

subword tokenization schemes (e.g., Devlin et al.,

2019; Brown et al., 2020), but rarely with character-

level schemes.

One possible explanation for this state of affairs

is that models trained on word pieces implicitly

learn something about characters, making the ex-

plicit inclusion of character-level information un-

necessary. Indeed, recent work has shown that

even models based on subword tokens might be

able to use and manipulate character-level informa-

tion. Rozner et al. (2021) and Efrat et al. (2021)

both study cryptic crosswords and find that PLMs

(specifically, T5) can take advantage of character-

level information in order to solve wordplay tasks

like unscrambling scrambled words. Itzhak and

Levy (2021) show that RoBERTa can access sub-

word information by testing it on a spelling task

that requires it to map from words to characters

(e.g., from cat to the characters c + a + t).

The fact that models can do tasks like this is curi-

ous: word pieces have no explicit access to charac-

ter information during training, and the mechanism

by which they acquire such information is not ob-

vious. The goal of this paper is to understand the

nature of this information, and how it is learned.

Thus, we make several contributions. First, we

provide a thorough characterization of what charac-

ter information is accessible to subword-tokenized

PLMs by designing a binary probing task (§3) to

probe subword tokens for the presence or absence

of a particular character: e.g., does the sequence

star contain the letter t? This task lets us not just

assess whether this information is available, but

lets us characterize, in a fine-grained way, the na-

ture of character-level knowledge in subword to-

kens. Performance on the task far exceeds a ran-

dom control as well as a baseline using fixed GloVe

word embeddings (an F1 score of 93.7 for the best-

performing model, GPT-J), suggesting that sub-

words learn meaningful information about their

characters. This result holds across several alpha-

bets (Latin, Devanagari, Cyrillic, Arabic).

To explore how this information is acquired, we

introduce several possible explanations and con-

duct detailed analyses of the probing task on the

monolingual English models, with a particular fo-

cus on the best-performing model GPT-J (§3.3).

Specifically, we consider how character knowledge

varies as a function of the character being probed

for (it’s easier to classify rare letters than common

ones), the position in the token of the character in

question (performance is somewhat better early in

tokens), and the frequency of the token (frequent

tokens aren’t necessarily easier to probe). We then

turn to the possibility that systematic correspon-

dences between characters and syntactic features

(e.g., adverbs tend to end in "y"), play a role in how

models acquire character-level information. To that

end, we devise syntactic baselines, whereby we use

features like part of speech as input to the classifer

for detecting the presence or absence of tokens (§4).

The syntactic probe performs much better than con-

trols, which suggests syntactic features contribute

to the tokenizer’s performance. However, this cor-

relation does not suffice to explain the totality of

character information learned by PLMs.

Finally, we consider another possible mecha-

nism, based on the variability of tokenization, by

which character-level information might be learned

(§5). We conduct an experiment using simple fixed

embeddings, as proof of concept that increasing

variability in tokenization (Cao and Rimell, 2021)

affects the character information learned. Overall,

given the importance of tokenization schemes for

downstream performance (Bostrom et al., 2021;

Mielke et al., 2021), we believe richer knowledge

as to how tokens acquire character-level informa-

tion could inform the development of tokenization

schemes that improve model performance.

2 Prior work

All language models must choose what to use as

the basic linguistic unit, and, as a result, there is a

long history of work in NLP, evaluating the trade-

offs between models that tokenize words based on

characters, words, or something in between, like

bytes or word pieces (see Mielke et al., 2021; Pin-

ter, 2021, for recent surveys).

While words are a seemingly natural kind and

are often used as basic units for modeling language,

there is considerable debate in the linguistics litera-

ture as to how to even define a word, due to differ-

ences across languages (Haspelmath, 2017). More-

over, word-level models have a major weakness

in that they do not naturally handle out of vocab-

ulary items (see Jurafsky, 2003, for an overview)

and can have very different behaviors in languages

with different morphological systems (Mielke et al.,

2019; Cotterell et al., 2018). Character-level mod-

els have their own weaknesses: they are typically

slower to train at the scale required for massive lan-

guage modeling. Many recent efforts have centered

2488

around trying to use meaningful sub-word units in

language modeling, such as BPE (Gage, 1994; Sen-

nrich et al., 2016), WordPiece tokenization (Schus-

ter and Nakajima, 2012), and UnigramLM (Kudo,

2018).

While subword tokenization schemes often end

up with reasonable linguistic units, they still lack

access to character-level information. So there have

been a number of efforts to imbue word or sub-

word tokenization schemes with character-level in-

formation (Mielke and Eisner, 2019; Kim et al.,

2016; Dos Santos and Zadrozny, 2014; Bojanowski

et al., 2017; Li et al., 2018; Ma and Hovy, 2016;

Aguilar et al., 2021; El Boukkouri, 2020; Clark

et al., 2021).

Here, rather than asking how to augment sub-

word tokenization schemes with additional infor-

mation, we ask what they already learn about char-

acters naturally. To do so, we use probing, which is

widely used to assess what information is contained

in PLM embeddings (Belinkov, 2022; Belinkov

and Glass, 2019; Hewitt and Manning, 2019; Hup-

kes et al., 2018). Because probing has limitations

(Elazar et al., 2021; Pimentel et al., 2020; Voita

et al., 2021), we include a number of control tasks

(Hewitt and Liang, 2019) and baselines in order

to ask what can be recovered from embeddings,

relative to a control of equal expressive power.

3 Experiment 1: Probing for character

information

The main goal of our first experiment is to quan-

tify the extent to which tokens in PLMs capture

character-level information and characterize that

knowledge across a variety of dimensions. We train

a binary classifier probe that takes as input a token’s

frozen embeddings from PLMs to predict whether

a particular character of the alphabet is contained

in that token. That is, if successful, the probe will

predict that cool contains an "o" but "cat" does not.

We also consider a task in which the probe must

say whether one token (e.g., "coo") is a substring

of another token (e.g., "cool"). We examine the

probe’s success as a function of the character being

probed for, length of the token being probed, posi-

tion of the character in the token, and frequency of

the token.

3.1 Method

We consider the static non-contextualized embed-

dings of the following English PLMs: GPT-J

(Wang and Komatsuzaki, 2021), GPT-2 (Radford

et al., 2019), RoBERTa (Liu et al., 2019), BERT

(cased and uncased; Devlin et al., 2019), as well

as GloVe embeddings (Pennington et al., 2014)

and Language-only embeddings of the multimodal

LXMERT (Tan and Bansal, 2019). To test the

generalizability of our results to other languages,

we also considered embeddings from Multilingual

BART (Liu et al., 2020) and used them to test to-

kens consisting of only English characters, as well

as characters from three other alphabetic scripts:

Devanagari, Arabic, and Cyrillic. See Appendix B

for model details.

Each language model has its own vocabulary,

consisting of tokens. For our English experiments,

We consider only the tokens consisting entirely

of characters in the standard English alphabet (a-

z), along with the special characters that accom-

pany these tokens, such as preceding whitespace

(denoted by Ġ in the RoBERTa and GPT-family)

or symbols denoting continuations of preceding

word (‘##’ in BERT family). Because Multilin-

gual BART consists of characters from different

scripts and because its tokens are not explicitly sep-

arated by languages, for our Multilingual BART

experiments we consider all tokens that consist ex-

clusively of characters from the target alphabet.1

We define the target alphabet for each script as

the alphabetic characters in each script that occur

across at least 250 different tokens.

Our main probing task trains classifiers to de-

tect the presence or absence of each of the target

characters α in each token wi from the filtered-

vocabulary V . Thus, a separate dataset for each

character α is constructed over V as D′

α =
{(w1, y1), (w2, y2), . . . (wd, yd)} where the binary

label yi denotes whether α occurs at least once in

wi ∈ V . From these data-points in D′

α we create

a balanced dataset Dα with an equal number of

positive and negative labels by undersampling the

(wi, yi) points with yi as the negative label (i.e.,

when probing for the presence of the character "z",

half the tokens will contain "z" even though most

tokens in general do not). We then split Dα into

training and test splits in a roughly 80-20 ratio,

while (for the English experiments) ensuring that

1Note that, because Multilingual BART does not explicitly
separate tokens based on language, our experiment compares
across scripts, as opposed to across languages. For instance,
the tokens considered for Arabic can include tokens derived
from not just the Arabic language, but also other languages
that use the Arabic script like Farsi or Malay.

2489

Model type PLM Control

English Probing Experiment

GPT-J 93.70 48.36
GPT-2 84.25 52.31

RoBERTa 86.41 47.33
BERT-Cased 78.50 47.08

BERT-Uncased 77.48 49.37
GloVe 300D 67.57 49.57
GloVe 100D 66.04 50.33
LXMERT 62.4 53.92

English Substring Experiment

GPT-J 86.56 70.03

Table 1: Results (F1-scores)for the main English prob-

ing experiment.

Script PLM Control

Latin (English chars) 80.95 39.13
Devanagari 78.61 50.78

Arabic 76.37 51.88
Cyrillic 81.37 45.71

Table 2: Results (F1-scores) for the multilingual prob-

ing experiment on Multilingual BART.

models available and because of the easy access to

other sources of linguistic information, we believe

these results suggest that our findings would be

generalizable to non-Latin scripts.

English Substring Experiment Performance on

the English Substring Experiment is also far above

chance, with an average F1 of 86.56, compared to a

control F1 (on random embeddings) of 70.03 (bot-

tom row in Table 1). Control performance is well

above 50 in this case since the data set is created to

be balanced such that the superstrings have equal

numbers of positive and negative examples. But

there are still baseline differences in how often a

token occurs as a substring, so the model can learn

that certain substrings like "en" are more common

than substrings like "emies". We take the perfor-

mance on the Substring Experiment as evidence

that the model can make use of character informa-

tion to do more complicated substring tasks than

just character identification.

3.3 Breakdown of results

Next, we consider a number of possibilities for how

character-level information gets into these embed-

dings and conduct analyses intended to understand

the nature of the information learned and how it

gets there. We focus on our best-performing model

(GPT-J) for these analyses.

Is the first letter learned best because of alpha-

betization? One possibility is that, because the

training data likely contains many alphabetical lists

and other kinds of word lists (e.g., lists of words

starting with "z"), the model learns a co-occurrence

relationship between words that start with the same

character. We would predict that this would cause

stronger performance when the probed character

occurs at the beginning of the word. To that end,

we examine how the model’s performance varies as

a function of where in the token the target character

is (top panel in Figure 3). While there is indeed

a significant negative relationship between word

position and recall as measured by a linear regres-

sion (β = −.01, p < .001), the slope is relatively

small. While recall on the first letter in a token

is high (95.2), it is not an outlier: performance is

only somewhat higher than recall for the second

character (94.5). Moreover, performance is above

chance even when the target character appears 10

or more characters deep in a token. Therefore, we

do not believe the effect is driven only by word

beginnings, although they likely play a role.

Is it only frequent words that the probe gets

right? Next, we consider whether performance

varies as a function of the frequency of the token

(middle panel in Figure 3). One possibility could

be that character information is memorized only in

high-frequency tokens like ªthe", which occur often

enough that at least sometimes very frequent tokens

are broken into characters (e.g., "the" appearing in

the context of "t h e"), and that low-frequency to-

kens will perform worse. This does not appear to

be the case and, in fact, there is, if anything, a neg-

ative relationship (β = −.013, p = .05) between

binned log frequency and performance, such that

less frequent tokens are easier to extract character

information from.

Is it easier to get long or short words right?

The bottom panel of Figure 2 shows F1-score as

a function of the length of the token. Using the

GPT-J embeddings, it is easier to classify charac-

ters in short tokens, as compared to longer tokens.

This may be a function of the nature of the task

since there is, in some sense, less information to be

represented for a short token like "be" for the pur-

poses of the task (just that it contains a "b" and it

contains an "e"), whereas a long token would have

to represent information about more characters.

Which characters are learned best? Part of

what makes the success of the probe is that word

embeddings represent word co-occurrence informa-

2491

Measure SpaCy GPT-J Control

Aggregate Performance

F1 52.34 61.24 49.68

Best performing characters

s 64.60 66.82 40.32
y 61.96 64.89 48.68
e 62.05 62.32 47.27

Worst performing characters

b 48.92 55.13 48.25
m 48.13 55.61 46.11
q 43.79 53.54 49.28

Table 3: The best and worst performing characters from

Experiment 2 on the SpaCy syntactic baseline, the GPT-

J syntactic baseline, and the Control.

tag (PoS; e.g., for "Jane", NNP for a proper noun),

Coarse-Grained Part of Speech tag (Coarse-grained

PoS; e.g., for "Jane", PROPN for proper noun), and

a Named Entity Recognition tag (NER; e.g., for

"Jane", PERSON for a personal name). We use

these features to construct a syntactic vector for

each token.

Because SpaCy is built to operate over words,

not tokens, we also construct custom syntactic base-

lines that can tag subwords, as opposed to tokens.

The performance of these probes will serve as

a baseline for ascertaining how much character-

level information can be learned by these features

alone, without a full language model. If they can

perform just as well as the full GPT-J embeddings,

that would suggest that morphosyntactic informa-

tion (of the sort that we already know is learned

by PLMs during pretraining) is sufficient for the

performance on the probing task.

The method is the same as in Experiment 1,

where the goal is to predict the presence or absence

of a character α in a token, except that instead of

using the token’s model embeddings as input, we

instead use syntactic feature vectors (obtained ei-

ther from SpaCy or a custom tagger) as input. We

describe these syntactic vectors below.

Syntactic baselines The SpaCy model has 3

features for each token: NER, PoS, and Coarse-

Grained PoS tags. The resultant features are dis-

crete one-hot feature vectors over labels.

The custom syntactic tagger, which is intended

to solve the problem that SpaCy tags words and not

subword tokens, takes a (subword) token’s model

embedding as input and outputs a vector of prob-

abilities over part of speech and named entity cat-

egories. Here, we describe results for our custom

GPT-J Tagger, trained using GPT-J model embed-

dings, since GPT-J is the best-performing of our

models for our main task. See Appendix D for

descriptions and the results for 2 additional BERT-

based custom taggers that we built.

To build our custom GPT-J-Tagger, we train an

MLP model to predict PoS and NER labels based

on GPT-J’s static embedding layer for each token.

The tagger is trained on the CoNLL 2003 dataset’s

train and evaluation splits (Sang and De Meulder,

2003), which contain part of speech and named

entity information. Unlike the SpaCy tagger, our

custom GPT-J-Tagger outputs a probability distri-

bution over categories. We use this distribution

over labels as input, rather than a one-hot vector.

In the Appendix, Table 13 shows the performance

of the tagger’s performance qua tagger.

Probing for characters using syntactic baselines

We run the character probing experiment as before.

But, rather than using the model embeddings, we

use the syntactic feature vectors as the target of

our probe. Table 3 shows the results of these ex-

periments. Using the syntactic baselines leads to

substantially improved performance over control

tasks, and the GPT-J-Tagger does better than the

SpaCy tagger. We hypothesize that these diver-

gences occur because the custom GPT-J-Tagger is

better suited to handling subwords, and because

it enables us to use label distribution rather than

one-hot vectors.

Zooming in on the performance over individual

characters, we observe that, relative to the control

task, some English characters consistently perform

much better when using syntactic features. As pre-

dicted, these are precisely the characters that are

highly correlated with particular parts of speech.

The best-performing characters are: "s" (associ-

ated with plural nouns and third-person singular

verbs) and "y" (associated with adjective and ad-

verb endings). Thus, the syntactic baselines seem

to be capturing the information that they were in-

tended to capture. But their performance still fell

far below the best performing PLMs, suggesting

that the large models are capturing more than just

the information captured by the syntactic models.

Moreover, as can be seen in Figure 2, the syntax

baseline shows a sharp peak for morphologically

informative characters like "s", but this pattern is

much weaker in GPT-J (which shows only a slight

performance increase for "s"). Therefore, we do

not think syntactic information can explain all the

character information learned by PLMs. In the next

2493

Word Tokenizations

"dictionary" "d + ictionary"

" dictionary" " dictionary"

"dictionaries" "d + iction + aries"

" dictionaries" " diction + aries"

"dicionary" "d + icion + ary"

Table 4: Some GPT tokenizations for "dictionary".

section, we consider another possibility: variability

of tokenization, the focus of the next section.

5 Experiment 3: Tokenization variability

Consistent with other work suggesting benefits to

variable tokenization (e.g., Provilkov et al., 2020;

Kudo, 2018), we hypothesize that the variability of

tokenization is another avenue by which character-

level information could be learned by models. We

first quantify this variability and then run an exper-

iment using CBOW Word Embeddings (Mikolov

et al., 2013) showing how increasing the variabil-

ity in tokenization can lead to more character in-

formation being learned. We posit that the same

mechanism may be in play for PLMs.

Subword tokenization like the one used by GPT

models can cause the same lemma to have very dif-

ferent tokenizations, depending on its form and/or

its spelling. See Table 4 for possible tokeniza-

tions of "dictionary" and related forms, including

a misspelling (bottom row). This is a subset of the

possible misspellings, variants, and morphologi-

cal forms of the word. But the listed forms alone

generate 8 unique tokens.

It would be useful for the model to learn a rela-

tionship between all these tokens, since they repre-

sent the same lemma. We posit that the desirability

of learning this mapping is a mechanism by which

character information could be learned, by induc-

ing an objective to map between atomic tokens like

"dictionary" and the various substring tokens that

can arise. While each of these mappings could

be learned individually, learning character-level

spelling information offers a more general solution

to the problem, such that even an entirely novel

tokenization could be interpreted by composing the

characters of the tokens.

For this to be plausible, though, variable tok-

enizations like this must be frequent enough for

it to matter. In Appendix E, we use heuristics to

identify different forms in which a word appears

and conduct a series of back-of-the-envelope cal-

culations to determine how many different unique

tokenizations are expected for a long word (8+ char-

Tokenization ρ Embedding Control

Word - 60.55 47.12
GPT-J - 63.23 47.51
GPT-J 0.05 66.00 47.23
GPT-J 0.1 65.64 46.72
GPT-J 0.2 64.23 47.01
GPT-J 0.5 62.33 46.47

Table 5: Average F1 scores for probing results, as a

function of change in tokenization variability

acters) like dictionary, in all its variant forms and

misspellings in a sample of the Pile corpus (we used

1/6 of the corpus as a sample; Gao et al., 2020). We

found that, on average, we should expect over 200

different tokenizations for a word like "dictionary",

many pairs of which have entirely disjoint sets of

subword tokens from each other.

This hypothesis leads to a prediction: increas-

ing the variability of tokenization should increase

the amount of character-level information learned.

To test this, we train models using tokenization

schemes with different levels of variability and

then test how much character-level information

they learn, using our probing task.

Because the overall goal of our paper is to

characterize and explain the nature of character-

level information learned, we conduct a proof-of-

concept experiment using CBOW Word Embed-

dings (Mikolov et al., 2013) on a portion of the Pile

corpus with 1.1B characters, as opposed to training

a large transformer model from scratch varying tok-

enization schemes. We train 6 CBOW models from

scratch, each with a different tokenization scheme.

As baselines, we consider vanilla rule-based word-

tokenization (the CBOW default, labeled "Word"

in Table 5) and GPT-J’s default word piece tok-

enization scheme. Comparing these two baselines

against each other lets us compare the effect of

word tokenization vs. subword tokenization on

character information. But our key manipulation

is to consider variations of GPT-J’s tokenizer in

which we systematically increase tokenization vari-

ability.

In pre-processing the word-tokenized corpus for

input, for each word token wi, with probability

(1−ρ), we tokenize it using the standard GPT-J tok-

enizer. Under the standard tokenizer, " schematics"

becomes " sche + mat + "ics". With probability ρ,

however, we tokenize wi using a random tokeniza-

tion that consists of alternative valid tokens from

GPT-J. So, " schematics" could become " schema +

tics" or " schematic + s" (but not " schemati + cs"

2494

since " schemati" is not a valid GPT token). We

vary ρ from 0.05 to 0.5. See Appendix E for more

details on this procedure. The result is a series of

tokenized corpora, which have more variable tok-

enization than the vanilla GPT-J-tokenized corpus.

We train CBOW models separately for each of

these corpora. Table 5 shows the results of these

experiments on our probing task (using the same

method as in Experiment 1). As expected, probes

on the subword tokenization schemes reveal they

learn more information about characters than the

default word-level tokenizer. Most importantly,

upon increasing the variability on GPT-J’s tok-

enization scheme, the performance of the probe

increases, peaking at ρ = 0.05 and ρ = 0.1. There-

after, the performance decreases with variability,

suggesting that increasing variability leads to in-

creased character knowledge but only up to a point,

likely because there is a tradeoff: since the corpus

size for the toy experiment is small, having very

high variability leads to the model seeing fewer

instances of each token.

While the magnitude of these differences is rel-

atively small, they are consistent across random

seeds and train-test splits. Thus, we believe that

these results offer proof of concept that the vari-

ability of tokenization affects how much charac-

ter information is learned by CBOW models and

that this finding would plausibly generalize to per-

formance in PLMs (although we leave it to future

work to confirm this). As such, increasing tokeniza-

tion variability could be a means by which PLMs

could be engineered to learn richer character-level

information.

6 Discussion and Conclusion

Overall, our probing methodology revealed that

PLMs with sub-word tokenization learn quite a lot

about characters. The result is robust to the position

of the character in the token, the identity of the

character, the frequency of the token, the length of

the token, and the alphabetic script (although we

did not consider entirely non-alphabetic scripts like

Chinese since such languages would require a very

different formulation).

We suggest at least two possible mechanisms

by which this information is learned: systematic

relationships between certain characters and syn-

tactic/semantic features and the variability of tok-

enization. Insofar as these methods (e.g., tokenizer

variability) can be manipulated in model construc-

tion, this knowledge could be used to build mod-

els that perform better at tasks dependent on such

knowledge. Given the particular importance of tok-

enization in multilingual models (Rust et al., 2021;

Singh et al., 2019), it would also be fruitful to con-

sider the import of these results for multilingual

settings.

More generally, while the linguistic capabili-

ties of PLMs are much studied (for overviews, see

Rogers et al., 2020; Bommasani et al., 2021), the

question whether PLMs learn the constituent char-

acters of tokens is of a different nature in that it de-

pends on learning a property of language (spelling)

that is not explicitly tied to meaning. There is no a
priori reason "dog" is spelled "D-O-G", and, in a

sense, the spelling of the word does not matter. But,

in another sense, it does matter: humans routinely

use language in creative and character-dependent

ways: e.g., alphabetizing text, scrambling letters to

create codes, and solving crossword puzzles. Un-

derstanding whether and how the building blocks

of this meta-linguistic knowledge can emerge dur-

ing self-supervised training on a word prediction

task could be of interest not just in NLP, but in the

cognitive sciences.

7 Ethics and Broader Impacts

This work consists of probing experiments and in-

terpretability analyses of PLMs, and the risks and

ethical considerations are largely those that affect

any work with large PLMs (e.g., energy costs; see

Bommasani et al., 2021, for an overview of risks

and tradeoffs). The intended use of our code is for

academic research. We consider probing publicly

available PLMs, which are made publicly avail-

able in part for research purposes, to be within the

intended use of PLMs.

8 Acknowledgments

This work was supported by National Science Foun-

dation Grants No. 2104995 to KM. We thank Chris

Potts and Josh Rozner for conversations that helped

inspire this work, Maria Ryskina and Kaj Bostrom

for comments on drafts, and Eunsol Choi for intro-

ducing the authors.

References

Gustavo Aguilar, Bryan McCann, Tong Niu, Nazneen
Rajani, Nitish Shirish Keskar, and Thamar Solorio.
2021. Char2Subword: Extending the subword em-
bedding space using robust character compositional-

2495

ity. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 1640±1651, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Linguis-
tics, 48(1):207±219.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49±72.

Benjamin K Bergen. 2004. The psychological reality of
phonaesthemes. Language, 80(2):290±311.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Damián E Blasi, Sùren Wichmann, Harald Ham-
marström, Peter F Stadler, and Morten H Chris-
tiansen. 2016. Sound±meaning association biases ev-
idenced across thousands of languages. Proceedings
of the National Academy of Sciences, 113(39):10818±
10823.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135±146.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Kaj Bostrom, Xinyu Zhao, Swarat Chaudhuri, and Greg
Durrett. 2021. Flexible generation of natural lan-
guage deductions. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 6266±6278, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Samuel R Bowman. 2021. When combating hype, pro-
ceed with caution. arXiv preprint arXiv:2110.08300.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Marc Brysbaert, Boris New, and Emmanuel Keuleers.
2012. Adding part-of-speech information to the
subtlex-us word frequencies. Behavior research
methods, 44(4):991±997.

Kris Cao and Laura Rimell. 2021. You should evalu-
ate your language model on marginal likelihood over

tokenisations. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2104±2114, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Jonathan H Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2021. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. arXiv preprint arXiv:2103.06874.

Ryan Cotterell, Christo Kirov, Mans Hulden, and Jason
Eisner. 2018. On the complexity and typology of
inflectional morphological systems. Transactions of
the Association for Computational Linguistics.

Isabelle Dautriche, Kyle Mahowald, Edward Gibson,
Anne Christophe, and Steven T Piantadosi. 2017.
Words cluster phonetically beyond phonotactic regu-
larities. Cognition, 163:128±145.

Isabelle Dautriche, Daniel Swingley, and Anne
Christophe. 2015. Learning novel phonological
neighbors: Syntactic category matters. Cognition,
143:77±86.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171±4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Cicero Dos Santos and Bianca Zadrozny. 2014. Learn-
ing character-level representations for part-of-speech
tagging. In International Conference on Machine
Learning, pages 1818±1826. PMLR.

Avia Efrat, Uri Shaham, Dan Kilman, and Omer Levy.
2021. Cryptonite: A cryptic crossword benchmark
for extreme ambiguity in language. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4186±4192, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Hicham El Boukkouri. 2020. Ré-entraîner ou entraîner
soi-même ? stratégies de pré-entraînement de BERT
en domaine médical (re-train or train from scratch
? pre-training strategies for BERT in the medi-
cal domain). In Actes de la 6e conférence con-
jointe Journées d’Études sur la Parole (JEP, 33e
édition), Traitement Automatique des Langues Na-
turelles (TALN, 27e édition), Rencontre des Étudi-
ants Chercheurs en Informatique pour le Traitement
Automatique des Langues (RÉCITAL, 22e édition).
Volume 3 : Rencontre des Étudiants Chercheurs en In-
formatique pour le TAL, pages 29±42, Nancy, France.
ATALA et AFCP.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2021. Amnesic probing: Behavioral expla-
nation with amnesic counterfactuals. Transactions of

2496

the Association for Computational Linguistics, 9:160±
175.

Katrin Erk. 2016. What do you know about an alligator
when you know the company it keeps? Semantics
and Pragmatics, 9:17±1.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users Journal, 12(2):23±38.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.

Martin Haspelmath. 2017. The indeterminacy of word
segmentation and the nature of morphology and syn-
tax. Folia Linguistica, 51(s1000):31±80.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733±2743, Hong Kong,
China. Association for Computational Linguistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129±4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

C.F. Hockett. 1960. The origin of language. Scientific
American, 203(3):88±96.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and ’diagnostic classifiers’ reveal
how recurrent and recursive neural networks process
hierarchical structure. Journal of Artificial Intelli-
gence Research, 61:907±926.

Itay Itzhak and Omer Levy. 2021. Models in a
spelling bee: Language models implicitly learn the
character composition of tokens. arXiv preprint
arXiv:2108.11193.

Daniel Jurafsky. 2003. Probabilistic modeling in psy-
cholinguistics: Linguistic comprehension and pro-
duction. In R. Bod, J. Hay, and S. Jannedy, editors,
Probabilistic Linguistics. MIT Press.

Michael H. Kelly. 1992. Using sound to solve syntac-
tic problems: The role of phonology in grammat-
ical category assignments. Psychological Review,
99(2):349±364.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI conference on artificial
intelligence.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66±75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66±71, Brussels, Belgium.
Association for Computational Linguistics.

Bofang Li, Aleksandr Drozd, Tao Liu, and Xiaoyong
Du. 2018. Subword-level composition functions for
learning word embeddings. In Proceedings of the
second workshop on subword/character level models,
pages 38±48.

Jindřich Libovickỳ, Helmut Schmid, and Alexander
Fraser. 2021. Why don’t people use character-
level machine translation? arXiv preprint
arXiv:2110.08191.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726±742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064±1074, Berlin, Germany.
Association for Computational Linguistics.

Hans Marchand. 1959. Phonetic symbolism in en-
glish wordformation. Indogermanische Forschungen,
64:146.

Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky,
Colin Raffel, Manan Dey, Matthias Gallé, Arun Raja,
Chenglei Si, Wilson Y Lee, Benoît Sagot, et al. 2021.
Between words and characters: A brief history of

2497

open-vocabulary modeling and tokenization in nlp.
arXiv preprint arXiv:2112.10508.

Sabrina J. Mielke, Ryan Cotterell, Kyle Gorman, Brian
Roark, and Jason Eisner. 2019. What kind of lan-
guage is hard to language-model? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4975±4989, Florence,
Italy. Association for Computational Linguistics.

Sabrina J Mielke and Jason Eisner. 2019. Spell once,
summon anywhere: A two-level open-vocabulary
language model. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
6843±6850.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space.

Padraic Monaghan, Nick Chater, and Morten H. Chris-
tiansen. 2005. The differential role of phonological
and distributional cues in grammatical categorisation.
Cognition, 96(2):143±182.

Padraic Monaghan, Richard C. Shillcock, Morten H.
Christiansen, and Simon Kirby. 2014. How arbitrary
is language. Philosophical Transactions of the Royal
Society B.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024±8035.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532±1543.

Tiago Pimentel, Arya D. McCarthy, Damian Blasi,
Brian Roark, and Ryan Cotterell. 2019. Meaning
to form: Measuring systematicity as information. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1751±
1764, Florence, Italy. Association for Computational
Linguistics.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020. Information-theoretic probing for linguistic
structure. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4609±4622, Online. Association for Computa-
tional Linguistics.

Yuval Pinter. 2021. Integrating approaches to word
representation. arXiv preprint arXiv:2109.04876.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882±1892, Online. Association for
Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Arij Riabi, Benoît Sagot, and Djamé Seddah. 2021.
Can character-based language models improve down-
stream task performances in low-resource and noisy
language scenarios? In Proceedings of the Seventh
Workshop on Noisy User-generated Text (W-NUT
2021), pages 423±436, Online. Association for Com-
putational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842±866.

José Carlos Rosales Núñez, Guillaume Wisniewski, and
Djamé Seddah. 2021. Noisy UGC translation at the
character level: Revisiting open-vocabulary capabil-
ities and robustness of char-based models. In Pro-
ceedings of the Seventh Workshop on Noisy User-
generated Text (W-NUT 2021), pages 199±211, On-
line. Association for Computational Linguistics.

Josh Rozner, Christopher Potts, and Kyle Mahowald.
2021. Decrypting cryptic crosswords: Semantically
complex wordplay puzzles as a target for nlp. In
Advances in Neural Information Processing Systems,
volume 34, pages 11409±11421. Curran Associates,
Inc.

Phillip Rust, Jonas Pfeiffer, Ivan VuliÂc, Sebastian Ruder,
and Iryna Gurevych. 2021. How good is your tok-
enizer? on the monolingual performance of multilin-
gual language models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3118±3135, Online. Association
for Computational Linguistics.

Erik F Sang and Fien De Meulder. 2003. Introduction
to the conll-2003 shared task: Language-independent
named entity recognition. arXiv preprint cs/0306050.

F. de Saussure. 1916. Course in general linguistics.
Open Court Publishing Company.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5149±5152. IEEE.

2498

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715±1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Jasdeep Singh, Bryan McCann, Richard Socher, and
Caiming Xiong. 2019. Bert is not an interlingua and
the bias of tokenization. In Proceedings of the 2nd
Workshop on Deep Learning Approaches for Low-
Resource NLP (DeepLo 2019), pages 47±55.

Monica Tamariz. 2008. Exploring systematicity be-
tween phonological and context-cooccurrence repre-
sentations of the mental lexicon. The Mental Lexicon,
3(2):259±278.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5100±5111, Hong Kong, China. Association for Com-
putational Linguistics.

Elena Voita, Rico Sennrich, and Ivan Titov. 2021. Ana-
lyzing the source and target contributions to predic-
tions in neural machine translation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1126±1140, Online.
Association for Computational Linguistics.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6
billion parameter autoregressive language model.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Appendix A Code details

We release our code anonymously

at https://github.com/ayushk4/

character-probing-pytorch under MIT

License.

The models weights, data and other

dependencies required for experiment

are at https://github.com/ayushk4/

character-probing-pytorch/releases.

The intended use of our code is for academic

research. We consider probing publicly available

PLMs, which are made available for research as

well as end use cases, to be within the intended use

of PLMs.

Appendix B Probing for Character

Information

We use off-the-shelf APIs for lemmatization and

WordNet from NLTK (Apache License 2.0; Bird

et al., 2009). Our implementation uses PyTorch

(BSD License; Paszke et al., 2019), HuggingFace

(Apache License 2.0; Wolf et al., 2019) and custom

APIs for GPT-J’s embedding.

The probes for each MLP are trained separately

starting with random initialization weights. We

train the probe via a binary classification task

via backpropagation, using the Adam optimizer

(Kingma and Ba, 2015) with betas of 0.9 & 0.999

and epsilon of 1e-08 without weight decay, over

the standard Binary Cross Entropy loss across the

predicted logits ŷi and ground truth logits yi.

B.1 PLMs considered

Details of the PLMs used along with their model-

card on Huggingface:

• GPT-J: We used the standard GPT-J with 6

Billion parameters and its reversible Byte-Pair

encoding based subword tokenizer. We ex-

tracted the embeddings and have released it

separately. Model Card: ‘EleutherAI/gpt-j-

6B’ under Apache 2.0 License.

• GPT-2: We consider the base model for GPT-

2 with 124 Million parameters. The tokenizer

used in this model is the exact same as the

one used in GPT-3 and is also a subword tok-

enizer based on reversible Byte-Pair encoding.

Model Card: ‘gpt2’ under Modified MIT Li-

cense.

• RoBERTa: We again use the Base model

for fairer comparison to the GPT-2 model

with 125 Million parameters. This model has

partially reversible Byte-Pair Encoding based

on GPT-2’s byte-pair tokenizer but with addi-

tional tokens for a BERT-like MLM discrim-

inative pre-training. Model Card: ‘roberta-

base’ under MIT License

• BERT: The BERT-base models have roughly

110 Million parameters. Both the Uncased

and Cased versions of this model are consid-

ered with their Word-Piece tokenizers. For

this tokenizer, we also consider the charac-

ter ‘##’ while filtering out vocabulary, as it

denotes the token continues on the preceding

2499

Case-insensitive Case-Sensitive
Model Lemma Control Lemma Control
Probe LR # Params LR # Params LR # Params LR # Params

GPT-J 1e-4 240M (206M) 1e-4 443M (410M) 1e-4 240M (206M) 3e-4 443M (410M)
GPT2 3e-4 40M (39M) 1e-4 443M (410M) 3e-4 40M (39M) 3e-4 443M (410M)

RoBERTa 3e-4 40M (39M) 1e-4 443M (410M) 1e-3 40M (39M) 1e-2 443M (410M)
BERT-cased 1e-3 23M (22M) 3e-3 443M (410M) 1e-3 23M (22M) 5e-5 443M (410M)

BERT-uncased 3e-3 25M (23M) 3e-4 443M (410M) 3e-4 25M (23M) 1e-4 443M (410M)
LXMERT 1e-4 24M (23M) 3e-4 443M (410M) 3e-4 24M (23M) 1e-4 443M (410M)

GloVe 100D 1e-4 4.02M (4.00M) 3e-4 12.2M (12.0M) 3e-4 4.02M (4.00M) 3e-4 12.2M (12.0M)
GloVe 300D 3e-4 12.2M (12.0M) 1e-4 12.2M (12.0M) 3e-4 12.2M (12.0M) 3e-5 12.2M (12.0M)

Table 9: Experiment 1 hyperparameters.

Property Statistics

Train Sentences 14986
Train Tokens 219553
Valid Sentences 3465
Valid Tokens 55043
Test Sentences 3683
Test Tokens 50349
NER Tags 5
PoS Tags 45
Preprocessing None
Link github: davidsbatista/NER-datasets

Table 10: Dataset Checklist for training POS/NER

CoNLL set.

‘facebook/mbart-large-cc25’, without any mention

of its license. Its tokenizer is a reversible one, simi-

lar to GPT, except that it encodes preceding space

with ‘_’.

Languages: For the non-Latin scripts considered,

we only consider those characters with more than

250 occurrences in the tokenizer’s vocabulary. We

consider the experiment case-insensitive (by lower-

casing the string) across scripts that have lowercase

and uppercase characters.

Hyperparameters: Each probe is trained for

5 epochs, with 128 batch-size. The learning

rate is tuned over averaged Macro-F1 in the grid

{1e−5, 3e−5, 5e−5, 1e−4, 3e−4, 1e−3, 3e−
3, 1e−2, 3e−2}. We trained the probe on the best

hyperparameter settings across 5 different train-test

splits and seeds. Table 12 shows these best learn-

ing rates and the number of parameters (and frozen

parameters) in the probe. For all the control embed-

ding, we assume the same dimension as the largest

model (1024) and considered a maximum vocab of

300k, even though only a few thousand are used.

These experiments take less than 20 minutes for

each run requiring less than 12 GB of GPU mem-

ory and were run on a mix of NVidia Tesla K80,

GTX 1080 Ti, P100, V100 GPUs with Dell R740

and Intel Xeon CPUs.

Script PLM Control

Latin (English chars) 3.28 7.21
Devanagari 6.58 5.43

Arabic 10.50 2.99
Cyrillic 3.79 5.31

Table 11: Standard Deviation for Multilingual BART

experiment.

Appendix D Syntax Baseline for

Character information

D.1 Custom syntax taggers

First we consider an off-the-shelf SpaCy model

with 3 features for each token: NER, PoS, and

Coarse-Grained PoS tags. Before running this

model, we remove the preceding whitespace char-

acters in the token, if present. The resultant fea-

tures are discrete one-hot feature vectors over la-

bels. The SpaCy tagger is not perfectly suited to

our task since it operates at the word level, whereas

we are concerned with obtaining a subword token’s

embeddings. To solve that problem, we also built 3

custom taggers for obtaining PoS and NER labels

on subword tokens. These taggers take (a subword)

token’s model embedding as input and output a vec-

tor of probabilities over part of speech and named

entity categories.

To build our custom GPT-J-Tagger, we train an

MLP to predict PoS and NER label based on GPT-

J’s static embedding layer for each token. The

tagger is trained on the CoNLL 2003 dataset’s train

and evaluation splits (Sang and De Meulder, 2003),

which contains part of speech and named entity

information. Unlike the SpaCy tagger, our cus-

tom GPT-J-Tagger outputs a probability distribu-

tion over categories so we can use this distribution

over labels as the vector of interest, rather than a

one-hot vector.

Table 13 show the performance of the tagger’s

performance qua tagger. Table 10 shows the

Dataset Checklist for this experiment. To build

2501

PLM Control
Script LR # Params LR # Params

Latin 3e-4 258M (256M) 1e-2 309M (307M)
Devanagari 3e-4 258M (256M) 1e-3 309M (307M)

Arabic 3e-4 258M (256M) 3e-3 309M (307M)
Cyrillic 3e-4 258M (256M) 3e-4 309M (307M)

Table 12: Multilingual Hyperparameters. Number of parameters (with frozen parameters in parenthesis) is denoted

per probe.

Model Type # Epochs Batch Size LR Dev F1Wtd Dev F1Macro Test F1Wtd Test F1Macro

BERT-sentence (PoS) 10 32 1e-5 98.17 94.80 93.42 87.40
BERT-token (PoS) 10 32 1e-5 76.42 56.75 77.24 56.74
GPT-J MLP (PoS) 20 64 1e-4 62.90 68.72 60.15 69.14

BERT-sentence (NER) 10 32 1e-5 97.88 93.18 96.02 86.92
BERT-token (NER) 10 32 1e-5 83.50 56.97 81.57 54.88
GPT-J MLP (NER) 20 64 5e-5 85.59 63.56 82.71 57.34

Table 13: Labels from POS/NER labels. LR denotes learning rate

Split Type SpaCy BERT-sentence BERT-token GPT-J Control

Aggregate across 26 characters

F1 52.338 55.008 59.7525 61.2395 49.6772

Best performing ones

s 64.5967 60.7179 70.3299 66.8159 40.3154
y 61.9632 60.3871 67.1591 64.8863 48.6838
e 62.0518 57.7531 64.6152 62.3213 47.2712
t 60.6848 54.3826 64.0681 60.7345 48.4873
p 50.235 55.2361 63.9658 60.5067 46.5612
i 60.8024 56.4055 63.3518 61.6032 42.8155

Worst performing ones

w 45.748 52.7235 57.6919 58.2666 48.6947
q 43.7924 56.5274 57.5407 53.5437 49.2841
k 47.7873 49.3832 57.3084 55.9559 46.2371
o 52.9403 53.6138 56.8312 55.6293 43.5871
b 48.9159 56.739 56.3873 55.1265 48.252
m 48.1349 53.4036 56.2846 55.6094 46.1084

Table 14: Syntax baseline: Probing over syntax label distribution.

2502

the BERT sequence-labeling tagger, we fine-tuned

a BERT sequence labeling model for the PoS and

NER tasks, in order to output a label for each (sub-

word) token in a sentence. When extracting syn-

tactic features for this model, we first do the same

pre-processing of removing the special preceding

whitespace of GPT’s tokens as SpaCy before in-

put into the BERT model. Since BERT’s tokenizer

could have more than one token for a single GPT-

J’s token, we consider the average of the logits as

the pre-softmaxed feature vector.

In addition to the BERT sentence-level tagger,

we consider a BERT token classifier model fine-

tuned for NER and PoS at token level rather than

at sentence level. This token-level model does not

leverage context to deduce the label, and is closer

to how we use this model later to get features for

predicting NER/PoS features.

D.2 Results and Hyperparameters

We use off-the-shelf APIs for lemmatization and

WordNet from NLTK. Our implementation uses

PyTorch (Paszke et al., 2019), HuggingFace (Wolf

et al., 2019) and custom APIs (now released) for

GPT-J’s embedding. The hyperparameter tuning

was done on the dev set for only the learning rate

in the grid {1e− 5, 3e− 5, 1e− 4} for BERT and

{1e−5, 3e−5, 5e−5, 1e−4, 3e−4, 1e−3, 3e−
3, 1e − 2, 3e − 2} for GPT-J. Our MLP model is

3-layered with SELU and Tanh activation and 0.1

Dropout before the last layer. Our BERT-Model

is initialized with ‘bert-base-cased‘ from Hugging-

face with default values of hyperparameters. Our

implementation was done using PyTorch and op-

timized via Adam with betas of 0.9 & 0.999 and

epsilon of 1e-08 without weight decay over the

standard Cross Entropy loss. We set the batch size

to 32 sentences for BERT and 64 for GPT-J. All

the experiments can be done within 16GB of GPU

memory and no run individually takes more than

2 hours. We release these models along with our

codebase with instructions to run them.

Table 13 shows the performance of these NER

and PoS models. As expected, the BERT-sentence

model performs the best on both the tasks as it

leverages the context while tagging. GPT-J slightly

outperfoms BERT-token on both the tasks. Note

that these performances are not comparable as their

tokenizations differ and only one of the models

leverages context to predict NER and PoS tags.

D.3 Method

Assume we have m syntactic features. Consider

the tokenizer Vocabulary V (with only alphabetic

tokens) and the Dα datapoint pairs for each letter

α of the lowercased English alphabet. For each

token-label pair (wi, yi), we obtain the m syntactic

features of the word {x
(1)
i , x

(2)
i . . . x

(m)
i } using the

trained models to tag the features.

We train a classifier to predict whether a char-

acter α is present in the token wi using only its

syntactic features. Assume randomly initialized

‘trainable’ embeddings {E1, E2 . . . Em} for each

of the m syntactic features. We predict the logits

ŷi for token wi over each letter α using an MLP

classifier over the embeddings:

ŷi = σ(MLPα([E
T
1 x

(1)
i ; . . . ; ET

mx
(m)
i]))

Each syntactic feature x
(j)
i is a vector denoting

probability distribution of a token over the corre-

sponding feature labels (including being a one-hot

vector), this is crucial because a token (especially

subword-token) might have different labels depend-

ing on the context.

We train different MLPs and Embeddings from

scratch for each alphabet α with no shared parame-

ters across the (case-insensitive) 26 English char-

acters. We train our model for binary classifica-

tion via backpropagation over the standard Binary

Cross Entropy loss across the predicted logits ŷi
and ground truth logits yi.

As before, for each character we create a bal-

anced dataset consisting of an equal number of

positive and negative examples, where each exam-

ple is made up entirely of either English characters

or whitespace. These are randomly divided into

training and test split sucht that we keep words

with with the same lemmas in the same split. As

a control task, we randomly assign the syntactic

features for each token. We set the batch size

for runs with one-hot vectors as features to 128

and to 64 for others, the learning rate is tuned in

{1e−5, 3e−5, 1e−4, 3e−4, 1e−3, 3e−3, 1e−2}
for all the features over the metric of Averaged F1-

Scores across the 26 English letters. The best learn-

ing rates for SpaCy, BERT-sentence, BERT-token,

GPT-J and Control were found to be 1e-3, 1e-3,

3e-3, 1e-4, 1e-2, respectively. Using Adam Opti-

mizer we train each of the 26 models for 5 epochs

with betas of 0.9 & 0.999 and epsilon of 1e-8. Our

2503

Split Type SpaCy BERT-sentence BERT-token GPT-J Control

Aggregate across 26 letters

F1 4.4354 2.9588 3.7989 2.724 4.3973

Best performing ones

s 0.6947 1.2941 0.4853 0.6514 5.5055
y 1.8665 1.6406 0.5697 1.4251 3.2417
e 0.6645 0.8544 0.3245 0.3233 1.8349
t 0.2643 3.4695 0.9129 0.5924 1.7645
p 6.1928 1.1628 0.5669 0.2985 3.7013
i 0.512 1.4392 0.5998 0.4867 5.5685

Worst performing ones

w 4.9794 2.2996 1.9614 1.9536 1.7453
q 2.7071 3.4438 4.5954 4.7932 5.5068
k 2.9332 6.885 2.0885 1.6864 1.6311
o 6.24 1.6009 1.0449 0.463 3.5961
b 4.0455 1.5597 1.4074 2.0701 2.7857
m 7.2995 2.4854 2.1762 1.0948 6.152

Table 15: Standard Deviation of POS/NER labels

implementation is done using PyTorch and Hug-

gingface. Finally for the best hyperparameter, we

perform 5 runs with different train/test splits and

seeds. Our MLP model is 3-layered with SELU

and Tanh activation and 0.1 Dropout before the last

layer.

Tables 14 and 15 show the mean and vari-

ance of the results over the 4 taggers and control

task. We also show the performance over the best-

performing and worst-performing characters.

Appendix E Variability of Tokenization

E.1 Quantifying variability in the Pile Corpus

To quantify the variability in the tokenization of fre-

quent words in corpora comparable to the corpora

used to train these models, we consider 1/6th of the

publicly available Pile Corpus used to train GPT-J

(250 GB of text). For our analysis we consider

500 frequent words of 8+ characters (as measured

using Google Ngrams) since long words are more

likely to be the source of variability.

For each target word, we first case-insensitively

detect each of its occurrences in the sub-corpus. In

order to also account for spelling errors, we used

case-insensitive fuzzy search, allowing matches

for substrings up to 1 Levenshtein distance away.

Over these occurrences, we discard those where

the substring is part of a bigger word, such as ‘dif-

ferentiation’ for the target word ‘different’ or if the

fuzzy match has whitespaces.

Once we have such occurrences, we want to

obtain the tokenization of the target word in the

context. For each word in the set of matches, if the

matched substring ends with a non-valid character

for our probing task, we delete the final character.

This allows for matches of [somethin’, somethin",

somethin] all to be considered as the string ‘some-

thin’. We also account for the factors that leads to

differing tokenization, such as preceding whites-

paces.

Now, for each of the target words, we have a

list of probable tokenization at most 1 Levenshtein

distance away. Since two target words such as

‘projection’ and ‘protection’ could themselves be

at 1 Levenshtein distance, these may act as what

we call ªpseudo matches" for each other. So we

consider only one of these two from our target list,

leading to 466 word down from 500 words. Now,

for each of these target words, we count the number

of possible unique tokenizations.

For each of these 466 target words, we also ob-

tain a list of words from WordNet, which are 1

Levenshtein distance away. We treat this word list

as the pseudo-match list. We also consider the num-

ber of tokenizations for each target word, excluding

their pseudo-match list as well as by excluding all

those which are equally close to or closer to a word

in the pseudo-match list than they are to the target

word. We also compute the statistics of those with

exact matches.

Table 16 shows these statistics for the target

words. On average, a target word is expected to

have 213 different tokenizations depending on the

context. We observe that, while one may expect the

number of tokenizations to go up with the number

of characters in the target word, it doesn’t perfectly

increase monotonically. This is because the num-

ber of occurrences of the target word dictates the

number of tokenization it will have. Unsurpris-

ingly, we see a consistent trend that the number

2504

of tokenization greatly increases with increasing

occurrences.

We observe three factors contributing to a re-

markably large number of tokenizations. First,

Case-Sensitive tokenization leads to up to 6 dif-

ferent tokenizations for each of the target words.

Second, context-dependent tokenization increases

the expected number of different tokenizations to

12.91. The rest of the tokenizations are likely due

to misspellings or variants.

Our analyses were sped up using multiprocess-

ing and fuzzy regex. To do so, we split the sub-

corpus across multiple pieces. These runs take

about 3 days across 40 CPU Cores, 60 GB of RAM

and less than 600GB hard disk space. We report

the mean and standard deviation for the number

of tokenizations a word has across the portion of

the Pile corpus considered. These are also reported

as a function of word length and its frequency of

occurrence in the corpus.

Tables 16 and 17 shows these scores. The ‘All

matches’ field considers the unique tokenizations

of all matched substrings including those at 1 (case

and whitespace insensitive) Levenshtein distance

away. These word at 1 Levenshtein distance could

be either misspellings or a different English word

(for example an occurrence of the word ‘projec-

tion’ for target word ‘protection’). The latter of

these are identified using the Wordnet dictionary

and the statistics recalculated and shown in the

column ‘Matches except pseudo’. Some of the

misspellings contributing to this score could be

misspellinsg of either the target word or of one of

the other English words at 1 Levenshtein distance

away (‘prohection’ could be a misspelling of either

‘projection’ or ‘protection’ being at distance 1 from

both). Such occurrences are removed, with statis-

tics recomputed for the column ‘Matches closer

pseudo’. The column ‘Exact contain’ considers

only those occurrences, which contain the exact tar-

get word (case-insensitively) in the string ignoring

whitespaces. The ‘Exact match’ column does not

consider occurrences involving a preceding whites-

pace.

Table 18 shows some examples of variation in

tokenization.

E.2 Algorithm for increasing tokenization

variability

Algorithm 1 A simplified version of subword Tok-

enization with controllable variability

Require: 0 <= ρ <= 1
procedure YOURFUNCTION(sentence)

tokens← List()
words← wordTokenize(sentences)
for each w in words do

u ∼ Uniform[0, 1]
if u < ρ then

V ← GPTJ.V ocab
filter(V, λx.isAlphabetic(x))
Choices← List()
for i in 1, 2 . . . (w.length()− 1) do

if w[:i] ∈ V & w[i:] ∈ V then

push(Choices, w[:i], w[i:])
end if

end for

if ¬isEmpty(Choices) then

s ∼ Choices
tokens←Merge(tokens, s)
continue

end if

end if

s← GPTJ.Tokenize(w)
tokens←Merge(tokens, s)

end for

end procedure

2505

Measure All Matches Matches Ex-
cluding Pseudo

Matches
Closer
Pseudo

Exact Con-
tain

Exact
Match

Num
Words

Aggregate 232.90 229.70 213.74 17.91 5.97 466

7 Length words 297.50 271.00 223.50 22.00 6.5 2
8 Length words 332.29 325.68 288.07 25.00 7.89 28
9 Length words 231.48 227.78 206.95 16.94 5.93 190
10 Length words 225.51 222.58 209.53 17.97 5.87 127
11 Length words 213.28 211.02 202.97 17.88 5.85 61
12 Length words 224.14 223.54 218.64 18.25 5.79 28
13 Length words 218.14 217.00 214.76 16.57 5.19 21
14 Length words 238.33 238.33 238.33 16.67 5.00 9

exp(12) occurrence 88.70 86.67 82.11 10.33 5.90 27
exp(13) occurrence 155.78 153.87 146.55 13.61 5.15 74
exp(14) occurrence 210.36 207.51 195.74 16.70 5.75 174
exp(15) occurrence 278.88 275.00 251.69 19.91 5.96 139
exp(16) occurrence 370.02 365.04 336.48 26.62 8.56 52

Table 16: Tokenization variance statistics - mean score.

Measure All Matches Matches Ex-
cluding Pseudo

Matches Closer
Pseudo

Exact Contain Exact Match

Aggregate 95.12 94.29 91.26 17.91 2.67

7 Length words 155.50 129.00 81.50 13.00 2.50
8 Length words 100.90 99.17 91.19 8.46 2.47
9 Length words 90.97 90.00 86.03 7.34 2.50

10 Length words 88.56 89.04 90.71 7.86 2.75
11 Length words 107.55 107.65 108.46 8.77 2.84
12 Length words 63.25 63.53 62.53 8.26 2.82
13 Length words 81.22 81.30 82.20 7.82 2.59
14 Length words 62.48 62.48 62.48 4.52 1.05

exp(12) occurrence 38.59 37.65 34.60 3.15 1.26
exp(13) occurrence 39.75 39.13 39.36 4.92 2.10
exp(14) occurrence 51.84 52.17 53.73 6.19 2.51
exp(15) occurrence 70.46 70.59 77.22 7.86 2.38
exp(16) occurrence 101.86 100.38 103.83 9.99 3.44

Table 17: Variability across target words in tokenization variance statistics.

2506

String Tokenization String Tokenization

signature playstation

Exact match case insensitive Exact match case insensitive

"SIGNATURE" ["SIGN", "ATURE"] "playstation" ["play", "station"]
"sIGNATURE" ["s", "IGN", "ATURE"] "PLaySTATION" ["PL", "ay", "ST", "ATION"]

"SigNature" ["S", "ig", "Nature"] "playStation" ["play", "Station"]"
"Signature" ["Sign", "ature"] "PLAYSTATION" ["PLAY", "ST", "ATION"]
"SIgnature" ["SI", "gn", "ature"] "Playstation" ["Play", "station"]
"signature" ["sign", "ature"] "PlayStation" ["Play", "Station"]

Exact match and whitespaces Exact match and whitespaces

" signature" ["Ġsignature"] " Playstation" ["ĠPlaystation"]

" Signature" ["ĠSignature"] " PLayStation" ["ĠPL", "ay", "Station"]

" SigNature" ["ĠSig", "Nature"] " PLAYstation" ["ĠPLAY", "station"]

" signaTure" ["Ġsign", "a", "T", "ure"] " PLAYSTATION" ["ĠPLAY", "ST", "ATION"]

" SIGNATure" ["ĠSIGN", "AT", "ure"] " PlayStation" ["ĠPlayStation"]

" SiGNATURE" ["ĠSi", "GN", "ATURE"] " plAYsTaTion" ["Ġpl", "AY", "s", "Ta", "T", "ion"]

" SIGNATURE" ["ĠSIGN", "ATURE"] " playStation" ["Ġplay", "Station"]

" signAture" ["Ġsign", "At", "ure"] " playstation" ["Ġplay", "station"]

" SIGNature" ["ĠSIGN", "ature"] " PLaystation" ["ĠPL", "ay", "station"]

" sIgnature" ["Ġs", "Ign", "ature"] " PlaySTation" ["ĠPlay", "ST", "ation"]

Fuzzy match and misspellings Fuzzy match and misspellings

"S1GNATURE" ["S", "1", "GN", "ATURE"] "Play-station" ["Play", "-", "station"]

" SIGNATUTRE" ["ĠSIGN", "AT", "UT", "RE"] " PLAY-STATION" ["ĠPLAY", "-", "ST", "ATION"]

" signatyure" ["Ġsign", "at", "y", "ure"] "play-station" ["play", "-", "station"]

" signatre" ["Ġsign", "atre"] " Play-station" ["ĠPlay", "-", "station"]

"Signiature" ["Sign", "i", "ature"] " play-station" ["Ġplay", "-", "station"]

" signnature" ["Ġsign", "nature"] "Play-Station" ["Play", "-", "Station"]

" signatrre" ["Ġsign", "at", "r", "re"] "Play]station" ["Play", "]", "station"]

" sigature" ["Ġsig", "ature"] " Playst4tion" ["ĠPlay", "st", "4", "tion"]

" Sign(ature" ["ĠSign", "(", "ature"] " PlayStati0n" ["ĠPlay", "St", "ati", "0", "n"]

"signnature" ["sign", "nature"] " Play-Station" ["ĠPlay", "-", "Station"]
"SIG(NATURE" ["S", "IG", "(", "NAT", "URE"] "Playstaton" ["Play", "st", "aton"]

" Si2nature" ["ĠSi", "2", "nature"] " play.Station" ["Ġplay", ".", "Station"]

"Singnature" ["Sing", "nature"] " playstaton" ["Ġplay", "st", "aton"]

" signatuure" ["Ġsign", "atu", "ure"] " PLAYTSTATION" ["ĠPLAY", "T", "ST", "ATION"]

" Signaturs" ["ĠSign", "at", "urs"] "playstatiom" ["play", "st", "ati", "om"]

" sigNUTure" ["Ġsig", "N", "UT", "ure"] "playsstation" ["plays", "station"]

Table 18: Some examples of variations in tokenization for two example words.

2507

