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1. Introduction

In the analysis of Ricci flow, the classic Bochner formula for gradients plays a key

role. This basic formula underlies gradient estimates for solutions to the heat equation

along Ricci flow, and yields functional inequalities such as Wasserstein distance mono-

tonicity [13], and universal Poincaré and log-Sobolev inequalities [9]. Furthermore, these
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functional inequalities can be used to characterize supersolutions to Ricci flow [7,13].
Later, through a broad extension of the Bochner formula to functions on path space,
Haslhofer-Naber gave a characterization of solutions to Ricci flow [7] in terms of uni-
versal functional inequalities. In this paper we extend this circle of ideas to the setting
of generalized Ricci flow. A one-parameter family of metrics and two-forms (g, b;) is a
solution of generalized Ricci flow [15] if

%g: —2Rc+1H2, %bz—d;H, H = Hy + db,

where dHy = 0 and
H*(X,)Y)=(X-H,Y-H).

At times we will refer equivalently to the associated pair (g¢, H¢) as a solution to gener-
alized Ricci flow. It is natural to express this equation using the curvature of the unique
metric connection with torsion H, referred to as a Bismut connection. If we let D denote
the Levi-Civita connection, the relevant Bismut connection is then

- 1 -1 v _ 1772 1 7
V:=D+ 359 H, Re’ =Re—3H” — 3d H.
It follows that the generalized Ricci flow can be expressed as

9 _ v
a(«g—b)_ 2Re )

where ReV is the Ricci tensor of the Bismut connection. The flow equation arises nat-
urally as renormalization group flow [14], and arises naturally from considerations in
complex geometry [17-19] and generalized geometry [4,16]. We refer to [5] for further
background on generalized Ricci flow.

As solutions to generalized Ricci flow are supersolutions to Ricci flow, the results on
Ricci flow supersolutions mentioned above immediately apply without changes. However,
by using the explicit geometric structure of generalized Ricci flow we obtain sharper
results. First we show universal Poincaré and log-Sobolev inequalities along solutions to
generalized Ricci flow, extending the result of [9]. It is possible to use these inequalities
to give characterizations of supersolutions to generalized Ricci flow, although we do not
carry this out here. To state the result we record some notation: given (M™,g;, Hy) a
generalized Ricci flow on M x [0, 7], for (20,0) € M x [0,T] let (s,y) — pr.s(zo,y)
denote the conjugate heat kernel (see Definition 2.3), and let

dvy® = prs(zo,y) dVy(s)-

Throughout we adopt the convention that by a solution to generalized Ricci flow we
mean a smooth solution where each time slice is complete with bounded geometry.
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Theorem 1.1. Let (M™,g¢, Hy) be a solution to generalized Ricci flow defined on M x
[0,T]. Fiz xg € M and s € [0,T). Then:

(1) For all ¢ € C§°(M) with [ ¢dv¥o =0, one has

[ <o) [ v i,

with equality if and only if either ¢ = 0, or (M, gy, Hy) = (M’ g,, H]) x (R,dz?,0)
for all t € [s,T] with z(xg) = 0 and ¢(x) = Az for some constant X € R*.
(2) For all ¢ € C§°(M) with [ $*dv®® =1, one has

/¢2 log p2dv™ < 4(T — s)/|v¢|2dy§0,

with equality if and only if either ¢ = 1, or (M, gy, Hy) = (M’, g,, H]) x (R,dz?,0)
for all t € [s,T] with 2(x¢) = 0 and ¢(z) = exp(Az — 2A%(T — s)) for some constant
Ae R

Going further, we will show a generalization of the infinite-dimensional Bochner for-
mula for the Malliavin gradient on path space along Ricci flow as in [1,7,11]. The starting
point of these constructions is to define a connection on the frame bundle of the spacetime
associated to a time-dependent Riemannian manifold, originally employed in Hamilton’s
proof of the Harnack inequality for Ricci flow [6]. It turns out that it is possible to incor-
porate the two-form potential b; into this construction in a way that fits very naturally
with the generalized Ricci flow equation. For a family (M™, g, b;) defined for t € I, we
define a connection V on 7*T'M — M x I which extends the given action of V via

th = 8tY + %at (gt - bt) (Y7 ')ﬁgt :

This operator admits a key Bochner formula, which is central to our constructions. In
particular, given (g;, Hy = Hg + db;) a general one-parameter family, and u a solution of
the time-dependent heat equation, one has that (Proposition 3.3)

Vi gradgt u= Agradgt U= (RCV +%8t (gt - bt)) (gradgt u, ')ﬁgt :

Thus, along a solution to generalized Ricci flow, the gradient of a solution to the heat
equation itself satisfies a pure heat equation using the adapted derivative V. The main
goal is to give an extension of the Bochner formula above to path space. In §4 we use
the connection V on spacetime defined above together with the antidevelopment map to
give the Eels-Elworthy-Malliavin construction of Brownian motion in this setting. This
in turn gives a notion of parallel gradient for martingales. We then prove a formula on
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the evolution of parallel gradients of martingales which generalizes the Bochner identity
above:

1
A(VEF,) = (VEVLE, dW,) + (ReY + 509 — b)) (VEE )Ly 1y(1) dr
+ VEF,6,(7)dr.

This is a generalization of the Bochner formula described above (cf. Corollary 4.22),
which occurs as the case where F' is a one-point cylinder function.

The path-space Bochner formula above can be used to give many equivalent char-
acterizations of generalized Ricci flow. First, in Theorem 5.1 we give equivalent char-
acterizations in terms of Bochner inequalities on path space. Next, in Theorem 5.2 we
show equivalence with universal estimates on the norm and square norm of gradients
of martingales. We note that the adapted geometry on path space also determines an
Ornstein-Uhlenbeck operator by composing the Malliavin gradient with its adjoint. We
show equivalence with universal Poincaré and log-Sobolev inequalities for this operator
on path space, extending the inequalities of Theorem 1.1. The precise definitions of the
objects in the theorem below appear in §4.

Theorem 1.2. For an evolving family of manifolds (M, gi, Hy)ieo,1), the following are
equivalent:

(1) The generalized Ricci flow
di(g—b) = —2RcY

is satisfied.
(2) For any0 < o <T' <T and any F € €/, we have the estimate

TI
E (o [[VEE, ] +2 / E(orn [VEVEE, P dr < B [VEF?)
0

forallx € M.
3) For any 0 < 7y < 7o < T’ < T the Ornstein-Uhlenbeck operator L., ,.y on parabolic
(71,72)
path space L*(Pr:M) satisfies the Poincaré inequality

E (o, 11 [(Fry = Fr)?] € 2E (o 71 [F Lry 7 F]

forall x € M.
(4) For any 0 < 1y < 72 < T" < T the Ornstein-Uhlenbeck operator E(n,m) on parabolic
path space L*(Pr M) satisfies the log-Sobolev inequality

E (o, [(F?)ry 10g((F?)r,) = (F)7, log((F?)r,)] < AE (4,7 [F L7, 1) F]
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forallz € M.
Moreover, if one of the conditions (1)-(4) is satisfied, we have:

(8a) For any 0 < T' < T, F € &+, we have the Poincaré Hessian estimate

T 7

E( 1) (F = E@ 1y [F])?] +4//E(I7T,)[|VTLV§FT|2] do dr
0 0
T/
< 2/E(I,T/)[|ViF\2] do
0

forall x € M.
(4a) For any 0 < T' < T, F € €1/, we have the log-Sobolev Hessian estimate

E (2.7 [F?10g(F?)] — E (4,7 [F?] 10g(E (5,7 [F?])

T T T
+2//]E(Z’T/)[(F2)T|V$V§ log((F?),)|?] do dr < 4/IE(I7T,)[|V§F|2] do
00 0
forall x € M.
Acknowledgments
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2. Universal Poincaré and log-Sobolev inequalities along generalized Ricci flow
2.1. Conventions

Before we begin we explicitly clarify our notational conventions and some elementary
facts. Given data (M™, g, H) of a smooth Riemannian manifold and closed three-form
H, we let D denote the Levi-Civita connection of g and V = D + %g_lH denote the
Bismut connection, as explained in the introduction. We almost exclusively work with V|
although in some proofs D makes an appearance. The connection V induces connections
on all tensor bundles, and furthermore we define a Laplace operator

A =try, VV
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A fundamental point is that the Laplacian acting on functions is the same as the usual
Levi-Civita Laplacian, although importantly this is no longer the case for the Lapla-
cian acting on other tensor bundles, in particular acting on 1-forms and vector fields.
Furthermore, we will typically deal with a one-parameter family (g;, H; = Hg + db;) of
Riemannian metrics and closed three-forms. Often we will simply describe this as (g¢, b4),
with the background fixed choice of Hy not stated.

2.2. Heat operators

Definition 2.1. The heat operator and conjugate heat operator along a solution to gen-
eralized Ricci flow are defined by

Diiat*A

1
O = —at—A+R71\H|2.

Lemma 2.2. Let [t1,t2] C [0,T]. Let u,v: M X [t1,t2] — R be smooth functions with
compact support in M. Then

ta
//(Du)v — (O"v)udV dt = /uv av
M M

Definition 2.3. For z,y € M and s < t € [0,T], we let p, s(z,y) denote the heat kernel
based at (s,y), i.e. the unique minimal positive solution to the equations

ta

t1

Dt,a:pt,s(xvy) = 07
lim p. s (2, ) = dy(2).

Observe that by the duality in Lemma 2.2, the heat kernel p; s(z, y) equivalently solves
the conjugate heat equation based at (¢,z) in (s,y), i.e.

D:,ypt,s(xa y) =0
lgglpt,s(xay) = 5m(y)

Consequently, p; s(x,y) is mass-preserving in y with respect to dVy(,y and

/pt,s(xvy) dVg(s) (y) =1
M

for all s <t and x € M. Moreover, the uniqueness implies the propagator property



E. Kopfer, J. Streets / Journal of Functional Analysis 284 (2023) 109901 7

per(,2) = /pt,s(% Y)ps,r (Y, 2) dms(y)
M

for all r < s < t and x,z € M. With this we can define the heat flow and the conjugate
heat flow of a function u € C§°(M).

Definition 2.4. Let u,v € C§°(M) and p € P(M). For s <t € [0,T], let (t,z) — P su(z)
denote the heat flow, i.e.

(Pt,su) (.’17) = /pt,s(xvy)u(y) dvtq(s) (y>

M

For t > s € [0,T7], let (s,y) + P/ ,v(y) denote the conjugate heat flow, i.e.

(Pr,0)(y) = / Pra(,)0(x) dVie (2).
M

In other words, (t,z) — P su(x) solves the (forward) heat equation from time s with
initial condition u to time ¢, whereas (s,y) — P/ v(y) solves the (backward) conjugate
heat equation from time ¢ with terminal condition v to time s. Lastly we record a useful
identity for the heat flow P .

Lemma 2.5. Let t € [0,T]. For any family of smooth functions Uy parametrized by s €
(0,1),
d

d_Pt,sUs = Pt,stUs-
S

Proof. By the definition of P, ; we have for every u € C§° (M)

d
%Pt,su = _Pt,sAg(s)u~

The claim follows then from the Leibniz rule. O
2.8. The parabolic Bochner formula

A fundamental observation for Ricci flow equation is the gradient bound for solutions
to the time-dependent heat equation. In fact, this observation extends to supersolutions
of the Ricci flow, and thus automatically applies to solutions of generalized Ricci flow.
The lemma below records the parabolic Bochner formulas for spacetime functions along
a solution to generalized Ricci flow, which interestingly is expressed naturally in terms
of the Hessian with respect to the Bismut connection.
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Lemma 2.6. Let (M", g;, H;) denote a solution to generalized Ricci flow. Then the fol-
lowing hold:

(1) Given u a spacetime function,
OL|Vuf’ = — V'Vl + (Vu, VOu) .
(2) Fiz u a spacetime function and ¢ : R — R. Setting U = p(u), we have
OU = ¢'0u— ¢" |Vul*.
(3) Fiz u a spacetime function and 1 : R — R. Setting U = (u) |[Vu|?> we have
OU = — 2¢(u) (|VVu|2 + (Vu, vm)) — 49/ (u) (V2u, Vi @ V)
— " (w) [Vl + ¢’ (u)Du.
Proof. For item (1) we apply the usual Bochner formula to obtain

0L [Vul? = (VAu, Vu) + (Re 2B, Vu @ Vu) — |V2u|” — (AVu, Vu)
— — |[D%u|? — L |Vu= H? + (Vu, VOu) .

We furthermore observe that, since
_ 1gr,—1

V=D+ §Hg s

it follows that
1
VVu = DDu+ §Vu4H.
And hence, since DDu is symmetric and Vu -~ H is skew-symmetric, it follows that
\VVul® = |DDul® + 1 |Vu- Hf?,

yielding item (1). For item (2) we compute

Op(u) = w’(U)% — div (¢ (1) Va) = ¢ (u)Tu = ¢ (u) |Vu|*.

For item (3) we compute
OuU = w’(u)% |Vul® + 1/)(u)% |Vul® — div (¢'(u)vu [Vul® + ¢(u)V |Vu|2>

= ¢/ (w)Ou + ()0 |Vul* — " (u) |Val* — 49/ (u) (Vu, Vu @ Vu)



E. Kopfer, J. Streets / Journal of Functional Analysis 284 (2023) 109901 9

= — 2(w) (|VVu|2 + (Vu, vmu>) — 44 (u) (V?u, Vu ® V)
@ () [Vul* + ¢ (w)Ou. O

Using this lemma we give two useful intertwining relations of the heat flow, in partic-
ular generalizing the L2-gradient estimate in the sense of Bakry—Emery.

Proposition 2.7. Let (M™, g;, H;) denote a solution to generalized Ricci flow.

(1) Foru € C§°(M) it holds

t
VP wul ) = Pra([Vul,) — 2/Pm (|VVPT’Su|§(T)) dr

(2) Foru € C§°(M) with u > 0 it holds

t

VP ul’ Vul?,,

# =P, % — 2/Pt7,« (Pmu |VV log Prysu|§(r)) dr
t,s

S

Proof. By Lemma 2.5 and Lemma 2.6 (3) with ¢» = 1 we have

t t t

d
/d P, (VP sul} ) )dr:/P”D VP, sul}, dr 2/P”|v Prsu’g(r

On the other hand, by the fundamental theorem of calculus

t

d
/dﬂﬂw%%m> = (VP — Pra(Vul).

S

Combining the two last equations yields item (1).
In order to show item (2) we derive with Lemma 2.5 and Lemma 2.6 (3) with the
choice ¥(u) =

’U,’

t 2 t
d |VPT7Su|g(T) v Tsu|9(7“)
/aﬂwﬁ—ag—‘w/ﬂﬂr—7§;—dr

S S

t 2
o VVEcully  (V2Pru, VP u @ VP ) [VPrsuly,
- t,r + dr

P, su (P su)? (P su)3

S

t

_ 72/Pt,r< Hu|VV10gPrsu|g(r))

S
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Again, the fundamental theorem of calculus yields the claim. O
2.4. Proof of Theorem 1.1

We end this section with the proof of Theorem 1.1. We apply the intertwining relations
from Proposition 2.7 for certain test functions. We first prove a splitting result for the
Bismut connection.

Proposition 2.8. Let (M™, g, H) be a smooth Riemannian manifold with H a closed three-
form. Suppose there exists a closed nonvanishing 1-form « such that Va = 0. Then the
universal cover 7 : M — M splits as M=M xR, the metric splits t*g = ¢’ +m*a@m*a,
where g’ is a metric on M', and lastly 7*H = n%, H', where H' is a closed three-form
on M'.

Proof. Using the definition of V we observe that
OEVa:DoH—%aﬁ—'H.

Since « is closed we have that D« is symmetric, whilst the final term is skew-symmetric,
thus the two terms on the right hand side above vanish individually. In particular «
is parallel with respect to the Levi-Civita connection, and the metric splitting of the
universal cover is a standard consequence of the de Rham decomposition theorem.

To show the splitting property of H we let z denote a coordinate on the R-factor of
]T/f, and let A, B,C € TM’. Note that by construction 7*« is a nonzero multiple of %
and thus a% ~7m*H = 0. Using this and that 7#*H is closed we furthermore obtain

0=dr*H (Q,A,BL‘) = Do n*H(A,B,C).
8z 9z

Thus 7*H is parallel along %, and it follows that 7*H = 7}, H', with dH' = 0, as
claimed. O

Proof of Theorem 1.1 (1). Let p(z) = 22. Let u € C§°(M) and recall that

dvs® = prs(z0,-) dV(s)-

We note
- / %PT,t(QD(Pt:Su))(mO) dt :PT,S(QO(PS,SU))(CUO) — PT,T(QO(PT’SU))(.’[:())

- / () (9)prs (20, ) Vi) (3)
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- @ /u(y)pT,s(‘TOa y) dvq(s) (y)

2
:/u2 dv¥e — (/uduf“ .
M 1

But on the other hand using Lemma 2.5 and Lemma 2.6 (2) we obtain

T
_/%PT,t(‘P(Pt,su))(xo)dt: _/PT,tDt(SD(Pt,su))(mo) dt

S S

T
— 2 / Pro([VPrul? ) (o) dt.

S

Applying Proposition 2.7 (1) to the last term we get

- [ G PreePra))ao) di

T t
zz/pm P, o(IVull ) (o) —2/Pt7,«(|VVPr,Su|2)(xo)dr dt

S S

Combining these equations yields

2
/u2 dvi® — (M/udl{f0
M

T

T
_ 2/PT7tPt7s Val? (xo)dt—4/PT,t /Pt,,. (‘VVPT.7SU‘!2](T) (mo)) dr| dt

S S S

t

T T

t
_ 9 / Pry [Vul? ) (wo)dt — 4 / P / P (IVVP, .l (o)) dr| di

S

— 2T s / IVl (9)prs (0, ) Vo) ()
M

T t

4 / Pr, / Py (V9P gull, (w0)) dr| dt

S S
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t

- 2(T—s)/\vu|§(s) dv®o — /PTt / |VVPTSu| (@ )) dr| dt.
M

This implies the Poincaré inequality of item (1).
Equality occurs if and only if

T t

/ Pra / P (199l (20)) dr | di=o0.

S S

Due to the maximum principle of P;, and Pr; we have that |VVPT’Su|g(T) needs to
9(s) = = 0. It follows from Proposition 2.8 that the data
at time s splits as claimed. From uniqueness of solutions to generalized Ricci flow in

vanish at time r = s, i.e. |VVu|

the class of solutions with bounded geometry (cf. [2] which extends to generalized Ricci
flow), it follows that the solution splits for all times, as claimed. O

Proof of Theorem 1.1 (2). Let ¢(z) = zlogz and u € C§°(M) with v > 0. With this
we obtain from Proposition 2.7 (2) that

T 2
z0 ) 0 |VPt’Su|9(t)
ulogudvy® — [ udvilog udvi® | = [ Pry “hu (x0) dt.
M M s ?

Applying Proposition 2.7 to the right hand side we get

/ulogualu;”O — /udl/;”f’ log (M/udy;”‘]
M M

T 2 t
_ Vulgs | 2
= [ Pry | Pis 2 | Py(Prsu|VViog P gul”)dr| (x0)dt
U
T t
. . ‘vu‘g(s) 2
=T —-s)Prs | —— Pry P, (P su|VVlog P su|”) dr| (zo) dt
i
Vulo [ t 2
=(T-s) T‘dys0 —2 | Pry P, (P su|VVlog P, sul”) dr| (zo) dt.
M

S S

Then if [,, udv¥® =1 we set ¢ = \/u and obtain item (2). The case of equality is treated
the same as in item (1). O
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3. Twisted parallel transport and frame bundle formalism

In this section we define a connection on a spacetime adapted to a solution of general-
ized Ricci flow. The key point is a Bochner formula for solutions to the time-dependent
heat equation, Proposition 3.3, which lies at the heart of the path space constructions to
follow. We also use this connection to recast the time-dependent geometry on the frame
bundle, which is necessary for the construction of the adapted Brownian motion et al.

3.1. The twisted connection on spacetime

Let (M™, g¢,b;) be a one-parameter family of generalized metrics. Let M = M x I
for some time interval I. Let 9; denote the canonical vector field on I lifted to M. We
define a connection on the vector bundle 7*T'M — M which extends the action of V via

VY = 0Y + 30, (g0 + by) (Y, -)For.

This generalizes Hamilton’s spacetime connection introduced in his derivation of the
Harnack estimate [6]. The term involving the time derivative of g is natural to include as
it renders the connection compatible with the time-dependent metric. In fact one is free
to add the action of an arbitrary skew-symmetric two-form as well and still preserve this
property (cf. Lemma 3.1). As it turns out, the precise term %@bt gives the connection
V particularly favorable properties in the case of a solution to generalized Ricci flow.
Lemma 3.1. The spacetime connection V is compatible with g.
Proof. This follows from

d 2

P Y], = 09t (Y.Y) + g (0:Y,Y) + ¢ (Y, 0,Y)

= Gt (3tY + %@gt(Y, ')ﬁg‘ ) Y) + g (Y, oY + %@gt(Y, ')ﬁgt)
= g (0Y + 30 (g +be) (V)10 Y) + g (Y, 00Y + 50, (g1 + o) (Y, -)F)
= ZQt(th7Y)v

where the third line follows since b is skew-symmetric. O
Lemma 3.2. Given (M, g, H) as above one has
AVu = VAu+ ReY (Vu, -).

Proof. We choose local coordinates and let I' denote the connection coefficients of V.
We then compute



14 E. Kopfer, J. Streets / Journal of Functional Analysis 284 (2023) 109901

(VVVu), = 0; (VVu) ;= T (VVU) = Ty (V)
- (ajaku - r;’kapu) — T (Q0pu — T Bpu) — T, (ajalu - r;?lapu) .
It follows that

(VVVu),, — (VVVu) 5,
- (ajaku - r;’kapu) — T (Qdpu — T0,Bpu) — T, (ajalu - r;?lapu)
— (05 (0:0ku — TE,0pu) — T, (00pu — T, 0pu) — Ty (9;0,u — THpu))
= Opu (=0T, + &0, — T4 Th + THIY, ) = HL (V)
= — (RV)!,dpu — H;(VVu) .
Also we have
ViViu = ViV = (8000 = Thdpu) - (kd5u - T3,0,u) = ~Hjdyu.
Combining these we then have
ViAu = gjkViViju
= gk (vjvivku — (RV)? dyu — ng(vvu)lk)
= g (V, ViV = V(1 dy) = (R )Y dyu — HL (VYW )
= AViu— (ReV)Pdpu — ¢/* (V;(HY dpu) + HS(VVW)) -
Then we simplify
9" (vj (H} dpu) + Hfj(vvu)lk)
=g’ (Dijk — g H Hf, — SH HY) + %Hﬁka) dyu+ g’ Hj YV pu+ g/* Hi;ViViu
= (d;Hf)dpu’

where the last line follows using the skew-symmetry of H. This finally yields, after
rearranging,

AViu = V;Au+ (ReY)Pdyu + (dyH)7dpu
= Vilu+ (Re—3H? — 3d; H)Vdpu + (d} H)  dyu
= V;Au+ gP? RCZ dpu,

as claimed. O
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Proposition 3.3. Let (M™, g, b:) denote a time dependent family as above, and suppose
u solves Uu = 0. Then

Vi gradgt u=A gradgt u= (RCV +%at (g+ — bt)) (gradgt U, ')ﬁgt .
Proof. Using the definitions above and Lemma 3.2 we have

Vigrad,, u= 0 (97 "du) + 30; (90 + by) (grad,, u, -)ﬂgi
= grad,, Ag,u — dyg; (grad,, u, ~)u“ + 30; (g¢ + by) (grad,, u, ~)u”

= Agradgt U — (RCv + %&(gt - bt)) (gradgt u, ~)t19’5 . O
3.2. Frame bundle formalism

We next use the spacetime connection to define an adapted geometry on the frame
bundle. We refer to [12] for general background. Let (M™, g:,b:) be a time-dependent
family as above. Let M = M x I for some time interval I. We define an O,-bundle
7 : F — M, where the fibers F(, ;) are orthogonal maps u : R" — (T, M, g;). Given a
curve 7, in M, the horizontal lift is a curve u; € F such that:

O U = Vi, Vy(uw) =0  for all v e R™.

By general theory, it follows that if we fix a point ug € 7!y, there exists a unique
horizontal lift u; with initial condition ug. Furthermore, given a X + b9; € T{, )M, and
u € Fz1), there exists a unique horizontal lift a X ™ + bd; which satisfies

T (aX™ +00}) = aX + bOy.

Here X* is the usual horizontal lift of X with respect to V, and 0] the lift of 0, along
the path which is constant in space.

The frame bundle F comes equipped with certain canonical vector fields as well. First,
as above we have 0; which is the horizontal lift of ;. Furthermore we define horizontal
vector fields {E;}, via

Ei(u) = (ue;)”,

where {e;}7_; is the standard basis for R”. We furthermore define vertical vector fields
d
Vij(u) = s (uexp(sAij)), (Aij)k = (dikjt — Gudjn)-
s=0

We will perform some computations below in local coordinates. To that end, given co-

ordinates {2%,t} on M we canonically associate coordinates (z°,t,€%) on F, where the

functions ef are defined by
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k 8

uej J 8xk

We furthermore recall an identification between contravariant tensor fields on M and
equivariant functions on F. Given a smooth function f: M — R we set

f: fom.
Furthermore, given o = oi;dx* € T* M, we obtain & : F — R™ via
a;i(u) = ar)(ue;).
This identification extends in an obvious way to any contravariant tensor.
Lemma 3.4. With the setup above, one has:
Xf=X'f, oaf=0f.

Proposition 3.5. Given local coordinates {x%,t}, we can express

0 0
E k Il m
! ! ((’M’“ 7 ’”am>
0 0
Vi k k
g eja—ef_eia—e?

O =03 (atgz’k - atbik) 6?@%
€
Proof. The first two items are already shown in [6]. To show the final item we first fix
a frame ug € F, set m(ug) = (o,%0), then define a curve v(t) = (zo,t0 + t), and let
u; denote the horizontal lift of ;. Recall that by construction, the vector field wuse; is
parallel, thus we can compute using the definition of the spacetime connection,

; 0
-V N =V J
0= il (utel) = % <€i 5:Ej>

ot

_ 40 L 9
Tdt Z 079 ’vag oI
AN
< 8tgzk atbik) €i> Pk

It follows that

({L‘(), to+t, 6{ (t))

. d
at |u0 = %

t=0
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_ d iy 9

= 8t+ % - el(t)@
N

=0 — 3 (8tgz'k - atbik) e

Oe]
as claimed. O
Proposition 3.6. With the setup above, for a contravariant tensor T one has
VxT = X*T, VT =0T

n
V2T (uei, ue;) = E;E;T, AT = ZEEiﬁ
i=1

Proof. We prove these identities for T'= a € T*, as the general case is analogous. Fix

a vector field X, local coordinates {z%,t}, and express X = X' 3?&' To simplify notation
we let I denote the Christoffel symbols of V. We first express

(Vxa), = X7 (Via)l = X7 <aj; —F?iak> .

On the other hand we can express

o\ 0 9]
(3331) ozt e dek

It follows that

w0 = 0 (2 -t ) o
_xm ( Ot i - rfnlakeg>
=X" (% I‘ﬁnkal) ek
(%),

as claimed. For the third claim we first compute
~ <f O 0 0 d 0 ,
EiEjay, = (ei (% — €y Z’i@)) <€§ <@ - ebFZda—eg» (erar)

s 0 m 9 raar T
- (4 (g~ tmg)) (5 (o355 )
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0« 2 a O
_ s P r T d
=G (ej <ekaxp31-s — e Ops " €kl 'pa 8x5>>
oo, p oo
— efeéfgt (62@ - e%F;la,> esell e i 9 L eSeZFétejdeOér

On the other hand we have

(V2a) )

ijk = &(Va)]k - ].—‘ij (Voz)lk — Fék(vOé)jl

=0, (ajak - F%%o) - Féj (alak - kaap) - Fik (ajal - F?lap)

_ P
= ay; —I7

p 4 ! I 1w l 4 I 1
jki% — ijap,z —Tijang + Tl op = ipan i + Fikrjl%-

Comparing these two formulas gives the result. The final claim follows by tracing the
third formula over an orthonormal basis. O

4. A Bochner formula on path space
4.1. Brownian motion and Ito’s Lemma

Let (M™, g, bt)¢ejo, 1) be a time-dependent family with spacetime connection as above.
In what follows we give the Eels-Elworthy-Malliavin construction of Brownian motion
adapted to our setting. This is a further generalization of the construction of [1,7]. Let
(x,T") € M. It will be convenient to work with the backward time 7 := T’ — ¢ and the
convention that 9% = —9;. Let us start with a smooth curve v, = (z,,7" — 7) in M
with 29 = « and denote by u, its horizontal lift. The anti-development (w,), C R™ is
the given as the solution of the ordinary differential equation

r =07+ Ei(us)ul,  wo =0,

which exists along v by general theory. This equivalent formulation of parallel transport
motivates the following stochastic differential equation

dU,
Uo

ordr + E;(U,) o dW,

(4.1)

u.

Here, (W;) is a Brownian motion on R™ and u is an initial frame at (z,7"). We use
the convention that (W) has AR" as generator instead of JAR", ie. the covariation
satisfies dWidWI = 26;;dr and o refers to the Stratonovich integration. In this section
we establish existence and uniqueness of (4.1) as well as a version of Ito’s lemma.

Proposition 4.1. The stochastic differential equation (4.1) has a unique continuous so-
lution (Ur)rejo,r and satisfies wo(Uz) = T" — 7. Furthermore, given any C* function
f:+F — R we have
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df(U;) = Eif(Uz) dW} + 05 f(Ur) dr + E; E; f(U) dr. (4.2)

Proof. We adapt the corresponding argument from [7]. First, we may embed the manifold
F into RY for some N. Then U, satisfies (4.1) if and only if the coordinate functions
U2 satisty

dU® = (02)*dr + EX(U,) o dW}

foralla=1,..., N, see [10, Prop 1.2.7]. Since each vector field F; is smooth and bounded
since each time slice has bounded geometry, it follows from the standard theory for SDEs
on Euclidean space that there is a unique solution on [0,7"], cf. [10, Theorem 1.1.8] and
that this solution actually stays in F, see [10, Theorem 1.2.9].

In order to show (4.2) we convert the Stratonovich integral in (4.1) into an Ito integral
by dropping the o and adding one half times the covariation of E;(U,) and W.:

1 .
AU = (97)" dr + E{(Uy) dW} + 5 dE(Ur) dW7.

For the covariation term we compute, using Ito’s lemma in Euclidean space,

a T a a b T (9 a b
dE}(U,) AW} = 55 B (Uy) dUY AW} = 25— B (U, EX(UY) dr.

Here, we also used the fact that the covariation of a continuous process and a process of

finite variation vanishes. Now, let f: F — R be a C? function. Then, by Ito’s lemma in
Euclidean space,

. 9 - 1
df(Ur) = axaf(UT) dUr + P
0 = *\a 0 % a 4

= O W@ dr 4 S U (U W

9 = 0 a b 9? ry a b
axaf(Ur)@Ei (Un)E;(Ur) dr + Wf(UT)Ei (U-)E; (Uy) dr.

J(U,) du du?

+

Finally, since

T = o fw)

o JU B (U7) = B(U) f(U)

0 =~ 9 a b ’ = a b _ ) ry
%f(UT)@E’L (UT)E’L (UT> + Wf(UT)Ez (UT)EZ (UT) - EZ(UT)EZ(UT)f(UT)7

we obtain (4.2):

df(U,) = 0; f(U,) dr + Ey(U;) f(U,) dW} + Ei(U,) Ei(U,) f(U-) dr.
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Lastly, note that with the choice j? = 7y we get df(UT) = —dr. Furthermore setting
ma(Up) =T we get mo(Uy) =T —7. O

Let PyR"™ denote the Euclidean path space based at the origin, i.e. the space of all
continuous curves {w,|wo = 0},¢[o,71) C R™. We denote by I'y the Wiener measure on
PyR™. The path space has a canonical filtration E]EH generated by the evaluation maps
{ec: PoR™ = R"|e,(w) = wy,0 < 7}. With the help of (4.1) we can transfer the notion
of Wiener measure to the path space over F and M.

Definition 4.2. Let P,F and Py, M be the space of continuous curves, {ur|ug =
u,mo(ur) =T = T}rcior C F and {y, = (2., T = 7)|v0 = (x,T") }r¢[0,17] respectively.

It will be convenient from time to time to work with the total path space PrM =
UxeM P(,;,T/)/\/l.
Definition 4.3. Let U: PyR™ — P, F solve (4.1) and let II: P,F — P, p/yM defined by
nw), =«U,).

(1) We call 'y, := U.(I'g) and I'¢, 7y := IL.T', the Wiener measures of horizontal Brow-
nian motion on F and Brownian motion on space-time M respectively.

(2) The filtrations on P,F and P, 7\ M are given by S := (Il o U), SR and ©7 :=
U xR,

(3) We call n(U,) = (X, T — 7) Brownian motion on M based at w(u) = (z,T").

(4) We call the family of isometries {S, = UgU-': (Tx, M, g7/ —r) — (TuM,gr/)}
stochastic parallel transport along the Brownian curve X..

Proposition 4.4. Let w on M be a solution to the heat equation
Ow=0, wl,=f.
where f € C°(M) and s € [0,T"]. Then
w(, T) = By [F (Xzr_4)].
Proof. We consider the lift w(U,) and obtain by (4.2)
dw(U,) = E;w(U,) dW! + 0:w(U,) dr + E;E;w(U,) dr.

Since w solves the heat equation, by virtue of Lemma 3.4 and Proposition 3.6 the last
two terms vanish. Integrating on (0,7 — s) we get

T(Uri_y) — @(Uo) = / E,@(U,) dW?. (4.3)
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Taking expectations, and since the Ito integral of an adapted process is a martingale, we
have

Ernf (X1 —s)] — w(z,T") = E[@(Ur—s) — @(Up)] = 0.
Here we used that w(Up) = w(z,T") and w(Ur—s) = w(X1—s,8) = f(Xp—s). O

A further corollary is that the Wiener measure can be characterized by the heat
kernels.

Corollary 4.5. Let 0 < 71 < 7o < ... < 7, < T' be a partition and Aq,..., Ay C M™
Borel sets. Then it holds

PX,, € Aj,j=1,...,k]

= /~-~/PT/,T/—71($7Z/1)"'PT’—rk,l,T/—rk(yk—l,yk)dVg(T/—n)(yl)'" AV —7) (Yk)-
Ag Aq

4.2. Feynman-Kac formula

Proposition 4.6. Let s € [0,T'], Ay € End(TM) and Y a vector valued solution of the
heat equation with potential, ViY = Ay Y + AY, with Y|, = Z € C§°(TM), then

Y(ZL’,T/) = E(w,T’)[RT/—SST/—SZ(XT/—S)L (44)

where Ry, = R.(v): ToM — T, M is the solution of the ODE %RT =R, S A, St
with Ry = id.

Proof. Let Y: F — R™, }7(U) = u~1Y,,. Applying the Ito formula (4.2), we obtain
dY (U,) = E;Y (Uy) dW} + 8V (U,) dr + E;E;Y (U,) dr

= BY (U,)dW! — A .Y (U,) dr,

where we used Lemma 3.4 and Proposition 3.6. Let ﬁT: R™ — R™ be the solution of the
ODE LR Az/_, with Ry = id. Then

Integrating on [0,7" — s] and taking expectations, we obtain

Y(u) = ]Eu[ET/,S}N/(UT/,S)].

Finally, we compute
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Y(.T,Tl) = uf’(u) = Eu[UoﬁT/fonilUoUE,ESUTlfsff(UT/fs)]
= Eu[ET/—ng’—sZ(XT’—s)],

since Upr_ Y (Upi_g) = Y (Xpr_s,8) = Z(Xgv_s) and R, = UyR.U; . Indeed, the last
equality holds since

d ~ ~ o~ ~ ~
(U0 Uy ) = UoRe A7 = U R Uy UpUy A U0 Uy
= UgR Uy 'S, Apr ST 1,
which shows that R, and UOI:’;T Uy ! solve the same ODE, and thus must be equal. O
4.8. Induced martingales and parallel gradients

Definition 4.7. Let F': Pr» M — R be integrable. Then, we define the induced martingale
as

FT(’Y) = E(m,T/)[F‘ZT](PY)
Note that then F satisfies the martingale property, i.e. for all ¢ < 7
E(I,T')[FT‘EO'] = Fo’:
by the definition of conditional expectation and that ¥, C X,.

The next results concern the induced martingale of an integrable function F. Note
that integrability is not a big restriction, since each uniformly integrable martingale
can be represented as the induced martingale of an integrable function. Explicitly, by
standard results the induced martingale satisfies the following:

Proposition 4.8. Let F': Pp/M — R be integrable. Then, for almost every Brownian

curve {7V }rejo,r1] we have for the induced martingale

Fo(y) = Eqorn [FIE.](y) = / F(rlom *7) . (7).

Py

where we integrate over all v' in the based path space P, . M and * denotes the concate-
nation of the two curves y|jo,r and ~'.

The analysis to follows exploits a nice set of nice test functions on path space, namely
cylinder functions:
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Definition 4.9. Given 7 = {7;}*_, be a partition of [0,7"] we define evaluation maps
JJ5=1

er: PpM — MF, er(Y) = (M1Yry, T1 Y7y - -+ » T1 Ve )-

Given a partition 7 and a smooth compactly supported function f: M* — R we obtain
a cylinder function

F: PrM =R, F(y) = flez(7)).
The space of all cylinder functions is denoted €p.

Definition 4.10. Let F' € €1/ and fix v € Pp» M. Given V a vector field along v we let
§° = (25, T" — T)r¢o,r1] denote a one-parameter family of curves such that €0 = v and

0 e _
3z |oeo > = Vr. Then

a €
DyF = o Ezof(e.,.(g )).

In our setting we will only use a special class of vector fields V. In particular, let H
denote the Hilbert space of H!-curves (h,),>o in (T M, g7+) with hg = 0 equipped with
the inner product

il

(h1,h2)qy :/<h1’h2>(TwM’gT/) dr.
0

Given (h;)r>0 € H we let V() = Sy ()b,

This derivative operator admits a key integration by parts formula, cf. [3], [7, Theorem
A.1]. In the statement below, for (h;),>0 € H we set

(hr,dW,) = (Uy thy); dWE,

noting that this inner product is independent of the initial choice of frame Uy. The
theorem is proved in an appendix (§6).

Theorem 4.11. Let F,G € €, let (h;);>0 € H and write V = (S-'h;),>0. Then

T/
1 1
DG = —DyG + 5G/ <dihT = S:(Re¥ +3501(g — ), 57 hr, dWT> (4.6)
T
0

satisﬁes E(I,T’) [DvFG] = ]E(z,T’) [FD%}G]
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Definition 4.12. Let o € [0,7”] and let F' € €. The parallel gradient VEF: P 71y M —
(T, M, gr) is defined as

DyoF(7) = (VaF(1),0) i1 a1 g0y

where V7 = S7 1, (1) and v € (T, M, gr+). Explicitly, if we have the representation
F=foe,17= {Tj}?:l, it follows that

ViF(y) = Z S, grad;jT)_Tj F(m1Yrys ooy T1Y7)- (4.7)

T >0

Definition 4.13. Given F € €, its Malliavin derivative V' : P ryM — H is defined
as

DyF(y) = (V*Fh),

for every h € H and V = (S;1h;),;>0. It follows that the parallel gradient is the time
derivative of the Malliavin gradient - (V*F), = VLF and furthermore

T’

\VHF2, = /|V$F|2d7.
0

Definition 4.14. Given the setup above and 0 < 7 < 7» < 77, we define the Ornstein-
Uhlenbeck operator

T2
Lirym) = /vi*vi dr.

T1

Remark 4.15. Our discussion above and proofs below work exclusively with cylinder func-
tions. Due to the integration by parts formula (4.6) the Malliavin gradient is closable and
can be extended to a closed unbounded operator from LQ(P(m,T/)M) to L? (P(LT/)M, H)
with €7 being a dense subset of the domain (cf. [10] Section 8). The definitions of all
derivative operators considered here can be similarly extended.

4.4. Martingale representation theorem
Proposition 4.16. Let F' € & and let F. be the induced martingale. Then F. solves

dF, = (V3 F,,dW,), Flr—o = Fp.
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Remark 4.17. This result shows that martingales are the natural generalization of the
(backward) heat-flow to the path space PM. Indeed, let F-(y) = fr(m17,) for some
smooth function f: M — R. Then Proposition 4.16 together with (4.2) yield

0= dfr(m1vr) — (Vfr(mivr), dWr) = (07 + Agp ) fr(m177),
which means that f; solves the backward heat equation.

Proof. Let F(v) = f(m19r,---, 17, ), Where f: M* — R is a smooth compactly sup-
ported function. Then, for 7 € (77, 741), by Corollary 4.5 and Proposition 4.8 we have

Fo(y) = / F(1ljo) *7') dTs (7)

Py, M

/ f 7T1'Y'rl yoe s T Y7y, Wl’y7’1+177'7 cee 77717‘%*7') dF’Y-r (’yl)

/ f T19 mylﬂw-~»yk)pTur,Tur,H(Xmyl+1)~~~

PT/ 1oy T~ (Yh—1, Y& ) AV Wis1) - dVr,_ (yr)

T/77'1+1

= fT(XT17"'7XTl;XT)'

Note that for (z1,...,x;) fixed, (z,7) — fr(21,...,2,2) solves (9, + AUV f. =0,
where AU+D acts on the last entry.

Let f, = f; o @m0 @ and Fr = F, oII. Then Fy(U) = f,(Uy,, ..., Us, Us).
According to (4.2) we have then

dF.(U) = df;(Uy,,..., Uy, Uy;)
(a*f"'( 7'17"'7U7'Z’U7')+E7;(Z+I)Ei(l+1)}:’(UT1?"'?UT”UT)dT

+ (BT Un, o Un U2, aWE).

Note that due to Proposition 3.6 we have 8*fT + B H_1)E(l+l)f = 0. Next, we compute

Eri(l+1)ﬁ'(UT17"'?UTl7U) (UTe’L) fT(UT17"-aUTl)UT)
= UTeZ)f( 7'17"'7X7'17XT)

(
{

= (Uoei, VEF-(7)

Urezagradél;:l) f'r( Tl?"'ﬂXTI,7XT)>(T Mg )
Xy Vgl — 1+

S U 73 7' d(H_l) T Tio " XT,XT >
ei, Sy gra fr(Xos o Xy ) (Te M, gz1)

>(T1M79T/) ’
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where we used Lemma 3.4 in the second line and (4.7) in the last line. All in all we find

dF;(y) = dF;(U) = (Uges, VL Fr (7)) AW: = (VEF.(v),dW,),

(T M,gpr)

which was the claim. 0O

Corollary 4.18. Let F' € €. Then the quadratic variation [F, F|; of the induced mar-
tingale F,. satisfies

d[F,F], =2|V.F.|*dr.
4.5. Ewvolution of the parallel gradient

In the next result we give is about the evolution of the parallel gradient.

Theorem 4.19. Let F € € and let 0 > 0 be fized. Then the parallel gradient of the
induced martingale V:F, satisfies

1
A(VzF.) = (VEVZFE., dW,)+ (Re¥ + 509 — b)) (VEF )Ly (7) dr

+ VﬁF(,&g(T) dr,

where <RcV + 30, (g — b))T(v),w>T M = (RCZ + 30:(9 = b)) i=1—+ (S 0, S w).

Proof. Since F; is Y.-measurable, i.e. it depends only on times smaller than 7, we have
that VZF, = 0 as soon as 7 < 0. At 0 = 7 we have a jump discontinuity, which is
expressed in the d-notation V21 F,d, (7). For 7 > o we aim to show the evolution

AVEF,) = (VEVEF,, dW,) + (ReY + 509 — D) (VEF) . (48)

Let F(v) = f(m179rys---T17r,) be a cylinder function. Let 7 € (7, 741), then F.(y) =
fr(Xsy, ..., X5, X)) as in the proof of Proposition 4.16 and by virtue of (4.7)

Vi_FT(rY) = Z STj gra’dg(]jT)/iﬂ_j fT(XT17' . 7XTkaX‘f')
Ti 20

+ 8- grad( T £ (X, Xn X)),

gr’ —+

Consider G;(U) := (Upe;, Vo F,(IIU)). Then

Gl(U) : <U061,V‘J;FT(HU)>

TowM, g1

3 <U7j eigradfl)  fr(Xn,. ,XTk,XT)>

T 20

TX.,.], M, g1/

7
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UT 7y d(H_l) TXTV""XT’XT>
+ < €i, gra QT/,Tf( 1 k ) Tx, Mg

-

=N BV (Us,...,Un U+ BV F(U, . Un Uy,

Ti 20
where we used Lemma 3.4 in the third line. Then with (4.2) we find

4Gi(U) = > (0:B Fr(Us) + BEDESVED LUy, U U) ) dr

720
+ EUVED f(U,) dw
+ (0B F(U) + BB B (U, U, UR)) dr
+ BV EMY F(U,) awr

= > BD@; + BSHEI) F(U;) dr + BTV ED F(U-) dW

Tj 20
+ B0 + ESV B (U dr + EGHV B FL(U7) dW
+1[07 + ESTVESTY, B f-(U,) dr.

Recall that (0F + E,(,lfl) ,(,lfl))ﬁ = 0 due to Proposition 3.6. Furthermore, using Propo-
sitions 3.3 and 3.6 we deduce

~ — ] —— ~
(07 + BSTVELT, B fr = (Re¥ + 5009 — )i B Fr.
All in all this gives us

dGi(U) = > ESVED f(U,) W™ + S B F(uy) dwr

TiZ20
—_— 1 —~— ~
+ (I{Cv + 5@(9 - b))imEy(yll+l)fT
Projecting down yields

> ECOED F (U, dwr + BEGD ECY FL(U,) awr

Tj 20

< Z (ST @ STj)v(l+1)v(j)fT + (ST & ST)V(l+1)v(l+1)fT, dWT ® UOez'>

T 20

= <Vj:Vf;FT('y), dW, @ Uge; ),

and
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(Re¥ + 501l = D) S F(U7) dr = ((Re¥ 3040 = D) (V4 F,) dr e )
giving the result. O
Lemma 4.20. Let F' € €/ and 7,0 > 0 fixed. Then
VE|VaF|? =2(ViVLF,VLF).
Proof. Let F(y) = f(m179r,-++ , 7177 ). Then, as in the proof of Theorem 4.19

(VEF(v), Usea) ZE(J Ursoo o Ur).

Tj 20
Hence

(VEIVEFR Uper) = Y Eék)zn: (> EDf)?
a=1 7;>0

T 2>T

_QZ Z Z E(J (Z EL(lj)f)

a=11p, 27 T; 20 T >0

Projecting down and using Proposition 3.6 yields the claim. O

Corollary 4.21. Let F € € and o > 0 fiwed. Then VEF:: Py ryM — (T, M, gr)
satisfies

(1) the quadratic Bochner identity
1
A(|VEFE?) =(VE|IVEF 2, dW.) + 2(Rc +50(9 - b)) (VEF, VLE,)dr
+2|VEVLEE 2 dr + |[VEF, %6, (7) dr,
(2) and the linear Bochner identity

VZVa Fr? = V2| VZ B
Vo Fyl

AV Fr| =(V7|V5 Fr|,dWy) +

1
VIR

1
(ReY +50(9 ~ W) (VEE, VEE) dr + |[VEF|6,(7) dr

Here, we denote (Re¥ +30(g — b))+ (v,w) = (Rey, +301(g — b)) li=1/—~ (S5 10, S w).

Proof. As in the previous proof, it is enough to consider the case o < 7. By Ito’s Lemma
and Theorem 4.19 we have
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d(|Vy Fr ) =2(V; Fr,d(V; F,)) + d[V, Fr, YV Fy]
1
=2 <v§FT, (VEVEE., dW.) + (ReY + 5019 — - (VEE,) d7>
+ 2|VEVLEE |2 dr.
Noticing that 2(VLF, (V+VrF,, dW;)) = (V+|VZFE:|[?,dW.) due to Lemma 4.20,
this proves the quadratic Bochner identity.
In order to show the linear Bochner identity, we use the Ito-Tanaka-Meyer formula

for the convex function |- |: R™ — R, cf. [8]. Let us note that there is no local time at
the origin, since we assume dimension > 1. O

Corollary 4.22. The generalized Bochner formula on PM reduces to
1 2 2 v, 1
5(37+AQT/,,)|VJCT| = |VVf7—| +(RC +§8t(9_b))|t=T’—T(vaava)v

where fr = Pri_rqi—r f, f: M — R is a smooth function, 0 < 71 < 1" is fized, and
T<T1.

Proof. Define

Fo(y) = Pri_rri_7 f(mye) ifr<m
! flmive) if7>m.

It follows from Proposition 4.8 that this defines a martingale on PM. Moreover,
Vo Fr|(v) = V= Fr|(v) = |V fr | (m177)
and
Vo Vi Frl(7) = [VV f|(m177)
By virtue of Corollary 4.21 we have
d(|V f-?) = (VY fo 2, dWy) = 2[VV o [* dr + 2(ReY
4300~ Dl (VT f2)

with all quantities evaluated at m1;. Then by Ito’s formula (4.2), eventually lifting
everything on the frame bundle, we find for the left hand side

AV fr?) = (V7 IV, dWr) = (0- + Ay, )IVf:|*dr.

All in all we obtain
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1
(07 + Ay, V|2 dr = 2|VV [ 2 dr + 2(RcY +§8t(g — 0=/ -~ (V fr, V fr) dr,

g7/ —

which holds at w17, for I';-a.e. curves «, which means by the definition of the Wiener
measure [',, it holds for a.e. y € M. By smoothness of f we obtain the claim for every
yeM. O

Lemma 4.23. Let F' € €1/ be nonnegative and 7,0 > 0 fired. Then
ViVilogF = F'ViVIF - F2ViF@VLE

Proof. The proof follows by computing on the frame bundle as in the proof of
Lemma 4.20. O

Corollary 4.24. Let F' € €/ be nonnegative and let F. be the induced martingale. Then
X, = FY\VHE,|> - F, log F, satisfies

T’

dX, =(V+X,,dW,)+ 2F, /\VivgllogFTFda dr
0

T/
1
+2F ! /(Rcv+§3t(g—b))T(Vf;FT,Vi‘FT)dJ dr.
0

Proof. Note that
d(Fylog Fy) = (V& (F log F,),dW, ) + FZ VL F,|* dr (4.9)
due to Proposition 4.16 and the standard Ito formula. For the other term we compute
A(F-HVHRE ) = Fo YV E )2 + |[VRE PdF + d[F L [VRF?).
Noticing that

dVHF|? = (VEIVHE?, dWV,)
T’ 1
+2/ ((Rcv +§8t(gfb))T(VTFT,VjFT)+ viv;m?) do dr

+ |VEE |2 dr
due to Corollary 4.21 and that

dF; ' = (VEH(FY),dW, ) + 2F 3| VEF, 2 dr
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we compute using Lemma 4.20 and Lemma 4.23
T/

AP VHRF ) =(VEFHVRE?), dW, ) + 2F; /\vivalogFTPda dr
0

T . (4.10)
+2F71 /(RCV +50(9 = )7 (Vo Fr, V- Fr) do | dr
0

+ FE-YVEE [ dr.
All in all, combining (4.9) with (4.10) we get

T/
AX, = (VEX W) 4 28, | [ 9Vl o | dr
0

Tl
1
+2F ! /(Rcv+§3t(g—b))T(Vf;FT,Vi‘FT)da dr. O
0

5. Characterizations of generalized Ricci flow

Theorem 5.1. For an evolving family of manifolds (M, g;, Ht)ieo, 1), the following are
equivalent:

(1) The generalized Ricci flow is satisfied:
di(g —b) = —2Rc" .

(2) Let 0 < o <T' < T and F € €. Then the induced martingales satisfy the Bochner
inequality

AVZE|? > (VEVE 2 dW, ) + 2|VEVE F 2 dr + V& F, 26, (7) dr.

(8) Let 0 < 0 < T' < T and F € €p/. Then the induced martingales satisfy the weak
Bochner inequality

AVzF > > (VEVZE . dW.) + V5 F,[*0,(7) dr.

(4) Let 0 < 0 <T' < T and F € &p. Then the induced martingales satisfy the linear
Bochner inequality

AV 3 Fr| 2 (VEVyF.|,dW,) + |V Fy|d,(7) dr.
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(5) Let 0 < o <T' < T and F € €r.. Then the induced martingales satisfy
T |VLFE,| is a submartingale.

Proof. (1) = (2): Let 9;(g — b) = —2Rc". Then the claim directly follows from Corol-
lary 4.21.

(2) = (3): This follows from omitting the Hessian part.

(2) = (4): Assume 7 > 0. Note that due to Corollary 4.21, we have that

VAVLE, |2 = [VEVER|?
dr

d|VEF,| =(VE|VEIE,|, dW,
Vo ol = (Ve Ve Bl dWn) + ViF]

(5.1)
+

1
|VJ‘F | (I%Cv +§at(g - b))‘r(viFT, ViFT) dr.

Now, comparing (5.1) with (2) by standard Ito’s lemma and using that |V |V F,||? <
|VLVLEE, |2 we directly find that

AV Fr| 2 (V7 |Vy Fr|,dWy).

Together with V:F, = 0 for 7 < o, this yields (4).

(4) = (3): This follows directly by applying Ito’s formula and (4).

(4) & (5): Clearly, (4) implies (5). For (5) = (4), note that (5) implies that the
absolutely continuous part in (5.1) must be nonnegative, which deduces (4).

(3) = (1): Let F': P, /)M — R. By Corollary 4.21 we know that

f 1
T [VEE — [(RS 4300 = 0),(T4 Ep VEE,) + 2V VEE [ dp
0

is a martingale and consequently

/ 1
B (196 2 = [(Re¥ 4+ 20l — ), (V2R V1) 4 29V dp| = 196 Ryl
0

By virtue of (3) 7+ |Vg F,|? is a submartingale and in particular
E o) [IVo Fel’] = |V Fol”

Together this implies that

r 1
E( 1) /(RCV +50(9 - W) (VEF, VEF,)+2|VEVaF2dr| >0. (5.2)
0
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Now we consider two choices of cylinder function for F. Let the first one be f1: M — R
with fi(z) = 0, Vfi(z) = v, and V2fi(z) = 0, where v € (T, M, g7+). Then define
F: Py ryM — R by F(v) = fi(m1(7:)). For 7 < & we have
v(J)_FT = Vi‘FT =5:VPr_r e fi(m(yr)), |V¢V3‘FT| = |v2PT’—T,T’—€f1(7Tl(’YT))|
and thus VX F, = v+ o(e) and |V Vg F,| = o(e).
The second choice is fo: M x M — R with fo(z,z) = 0, VO fo(z,z) = 2,
)

VA fo(x,z) = —v, and V2fo(z,z) = 0. Let F(y) = fao(m1(70), 71 (7(€))). Then, for
T L€,

Fr(y) = PE) o folz, mn),s
VaF = VOPY 1 fole,mn) + S, VOPE 1 fale,mrr) = v+ o(e),
VTLFT = STV(Q)P:(F%)_T’T,_EfQ(x,7r1fyT) = —v+o(e),

VEVEF | < [VOVOPD L fale,mrn)| + [VOVOPD o fo(w,mar)| = ole).

Inserting both choices into (5.2) we get
v 1 \v4 1 -1 -1
(Re —|—§8(g —b))e(v,v) = (Re —|—§3t(g — W) |t —c (ST 0, ST ) = o(e).

Letting e — 0 we get (Re¥ +20:(g — b))|e=r» =0. O

Theorem 5.2. For an evolving family of manifolds (M, g;, Ht)ieo, 1), the following are
equivalent:

(1) The generalized Ricci flow is satisfied:
di(g —b) = —2RcV.

(2) Let 0 < o <T' < T and F € €. Then the induced martingales satisfy the gradient
estimate

|V¢J7_F7'1 | < E(:C,T’) chJr_FTQHEﬁ]
forall0< 7 <o <T and x € M.
(38) Let 0 < o <T' < T and F € €. Then the induced martingales satisfy the gradient
estimate

‘VULF‘H ‘2 < ]E(I,T’)HViFT2|2|ET1]

forall0<n <o <T andx € M.
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(4) Let 0 < o <T' < T and F € €r.. Then we have the gradient estimate
IVoE (o) [FI* < B[ Vo FI?]

forallx € M.
(5) For any T' € [0,T], F € €/, the induced martingales satisfy the quadratic variation
estimate

d[F, F,
By | T ” | < 2B [VE P,

forall T €[0,T'] and x € M.

Proof. (1) = (2) = (3): (2) immediately follows from (5.1) and integrating in 7 and
taking expectations. Claim (3) follows then from (2) by Cauchy-Schwarz:

|V<J7_F7'1|2 < (E(I,T’) Uvi_F7'2||E7'1j|)2 < IE(a:,T’) Uvi_FTleETl]

for all 79 > 7.
(3) = (5): Note that according to Theorem 4.19 d[F, F], = 2|V F,|?dr and hence
(3) yields

d[F, F],
Bary | P07 | = 2B 0y [VE PP € 2B B IVE PRI

= 2E(, 1) [| V7 FI?).

(5) = (4): This follows by recalling from Corollary 4.18 that -L[F, F], = 2|VLF,|?
and applying (5).

(4) = (1): This follows by choosing 1-point and 2-point cylinder functions similarly
as in the proof of the implication Theorem 5.1 (3) = (1). O

Theorem 1.2. For an evolving family of manifolds (M, g;, Ht)ieo, 1), the following are
equivalent:

(1) The generalized Ricci flow is satisfied:
di(g —b) = —2RcV .
(2) For any0 <o <T'<T and any F € €/, we have the estimate

T/
E@vaﬁﬂf]+2/E@TﬂW$VjEFMTgE@TﬂWjFﬂ

0

forallxz € M.
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(8) For any 0 < 11 < 79 < T" < T the Ornstein-Uhlenbeck operator E(Tl,fz) on parabolic
path space L*(Pr M) satisfies the Poincaré inequality

E (o7 [(Fry = Fry)?] € 2E (o 1) [F L7y 1) F]

forallz € M.
(4) For any 0 < 1y < 72 < T’ < T the Ornstein-Uhlenbeck operator L(r,,7,) on parabolic
path space L*(Pr M) satisfies the log-Sobolev inequality

E (o, [(F?)ry 10g((F?)r,) = (F) 7, log((F?)r,)] < AE (o, [F L7y 7o) F]

forallz € M.
Moreover, if one of the conditions (1)-(4) is satisfied, we have:

(8a) For any 0 < T' < T, F € €+, we have the Poincaré Hessian estimate

T T
Eanl(F Byl 44 [ [ B [VEVAF P dodr
(U]
.
<2 [ B (IVEFP o
0

forallz € M.
(4a) For any 0 <T' < T, F € €r:, we have the log-Sobolev Hessian estimate

E (2.1 [F? 1og(F?)] = E (4 1) [F?| 10g (B (2, 1) [F?])

T T T’

1o / / E ) [(F2), [V V2 log((F2),)[?] do dr < 4 / E (o[ VEF?] do
0 0 0

forallx € M.

Proof. (1) = (2): Assertion (2) follows directly from integrating Theorem 5.1 (2) and
taking expectations.
(2) = (3): Using Ito’s isometry and Theorem 5.2 yields

T2
E o [(Fry — Fr )] = 2E )| / VL[ do]

T1

T2
< 2JE(LT,)[/ \VEF|?do] = 2E (4 17)[F L, my) F),

T1
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where we used Theorem 5.2 (2) in the inequality.
(3) = (1): Dividing (3) by 72 — 71 and letting 75 — 71 — 0 we find

d[F, F),
B [ dr } < 2E ) [IVEFP,

which is Theorem 5.2 (5).
(1) = (4): Take G = F?2. Then, by (4.9)

]E(I,T’)[(FQ)TQ IOg(FQ)Tz - (FQ)Tl IOg(FQ)Tl]
.
= E(I,T’) /G;HV#GTP dr

T1

T2

_ 2
<Eg ) /GTlE(w7T,) [[VEGr|2,]" dr

T1

T2
<A4E(, 77 /|V$F|2d7
T1

= 4]E(J;,T’)[F‘C(T1,T2)F]a

where we used Theorem 5.2 (2) in the second step and Cauchy-Schwarz in the third.
(4) = (3): We apply (4) to F?2 = 1 + &G and obtain by Taylor approximation

1
SE@r[E?GE, = €G] < EBo.) [GL(r, 1) Gl + 0(7).
Dividing by £? and letting ¢ — 0 we obtain
1 2 2
5E@m[Gr, = Go] S E@r)[GLer, )Gl

Noticing that E, 7)[G2, — G2 ] = E(.7)[(Gr, — Gr,)?] proves the claim.
This proves the equivalence of (1)-(4). Next we show the remaining implications.
(2) = (3a): Apply Proposition 4.16 and Ito’s isometry and integrate (2) on (0,7").
(1) = (4a): Let G = F? and consider X, = G-} V*G,|? — G, log(G,). Note that
according to Corollary 4.24, we have that

T

dX, = (VF X, dW,) +2G, / V2 V5 log(Gr)|*do | dr
0

T/
1
+2G; ! /(RcV +50:(9 W(VEG,, VLG, )do | dr
0
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T/
> (VEX.,dW,) +2G, /|V$vjlog(GT)l2da dr,
0

where we used (1) in the last equation. Integration and taking expectations yields

T T
E () [ X7] — E@rn[Xo] = 2E (1) /GT /|viv§10g(07)|2da dr| ,
0 0

and evaluating the expectations on the left hand side
]E(:c,T/)[XO] = - E(x,T’)[Fg] log(]E(z,T') [FZD
IE(:E,T’) [XTI] = 4E(1’,T’) HVHF|2] - E(I,T’) [F2 10g(F2)]

Putting everything together yields

4E (. 70 [[VHF ] = E(p ) [F? log(F?)] + E (1) [F?] log(E (o 7 [F?])
T T
> 9 / / E o) [(F2),|VEVE log((F),)[?] dodr,
00

which is (4a). O
6. Appendix: Integration by parts

Proof of Theorem 4.11. Since Dy, satisfies the product rule, it is enough to show that

’

1 d 1 _
E(I,T’)[DVF] = EE(I,T’) F/ <Eh'r - S‘F(RCV +§at(g - b));“’frs'r 1h‘r7 dWT>
0

for all F' € €. We prove this by induction on the order k of the cylinder function F.
k = 1: Let F(y) = f(z,) and let s = T’ — 0. Since w(z,t) = P.sf(x) satisfies the
heat equation, the gradient satisfies

1
Vigrad, w = Agw — (RCv +§8t(gt — bt))(gradgt w, -)#gt
by Proposition 3.3. By the Feynman-Kac formula (Proposition 4.6) we have

grad, , w(z,T") = B[Ry Sy grad, f(Xo)], (6.1)
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where R, = R, (v): (T:M,gr) — (T.M, g7) solves the ODE d%RT =R, S, (Rcv—i—
10,(g — b)) —+S7! with Ry = id, and where we view (ReY +10,(9g — b))/ —- as endo-
morphism of TM using the metric g7 _,. Note also by (4.3)

F(X,) = w(z, T') /Ew i 6.2)

where w is the invariant lift.
Let (27)refo,r1] € H. Then by (6.2) and Ito’s isometry

o o o

E( 1) f(XU)/<RIz'T,dWT> =E@1 /Eiz'E(UT)dWT" /(Riz'T,dWT>
0 0 0

o

= 2E(, 1) /<VE~( ), Uy 'RLz.) dr
0

o

= 2E(z,T’) /<R UOV U}( ) Z7->g/T dT )
0

where RI is the transpose of R,.
Let N, := R.UVFw(U,) = R, S, gradg , w(X,, T — 7). Integration by parts gives

[e)

E(x,T/) /<NT)ZT>QT/ dr :]E(x,T’) {25, No) /Z'rde dr
0 0

= ]E(z,T/) {<207N0>9T,] 5

where we used in the last step that N, is a martingale, cf. equation (4.5). With this we
obtain

T

IE(ac,T’) f(Xa)/<R;r—ZT7dWT> = 2IE(ac,T/) |:<R(T;ZU7SU gradgg f(XU)>gT/] s
0

where we used that E, 7 {f(XU) ng, <RIZT, dWT>} = 0. Finally, let h, = Rizr. Then

. 1
Riz. = hy — S;(RcY +50(9 — o) _ S hy,

which is the claim.
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Now we prove the inductive step, assuming the result for k—1-point cylinder functions.
Let F(y) = f(z5,,.--,%0,) and let s; =T’ — g;. Then

k

Em[DvFl =S Eqr) <hc,j,sgj gradf)) f(X,,, .. .,ng)>g . (6.3)
=1 i
We define a function
OZ(.’IJh (R axkfl) = E(Ik,l,sk,l)f(xb ceey Th—1, X;-kfgk_l)a

where X’ is based at x;_1. Then, for j =1,...,k — 2, we have

gradéﬁi a(@y, . xe1) = By si) gradé{i flry,o a1, X, o ). (6.4)

For j = k — 1 we have by the product rule and (6.1)
grad (k— 1) @y, xh—1) =By s ) grad(k 1) f(l‘h s T, X g ) 65)
D

+E(xk,7hsk IR, S’ grad, flxy, .o xp1, X

Ok —0k—1 0Ok—0k—1 Uk_o'k—l)]’

where R, = RL(y): (Th,_,M,9s._,) = (Tu,_,M,gs,_,) solves the ODE d%R’T =
RISL(ReY +10,(9 — b))s,_,—-S.71 with Ry = id. Now, let I': P, 71yM — R be the
(k — 1)-point cylinder function induced by «

G(PY) = O‘(xdla e ’I'Uk—l)'

Then, by (6.3), (6.4), and (6.5), and by the law of total expectation

E(m,T’) [DVF] = ]E(z,T’) [DVG] + ]E(%T') |:<h0'k750'k gradg:i F(Xoyson 7XUk)>g ]
T/
—E@r) lE(Xa“,skl) (6.6)

X |:<h0'k17S‘7k 1R:7k —O0k— IS(/J'k —O0k— 1gradg% f(X0'17""XUk—17X</Tk —O0— 1)>QT/]]

By induction, the claim holds for £ — 1 and thus

Sk—1
1 d 1
E(LT')[DVG] = §]E(91,T’) G / <d_h7' - ST(RCV +§at(g - b))}’—q—s;lhﬂ dWT>
T
0

A
o
~

J

The second term on the right hand side of (6.6) we decompose into
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]E(a:,T') |:<h0'k7S0'k gra’dgji f(Xa1 Yo 7X”k)>gT/:|
= E(or) [<th — B,y S, grad) f(X,,.... ,ng)>g } (6.8)
T/

+Eg) Rhgkl,s% grad() f(Xgl,...,ng)>g ] .
T/

Then, for the first term in (6.8) the Markov property at (X,,_,, Sk—1) together with the
induction hypothesis for one-point cylinder functions implies

]E(m,T/) |:<h’0'k - ha'k,—17SUk grad((;:,)c f(Xm yre 7X0k)>gT/]

=EurmEx,, s

X |:<S0'k11(h‘7k - h’”k—l)? S(’Tk—o'k,l gra‘dg]]zl)c f(X0'17' . 7X0k—1’X</7'k—0k,1) g :l
Sk—1

1 Tt /d 1

== §E(1‘,T') F / <d7’hT - ST(RCV +§3t(g - b))TS;l(hT - h0k1)7dW7'>
Sk—1
(6.9)
Similarly for the other term in (6.8)
IE:(nc,T’) |:<h0'k—1 ’ So'k gradéﬁi f(XU'I’ ce 7X0'k)>g :|
T/
=E@rmEx,, s
X |:<S;k11hgk1a S;kfa'k,l grad(g]ji f(XUU e 7X0k—1 ) Xérkfak,l)>g :| I
Sk—1

which we combine with the third term on the right hand side in (6.6) and obtain

EryEx,, s

X <5;k171h0k71,5;rgk71 grad(? f(XUl,...,ngl,X(’,kUk1)>qék1]

~E@rmEx,, s

x :<hc,“, S By gy Sty grady [(Xq.. ,Xokl,X;k_J“)>gJ
=EurEx,, s

X _<(id ~R, . )S;Y he,  Sh o grad,, f(Xo,,... ’X"“’X‘/”f“’“)>gskj
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1 i 1
== _§E(I,T’) F / <S-,—<RCV +§8t(g — b))TST_lho-k_l s dW7-> . (610)

Sk—1

Here, we used the induction hypothesis for

wy = (id— RS, )S; h

T—O0Kk—1 Ok—1"'""Ok—1"
Then a simple calculation shows that

d
wy — S’

T—0Ok— T—0Ok—
dT k—1 k—1

1
(Rcv+§at(g —bo)fsil
T—0O0k—1 T—0k—1 0k—1

1 _ _
=9 (RCV+§6t(g—b))TS' LooSot hg, o,

which gives (6.10).
Adding (6.7), (6.9), (6.10), we obtain

HE(x,T”)[l)v’l?
Sk—1
1 d v 1 i -1
= Q]E(I’T/) G EhT — ST(RC +§8t(g — b))T’er‘r h7-7 dWT
0
1 R 1
+ 5E@r) |F / <EhT — S, (ReY +501(g ~ D) S (hy — he,_,), dWT>
L Sk—1
1 [ 1
~ 5E@r) | F / <ST(RCV +501(9 - b))TSTlhgkl,dWT>
Sk—1

1 d v 1 b et
= —-FE7 | F —h,; — S, - — b)), he, dW, ,
s |F [ (e = 5. 43000~ )5
0
which proves the theorem. O
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