
≤E

[
−ηt

2
‖∇F (wt)‖2 +

36C2η2
t

min {B1, B2}
+

164m2C4η3
t

18B2B2
1

]

This means that, by setting ηt = min{
√

min{B1, B2}(a+ t)−1/2,
(
B1

√
B2

m

)2/3

(a+ t)−1/3}:

ηT
2
E

[
T∑
t=1

‖∇F (wt)‖2
]
≤E [Γ1 − ΓT+1] +

36C2

min {B1, B2}
E

[
T∑
t=1

η2
t

]
+

164m2C4

18B2B2
1

E

[
T∑
t=1

η3
t

]

≤E [Γ1] + 163C4E

[
T∑
t=1

(a+ t)−1

]

≤∆F +
2C

c0η0
+ 163C4 ln (1 + T)

Similar to the proof of Theorem 1 in STORM [Cutkosky and Orabona, 2019], denote M = ∆F +
2C
c0η0

+ 163C4 ln (1 + T). Using Cauchy-Schwarz inequality, we have:

E


√√√√ T∑

t=1

‖∇F (wt)‖2
2

≤ E [1/ηT]E

[
ηT

T∑
t=1

‖∇F (wt)‖2
]
≤ E

[
M

ηT

]

≤ E

[
M max

{
1√

min{B1, B2}
(a+ T)

1/2
,

(
m

B1

√
B2

)2/3

(a+ T)
1/3

}]
,

which indicate that

E


√√√√ T∑

t=1

‖∇F (wt)‖2


≤
√
M max

{
(min {B1, B2})−1/4

(a+ T)
1/4

,

(
m

B1

√
B2

)1/3

(a+ T)
1/6

}
.

Finally, using Cauchy-Schwarz we have
∑T
t=1 ‖∇F (wt)‖ /T ≤

√∑T
t=1 ‖∇F (wt)‖2/

√
T so that:

E

[
T∑
t=1

‖∇F (wt)‖
T

]

≤max

{
√
M (min {B1, B2})−1/4 (a+ T)

1/4

√
T

,
√
M

(
m

B1

√
B2

)1/3
(a+ T)

1/6

√
T

}

≤max

{
√
M (min {B1, B2})−1/4

(
a1/4

√
T

+
1

T 1/4

)
,
√
M

(
m

B1

√
B2

)1/3(
a1/6

√
T

+
1

T 1/3

)}

≤O
(

max

{(
1

min {B1, B2}T

)1/4

,

(
m

B1

√
B2T

)1/3
})

,

where the last inequality is due to (a+ b)1/3 ≤ a1/3 + b1/3. So, we can achieve the stationary point
with T = O

(
max

{
m

B1

√
B2ε3

, 1
min{B1,B2}ε4

})
.

20

A.5 Proof of Theorem 2

Lemma 7 Denote ‖ut−g(wt)‖2 =
∑m
i=1 ‖uit−gi(wt)‖2 and ‖ut−ut−1‖2 =

∑m
i=1 ‖uit−uit−1‖2.

E
[
‖zt −∇F (wt)‖2

]
≤ 4E

[∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

∥∥∥∥2
]

+
4C2

gL
2
f

m
E
[
‖ut − ut−1‖2

]
+

2C2
gL

2
f

m
E
[
‖ut − g(wt)‖2

]
Proof

E
[
‖zt −∇F (wt)‖2

]
=2E

[∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(ui)
∥∥∥∥2

+ 2

∥∥∥∥ 1

m

m∑
i=1

∇gi(wt)∇fi(ui)−
1

m

m∑
i=1

∇gi(wt)∇fi(gi(wt))

∥∥∥∥2
]

≤E
[

2

∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(ui)
∥∥∥∥2

+
2

m

m∑
i=1

∥∥∥∥∇gi(wt)∇fi(ui)−∇gi(wt)∇fi(gi(wt))

∥∥∥∥2
]

≤E
[

2

∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(ui)
∥∥∥∥2

+
2C2

gL
2
f

m

m∑
i=1

∥∥∥∥uit − gi(wt)

∥∥∥∥2
]

≤E
[

4

∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

∥∥∥∥2

+
4C2

gL
2
f

m

∥∥∥∥ut − ut−1

∥∥∥∥2

+
2C2

gL
2
f

m

∥∥∥∥ut − g(wt)

∥∥∥∥2
]

Lemma 8

E

∥∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

∥∥∥∥∥
2
 ≤ E

[
(1− αt)

∥∥∥∥∥zt−1 −
1

m

m∑
i=1

∇gi(wt−1)∇fi(uit−2)

∥∥∥∥∥
2

+
2α2

tσ
2

B1
+

4C2
gL

2
f

m
‖ut−1 − ut−2‖2 + 4C2

fL
2
g‖wt −wt−1‖2

]

Proof

E

[
‖zt −

1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)‖2
]

=E

[∥∥∥∥(1− αt)
(
zt−1 −

1

m

m∑
i=1

∇gi(wt−1)∇fi(uit−2)

)

+αt

 1

B1

∑
i∈Bt

1

∇gi(wt; ξ
i
t)∇fi(uit−1)− 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)


+(1− αt)

 1

B1

∑
i∈Bt

1

∇gi(wt; ξ
i
t)∇fi(uit−1)− 1

B1

∑
i∈Bt

1

∇gi(wt−1; ξit)∇fi(uit−2)

− 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1) +
1

m

m∑
i=1

∇gi(wt−1)∇fi(uit−2)

)∥∥∥∥2
]

21

We assume that E
[
‖ 1
B1

∑
i∈Bt

1
∇gi(wt; ξ

i
t)∇fi(uit−1)− 1

m

∑m
i=1∇gi(wt)∇fi(uit−1)‖2

]
≤ σ2

B1
.

Due to the fact that the expectation over the last two terms equals zero, we have:

E

∥∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

∥∥∥∥∥
2


≤ E

[
(1− αt)2

∥∥∥∥∥zt−1 −
1

m

m∑
i=1

∇gi(wt−1)∇fi(uit−2)

∥∥∥∥∥
2

+
2α2

tσ
2

B1

+ 2(1− αt)2 1

B1

∑
i∈Bt

1

∥∥∇gi(wt; ξ
i
t)∇fi(uit−1)−∇gi(wt−1; ξit)∇fi(uit−2)

∥∥2

]

≤ E

[
(1− αt)

∥∥∥∥∥zt−1 −
1

m

m∑
i=1

∇gi(wt−1)∇fi(uit−2)

∥∥∥∥∥
2

+
2α2

tσ
2

B1

+ 4(1− αt)2 1

B1

∑
i∈Bt

1

∥∥∥∥∇gi(wt; ξ
i
t)
(
∇fi(uit−1)−∇fi(uit−2)

) ∥∥∥∥2

+ 4(1− αt)2 1

B1

∑
i∈Bt

1

∥∥∥∥∇fi(uit−2)
(
∇gi(wt; ξ

i
t)−∇gi(wt−1; ξit)

) ∥∥∥∥2
]

≤ E

[
(1− αt)

∥∥∥∥∥zt−1 −
1

m

m∑
i=1

∇gi(wt−1)∇fi(uit−2)

∥∥∥∥∥
2

+
2α2

tσ
2

B1
+

4C2
gL

2
f

m
‖ut−1 − ut−2‖2

+ 4C2
fL

2
g‖wt −wt−1‖2

]

Lemma 9 Suppose that β ≤ 1
32C and B1βt+1 ≤ mαt+1. Then, we have:

E

 1

m
‖ut+1 − g (wt+1)‖2 +

∥∥∥∥∥zt+1 −
1

m

m∑
i=1

∇gi(wt+1)∇fi(uit)
∥∥∥∥∥

2


≤(1− B1βt+1

m
)

1

m
E
[
‖ut − g (wt)‖2

]
+

8mC2
g

B1
‖wt+1 −wt‖2 +

2B1β
2
t+1σ

2

B2m

+ (1− αt+1)E

∥∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

∥∥∥∥∥
2
+

2α2
t+1σ

2

B1

+
4C2

gL
2
f

m
E
[
‖ut − ut−1‖2

]
+ 4C2

fL
2
gE
[
‖wt+1 −wt‖2

]
≤(1− B1βt+1

m
)E

 1

m
‖ut − g (wt)‖2 +

∥∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

∥∥∥∥∥
2


+
12mC

B1
‖wt+1 −wt‖2 +

2B1β
2
t+1σ

2

B2m
+

2α2
t+1σ

2

B1
+

4C2
gL

2
f

m
E
[
‖ut − ut−1‖2

]
≤(1− B1βt+1

2m
)E

 1

m
‖ut − g (wt)‖2 +

∥∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

∥∥∥∥∥
2


+
48mC

B1
‖wt+1 −wt‖2 +

10B1β
2
t+1C

B2m
+

2α2
t+1C

B1

22

The rest proof of Theorem 2 Set ηt ≤ B1

mc0
. Denote Γt = F (wt) + B1

c0ηtm
∆t, where ∆t =

1
m ‖ut − g(wt)‖2 +

∥∥zt − 1
m

∑m
i=1∇gi(wt)∇fi(uit−1)

∥∥2
. We have:

E [Γt+1 − Γt]

=E
[
F (wt+1)− F (wt) +

B1

c0ηtm
∆t+1 −

B1

c0ηt−1m
∆t

]
≤E
[
− ηt

2
‖∇F (wt)‖2 +

ηt
2
‖zt −∇F (wt)‖2 −

ηt
4
‖zt‖2

+

(
B1

c0ηtm
− B2

1βt+1

2m2c0ηt
− B1

c0ηt−1m

)
∆t +

48C

c0ηt
‖wt+1 −wt‖2 +

10B2
1β

2
t+1C

B2m2c0ηt
+

2α2
t+1C

mc0ηt

]
≤E
[
− ηt

2
‖∇F (wt)‖2 −

ηt
4
‖zt‖2 +

66C

c0ηt
‖wt+1 −wt‖2 +

14B2
1β

2
t+1C

B2m2c0ηt
+

2α2
t+1C

mc0ηt

+

(
2Cηt +

B1

c0ηtm
− B2

1βt+1

2m2c0ηt
− B1

c0ηt−1m

)
∆t

]
By setting 264C = c0, η2

t =
32B2

1βt+1

m2c20
, αt+1 = B1βt+1

m and B2 ≤ m, we have:

E [Γt+1 − Γt] ≤E
[
−ηt

2
‖∇F (wt)‖2 +

14B2
1β

2
t+1C

B2m2c0ηt
+

2α2
t+1C

mc0ηt

]
≤E

[
−ηt

2
‖∇F (wt)‖2 +

m2η3
t c

4
0

512B2B2
1

]
This means that, by setting ηt = (B1

√
B2

m)
2
3 (a+ t)−

1
3

ηT
2
E

[
T∑
t=1

‖∇F (wt)‖2
]
≤E

[
Γ1 − ΓT+1 +

m2c40
512B2B2

1

T∑
t=1

η3
t

]

≤E
[

Γ1 +
c40

512

T∑
t=1

(a+ t)−1

]

≤∆F +
1

8η0
+

c40
512

ln (1 + T)

Denote M = ∆F + 1
8η0

+
c40
512 ln (1 + T). Using Cauchy-Schwarz inequality, we have:

E


√√√√ T∑

t=1

‖∇F (wt)‖2
2

≤ E [1/ηT]E

[
ηT

T∑
t=1

‖∇F (wt)‖2
]
≤ E

[
M

ηT

]

≤ E

[
M

(
m

B1

√
B2

)2/3

(a+ T)
1/3

]
,

which indicate that

E


√√√√ T∑

t=1

‖∇F (wt)‖2
 ≤ √M (

m

B1

√
B2

)1/3

(a+ T)
1/6

.

Finally, using Cauchy-Schwarz we have
∑T
t=1 ‖∇F (wt)‖ /T ≤

√∑T
t=1 ‖∇F (wt)‖2/

√
T so that:

E

[
T∑
t=1

‖∇F (wt)‖
T

]
≤
√
M (a+ T)

1/6

√
T

(
m

B1

√
B2

)1/3

≤ O
(
a1/6
√
M√

T
+

(
m

B1

√
B2T

)1/3
)

= O
((

m

TB1

√
B2

)1/3
)
,

where the last inequality is due to (a+ b)1/3 ≤ a1/3 + b1/3. So, we can achieve the stationary point
with T = O

(
m/B1

√
B2ε

3
)
.

23

Algorithm 3 Stage-wise MSVR method
Input: initial points (w0,u0, z0)
for stage s = 1 to S do
ws,us, zs = MSVR (with Ts, αs, βs, ηs and (ws−1,us−1, zs−1))

end for
Return wS

A.6 Proof of Theorem 3

We would show that the complexity can be further improved if the objective function satisfies the
Polyak-Łojasiewicz (PL) condition or convexity. To achieve this, we utilize the previous analysis and
use a stage-wise version method [Yuan et al., 2019b]. In the new algorithm, we decrease αs and βs
after each stage and increase the number of iterations Ts. At the end of each stage, we save the output
and use it to restart the next stage. With these modifications, we can obtain a better convergence
guarantee under the PL condition or convexity. The new method is summarized in Algorithm 3,
named Stage-wise MSVR. Next, we will show the proof for optimal MSVR-v2 with Stage-wise
version, and the proof for MSVR-v1 is nearly the same as the MSVR-v2.

Note that in below the numerical subscripts denote the stage index {1, . . . , S}. Denote ∆s =∥∥zs − 1
m

∑m
i=1∇gi(ws)∇fi(uis−1)

∥∥2
+ 1

m ‖us − g(ws)‖2. Let’s consider the first stage, ∆1 ≤
2C = µε1 and F (w1)− F∗ ≤ ε1, where ε1 = max{ 2C

µ ,∆F }. Starting form the second stage, we
would prove by induction.

Suppose at stage s − 1, we have ∆s−1 ≤ µεs−1 and F (ws−1) − F∗ ≤ εs−1. Then at s stage, by
setting 264C = c0, η2

s =
32B2

1βs

m2c20
, αs = B1βs

m and B2 ≤ m, we have:

E [Γt+1 − Γt] ≤ E
[
−ηs

2
‖∇F (wt)‖2 +

m2η3
sc

4
0

512B2B2
1

]
This means that by setting Ts = max

{
mc20

B1µ
√
B2µεs

,
mc40

B1B2µεs

}
, ηs = 8B1

√
B2µεs

mc20
, we have:

1

T
E

[
T∑
t=1

‖∇F (wt)‖2
]

≤E
[

2(Γ1 − ΓT+1)

ηsT
+

m2c40η
2
s

256B2B2
1

]
≤E

[
2(F (ws−1)− F∗)

ηsT
+

2B1∆s−1

c0η2
sTm

+
m2c40η

2
s

256B2B2
1

]
≤2µsεs

Due to the PL condition, we have:

F (ws)− F∗ ≤
1

2µT
E

[
T∑
t=1

‖∇F (wt)‖2
]
≤ εs

On the other hand, by setting βs = B2µεs
80C and αs = B1βs

m , we have:

∆s ≤
2m

B1βsT
∆s−1 +

96m2C

B2
1βsT

T∑
t=1

‖wt+1 −wt‖2 +
20βsC

B2
+

4mα2
sC

B2
1β

≤2mµεs−1

B1βsT
+

96m2η2
sC

B2
1βsT

T∑
t=1

‖zt‖2 +
20βsC

B2
+

4mα2
sC

B2
1β

≤µεs

24

So, we proved that F (ws)− F∗ ≤ εs. That is to say, F (ws)− F∗ ≤ ε when S = log2

(
2ε1
ε

)
, and

the iteration complexity is computed as:

T1 +
S∑
s=2

Ts
µ≥ε
= O

(
S∑
s=2

m

B1

√
B2µεs

)

≤ O
(

m

B1

√
B2µε

)
When F (w) is convex, we define F̂ (w) = F (w) + µ

2 ‖w‖2. We know that F̂ (w) is µ-strongly

convex, which implies µ-PL condition. We have proved: for any δ > 0, there exist T = O
(
m
µδ

)
such that F̂ (wT)− F̂∗ ≤ δ. It indicates that F (wT)− F∗ ≤ δ + µ

2 ‖w∗‖2 −
µ
2 ‖wT ‖2 ≤ δ + µ

2D.
For any ε > 0, if we choose µ = ε

D and δ = ε
2 , we get F (wT)− F∗ ≤ ε, for some T = O

(
m
ε2

)
.

A.7 Proof of Theorem 4

Lemma 10 If β ≤ 1
2 and βI ≤ m

B1
, we have:

E

[
T∑
t=1

‖ut+1 − ut‖2
]
≤ 4B1β

2

m
E

[
T∑
t=1

‖ut − g(wt)‖2
]

+
11m2C2

g

B1

T∑
t=1

‖wt+1 −wt‖2

Proof Following the analysis of Lemma 6, we have:

E
[
‖ut+1 − ut‖2

]
≤2B1β

2

m

m∑
i=1

(
E
[∥∥ĝi(wt+1; ξit+1)− gi(wt+1)

∥∥2
]

+ E
[∥∥gi(wt+1)− uit

∥∥2
])

+
8m2C2

g

B1
‖wt+1 −wt‖2

So, we have:

E
[
‖ut+1 − ut‖2

]
≤2B1β

2C2
g ‖wt+1 −wτ+1‖2 +

2B1β
2

m
E
[
‖g(wt+1)− ut‖2

]
+

8m2C2
g

B1
‖wt+1 −wt‖2

So, with β2I2 ≤ m2/B2
1 , we have:

E

[
T∑
t=1

‖ut+1 − ut‖2
]
≤2B1β

2

m
E

[
T∑
t=1

‖g(wt+1)− ut‖2
]

+ 2B1β
2C2

g

T∑
t=1

‖wt+1 −wτ+1‖2 +
8m2C2

g

B1

T∑
t=1

‖wt+1 −wt‖2

≤4B1β
2

m
E

[
T∑
t=1

‖g(wt)− ut‖2
]

+ 2B1β
2C2

gI
2
T∑
t=1

‖wt+1 −wt‖2 +
9m2C2

g

B1

T∑
t=1

‖wt+1 −wt‖2

≤4B1β
2

m
E

[
T∑
t=1

‖g(wt)− ut‖2
]

+
11m2C2

g

B1

T∑
t=1

‖wt+1 −wt‖2

We can also replace Lemma 8 with following lemma.
Lemma 11 With αI ≤ 1 , we have:

E

 T∑
t=1

∥∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

∥∥∥∥∥
2
 ≤ 1

α

∥∥∥∥∥z1 −
1

m

m∑
i=1

∇gi(w1)∇fi(ui0)

∥∥∥∥∥
2

+
8C2

gL
2
f

mα
E

[
T∑
t=1

‖ut − ut−1‖2
]

+
8C2

fL
2
g

α
E

[
T∑
t=1

‖wt+1 −wt‖2
]

25

Proof First, since ht is an unbiased estimation of 1
m

∑m
i=1∇gi(wt)∇fi(uit−1), we have:

E

∥∥∥∥∥ht − 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

∥∥∥∥∥
2


=E

∥∥∥∥∥∥ 1

B1

∑
i∈Bt

1

∇fi(uit−1)∇gi(wt; ξ
i
t)−

1

B1

∑
i∈Bt

1

∇fi(uiτ−1)∇gi(wτ ; ξit)

+
1

m

m∑
i=1

∇fi(uiτ−1)∇gi(wτ ; ξit)−
1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

∥∥∥∥∥
2


≤E


∥∥∥∥∥∥ 1

B1

∑
i∈Bt

1

∇fi(uit−1)∇gi(wt; ξ
i
t)−

1

B1

∑
i∈Bt

1

∇fi(uiτ−1)∇gi(wτ ; ξit)

∥∥∥∥∥∥
2


≤E

 1

B1

∑
i∈Bt

1

∥∥∇fi(uit−1)∇gi(wt; ξ
i
t)−∇fi(uiτ−1)∇gi(wτ ; ξit)

∥∥2


=2C2

fL
2
g ‖wt −wτ‖2 +

2C2
gL

2
f

m
‖ut−1 − uτ−1‖2

Next, we have:

E

[
‖zt −

1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)‖2
]

=E

[∥∥∥∥(1− α)

(
zt−1 −

1

m

m∑
i=1

∇gi(wt−1)∇fi(uit−2)

)
+ α

(
ht −

1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

)

+(1− α)

 1

B1

∑
i∈Bt

1

∇gi(wt; ξ
i
t)∇fi(uit−1)− 1

B1

∑
i∈Bt

1

∇gi(wt−1; ξit)∇fi(uit−2)

− 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1) +
1

m

m∑
i=1

∇gi(wt−1)∇fi(uit−2)

)∥∥∥∥2
]

≤ E
[
(1− α)2

∥∥∥∥∥zt−1 −
1

m

m∑
i=1

∇gi(wt−1)∇fi(uit−2)

∥∥∥∥∥
2

+ 4α2C2
fL

2
g ‖wt −wτ‖2

+
4α2C2

gL
2
f

m
‖ut−1 − uτ−1‖2

+ 2(1− α)2 1

B1

∑
i∈Bt

1

∥∥∇gi(wt; ξ
i
t)∇fi(uit−1)−∇gi(wt−1; ξit)∇fi(uit−2)

∥∥2
]

E
[
≤ (1− α)‖zt−1 −

1

m

m∑
i=1

∇gi(wt−1)∇fi(uit−2)‖2 + 4α2C2
fL

2
g ‖wt −wτ‖2

+
4α2C2

gL
2
f

m
‖ut−1 − uτ−1‖2 +

4C2
gL

2
f

m
‖ut−1 − ut−2‖2 + 4C2

fL
2
g‖wt −wt−1‖2

]

The first inequality is due to the fact that the last two terms equal zero in expectation.

26

Summing up, we have:

T∑
t=1

∥∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

∥∥∥∥∥
2

≤ 1

α

∥∥∥∥∥z1 −
1

m

m∑
i=1

∇gi(w1)∇fi(ui0)

∥∥∥∥∥
2

+ 4αC2
fL

2
g

T∑
t=1

‖wt −wτ‖2

+
4αC2

gL
2
f

m

T∑
t=1

‖ut−1 − uτ−1‖2 +
4C2

gL
2
f

mα

T∑
t=1

‖ut − ut−1‖2 +
4C2

fL
2
g

α

T∑
t=1

‖wt+1 −wt‖2

≤ 1

α

∥∥∥∥∥z1 −
1

m

m∑
i=1

∇gi(w1)∇fi(ui0)

∥∥∥∥∥
2

+ 4αC2
fL

2
gI

2
T∑
t=1

‖wt+1 −wt‖2

+
4αC2

gL
2
fI

2

m

T∑
t=1

‖ut − ut−1‖2 +
4C2

gL
2
f

mα

T∑
t=1

‖ut − ut−1‖2 +
4C2

fL
2
g

α

T∑
t=1

‖wt+1 −wt‖2

≤ 1

α

∥∥∥∥∥z1 −
1

m

m∑
i=1

∇gi(w1)∇fi(ui0)

∥∥∥∥∥
2

+
8C2

gL
2
f

mα

T∑
t=1

‖ut − ut−1‖2 +
8C2

fL
2
g

α

T∑
t=1

‖wt+1 −wt‖2

The last inequality is due to αI ≤ 1.

The rest proof of Theorem 4 According to Lemma 7, we have:

T∑
t=1

‖zt −∇F (wt)‖2 ≤ 4
T∑
t=1

∥∥∥∥zt − 1

m

m∑
i=1

∇gi(wt)∇fi(uit−1)

∥∥∥∥2

+
4C2

gL
2
f

m

T∑
t=1

‖ut − ut−1‖2 +
2C2

gL
2
f

m

T∑
t=1

‖ut − g(wt)‖2

We use Lemma 11 to replace
∑T
t=1

∥∥zt − 1
m

∑m
i=1∇gi(wt)∇fi(uit−1)

∥∥2
:

E

[
T∑
t=1

‖zt −∇F (wt)‖2
]

≤ 4

α

∥∥∥∥∥z1 −
1

m

m∑
i=1

∇gi(w1)∇fi(ui0)

∥∥∥∥∥
2

+
32C2

gL
2
f

mα

T∑
t=1

‖ut − ut−1‖2

+
32C2

fL
2
g

α

T∑
t=1

‖wt+1 −wt‖2 +
4C2

gL
2
f

m

T∑
t=1

‖ut − ut−1‖2 +
2C2

gL
2
f

m

T∑
t=1

‖ut − g(wt)‖2

≤ 4

α

∥∥∥∥∥z1 −
1

m

m∑
i=1

∇gi(w1)∇fi(ui0)

∥∥∥∥∥
2

+
36C2

gL
2
f

mα
E

[
T∑
t=1

‖ut − ut−1‖2
]

+
32C2

fL
2
g

α
E

[
T∑
t=1

‖wt+1 −wt‖2
]

+
2C2

gL
2
f

m
E

[
T∑
t=1

‖ut − g(wt)‖2
]

27

Set βB1 ≤ mα. We use Lemma 10 to replace E
[∑T

t=1 ‖ut − ut−1‖2
]

(set u0 = u1):

E

[
T∑
t=1

‖zt −∇F (wt)‖2
]

≤ 4

α

∥∥∥∥∥z1 −
1

m

m∑
i=1

∇gi(w1)∇fi(ui0)

∥∥∥∥∥
2

+
144(C2

gL
2
f)B1β

2

m2α
E

[
T∑
t=1

‖ut − g(wt)‖2
]

+
396m(C4

gL
2
f)

αB1

T∑
t=1

‖wt+1 −wt‖2 +
32C2

fL
2
g

α
E

[
T∑
t=1

‖wt+1 −wt‖2
]

+
2C2

gL
2
f

m
E

[
T∑
t=1

‖ut − g(wt)‖2
]

≤ 4

α

∥∥∥∥∥z1 −
1

m

m∑
i=1

∇gi(w1)∇fi(ui0)

∥∥∥∥∥
2

+
428mC

αB1
E

[
T∑
t=1

‖wt+1 −wt‖2
]

+
146C2

gL
2
f

m
E

[
T∑
t=1

‖ut − g(wt)‖2
]

We use Lemma 3 to replace E
[∑T

t=1 ‖ut − g(wt)‖2
]
:

E

[
T∑
t=1

‖zt −∇F (wt)‖2
]

≤ 4

α

∥∥∥∥∥z1 −
1

m

m∑
i=1

∇gi(w1)∇fi(ui0)

∥∥∥∥∥
2

+
428mC

αB1

T∑
t=1

‖wt+1 −wt‖2

+
146C2

gL
2
fE
[
‖u1 − g (w1)‖2

]
B1β

+
1460m2C4

gL
2
f

B2
1β

T∑
t=1

‖wt+1 −wt‖2

≤ 4

α

∥∥∥∥∥z1 −
1

m

m∑
i=1

∇gi(w1)∇fi(ui0)

∥∥∥∥∥
2

+
146C2

gL
2
fE
[
‖u1 − g (w1)‖2

]
B1β

+
1888m2C

B2
1β

T∑
t=1

‖wt+1 −wt‖2

≤ ∆0

αT0
+

∆0

βT0
+

1888m2C

B2
1β

T∑
t=1

‖wt+1 −wt‖2

Set 1888m2Cη2

B2
1β

≤ 1
2 . We have:

E

[
T∑
t=1

‖zt −∇F (wt)‖2
]
≤ ∆0

αT0
+

∆0

βT0
+

1

2

T∑
t=1

‖zt‖2

According to Lemma 4, we have:

E

[
T∑
t=1

‖∇F (wt)‖2
]
≤2F (w1)

η
+

T∑
t=1

E
[
‖zt −∇F (wt)‖2

]
− 1

2

T∑
t=1

‖zt‖2

≤2F (w1)

η
+

∆0

αT0
+

∆0

βT0

Finally,

1

T
E

[
T∑
t=1

‖∇F (wt)‖2
]
≤ 2F (w1)

ηT
+

∆0

αT0T
+

∆0

βT0T

28

Note that the sample complexity is
(
B1B2T + mnT

I

)
. To ensure the first term and the second term at

the same order, we set I =
(

mn
B1B2

)
. Also, since we assume that αI ≤ 1 and βI ≤ m

B1
, we directly

set α = B1B2

mn and β = B2

n . This setting also satisfies the requirement B1β ≤ mα. We also require
1888m2Cη2

B2
1β

≤ 1
2 . So, we set η = O(B1

√
B2

m
√
n

). With T = O
(

m
√
n

B1

√
B2ε2

)
and T0 = O

(√
n√
B2

)
, We

have: 1
T E
[∑T

t=1 ‖∇F (wt)‖2
]
≤ ε2.

A.8 Proof of Theorem 5

The analysis is very similar form Theorem 3. We still use Algorithm 3 but employ MSVR-v3 instead.
Also, we do not need to decreaseα, β, η and increase T during each stage. Let’s consider the first stage,

4
∥∥z1 − 1

m

∑m
i=1∇gi(w1)∇fi(ui0)

∥∥2 ≤ 4C ≤ µε1,
146C2

gL
2
f

m ‖u1 − g(w1)‖2 ≤ 146C ≤ µε1 and
F (w1) − F∗ ≤ ∆F ≤ ε1, where we set ε1 = max{∆F ,

146C
µ }. Note that in below the numerical

subscripts denote the stage index {1, . . . , S}. Set α = B1B2

mn , β = B2

n , η = O(B1

√
B2

m
√
n

) and

T = O
(

max
{

mn
B1B2

, m
√
n

µB1

√
B2

})
.

Starting form the second stage, we would prove by induction. Suppose at the stage s − 1,
we have F (ws−1) − F∗ ≤ εs−1, 4

∥∥zs−1 − 1
m

∑m
i=1∇gi(w1)∇fi(uis−2)

∥∥2 ≤ µεs−1, and
146C2

gL
2
f

m ‖us−1 − g(ws−1)‖2 ≤ µεs−1. Then at s stage, we have:

F (ws)− F∗ ≤
1

2µ
‖∇F (ws)‖2

≤ εs−1

µηT
+
εs−1

αT
+
mεs−1

βB1T

≤ εs
On the other hand, following the very similar analysis in Theorem 3, we have:

4

∥∥∥∥∥zs − 1

m

m∑
i=1

∇gi(w1)∇fi(uis−1)

∥∥∥∥∥
2

≤ µεs

146C2
gL

2
f

m
‖us − g(ws)‖2 ≤ µεs

We proved that F (ws)−F∗ ≤ εs. That is to say, F (wS)−F∗ ≤ εwhen S = log2

(
2ε1
ε

)
= log2

(
L
ε

)
,

and the iteration complexity until this stage is computed as:
S∑
s=1

Ts ≤ O
(

max

{
mn

B1B2
,

m
√
n

µB1

√
B2

}
· log

1

ε

)
When F (w) is convex, we define F̂ (w) = F (w)+µ

2 ‖w‖2. We know that F̂ (w) is µ-strongly convex,

which implies µ-PL condition. We have proved: for any δ > 0, there exist T = O
(

m
√
n

µB1

√
B2
· log 1

ε

)
such that F̂ (wT)− F̂∗ ≤ δ. It indicates that F (wT)− F∗ ≤ δ + µ

2 ‖w∗‖2 −
µ
2 ‖wT ‖2 ≤ δ + µ

2D.
For any ε > 0, if we choose µ = ε

D and δ = ε
2 , we get F (wT) − F∗ ≤ ε, for some T =

O
(

m
√
n

εB1

√
B2
· log 1

ε

)
.

B MSVR with Adaptive Learning Rates

Now we show that the proposed MSVR method can be extended to adaptive learning rates and
remains the same sample complexity. To use adaptive learning rates, we can revise the weight update
step wt+1 = wt − ηtzt in origin MSVR method as follows:

wt+1 = wt −
ηt√

ht + δ
ΠLf

[zt],

h′t = (1− β′t)h′t−1 + β′tz
2
t ,

(17)

29

where δ > 0 is a parameter to avoid dividing zero, ΠLf
denotes the projection onto the ball with

radius Lf and ht = h′t (Adam-style) or ht = max (ht−1,h
′
t) (AMSGrad-style). Inspired by the

recent study of Adam-style methods [Guo et al., 2021], we can give the sample complexity of the
Adaptive MSVR using similar analysis. We show the proof of adaptive MSVR-v2 for example:

Theorem 6 If we choose parameters αt+1 = O(
mη2t
B1

), βt+1 = O
(
m2η2t
B2

1

)
, a = O(mB2

B1
) and

ηt = O
(

(B1

√
B2

m)2/3(a+ t)−1/3
)

, Adaptive MSVR-v2 with learning rate defined in (17), can obtain

a stationary point in O
(
mε−3

B1

√
B2

)
iterations.

Remark: The sample complexity is still at the order of O
(
ε−3
)
. For MSVR-v1 and MSVR-v3, or

under the convexity or PL condition, adaptive method can still get the same complexity as the origin
rate using a very similar analysis.
Proof Note that since the norm of estimated gradient ‖zt‖ is bounded, the value of the learning rate
scaling factor c = 1/

(√
ht + δ

)
is also upper bounded and lower bounded, which can be presented

as cl ≤ ‖c‖∞ ≤ cu. (Note that projection onto a ball of radius CF does not change the analysis,
since ∇F is also in this ball.) With this property, We have:
Lemma 12 (Lemma 3 in [Guo et al., 2021]) For wt+1 = wt − η̃tzt, with ηtcl ≤ η̃t ≤ ηtcu and
ηtLF ≤ cl/2c2u, we have following guarantee:

F (wt+1) ≤ F (wt) +
ηtcu

2
‖∇F (wt)− zt‖2 −

ηtcl
2
‖∇F (wt)‖2 −

ηtcl
4
‖zt‖2 .

Then very similar to the proof to Theorem 2. Denote Γt = F (wt) + B1

c0ηt−1m
∆t, where ∆t =

+ 1
m ‖ut − g(wt)‖2 +

∥∥zt − 1
m

∑m
i=1∇gi(wt)∇fi(uit−1)

∥∥2
. We have:

Γt+1 − Γt

=F (wt+1)− F (wt) +
B1

c0ηtm
∆t+1 −

B1

c0ηt−1m
∆t

≤− ηtcl
2
‖∇F (wt)‖2 +

ηtcu
2
‖zt −∇F (wt)‖2 −

ηtcl
4
‖zt‖2

+

(
B1

c0ηtm
− B2

1βt+1

2m2c0ηt
− B1

c0ηt−1m

)
∆t +

48C

c0ηt
‖wt+1 −wt‖2 +

10B2
1β

2
t+1C

B2m2c0ηt
+

2α2
t+1C

mc0ηt

≤− ηtcl
2
‖∇F (wt)‖2 −

ηtcl
4
‖zt‖2 +

64Ccu
c0ηt

‖wt+1 −wt‖2 +
14B2

1β
2
t+1Ccu

B2m2c0ηt
+

2α2
t+1Ccu

mc0ηt

+

(
2Ccuηt +

B1

c0ηtm
− B2

1βt+1

2m2c0ηt
− B1

c0ηt−1m

)
∆t

By setting 256Ccu/cl = c0, η2
t =

32B2
1βt+1

m2c20cl
, αt+1 = B1βt+1

m and B2 ≤ m, we have:

Γt+1 − Γt ≤ −
ηtcl
2
‖∇F (wt)‖2 +

14B2
1β

2
t+1Ccu

B2m2c0ηt
+

2α2
t+1Ccu

mc0ηt

≤ −ηtcl
2
‖∇F (wt)‖2 +

m2η3
t c

4
0c

3
l

512B2B2
1

This means that, by setting ηt = (B1

√
B2

m)
2
3 (a+ t)−

1
3

ηT
2
E

[
T∑
t=1

‖∇F (wt)‖2
]
≤Γ1 − ΓT+1

cl
+

m2c40c
2
l

512B2B2
1

E

[
T∑
t=1

η3
t

]

≤Γ1

cl
+
c40c

2
l

165
E

[
T∑
t=1

(a+ t)−1

]

≤∆F

cl
+

1

8η0cl
+
c40c

2
l

512
ln (1 + T)

30

0.00 0.25 0.50 0.75 1.00
of samples ×106

0.1

0.3

0.5

0.7

0.9

Tr
ai

ni
ng

lo
ss

Variant-v1
MSVR-v1

0.00 0.25 0.50 0.75 1.00
of samples ×106

0.1

0.3

0.5

0.7

0.9

Tr
ai

ni
ng

lo
ss

Variant-v2
MSVR-v2

0.00 0.25 0.50 0.75 1.00
of samples ×106

0.1

0.3

0.5

0.7

0.9

Tr
ai

ni
ng

lo
ss

Variant-v3
MSVR-v3

Figure 2: Results for Multi-task AUC Optimization.

0.0 0.5 1.0 1.5 2.0 2.5
of samples ×105

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

lo
ss

SOX
MSVR-v1
MSVR-v2
MSVR-v3

(a) ResNet18

0.0 0.5 1.0 1.5 2.0 2.5
of samples ×105

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

lo
ss

SOX
MSVR-v1
MSVR-v2
MSVR-v3

(b) ResNet34

0.0 0.5 1.0 1.5 2.0 2.5
of samples ×105

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

lo
ss

SOX
MSVR-v1
MSVR-v2
MSVR-v3

(c) DenseNet121

Figure 3: Results with different networks.

Denote M = ∆F

cl
+ 1

8η0cl
+

c40c
2
l

165 ln (1 + T). Using Cauchy-Schwarz inequality, we have:

E


√√√√ T∑

t=1

‖∇F (wt)‖2
2

≤ E [1/ηT]E

[
ηT

T∑
t=1

‖∇F (wt)‖2
]

≤ E

[
M

(
m

B1

√
B2

)2/3

(a+ T)
1/3

]
,

Then following the same analysis, we will finally have :

E

[
T∑
t=1

‖∇F (wt)‖
T

]
≤
√
M (a+ T)

1/6

√
T

(
m

B1

√
B2

)1/3

≤ O
(
a1/6
√
M√

T
+

(
m

B1

√
B2T

)1/3
)

= O
((

m

TB1

√
B2

)1/3
)
,

where the last inequality is due to (a+ b)1/3 ≤ a1/3 + b1/3. So, we can achieve the stationary point
with T = O

(
m/B1

√
B2ε

3
)
.

C More Experimental Results

In this section, we provide more experimental results and ablation studies. We will consider more
applications in the long version of the paper.

C.1 Ablation Study on Algorithm Design

In this subsection, we conduct the ablation study for our algorithm design. Specially, we verify
the effects of our customized error correction term. To compare with traditional variance reduced
estimator, we can design an estimator using STORM [Cutkosky and Orabona, 2019] as follows:

uit =

{
(1− β)uit−1 + β m

B1
gi
(
wt; ξ

i
t

)
+ (1− β) mB1

(
gi
(
wt; ξ

i
t

)
− gi

(
wt−1; ξit

))
i ∈ Bt1

(1− β)uit−1 i /∈ Bt1
(18)

31

0.0 0.5 1.0 1.5 2.0 2.5
of iterations ×102

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

lo
ss

B1 = 2
B1 = 5
B1 = 9

(a) MSVR-v1

0.0 0.5 1.0 1.5 2.0 2.5
of iterations ×102

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

lo
ss

B1 = 2
B1 = 5
B1 = 9

(b) MSVR-v2

0.0 0.5 1.0 1.5 2.0 2.5
of iterations ×102

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

lo
ss

B1 = 2
B1 = 5
B1 = 9

(c) MSVR-v3

Figure 4: Results with varying B1.

0.0 0.5 1.0 1.5 2.0 2.5
of iterations ×102

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

lo
ss

B2 = 32
B2 = 64
B2 = 128

(a) MSVR-v1

0.0 0.5 1.0 1.5 2.0 2.5
of iterations ×102

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

lo
ss

B2 = 32
B2 = 64
B2 = 128

(b) MSVR-v2

0.0 0.5 1.0 1.5 2.0 2.5
of iterations ×102

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

lo
ss

B2 = 32
B2 = 64
B2 = 128

(c) MSVR-v3

Figure 5: Results with varying B2.

To show the effects of our customized error correction term, we replace the MSVR estimator in our
MSVR-v1 and MSVR-v2 algorithm, and use equation (18) instead. We name these two methods
Variant-v1 and Variant-v2. For the finite-sum case, we modify the estimator similarly:

uit =

{
(1− β)uit−1 + β m

B1
ĝi
(
wt; ξ

i
t

)
+ (1− β) mB1

(
gi
(
wt; ξ

i
t

)
− gi

(
wt−1; ξit

))
i ∈ Bt1

(1− β)uit−1 i /∈ Bt1
(19)

where ĝi(wt; ξ
i
t) = gi(wt; ξ

i
t) − gi(wτ ; ξit) + gi(wτ). So, for MSVR-v3, we replace the MSVR

estimator with equation (19) and keep other parts unchanged. This new method is named as Variant-
v3.

Results. We compare different methods on the CIFAR100 dataset and plot the results in Figure 2. As
can be seen, all methods perform worse than the origin algorithms, indicating the effectiveness of our
customized error correction term in the proposed algorithm.

C.2 Results with Different Networks

In this subsection, we conduct experiments on SVHN data set with different networks, ResNet18,
ResNet34 and DenseNet121, respectively. As can be seen in Figure 3, with all three networks,
MSVR-V1 performs closely to SOX, MSVR-v2 converges faster than SOX and MSVR-v1, and the
loss of MSVR-v3 decreases most rapidly, indicating the effectiveness of our methods with different
networks.

C.3 Results with Different Batch size

In this subsection, we explore the effect of different batch sizes. First, we fix the inner batch size
B2 = 128 and vary B1 in the range {2, 5, 9}. Then, we fix the outer batch size B1 = 5 and vary B2

in the range {32, 64, 128}. We conduct the experiments on the Fashion-MNIST data set and show the
results in Figure 4 and 5. As can be seen, in terms of iteration complexities, the larger batch size (B1

or B2), the faster the convergence, which is consistent with our theory.

32

	1 Introduction
	2 Related work
	3 Proposed Algorithms and Convergence
	3.1 Notations and Assumptions
	3.2 Multi-block-Single-probe Variance Reduced (MSVR) Estimator
	3.3 Leveraging the MSVR Estimator for solving the FCCO Problem

	4 An Improved Rate for the Finite-sum Case
	5 Experiments
	6 Conclusion and Future Work
	A Analysis
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2
	A.3 Proof of Lemma 3
	A.4 Proof of Theorem 1
	A.5 Proof of Theorem 2
	A.6 Proof of Theorem 3
	A.7 Proof of Theorem 4
	A.8 Proof of Theorem 5

	B MSVR with Adaptive Learning Rates
	C More Experimental Results
	C.1 Ablation Study on Algorithm Design
	C.2 Results with Different Networks
	C.3 Results with Different Batch size

