INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS
III. THREE-PATH-CONFIGURATIONS AND LOGARITHMIC TREEWIDTH

TARA ABRISHAMI*', MARIA CHUDNOVSKY*!, SEPEHR HAJEBI , AND SOPHIE SPIRKLS!

ABSTRACT. A theta is a graph consisting of two non-adjacent vertices and three internally
disjoint paths between them, each of length at least two. For a family H of graphs, we say a
graph G is H-free if no induced subgraph of G is isomorphic to a member of H. We prove a
conjecture of Sintiari and Trotignon, that there exists an absolute constant ¢ for which every
(theta, triangle)-free graph G has treewidth at most clog(|V(G)|). A construction by Sintiari
and Trotignon shows that this bound is asymptotically best possible, and (theta, triangle)-free
graphs comprise the first known hereditary class of graphs with arbitrarily large yet logarithmic
treewidth.

Our main result is in fact a generalization of the above conjecture, that treewidth is at most
logarithmic in |[V(G)| for every graph G excluding the so-called three-path-configurations as
well as a fixed complete graph. It follows that several NP-hard problems such as STABLE SET,
VERTEX COVER, DOMINATING SET and COLORING admit polynomial time algorithms in graphs
excluding the three-path-configurations and a fixed complete graph.

1. INTRODUCTION

All graphs in this paper are finite and simple. Let G = (V(G), E(G)) be a graph. For a set
X C V(G) we denote by G[X] the subgraph of G induced by X. For X C V(G), G\ X denotes
the subgraph induced by V(G) \ X. In this paper, we use induced subgraphs and their vertex
sets interchangeably. Let v € V(G). The open neighborhood of v, denoted by N (v), is the set of
all vertices in V(G) adjacent to v. The closed neighborhood of v, denoted by Nv], is N(v)U{v}.
Let X C V(G). The open neighborhood of X, denoted by N(X), is the set of all vertices in
V(G) \ X with at least one neighbor in X. The closed neighborhood of X, denoted by N[X], is
N(X)UX. If H is an induced subgraph of G and X C V(G), then Ng(X) = N(X)N H and
Ny[X] = Ng(X)UX. Let Y C V(G) be disjoint from X. We say X is complete to Y if all
edges with an end in X and an end in Y are present in G, and X is anticomplete to Y if there
are no edges between X and Y.

For a graph G = (V(QG), E(G)), a tree decomposition (T, x) of G consists of a tree T and a
map x : V(T) — 2V(©) with the following properties:

(i) For every v € V(QG), there exists t € V(T') such that v € x(t).
(ii) For every v1vy € E(G), there exists t € V(T') such that vy, vy € x(t).
(iii) For every v € V(QG), the subgraph of T induced by {t € V(T') | v € x(t)} is connected.
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FIGURE 1. Wsxs

For each t € V(T), we refer to x(t) as a bag of (T,x). The width of a tree decomposition
(T, x), denoted by width(T', x), is max;cy () [x(t)| — 1. The treewidth of G, denoted by tw(G),
is the minimum width of a tree decomposition of G.

Treewidth, first introduced by Robertson and Seymour in their monumental work on graph mi-
nors, is an extensively studied graph parameter, mostly due to the fact that graphs of bounded
treewidth exhibit interesting structural [15] and algorithmic [5] properties. Accordingly, one
would naturally desire to understand the structure of graphs with large treewidth, and in par-
ticular the unavoidable substructures emerging in them. For instance, for each k, the (kx k)-wall,
denoted by Wy, is a planar graph with maximum degree three and with treewidth & (see Fig-
ure 1; a precise definition can be found in [2]). Every subdivision of Wy is also a graph of
treewidth k. The unavoidable subgraphs of graphs with large treewidth are fully characterized
by the Grid Theorem of Robertson and Seymour, the following.

Theorem 1.1 ([15]). For every integer t there exists ¢ = c(t) such that every graph of treewidth
at least ¢ contains a subdivision of Wix: as a subgraph.

Following the same line of thought, our motivation is to study the unavoidable induced sub-
graphs of graphs with large treewidth. Together with subdivided walls mentioned above, com-
plete graphs and complete bipartite graphs are easily observed to have arbitrarily large treewidth:
the complete graph K;;; and the complete bipartite graph K;; both have treewidth ¢. Line
graphs of subdivided walls form another family of graphs with unbounded treewidth, where the
line graph L(F) of a graph F is the graph with vertex set E(G), such that two vertices of L(F')
are adjacent if the corresponding edges of G share an end. One may ask whether these graphs
are all we have to exclude as induced subgraphs to obtain a constant bound on the treewidth:

Question 1.2. Is it true that for all t, there exists ¢ = c(t) such that every graph with treewidth
more than c contains as an induced subgraph either a K, or a Ky, or a subdivision of Wiy or
the line graph of a subdivision of Wyx:?

Sintiari and Trotignon [17] provided a negative answer to this question. To describe their
result, we require a few more definitions. Let H be a graph. We say G contains H if G has an
induced subgraph isomorphic to H. We say G is H-free if G does not contain H. For a family
‘H of graphs we say that G is H-free if G is H-free for every H € H. Given a graph G, a path in
G is an induced subgraph of G that is a path. If P is a path in G, we write P = p;----- Di tO
mean that V(P) = {p1,...,px}, and p; is adjacent to p; if and only if | — j| = 1. We call the
vertices p1 and py the ends of P, and say that P is from p1 to px. The interior of P, denoted
by P*, is the set V(P) \ {p1,pr}- The length of a path P is the number of edges in P.

A theta is a graph consisting of two non-adjacent vertices a,b and three paths P;, P, P3 from
a to b of length at least two, such that Py, Py, Py are mutually disjoint and anticomplete to
each other. If a graph G contains an induced subgraph H which is a theta, and a, b are the two
vertices of degree three in H, then we say that G contains a theta between a and b. Note that
the complete bipartite graph K> 3 is a theta. Also, it is readily seen that for large enough %, all
subdivisions of Wy, contain thetas, and of course line graphs of subdivisions of Wi contain
triangles. So the following theorem provides a negative answer to Question 1.2.
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Theorem 1.3 ([17]). For every integer £ > 1, there exists a (theta, triangle)-free graph Gy such
that tw(Gy) > £.

The authors of [17] observed that the number of vertices of the graphs Gy from Theorem 1.3
is exponential in their treewidth, while for walls and their line graphs, the number of vertices is
polynomial in the treewidth. This radical difference leads to the following conjecture.

Conjecture 1.4 ([17]). There exists a constant ¢ such that if G is a (theta, triangle)-free graph,
then tw(G) < clog(|V(G)|).

We prove this conjecture. Indeed, our main result is a substantial generalization of Conjec-
ture 1.4 involving the so-called three-path-configurations, which we define next. A hole in a graph
is an induced cycle of length at least four. (The length of a hole is the number of vertices in it.)

A pyramid is a graph consisting of a vertex a and a triangle {b1, b2, b3}, and three paths P;
from a to b; for 1 < i < 3, all of length at least one, such that for i # j, the only edge between
P;\ {a} and P;\ {a} is b;bj, and at most one of Py, P», P3 has length exactly one. We say a is
the apez of the pyramid and b;bybs is the base of the pyramid.

A prism is a graph consisting of two triangles {a1, a2, a3} and {b1, b2, b3}, and three paths P;
from a; to b; for 1 < i < 3, all of length at least one, and such that for i # j the only edges
between P; and P; are a;a; and b;b;. A pinched prism is a graph consisting of a hole H of length
at least six, together with a vertex b; such that Ng(b;) is an induced two-edge matching. We
call b; the center of the pinched prism. (This graph is often called a ‘line wheel’, but here we
choose to emphasize its similarity to a prism with a “pinched” path). A generalized prism is a
graph that is either a prism or a pinched prism.

FIGURE 2. Theta, pyramid, prism, and pinched prism. The dotted lines repre-
sent paths of length at least one. In the pinched prism, the dotted lines represent
paths of length at least two.

Finally, a graph is a three-path-configuraton if it is a theta, a prims, or a pyramid. Let C be
the class of (theta, pyramid, generalized prism)-free graphs. Also, for every integer ¢ > 1, let
C: be the class of (theta, pyramid, generalized prism, K;)-free graphs. Our main result is the
following.

Theorem 1.5. For every t > 1 there exists a constant c; such that every G € C; has treewidth
at most ¢ log(|V(G)|)-

A clique cutset in a graph G is a clique K of G such that G\ K is not connected. A special
case of Lemma 3.1 from [7] shows that clique cutsets do not affect treewidth:

Theorem 1.6. For every graph G there exists an induced subgraphs G' of G such that G' has
no clique cutset, and tw(G) = tw(G’).

It follows that in order to prove Theorem 1.5, it is enough to prove the following;:

Theorem 1.7. For every t > there exists a constant c; such that every graph in G € C; with no
clique cutset has treewidth at most c;log(|V(G)|).
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Note that since C; contains all (theta, triangle)-free graphs for each ¢ > 3, Theorem 1.5
settles Conjecture 1.4. As discussed above, the construction from Theorem 1.3 shows that
the bound provided by Theorem 1.5 is asymptotically best possible. In fact, Theorem 1.5
is the first result establishing a logarithmic bound on the treewidth in a hereditary (that is,
closed under isomorphism and taking induced subgraphs) class of graphs. This is remarkable,
especially because a considerable number of algorithmic advantages of bounded treewidth are
still accessible in graphs of logarithmic treewidth. We elaborate on this in Section 9.

The proof of Theorem 1.5 builds on a method developed in two previous papers of this series
[2, 4] to bound the treewidth of graph classes with bounded maximum degree. Incidentally,
unlike subdivided walls and their line graphs, the graphs Gy from Theorem 1.3 contain vertices
of arbitrarily large degree. So the following question is asked in [14]:

Question 1.8 ([14]). Is it true that for every A > 0, there exists ¢ = c¢(A) such that for every
(theta,triangle)-free graph G of mazimum degree at most A, we have tw(G) < c¢?

In [2], with Dibek, Rzazewski and VuSkovié, we gave an affirmative answer to this question.
More generally, it is also conjectured in [1] that there is an affirmative answer to Question 1.2
restricted to graphs of bounded maximum degree.

Conjecture 1.9 ([1]). For all k,A > 0, there exists ¢ = c(k,d) such that every graph with
mazimum degree at most A and treewidth more than c contains a subdivision of Wiy or the
line graph of a subdivision of Wixk as an induced subgraph.

This is still open, while several interesting special cases of it are proved in earlier papers of
this series [2, 4]. In the same vein, the following may be true as far as we know (this is a variant
of a conjecture of [17]):

Conjecture 1.10. For all t > 0 there exists ¢ = c(t) such that if G is a graph with no Ky, no
K, no subdivision of Wiy and no line graph of a subdivision of Wix: as induced subgraphs,

then tw(G) < clog(|V(G)|).

We conclude this section with the following result, which is an immediate consequence of the
Helly property of subtrees of a tree:

Theorem 1.11 ([11]). Let G be a graph, let K be a clique of G, and let (T,x) be a tree
decomposition of G. Then, there is v € V(T') such that K C x(v).

1.1. Proof outline and organization. Let us now discuss the main ideas of the proof of
Theorem 1.5. We will give precise definitions of the concepts used below later in the paper;
our goal here is to sketch a road map of where we are going. By Theorem 1.6 we may assume
that the graph in question does not admit a clique cutset. By Theorem 3.1 we may restrict
our attention to cube-free graphs (the “cube” is a certain eight vertex graph defined later).
Obtaining a tree decomposition is usually closely related to producing a collection of “non-
crossing decompositions,” which roughly means that the decompositions “cooperate” with each
other, and the pieces that are obtained when the graph is simultaneously decomposed by all the
decompositions in the collection “line up” to form a tree structure.

In the case of graphs in C;, there is a natural family of decompositions to turn to; they
correspond to special vertices of the graph called “hubs,” and are discussed in Section 3. Un-
fortunately, these natural decompositions are very far from being non-crossing, and therefore
we cannot use them in traditional ways to get tree decompositions. We were able to overcome
this issue in [4] by using a bound on the maximum degree of the graph, but the same methods
do not apply when no such bound exists. What we can do instead is use degeneracy (that is
given by a result of [12]) to partition the set of all hubs (which yields a partition of all the
natural decompositions) of an n-vertex graph G in C; into collections Si,...,Sp, where each
S; is “non-crossing” (this property is captured in Lemma 6.4), p < C(t)logn (where C(¢) only
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depends on t and works for all G € C;), and vertices in S; have a bounded (as a function of ¢)
number of neighbors in U?:i S;. Our main result is that the treewidth of G is bounded by a
linear function of p + logn.

It follows immediately from Theorem 2.3 and Theorem 4.4 that the treewidth of a graph in
C; is bounded (by a constant depending on t) if G has no hubs; thus we may assume that p > 0.
It is sometimes the case that one of the hubs we get is not “useful” to us, and then we turn to
the arguments in Section 5.

In the general case, for p > 0, we proceed as follows. We first decompose G, simultaneously,
by all the decompositions corresponding to the hubs in S;. This allows us to define a natural
induced subgraph 3(S1) of G that we call the “central bag” for S;. The parameter p is smaller
for 5(S1) than it is for G, and so we can use induction to obtain a bound on the treewidth
of 5(S1). We then start with a special optimal tree decompositon of 3(S1), where each bag
is a “potential maximal clique” (see Section 2). Also inductively (this time on the number of
vertices) we have tree decompositions for each component of G \ 5(S1).

Now we use the special nature of our “natural decompositions” and properties of potential
maximal cliques to combine the tree decompositions above into a tree decomposition of G, where
the size of the bag only grows by an additive constant. This is possible because in the growing
process all we need to do is add to each existing bag the neighbor sets of some non-hub vertices
in that bag. As the number of such vertices in each bag is bounded by Theorem 4.4, and due
to the “degeneracy” propery of the partition Si,...,Sp, we can ensure a bound on the growth.

The paper is organized as follows. In Section 2 we introduce potential maximal cliques and
discuss their properties. In Section 3 we prove structural results guaranteeing the existence of
useful decompositions. In Section 4 we discuss the bounds on the number of non-hub vertices in
minimal separators and in potential maximal cliques. Section 5 contains lemmas that will allow
us to deal with hubs that do not fall into the framework of Section 6. In Section 6 we discuss
collections of non-crossing decompositions and properties of their central bags. In Section 7 we
show how to construct the partition Si,...,S,. Section 8 puts together the results of all the
previous sections to prove Theorem 1.5. Finally, Section 9 discusses algorithmic consequences
of Theorem 1.5.

2. POTENTIAL MAXIMAL CLIQUES

In the proof of Theorem 1.5 we will use a special kind of tree decomposition that we explain
now.
For a graph G and a set F' C (V(QG)) \ E(G), we denote by G + F the graph obtained from G

by making the pairs in F' adjacent. A set F' C (V(2G)) \ E(G) is a chordal completion or fill-in
of G if G + F is chordal; a chordal completion is minimal if it is inclusion-wise minimal. Let
X C V(G). The set X is a minimal separator if there exist u,v € V(G) such that v and v are
in different connected components of G \ X, and v and v are in the same connected component
of G\Y for every Y C X. A component D of G\ X is a full component for X if N(D) = X. It
is well-known that a set X C V(G) is a minimal separator if and only if there are at least two
distinct full components for X.

A potential mazimal clique (PMC) of a graph G is a set Q2 C V(G) such that Q is a maximal
clique of G + F for some minimal chordal completion F of G. The following result of [§]
characterizes PMCs:

Theorem 2.1. A set Q C V(G) is a PMC of G if and only if:

(1) for every distinct x,y € Q with zy € E(QG), there exists a component D of G\ Q such
that x,y € N(D).
(2) for every component D of G \ Q it holds that N(D) C Q.
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If @ C V(G) and D is a component of G \ Q2 with z,y € N(Q) non-adjacent (as in (1) above),
we say that D covers the non-edge zy.
We also need the following result of [8] relating PMCs and minimal separators:

Theorem 2.2. Let Q C V(G) be a PMC of G. Then, for every component D of (G \ ), the
set N(D) is a minimal separator of G.

Let us say that a tree decomposition (T, x) of a graph G is structured if x(v) is a PMC of G
for every v € V(T'). We denote by w(G) the maximum size of a clique in G. The following is
a striking but easy fact (this was observed by multiple authors in the past, but we include the
proof here for completeness):

Theorem 2.3. Every graph G has a structured tree decomposition of width tw(G).

Proof. Let (T', x') be a tree decomposition of G of width tw(G). It is easy to check that the graph
G’ obtained from G by adding all edges zy such that z,y € x(v) for some v € V(T is chordal.
It follows that there exists a minimal chordal completion F' of G such that F C E(G’) \ E(G);
let G" = G + F. In particular, every clique of G” is a subset of a clique of G’. Since by
Theorem 1.11 every clique of G’ is contained in a bag x(v) for some v € V(T), it follows that
w(G@") < w(G') < tw(G) + 1. Next, since G” is chordal, there is a tree decomposition (7", x")
of G” such that x”(v) is a clique of G” (and therefore a PMC of G) for every v € V(T").
Lastly, since G is a subgraph of G”, it follows that (T”,x") is a tree decomposition of G.
Since w(G") < tw(G) + 1, it follows that width(T”,x"”) = tw(G), as required. This proves
Theorem 2.3. |

3. STRUCTURAL RESULTS

In this section we establish some useful structural properties of (theta, pyramid, generalized
prism)-free graphs containing either a ‘cube’ or a ‘wheel’. Let us define these notions and state
our theorems properly.

The cube is the graph with vertex set {a1,...,as,b1,b2} in which {a1,...,as} is a hole, b; is
complete to {a1,as,as}, be is complete to {az, a4, as}, and there are no other edges. Let G be a
graph. We say a graph H is a clique blow-up of G if V(H) is the disjoint union of |V (G)| non-
empty and pairwise disjoint cliques (X,;v € G) such that for all distinct u,v € G, if wv € E(G)
then X, is complete to X, in H, and if wv ¢ E(G) then X, is anticomplete to X, in H. A
partition (V1,V3) of the vertex set of a graph G is said to be a cube partition if V1 is a clique
blow-up of the cube, V3 is a clique and V; is complete to V5.

According to our first result, the following, it turns out that even with only thetas and
pyramids excluded, containing a cube results in a structurally simple class of graphs.

Theorem 3.1. Let G be a (theta, pyramid)-free graph. If G contains a cube, then G admits
either a clique cutset or a cube partition.

We continue with more definitions. Let G be a graph. Let W be a hole in G and v € G\ W.
A sector of (W, v) is a path P of W of length at least one, such that both ends of P are adjacent
to v and v is anticomplete to P*. A sector P is long if P* # 0. A wheel in G is a pair (W, v)
where W is a hole of length at least five, v has at least three neighbors in W and (W, v) has at
least two long sectors. For v € V(G) a wheel (W, v) is optimal if for every wheel (W',v) in G
we have |Nw (v)| < |Nw(v)|. Let C* be the class of all the cube-free graphs in C. Our second
result is the following.

Theorem 3.2. Let G € C* and let (W,v) be an optimal wheel in G. Then there is no component
D of G\ Nv] such that W C N[D].
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Theorem 3.2 is used later to prove Theorem 6.1, which is a key step in our proof. It may
aslo be of independent interest in the study of graphs in C. We prove Theorems 3.1 and 3.2 in
the upcoming two subsections. Let us conclude with a theorem concerning degeneracy. Recall
that for an integer 6 > 0, a graph G is §-degenerate if every subgraph of G contains a vertex of
degree less than §. The following is an easy consequence of the main theorem of [12]:

Theorem 3.3. For every t > 1, there exists 6; > 0 such that every (theta, Ky)-free graph is
ds-degenerate.

To deduce Theorem 3.3 from [12] observe that theta-free graphs do not contain subdivisions
of the complete bipartite graph K3 3 as induced subgraphs.

3.1. Cube attachments. Here we prove Theorem 3.1.

Proof of Theorem 3.1. Suppose not. Let S be the largest subset of V(G) admitting a cube
partition. Since G contains a cube, say @, it follows that V(Q) admits a cube partition with
V1 = V(Q) and V2 = (). This shows that S exists. Since G does not admit a cube partition, it
follows that S # V(G). Let (V1, V2) be a cube partition of S. We may assume that V7 admits a
partition into eight non-empty cliques A1, ..., Ag, B1, B2, such that

e for each i € {1,...,6}, A; is complete to A;; (where A; = A;); and

e Bj is complete to A; U A3 U A5 and Bs is complete to As U A4 U Ag;

and there no more edges in V;.

(1) Let w € G\ S have two non-adjacent neighbors x,y € S. Then x is at distance two from y
inS.

Suppose not. By symmetry, we may assume that x € B; and y € Bs. Since A3 U A3 U A5 U
Ag U B; U By U {w} contains no theta, w is complete to at least one of Ag, A3, As, Ag, say As.
Also, since A; U A5 U Ag U By U {w} contains no theta, w is complete to at least one of Aj, As;
by symmetry, let w be complete to As. Suppose that w has a non-neighbor in one of A; and
Ay, say the former. Since A; U Ay U Ag U B; U {w} contains no theta, w is anticomplete to As.
As a result, w is complete to A4, as otherwise depending on whether w has a neighbor in Az or
not, either Ao U As U Ag U By U{w} or Ao U A3 U A4 U By U By U {w} contains a theta, which is
impossible. Consequently, since AoUA3UA4UB;UBsU{w} contains no pyramid, w is complete
to As. But then A; U Ao U A3U By U Bo U {w} contains a pyramid, a contradiction. This proves
that w is complete to both A; and A4. Next suppose that w has a non-neighbor in one of A,
or As, say the former. Since A; U A2 U A3 U B U {w} contains no theta, w is anticomplete to
As. But then A2 U A3 U A4 U By U By U {w} contains a pyramid, a contradiction. Therefore, w
is complete to both As and As. This restores the symmetry between By and Bs. Finally, if w
has a non-neighbor u € B; U V3, then A; U A3 U A5 U {u, w} contains a theta. So w is complete
to both B; and V3, and symmetrically to Bs. In conclusion, w is complete to V3 U V2. But then
(V1, Vo U {w}) is a cube partition for S U {w}, a contradiction with the choice of S. This proves
(1).

(2) For every w € G\ S, Ns(w) is a clique.

Suppose not. Then by (1) and symmetry, we may assume that w has a neighbor in A;
and a neighbor in Az. It follows from (1) that w is anticomplete to A4 and Ag. Also, since
A3 U Ay U A5 U By U {w} contains no theta, w is anticomplete to at least one of As, By; by
symmetry, let w be anticomplete to be As. Now, since A; U---U Ag U {w} contains no theta, w
is complete to Ay. In addition, since A; U A3 U A4 U A5 U Ag U B U {w} contains no theta, w is
complete to Bs. The latter, along with (1), implies that w is anticomplete to B;. Moreover, if w
has a non-neighbor in one of A; and As, say the former, then A; UA3U A4U AgUB; UByU{w}
contains a theta, which is impossible. Thus, w is complete to A; U As. Finally, if w has a
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non-neighbor u € Vo, then A; U A3 U By U {u,w} contains a theta. So w is complete to V5. In
conclusion, w is complete to A;, As, A3, B and V5 and anticomplete to the rest of S. But then
adding w to Az, (V1 U{w}, V2) is a cube partition for S U {w}, a contradiction with the choice
of S. This proves (2).

(3) For every component J of G\ S, Ng(J) is a clique.

Suppose not. Then we may choose an induced path R = r;-----r; of smallest length such
that R C G\ S, and (having chosen R) non-adjacent vertices x € Ng(r1) and y € Ng(r;) such
that the distance between z and y in S is as small as possible. It follows from (2) that { > 2.
Now, if the distance between x and y in S is three, we may assume, without loss of generality,
that x € B; and y € Bs. From the choice of R, z and y, and the fact that every vertex in
Vi \ (B1U By) is at distance two from either z or y, it follows that that R* is anticomplete to Vi,
Ng(r1) C By and Ng(r;) C Bz. But then Ay U A3 U As U AgU RU{z,y} contains a theta, which
is impossible. Therefore, the distance between x and y in S is two, and so due to symmetry, we
may assume that £ € A; and y € As. From the choice of R, it immediately follows that R* is
anticomplete to A4 U A5 U Ag U By, r1 is anticomplete to A4 U A5 U B and r; is anticomplete to
AsU Ag U Bs. But then A; U A3 U A3 U A5 U Ag U By U R contains a theta, which is impossible.
This proves (3).

Since S # V(G), G \ S has a component J. By (3), Ng(J) is a clique. So S\ N(J) # 0, as
S is not a clique. But then Ng(J) is a cutset in G separating J from S\ N(J), a contradiction.
This concludes the proof of Theorem 3.1. ]

3.2. Wheel attachments. The goal of this subsection is to prove Theorem 3.2, which falls
into several steps. First, we need a couple of definitions. Let G be a graph and (W, v) be a
wheel in G. Throughout, we fix a cyclic orientation of W and refer to it as clockwise. For all
z,y € W, we denote by W{z,y] the subpath of W joining x to y in the clockwise orientation,
with the convention that Wz, z] = {z}. Also, for every z € W, let 2= € W (resp. 27 € W)
be the vertex which appears immediately before (resp. after) z with respect to the clockwise
orientation of W. For every vertex w € G \ (N[v] UW), we say w is (W,v)-local if Ny (w) is
contained in a sector of (W,v). Similarly, a component J of G \ N[v] is said to be (W, v)-local
if Ny [J] is contained in a sector of (W, v) (note that a local component may meet W).

A wheel (W, v) in a graph G is stranded if for some k > 2, there exists a (unique) enumeration
ai,.-..,ak, b of the vertices in Ny (v) such that the following hold.

e The vertices ai,...,ar,b appear in this order with respect to the clockwise orientation
of W.
e For each i € {1,...,k — 1}, we have a;;1 = a].

e Both Wb, a:] and Wag, b] are long sectors of (W,v).
We refer to (aq, ..., ax,b) as the contour of (W,v). Note that if £ = 2, then WU{v} is a pyramid
in G. Let us begin with a lemma.

Lemma 3.4. Let G be a (theta, pyramid, prism)-free graph and (W,v) be an optimal wheel
in G. Assume that (W,v) is a stranded wheel with contour (ai,...,ax,b). Then for every
w € G\ (Nv]UW), either w is (W, v)-local or Ny (w) = {b~,b,b*}.

Proof. Suppose for a contradiction that w is not (W, v)-local and Ny (w) # {b~,b,b*}. In this
proof, by N(w) we mean Ny (w). Note that since G has no pyramid, we have k > 3.

(4) The vertex w has a neighbor in W \ {a1,...,ar}-

Suppose not. Then since w is not (W, v)-local, it has a least two neighbors in {ai,...,ar}.
Choose ¢ € {1,...,k} minimum such that a; € N(w), and j € {1,...,k} maximum such
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that a; € N(w). Again, since w is not (W,v)-local, we have j > ¢ + 2. But then W' =
(W\ Wlait+1,aj-1]) U {w} is a hole in G, and (W', v) is a wheel in G with | Ny (v)| < |[Nw (v)],
a contradiction with the optimality of (W, v). This proves (4).

(5) Neither N(w) N W[b*,ay] nor N(w) N Wla;,b~] is empty.

For otherwise by symmetry we may assume that N(w) NW[b*,a;| = 0. If w has no neighbor
in {a1,...,ar-1}, then w is (W,v)-local, a contradiction. So we may choose ¢ € {1,...,k — 1}
minimum such that a; € N(w). Also, by (4), w has a neighbor in W/[a},b]. Traversing the path
Wlaf,b] from af to b, let 2 be the last vertex in N(w) N Waf,b]. Now, if i = 1 (resp. i = 2),
then Wz, a;] U {v,w} is a theta (resp. pyramid) in G, which is impossible. Therefore, we have
i > 3, and so k > 4. But then W/ = (W \ W{ait+1,27]) U{w} is a hole in G, and (W',v) is a
wheel in G with [N(v) N W'| < [N(v) N W|, a contradiction with the optimality of (W,v). This
proves (5).

(6) We have b € N(w).

Suppose not. By (5), neither N(w)NW[bT,a;] nor N(w)NW(a{,b~] is empty. Traversing the
path W[b™, a7] from b to a1, let z be the first vertex in N(w) N W[b*,a]]. Also, traversing the
path W[a{,b~] from af to b~, let z be the last vertex in N(w)NW(a},b]. If N(w)NW = {z, 2},
then W U {w} is a theta in G, which is impossible. Also, if w is adjacent to a; for some
i €4{2,...,k— 1}, then W|[z,z] U {a;,v,w} is a theta in G, a contradiction. Therefore, w has a
neighbor in either W{ag, 27| or W[z ™, a;], say the former. Traversing the path Wag, 2] from
ax to z7, let y be the first vertex in N(w)NW{ag, 2~]. Then depending on whether y is adjacent
to z or not, Wz, z]UWag,y]U{v,w} is either a pyramid or a theta in G, a contradiction. This
proves (6).

By (5), neither N(w) N W[b*,a;] nor N(w) N Wla{,b™] is empty. Traversing the path
W[b*,a1] from bt to ai, let = be the last vertex in N(w) N W[b*,a;]. Also, traversing the path
W ak, b~ ] from ax to b~, let z be the first vertex in N(w)NWag, b ]. Due to symmetry, we may
assume that Wb, z]| > W]z, b]|. If |W[b,z]| > 3, then depending on whether |W|z,b]| > 3 or
not, Wiz, a1]UW{ag, z]U{b, v, w} is either a theta or a pyramid in G, a contradiction. We deduce
that [W[b,z]| = [W|[z,b]| = 2, from which we have z = b*, 2 = b~ and N(w) N W(a},a7] =
{b=,b,b"}. Furthermore, by the assumption, we have N(w) N W # {b~,b,b*}. So w has a
neighbor in {a1,...,a;}. Now, if w is adjacent to both a; and ag, then {a1,ag,b,v,w} is a
theta in G, which is impossible. Therefore, we may assume, without loss of generality, that w is
not adjacent to a1, and so a; € N(w) for some i € {2,...,k}. But then depending on whether
i = 2 or not, Wb,a1] U {ai,v, w,z} is either a prism or a pyramid in G, a contradiction. This
completes the proof of Lemma 3.4. |

From Lemma 3.4, we deduce the following,.

Lemma 3.5. Let G be a (theta, pyramid, prism)-free graph and (W,v) be an optimal wheel in
G. Assume that (W,v) is a stranded wheel with contour (ai,...,ar,b). Then no component of
G\ (N[v]\{ag,...,ak-1}) contains W \ {ai1, ag,b}.

Proof. Suppose not. Note that since G has no pyramid, we have k > 3. Then we may choose
an induced path P = p;-----p; in G such that the following hold.

(P1) We have P C G\ (W U N[v)).
(P2) The vertex p; has a neighbor in {as,...,a,—1} and p; has a neighbor in Wia}, a7 ]\ {b}.
(P3) Subject to (P1) and (P2), |P| is as small as possible.
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It follows from Lemma 3.4 that | > 2, Ny (p1) C {a1,...,ax} and either p; is (W, v)-local or
Nw(p) = {b—,b,b"}. Also, we deduce:

(7) P* is anticomplete to (W U {v}) \ {a1,ax}.

Suppose for a contradiction that p; has a neighbor ¢ € (W U {v}) \ {a1,ax} for some i €
{2,...,l —1}. Since PN N[v] = 0, it follows that ¢ # v. Then depending on whether ¢ €
{ag,...,ax—1} or ¢ € Wla{,a7], either p;-P-p; or pi-P-p; is an induced path in G with fewer
vertices than P and satisfying (P1) and (P2), which violates (P3). This proves (7).

(8) We have Nw (p;) = {b—,b,b*}.

Suppose not. Then p; is (W,v)-local, and we may assume, without loss of generality, that
Nw(p)) € Wlag,b]. Note that by (P2), p; has a neighbor in W(a},b]. So traversing the path
Wlaf,b] from af to b, let 2 be the last vertex in N(p;) N W(a},b]. Also, note that again
by (P2), p1 has a neighbor in {as,...,agx—_1}, while p; is anticomplete to {ai,...,ax—1}. So
let i € {1,...,1 — 1} be maximum such that p; has a neighbor in {aj,...,ar—1}, and choose
j €{1,...,k — 1} minimum such that p; is adjacent to a;. Now, if j =1 (resp. j = 2), then
Wiz, a;] U{ps,...,m} U{v} is a theta (resp. pyramid) in G, which is impossible. Therefore, we
have j > 3, and so k > 4. But then W' = (W \ W{a;41,27]) U{pi,..., i} is a hole in G, and
(W', v) is a wheel in G with | Ny (v)| < |Nw(v)|, a contradiction with the optimality of (W, v).
This proves (8).

(9) The vertex p1 is anticomplete to {a1,ar} and P* is anticomplete to W U {v}.

Suppose not. Then by (7), some vertex in P \ {p;} has a neighbor in {a1,ax}, while P* is
anticomplete to (W U {v}) \ {a1,ax}. Let us choose i € {1,...,l — 1} maximum such that p; is
adjacent to either a; or ag, say the latter. Also, by (8), we have N(p)) "W = {b~,b,b"}. But
then Wlag, b U {p;i,...,m} U {ak,b~,b,v} is a pyramid in G, which is impossible. This proves

9).

Now, choose i € {2,...,k — 1} minimum such that p; is adjacent to a;. Then depending
on whether ¢ = 2 or not, P UW/b,a;] U{a;,v} is either a prism or a pyramid in G, which is
impossible. This concludes the proof of Lemma 3.5. |

Lemma 3.6. Let G € C* and (W, v) be an optimal wheel in G which is not stranded. Then for
every w € G\ (N[v]UW), w is (W,v)-local.

Proof. Suppose not. We deduce:
(10) We have |Nw (w)| > 3.

For otherwise either w is (W, v)-local or W U {w} is a theta in G. This proves (10).
(11) The vertex w has a neighbor in W \ N(v).

Suppose not. If Ny (w) contains a stable set S of size three, then S U {v,w} is a theta
in G, which is impossible. So Ny (w) has no stable set of size three. Now, if Ny (w) is not
connected, then by (10), Ny (w) is either an edge plus an isolated vertex, or an induced two-
edge matching. In the former case, W U {w} is a pyramid, and in the latter case, W U {w}
is a pinched prism, violating the fact that G € C*. So Ny (w) is connected, and so since w
is not (W,v)-local, Ny (w) is a path on three or four vertices, say wi----- wy for I € {3,4}.
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But then W' = (W \ {wy,...,w;—1}) U {w} is hole in G, and (W’,v) is a wheel in G with
| Nw (w)| < |Nw(w)], a contradiction with the optimality of (W,v). This proves (11).

(12) There do not exist two consecutive sectors of (W,v) whose union contains Ny (w).

For otherwise there are two consecutive sectors of (W,v), say W/a,b| and Wb, c|], where
Nw(w) C Wia,c]. Traversing Wla,c| from a to ¢, let = be first vertex in N(w) N W]a,c]
and let z be last vertex in N(w) N Wla,c|]. Note that since w is not (W,v)-local, we have
z € Wla,b"] and z € W[b™,c|. Also, since (W, v) is not stranded, W{c, a] contains a long sector
of (W, v). But then W/ = (W \ W[z, 27]) U {w} is a hole in G, and (W’,v) is wheel in G with
| Nw(v)| < |Nw(v)|, a contradiction with the optimality of (W, v). This proves (12).

(13) Let W(r, s] be a long sector of (W,v) such that w has a neighbor in the interior of W(r, s].
Then w has no neighbor in W\ W[r—,s*].

Suppose not. Note that v has a neighbor in W \ W[r—,s*], as otherwise W U {v} is a
pyramid, a theta or a pinched prism, which violates the fact that G € C*. Therefore, (W \
Wr~—,s*]) U{v,w} is connected, and we may choose an induced path L from v to w contained
in (W \ W[r—,s"]) U {v,w}. Also, traversing W{r, s] from r to s, let y be the first vertex in
N(w) N W]r,s] and z be the last vertex in N(w) N W/r,s]. Note that since w has a neighbor
in W[rt,s™], either y and z are distinct or y = z € W[r",s~]. Now, depending on whether
y is adjacent to z or not, W[r,y] U W|z,s] U L is a either pyramid or a theta in G, which is
impossible. This proves (13).

Note that (11), (11)(12) and (13) together with the fact that (W, v) is a wheel immediately
imply the following.

(14) Let W(r, s] be a long sector of (W,v) such that w has a neighbor in the interior of W(r, s].
Then v~ and sT are distinct, w is adjacent to both r— and s*, and w has no neighbor in

WA\ Wl[r—,st].

Now, by (11), we may choose a,b € W such that W{a,b] is a long sector of (W, v) and w has
a neighbor in W[a™,b~]. Then by (14) applied to the sector W[a,b], a~ and b are distinct, w
is adjacent to both a~ and b, and w has no neighbor in W\ W[a~,b"]. Next we prove:

(15) v is complete to {a—,b"}.

Suppose that v is non-adjacent to a~. Let ¢ € W be such that W]c, a] is a sector of (W,v).
Then ¢ # b, for otherwise we get a theta. By (14) applied to W, a] we deduce that w is complete
to {a™,c”} and has no other neighbor in Wa™,c™|. Since w is adjacent to b™, it follows that
¢ = bt, and Wb, (] is a sector of (W,v). Now it follows by symmetry that a* = b~ and
¢t =b", and that Ny (v) = {a,b,c} and Ny (w) = W \ N(v). But now W U {v,w} is a cube in
G, which is impossible. This proves (15).

Let W = (W \ W]a,b]) U{w}. Then W’ is a hole and | Ny (v)| < |Nw (v)|. By the optimality
of (W, v) we deduce that the Ny (v) forms a path in W’. Since by (15) v is complete to {a~, b},
it follows that v is complete to W \ Wla,b]. But then Ny (v) forms a path in W, contrary to
the fact that (W, v) is a wheel. This completes the proof of Lemma 3.6. |

Lemma 3.7. Let G € C* and (W,v) be an optimal wheel in G which is not stranded. Then
every component of G\ N[v] is (W,v)-local.

Proof. Suppose for a contradiction that some component J of G \ N[v] is not (W,v)-local. In
other words, there are two distinct vertices u1,us € Ny (v) such that neither N[J] N W[uf,u;]
nor N[J] N W[uj,u]] is empty. From this and Lemma 3.6, it is easily observed that, for fixed
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v, the hole W in the non-stranded wheel (W, v) together with an induced path @ = ¢1--- - q in
G can be chosen such that the following hold.

(Ql) We have I > 2 and @ C G\ (W U N[v)).

(Q2) Both ¢; and ¢ have neighbors in W, and there are two distinct sectors S and S’ of
(W,v) such that Nw(gq1) € S and Nw(q) € S’. Also, no sector of (W,v) contains
Nw (q1) U Nw (q)-

(Q3) Subject to (Q1) and (Q2), |W|+ |Q)| is as small as possible.

(Q4) Subject to (Q1), (Q2) and (Q3), a component of W'\ (S* U §™*) with the smallest number
of vertices has as few vertices as possible.

We deduce:
(16) If SN S’' # 0, then some vertezx in Q* has a neighbor in W\ (SU S’).

Suppose not. Then @ is anticomplete to W \ (S U S’). Traversing S U S’ in the clockwise
orientation of W, let y be the first vertex with a neighbor in @ and z be the last vertex with a
neighbor in Q. Note that by (Q2), both y and z exist, one of them belongs to S\ S’ and the
other one lies in S’ \ S. Then Q U {y, z} is connected, and hence contains an induced path R
from y to z. Also, since (W, v) is not stranded, W \ (S U S’)* contains a long sector of (W, v).
Now if N(v)\ (SUS’) =0, then W{z,y] URU{v} is a theta in G, which is impossible. So v has
a neighbor in W \ (SUS’). But then W = (W \ W]y, 2]) UR is a hole in G, and (W',v) is a
wheel in G with | Ny (v)| < |[Nw(v)|, a contradiction with the optimality of (W, v). This proves
(16).

(17) We have SNS" = 0.

Suppose not. Assume, without loss of generality, that S = W{s,c|] and S’ = W]c, s'] for
some s,c,s’ € W, appearing in this order with respect to the clockwise orientation of W. Then
by (16), some vertex ¢; € Q* has a neighbor in W \ (S U S’). Now, if there exist ¢; € Q
with a neighbor in (S U S’)* (in which case by Lemma 3.6, we have ¢ # j), then assuming
Q' to be the subpath of @ joining ¢; to g;, (W,v) and Q' satisfy both (Q1) and (Q2), yet
|Q'| < |Q|, a contradiction with (Q3). So @ is anticomplete to (S U S’)*. As a result, we have
N(g1)NW = {s} and N(q;) NW = {s'}. It follows from (Q2) that W \ (SUS’)* is not a sector
of (W,v), and so v has a neighbor in W \ (S U S’). Now, assume that there are two distinct
vertices z,y € W \ (SUS’) such that z € Ny (v) and y € Nw(Q*), say y € W[s',z]. Then
defining @’ to be the subpath of @ from ¢; to ¢;, (W,v) and @’ satisfy both (Q1) and (Q2), yet
|Q'| < |Q)|, a contradiction with (Q3). Consequently, there exists a vertex z € W\ (SU S’) such
that Nyn (susr)(v) = Nw(Q*) = {z}. Now, if W{z, s] is a long sector of (W, v), then assuming
R to be an induced path in Q U {s, z} from s to z, RUW|z,s] U {v} is a theta in G, which is
impossible. So we have |W|z, s]| = 2, and similarly |W[s’, 2]| = 2. But then (W,v) is stranded,
a contradiction. This proves (17).

(18) Both Nw(q1) and Nw(q) are cliques of G, and so |Nw(q1)|, |[Nw(q1)| € {1,2}.

Suppose for a contradiction, and by symmetry that ¢; has two non-adjacent neighbors in W,
which by (Q2) belong to S. Therefore, traversing S in the clockwise orientation of W, let y and
z respectively be the first and the last vertex in Ng(q1) = Nw(q1). Note that W[y, 27] # 0.
Now W/ = (W \ W[y™,27]) U{q1} is a hole in G and so (W’,v) is an optimal wheel in G, as
| Nw (v)| = |Nw(v)|. Also, (W,v) and (W’,v) have the same number of long sectors. Thus, by
Lemma 3.6, q; is (W', v)-local, and so [ > 3. But then defining @’ to be the subpath of @ from g,



INDUCED SUBGRAPHS AND TREE DECOMPOSITIONS III. 13

to q;, (W', v) and @’ satisfy both (Q1) and (Q2), yet [W’| < |W| and |Q’| < |@|, a contradiction
with (Q3). This proves (18).

(19) Q* is anticomplete to W.

For otherwise there exists a vertex ¢; € Q* with a neighbor x € W. By (17), either z ¢ S
or z ¢ S, say the former holds. Let S = W]la,b] and S’ = W]e,d], with distinct vertices
a, b, c,d appearing in this order with respect to the clockwise direction of W. If z € S’*, then
defining @’ to be the subpath of @ from ¢; to ¢;, (W,v) and Q' satisfy both (Q1) and (Q2),
yet |Q'| < |Q|, a contradiction with (Q3). So we may assume, by symmetry, that z € W[b™, c].
Also, if for some neighbor y € W{a, b] of q1, v has a neighbor in W[y™, 7], then again defining
Q' to be the subpath of @Q from ¢; to ¢;, (W,v) and @’ satisfy both (Q1) and (Q2), yet |Q’'| <
|Q|, a contradiction with (Q3). Therefore, we have Ny (g1) = {b} and v has no neighbor in
Wb, z] \ {b,z}. But then = # c, since otherwise we may replace S by the sector Wb, c] of
(W,v), which violates (Q4). Similarly, if ¢; has a neighbor in z € W]c,d| for which v has a
neighbor in W[z ™, 27|, then defining Q' to be the subpath of @ from ¢; to g;, (W,v) and @’
satisfy both (Q1) and (Q2), yet |Q’| < |Q|, a contradiction with (Q3). Consequently, we have
Nw(q) = {c} and v has no neighbor in W{z,¢] \ {z,c}. On the hand, by (Q3), no sector of
(W, v) contains {b,c}. Consequently, v is adjacent to z. But then we can replace S and S’
respectively with the sectors Wb, z] and Wz, c] of (W, v), which contradicts (Q4). This proves
(19).

Now, (17) together with (18) and (19) immediately implies that W U @ is either a theta, or
a pyramid or a prism in G, which violates G € C*. This concludes the proof of Lemma 3.7. R

Now we are ready to prove Theorem 3.2, which we restate:

Theorem 3.2. Let G € C* and let (W, v) be an optimal wheel in G. Then there is no component
D of G\ Nv| such that W C N[D].

Proof. Suppose not. Let D be a component of G \ N[v] where W C N[D]. If (W, v) is stranded
with contour (a1, ..., ax,b) for some k > 3, then W[b™, a7 |UW|a; ,b~] C D and {az,...,ax-1} C
N(D). So there is a component of G \ (N[v] \ {ag,...,ak—1)) containing D U {ag,...,ax-1},
which in turn contains W \ {a1,ax,b}. But this violates Lemma 3.5. It follows that (W,v) is
not stranded. Now, since W C N[D] and (W, v) has at least three sectors, D is not (W, v)-local,
a contradiction with Lemma 3.7. This completes the proof of Theorem 3.2. |

4. HUB-NEIGHBORS AND SEPARATORS

A vertex v is a hub in G if there is a wheel (W, v) in G. If (W, v) is a wheel, we say v is a hub
for W. We denote by Hub(G) the set of all hubs of G. We write deggyp(c)(v) = |[Nuub(a)(v)]-
Let v € V(G) and let D be a component of G \ N[v]. The v-closure of D in G is the set
N[D] U {v}. We denote the v-closure of D in G by cl, g(D). Recall that the Ramsey number
R(t, s) is the minimum integer such that every graph on at least R(t, s) vertices contains either
a clique of size t or a stable set of size s.

The goal of this section is to show if G is a graph in C and X is a minimal separator or PMC
in G, then the size of the set X \ Hub(G) is small. In later sections we develop tools to control
the size of X N Hub(G) for certain sets X.

We need the following result from [3].

Lemma 4.1. Let x1,x2, x3 be three distinct vertices of a graph G. Assume that H is a connected
induced subgraph of G\ {z1,z2,x3} such that V(H) contains at least one neighbor of each of x1,
x2, x3, and that V(H) is minimal subject to inclusion. Then, one of the following holds:
(i) For some distinct i,j,k € {1,2,3}, there exists P that is either a path from z; to x; or a
hole containing the edge x;x; such that
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b V(H) = V(P) \ {ZL‘i,.’L'j},' and
e ceither x has two non-adjacent neighbors in H or xj has exactly two neighbors in H
and its neighbors in H are adjacent.
(i) There exists a vertex a € V(H) and three paths Py, P2, Ps, where P; is from a to x;, such
that
o V(H) = (V(P) UV (P) UV(P3)) \ {1, z2, x3};
o the sets V(P1) \ {a}, V() \ {a} and V(Ps) \ {a} are pairwise disjoint; and
o for distinct i,j € {1,2,3}, there are no edges between V(P;) \ {a} and V(P)) \ {a},
except possibly x;x;.
(iii) There exists a triangle aiasas in H and three paths Py, Py, Ps, where P; is from a; to x;,
such that
° V(H) = (V(Pl) U V(PQ) U V(Pg)) \ {1'1, T2, 373},'
o the sets V(P1), V(P2) and V(P3) are pairwise disjoint; and
o for distinct i,j € {1,2,3}, there are no edges between V (P;) and V(P;), except a;a;
and possibly x;x;.

We use Lemma 4.1 in order to prove the following.

Theorem 4.2. Let G € Cy, let X be a minimal separator of G, and let Y C X \ Hub(G) be
stable. Then |Y| < 2. Consequently, | X \ Hub(G)| < R(t, 3).

Proof. We first prove the first assertion of the theorem. Suppose |Y| > 3. Let z1, 22,23 € Y. Let
D1, D; be distinct full components for X. For i € 1,2, let Z; be a minimal connected subgraph of
D; containing neighbors of x1,z2,x3. We apply Lemma 4.1 to x1,z2,x3 and Z1, Z2. If outcome
(ii) holds for both Z; and Zs, then G contains a theta, a contradiction. If outcome (ii) holds for
Z; and outcome (iii) holds for Zy (or vice versa), then G contains a pyramid, a contradiction.
If outcome (iii) holds for both Z; and Zs, then G contains a prism, a contradiction. Therefore,
we may assume that outcome (i) holds for Z;, and that Z; is a path from z; to z3, where 3
has at least two neighbors in Z;. Since z3 is not a hub in G and G does not contain a pinched
prism or a pyramid, it follows that:

(20) For every path Py from x1 to x2 with Py C Ds, we have that x3 is anticomplete to P;.

Suppose outcome (ii) holds for Zs, so there exists a vertex a € Z, and three paths P;, Py, P3
in Zy from a to z1,z2,x3 as in (ii) of Lemma 4.1. By (20), it follows that z3 is not adjacent
to a. If x3 has two non-adjacent neighbors in Z3, then G contains a theta between x3 and a, a
contradiction. Thus, x3 has exactly two adjacent neighbors in Z;, but now G contains a pyramid
with apex a and base z3 U Nz, (z3), a contradiction. Therefore, outcome (ii) does not hold for
Zs.

Next, suppose outcome (iii) holds for Zs, so there exists a triangle ajazas in Zs and three
paths Py, P2, P53 as in (iii) of Lemma 4.1. If z3 has two non-adjacent neighbors in Z;, then G
contains a pyramid with apex x3 and base ajacas, a contradiction. Thus, x3 has exactly two
adjacent neighbors in Z7, but now G contains a prism with triangles ajagas and 3 U Nz, (z3),
a contradiction.

Consequently, outcome (i) holds for Z;. By (20), Z3 is not a path from z; to 2. Thus, we
may assume that Zs is a path from z2 to x3, and that x; has at least two neighbors in Z5. If
x1 has two non-adjacent neighbors in Z5 and x3 has two non-adjacent neighbors in Z7, then G
contains a theta between x; and x3, a contradiction. If x; has two non-adjacent neighbors in
Zy and z3 has exactly two adjacent neighbors in Z;, then G contains a pyramid with apex x;
and base z3 U Nz, (z3), a contradiction. If z; has exactly two adjacent neighbors in Z; and z3
has exactly two adjacent neighbors in Z;, then G contains a prism with triangles z3 U Nz, (z3)
and z1 U Nz,(z1), a contradiction. This proves the first assertion of the theorem. The second
assertion follows immediately since G is Ki-free. This proves Theorem 4.2. |
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Theorem 4.2 has the following corollary that we will need later.

Corollary 4.3. Let G € C, let v € V(G) and let D be a component of G\ N[v]. Let Y C
N(D) \ Hub(G) be stable. Then, |Y| < 2. Consequently, |N(D) \ Hub(G)| < R(t,3) and
IN(D)| < R(¢,3) + degrup(cl, (D)) (v) < R(t,3) + degrub(c)(v)-

Proof. Observe that N (D) is a minimal separator in cl, (D), so it follows from Theorem 4.2
that |Y| < 2 and [N(D) \ Hub(cl, g(D))| < R(t,3). We also have that N(D)NHub(cl, c(D)) C
Nrub(el, (D)) (v) € Hub(G). Therefore, |[N(D) \ Hub(G)| < R(t,3) and |N(D)| < R(t,3) +
degrub(cl, ,(0)) (V) < R(t,3) + degrupa) (v)- n

We finish this section by proving an analogue of Theorem 4.2 for PMCs instead of minimal
separators.

Theorem 4.4. Let G € C;, and let X be a PMC of G. Let Y C X \ Hub(G) be stable. Then
Y| < 3. Consequently, | X \ Hub(G)| < R(t,4).

Proof. Suppose |Y| > 4, let y1,y2,y3,y4 € Y. By Theorem 2.1 for every i # j € {1,...,4} there
exists a component D;; of G \ X such that y;,y; € N(D;;); let P;; be a path from y; to y; with
interior in D;;. Recall that by Theorem 2.2 all N(D;;) are minimal separators, and therefore by
Theorem 4.2 N(D@]) ny = {yi, yj}- But now {yl, Y2, Y3, y4} UPioUPy3UPisUPiysUPyyis a
theta in G, a contradiction. This proves the first assertion of the theorem. The second assertion
follows from the fact that G is K;-free. |

5. EXTENDING TREE DECOMPOSITIONS OF NEIGHBORHOODS

Next we prove a result that allows us to extend a tree decomposition of the neighborhood of
a vertex of G to a tree decomposition of G.

Let v € V(G), and let Dy, ..., Dy, be the components of G\ N[v]. By Corollary 4.3, for every
i € {1,...,m}, it holds that |[N(D;) \ Hub(G)| < R(t,3). Let H be the graph obtained from
N(v) \ Hub(G) by adding a stable set of new vertices {di,...,dn} where Ng(d;) = N(D;) \
Hub(G) for every i. In other words, H is obtained from G \ Nuup(g)[v] by contracting each D;
to a corresponding kkvertex d;.

Throughout this section, we fix G and H as above. We first prove a structural result about
H.

Theorem 5.1. If G € C;, then HU {v} € C; and H is wheel-free.

Proof. For I C {1,...,m} let Gy be obtained from G \ Nyup(g)[v] by contracting each D; with
i € I to a vertex d;. Then H = Gy, ) and G\ {v} = Gy.

We prove by induction on |I| that G;U{v} € C; and that Hub(GU{v})N(N (v)UU;c {d:}) = 0.

Since Ng,(d;) € Ng(v) for every i € I, it follows that w(Gr U {v}) < w(G) < t.

Now suppose Gy U {v} contains a generalized prism, theta, or pyramid @. We may assume
that 1 € I and d; € Q. It follows that d; has at least two neighbors. Let I’ = I\ {1}.
Inductively, G U {v} € C;. If d; has exactly two neighbors, say a and b, in @, then we can
replace d; by a path from a to b with interior in D; to get a configuration of the same type as @
in Gy U{v}, a contradiction. Thus, d; has at least three neighbors in ). Note that inductively,
N(v)NHub(GpU{v}) = 0, so by Corollary 4.3, N(d;) does not contain a stable set of size three.
Consequently, one of the following holds (with notation as in the definitions of the corresponding
graphs):

(1) Q is a pyramid or a prism and d; = b1, or Q is a pinched prism and d; € N(b1) N Q; or
(2) @ is a pinched prism with center d;.
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(21) The first alternative does not hold.

Suppose the first alternative holds, and so N(d1) N Q = {z1, z2, 3}, where x5 is adjacent to
x3, and there are no other edges with both ends in {x1,z2,z3}. Let Z be a minimal connected
subgraph of D; containing a neighbor of each of x1,z2,23. Then Q' = (Q \ {d1}) U Z is an
induced subgraph of G;» U {v}, and therefore @’ is not a generalized prism, a pyramid or a
theta.

We apply Lemma 4.1 to z1, 2,23 and Z. Suppose outcome (i) of Lemma 4.1 holds. Suppose
first that P is a hole containing the edge xoxs. If 1 has two non-adjacent neighbors in P, then
{v, 21} U P contains a pyramid with apex z; and base vz2x3, a contradiction. So z; has exactly
two adjacent neighbors in P, and now {v,z1}UP is a prism with triangles z; U (N (z1) N P) and
vxax3, a contradiction. Thus, we may assume that P is a path from z; to 2. Suppose first that
Q is a pyramid with apex a’. Since z3 has at least two neighbors in P \ {z2}, it follows that x3
has two non-adjacent neighbors in P. Therefore, 3 has a neighbor in P non-adjacent to xo. If
z3 is non-adjacent to @, then Q' is a theta from z3 to d/, a contradiction, so z3 is adjacent to
a’. Now, z3 is a hub for the hole given by @’ \ 3, a contradiction. Therefore, @ is a prism or
a pinched prism. Let zzbz% be the triangle of @ not containing d;, where possibly z3 = z§ or
zo = xh, and @ contains paths from z; to z} for 1 <14 < 3. If x3 = 2%, then z3 is a hub for the
hole given by @'\ {z3}, a contradiction, so z3 # z5. But now Q' contains a pyramid from z3 to
z 255, a contradiction. Consequently, outcome (i) of Lemma 4.1 does not hold.

Next, suppose outcome (ii) of Lemma, 4.1 holds, so there exists a vertex a € Z and three paths
Py, Py, P5 from a to 1, 2, T3, respectively, such that Z = PyUP,UPs\ {z1, 22,23} and P; \ {a},
P, \ {a}, and P; \ {a} are pairwise disjoint and anticomplete to each other, except for the edge
zox3. We first consider the case in which both P, and P3 have length one. Now @’ is isomorphic
to the graph obtained from @ by subdividing the edge dizi, which is not in a triangle of Q.
This implies that if Q is a pyramid, prism, or pinched prism, then so is @', a contradiction. It
follows that at least one of P,, P3 has length more than one, so Z U {v, z1,x2,z3} is a pyramid,
a contradiction. Consequently, outcome (ii) of Lemma 4.1 does not hold.

It follows that outcome (iii) of Lemma 4.1 holds, so there exists a triangle ajasas € Z and
paths P;, Po, P3 as in outcome (iii) of Lemma 4.1. But now {v,z1, 22,23} U Z is a prism with
triangles vzizs and ajasas, a contradiction. Thus, the first alternative does not hold. This
proves (21).

Next we prove:
(22) The second alternative does not hold.

Let @ be a pinched prism with d; = b;. Let p,q,r,s be the neighbors of d; in @, with p
adjacent to ¢ and r adjacent to s. Let z € D;. If z has two non-adjacent neighbors in {p, ¢, 7, s},
then (@ \ {d1}) U{z} is a pinched prism, pyramid, or theta in Gy U {v} (depending on whether
z has four, three, or two neighbors in {p, q,r, s}), a contradiction. Therefore, N(z) N {p,q,r, s}
is either a subset of {p, q} or a subset of {r, s} for all z € D;.

Now let R be a shortest path in D; with ends u,w, say, such that u has a neighbor in
{p,q} and w has a neighbor in {r,s}. Then no vertex in R* has a neighbor in {p, g, r, s}; con-
sequently (@ \ {d1}) U R is a prism, pyramid, or theta in Gy U {v} (depending on whether
|N({u,w}) N {p, q,r, s}| equals four, three, or two), a contradiction. This proves (22).

Therefore, GyU{v} does not contain a generalized prism, theta, or pyramid. This proves that
G U{v} € C;. By Corollary 4.3, N(d;) does not contain a stable set of size three, so it follows
that d; ¢ Hub(Gy U {v}) for all 4 € I. It remains to show that N(v) N Hub(Gy U {v}) = 0.
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Suppose (W, z) is a wheel in Gy U {v}, where z € N(v). Inductively, d; € W. Let r,s be the
neighbors of d; in W, and let W’ be the hole obtained from W by replacing d; by a path P
from r to s with interior in D;. If d; is non-adjacent to z, then (W’ ,z) is a wheel in G/, a
contradiction. This proves that d; is adjacent to z. Since {z,, s} is not a stable set in N(Dy),
we may assume that z is adjacent to 7. This implies that if two vertices of W \ N(z) belong to
different sectors of (W, ), then they also belong to different sectors of (W', z). Now it follows
that (W', ) is a wheel in G/, a contradiction. This proves that N(v) NHub(G;U{v}) = 0, and
completes the proof of Theorem 5.1. ]

Let (To,x0) be a tree decomposition of H, and for ¢ € {1,...,m}, let (T;,x;) be a tree
decomposition of D;. Fori € {1,...,m} let v(¢) € T; be some vertex such that that d; € xo(v(4)).
Let T be a tree obtained from the union of Ty, 71, ..., T, by adding, for every 7 > 0, a unique
edge from some vertex of T; to v(7). For u € T, let x(u) be defined as follows.

o Ifu e V(Ty), let

x(u) = (xo(w) \ {d1,-.,dn}) U Ngup() U{v} U |J Nu(dy).
d;€xo(u)

o IfuecV(T;) fori e {1,...,m}, let
x(u) = xi(u) U N (d;) U Negyp(a) (v)-
We prove the following:
Theorem 5.2. With the notation as above, (T, Xx) is a tree decomposition of G.

Proof. Since T is obtained by adding a single edge from Tp to each of the trees T1,...,Ty,, it
follows that T is a tree. Clearly every vertex of G is in x(u) for some u € V(T). Next we
check that for every edge xy of G there exists u € V(T') such that z,y € x(u). This is clear
if z,y € N[v], and if z,y € D;. Thus we may assume that z € N(v) and y € D;, say. Now
x € N(D1) U Nuyp(g)(v), and therefore x € x(u) for every u € V(T1). Let u € V(T1) such that
y € xi(u) C x(u); then z,y € x(u) as required.

Finally we show that x~!(z) is a tree for every z € V(G). Let x € V(G). For i € {0,...,m}
define Fi(z) = {u € V(T;) such that x € x(u)}. Let F(z) = Fo(z) U U2 (Fi(z)). We need
to show that for every z € X we have that T[F(z)] is connected. If x € Nyyp(q)(v), then
F(z) = V(T), and the claim holds. If z = v, then F(z) = V(Tp), and again the claim holds.
Thus we may assume that z € V(H)UU%, D;. If Fy(z) = 0, then there exists a unique ¢ such
that z € D;; therefore F(z) = Fj(z), and T[F(x)] is connected because T;[F;(x)] is connected.
Thus we may assume that z € V(H) N N(v). Let I C {1,...,m} be the set of all ¢ such that
x € N(D;) = N(d;). It follows that F;(z) =0 for all i € {1,...,m} \ I.

First we observe that z € x(v(¢)) for every ¢ € I, and so there is an edge between T;[F;(z)] =
T; and Tp[Fo(z)]. Since Fi(z) = V(T;) is connected, it is enough to prove that Tp[Fo(x)] is
connected.

Observe that

Fo(z) = x5 (@) U U xg ™ ().
i€l
Since zd; € E(H) for every i € I, it follows that xu*(x) N xg (di) # 0 for every i € I. Since
To[xg ' (w)] is a tree for every u € V(H), it follows that Tp[Fy(z)] is connected, as required. This

proves Theorem 5.2.
[
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6. STABLE SETS OF UNBALANCED HUBS

Let G be a graph with |V(G)| = n. We say that v € V(G) is balanced if |D| < § for every
component D of G\ N[v]. If v is not balanced, then v is unbalanced.

In this section, we describe a way to decompose graphs in C; using stable sets of unbalanced
hubs. Recall that C is the class of (theta, pyramid, generalized prism)-free graphs. We begin
with the following structural result.

Lemma 6.1. Let G be a cube-free graph in C, and suppose that v is a hub of G. Let D be a
component of G\ N[v]. Then v is not a hub in cl, g(D).

Proof. Suppose v is a hub in cl, ¢(v). Now, Theorem 3.2 applied to an optimal wheel with hub v
in cl,, g(D) implies that either cl, ¢ \IN[v] is not connected, or some vertex of N(v)Ncl, ¢(v) has
no neighbor in cl, ¢ \N[v]. But cl, ¢ \N[v] = D, and N(v) Ncl,g(v) = N(D) a contradiction.
This proves Lemma 6.1. |

Let G be an n-vertex graph, and let v be an unbalanced vertex of G. Then there exists
a unique component D of G \ N[v] with |D| > 5. Write B(v) = D, C(v) = {v} UN(D)
and A(v) = V(G) \ (B(v) UC(v)). We call (A(v),C(v), B(v)) the canonical star separation
corresponding to v. (Note that at this point we do not require that A(v) is non-empty.)

Following [3], we say that two unbalanced vertices u,v € V(G) are star twins if B(u) = B(v),
C(u) \ {u} = C(v) \ {v}, and A(u) U {u} = A(v) U{v}. Note that every two of these conditions
imply the third.

Let S be a stable set of unbalanced vertices. Let O be a fixed total ordering of S. Let <4 be
a relation on S defined as follows (we think of <4 as a “partial order by the A-sides):

=y, or
z<ay if <z andy are star twins and O(z) < O(y), or
z and y are not star twins and y € A(x).

Note that if z <4 y, then either x =y, or y € A(z).
We start with the following three results:

Lemma 6.2. Ify € A(z), then A(y) U{y} C A(z) U {z}.

Proof. Let n = |V(G)|. Since C(y) C N[y] and y is anticomplete to B(x), we have B(z) C
G\ NJy]. Since |B(z)|, |B(y)| > n/2, it follows that B(z) N B(y) # 0. Since B(x) is connected
and contains no vertex in N(B(y)) C N(y), it follows that B(z) C B(y). Let a € C(z) \ {z}-
Then a has a neighbor in B(z) and thus in B(y). If a € N[y|, then a € C(y). If a ¢ N[y|, then
a € B(y). It follows that C(z) \ {z} C C(y) U B(y). But now A(y) \ {z} C A(z), as required.
This proves Lemma 6.2. |

Lemma 6.3. <4 is a partial order on S.

Proof. We first prove the following claim:
(23) If x and y satisfy A(y) U {y} = A(z) U {z}, then = and y are star twins.

Since z € A(y), it follows that N[z] C A(y) UC(y); so C(z) \ {z} = N(z) N C(z) = N(z) \
A(z) = N(z)\ A(y) = N(z) N C(y) C C(y) \ {y} (where we used that y ¢ N(z)), which shows
‘Egg)t C(z) \{z} C C(y) \ {y}; by symmetry, it follows that C(z) \ {z} = C(y) \ {y}. This proves

We show that <, is reflexive, antisymmetric, and transitive. By definition, <4 is reflexive.
Suppose x <4 y and y <4 z for some z,y € S with x # y. Since z <4 y, it follows that
y € A(z), and since y <4 z, it follows that x € A(y). From Lemma 6.2, it follows that
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A(y) U{y} = A(z) U{z}. Thus, by (23), z and y are star twins. But x <4 y implies that
O(z) < O(y), and y <4 z implies that O(y) < O(x), a contradiction. Therefore, <4 is
antisymmetric.

Next we prove transitivity. Suppose z <4 y and y <4 z for distinct z,y, 2z € V(G). We need
to show that z <4 2. Since y <4 2, it follows that z € A(y). Since x <4 y, it follows that
y € A(z). By Lemma 6.2, it follows that A(z) U{z} C A(y) U{y} C A(z)U{z}; so z € A(x). If
z and z are not star twins, then x <4 2, so we may assume that z and z are star twins.

Since x and z are star twins, A(z) U {z} = A(z) U {z}. But now A(z) U{z} = A(y) U{y} =
A(z) U {x}, so z,y, z are all pairwise star twins by (23). It follows that O(z) < O(y) < O(z),
so x <4 z, as required. This proves Lemma, 6.3. |

Let G be a graph, and let S C V(G) be a stable set of unbalanced vertices of G. Let Core(.S)
be a the set of all <4-minimal elements of S.

Lemma 6.4. Let S be as above, and let u,v € Core(S). Then A(u) NC(v) = C(u)N A(v) = 0.

Proof. Suppose z € A(v) N C(u). Since z € C(u), it follows that u € A(v) U C(v). Since u is
non-adjacent to v, we have that u ¢ C(v), and therefore u € A(v). Since u,v € Core(S), we
have that v £ 4 u, and therefore u and v are star twins. But then again u and v are comparable
in <4 since they are comparable in O, a contradiction. This proves Lemma 6.4. |

Define B(S) = Nyecore(s)(B(v) U C(v)). We call B(S) the central bag for S. Next, we prove
several properties of central bags.

Theorem 6.5. Let G, S be as above with G € Cy. The following hold:
(1) For every v € Core(S) we have C(v) C B(S).
(2) For every v € Core(S) we have that degg(g)(v) < R(t,3) + deguun(q) (v)-
(8) For every component D of G\ B(S), there exists v € Core(S) such that D C A(v).
Further, if D is a component of G \ B(S) and v € Core(S) such that D C A(v), then
N(D) C C(v).
(4) If G is cube-free, then S N Hub(B(S)) = 0.

Proof. (1) is immediate from Lemma 6.4; and (2) follows immediately from Corollary 4.3.

Next we prove (3). Let D be a component of G \ 5(S). Since G\ B(S) = Uyecore(s) A(V),
there exists v € Core(S) such that D N A(v) # 0. If D\ A(v) # 0, then, since D is connected,
it follows that D N N(A(v)) # 0; but then D N C(v) # 0, contrary to (1). Since N(D) C B(S)
and N(D) C A(v) UC(v), it follows that N (D) C C(v). This proves (3).

To prove (4), let w € SNHub(3(S)). Then, by Lemma 6.1, it follows that 8(S) € cl, ¢(B(u)).
Since cl, ¢(B(u)) = B(u) U C(u), it follows that u ¢ Core(S). But then u € A(v) for some
v € Core(S), and so u ¢ B(S), a contradiction. This proves (4) and completes the proof of
Theorem 6.5. |

We finish this section with a theorem that allows us to transform a tree decomposition of
B(S) into a tree decomposition of G.

Let G,S be as above with G € C; connected and cube-free, and let D,...,D,, be the
components of G \ B(S). For i € {1,...,m} let 7(D;) be the O-minimal vertex of S such that
D; C A(v) (such v exists by Theorem 6.5(3)).

Let (Tg,xs) be a tree decomposition of 3(S), and for i € {1,...,m} let (Tj, x;) be a tree
decomposition of D;. Let T a the tree obtained from the union of Tg,T1,..., T, by adding, for
each 7 € {1,...,m} a unique edge from some vertex of T; to some vertex v € V(T}) such that
r(D;) € xg(v). For u € T, let x(u) be defined as follows.

o If u € V(Tp), let
x(u) = x(u) U U C(v).

v€Core(S)Nx g (u)
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o IfuecV(T;) forie {1,...,m}, let
x(u) = xi(u) UC(r(D;)).
Theorem 6.6. With the notation as above, (T, x) is a tree decomposition of G.

Proof. Since T is obtained by adding a single edge from T3 to each of the trees T1,...,Ty,, it
follows that T is a tree. Clearly, every vertex of G is in x(v) for some v € V(T). Next we
check that for every edge zy of G there exists v € V(T') such that z,y € x(T'). This is clear if
z,y € B(S) or if z,y € D; for some i; thus we may assume that z € 5(S) and y € Dy, say. Then
by Theorem 6.5(3), x € C(r(D1)), and therefore z € x(v) for every v € V(T;). Let v € V(T;)
such that y € x;(v) C x(v); then z,y € x(v) as required.

Let z € V(G). Define Fg(z) = {v € V(T}) such that = € x(v)}, and for i € {1,...,m} define
Fi(z) = {v € V(T;) such that z € x(v)}. Let F(z) = Fg(z) U U2 (Fi(x)). We need to show
that for every « € X we have that T[F ()] is connected. If = ¢ 3(S), then Fg(z) = (), and there
exists a unique 7 such that x € D;; therefore F(z) = Fi(z), and T[F(z)] is connected because
T;[Fi(z)] is connected. Thus we may assume that € §(S). Let I C {1,...,m} be the set of all
i such that z € C(r(D;)). It follows that Fj(z) =0 for alli € {1,...,m} \ I.

First we show that for every ¢ € I, there is an edge between T;[F;(x)] = T; and T[Fs(x)].
Let ¢ € I; and let v € Tg be such that v is adjacent to a vertex of T;. Then r(D;) € xs(v),
so C(r(D;)) C x(v), and therefore, x € x(v). Thus there is an edge between T;[F;(z)] and
Tg[Fp(x)], as required.

Now to show that T'[F(z)] is connected, it is enough to prove that Tg[Fpg(x)] is connected.
Let J(z) = {v € Core(S) such that z € C(v)}. Observe that

Fa(z) =x5' (@)U |J x5'(v).
veJ(x)
By Theorem 6.5(1), zv € E(B(S)) for every v € J(z)\{z}, so it follows that Xgl(x)ﬂxgl(v) #0

for every v € J(z). Since Tj [Xgl(u)] is a tree for every u € V(G), it follows that T[Fs(x)] is

connected, as required. This proves Theorem 6.6.
|

7. A USEFUL VERTEX PARTITION

For the remainder of the paper, all logarithms are taken in base 2. The goal of this section is
to prove the following.

Theorem 7.1. Let t € N, and let G be (theta, K;)-free with |V(G)| = n. Let &; be as in
Theorem 3.3. Then, there is a partition (S1,...,Sk) of V(G) with the following properties:

(1) k < é¢logn.

(2) S; is a stable set for every i € {1,...,k}.

(8) For every i€ {1,...,k} and v € S; we have degG\Uj@- s; (v) < 46;.

Proof. We start with the following.
(24) At least § vertices of G have degree at most 40;.

Since by Theorem 3.3 G is ;-degenerate, it follows that |E(G)| < d;n. Let X be the set of
vertices of G with degree at least 45;. Then the number of edges incident with vertices of X is
at least

1
§|X|46t <|E(G)| £ din
and therefore |X| < 7. This proves (24).
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(25) There is a partition T, ..., Ty of V(G) with the following properties:
(1) m < logn.

(2) For everyi € {1,...,m} and v € T; we have dega( 1, (V) < 46¢.

j<i

The proof is by induction on n. By (24) there is a set 71 C V(G) with |T1| = § such that every
vertex of T7 has degree at most 49; in G. Inductively, V(G \ T1) has a partition T5,...,T,
satisfying the requirement of (25) with m —1 <log§ =logn — 1. Now T1,..., Ty, is a required
partition of V(G) and m < logn. This proves (25).

Since by Theorem 3.3 G is d;-degenerate, it follows that for every i € {1,...,m} the graph
GIT;] can be é;-colored; let S, ..., S, be such a coloring of T;. Now

1 1
Sh,...,St,...,S", ..., S,

is a required partition of V(G). This proves Theorem 7.1. |

8. PUTTING EVERYTHING TOGETHER

Let G be a graph. A hub-partition of G is a partition Si, ..., Sk of G[Hub(G)] as in Theo-
rem 7.1; we call k the order of the partition. We call the hub-dimension of G (denoting it by
hdim(G)) the smallest k such that G as a hub partition of order k.

We can now state a strengthening of Theorem 1.5 that we will prove by induction on |V (G)|
and hdim(G).

Theorem 8.1. Let G € C; be a graph with |V(G)| = n. Then tw(G) < R(t,4) + R(t,4)(46: +
R(t,3))(log n + hdim(QG)).

By Theorem 7.1, hdim(G) < é;logn for every G € Ct, so Theorem 8.1 immediately implies
Theorem 1.5. We now prove Theorem 8.1.

Proof. The proof is by induction on hdim(G), and for fixed hdim(G) by induction on |V (G)|. Let
G € C;. By Theomrem 1.6 we may assume that G has no clique cutset (and thus in particular,
G is connected). If G contains the cube, then by Theorem 3.1 |[V(G)| < 9¢, so we may assume
that G does not contain a cube. Let Si,..., Sk be a hub-partition of G with k = hdim(G). Let
Bo = G. Having defined B;, if Bfina is not yet defined, proceed as follows. If Hub(3;) = 0, let
Bfinal = Bi- Now assume that Hub(8;) # 0. Let Sj,; = S;y1 N Hub(B;). (Recall that every
vertex of Sj11 is a hub in G, whereas Sj; is the set of all the vertices of S;;; that remain hubs
in B, and so results of Section 6 can be applied to Sj,; in §;.) If some vertex in S;_; is balanced
(in B3;), let Bfinat = Bi- In both cases define Sfing = S, 1, depthpina = and Pfing = U;-=1 S;.
Now we may assume that every vertex of S, is unbalanced (in §;). Applying the construction
described in Section 6 to S, ; and f;, let B;41 = B(S;,;). Notice that, since we are working
in B;, canonical star separations for Sj ; are defined in S;, and the relation <4 and the set
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Core(S;, ) in B; rely on the canonical star separations defined in 3;. By repeated applications
of Theorem 6.5(4), we deduce:

(26) We have S; NHub(B;) = 0 for every j < i. In particular, Pfing N Hub(Bina) = 0.
By (26) and assertion (3) of Theorem 7.1, we have the following useful fact.
(27) For all 1 <4 <k and for all v € Sit1, we have degyypg,)(v) < 40t
Next we show:
(28) We have tw(Bfinat) < R(t,4) + R(t,4)(40; + R(t,3))(hdim(G) — depth fina + 10g(|Bfinall))-

Suppose first that Hub(Bfina) # 0. Then, there is a balanced vertex v € Sfinq. By (26), it
follows that Hub(Bfina) € Hub(G)\P¢inai, and so hdim(Bfina) < k—depthfina. Let D1, ..., Dy,

be the components of Bfinq; \ N[v]. Since v is balanced, it holds that |D;| < Iﬁf’i;‘”l for every
1 <i < m. Let H be the graph obtained from Sfinq \ {v} by contracting each D; to a vertex
d;. By Theorem 5.1, we have H € C; and Hub(H) = (. Therefore, hdim(H) = 0, and it follows
inductively that

tw(H) < R(t,4) + R(t,4)(4%: + R(¢,3)) log(|V (H)|)-

By Theorem 2.3, H has a tree decomposition (Tp, xo) of width tw(H), where xo(v) is a PMC
of H for all v € V(Ip). Let T be a tree decomposition of Bfine as in Theorem 5.2 (with
G = Bfina). We will show that (T, x) has the required width.

Let w € V(T); we will show an upper bound on |x(u)|. Suppose first that u € Tp. By
the construction in Section 5, we have x(u) = (xo(u) \ {d1,...,dm}) U Naub(g,q) (V) U {v} U
Ud;exo(w) Nu (di). Since {di,...,dn} N Hub(H) = 0, it follows from Theorem 4.4 that |xo(u) N
{di,...,dn}| < R(t,4). Next, by Corollary 4.3, for every i € {1,...,m} we have that |Ng(d;)| <
R(t,3). Finally, by (27), it follows that deggup(g;,,,,)(v) < 4, so

Ix(w)| < Ixo(w)] + R(¢,4)(R(t, 3) + 46;).

By the upper bound on tw(H), it holds that |xo(u)| < R(t,4)+ R(t,4)(46:+ R(t, 3)) log(|V (H)|),
and so
Ix(w)| < R(t,4) + R(t,4)(46; + R(¢,3)) (log([V (H)|) + 1).

Since |V(H)| < |Bfina| and hdim(G) — depthfing > hdim(Bfina) > 1, the required upper
bound holds. Thus, we may assume that u € V(T;). By the construction in Section 5, we have
Ix(w)| = Ixi(w)| + [N(d:)| + | Naub(8}ina) (V)| By Corollary 4.3, it holds that |N(d;)| < R(¢,3),
and by (27), it holds that Nuup(g;,,,,,)(v) < 46;. Therefore, |x(u)| < |x:(u)|+46:+ R(2,3). Since
|D;| < w, it follows inductively that

tw(D;) < R(t,4) + R(t,4)(46: + R(t, 3))(log(|D;|) + hdim(Bfinar)) <
R(tv 4) + R(t7 4)(45?5 + R(t7 3))(10g(|:8final|) -1+ hdim(ﬁfinal))'
Since R(t,4)(46: + R(t,3)) > 46; + R(t, 3), the required upper bound follows.
Now we may assume that Hub(Bfine) = 0. By Theorem 4.4, it follows that every PMC of

Bfinat has size at most R(t,4). Now, by Theorem 2.3, tw(Bfina) < R(t,4), as required. This
proves (28).

Now we prove by induction on s that for every s < depth final, it holds that
tw(Bs) < R(t,4) + R(t,4)(46; + R(t,3))(k — s + log(|Bs]))-

The assertion follows from (28) for s = depthfinq. Now assume that we know the assertion for
Bs; we prove it for Bs_1.
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By Theorem 2.3, 3, has a tree decomposition (T, xo) of width tw(8s), where xo(v) is a PMC
of Bs for every v € V(Tp). Let T be a tree decomposition of §s—1 as in Theorem 6.6 (with
G = Bs—1 and B(S) = Bs, where we use (To, xo0) as (I, xp)). We will show that (T, x) has the
required width. Let Dy, ..., D,, be the components of Bs_1 \ Bs.

Let w € V(T'); we will show an upper bound on |x(u)|. Let j € {0,...,m} be such that
u € T;. We show:

(29) We have
Ixj(u)| < R(t,4) + R(¢,4)(46; + R(t,3))(k — s + log(|Bs-1))-

If j =0, (29) is true inductively since |Bs| < |Bs—1|. Thus we may assume that j > 1. By

26), hdim(Bs;—1) < k — s+ 1. By Theorem 6.5(3), it holds that |D;| < M, so we deduce
( i 2
inductively that

Ixj(w)| < tw(D;) < R(t,4) + R(t,4)(46; + R(t, 3))(log(| Di|) + hdim(Bs-1)) <

R(t,4) + R(t,4)(46; + R(t,3))(log(|Bs-1]) = 1 + (k — s+ 1)).
This proves (29).

Next, by (27) and by Theorem 6.5(2), we have the following:
(30) For every v € Core(Ss) we have that degg, (v) < 46; + R(t,3).
Now we show:
(1) Ix(w)| < |x;(w)| + R(t,4)(48: + R(t, 3)).

Suppose first that j > 0. Then, by the construction in Section 6, we have x(u) = x;(u) U
C(r(D;)). Now by (30), it holds that |x(u)| < |x;(uw)|+40:+R(t,3). Since R(t,4)(46;+R(t,3)) >
46, + R(t, 3), the required upper bound follows. Thus we may assume that ;7 = 0. By the con-
struction in Section 6, we have x(u) = x0(v) U Uyecore(s:)nxo() C(v)- By (26), it holds that
Ss NHub(Bs) = 0, so by Theorem 4.4 it follows that Core(Ss) N xo(u) < R(t,4). It follows from
(30) that |x(u)| < |xo(u)| + R(t,4)(4d; + R(t, 3)). This proves (31).

Now the result follows immediately from (29) and (31). This completes the proof of Theo-
rem 8.1.
|

9. ALGORITHMIC CONSEQUENCES

Finally, let us shed some light on the algorithmic significance of Theorem 1.5. It is well-known
that a wide range of NP-hard problems are polynomial-time solvable on graphs of bounded
treewidth, provided that a tree decomposition of bounded width is given. In particular, according
to a celebrated theorem of Courcelle [9], for every graph property P which is definable in the
monadic second-order logic, there exists a computable function f such that given a graph G and
a tree decomposition of G of width at most k, one can check in time O(f(k)|V(G)|) whether
G satisfies P. The function f can (and in fact ‘should’, in some sense) be quite huge for some
properties. But for a broad category of ‘local’ problems, the standard dynamic programming
on a tree decomposition of bounded width [5] yields f(k) = 2°*). Roughly speaking, local
problems, such as STABLE SET, VERTEX COVER, DOMINATING SET and k-COLORING (with
fixed k), are those for which, while applying the dynamic programming to a tree decomposition
of bounded width, for each bag it suffices to keep track of those subsets of the bag that belong
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to a partial solution (again, see [5] for more details). See also [6, 10] for more information about
problems attaining f(k) = 20,

Note that while Courcelle’s theorem guarantees a polynomial-time algorithm in graph classes
of bounded treewidth, aligning with Theorem 1.5, the major advantage of f being singly expo-
nential (with linear exponent) in k is that the corresponding problem becomes polynomial-time
solvable in much richer classes of graphs, namely those with logarithmic treewidth.

This leaves as the only concern to compute efficiently a tree decomposition of logarithmic
width. The following 4-approximation for computing a tree decomposition of minimum width
due to Robertson and Seymour [16] is strong enough for our purposes.

Theorem 9.1 ([16], see also [13]). There ezists an algorithm which runs in time O(27% - k% .n?)
and given a graph G and an integer k, the algorithm either correctly outputs tw(G) > k or
computes a tree decomposition of G of width at most 4k.

From this, we immediately deduce:

Theorem 9.2. Let P be a problem which admits an algorithm running in time O(2°®) |V (@)|)
on graphs G with a given tree-decomposition of width at most k. Also, let G be a class of graphs
for which there exists a constant ¢ = c¢(G) such that tw(G) < clog(|V(G)|) for all G € G. Then
P is polynomial-time solvable in G.

In view of Theorems 1.5 and 9.2, we conclude the following.

Theorem 9.3. Let k > 1 be fized and P be a problem which admits an algorithm running in
time O(2°O|V(G)|) on graphs G with a given tree-decomposition of width at most k. Then P
is polynomial-time solvable in C;. In particular, STABLE SET, VERTEX COVER, DOMINATING
SET and q-COLORING (with fized q) are all polynomial-time solvable in C;.

There is still one important problem to look into, and that is COLORING. By Theorem 3.3,
for every fixed t, all graphs in C; have chromatic number at most d;. Also, for each fixed k, by
Theorem 9.3, k-COLORING is polynomial-time solvable in C;. Now by solving k-COLORING for
every k € {1,...,0;:}, we obtain a polynomial-time algorithm for COLORING in C;.
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