What do tokens know about their characters and how do they know it?

Ayush Kaushal
ayushk4@utexas.edu
The University of Texas at Austin

Abstract

Pre-trained language models (PLMs) that use
subword tokenization schemes can succeed at a
variety of language tasks that require character-
level information, despite lacking explicit ac-
cess to the character composition of tokens.
Here, studying a range of models (e.g., GPT-
J, BERT, RoBERTa, GloVe), we probe what
word pieces encode about character-level in-
formation by training classifiers to predict the
presence or absence of a particular alphabetical
character in a token, based on its embedding
(e.g., probing whether the model embedding
for "cat" encodes that it contains the charac-
ter "a"). We find that these models robustly
encode character-level information and, in gen-
eral, larger models perform better at the task.
We show that these results generalize to char-
acters from non-Latin alphabets (Arabic, De-
vanagari, and Cyrillic). Then, through a series
of experiments and analyses, we investigate
the mechanisms through which PLMs acquire
English-language character information during
training and argue that this knowledge is ac-
quired through multiple phenomena, including
a systematic relationship between particular
characters and particular parts of speech, as
well as natural variability in the tokenization of
related strings.

1 Introduction and Motivation

The dominant class of models in NLP (pre-trained
transformer models; Brown et al., 2020; Devlin
et al., 2019; Bommasani et al., 2021) use tokeniza-
tion schemes, like BPE or WordPiece tokeniza-
tion (Sennrich et al., 2016; Schuster and Nakajima,
2012; Kudo and Richardson, 2018), that break text
into word pieces. These models face an apparent
limitation in that they do not have access to infor-
mation below the level of the word piece, such as
information about characters. But character-level
information has been claimed to be useful for a
variety of tasks, including adapting text to novel
domains like biomedicine, texts with misspellings,

Kyle Mahowald
mahowald@utexas.edu
The University of Texas at Austin

.'I Experiment 2

-Concatenate

i

\{ .
Soft :

Embedding
Lookup

M

Experiment 1
Features

Experiment 2
Features

employee

: T VBNNDT
*.Soft-Syntax Labels’

Input Token N

Figure 1: Overview of our probing setup. In Experiment
1, the input is a model embedding and we train MLPs to
classify whether a particular character (e.g., "a") occurs
in a particular token (e.g, "employee"). In Experiment
2, we use syntactic features as input, rather than model
embeddings, to train our probe.

and wordplay-based tasks that require attention to
character-level manipulations (Riabi et al., 2021;
El Boukkouri, 2020; Clark et al., 2021).

There are drawbacks, however, to using
character-level models: character-based sequences
are long and therefore can slow down training
(Mielke et al., 2021). And including character-
level information does not necessarily improve per-
formance on tasks where one might expect it to
(Libovicky et al., 2021; Rosales Nufiez et al., 2021;
Itzhak and Levy, 2021). Therefore, the vast ma-
jority of top-performing models in languages with
alphabetic scripts use models with various kinds of

2487

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2487 - 2507
July 10-15, 2022 ©2022 Association for Computational Linguistics

subword tokenization schemes (e.g., Devlin et al.,
2019; Brown et al., 2020), but rarely with character-
level schemes.

One possible explanation for this state of affairs
is that models trained on word pieces implicitly
learn something about characters, making the ex-
plicit inclusion of character-level information un-
necessary. Indeed, recent work has shown that
even models based on subword tokens might be
able to use and manipulate character-level informa-
tion. Rozner et al. (2021) and Efrat et al. (2021)
both study cryptic crosswords and find that PLMs
(specifically, T5) can take advantage of character-
level information in order to solve wordplay tasks
like unscrambling scrambled words. Itzhak and
Levy (2021) show that ROBERTa can access sub-
word information by testing it on a spelling task
that requires it to map from words to characters
(e.g., from cat to the characters ¢ + a + t).

The fact that models can do tasks like this is curi-
ous: word pieces have no explicit access to charac-
ter information during training, and the mechanism
by which they acquire such information is not ob-
vious. The goal of this paper is to understand the
nature of this information, and how it is learned.

Thus, we make several contributions. First, we
provide a thorough characterization of what charac-
ter information is accessible to subword-tokenized
PLMs by designing a binary probing task (§3) to
probe subword tokens for the presence or absence
of a particular character: e.g., does the sequence
star contain the letter #? This task lets us not just
assess whether this information is available, but
lets us characterize, in a fine-grained way, the na-
ture of character-level knowledge in subword to-
kens. Performance on the task far exceeds a ran-
dom control as well as a baseline using fixed GloVe
word embeddings (an F1 score of 93.7 for the best-
performing model, GPT-J), suggesting that sub-
words learn meaningful information about their
characters. This result holds across several alpha-
bets (Latin, Devanagari, Cyrillic, Arabic).

To explore how this information is acquired, we
introduce several possible explanations and con-
duct detailed analyses of the probing task on the
monolingual English models, with a particular fo-
cus on the best-performing model GPT-J (§3.3).
Specifically, we consider how character knowledge
varies as a function of the character being probed
for (it’s easier to classify rare letters than common
ones), the position in the token of the character in

question (performance is somewhat better early in
tokens), and the frequency of the token (frequent
tokens aren’t necessarily easier to probe). We then
turn to the possibility that systematic correspon-
dences between characters and syntactic features
(e.g., adverbs tend to end in "y"), play a role in how
models acquire character-level information. To that
end, we devise syntactic baselines, whereby we use
features like part of speech as input to the classifer
for detecting the presence or absence of tokens (§4).
The syntactic probe performs much better than con-
trols, which suggests syntactic features contribute
to the tokenizer’s performance. However, this cor-
relation does not suffice to explain the totality of
character information learned by PLMs.

Finally, we consider another possible mecha-
nism, based on the variability of tokenization, by
which character-level information might be learned
(85). We conduct an experiment using simple fixed
embeddings, as proof of concept that increasing
variability in tokenization (Cao and Rimell, 2021)
affects the character information learned. Overall,
given the importance of tokenization schemes for
downstream performance (Bostrom et al., 2021;
Mielke et al., 2021), we believe richer knowledge
as to how tokens acquire character-level informa-
tion could inform the development of tokenization
schemes that improve model performance.

2 Prior work

All language models must choose what to use as
the basic linguistic unit, and, as a result, there is a
long history of work in NLP, evaluating the trade-
offs between models that tokenize words based on
characters, words, or something in between, like
bytes or word pieces (see Mielke et al., 2021; Pin-
ter, 2021, for recent surveys).

While words are a seemingly natural kind and
are often used as basic units for modeling language,
there is considerable debate in the linguistics litera-
ture as to how to even define a word, due to differ-
ences across languages (Haspelmath, 2017). More-
over, word-level models have a major weakness
in that they do not naturally handle out of vocab-
ulary items (see Jurafsky, 2003, for an overview)
and can have very different behaviors in languages
with different morphological systems (Mielke et al.,
2019; Cotterell et al., 2018). Character-level mod-
els have their own weaknesses: they are typically
slower to train at the scale required for massive lan-
guage modeling. Many recent efforts have centered

2488

around trying to use meaningful sub-word units in
language modeling, such as BPE (Gage, 1994; Sen-
nrich et al., 2016), WordPiece tokenization (Schus-
ter and Nakajima, 2012), and UnigramLLM (Kudo,
2018).

While subword tokenization schemes often end
up with reasonable linguistic units, they still lack
access to character-level information. So there have
been a number of efforts to imbue word or sub-
word tokenization schemes with character-level in-
formation (Mielke and Eisner, 2019; Kim et al.,
2016; Dos Santos and Zadrozny, 2014; Bojanowski
et al., 2017; Li et al., 2018; Ma and Hovy, 2016;
Aguilar et al., 2021; El Boukkouri, 2020; Clark
etal., 2021).

Here, rather than asking how to augment sub-
word tokenization schemes with additional infor-
mation, we ask what they already learn about char-
acters naturally. To do so, we use probing, which is
widely used to assess what information is contained
in PLM embeddings (Belinkov, 2022; Belinkov
and Glass, 2019; Hewitt and Manning, 2019; Hup-
kes et al., 2018). Because probing has limitations
(Elazar et al., 2021; Pimentel et al., 2020; Voita
et al., 2021), we include a number of control tasks
(Hewitt and Liang, 2019) and baselines in order
to ask what can be recovered from embeddings,
relative to a control of equal expressive power.

3 Experiment 1: Probing for character
information

The main goal of our first experiment is to quan-
tify the extent to which tokens in PLMs capture
character-level information and characterize that
knowledge across a variety of dimensions. We train
a binary classifier probe that takes as input a token’s
frozen embeddings from PLMs to predict whether
a particular character of the alphabet is contained
in that token. That is, if successful, the probe will
predict that cool contains an "0" but "cat" does not.
We also consider a task in which the probe must
say whether one token (e.g., "coo") is a substring
of another token (e.g., "cool"). We examine the
probe’s success as a function of the character being
probed for, length of the token being probed, posi-
tion of the character in the token, and frequency of
the token.

3.1 Method

‘We consider the static non-contextualized embed-
dings of the following English PLMs: GPT-J

(Wang and Komatsuzaki, 2021), GPT-2 (Radford
et al., 2019), RoBERTa (Liu et al., 2019), BERT
(cased and uncased; Devlin et al., 2019), as well
as GloVe embeddings (Pennington et al., 2014)
and Language-only embeddings of the multimodal
LXMERT (Tan and Bansal, 2019). To test the
generalizability of our results to other languages,
we also considered embeddings from Multilingual
BART (Liu et al., 2020) and used them to test to-
kens consisting of only English characters, as well
as characters from three other alphabetic scripts:
Devanagari, Arabic, and Cyrillic. See Appendix B
for model details.

Each language model has its own vocabulary,
consisting of tokens. For our English experiments,
We consider only the tokens consisting entirely
of characters in the standard English alphabet (a-
z), along with the special characters that accom-
pany these tokens, such as preceding whitespace
(denoted by G in the RoBERTa and GPT-family)
or symbols denoting continuations of preceding
word (‘## in BERT family). Because Multilin-
gual BART consists of characters from different
scripts and because its tokens are not explicitly sep-
arated by languages, for our Multilingual BART
experiments we consider all tokens that consist ex-
clusively of characters from the target alphabet.’
We define the target alphabet for each script as
the alphabetic characters in each script that occur
across at least 250 different tokens.

Our main probing task trains classifiers to de-
tect the presence or absence of each of the target
characters « in each token w; from the filtered-
vocabulary V. Thus, a separate dataset for each
character « is constructed over V as D] =
{(w1,41), (wa2,y2), ... (wq,yq)} where the binary
label y; denotes whether a occurs at least once in
w; € V. From these data-points in D/, we create
a balanced dataset D, with an equal number of
positive and negative labels by undersampling the
(w;, y;) points with y; as the negative label (i.e.,
when probing for the presence of the character "z",
half the tokens will contain "z" even though most
tokens in general do not). We then split D, into
training and test splits in a roughly 80-20 ratio,
while (for the English experiments) ensuring that

'Note that, because Multilingual BART does not explicitly
separate tokens based on language, our experiment compares
across scripts, as opposed to across languages. For instance,
the tokens considered for Arabic can include tokens derived
from not just the Arabic language, but also other languages
that use the Arabic script like Farsi or Malay.

2489

tokens with the same lemma appear in the same
split. This is the most challenging split, as it pre-
vents the probe from leveraging wordform simi-
larity across words with the same lemma in both
training and test (Itzhak and Levy, 2021). Because
of technical issues defining lemmas in Multilingual
BART, we do not enforce this constraint for the
Multilingual BART experiments.

We train our probe on the static non-trainable
embeddings E of these PLMs. For a data-point
(w;, y;), the probe receives as input a token w; with
one-hot encoding x;. The probe predicts logits
§; by an MLP: §; = o(MLP,(E"xz;)). In the
control task, we consider randomly-initialized non-
trainable embeddings instead of the trained embed-
dings from the PLMs.

Substring Sub-experiment As an additional sub-
experiment for assessing the generalizability of
the task, for the best-performing English-language
model (GPT-J), we consider a related substring
classification task. Specifically, we probe GPT-J’s
embedding to detect whether a token u is a sub-
string of the token v. That is, can it detect that
the token "ome" is a substring of "some"? For this
condition, we set up the experiment as before but,
rather than attempt to detect the presence or ab-
sence of a character, we seek to classify whether a
particular token wu; is a substring of another token
v;. To create positive examples, we consider all
substrings of v; that are in the overall vocabulary
V. For each positive example, we sample a token
from V of equal character length as u; which is
not a substring of v; in order to create negative ex-
amples. This creates a balanced set, from which
we sample an 80-20 train-test split, ensuring that
the superstring token v; always occurs in the same
split. We train the probe as before, with the input
as the concatenated embeddings of the two tokens.

3.2 Results

English-Language Character Probing Results
Table 1 shows the results averaged across 5 train-
test splits and different seeds, reporting on the
Macro-F1 metric averaged across all 26 charac-
ters. We also observe very low variance for the
best-performing models, as shown in the Appendix
(Table 7).

For our main character probing experiment,
all models perform substantially better than their
matched controls (which hover around the chance
F! level of 50), suggesting that word piece tokens

<}
|

| control ¥

||||||||||||||||||||||||||

ETAOINSHRDLCUMWFGYPBVKJXQZ
English char. (sorted by frequency)

o
o
|

o
o

o
~

F1 Score for Classifying Char. in Subword

Figure 2: For selected models, the average F1-score (y-
axis) for how well a character (x-axis) can be classified
on our main probing task. The control (random embed-
dings) appears in red, the syntax baseline in green. The
other 4 models are shown in grayscale, with the largest
and most recent model (GPT-J) in the darkest color.

from PLMs contain information about their con-
stituent characters in their embeddings. GPT-J is
the best-performing model (with F1 of 93.70 and
94.35), followed by RoBERTa and GPT-2, then the
BERT models. All the transformer models outper-
form the GloVe fixed embedding model. Clearly,
the performance of the models on this probing
task correlates with performance on other language
tasks, such that larger models trained on larger cor-
pora do better.”

There are also other factors that may contribute
to difference in performance, such as the nature of
the pre-training task and the tokenizer. The latter is
evident from the considerable performance gap be-
tween RoOBERTa and BERT, which may be partially
attributed to ROBERTa using GPT’s reversible to-
kenizer, leading to more variability depending on
preceding whitespace. (See §5 for the potential
effect of tokenizer variability on performance.)

Multilingual Results Table 2 shows the results
for the Multilingual BART experiments, averaged
across 5 train-test splits with different seeds. Per-
formance is consistently high and above chance
across languages with different scripts. It is high-
est for Cyrillic with an F1 of 81.37, and lowest
for Arabic with an F1 of 76.37. While we focus
mostly on English in the remainder of our exper-
iments because of the large number of different

“Since performance varies considerably based on the
model used, we consider this work an additional data point in
favor of considering multiple models in interpretability work
(Bowman, 2021).

2490

[Modeltype [PLM [Control]

English Probing Experiment
GPT-J 93.70 | 48.36
GPT-2 84.25 | 5231

RoBERTa 86.41 47.33

BERT-Cased 78.50 | 47.08
BERT-Uncased | 77.48 49.37
GloVe 300D 67.57 | 49.57
GloVe 100D 66.04 | 50.33
LXMERT 62.4 53.92
English Substring Experiment
GPT-J [86.56 [70.03

Table 1: Results (F1-scores)for the main English prob-
ing experiment.

Script PLM | Control
Latin (English chars) | 80.95 39.13
Devanagari 78.61 50.78
Arabic 76.37 51.88
Cyrillic 81.37 | 45.71

Table 2: Results (F1-scores) for the multilingual prob-
ing experiment on Multilingual BART.

models available and because of the easy access to
other sources of linguistic information, we believe
these results suggest that our findings would be
generalizable to non-Latin scripts.

English Substring Experiment Performance on
the English Substring Experiment is also far above
chance, with an average F1 of 86.56, compared to a
control F1 (on random embeddings) of 70.03 (bot-
tom row in Table 1). Control performance is well
above 50 in this case since the data set is created to
be balanced such that the superstrings have equal
numbers of positive and negative examples. But
there are still baseline differences in how often a
token occurs as a substring, so the model can learn
that certain substrings like "en" are more common
than substrings like "emies". We take the perfor-
mance on the Substring Experiment as evidence
that the model can make use of character informa-
tion to do more complicated substring tasks than
just character identification.

3.3 Breakdown of results

Next, we consider a number of possibilities for how
character-level information gets into these embed-
dings and conduct analyses intended to understand
the nature of the information learned and how it
gets there. We focus on our best-performing model
(GPT-J) for these analyses.

Is the first letter learned best because of alpha-
betization? One possibility is that, because the

training data likely contains many alphabetical lists
and other kinds of word lists (e.g., lists of words
starting with "z"), the model learns a co-occurrence
relationship between words that start with the same
character. We would predict that this would cause
stronger performance when the probed character
occurs at the beginning of the word. To that end,
we examine how the model’s performance varies as
a function of where in the token the target character
is (top panel in Figure 3). While there is indeed
a significant negative relationship between word
position and recall as measured by a linear regres-
sion (8 = —.01, p < .001), the slope is relatively
small. While recall on the first letter in a token
is high (95.2), it is not an outlier: performance is
only somewhat higher than recall for the second
character (94.5). Moreover, performance is above
chance even when the target character appears 10
or more characters deep in a token. Therefore, we
do not believe the effect is driven only by word
beginnings, although they likely play a role.

Is it only frequent words that the probe gets
right? Next, we consider whether performance
varies as a function of the frequency of the token
(middle panel in Figure 3). One possibility could
be that character information is memorized only in
high-frequency tokens like “the", which occur often
enough that at least sometimes very frequent tokens
are broken into characters (e.g., "the" appearing in
the context of "t h e"), and that low-frequency to-
kens will perform worse. This does not appear to
be the case and, in fact, there is, if anything, a neg-
ative relationship (3 = —.013, p = .05) between
binned log frequency and performance, such that
less frequent tokens are easier to extract character
information from.

Is it easier to get long or short words right?
The bottom panel of Figure 2 shows F1-score as
a function of the length of the token. Using the
GPT-J embeddings, it is easier to classify charac-
ters in short tokens, as compared to longer tokens.
This may be a function of the nature of the task
since there is, in some sense, less information to be
represented for a short token like "be" for the pur-
poses of the task (just that it contains a "b" and it
contains an "e"), whereas a long token would have
to represent information about more characters.

Which characters are learned best? Part of
what makes the success of the probe is that word
embeddings represent word co-occurrence informa-

2491

1 M
GPT-

3 4 5 6 7 & 8 10 11 1
Position in token (where 0 is first char.)

GPT-J
0.75
o 0504

5 10
Log frequency bin

1.001
) M

4 5 6 7T 8 8 10 11 12 13 14 15
Token length

Figure 3: Performance on the GPT-J probe, relative to a
control probe, as a function of the character’s position in
the token (top), the log frequency of the token (middle),
and the length of the token (bottom). The size of the
point reflects the amount of data.

tion, which is typically conceived of as semantic
in nature (Erk, 2016) and so should, because of the
arbitrariness of the relationship between forms and
meanings (Saussure, 1916; Hockett, 1960), mean
there is no relationship between individual charac-
ters and information learned by embeddings. But
this arbitrariness breaks down, in that there are
statistically detectable non-arbitrary form-meaning
relationships in language (Blasi et al., 2016; Mon-
aghan et al., 2014; Tamariz, 2008; Dautriche et al.,
2017; Pimentel et al., 2019), such as the fact that fi-
words in English tend to be about movement (e.g.,
fap, fly, flutter, flicker; Marchand, 1959; Bergen,
2004) and that different parts of speech have differ-
ent phonological patterns (Dautriche et al., 2015;
Kelly, 1992; Monaghan et al., 2005).

An even larger source of shared information be-
tween characters and syntactic/semantic informa-
tion is that morphological forms can be cues to
word categories: for instance, most plural nouns
end with "s" and many adverbs end in "ly". This
leads to changes in character-level distributions:
while roughly 12% of words in American English
contain "y", 85% of adverbs do (as estimated using
data from Brysbaert et al., 2012). Thus, a model
with access to part of speech information could do

nen

well by guessing that all adverbs contain "y".

So one possibility is that the probe’s perfor-
mance is largely driven by characters that corre-
late with syntactic and semantic features. If this
were the case, we might expect some characters to
show much better performance than others. Figure
2 shows the F1-Macro as a function of character.
For GPT-J, the best-performing model, there are
some clear trends. For instance, it is easiest to clas-
sify rare letters: J, W, X, Q, Z all have F1-scores
over 93. And it is hardest for the probe to classify
vowels: U, A, O, and E are the lowest-performing
characters, with F1-scores between 83 and 86. But
even those lower-performing characters do far bet-
ter than the chance baseline (at about 50 F1 score)

To further explore this, we conducted a quali-
tative analysis of the probe’s successes and fail-
ures. Consider the probe for classifying the pres-
ence/absence of "y": the model assigns highest
confidence to the following 4 tokens: "lly", " selec-
tively", " subtly", " mechanically". These all have
"ly" endings, which in English are typically asso-
ciated with adverbs. Similarly, the top performing
tokens for the "s" classifier all end with a morpho-
logically meaningful "-s" suffix: " socialists",

"." suggestions". They also happen to all

"

stocks",
start with "s", perhaps suggesting an effect of the
first character as discussed above.

This analysis suggests that the strong classifier
performance could be explained by the model learn-
ing systematic relationships between certain char-
acters and syntactically or semantically meaningful
morphology. Is syntactic information the window
through which character-level information enters
PLMs? To address that question, our next exper-
iment focuses on a syntactic baseline, to see how
well character-level information can be predicted
based on syntactic features.

4 Experiment 2: The effect of syntactic
information

In this experiment, we focus on building probes
for the same task as in Experiment 1 (identifying
whether a particular character occurs in a particular
token). But, rather than using the token embed-
dings from a large language model as input, we
attempt to classify the presence/absence of charac-
ters in a token based on syntactic information.
Our first model (the SpaCy model) uses the
SpaCy library (Honnibal and Montani, 2017) to
obtain distributions over features for each token
in the vocabulary: Fine-Grained Part of Speech

2492

[Measure | SpaCy | GPT-J [Control |

Aggregate Performance
Fl1 [5234] 61.24 [49.68
Best performing characters
s 64.60 66.82 40.32
y 61.96 64.89 48.68
e 62.05 62.32 47.27
Worst performing characters
b 48.92 55.13 48.25
m 48.13 55.61 46.11
q 43.79 53.54 49.28

Table 3: The best and worst performing characters from
Experiment 2 on the SpaCy syntactic baseline, the GPT-
J syntactic baseline, and the Control.

tag (PoS; e.g., for "Jane", NNP for a proper noun),
Coarse-Grained Part of Speech tag (Coarse-grained
PoS; e.g., for "Jane", PROPN for proper noun), and
a Named Entity Recognition tag (NER; e.g., for
"Jane", PERSON for a personal name). We use
these features to construct a syntactic vector for
each token.

Because SpaCly is built to operate over words,
not tokens, we also construct custom syntactic base-
lines that can tag subwords, as opposed to tokens.

The performance of these probes will serve as
a baseline for ascertaining how much character-
level information can be learned by these features
alone, without a full language model. If they can
perform just as well as the full GPT-J embeddings,
that would suggest that morphosyntactic informa-
tion (of the sort that we already know is learned
by PLMs during pretraining) is sufficient for the
performance on the probing task.

The method is the same as in Experiment 1,
where the goal is to predict the presence or absence
of a character « in a token, except that instead of
using the token’s model embeddings as input, we
instead use syntactic feature vectors (obtained ei-
ther from SpaCy or a custom tagger) as input. We
describe these syntactic vectors below.

Syntactic baselines The SpaCy model has 3
features for each token: NER, PoS, and Coarse-
Grained PoS tags. The resultant features are dis-
crete one-hot feature vectors over labels.

The custom syntactic tagger, which is intended
to solve the problem that SpaCy tags words and not
subword tokens, takes a (subword) token’s model
embedding as input and outputs a vector of prob-
abilities over part of speech and named entity cat-
egories. Here, we describe results for our custom
GPT-J Tagger, trained using GPT-J model embed-

dings, since GPT-J is the best-performing of our
models for our main task. See Appendix D for
descriptions and the results for 2 additional BERT-
based custom taggers that we built.

To build our custom GPT-J-Tagger, we train an
MLP model to predict PoS and NER labels based
on GPT-J’s static embedding layer for each token.
The tagger is trained on the CoNLL 2003 dataset’s
train and evaluation splits (Sang and De Meulder,
2003), which contain part of speech and named
entity information. Unlike the SpaCy tagger, our
custom GPT-J-Tagger outputs a probability distri-
bution over categories. We use this distribution
over labels as input, rather than a one-hot vector.
In the Appendix, Table 13 shows the performance
of the tagger’s performance qua tagger.

Probing for characters using syntactic baselines
We run the character probing experiment as before.
But, rather than using the model embeddings, we
use the syntactic feature vectors as the target of
our probe. Table 3 shows the results of these ex-
periments. Using the syntactic baselines leads to
substantially improved performance over control
tasks, and the GPT-J-Tagger does better than the
SpaCy tagger. We hypothesize that these diver-
gences occur because the custom GPT-J-Tagger is
better suited to handling subwords, and because
it enables us to use label distribution rather than
one-hot vectors.

Zooming in on the performance over individual
characters, we observe that, relative to the control
task, some English characters consistently perform
much better when using syntactic features. As pre-
dicted, these are precisely the characters that are
highly correlated with particular parts of speech.
The best-performing characters are: "s" (associ-
ated with plural nouns and third-person singular
verbs) and "y" (associated with adjective and ad-
verb endings). Thus, the syntactic baselines seem
to be capturing the information that they were in-
tended to capture. But their performance still fell
far below the best performing PLMs, suggesting
that the large models are capturing more than just
the information captured by the syntactic models.
Moreover, as can be seen in Figure 2, the syntax
baseline shows a sharp peak for morphologically
informative characters like "s", but this pattern is
much weaker in GPT-J (which shows only a slight
performance increase for "s"). Therefore, we do
not think syntactic information can explain all the
character information learned by PLMs. In the next

2493

Word Tokenizations
"dictionary" "d + ictionary"

" dictionary" " dictionary"
"dictionaries" | "d + iction + aries"
" dictionaries" | " diction + aries"
"dicionary" "d +icion + ary"

Table 4: Some GPT tokenizations for "dictionary".

section, we consider another possibility: variability
of tokenization, the focus of the next section.

5 Experiment 3: Tokenization variability

Consistent with other work suggesting benefits to
variable tokenization (e.g., Provilkov et al., 2020;
Kudo, 2018), we hypothesize that the variability of
tokenization is another avenue by which character-
level information could be learned by models. We
first quantify this variability and then run an exper-
iment using CBOW Word Embeddings (Mikolov
et al., 2013) showing how increasing the variabil-
ity in tokenization can lead to more character in-
formation being learned. We posit that the same
mechanism may be in play for PLMs.

Subword tokenization like the one used by GPT
models can cause the same lemma to have very dif-
ferent tokenizations, depending on its form and/or
its spelling. See Table 4 for possible tokeniza-
tions of "dictionary" and related forms, including
a misspelling (bottom row). This is a subset of the
possible misspellings, variants, and morphologi-
cal forms of the word. But the listed forms alone
generate 8 unique tokens.

It would be useful for the model to learn a rela-
tionship between all these tokens, since they repre-
sent the same lemma. We posit that the desirability
of learning this mapping is a mechanism by which
character information could be learned, by induc-
ing an objective to map between atomic tokens like
"dictionary" and the various substring tokens that
can arise. While each of these mappings could
be learned individually, learning character-level
spelling information offers a more general solution
to the problem, such that even an entirely novel
tokenization could be interpreted by composing the
characters of the tokens.

For this to be plausible, though, variable tok-
enizations like this must be frequent enough for
it to matter. In Appendix E, we use heuristics to
identify different forms in which a word appears
and conduct a series of back-of-the-envelope cal-
culations to determine how many different unique
tokenizations are expected for a long word (8+ char-

Tokenization p Embedding | Control
Word - 60.55 47.12
GPT-J - 63.23 47.51
GPT-J 0.05 66.00 47.23
GPT-J 0.1 65.64 46.72
GPT-J 0.2 64.23 47.01
GPT-J 0.5 62.33 46.47

Table 5: Average F1 scores for probing results, as a
function of change in tokenization variability

acters) like dictionary, in all its variant forms and
misspellings in a sample of the Pile corpus (we used
1/6 of the corpus as a sample; Gao et al., 2020). We
found that, on average, we should expect over 200
different tokenizations for a word like "dictionary",
many pairs of which have entirely disjoint sets of
subword tokens from each other.

This hypothesis leads to a prediction: increas-
ing the variability of tokenization should increase
the amount of character-level information learned.
To test this, we train models using tokenization
schemes with different levels of variability and
then test how much character-level information
they learn, using our probing task.

Because the overall goal of our paper is to
characterize and explain the nature of character-
level information learned, we conduct a proof-of-
concept experiment using CBOW Word Embed-
dings (Mikolov et al., 2013) on a portion of the Pile
corpus with 1.1B characters, as opposed to training
a large transformer model from scratch varying tok-
enization schemes. We train 6 CBOW models from
scratch, each with a different tokenization scheme.
As baselines, we consider vanilla rule-based word-
tokenization (the CBOW default, labeled "Word"
in Table 5) and GPT-J’s default word piece tok-
enization scheme. Comparing these two baselines
against each other lets us compare the effect of
word tokenization vs. subword tokenization on
character information. But our key manipulation
is to consider variations of GPT-J’s tokenizer in
which we systematically increase tokenization vari-
ability.

In pre-processing the word-tokenized corpus for
input, for each word token w;, with probability
(1—p), we tokenize it using the standard GPT-J tok-
enizer. Under the standard tokenizer, " schematics"
becomes " sche + mat + "ics". With probability p,
however, we tokenize w; using a random tokeniza-
tion that consists of alternative valid tokens from
GPT-J. So, " schematics" could become " schema +
tics" or " schematic + s" (but not " schemati + cs"

2494

since " schemati" is not a valid GPT token). We
vary p from 0.05 to 0.5. See Appendix E for more
details on this procedure. The result is a series of
tokenized corpora, which have more variable tok-
enization than the vanilla GPT-J-tokenized corpus.

We train CBOW models separately for each of
these corpora. Table 5 shows the results of these
experiments on our probing task (using the same
method as in Experiment 1). As expected, probes
on the subword tokenization schemes reveal they
learn more information about characters than the
default word-level tokenizer. Most importantly,
upon increasing the variability on GPT-J’s tok-
enization scheme, the performance of the probe
increases, peaking at p = 0.05 and p = 0.1. There-
after, the performance decreases with variability,
suggesting that increasing variability leads to in-
creased character knowledge but only up to a point,
likely because there is a tradeoff: since the corpus
size for the toy experiment is small, having very
high variability leads to the model seeing fewer
instances of each token.

While the magnitude of these differences is rel-
atively small, they are consistent across random
seeds and train-test splits. Thus, we believe that
these results offer proof of concept that the vari-
ability of tokenization affects how much charac-
ter information is learned by CBOW models and
that this finding would plausibly generalize to per-
formance in PLMs (although we leave it to future
work to confirm this). As such, increasing tokeniza-
tion variability could be a means by which PLMs
could be engineered to learn richer character-level
information.

6 Discussion and Conclusion

Overall, our probing methodology revealed that
PLMs with sub-word tokenization learn quite a lot
about characters. The result is robust to the position
of the character in the token, the identity of the
character, the frequency of the token, the length of
the token, and the alphabetic script (although we
did not consider entirely non-alphabetic scripts like
Chinese since such languages would require a very
different formulation).

We suggest at least two possible mechanisms
by which this information is learned: systematic
relationships between certain characters and syn-
tactic/semantic features and the variability of tok-
enization. Insofar as these methods (e.g., tokenizer
variability) can be manipulated in model construc-

tion, this knowledge could be used to build mod-
els that perform better at tasks dependent on such
knowledge. Given the particular importance of tok-
enization in multilingual models (Rust et al., 2021;
Singh et al., 2019), it would also be fruitful to con-
sider the import of these results for multilingual
settings.

More generally, while the linguistic capabili-
ties of PLMs are much studied (for overviews, see
Rogers et al., 2020; Bommasani et al., 2021), the
question whether PLMs learn the constituent char-
acters of tokens is of a different nature in that it de-
pends on learning a property of language (spelling)
that is not explicitly tied to meaning. There is no a
priori reason "dog" is spelled "D-O-G", and, in a
sense, the spelling of the word does not matter. But,
in another sense, it does matter: humans routinely
use language in creative and character-dependent
ways: e.g., alphabetizing text, scrambling letters to
create codes, and solving crossword puzzles. Un-
derstanding whether and how the building blocks
of this meta-linguistic knowledge can emerge dur-
ing self-supervised training on a word prediction
task could be of interest not just in NLP, but in the
cognitive sciences.

7 Ethics and Broader Impacts

This work consists of probing experiments and in-
terpretability analyses of PLMs, and the risks and
ethical considerations are largely those that affect
any work with large PLMs (e.g., energy costs; see
Bommasani et al., 2021, for an overview of risks
and tradeoffs). The intended use of our code is for
academic research. We consider probing publicly
available PLMs, which are made publicly avail-
able in part for research purposes, to be within the
intended use of PLMs.

8 Acknowledgments

This work was supported by National Science Foun-
dation Grants No. 2104995 to KM. We thank Chris
Potts and Josh Rozner for conversations that helped
inspire this work, Maria Ryskina and Kaj Bostrom
for comments on drafts, and Eunsol Choi for intro-
ducing the authors.

References

Gustavo Aguilar, Bryan McCann, Tong Niu, Nazneen
Rajani, Nitish Shirish Keskar, and Thamar Solorio.
2021. Char2Subword: Extending the subword em-
bedding space using robust character compositional-

2495

ity. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 1640-1651, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Linguis-
tics, 48(1):207-219.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49-72.

Benjamin K Bergen. 2004. The psychological reality of
phonaesthemes. Language, 80(2):290-311.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Damian E Blasi, Sgren Wichmann, Harald Ham-
marstrom, Peter F Stadler, and Morten H Chris-
tiansen. 2016. Sound-meaning association biases ev-
idenced across thousands of languages. Proceedings
of the National Academy of Sciences, 113(39):10818-
10823.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Kaj Bostrom, Xinyu Zhao, Swarat Chaudhuri, and Greg
Durrett. 2021. Flexible generation of natural lan-
guage deductions. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 6266—6278, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Samuel R Bowman. 2021. When combating hype, pro-
ceed with caution. arXiv preprint arXiv:2110.08300.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Marc Brysbaert, Boris New, and Emmanuel Keuleers.
2012. Adding part-of-speech information to the
subtlex-us word frequencies. Behavior research
methods, 44(4):991-997.

Kris Cao and Laura Rimell. 2021. You should evalu-
ate your language model on marginal likelihood over

tokenisations. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2104-2114, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Jonathan H Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2021. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. arXiv preprint arXiv:2103.06874.

Ryan Cotterell, Christo Kirov, Mans Hulden, and Jason
Eisner. 2018. On the complexity and typology of
inflectional morphological systems. Transactions of
the Association for Computational Linguistics.

Isabelle Dautriche, Kyle Mahowald, Edward Gibson,
Anne Christophe, and Steven T Piantadosi. 2017.
Words cluster phonetically beyond phonotactic regu-
larities. Cognition, 163:128—145.

Isabelle Dautriche, Daniel Swingley, and Anne
Christophe. 2015. Learning novel phonological
neighbors: Syntactic category matters. Cognition,
143:77-86.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Cicero Dos Santos and Bianca Zadrozny. 2014. Learn-
ing character-level representations for part-of-speech
tagging. In International Conference on Machine

Learning, pages 1818-1826. PMLR.

Avia Efrat, Uri Shaham, Dan Kilman, and Omer Levy.
2021. Cryptonite: A cryptic crossword benchmark
for extreme ambiguity in language. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4186-4192, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Hicham El Boukkouri. 2020. Ré-entrainer ou entrainer
soi-méme ? stratégies de pré-entratnement de BERT
en domaine médical (re-train or train from scratch
? pre-training strategies for BERT in the medi-
cal domain). In Actes de la 6e conférence con-
jointe Journées d’Etudes sur la Parole (JEP, 33e
édition), Traitement Automatique des Langues Na-
turelles (TALN, 27e édition), Rencontre des Etudi-
ants Chercheurs en Informatique pour le Traitement
Automatique des Langues (RECITAL, 22e édition).
Volume 3 : Rencontre des Etudiants Chercheurs en In-
formatique pour le TAL, pages 29-42, Nancy, France.
ATALA et AFCP.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2021. Amnesic probing: Behavioral expla-
nation with amnesic counterfactuals. Transactions of

2496

the Association for Computational Linguistics, 9:160—

175.

Katrin Erk. 2016. What do you know about an alligator
when you know the company it keeps? Semantics
and Pragmatics, 9:17-1.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users Journal, 12(2):23-38.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.

Martin Haspelmath. 2017. The indeterminacy of word
segmentation and the nature of morphology and syn-
tax. Folia Linguistica, 51(s1000):31-80.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733-2743, Hong Kong,
China. Association for Computational Linguistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129-4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

C.F. Hockett. 1960. The origin of language. Scientific
American, 203(3):88-96.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and ’diagnostic classifiers’ reveal
how recurrent and recursive neural networks process
hierarchical structure. Journal of Artificial Intelli-
gence Research, 61:907-926.

Itay Itzhak and Omer Levy. 2021. Models in a
spelling bee: Language models implicitly learn the
character composition of tokens. arXiv preprint
arXiv:2108.11193.

Daniel Jurafsky. 2003. Probabilistic modeling in psy-
cholinguistics: Linguistic comprehension and pro-
duction. In R. Bod, J. Hay, and S. Jannedy, editors,
Probabilistic Linguistics. MIT Press.

Michael H. Kelly. 1992. Using sound to solve syntac-
tic problems: The role of phonology in grammat-

ical category assignments. Psychological Review,
99(2):349-364.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI conference on artificial
intelligence.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66-75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Bofang Li, Aleksandr Drozd, Tao Liu, and Xiaoyong
Du. 2018. Subword-level composition functions for
learning word embeddings. In Proceedings of the
second workshop on subword/character level models,
pages 38-48.

Jindfich Libovicky, Helmut Schmid, and Alexander
Fraser. 2021. Why don’t people use character-

level machine translation? arXiv preprint
arXiv:2110.08191.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-

tics, 8:726-742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064—1074, Berlin, Germany.
Association for Computational Linguistics.

Hans Marchand. 1959. Phonetic symbolism in en-
glish wordformation. Indogermanische Forschungen,
64:146.

Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky,
Colin Raffel, Manan Dey, Matthias Gallé, Arun Raja,
Chenglei Si, Wilson Y Lee, Benoit Sagot, et al. 2021.
Between words and characters: A brief history of

2497

open-vocabulary modeling and tokenization in nlp.
arXiv preprint arXiv:2112.10508.

Sabrina J. Mielke, Ryan Cotterell, Kyle Gorman, Brian
Roark, and Jason Eisner. 2019. What kind of lan-
guage is hard to language-model? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4975-4989, Florence,
Italy. Association for Computational Linguistics.

Sabrina J Mielke and Jason Eisner. 2019. Spell once,
summon anywhere: A two-level open-vocabulary
language model. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
6843-6850.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space.

Padraic Monaghan, Nick Chater, and Morten H. Chris-
tiansen. 2005. The differential role of phonological
and distributional cues in grammatical categorisation.
Cognition, 96(2):143-182.

Padraic Monaghan, Richard C. Shillcock, Morten H.
Christiansen, and Simon Kirby. 2014. How arbitrary
is language. Philosophical Transactions of the Royal
Society B.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurlPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024-8035.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532—-1543.

Tiago Pimentel, Arya D. McCarthy, Damian Blasi,
Brian Roark, and Ryan Cotterell. 2019. Meaning
to form: Measuring systematicity as information. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1751—
1764, Florence, Italy. Association for Computational
Linguistics.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020. Information-theoretic probing for linguistic
structure. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4609—4622, Online. Association for Computa-
tional Linguistics.

Yuval Pinter. 2021. Integrating approaches to word
representation. arXiv preprint arXiv:2109.04876.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882—1892, Online. Association for
Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Arij Riabi, Benoit Sagot, and Djamé Seddah. 2021.
Can character-based language models improve down-
stream task performances in low-resource and noisy
language scenarios? In Proceedings of the Seventh
Workshop on Noisy User-generated Text (W-NUT
2021), pages 423-436, Online. Association for Com-
putational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842-866.

José Carlos Rosales Nuiiez, Guillaume Wisniewski, and
Djamé Seddah. 2021. Noisy UGC translation at the
character level: Revisiting open-vocabulary capabil-
ities and robustness of char-based models. In Pro-
ceedings of the Seventh Workshop on Noisy User-
generated Text (W-NUT 2021), pages 199-211, On-
line. Association for Computational Linguistics.

Josh Rozner, Christopher Potts, and Kyle Mahowald.
2021. Decrypting cryptic crosswords: Semantically
complex wordplay puzzles as a target for nlp. In
Advances in Neural Information Processing Systems,
volume 34, pages 11409-11421. Curran Associates,
Inc.

Phillip Rust, Jonas Pfeiffer, Ivan Vuli¢, Sebastian Ruder,
and Iryna Gurevych. 2021. How good is your tok-
enizer? on the monolingual performance of multilin-
gual language models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3118-3135, Online. Association
for Computational Linguistics.

Erik F Sang and Fien De Meulder. 2003. Introduction
to the conll-2003 shared task: Language-independent
named entity recognition. arXiv preprint c¢s/0306050.

F. de Saussure. 1916. Course in general linguistics.
Open Court Publishing Company.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE International

Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5149-5152. IEEE.

2498

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Jasdeep Singh, Bryan McCann, Richard Socher, and
Caiming Xiong. 2019. Bert is not an interlingua and
the bias of tokenization. In Proceedings of the 2nd
Workshop on Deep Learning Approaches for Low-
Resource NLP (DeepLo 2019), pages 47-55.

Monica Tamariz. 2008. Exploring systematicity be-
tween phonological and context-cooccurrence repre-
sentations of the mental lexicon. The Mental Lexicon,
3(2):259-278.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5100-5111, Hong Kong, China. Association for Com-
putational Linguistics.

Elena Voita, Rico Sennrich, and Ivan Titov. 2021. Ana-
lyzing the source and target contributions to predic-
tions in neural machine translation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 11261140, Online.
Association for Computational Linguistics.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6
billion parameter autoregressive language model.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Appendix A Code details

We release our code anonymously
at https://github.com/ayushk4/
character-probing-pytorch under MIT
License.

The models weights, data and other
dependencies required for experiment
are at https://github.com/ayushk4/
character-probing-pytorch/releases.

The intended use of our code is for academic
research. We consider probing publicly available
PLMs, which are made available for research as
well as end use cases, to be within the intended use
of PLMs.

Appendix B Probing for Character
Information

We use off-the-shelf APIs for lemmatization and
WordNet from NLTK (Apache License 2.0; Bird
et al., 2009). Our implementation uses PyTorch
(BSD License; Paszke et al., 2019), HuggingFace
(Apache License 2.0; Wolf et al., 2019) and custom
APIs for GPT-J’s embedding.

The probes for each MLP are trained separately
starting with random initialization weights. We
train the probe via a binary classification task
via backpropagation, using the Adam optimizer
(Kingma and Ba, 2015) with betas of 0.9 & 0.999
and epsilon of 1e-08 without weight decay, over
the standard Binary Cross Entropy loss across the
predicted logits ¢; and ground truth logits y;.

B.1 PLMs considered

Details of the PLMs used along with their model-
card on Huggingface:

* GPT-J: We used the standard GPT-J with 6
Billion parameters and its reversible Byte-Pair
encoding based subword tokenizer. We ex-
tracted the embeddings and have released it
separately. Model Card: ‘EleutherAl/gpt-j-
6B’ under Apache 2.0 License.

e GPT-2: We consider the base model for GPT-
2 with 124 Million parameters. The tokenizer
used in this model is the exact same as the
one used in GPT-3 and is also a subword tok-
enizer based on reversible Byte-Pair encoding.
Model Card: ‘gpt2’ under Modified MIT Li-
cense.

* RoBERTa: We again use the Base model
for fairer comparison to the GPT-2 model
with 125 Million parameters. This model has
partially reversible Byte-Pair Encoding based
on GPT-2’s byte-pair tokenizer but with addi-
tional tokens for a BERT-like MLM discrim-
inative pre-training. Model Card: ‘roberta-
base’ under MIT License

* BERT: The BERT-base models have roughly
110 Million parameters. Both the Uncased
and Cased versions of this model are consid-
ered with their Word-Piece tokenizers. For
this tokenizer, we also consider the charac-
ter ‘“## while filtering out vocabulary, as it
denotes the token continues on the preceding

2499

Case-Sensitive

Model type PLM | Control
GPT-J 94.35 52.76
GPT-2 84.69 51.05
RoBERTa 83.87 49.00
BERT-Cased 78.47 45.35
BERT-Uncased | 77.48 49.37
GloVe 300D 69.40 49.40
GloVe 100D 61.56 49.55
LXMERT 60.30 49.61

Table 6: Results for the main probing experiment,
across models.

Case-insensitive | Case-Insensitive

Model PLM | Control | PLM | Control
GPT-] 0.83 3.12 1.39 2.27
GPT-2 2.01 3.09 2.21 2.75

RoBERTa 2.27 3.13 2.79 2.46
BERT-Cased 2.93 7.46 2.77 5.67
BERT-Uncased | 3.32 4.33 3.32 4.33

Table 7: Standard deviation in our probing Experiment
1, for the key models considered.

word. Model Card: ‘bert-base-uncased’, ‘bert-
base-cased’ under Apache 2.0 License

* GloVe: We experiment with the 100 and 300
dim version of 400K-Vocab GloVe trained on
6B tokens. We consider the 40k most frequent
tokens in GloVe, comparable to the vocab-
ulary sizes of the other models. GloVe ver-
sion used: ‘Wikipedia 2014 + Gigaword 5
(6B tokens, 400K vocab, uncased, 50d, 100d,
200d, & 300d vectors, 822 MB download):
glove.6B.zip’ 3

* LXMERT: We use the uncased version of
LXMERT-base model and, as with the BERT
model, filter out “## preceding symbols.
Model Card: ‘unc-nlp/Ixmert-base-uncased’
under

3 Accessible at nlp.stanford.edu/projects/glove/, Apache
v2.0 License

Statistics

Tokenizer’s Vocab for each model
Tokens having only letters (a-z,A-Z)
GPTs, RoBERTa: Allow preceding G
BERT: Allow preceding ‘##’

Property
Dataset
Data-filtered

Train-Test split | 80-20

Preprocessing None

Output labels 26 tasks (each with binary label)
Link Model Card & links in §B.1

Table 8: Dataset Checklist for Experiment 1.

Subword Taggers
II

JJ VB NN DT JJ VB NNDT

:
=
f f Concatenate

interview| ##er

_Bert Tokenizer)

. Soft
\Embedding
'1 Lookup

Ginterviewer
»
»
1
GPT's R
Vocab Soft - Syntax Labels

Figure 4: Experiment 2: syntax baselines with BERT-
sentence and BERT-token custom taggers.

B.2 Hyperparameter and other Details

Each probe is trained for 5 epochs, with 128 batch-
size. The Learning rate is tuned over averaged
Macro-F1 in the grid {1e — 5,3e — 5,5e — 5, le —
4,3¢ — 4,1e — 3,3e — 3,1e — 2,3e — 2}. We
trained the probe on the best hyperparameter set-
tings across 5 different train-test splits and seeds.
Table 9 shows the best learning rates and the num-
ber of parameters (and frozen-parameters) in the
probe. For all the control embedding, we assume
the same dimension as the largest model (4096)
and considered a maximum vocab of 100k, even
though only the first few thousand might be used.
These experiments take less than 20 minutes for
each run and require less than 12 GB of GPU mem-
ory. They were run on a mix of NVidia Tesla K80,
GTX 1080 Ti, P100, V100 GPUs with Dell R740
and Intel Xeon CPUs.

Table 6 shows the result of the probe in a case-
sensitive setting. The case-insensitive probe treats
both "Cat" and "cat" both as a hit for "c". The
case-sensitive probe treats only "cat" (not "Cat")
as a hit for "c". Note that performance is the same
for BERT-Uncased since it does not distinguish
between these conditions.

Appendix C Multilingual Analyses

Model Details: We only consider mBART (Liu
et al., 2020) with 610M parameters and 250k
vocab size. Its model card in Huggingface is

2500

Table 10: Dataset Checklist for training POS/NER
CoNLL set.

‘facebook/mbart-large-cc25’, without any mention
of its license. Its tokenizer is a reversible one, simi-
lar to GPT, except that it encodes preceding space
with *_’.

Languages: For the non-Latin scripts considered,
we only consider those characters with more than
250 occurrences in the tokenizer’s vocabulary. We
consider the experiment case-insensitive (by lower-
casing the string) across scripts that have lowercase
and uppercase characters.

Hyperparameters: Each probe is trained for
5 epochs, with 128 batch-size. The learning
rate is tuned over averaged Macro-F1 in the grid
{le—5,3e—5,5e—5,1le—4,3¢—4,1e—3,3e —
3,1le —2,3e —2}. We trained the probe on the best
hyperparameter settings across 5 different train-test
splits and seeds. Table 12 shows these best learn-
ing rates and the number of parameters (and frozen
parameters) in the probe. For all the control embed-
ding, we assume the same dimension as the largest
model (1024) and considered a maximum vocab of
300k, even though only a few thousand are used.
These experiments take less than 20 minutes for
each run requiring less than 12 GB of GPU mem-
ory and were run on a mix of NVidia Tesla K80,
GTX 1080 Ti, P100, V100 GPUs with Dell R740
and Intel Xeon CPUs.

Case-insensitive Case-Sensitive
Model Lemma Control Lemma Control
Probe LR # Params LR # Params LR # Params LR # Params
GPT-] le-4 | 240M (206M) | le-4 | 443M (410M) | le-4 | 240M (206M) | 3e-4 | 443M (410M)
GPT2 3e-4 40M (39M) le-4 | 443M (410M) | 3e-4 40M (39M) 3e-4 | 443M (410M)
RoBERTa 3e-4 40M (39M) le-4 | 443M (410M) | le-3 40M (39M) le-2 | 443M (410M)
BERT-cased le-3 23M (22M) 3e-3 | 443M (410M) | le-3 23M (22M) Se-5 | 443M (410M)
BERT-uncased | 3e-3 25M (23M) 3e-4 | 443M (410M) | 3e-4 25M (23M) le-4 | 443M (410M)
LXMERT le-4 24M (23M) 3e-4 | 443M (410M) | 3e-4 24M (23M) le-4 | 443M (410M)
GloVe 100D le-4 | 4.02M (4.00M) | 3e-4 | 12.2M (12.0M) | 3e-4 | 4.02M (4.00M) | 3e-4 | 12.2M (12.0M)
GloVe 300D 3e-4 | 122M (12.0M) | le-4 | 122M (12.0M) | 3e-4 | 122M (12.0M) | 3e-5 | 12.2M (12.0M)
Table 9: Experiment 1 hyperparameters.
Property Statistics Script PLM | Control
Train Sentences | 14986 Latin (English chars) 3.28 7.21
Train Tokens 219553 Devanagari 6.58 5.43
Valid Sentences | 3465 Arabic 10.50 2.99
Valid Tokens 55043 Cyrillic 3.79 5.31
Test Sentences 3683
Test Tokens 50349 Table 11: Standard Deviation for Multilingual BART
NER Tags 3 experiment.
PoS Tags 45
Preprocessing None
Link github: davidsbatista/NER-datasets

Appendix D Syntax Baseline for
Character information

D.1 Custom syntax taggers

First we consider an off-the-shelf SpaCy model
with 3 features for each token: NER, PoS, and
Coarse-Grained PoS tags. Before running this
model, we remove the preceding whitespace char-
acters in the token, if present. The resultant fea-
tures are discrete one-hot feature vectors over la-
bels. The SpaCy tagger is not perfectly suited to
our task since it operates at the word level, whereas
we are concerned with obtaining a subword token’s
embeddings. To solve that problem, we also built 3
custom taggers for obtaining PoS and NER labels
on subword tokens. These taggers take (a subword)
token’s model embedding as input and output a vec-
tor of probabilities over part of speech and named
entity categories.

To build our custom GPT-J-Tagger, we train an
MLP to predict PoS and NER label based on GPT-
J’s static embedding layer for each token. The
tagger is trained on the CoNLL 2003 dataset’s train
and evaluation splits (Sang and De Meulder, 2003),
which contains part of speech and named entity
information. Unlike the SpaCy tagger, our cus-
tom GPT-J-Tagger outputs a probability distribu-
tion over categories so we can use this distribution
over labels as the vector of interest, rather than a
one-hot vector.

Table 13 show the performance of the tagger’s
performance qua tagger. Table 10 shows the
Dataset Checklist for this experiment. To build

2501

PLM Control
Script LR # Params LR # Params
Latin 3e-4 | 258M (256M) | le-2 | 309M (307M)
Devanagari | 3e-4 | 258M (256M) | 1le-3 | 309M (307M)
Arabic 3e-4 | 258M (256M) | 3e-3 | 309M (307M)
Cyrillic 3e-4 | 258M (256M) | 3e-4 | 309M (307M)

Table 12: Multilingual Hyperparameters. Number of parameters (with frozen parameters in parenthesis) is denoted
per probe.

Model Type # Epochs | Batch Size | LR | Dev Flwia | Dev Flaracro | Test Flwia | Test F'laracro
BERT-sentence (PoS) 10 32 le-5 98.17 94.80 93.42 87.40
BERT-token (PoS) 10 32 le-5 76.42 56.75 77.24 56.74
GPT-] MLP (PoS) 20 64 le-4 62.90 68.72 60.15 69.14
BERT-sentence (NER) 10 32 le-5 97.88 93.18 96.02 86.92
BERT-token (NER) 10 32 le-5 83.50 56.97 81.57 54.88
GPT-] MLP (NER) 20 64 5e-5 85.59 63.56 82.71 57.34

Table 13: Labels from POS/NER labels. LR denotes learning rate

[Split Type | SpaCy | BERT-sentence | BERT-token [GPT-J [Control

Aggregate across 26 characters
F1 [52338] 55.008 [59.7525 [61.2395 [49.6772
Best performing ones
S 64.5967 60.7179 70.3299 66.8159 | 40.3154
y 61.9632 60.3871 67.1591 64.8863 | 48.6838
e 62.0518 57.7531 64.6152 62.3213 | 47.2712
t 60.6848 54.3826 64.0681 60.7345 | 48.4873
p 50.235 55.2361 63.9658 60.5067 | 46.5612
i 60.8024 56.4055 63.3518 61.6032 | 42.8155
Worst performing ones
w 45.748 52.7235 57.6919 58.2666 | 48.6947
q 43.7924 56.5274 57.5407 53.5437 | 49.2841
k 47.7873 49.3832 57.3084 55.9559 | 46.2371
o 52.9403 53.6138 56.8312 55.6293 | 43.5871
b 48.9159 56.739 56.3873 55.1265 | 48.252
m 48.1349 53.4036 56.2846 55.6094 | 46.1084

Table 14: Syntax baseline: Probing over syntax label distribution.

2502

the BERT sequence-labeling tagger, we fine-tuned
a BERT sequence labeling model for the PoS and
NER tasks, in order to output a label for each (sub-
word) token in a sentence. When extracting syn-
tactic features for this model, we first do the same
pre-processing of removing the special preceding
whitespace of GPT’s tokens as SpaCy before in-
put into the BERT model. Since BERT’s tokenizer
could have more than one token for a single GPT-
J’s token, we consider the average of the logits as
the pre-softmaxed feature vector.

In addition to the BERT sentence-level tagger,
we consider a BERT token classifier model fine-
tuned for NER and PoS at token level rather than
at sentence level. This token-level model does not
leverage context to deduce the label, and is closer
to how we use this model later to get features for
predicting NER/PoS features.

D.2 Results and Hyperparameters

We use off-the-shelf APIs for lemmatization and
WordNet from NLTK. Our implementation uses
PyTorch (Paszke et al., 2019), HuggingFace (Wolf
et al., 2019) and custom APIs (now released) for
GPT-J’s embedding. The hyperparameter tuning
was done on the dev set for only the learning rate
in the grid {1e — 5,3e — 5, 1e — 4} for BERT and
{le—5,3e—5,5e—5,1le—4,3¢—4,1le—3,3e —
3,1le — 2,3e — 2} for GPT-J. Our MLP model is
3-layered with SELU and Tanh activation and 0.1
Dropout before the last layer. Our BERT-Model
is initialized with ‘bert-base-cased‘ from Hugging-
face with default values of hyperparameters. Our
implementation was done using PyTorch and op-
timized via Adam with betas of 0.9 & 0.999 and
epsilon of 1e-08 without weight decay over the
standard Cross Entropy loss. We set the batch size
to 32 sentences for BERT and 64 for GPT-J. All
the experiments can be done within 16GB of GPU
memory and no run individually takes more than
2 hours. We release these models along with our
codebase with instructions to run them.

Table 13 shows the performance of these NER
and PoS models. As expected, the BERT-sentence
model performs the best on both the tasks as it
leverages the context while tagging. GPT-J slightly
outperfoms BERT-token on both the tasks. Note
that these performances are not comparable as their
tokenizations differ and only one of the models
leverages context to predict NER and PoS tags.

D.3 Method

Assume we have m syntactic features. Consider
the tokenizer Vocabulary V' (with only alphabetic
tokens) and the D, datapoint pairs for each letter
a of the lowercased English alphabet. For each
token-label pair (wj, y;), we obtain the m syntactic

features of the word {%(1)7 xgz) . wz(m)} using the
trained models to tag the features.

We train a classifier to predict whether a char-
acter « is present in the token w; using only its
syntactic features. Assume randomly initialized
‘trainable” embeddings {E1, Es ... E,,} for each
of the m syntactic features. We predict the logits
1; for token w; over each letter o using an MLP

classifier over the embeddings:

s ED o™ 1))

§i = o(MLPy([ETz{" 5 ...
Each syntactic feature 55@('])is a vector denoting
probability distribution of a token over the corre-
sponding feature labels (including being a one-hot
vector), this is crucial because a token (especially
subword-token) might have different labels depend-
ing on the context.

We train different MLPs and Embeddings from
scratch for each alphabet av with no shared parame-
ters across the (case-insensitive) 26 English char-
acters. We train our model for binary classifica-
tion via backpropagation over the standard Binary
Cross Entropy loss across the predicted logits ;
and ground truth logits y;.

As before, for each character we create a bal-
anced dataset consisting of an equal number of
positive and negative examples, where each exam-
ple is made up entirely of either English characters
or whitespace. These are randomly divided into
training and test split sucht that we keep words
with with the same lemmas in the same split. As
a control task, we randomly assign the syntactic
features for each token. We set the batch size
for runs with one-hot vectors as features to 128
and to 64 for others, the learning rate is tuned in
{le—5,3e—5,1e—4,3e—4,1e—3,3e—3,le—2}
for all the features over the metric of Averaged F1-
Scores across the 26 English letters. The best learn-
ing rates for SpaCy, BERT-sentence, BERT-token,
GPT-J and Control were found to be le-3, le-3,
3e-3, le-4, le-2, respectively. Using Adam Opti-
mizer we train each of the 26 models for 5 epochs
with betas of 0.9 & 0.999 and epsilon of 1e-8. Our

2503

[Split Type | SpaCy [BERT-sentence | BERT-token | GPT-J [Control |

Aggregate across 26 letters
F1 [44354] 2.9588 [37989 [2724 [43973
Best performing ones
s 0.6947 1.2941 0.4853 0.6514 | 5.5055
y 1.8665 1.6406 0.5697 1.4251 | 3.2417
e 0.6645 0.8544 0.3245 0.3233 | 1.8349
t 0.2643 3.4695 0.9129 0.5924 | 1.7645
p 6.1928 1.1628 0.5669 0.2985 | 3.7013
i 0.512 1.4392 0.5998 0.4867 | 5.5685
Worst performing ones
w 4.9794 2.2996 1.9614 1.9536 | 1.7453
q 2.7071 3.4438 4.5954 4.7932 | 5.5068
k 2.9332 6.885 2.0885 1.6864 | 1.6311
0 6.24 1.6009 1.0449 0.463 | 3.5961
b 4.0455 1.5597 1.4074 2.0701 | 2.7857
m 7.2995 2.4854 2.1762 1.0948 | 6.152

Table 15: Standard Deviation of POS/NER labels

implementation is done using PyTorch and Hug-
gingface. Finally for the best hyperparameter, we
perform 5 runs with different train/test splits and
seeds. Our MLP model is 3-layered with SELU
and Tanh activation and 0.1 Dropout before the last
layer.

Tables 14 and 15 show the mean and vari-
ance of the results over the 4 taggers and control
task. We also show the performance over the best-
performing and worst-performing characters.

Appendix E Variability of Tokenization
E.1 Quantifying variability in the Pile Corpus

To quantify the variability in the tokenization of fre-
quent words in corpora comparable to the corpora
used to train these models, we consider 1/6th of the
publicly available Pile Corpus used to train GPT-J
(250 GB of text). For our analysis we consider
500 frequent words of 8+ characters (as measured
using Google Ngrams) since long words are more
likely to be the source of variability.

For each target word, we first case-insensitively
detect each of its occurrences in the sub-corpus. In
order to also account for spelling errors, we used
case-insensitive fuzzy search, allowing matches
for substrings up to 1 Levenshtein distance away.
Over these occurrences, we discard those where
the substring is part of a bigger word, such as ‘dif-
ferentiation’ for the target word ‘different’ or if the
fuzzy match has whitespaces.

Once we have such occurrences, we want to
obtain the tokenization of the target word in the
context. For each word in the set of matches, if the
matched substring ends with a non-valid character
for our probing task, we delete the final character.

This allows for matches of [somethin’, somethin",
somethin] all to be considered as the string ‘some-
thin’. We also account for the factors that leads to
differing tokenization, such as preceding whites-
paces.

Now, for each of the target words, we have a

list of probable tokenization at most 1 Levenshtein
distance away. Since two target words such as

‘projection’ and ‘protection’ could themselves be

at 1 Levenshtein distance, these may act as what
we call “pseudo matches" for each other. So we
consider only one of these two from our target list,
leading to 466 word down from 500 words. Now,
for each of these target words, we count the number
of possible unique tokenizations.

For each of these 466 target words, we also ob-
tain a list of words from WordNet, which are 1
Levenshtein distance away. We treat this word list
as the pseudo-match list. We also consider the num-
ber of tokenizations for each target word, excluding
their pseudo-match list as well as by excluding all
those which are equally close to or closer to a word
in the pseudo-match list than they are to the target
word. We also compute the statistics of those with
exact matches.

Table 16 shows these statistics for the target
words. On average, a target word is expected to
have 213 different tokenizations depending on the
context. We observe that, while one may expect the
number of tokenizations to go up with the number
of characters in the target word, it doesn’t perfectly
increase monotonically. This is because the num-
ber of occurrences of the target word dictates the
number of tokenization it will have. Unsurpris-
ingly, we see a consistent trend that the number

2504

of tokenization greatly increases with increasing
occurrences.

We observe three factors contributing to a re-
markably large number of tokenizations. First,
Case-Sensitive tokenization leads to up to 6 dif-
ferent tokenizations for each of the target words.
Second, context-dependent tokenization increases
the expected number of different tokenizations to
12.91. The rest of the tokenizations are likely due
to misspellings or variants.

Our analyses were sped up using multiprocess-
ing and fuzzy regex. To do so, we split the sub-
corpus across multiple pieces. These runs take
about 3 days across 40 CPU Cores, 60 GB of RAM
and less than 600GB hard disk space. We report
the mean and standard deviation for the number
of tokenizations a word has across the portion of
the Pile corpus considered. These are also reported
as a function of word length and its frequency of
occurrence in the corpus.

Tables 16 and 17 shows these scores. The ‘All
matches’ field considers the unique tokenizations
of all matched substrings including those at 1 (case
and whitespace insensitive) Levenshtein distance
away. These word at 1 Levenshtein distance could
be either misspellings or a different English word
(for example an occurrence of the word ‘projec-
tion’ for target word ‘protection’). The latter of
these are identified using the Wordnet dictionary
and the statistics recalculated and shown in the
column ‘Matches except pseudo’. Some of the
misspellings contributing to this score could be
misspellinsg of either the target word or of one of
the other English words at 1 Levenshtein distance
away (‘prohection’ could be a misspelling of either
‘projection’ or ‘protection’ being at distance 1 from
both). Such occurrences are removed, with statis-
tics recomputed for the column ‘Matches closer
pseudo’. The column ‘Exact contain’ considers
only those occurrences, which contain the exact tar-
get word (case-insensitively) in the string ignoring
whitespaces. The ‘Exact match’ column does not
consider occurrences involving a preceding whites-
pace.

Table 18 shows some examples of variation in
tokenization.

E.2 Algorithm for increasing tokenization
variability

Algorithm 1 A simplified version of subword Tok-
enization with controllable variability

Require: 0 <=p <=1
procedure YOURFUNCTION(sentence)
tokens < List()
words < wordTokenize(sentences)
for each w in words do
u ~ Uniform[0, 1]
if u < p then
V < GPTJ.Vocab
filter(V, Az.isAlphabetic(z))
Choices < List()
foriinl,2...(w.length() — 1) do
ifw(:i] € V & wli:] € V then
push(Choices, w[:i], w[i:])
end if
end for
if "isEmpty(Choices) then
s ~ Choices
tokens «— Merge(tokens, s)
continue
end if
end if
s < GPTJ.Tokenize(w)
tokens < Merge(tokens, s)
end for
end procedure

2505

Measure All Matches | Matches Ex- | Matches Exact Con- | Exact Num
cluding Pseudo | Closer tain Match Words
Pseudo
Aggregate 232.90 229.70 213.74 17.91 5.97 466
7 Length words 297.50 271.00 223.50 22.00 6.5 2
8 Length words 332.29 325.68 288.07 25.00 7.89 28
9 Length words 231.48 227.78 206.95 16.94 5.93 190
10 Length words 225.51 222.58 209.53 17.97 5.87 127
11 Length words 213.28 211.02 202.97 17.88 5.85 61
12 Length words 224.14 223.54 218.64 18.25 5.79 28
13 Length words 218.14 217.00 214.76 16.57 5.19 21
14 Length words 238.33 238.33 238.33 16.67 5.00 9
exp(12) occurrence | 88.70 86.67 82.11 10.33 5.90 27
exp(13) occurrence | 155.78 153.87 146.55 13.61 5.15 74
exp(14) occurrence | 210.36 207.51 195.74 16.70 5.75 174
exp(15) occurrence | 278.88 275.00 251.69 19.91 5.96 139
exp(16) occurrence | 370.02 365.04 336.48 26.62 8.56 52
Table 16: Tokenization variance statistics - mean score.
Measure All Matches Matches Ex- | Matches Closer | Exact Contain Exact Match
cluding Pseudo | Pseudo
Aggregate 95.12 94.29 91.26 17.91 2.67
7 Length words 155.50 129.00 81.50 13.00 2.50
8 Length words 100.90 99.17 91.19 8.46 247
9 Length words 90.97 90.00 86.03 7.34 2.50
10 Length words 88.56 89.04 90.71 7.86 2.75
11 Length words 107.55 107.65 108.46 8.77 2.84
12 Length words 63.25 63.53 62.53 8.26 2.82
13 Length words 81.22 81.30 82.20 7.82 2.59
14 Length words 62.48 62.48 62.48 4.52 1.05
exp(12) occurrence | 38.59 37.65 34.60 3.15 1.26
exp(13) occurrence | 39.75 39.13 39.36 4.92 2.10
exp(14) occurrence | 51.84 52.17 53.73 6.19 2.51
exp(15) occurrence | 70.46 70.59 77.22 7.86 2.38
exp(16) occurrence | 101.86 100.38 103.83 9.99 3.44

Table 17: Variability across target words in tokenization variance statistics.

2506

String Tokenization String Tokenization
signature playstation
Exact match case insensitive Exact match case insensitive

"SIGNATURE" ["SIGN", "ATURE"] "playstation” ["play", "station"]
"SIGNATURE" ["s", "IGN", "ATURE"] "PLaySTATION" ["PL", "ay", "ST", "ATION"]

"SigNature" ["S", "ig", "Nature"] "playStation" ["play", "Station"]"

"Signature" ["Sign", "ature"] "PLAYSTATION" ["PLAY", "ST", "ATION"]

"Slgnature" ["SI", "gn", "ature"] "Playstation" ["Play", "station"]

"signature"” ["sign", "ature"] "PlayStation" ["Play", "Station"]

Exact match and whitespaces

Exact match and whitespaces

" signature" ["Gsignature"] " Playstation" ["GPlaystation"]
" Signature" [”GSignature”] " PLayStation" ["GPL", "ay", "Station"]
" SigNature" [”GSig", "Nature"] " PLAY station" ["GPLAY", "station"]
" signaTure" ["Gsign", "a", "T", "ure"] " PLAYSTATION" ["GPLAY", "ST", "ATION"]
" SIGNATure" ["GSIGN", "AT", "ure" " PlayStation" ["GPlayStation"]
" SiGNATURE" ["GSi", "GN", "ATURE"] " plAYsTaTion" ["Gpl", "AY", "s", "Ta", "T", "ion"]
" SIGNATURE" ["GSIGN", "ATURE"] " playStation” ["Gplay", "Statlon"]
" signAture" ["Gsign", "At", "ure"] " playstation” ["Gplay" "station"]
" SIGNature" ["GSIGN", "ature"] " PLaystation" ["GPL", "ay", "station"]
" sIgnature" ["Gs", "Ign", "ature"] " PlaySTation" ["GPlay", "ST", "ation"]
Fuzzy match and misspellings Fuzzy match and misspellings
"SIGNATURE" ["S","1", "GN", "ATURE"] "Play-station" ["Play", "-", "station"]
" SIGNATUTRE" ["GSIGN” "AT", "UT", "RE"] " PLAY-STATION" ["GPLAY", "-", "ST", "ATION"]
" signatyure" [G51gn" "at", "y", "ure" "play-station" ["play”, "-", "station"]
" signatre" [”651gn" "atre"] " Play-station" [”GPlay" """ "station"]
"Signiature" ["Sign", "i", "ature"] " play-station” ["Gplay", "-", "station"]
" signnature” [”G31gn" "nature] "Play-Station" ["Play", "-", "Statlon"]
" signatrre" ["G51gn” "at", "r", "re"] "Play]station" ["Play", "]", "station"]
" sigature" ["G§1g", "ature"] " Playst4tion" ["GPlay”, "st", "4", "tion"]
" Sign(ature" ["GSign", "(", "ature"] " PlayStatiOn" ["GPlay", "St", "ati", "0", "n"]
"signnature" ["sign", "nature"] " Play-Station" ["GPlay", "-", "Station"]
"SIG(NATURE" ["S", "IG", "(", "NAT", "URE"] "Playstaton” ["Play”, "st", "aton"]
" Si2nature" ["GSi", "2", "nature"] " play.Station" ["Gplay” ".", "Station"]
"Singnature" ["Smg“ ”nature”] " playstaton" ["Gplay”, "st", "aton"]
" signatuure” [”051gn” "atu", "ure" " PLAYTSTATION" ["GPLAY", "T", "ST", "ATION"]
" Signaturs" ["GSlgn" "at", "urs"] "playstatiom" ["play", "st", "ati", "om"]
" sigNUTure" ["Gsig", "N", "UT", "ure"] "playsstation” [”plays“ ”statlon]

Table 18: Some examples of variations in tokenization for two example words.

2507

