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As a consequence of the Bochner formula for the Bismut con-
nection acting on gradients, we show sharp universal Poincaré 
and log-Sobolev inequalities along solutions to generalized 
Ricci flow. Using the two-form potential we define a twisted 
connection on spacetime which determines an adapted Brow-
nian motion on the frame bundle, yielding an adapted Malli-
avin gradient on path space. We show a Bochner formula for 
this operator, leading to characterizations of generalized Ricci 
flow in terms of universal Poincaré and log-Sobolev type in-
equalities for the associated Malliavin gradient and Ornstein-
Uhlenbeck operator.
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1. Introduction

In the analysis of Ricci flow, the classic Bochner formula for gradients plays a key 
role. This basic formula underlies gradient estimates for solutions to the heat equation 
along Ricci flow, and yields functional inequalities such as Wasserstein distance mono-
tonicity [13], and universal Poincaré and log-Sobolev inequalities [9]. Furthermore, these 
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functional inequalities can be used to characterize supersolutions to Ricci flow [7,13]. 
Later, through a broad extension of the Bochner formula to functions on path space, 
Haslhofer-Naber gave a characterization of solutions to Ricci flow [7] in terms of uni-
versal functional inequalities. In this paper we extend this circle of ideas to the setting 
of generalized Ricci flow. A one-parameter family of metrics and two-forms (gt, bt) is a 
solution of generalized Ricci flow [15] if

∂

∂t
g = − 2 Rc +1

2H
2,

∂

∂t
b = −d∗gH, H = H0 + db,

where dH0 = 0 and

H2(X,Y ) = 〈X H,Y H〉 .

At times we will refer equivalently to the associated pair (gt, Ht) as a solution to gener-
alized Ricci flow. It is natural to express this equation using the curvature of the unique 
metric connection with torsion H, referred to as a Bismut connection. If we let D denote 
the Levi-Civita connection, the relevant Bismut connection is then

∇ := D + 1
2g

−1H, Rc∇ = Rc−1
4H

2 − 1
2d

∗
gH.

It follows that the generalized Ricci flow can be expressed as

∂

∂t
(g − b) = −2 Rc∇,

where Rc∇ is the Ricci tensor of the Bismut connection. The flow equation arises nat-
urally as renormalization group flow [14], and arises naturally from considerations in 
complex geometry [17–19] and generalized geometry [4,16]. We refer to [5] for further 
background on generalized Ricci flow.

As solutions to generalized Ricci flow are supersolutions to Ricci flow, the results on 
Ricci flow supersolutions mentioned above immediately apply without changes. However, 
by using the explicit geometric structure of generalized Ricci flow we obtain sharper 
results. First we show universal Poincaré and log-Sobolev inequalities along solutions to 
generalized Ricci flow, extending the result of [9]. It is possible to use these inequalities 
to give characterizations of supersolutions to generalized Ricci flow, although we do not 
carry this out here. To state the result we record some notation: given (Mn, gt, Ht) a 
generalized Ricci flow on M × [0, T ], for (x0, 0) ∈ M × [0, T ] let (s, y) '→ pT,s(x0, y)
denote the conjugate heat kernel (see Definition 2.3), and let

dνx0
s = pT,s(x0, y) dVg(s).

Throughout we adopt the convention that by a solution to generalized Ricci flow we 
mean a smooth solution where each time slice is complete with bounded geometry.
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Theorem 1.1. Let (Mn, gt, Ht) be a solution to generalized Ricci flow defined on M ×
[0, T ]. Fix x0 ∈ M and s ∈ [0, T ). Then:

(1) For all φ ∈ C∞
0 (M) with 

∫
φdνx0

s = 0, one has

∫
φ2dνx0

s ! 2(T − s)
∫

|∇φ|2 dνx0
s ,

with equality if and only if either φ ≡ 0, or (M, gt, Ht) ∼= (M ′, g′t, H
′
t) × (R, dz2, 0)

for all t ∈ [s, T ] with z(x0) = 0 and φ(x) = λz for some constant λ ∈ R∗.
(2) For all φ ∈ C∞

0 (M) with 
∫
φ2dνx0

s = 1, one has

∫
φ2 log φ2dνx0

s ! 4(T − s)
∫

|∇φ|2 dνx0
s ,

with equality if and only if either φ ≡ 1, or (M, gt, Ht) ∼= (M ′, g′t, H
′
t) × (R, dz2, 0)

for all t ∈ [s, T ] with z(x0) = 0 and φ(x) = exp(λz − 2λ2(T − s)) for some constant 
λ ∈ R∗.

Going further, we will show a generalization of the infinite-dimensional Bochner for-
mula for the Malliavin gradient on path space along Ricci flow as in [1,7,11]. The starting 
point of these constructions is to define a connection on the frame bundle of the spacetime 
associated to a time-dependent Riemannian manifold, originally employed in Hamilton’s 
proof of the Harnack inequality for Ricci flow [6]. It turns out that it is possible to incor-
porate the two-form potential bt into this construction in a way that fits very naturally 
with the generalized Ricci flow equation. For a family (Mn, gt, bt) defined for t ∈ I, we 
define a connection ∇ on π∗TM → M × I which extends the given action of ∇ via

∇tY = ∂tY + 1
2∂t (gt − bt) (Y, ·)!gt .

This operator admits a key Bochner formula, which is central to our constructions. In 
particular, given (gt, Ht = H0 + dbt) a general one-parameter family, and u a solution of 
the time-dependent heat equation, one has that (Proposition 3.3)

∇t gradgt u = ∆ gradgt u−
(
Rc∇ +1

2∂t (gt − bt)
) (

gradgt u, ·
)!gt .

Thus, along a solution to generalized Ricci flow, the gradient of a solution to the heat 
equation itself satisfies a pure heat equation using the adapted derivative ∇. The main 
goal is to give an extension of the Bochner formula above to path space. In §4 we use 
the connection ∇ on spacetime defined above together with the antidevelopment map to 
give the Eels-Elworthy-Malliavin construction of Brownian motion in this setting. This 
in turn gives a notion of parallel gradient for martingales. We then prove a formula on 
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the evolution of parallel gradients of martingales which generalizes the Bochner identity 
above:

d(∇⊥
σ Fτ ) =

〈
∇⊥

τ ∇⊥
σ Fτ , dWτ

〉
+ (Rc∇ + 1

2∂t(g − b))τ (∇⊥
τ Fτ )1[σ,T ](τ) dτ

+ ∇⊥
σ Fσδσ(τ) dτ.

This is a generalization of the Bochner formula described above (cf. Corollary 4.22), 
which occurs as the case where F is a one-point cylinder function.

The path-space Bochner formula above can be used to give many equivalent char-
acterizations of generalized Ricci flow. First, in Theorem 5.1 we give equivalent char-
acterizations in terms of Bochner inequalities on path space. Next, in Theorem 5.2 we 
show equivalence with universal estimates on the norm and square norm of gradients 
of martingales. We note that the adapted geometry on path space also determines an 
Ornstein-Uhlenbeck operator by composing the Malliavin gradient with its adjoint. We 
show equivalence with universal Poincaré and log-Sobolev inequalities for this operator 
on path space, extending the inequalities of Theorem 1.1. The precise definitions of the 
objects in the theorem below appear in §4.

Theorem 1.2. For an evolving family of manifolds (M, gt, Ht)t∈[0,T ], the following are 
equivalent:

(1) The generalized Ricci flow

∂t(g − b) = −2 Rc∇

is satisfied.
(2) For any 0 ! σ ! T ′ ! T and any F ∈ CT ′ , we have the estimate

E(x,T ′)[|∇⊥
σ Fσ|2] + 2

T ′∫

0

E(x,T ′)[|∇⊥
τ ∇⊥

σ Fτ |2] dτ ! E(x,T ′)[|∇⊥
σ F |2]

for all x ∈ M .
(3) For any 0 ! τ1 ! τ2 ! T ′ ! T the Ornstein-Uhlenbeck operator L(τ1,τ2) on parabolic 

path space L2(PT ′M) satisfies the Poincaré inequality

E(x,T ′)[(Fτ2 − Fτ1)2] ! 2E(x,T ′)[F L(τ1,τ2)F ]

for all x ∈ M .
(4) For any 0 ! τ1 ! τ2 ! T ′ ! T the Ornstein-Uhlenbeck operator L(τ1,τ2) on parabolic 

path space L2(PT ′M) satisfies the log-Sobolev inequality

E(x,T ′)[(F 2)τ2 log((F 2)τ2) − (F 2)τ1 log((F 2)τ1)] ! 4E(x,T ′)[F L(τ1,τ2)F ]
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for all x ∈ M .

Moreover, if one of the conditions (1)-(4) is satisfied, we have:

(3a) For any 0 ! T ′ ! T , F ∈ CT ′ , we have the Poincaré Hessian estimate

E(x,T ′)[(F − E(x,T ′)[F ])2] + 4
T ′∫

0

T ′∫

0

E(x,T ′)[|∇⊥
τ ∇⊥

σ Fτ |2] dσ dτ

! 2
T ′∫

0

E(x,T ′)[|∇⊥
σ F |2] dσ

for all x ∈ M .
(4a) For any 0 ! T ′ ! T , F ∈ CT ′ , we have the log-Sobolev Hessian estimate

E(x,T ′)[F 2 log(F 2)] − E(x,T ′)[F 2] log(E(x,T ′)[F 2])

+ 2
T ′∫

0

T ′∫

0

E(x,T ′)[(F 2)τ |∇⊥
τ ∇⊥

σ log((F 2)τ )|2] dσ dτ ! 4
T ′∫

0

E(x,T ′)[|∇⊥
σ F |2] dσ

for all x ∈ M .
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2. Universal Poincaré and log-Sobolev inequalities along generalized Ricci flow

2.1. Conventions

Before we begin we explicitly clarify our notational conventions and some elementary 
facts. Given data (Mn, g, H) of a smooth Riemannian manifold and closed three-form 
H, we let D denote the Levi-Civita connection of g and ∇ = D + 1

2g
−1H denote the 

Bismut connection, as explained in the introduction. We almost exclusively work with ∇, 
although in some proofs D makes an appearance. The connection ∇ induces connections 
on all tensor bundles, and furthermore we define a Laplace operator

∆ = trg ∇∇
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A fundamental point is that the Laplacian acting on functions is the same as the usual 
Levi-Civita Laplacian, although importantly this is no longer the case for the Lapla-
cian acting on other tensor bundles, in particular acting on 1-forms and vector fields. 
Furthermore, we will typically deal with a one-parameter family (gt, Ht = H0 + dbt) of 
Riemannian metrics and closed three-forms. Often we will simply describe this as (gt, bt), 
with the background fixed choice of H0 not stated.

2.2. Heat operators

Definition 2.1. The heat operator and conjugate heat operator along a solution to gen-
eralized Ricci flow are defined by

" := ∂t − ∆

"∗ := − ∂t − ∆ + R− 1
4 |H|2 .

Lemma 2.2. Let [t1, t2] ⊂ [0, T ]. Let u, v : M × [t1, t2] → R be smooth functions with 
compact support in M . Then

t2∫

t1

∫

M

("u)v − ("∗v)u dV dt =




∫

M

uv dV




t2

t1

.

Definition 2.3. For x, y ∈ M and s < t ∈ [0, T ], we let pt,s(x, y) denote the heat kernel 
based at (s, y), i.e. the unique minimal positive solution to the equations

"t,xpt,s(x, y) = 0,
lim
t↓s

pt,s(x, y) = δy(x).

Observe that by the duality in Lemma 2.2, the heat kernel pt,s(x, y) equivalently solves 
the conjugate heat equation based at (t, x) in (s, y), i.e.

"∗
s,ypt,s(x, y) = 0

lim
s↑t

pt,s(x, y) = δx(y).

Consequently, pt,s(x, y) is mass-preserving in y with respect to dVg(s) and

∫

M

pt,s(x, y) dVg(s)(y) = 1

for all s < t and x ∈ M . Moreover, the uniqueness implies the propagator property
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pt,r(x, z) =
∫

M

pt,s(x, y)ps,r(y, z) dms(y)

for all r < s < t and x, z ∈ M . With this we can define the heat flow and the conjugate 
heat flow of a function u ∈ C∞

0 (M).

Definition 2.4. Let u, v ∈ C∞
0 (M) and µ ∈ P(M). For s ! t ∈ [0, T ], let (t, x) '→ Pt,su(x)

denote the heat flow, i.e.

(Pt,su)(x) =
∫

M

pt,s(x, y)u(y) dVg(s)(y).

For t # s ∈ [0, T ], let (s, y) '→ P ∗
t,sv(y) denote the conjugate heat flow, i.e.

(P ∗
t,sv)(y) =

∫

M

pt,s(x, y)v(x) dVg(t)(x).

In other words, (t, x) '→ Pt,su(x) solves the (forward) heat equation from time s with 
initial condition u to time t, whereas (s, y) '→ P ∗

t,sv(y) solves the (backward) conjugate 
heat equation from time t with terminal condition v to time s. Lastly we record a useful 
identity for the heat flow Pt,s.

Lemma 2.5. Let t ∈ [0, T ]. For any family of smooth functions Us parametrized by s ∈
(0, t),

d

ds
Pt,sUs = Pt,s"sUs.

Proof. By the definition of Pt,s we have for every u ∈ C∞
0 (M)

d

ds
Pt,su = −Pt,s∆g(s)u.

The claim follows then from the Leibniz rule. !

2.3. The parabolic Bochner formula

A fundamental observation for Ricci flow equation is the gradient bound for solutions 
to the time-dependent heat equation. In fact, this observation extends to supersolutions 
of the Ricci flow, and thus automatically applies to solutions of generalized Ricci flow. 
The lemma below records the parabolic Bochner formulas for spacetime functions along 
a solution to generalized Ricci flow, which interestingly is expressed naturally in terms 
of the Hessian with respect to the Bismut connection.
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Lemma 2.6. Let (Mn, gt, Ht) denote a solution to generalized Ricci flow. Then the fol-
lowing hold:

(1) Given u a spacetime function,

"1
2 |∇u|2 = − |∇∇u|2 + 〈∇u,∇"u〉 .

(2) Fix u a spacetime function and ϕ : R → R. Setting U = ϕ(u), we have

"U = ϕ′"u− ϕ′′ |∇u|2 .

(3) Fix u a spacetime function and ψ : R → R. Setting U = ψ(u) |∇u|2 we have

"U = − 2ψ(u)
(
|∇∇u|2 + 〈∇u,∇"u〉

)
− 4ψ′(u)

〈
∇2u,∇u⊗∇u

〉

− ψ′′(u) |∇u|4 + ψ′(u)"u.

Proof. For item (1) we apply the usual Bochner formula to obtain

"1
2 |∇u|2 = 〈∇∆u,∇u〉 +

〈
Rc−1

4H
2,∇u⊗∇u

〉
−

∣∣∇2u
∣∣2 − 〈∆∇u,∇u〉

= −
∣∣D2u

∣∣2 − 1
4 |∇u H|2 + 〈∇u,∇"u〉 .

We furthermore observe that, since

∇ = D + 1
2Hg−1,

it follows that

∇∇u = DDu + 1
2∇u H.

And hence, since DDu is symmetric and ∇u H is skew-symmetric, it follows that

|∇∇u|2 = |DDu|2 + 1
4 |∇u H|2 ,

yielding item (1). For item (2) we compute

"ϕ(u) = ϕ′(u)∂u
∂t

− div (ϕ′(u)∇u) = ϕ′(u)"u− ϕ′′(u) |∇u|2 .

For item (3) we compute

"U = ψ′(u)∂u
∂t

|∇u|2 + ψ(u) ∂
∂t

|∇u|2 − div
(
ψ′(u)∇u |∇u|2 + ψ(u)∇ |∇u|2

)

= ψ′(u)"u + ψ(u)" |∇u|2 − ψ′′(u) |∇u|4 − 4ψ′(u)
〈
∇2u,∇u⊗∇u

〉
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= − 2ψ(u)
(
|∇∇u|2 + 〈∇u,∇"u〉

)
− 4ψ′(u)

〈
∇2u,∇u⊗∇u

〉

− ψ′′(u) |∇u|4 + ψ′(u)"u. !

Using this lemma we give two useful intertwining relations of the heat flow, in partic-
ular generalizing the L2-gradient estimate in the sense of Bakry-Émery.

Proposition 2.7. Let (Mn, gt, Ht) denote a solution to generalized Ricci flow.

(1) For u ∈ C∞
0 (M) it holds

|∇Pt,su|2g(t) = Pt,s(|∇u|2g(s)) − 2
t∫

s

Pt,r

(
|∇∇Pr,su|2g(r)

)
dr.

(2) For u ∈ C∞
0 (M) with u # 0 it holds

|∇Pt,su|2g(t)
Pt,su

= Pt,s

(
|∇u|2g(s)

u

)
− 2

t∫

s

Pt,r

(
Pr,su |∇∇ logPr,su|2g(r)

)
dr.

Proof. By Lemma 2.5 and Lemma 2.6 (3) with ψ = 1 we have

t∫

s

d

dr
Pt,r(|∇Pr,su|2g(r))dr =

t∫

s

Pt,r"r |∇Pr,su|2g(r) dr − 2
t∫

s

Pt,r

∣∣∇2Pr,su
∣∣2
g(r) dr.

On the other hand, by the fundamental theorem of calculus

t∫

s

d

dr
Pt,r(|∇Pr,su|2g(r))dr = |∇Pt,su|2g(t) − Pt,s(|∇u|2g(s)).

Combining the two last equations yields item (1).
In order to show item (2) we derive with Lemma 2.5 and Lemma 2.6 (3) with the 

choice ψ(u) = 1
u ,

t∫

s

d

dr
Pt,r

(
|∇Pr,su|2g(r)

Pr,su

)
dr =

t∫

s

Pt,r"r

(
|∇Pr,su|2g(r)

Pr,su

)
dr

= −2
t∫

s

Pt,r

(
|∇∇Pr,su|2g(r)

Pr,su
− 2

〈
∇2Pr,su,∇Pr,su⊗∇Pr,su

〉

(Pr,su)2 +
|∇Pr,su|4g(r)

(Pr,su)3

)
dr

= −2
t∫

s

Pt,r

(
Pr,su |∇∇ logPr,su|2g(r)

)
dr.
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Again, the fundamental theorem of calculus yields the claim. !

2.4. Proof of Theorem 1.1

We end this section with the proof of Theorem 1.1. We apply the intertwining relations 
from Proposition 2.7 for certain test functions. We first prove a splitting result for the 
Bismut connection.

Proposition 2.8. Let (Mn, g, H) be a smooth Riemannian manifold with H a closed three-
form. Suppose there exists a closed nonvanishing 1-form α such that ∇α ≡ 0. Then the 
universal cover π : M̃ → M splits as M̃ = M ′×R, the metric splits π∗g = g′+π∗α⊗π∗α, 
where g′ is a metric on M ′, and lastly π∗H = π∗

M ′H ′, where H ′ is a closed three-form 
on M ′.

Proof. Using the definition of ∇ we observe that

0 ≡ ∇α = Dα + 1
2α

! H.

Since α is closed we have that Dα is symmetric, whilst the final term is skew-symmetric, 
thus the two terms on the right hand side above vanish individually. In particular α
is parallel with respect to the Levi-Civita connection, and the metric splitting of the 
universal cover is a standard consequence of the de Rham decomposition theorem.

To show the splitting property of H we let z denote a coordinate on the R-factor of 
M̃ , and let A, B, C ∈ TM ′. Note that by construction π∗α is a nonzero multiple of ∂

∂z

and thus ∂
∂z π∗H ≡ 0. Using this and that π∗H is closed we furthermore obtain

0 = dπ∗H

(
∂

∂z
,A,B,C

)
= D ∂

∂z
π∗H(A,B,C).

Thus π∗H is parallel along ∂
∂z , and it follows that π∗H = π∗

M ′H ′, with dH ′ = 0, as 
claimed. !

Proof of Theorem 1.1 (1). Let ϕ(x) = x2. Let u ∈ C∞
0 (M) and recall that

dνx0
s = pT,s(x0, ·) dVg(s).

We note

−
T∫

s

d

dt
PT,t(ϕ(Pt,su))(x0) dt =PT,s(ϕ(Ps,su))(x0) − PT,T (ϕ(PT,su))(x0)

=
∫

M

ϕ(u)(y)pT,s(x0, y) dVg(s)(y)
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− ϕ




∫

M

u(y)pT,s(x0, y) dVg(s)(y)





=
∫

M

u2 dνx0
s −




∫

M

u dνx0
s




2

.

But on the other hand using Lemma 2.5 and Lemma 2.6 (2) we obtain

−
T∫

s

d

dt
PT,t(ϕ(Pt,su))(x0) dt = −

T∫

s

PT,t"t(ϕ(Pt,su))(x0) dt

= 2
T∫

s

PT,t(|∇Pt,su|2g(t))(x0) dt.

Applying Proposition 2.7 (1) to the last term we get

−
T∫

s

d

dt
PT,t(ϕ(Pt,su))(x0) dt

= 2
T∫

s

PT,t



Pt,s(|∇u|2g(s))(x0) − 2
t∫

s

Pt,r(|∇∇Pr,su|2)(x0) dr



 dt

Combining these equations yields

∫

M

u2 dνx0
s −




∫

M

u dνx0
s




2

= 2
T∫

s

PT,tPt,s |∇u|2g(s) (x0) dt− 4
T∫

s

PT,t




t∫

s

Pt,r

(
|∇∇Pr,su|2g(r) (x0)

)
dr



 dt

= 2
T∫

s

PT,s |∇u|2g(s) (x0)dt− 4
T∫

s

P0,t




t∫

s

Pt,r

(
|∇∇Pr,su|2g(r) (x0)

)
dr



 dt

= 2(T − s)
∫

M

|∇u|2g(s) (y)pT,s(x0, y) dVg(s)(y)

− 4
T∫

s

PT,t




t∫

s

Pt,r

(
|∇∇Pr,su|2g(r) (x0)

)
dr



 dt
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= 2(T − s)
∫

M

|∇u|2g(s) dνx0
s − 4

T∫

s

PT,t




t∫

s

Pt,r

(
|∇∇Pr,su|2g(r) (x0)

)
dr



 dt .

This implies the Poincaré inequality of item (1).
Equality occurs if and only if

T∫

s

PT,t




t∫

s

Pt,r

(
|∇∇Pr,su|2g(r) (x0)

)
dr



 dt = 0.

Due to the maximum principle of Pt,r and PT,t we have that |∇∇Pr,su|g(r) needs to 
vanish at time r = s, i.e. |∇∇u|g(s) = 0. It follows from Proposition 2.8 that the data 
at time s splits as claimed. From uniqueness of solutions to generalized Ricci flow in 
the class of solutions with bounded geometry (cf. [2] which extends to generalized Ricci 
flow), it follows that the solution splits for all times, as claimed. !

Proof of Theorem 1.1 (2). Let ϕ(x) = x log x and u ∈ C∞
0 (M) with u # 0. With this 

we obtain from Proposition 2.7 (2) that

∫

M

u log u dνx0
s −

∫

M

u dνx0
s log




∫

M

u dνx0
s



 =
T∫

s

PT,t

(
|∇Pt,su|2g(t)

Pt,su

)
(x0) dt.

Applying Proposition 2.7 to the right hand side we get

∫

M

u log u dνx0
s −

∫

M

u dνx0
s log




∫

M

u dνx0
s





=
T∫

s

PT,t



Pt,s

(
|∇u|2g(s)

u

)
− 2

t∫

s

Pt,r(Pr,su |∇∇ logPr,su|2) dr



 (x0) dt

= (T − s)PT,s

(
|∇u|2g(s)

u

)
− 2

T∫

s

PT,t




t∫

s

Pt,r(Pr,su |∇∇ logPr,su|2) dr



 (x0) dt

= (T − s)
∫

M

|∇u|2g(s)
u

dνx0
s − 2

T∫

s

PT,t




t∫

s

Pt,r(Pr,su |∇∇ logPr,su|2) dr



 (x0) dt.

Then if 
∫
M u dνx0

s = 1 we set φ = √
u and obtain item (2). The case of equality is treated 

the same as in item (1). !
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3. Twisted parallel transport and frame bundle formalism

In this section we define a connection on a spacetime adapted to a solution of general-
ized Ricci flow. The key point is a Bochner formula for solutions to the time-dependent 
heat equation, Proposition 3.3, which lies at the heart of the path space constructions to 
follow. We also use this connection to recast the time-dependent geometry on the frame 
bundle, which is necessary for the construction of the adapted Brownian motion et al.

3.1. The twisted connection on spacetime

Let (Mn, gt, bt) be a one-parameter family of generalized metrics. Let M = M × I

for some time interval I. Let ∂t denote the canonical vector field on I lifted to M. We 
define a connection on the vector bundle π∗TM → M which extends the action of ∇ via

∇tY = ∂tY + 1
2∂t (gt + bt) (Y, ·)!gt .

This generalizes Hamilton’s spacetime connection introduced in his derivation of the 
Harnack estimate [6]. The term involving the time derivative of g is natural to include as 
it renders the connection compatible with the time-dependent metric. In fact one is free 
to add the action of an arbitrary skew-symmetric two-form as well and still preserve this 
property (cf. Lemma 3.1). As it turns out, the precise term 1

2∂tbt gives the connection 
∇ particularly favorable properties in the case of a solution to generalized Ricci flow.

Lemma 3.1. The spacetime connection ∇ is compatible with g.

Proof. This follows from

d

dt
|Y |2gt = ∂tgt (Y, Y ) + gt (∂tY, Y ) + gt (Y, ∂tY )

= gt
(
∂tY + 1

2∂tgt(Y, ·)
!gt , Y

)
+ gt

(
Y, ∂tY + 1

2∂tgt(Y, ·)
!gt

)

= gt
(
∂tY + 1

2∂t (gt + bt) (Y, ·)!gt , Y
)

+ gt
(
Y, ∂tY + 1

2∂t (gt + bt) (Y, ·)!gt
)

= 2gt(∇tY, Y ),

where the third line follows since b is skew-symmetric. !

Lemma 3.2. Given (M, g, H) as above one has

∆∇u = ∇∆u + Rc∇(∇u, ·).

Proof. We choose local coordinates and let Γ denote the connection coefficients of ∇. 
We then compute
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(∇∇∇u)ijk = ∂i (∇∇u)jk − Γl
ij (∇∇u)lk − Γl

ik (∇∇u)jl

= ∂i
(
∂j∂ku− Γp

jk∂pu
)
− Γl

ij (∂l∂ku− Γp
lk∂pu) − Γl

ik

(
∂j∂lu− Γp

jl∂pu
)
.

It follows that

(∇∇∇u)ijk − (∇∇∇u)jik

= ∂i
(
∂j∂ku− Γp

jk∂pu
)
− Γl

ij (∂l∂ku− Γp
lk∂pu) − Γl

ik

(
∂j∂lu− Γp

jl∂pu
)

−
(
∂j (∂i∂ku− Γp

ik∂pu) − Γl
ji (∂l∂ku− Γp

lk∂pu) − Γl
jk (∂i∂lu− Γp

il∂pu)
)

= ∂pu
(
−∂iΓp

jk + ∂jΓp
ik − Γl

jkΓp
il + Γl

ikΓp
jl

)
−H l

ij(∇∇u)lk

= − (R∇)pijkdpu−H l
ij(∇∇u)lk.

Also we have

∇j∇ku−∇k∇ju =
(
∂j∂ku− Γp

jk∂pu
)
−
(
∂k∂ju− Γp

kj∂pu
)

= −Hp
jk∂pu.

Combining these we then have

∇i∆u = gjk∇i∇j∇ku

= gjk
(
∇j∇i∇ku− (R∇)pijkdpu−H l

ij(∇∇u)lk
)

= gjk
(
∇j∇k∇iu−∇j(Hp

ikdpu) − (R∇)pijkdpu−H l
ij(∇∇u)lk

)

= ∆∇iu− (Rc∇)pi dpu− gjk
(
∇j(Hp

ikdpu) + H l
ij(∇∇u)lk

)
.

Then we simplify

gjk
(
∇j (Hp

ikdpu) + H l
ij(∇∇u)lk

)

= gjk
(
DjH

p
ik − 1

2H
l
jiH

p
lk − 1

2H
l
jkH

p
il + 1

2H
p
jlH

l
ik

)
dpu + gjkHp

ik∇j∇pu + gjkH l
ij∇l∇ku

= (d∗gHp
i )dpu,

where the last line follows using the skew-symmetry of H. This finally yields, after 
rearranging,

∆∇iu = ∇i∆u + (Rc∇)pi dpu + (d∗gH)pi dpu
= ∇i∆u + (Rc−1

4H
2 − 1

2d
∗
gH)pi dpu + (d∗gH)pi dpu

= ∇i∆u + gpq Rc∇qi dpu,

as claimed. !
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Proposition 3.3. Let (Mn, gt, bt) denote a time dependent family as above, and suppose 
u solves "u = 0. Then

∇t gradgt u = ∆ gradgt u−
(
Rc∇ +1

2∂t (gt − bt)
) (

gradgt u, ·
)!gt .

Proof. Using the definitions above and Lemma 3.2 we have

∇t gradgt u = ∂t
(
g−1
t du

)
+ 1

2∂t (gt + bt)
(
gradgt u, ·

)!gt

= gradgt ∆gtu− ∂tgt
(
gradgt u, ·

)!gt + 1
2∂t (gt + bt)

(
gradgt u, ·

)!gt

= ∆ gradgt u−
(
Rc∇ + 1

2∂t(gt − bt)
) (

gradgt u, ·
)!gt . !

3.2. Frame bundle formalism

We next use the spacetime connection to define an adapted geometry on the frame 
bundle. We refer to [12] for general background. Let (Mn, gt, bt) be a time-dependent 
family as above. Let M = M × I for some time interval I. We define an On-bundle 
π : F → M, where the fibers F(x,t) are orthogonal maps u : Rn → (TxM, gt). Given a 
curve γt in M, the horizontal lift is a curve ut ∈ F such that:

π ◦ ut = γt, ∇γ̇(utv) = 0 for all v ∈ Rn.

By general theory, it follows that if we fix a point u0 ∈ π−1γ0, there exists a unique 
horizontal lift ut with initial condition u0. Furthermore, given aX + b∂t ∈ T(x,t)M, and 
u ∈ F(x,t), there exists a unique horizontal lift aX∗ + b∂∗

t which satisfies

π∗(aX∗ + b∂∗
t ) = aX + b∂t.

Here X∗ is the usual horizontal lift of X with respect to ∇, and ∂∗
t the lift of ∂t along 

the path which is constant in space.
The frame bundle F comes equipped with certain canonical vector fields as well. First, 

as above we have ∂∗
t which is the horizontal lift of ∂t. Furthermore we define horizontal 

vector fields {Ei}ni=1 via

Ei(u) = (uei)∗,

where {ei}ni=1 is the standard basis for Rn. We furthermore define vertical vector fields

Vij(u) = d

ds

∣∣∣∣
s=0

(u exp(sAij)), (Aij)kl = (δikδjl − δilδjk).

We will perform some computations below in local coordinates. To that end, given co-
ordinates {xi, t} on M we canonically associate coordinates (xi, t, ekj ) on F , where the 
functions ekj are defined by
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uej = ekj
∂

∂xk
.

We furthermore recall an identification between contravariant tensor fields on M and 
equivariant functions on F . Given a smooth function f : M → R we set

f̃ = f ◦ π.

Furthermore, given α = αidxi ∈ T ∗M, we obtain α̃ : F → Rn via

α̃i(u) = απ(u)(uei).

This identification extends in an obvious way to any contravariant tensor.

Lemma 3.4. With the setup above, one has:

X̃f = X∗f̃ , ∂̃tf = ∂∗
t f̃ .

Proposition 3.5. Given local coordinates {xi, t}, we can express

Ei = eki

(
∂

∂xk
− eljΓm

kl
∂

∂emj

)

Vij = ekj
∂

∂eki
− eki

∂

∂ekj

∂∗
t = ∂t − 1

2

(
∂̃tgik − ∂̃tbik

)
ejk

∂

∂eji
.

Proof. The first two items are already shown in [6]. To show the final item we first fix 
a frame u0 ∈ F , set π(u0) = (x0, t0), then define a curve γ(t) = (x0, t0 + t), and let 
ut denote the horizontal lift of γt. Recall that by construction, the vector field utei is 
parallel, thus we can compute using the definition of the spacetime connection,

0 = ∇ ∂
∂t

(utei) = ∇ ∂
∂t

(
eji

∂

∂xj

)

= d

dt
eji

∂

∂xj
+ eji∇ ∂

∂t

∂

∂xj

=
(

d

dt
eji + 1

2

(
∂̃tgik − ∂̃tbik

)
ejk

)
∂

∂xj
.

It follows that

∂∗
t |u0

= d

dt

∣∣∣∣
t=0

(
x0, t0 + t, eji (t)

)
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= ∂t + d

dt

∣∣∣∣
t=0

eji (t)
∂

∂eji

= ∂t − 1
2

(
∂̃tgik − ∂̃tbik

)
ejk

∂

∂eji
,

as claimed. !

Proposition 3.6. With the setup above, for a contravariant tensor T one has

∇̃XT = X∗T̃ , ∇̃tT = ∂∗
t T̃

∇2T (uei, uej) = EiEj T̃ , ∆̃T =
n∑

i=1
EiEiT̃ .

Proof. We prove these identities for T = α ∈ T ∗, as the general case is analogous. Fix 
a vector field X, local coordinates {xi, t}, and express X = Xi ∂

∂xi . To simplify notation 
we let Γ denote the Christoffel symbols of ∇. We first express

(∇Xα)i = Xj
(
∇ ∂

∂xj
α
)

i
= Xj

(
∂αi

∂xj
− Γk

jiαk

)
.

On the other hand we can express

(
∂

∂xi

)∗
= ∂

∂xi
− Γk

ile
l
j

∂

∂ekj

It follows that

X∗α̃i = Xm

(
∂

∂xm
− Γk

mle
l
j

∂

∂ekj

)
(
αke

k
i

)

= Xm

(
∂αk

∂xm
eki − Γk

mlαke
l
i

)

= Xm

(
∂αk

∂xm
− Γl

mkαl

)
eki

=
(
∇̃Xα

)

i
,

as claimed. For the third claim we first compute

EiEjα̃k =
(
esi

(
∂

∂xs
− etaΓm

st
∂

∂ema

))(
epj

(
∂

∂xp
− edbΓq

pd

∂

∂eqb

))
(erkαr)

=
(
esi

(
∂

∂xs
− etaΓm

st
∂

∂ema

))(
epj

(
erk

∂αr

∂xp
− edkΓr

pdαr

))
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= esi

(
epj

(
erk

∂2αr

∂xp∂xs
− edk

∂Γr
pd

∂xs
αr − edkΓr

pd
∂αr

∂xs

))

− esi e
t
jΓp

st

(
erk

∂αr

∂xp
− elkΓr

plαr

)
− esi e

t
kΓr

ste
p
j

∂αr

∂xp
+ esi e

t
kΓd

ste
p
jΓr

pdαr

On the other hand we have
(
∇2α

)
ijk

= ∂i(∇α)jk − Γl
ij(∇α)lk − Γl

ik(∇α)jl

= ∂i
(
∂jαk − Γp

jkαp

)
− Γl

ij (∂lαk − Γp
lkαp) − Γl

ik

(
∂jαl − Γp

jlαp

)

= αk,ij − Γp
jk,iαp − Γp

jkαp,i − Γl
ijαk,l + Γl

ijΓp
lkαp − Γl

ikαl,j + Γl
ikΓp

jlαp.

Comparing these two formulas gives the result. The final claim follows by tracing the 
third formula over an orthonormal basis. !

4. A Bochner formula on path space

4.1. Brownian motion and Ito’s Lemma

Let (Mn, gt, bt)t∈[0,T ] be a time-dependent family with spacetime connection as above. 
In what follows we give the Eels-Elworthy-Malliavin construction of Brownian motion 
adapted to our setting. This is a further generalization of the construction of [1,7]. Let 
(x, T ′) ∈ M. It will be convenient to work with the backward time τ := T ′ − t and the 
convention that ∂∗

τ = −∂∗
t . Let us start with a smooth curve γτ = (xτ , T ′ − τ) in M

with x0 = x and denote by uτ its horizontal lift. The anti-development (wτ )τ ⊂ Rn is 
the given as the solution of the ordinary differential equation

u̇τ = ∂∗
τ + Ei(uτ )ẇi

τ , w0 = 0,

which exists along γ by general theory. This equivalent formulation of parallel transport 
motivates the following stochastic differential equation

dUτ = ∂∗
τ dτ + Ei(Uτ ) ◦ dW i

τ ,

U0 = u.
(4.1)

Here, (Wτ ) is a Brownian motion on Rn and u is an initial frame at (x, T ′). We use 
the convention that (Wτ ) has ∆Rn as generator instead of 1

2∆Rn , i.e. the covariation 
satisfies dW i

τdW
j
τ = 2δijdτ and ◦ refers to the Stratonovich integration. In this section 

we establish existence and uniqueness of (4.1) as well as a version of Ito’s lemma.

Proposition 4.1. The stochastic differential equation (4.1) has a unique continuous so-
lution (Uτ )τ∈[0,T ′] and satisfies π2(Uτ ) = T ′ − τ . Furthermore, given any C2 function 
f̃ : F → R we have
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df̃(Uτ ) = Eif̃(Uτ ) dW i
τ + ∂∗

τ f̃(Uτ ) dτ + EiEif̃(Uτ ) dτ. (4.2)

Proof. We adapt the corresponding argument from [7]. First, we may embed the manifold 
F into RN for some N . Then Uτ satisfies (4.1) if and only if the coordinate functions 
Ua
τ satisfy

dUa
τ = (∂∗

τ )a dτ + Ea
i (Uτ ) ◦ dW i

τ

for all a = 1, . . . , N , see [10, Prop 1.2.7]. Since each vector field Ei is smooth and bounded 
since each time slice has bounded geometry, it follows from the standard theory for SDEs 
on Euclidean space that there is a unique solution on [0, T ′], cf. [10, Theorem 1.1.8] and 
that this solution actually stays in F , see [10, Theorem 1.2.9].

In order to show (4.2) we convert the Stratonovich integral in (4.1) into an Ito integral 
by dropping the ◦ and adding one half times the covariation of Ei(Uτ ) and Wτ :

dUa
τ = (∂∗

τ )a dτ + Ea
i (Uτ ) dW i

τ + 1
2 dEa

i (Uτ ) dW i
τ .

For the covariation term we compute, using Ito’s lemma in Euclidean space,

dEa
i (Uτ ) dW i

τ = ∂

∂xb
Ea

i (Uτ ) dU b
τ dW

i
τ = 2 ∂

∂xb
Ea

i (Uτ )Eb
i (Uτ ) dτ.

Here, we also used the fact that the covariation of a continuous process and a process of 
finite variation vanishes. Now, let f̃ : F → R be a C2 function. Then, by Ito’s lemma in 
Euclidean space,

df̃(Uτ ) = ∂

∂xa
f̃(Uτ ) dUa

τ + 1
2

∂2

∂xa∂xb
f̃(Uτ ) dUa

τ dU b
τ

= ∂

∂xa
f̃(Uτ )(∂∗

τ )a dτ + ∂

∂xa
f̃(Uτ )Ea

i (Uτ ) dW i
τ

+ ∂

∂xa
f̃(Uτ )

∂

∂xb
Ea

i (Uτ )Eb
i (Uτ ) dτ + ∂2

∂xa∂xb
f̃(Uτ )Ea

i (Uτ )Eb
i (Uτ ) dτ.

Finally, since

∂

∂xa
f̃(Uτ )(∂∗

τ )a = ∂∗
τ f̃(Uτ )

∂

∂xa
f̃(Uτ )Ea

i (Uτ ) = Ei(Uτ )f̃(Uτ )

∂

∂xa
f̃(Uτ )

∂

∂xb
Ea

i (Uτ )Eb
i (Uτ ) + ∂2

∂xa∂xb
f̃(Uτ )Ea

i (Uτ )Eb
i (Uτ ) = Ei(Uτ )Ei(Uτ )f̃(Uτ ),

we obtain (4.2):

df̃(Uτ ) = ∂∗
τ f̃(Uτ ) dτ + Ei(Uτ )f̃(Uτ ) dW i

τ + Ei(Uτ )Ei(Uτ )f̃(Uτ ) dτ.
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Lastly, note that with the choice f̃ = π2 we get df̃(Uτ ) = − dτ . Furthermore setting 
π2(U0) = T ′ we get π2(Uτ ) = T ′ − τ . !

Let P0Rn denote the Euclidean path space based at the origin, i.e. the space of all 
continuous curves {wτ |w0 = 0}τ∈[0,T ′] ⊂ Rn. We denote by Γ0 the Wiener measure on 
P0Rn. The path space has a canonical filtration ΣRn

τ generated by the evaluation maps 
{eσ : P0Rn → Rn|eσ(w) = wσ, σ ! τ}. With the help of (4.1) we can transfer the notion 
of Wiener measure to the path space over F and M.

Definition 4.2. Let PuF and P(x,T ′)M be the space of continuous curves, {uτ |u0 =
u, π2(uτ ) = T ′ − τ}τ∈[0,T ′] ⊂ F and {γτ = (xτ , T ′ − τ)|γ0 = (x, T ′)}τ∈[0,T ′] respectively.

It will be convenient from time to time to work with the total path space PT ′M =⋃
x∈M P(x,T ′)M.

Definition 4.3. Let U : P0Rn → PuF solve (4.1) and let Π : PuF → P(x,T ′)M defined by 
Π(U)τ = π(Uτ ).

(1) We call Γu := U∗(Γ0) and Γ(x,T ′) := Π∗Γu the Wiener measures of horizontal Brow-
nian motion on F and Brownian motion on space-time M respectively.

(2) The filtrations on PuF and P(x,T ′)M are given by ΣM
τ := (Π ◦ U)∗ΣRn

τ and ΣF
τ :=

U∗ΣRn

τ .
(3) We call π(Uτ ) = (Xτ , T ′ − τ) Brownian motion on M based at π(u) = (x, T ′).
(4) We call the family of isometries {Sτ := U0U−1

τ : (TXτM, gT ′−τ ) → (TxM, gT ′)}
stochastic parallel transport along the Brownian curve Xτ .

Proposition 4.4. Let w on M be a solution to the heat equation

"w = 0, w|s = f,

where f ∈ C∞(M) and s ∈ [0, T ′]. Then

w(x, T ) = E(x,T ′)[f(XT ′−s)].

Proof. We consider the lift w̃(Uτ ) and obtain by (4.2)

dw̃(Uτ ) = Eiw̃(Uτ ) dW i
τ + ∂∗

τ w̃(Uτ ) dτ + EiEiw̃(Uτ ) dτ.

Since w solves the heat equation, by virtue of Lemma 3.4 and Proposition 3.6 the last 
two terms vanish. Integrating on (0, T ′ − s) we get

w̃(UT ′−s) − w̃(U0) =
T ′−s∫

0

Eiw̃(Uτ ) dW i
τ . (4.3)
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Taking expectations, and since the Ito integral of an adapted process is a martingale, we 
have

E(x,T ′)[f(XT ′−s)] − w(x, T ′) = E[w̃(UT ′−s) − w̃(U0)] = 0.

Here we used that w̃(U0) = w(x, T ′) and w̃(UT ′−s) = w(XT ′−s, s) = f(XT ′−s). !

A further corollary is that the Wiener measure can be characterized by the heat 
kernels.

Corollary 4.5. Let 0 ! τ1 < τ2 < . . . < τk ! T ′ be a partition and A1, . . . , Ak ⊂ Mn

Borel sets. Then it holds

P [Xτj ∈ Aj , j = 1, . . . , k]

=
∫

Ak

. . .

∫

A1

pT ′,T ′−τ1(x, y1) · · · pT ′−τk−1,T ′−τk(yk−1, yk) dVg(T ′−τ1)(y1) · · · dVg(T ′−τk)(yk).

4.2. Feynman-Kac formula

Proposition 4.6. Let s ∈ [0, T ′], At ∈ End(TM) and Y a vector valued solution of the 
heat equation with potential, ∇tY = ∆gtY + AtY , with Y |s = Z ∈ C∞

0 (TM), then

Y (x, T ′) = E(x,T ′)[RT ′−sST ′−sZ(XT ′−s)], (4.4)

where Rτ = Rτ (γ) : TxM → TxM is the solution of the ODE d
dτRτ = RτSτAT ′−τS−1

τ

with R0 = id.

Proof. Let Ỹ : F → Rn, Ỹ (U) = u−1Yπu. Applying the Ito formula (4.2), we obtain

dỸ (Uτ ) = EiỸ (Uτ ) dW i
τ + ∂∗

τ Ỹ (Uτ ) dτ + EiEiỸ (Uτ ) dτ
= EiỸ (Uτ ) dW i

τ −AT ′−τ Ỹ (Uτ ) dτ,

where we used Lemma 3.4 and Proposition 3.6. Let R̃τ : Rn → Rn be the solution of the 
ODE d

dτ R̃τ ÃT ′−τ with R0 = id. Then

d(R̃τ Ỹ (Uτ )) = R̃τHiỸ (Uτ ) dW i
τ . (4.5)

Integrating on [0, T ′ − s] and taking expectations, we obtain

Ỹ (u) = Eu[R̃T ′−sỸ (UT ′−s)].

Finally, we compute
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Y (x, T ′) = uỸ (u) = Eu[U0R̃T ′−sU
−1
0 U0U

−1
T ′−sUT ′−sỸ (UT ′−s)]

= Eu[R̃T ′−sS̃T ′−sZ(XT ′−s)],

since UT ′−sỸ (UT ′−s) = Y (XT ′−s, s) = Z(XT ′−s) and Rτ = U0R̃τU
−1
0 . Indeed, the last 

equality holds since

d

dτ
(U0R̃τU

−1
0 ) = U0R̃τ ÃT ′−τ = U0R̃τU

−1
0 U0U

−1
τ ÃT ′−τU

−1
τ UτU

−1
0

= U0R̃τU
−1
0 SτAT ′−τS

−1
τ ,

which shows that Rτ and U0R̃τU
−1
0 solve the same ODE, and thus must be equal. !

4.3. Induced martingales and parallel gradients

Definition 4.7. Let F : PT ′M → R be integrable. Then, we define the induced martingale 
as

Fτ (γ) := E(x,T ′)[F |Στ ](γ).

Note that then Fτ satisfies the martingale property, i.e. for all σ ! τ

E(x,T ′)[Fτ |Σσ] = Fσ,

by the definition of conditional expectation and that Σσ ⊂ Στ .

The next results concern the induced martingale of an integrable function F . Note 
that integrability is not a big restriction, since each uniformly integrable martingale 
can be represented as the induced martingale of an integrable function. Explicitly, by 
standard results the induced martingale satisfies the following:

Proposition 4.8. Let F : PT ′M → R be integrable. Then, for almost every Brownian 
curve {γτ}τ∈[0,T ′] we have for the induced martingale

Fτ (γ) := E(x,T ′)[F |Στ ](γ) =
∫

PγτM

F (γ|[0,τ ] ∗ γ′) dΓγτ (γ′),

where we integrate over all γ′ in the based path space PγτM and ∗ denotes the concate-
nation of the two curves γ|[0,T ′] and γ′.

The analysis to follows exploits a nice set of nice test functions on path space, namely 
cylinder functions:
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Definition 4.9. Given τττ = {τj}kj=1 be a partition of [0, T ′] we define evaluation maps

eτττ : PT ′M → Mk, eτττ (γ) = (π1γτ1 ,π1γτ2 , . . . ,π1γτk).

Given a partition τ and a smooth compactly supported function f : Mk → R we obtain 
a cylinder function

F : PT ′M → R, F (γ) = f(eτττ (γ)).

The space of all cylinder functions is denoted CT ′ .

Definition 4.10. Let F ∈ CT ′ and fix γ ∈ PT ′M. Given V a vector field along γ we let 
ξε = (xε

τ , T
′ − τ)τ∈[0,T ′] denote a one-parameter family of curves such that ξ0 = γ and 

∂
∂ε

∣∣
ε=0 x

ε
τ = Vτ . Then

DV F := ∂

∂ε

∣∣∣∣
ε=0

f(eτττ (ξε)).

In our setting we will only use a special class of vector fields V . In particular, let H
denote the Hilbert space of H1-curves (hτ )τ!0 in (TxM, gT ′) with h0 = 0 equipped with 
the inner product

〈h1, h2〉H =
T ′∫

0

〈
ḣ1, ḣ2

〉
(TxM,gT ′ ) dτ.

Given (hτ )τ!0 ∈ H we let Vτ (γ) = S−1
τ (γ)hτ .

This derivative operator admits a key integration by parts formula, cf. [3], [7, Theorem 
A.1]. In the statement below, for (hτ )τ!0 ∈ H we set

〈hτ , dWτ 〉 = (U−1
0 hτ )i dW i

τ ,

noting that this inner product is independent of the initial choice of frame U0. The 
theorem is proved in an appendix (§6).

Theorem 4.11. Let F, G ∈ CT ′ , let (hτ )τ!0 ∈ H and write V = (S−1
τ hτ )τ!0. Then

D∗
V G := −DV G + 1

2G
T ′∫

0

〈
d

dτ
hτ − Sτ (Rc∇ +1

2∂t(g − b))†T−τS
−1
τ hτ , dWτ

〉
(4.6)

satisfies E(x,T ′)[DV FG] = E(x,T ′)[FD∗
V G].
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Definition 4.12. Let σ ∈ [0, T ′] and let F ∈ CT ′ . The parallel gradient ∇⊥
σ F : P(x,T ′)M →

(TxM, gT ′) is defined as

DV σF (γ) =
〈
∇⊥

σ F (γ), v
〉
(TxM,gT ′ ) ,

where V σ
τ = S−1

τ v1[σ,T ′](τ) and v ∈ (TxM, gT ′). Explicitly, if we have the representation 
F = f ◦ eτττ , τττ = {τj}kj=1, it follows that

∇⊥
σ F (γ) =

∑

τj!σ

Sτj grad(j)
gT ′−τj

f(π1γτ1 , . . . ,π1γτk). (4.7)

Definition 4.13. Given F ∈ CT ′ , its Malliavin derivative ∇HF : P(x,T ′)M → H is defined 
as

DV F (γ) =
〈
∇HF, h

〉
H ,

for every h ∈ H and V = (S−1
τ hτ )τ!0. It follows that the parallel gradient is the time 

derivative of the Malliavin gradient d
dτ (∇HF )τ = ∇⊥

τ F and furthermore

|∇HF |2H =
T ′∫

0

|∇⊥
τ F |2 dτ.

Definition 4.14. Given the setup above and 0 ! τ1 ! τ2 ! T ′, we define the Ornstein-
Uhlenbeck operator

L(τ1,τ2) :=
τ2∫

τ1

∇⊥
τ
∗∇⊥

τ dτ.

Remark 4.15. Our discussion above and proofs below work exclusively with cylinder func-
tions. Due to the integration by parts formula (4.6) the Malliavin gradient is closable and 
can be extended to a closed unbounded operator from L2(P(x,T ′)M) to L2(P(x,T ′)M, H)
with CT ′ being a dense subset of the domain (cf. [10] Section 8). The definitions of all 
derivative operators considered here can be similarly extended.

4.4. Martingale representation theorem

Proposition 4.16. Let F ∈ CT ′ and let Fτ be the induced martingale. Then Fτ solves

dFτ =
〈
∇⊥

τ Fτ , dWτ

〉
, F |τ=0 = F0.
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Remark 4.17. This result shows that martingales are the natural generalization of the 
(backward) heat-flow to the path space PM. Indeed, let Fτ (γ) = fτ (π1γτ ) for some 
smooth function f : M → R. Then Proposition 4.16 together with (4.2) yield

0 = dfτ (π1γτ ) − 〈∇fτ (π1γτ ), dWτ 〉 = (∂τ + ∆gT−τ )fτ (π1γτ ),

which means that fτ solves the backward heat equation.

Proof. Let F (γ) = f(π1γτ1 , . . . , π1γτk), where f : Mk → R is a smooth compactly sup-
ported function. Then, for τ ∈ (τl, τl+1), by Corollary 4.5 and Proposition 4.8 we have

Fτ (γ) =
∫

Pγτ M

F (γ|[0,τ ] ∗ γ′) dΓγτ (γ′)

=
∫

Pγτ M

f(π1γτ1 , . . . ,π1γτl ,π1γτl+1−τ , . . . ,π1γτk−τ ) dΓγτ (γ′)

=
∫

Mk−l

f(Xτ1 , . . . , Xτl , yl+1, . . . , yk)pT ′−τ,T ′−τl+1(Xτ , yl+1) . . .

pT ′−τk−1,T ′−τk(yk−1, yk) dVgT ′−τl+1
(yl+1) . . . dVgT ′−τk

(yk)

=: fτ (Xτ1 , . . . , Xτl , Xτ ).

Note that for (x1, . . . , xl) fixed, (x, τ) '→ fτ (x1, . . . , xl, x) solves (∂τ + ∆(l+1))fτ = 0, 
where ∆(l+1) acts on the last entry.

Let f̃τ = fτ ◦ ⊗l+1
1 π1 ◦ ⊗l+1

1 π and F̃τ = Fτ ◦ Π. Then F̃τ (U) = f̃τ (Uτ1 , . . . , Uτl , Uτ ). 
According to (4.2) we have then

dF̃τ (U) = df̃τ (Uτ1 , . . . , Uτl , Uτ )

= (∂∗
τ f̃τ (Uτ1 , . . . , Uτl , Uτ ) + E(l+1)

i E(l+1)
i f̃τ (Uτ1 , . . . , Uτl , Uτ ) dτ

+
〈
E(l+1)

i f̃τ (Uτ1 , . . . , Uτl , Uτ ), dW i
τ

〉
.

Note that due to Proposition 3.6 we have ∂∗
τ f̃τ +E(l+1)

i E(l+1)
i f̃τ = 0. Next, we compute

E(l+1)
i f̃τ (Uτ1 , . . . , Uτl , Uτ ) = (Uτei)∗f̃τ (Uτ1 , . . . , Uτl , Uτ )

= (Uτei)fτ (Xτ1 , . . . , Xτl , Xτ )

=
〈
Uτei, grad(l+1)

gT ′−τ
fτ (Xτ1 , . . . , Xτl , Xτ )

〉

(TXτ M,gT ′−τ )

=
〈
SτUτei, Sτ grad(l+1)

gT ′−τ
fτ (Xτ1 , . . . , Xτl , Xτ )

〉

(TxM,gT ′ )

=
〈
U0ei,∇⊥

τ Fτ (γ)
〉
(TxM,gT ′ ) ,
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where we used Lemma 3.4 in the second line and (4.7) in the last line. All in all we find

dFτ (γ) = dF̃τ (U) =
〈
U0ei,∇⊥

τ Fτ (γ)
〉
(TxM,gT ′ ) dW i

τ =
〈
∇⊥

τ Fτ (γ), dWτ

〉
,

which was the claim. !

Corollary 4.18. Let F ∈ CT ′ . Then the quadratic variation [F, F ]τ of the induced mar-
tingale Fτ satisfies

d[F, F ]τ = 2|∇τFτ |2 dτ.

4.5. Evolution of the parallel gradient

In the next result we give is about the evolution of the parallel gradient.

Theorem 4.19. Let F ∈ CT ′ and let σ # 0 be fixed. Then the parallel gradient of the 
induced martingale ∇⊥

σ Fτ satisfies

d(∇⊥
σ Fτ ) =

〈
∇⊥

τ ∇⊥
σ Fτ , dWτ

〉
+ (Rc∇ + 1

2∂t(g − b))τ (∇⊥
τ Fτ )1[σ,T ′](τ) dτ

+ ∇⊥
σ Fσδσ(τ) dτ,

where 
〈
Rc∇ + 1

2∂t(g − b))τ (v), w
〉

TxM,gT ′
= (Rc∇gt + 1

2∂t(g − b))|t=T ′−τ (S−1
τ v, S−1

τ w).

Proof. Since Fτ is Στ -measurable, i.e. it depends only on times smaller than τ , we have 
that ∇⊥

σ Fτ = 0 as soon as τ < σ. At σ = τ we have a jump discontinuity, which is 
expressed in the δ-notation ∇⊥

σ Fσδσ(τ). For τ > σ we aim to show the evolution

d(∇⊥
σ Fτ ) =

〈
∇⊥

τ ∇⊥
σ Fτ , dWτ

〉
+ (Rc∇ + 1

2∂t(g − b))τ (∇⊥
τ Fτ ) dτ. (4.8)

Let F (γ) = f(π1γτ1 , . . .π1γτk) be a cylinder function. Let τ ∈ (τl, τl+1), then Fτ (γ) =
fτ (Xτ1 , . . . , Xτk , Xτ ) as in the proof of Proposition 4.16 and by virtue of (4.7)

∇⊥
σ Fτ (γ) =

∑

τj!σ

Sτj grad(j)
gT ′−τj

fτ (Xτ1 , . . . , Xτk , Xτ )

+ Sτ grad(l+1)
gT ′−τ

fτ (Xτ1 , . . . , Xτk , Xτ ).

Consider Gi(U) :=
〈
U0ei,∇⊥

σ Fτ (ΠU)
〉
. Then

Gi(U) :=
〈
U0ei,∇⊥

σ Fτ (ΠU)
〉
TxM,gT ′

=
∑

τj!σ

〈
Uτjei, grad(j)

gT ′−τj
fτ (Xτ1 , . . . , Xτk , Xτ )

〉

TXτj
M,gT ′−τj
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+
〈
Uτei, grad(l+1)

gT ′−τ
fτ (Xτ1 , . . . , Xτk , Xτ )

〉

TXτ M,gT ′−τ

=
∑

τj!σ

E(j)
i f̃τ (Uτ1 , . . . , Uτl , Uτ ) + E(l+1)

i f̃τ (Uτ1 , . . . , Uτl , Uτ ),

where we used Lemma 3.4 in the third line. Then with (4.2) we find

dGi(U) =
∑

τj!σ

(
∂∗
τE

(j)
i f̃τ (Uτ ) + E(l+1)

m E(l+1)
m E(j)

i f̃τ (Uτ1 , . . . , Uτl , Uτ )
)
dτ

+ E(l+1)
m E(j)

i f̃τ (Uτ ) dWm
τ

+
(
∂∗
τE

(l+1)
i f̃τ (Uτ ) + E(l+1)

m E(l+1)
m E(l+1)

i f̃τ (Uτ1 , . . . , Uτl , Uτ )
)
dτ

+ E(l+1)
m E(l+1)

i f̃τ (Uτ ) dWm
τ

=
∑

τj!σ

E(j)
i (∂∗

τ + E(l+1)
m E(l+1)

m )f̃τ (Uτ ) dτ + E(l+1)
m E(j)

i f̃τ (Uτ ) dWm
τ

+ E(l+1)
i (∂∗

τ + E(l+1)
m E(l+1)

m )f̃τ (Uτ ) dτ + E(l+1)
m E(l+1)

i f̃τ (Uτ ) dWm
τ

+ [∂∗
τ + E(l+1)

m E(l+1)
m , Ei]f̃τ (Uτ ) dτ.

Recall that (∂∗
τ +E(l+1)

m E(l+1)
m )f̃τ = 0 due to Proposition 3.6. Furthermore, using Propo-

sitions 3.3 and 3.6 we deduce

[∂∗
τ + E(l+1)

m E(l+1)
m , Ei]f̃τ = (R̃c∇ + 1

2
˜∂t(g − b))imE(l+1)

m f̃τ .

All in all this gives us

dGi(U) =
∑

τj!σ

E(l+1)
m E(j)

i f̃τ (Uτ ) dWm
τ + E(l+1)

m E(l+1)
i f̃τ (Uτ ) dWm

τ

+ (R̃c∇ + 1
2

˜∂t(g − b))imE(l+1)
m f̃τ

Projecting down yields
∑

τj!σ

E(l+1)
m E(j)

i f̃τ (Uτ ) dWm
τ + E(l+1)

m E(l+1)
i f̃τ (Uτ ) dWm

τ

=
〈

∑

τj!σ

(Sτ ⊗ Sτj )∇(l+1)∇(j)fτ + (Sτ ⊗ Sτ )∇(l+1)∇(l+1)fτ , dWτ ⊗ U0ei

〉

=
〈
∇⊥

τ ∇⊥
σ Fτ (γ), dWτ ⊗ U0ei

〉
,

and
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(R̃c∇ + 1
2

˜∂t(g − b))imE(l+1)
m f̃τ (Uτ ) dτ =

〈
(Rc∇ +1

2∂t(g − b))τ (∇⊥
τ Fτ ) dτ, U0ei

〉
,

giving the result. !

Lemma 4.20. Let F ∈ CT ′ and τ, σ # 0 fixed. Then

∇⊥
τ |∇⊥

σ F |2 = 2
〈
∇⊥

τ ∇⊥
σ F,∇⊥

σ F
〉
.

Proof. Let F (γ) = f(π1γτ1 , · · · , π1γτk). Then, as in the proof of Theorem 4.19
〈
∇⊥

σ F (γ), U0ea
〉

=
∑

τj!σ

E(j)
a f̃(Uτ1 , . . . , Uτk).

Hence

〈
∇⊥

τ |∇⊥
σ F |2, U0eb

〉
=

∑

τk!τ

E(k)
b

n∑

a=1
(
∑

τj!σ

E(j)
a f̃)2

=2
n∑

a=1

∑

τk!τ

∑

τj!σ

E(k)
b E(j)

a f̃(
∑

τj!σ

E(j)
a f̃).

Projecting down and using Proposition 3.6 yields the claim. !

Corollary 4.21. Let F ∈ CT ′ and σ # 0 fixed. Then ∇⊥
σ Fτ : P(x,T ′)M → (TxM, gT ′)

satisfies

(1) the quadratic Bochner identity

d(|∇⊥
σ Fτ |2) =

〈
∇⊥

τ |∇⊥
σ Fτ |2, dWτ

〉
+ 2(Rc∇ +1

2∂(g − b))τ (∇⊥
τ Fτ ,∇⊥

σ Fτ ) dτ

+ 2|∇⊥
τ ∇⊥

σ Fτ |2 dτ + |∇⊥
τ Fτ |2δσ(τ) dτ,

(2) and the linear Bochner identity

d|∇⊥
σ Fτ | =

〈
∇⊥

τ |∇⊥
σ Fτ |, dWτ

〉
+ |∇⊥

τ ∇⊥
σ Fτ |2 − |∇⊥

τ |∇⊥
σ Fτ ||2

|∇⊥
σ Fτ |

dτ

+ 1
|∇⊥

σ Fτ |
(Rc∇ +1

2∂t(g − b))τ (∇⊥
τ Fτ ,∇⊥

σ Fτ ) dτ + |∇⊥
τ Fτ |δσ(τ) dτ.

Here, we denote (Rc∇ +1
2∂(g − b))τ (v, w) = (Rc∇gt +1

2∂t(g − b))|t=T ′−τ (S−1
τ v, S−1

τ w).

Proof. As in the previous proof, it is enough to consider the case σ < τ . By Ito’s Lemma 
and Theorem 4.19 we have
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d(|∇⊥
σ Fτ |2) =2

〈
∇⊥

σ Fτ , d(∇⊥
σ Fτ )

〉
+ d[∇⊥

σ Fτ ,∇⊥
σ Fτ ]

=2
〈
∇⊥

σ Fτ ,
〈
∇⊥

τ ∇⊥
σ Fτ , dWτ

〉
+ (Rc∇ + 1

2∂t(g − b))τ (∇⊥
τ Fτ ) dτ

〉

+ 2|∇⊥
τ ∇⊥

σ Fτ |2 dτ.

Noticing that 2 
〈
∇⊥

σ Fτ ,
〈
∇⊥

τ ∇⊥
σ Fτ , dWτ

〉〉
=

〈
∇⊥

τ |∇⊥
σ Fτ |2, dWτ

〉
due to Lemma 4.20, 

this proves the quadratic Bochner identity.
In order to show the linear Bochner identity, we use the Ito-Tanaka-Meyer formula 

for the convex function | · | : Rn → R, cf. [8]. Let us note that there is no local time at 
the origin, since we assume dimension > 1. !

Corollary 4.22. The generalized Bochner formula on PM reduces to

1
2(∂τ + ∆gT ′−τ

)|∇fτ |2 = |∇∇fτ |2 + (Rc∇ +1
2∂t(g − b))|t=T ′−τ (∇fτ ,∇fτ ),

where fτ = PT ′−τ,T ′−τ1f , f : M → R is a smooth function, 0 < τ1 < T ′ is fixed, and 
τ < τ1.

Proof. Define

Fτ (γ) =
{
PT ′−τ,T ′−τ1f(π1γτ ) if τ < τ1

f(π1γτ1) if τ # τ1.

It follows from Proposition 4.8 that this defines a martingale on PM. Moreover,

|∇⊥
0 Fτ |(γ) = |∇⊥

τ Fτ |(γ) = |∇fτ |(π1γτ )

and

|∇⊥
0 ∇⊥

τ Fτ |(γ) = |∇∇fτ |(π1γτ )

By virtue of Corollary 4.21 we have

d(|∇fτ |2) −
〈
∇⊥

τ |∇fτ |2, dWτ

〉
= 2|∇∇fτ |2 dτ + 2(Rc∇

+ 1
2∂t(g − b))|t=T ′−τ (∇fτ ,∇fτ ) dτ,

with all quantities evaluated at π1γτ . Then by Ito’s formula (4.2), eventually lifting 
everything on the frame bundle, we find for the left hand side

d(|∇fτ |2) −
〈
∇⊥

τ |∇fτ |2, dWτ

〉
= (∂τ + ∆gT ′−τ

)|∇fτ |2 dτ.

All in all we obtain
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(∂τ + ∆gT ′−τ
)|∇fτ |2 dτ = 2|∇∇fτ |2 dτ + 2(Rc∇ +1

2∂t(g − b))|t=T ′−τ (∇fτ ,∇fτ ) dτ,

which holds at π1γτ for Γx-a.e. curves γ, which means by the definition of the Wiener 
measure Γx it holds for a.e. y ∈ M . By smoothness of f we obtain the claim for every 
y ∈ M . !

Lemma 4.23. Let F ∈ CT ′ be nonnegative and τ, σ # 0 fixed. Then

∇⊥
σ∇⊥

τ logF = F−1∇⊥
σ∇⊥

τ F − F−2∇⊥
τ F ⊗∇⊥

σ F.

Proof. The proof follows by computing on the frame bundle as in the proof of 
Lemma 4.20. !

Corollary 4.24. Let F ∈ CT ′ be nonnegative and let Fτ be the induced martingale. Then 
Xτ := F−1

τ |∇HFτ |2 − Fτ logFτ satisfies

dXτ =
〈
∇⊥

τ Xτ , dWτ

〉
+ 2Fτ




T ′∫

0

|∇⊥
τ ∇⊥

σ logFτ |2 dσ



 dτ

+ 2F−1
τ




T ′∫

0

(Rc∇ +1
2∂t(g − b))τ (∇⊥

σ Fτ ,∇⊥
τ Fτ ) dσ



 dτ.

Proof. Note that

d(Fτ logFτ ) =
〈
∇⊥

τ (Fτ logFτ ), dWτ

〉
+ F−1

τ |∇⊥
τ Fτ |2 dτ (4.9)

due to Proposition 4.16 and the standard Ito formula. For the other term we compute

d(F−1
τ |∇HFτ |2) = F−1

τ d|∇HFτ |2 + |∇HFτ |2dF−1
τ + d[F−1

τ , |∇HFτ |2].

Noticing that

d|∇HFτ |2 =
〈
∇⊥

τ |∇HFτ |2, dWτ

〉

+ 2
T ′∫

0

(
(Rc∇ +1

2∂t(g − b))τ (∇τFτ ,∇⊥
σ Fτ ) + |∇⊥

τ ∇⊥
σ Fτ |2

)
dσ dτ

+ |∇⊥
τ Fτ |2 dτ

due to Corollary 4.21 and that

dF−1
τ =

〈
∇⊥

τ (F−1
τ ), dWτ

〉
+ 2F−3

τ |∇⊥
τ Fτ |2 dτ
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we compute using Lemma 4.20 and Lemma 4.23

d(F−1
τ |∇HFτ |2) =

〈
∇⊥

τ (F−1
τ |∇HFτ |2), dWτ

〉
+ 2Fτ




T ′∫

0

|∇⊥
τ ∇σ logFτ |2 dσ



 dτ

+ 2F−1
τ




T ′∫

0

(Rc∇ +1
2∂t(g − b))τ (∇σFτ ,∇τFτ ) dσ



 dτ

+ F−1
τ |∇⊥

τ Fτ |2 dτ.

(4.10)

All in all, combining (4.9) with (4.10) we get

dXτ =
〈
∇⊥

τ Xτ , dWτ

〉
+ 2Fτ




T ′∫

0

|∇⊥
τ ∇⊥

σ logFτ |2 dσ



 dτ

+ 2F−1
τ




T ′∫

0

(Rc∇ +1
2∂t(g − b))τ (∇⊥

σ Fτ ,∇⊥
τ Fτ ) dσ



 dτ. !

5. Characterizations of generalized Ricci flow

Theorem 5.1. For an evolving family of manifolds (M, gt, Ht)t∈[0,T ], the following are 
equivalent:

(1) The generalized Ricci flow is satisfied:

∂t(g − b) = −2 Rc∇ .

(2) Let 0 ! σ ! T ′ ! T and F ∈ CT ′ . Then the induced martingales satisfy the Bochner 
inequality

d|∇⊥
σ Fτ |2 #

〈
∇⊥

τ |∇⊥
σ Fτ |2, dWτ

〉
+ 2|∇⊥

τ ∇⊥
σ Fτ |2 dτ + |∇⊥

σ Fσ|2δσ(τ) dτ.

(3) Let 0 ! σ ! T ′ ! T and F ∈ CT ′ . Then the induced martingales satisfy the weak 
Bochner inequality

d|∇⊥
σ Fτ |2 #

〈
∇⊥

τ |∇⊥
σ Fτ |2, dWτ

〉
+ |∇⊥

σ Fσ|2δσ(τ) dτ.

(4) Let 0 ! σ ! T ′ ! T and F ∈ CT ′ . Then the induced martingales satisfy the linear 
Bochner inequality

d|∇⊥
σ Fτ | #

〈
∇⊥

τ |∇⊥
σ Fτ |, dWτ

〉
+ |∇⊥

σ Fσ|δσ(τ) dτ.
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(5) Let 0 ! σ ! T ′ ! T and F ∈ CT ′ . Then the induced martingales satisfy

τ '→ |∇⊥
σ Fτ | is a submartingale.

Proof. (1) ⇒ (2): Let ∂t(g − b) = −2 Rc∇. Then the claim directly follows from Corol-
lary 4.21.

(2) ⇒ (3): This follows from omitting the Hessian part.
(2) ⇒ (4): Assume τ > σ. Note that due to Corollary 4.21, we have that

d|∇⊥
σ Fτ | =

〈
∇⊥

τ |∇⊥
σ Fτ |, dWτ

〉
+ |∇⊥

τ ∇⊥
σ Fτ |2 − |∇⊥

τ |∇⊥
σ Fτ ||2

|∇⊥
σ Fτ |

dτ

+ 1
|∇⊥

σ Fτ |
(Rc∇ +1

2∂t(g − b))τ (∇⊥
τ Fτ ,∇⊥

σ Fτ ) dτ.
(5.1)

Now, comparing (5.1) with (2) by standard Ito’s lemma and using that |∇⊥
τ |∇⊥

σ Fτ ||2 !
|∇⊥

τ ∇⊥
σ Fτ |2 we directly find that

d|∇⊥
σ Fτ | #

〈
∇⊥

τ |∇⊥
σ Fτ |, dWτ

〉
.

Together with ∇⊥
σ Fτ = 0 for τ < σ, this yields (4).

(4) ⇒ (3): This follows directly by applying Ito’s formula and (4).
(4) ⇔ (5): Clearly, (4) implies (5). For (5) ⇒ (4), note that (5) implies that the 

absolutely continuous part in (5.1) must be nonnegative, which deduces (4).
(3) ⇒ (1): Let F : P(x,T ′)M → R. By Corollary 4.21 we know that

τ '→ |∇⊥
0 Fτ |2 −

τ∫

0

(Rc∇ +1
2∂t(g − b))ρ(∇⊥

ρ Fρ,∇⊥
0 Fρ) + 2|∇⊥

ρ ∇⊥
0 Fρ|2 dρ

is a martingale and consequently

E(x,T ′)



|∇⊥
0 Fε|2 −

ε∫

0

(Rc∇ +1
2∂(g − b))τ (∇⊥

τ Fτ ,∇⊥
0 Fτ ) + 2|∇⊥

τ ∇⊥
0 Fτ |2 dρ



 = |∇⊥
0 F0|2.

By virtue of (3) τ '→ |∇⊥
0 Fτ |2 is a submartingale and in particular

E(x,T ′)[|∇⊥
0 Fε|2] # |∇⊥

0 F0|2.

Together this implies that

E(x,T ′)




ε∫

0

(Rc∇ +1
2∂(g − b))τ (∇⊥

τ Fτ ,∇⊥
0 Fτ ) + 2|∇⊥

τ ∇⊥
0 Fτ |2 dτ



 # 0. (5.2)
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Now we consider two choices of cylinder function for F . Let the first one be f1 : M → R
with f1(x) = 0, ∇f1(x) = v, and ∇2f1(x) = 0, where v ∈ (TxM, gT ′). Then define 
F : P(x,T ′)M → R by F (γ) = f1(π1(γε)). For τ ! ε we have

∇⊥
0 Fτ = ∇⊥

τ Fτ = Sτ∇PT ′−τ,T ′−εf1(π1(γτ )), |∇⊥
τ ∇⊥

0 Fτ | = |∇2PT ′−τ,T ′−εf1(π1(γτ ))|

and thus ∇⊥
τ Fτ = v + o(ε) and |∇⊥

τ ∇⊥
0 Fτ | = o(ε).

The second choice is f2 : M × M → R with f2(x, x) = 0, ∇(1)f2(x, x) = 2v, 
∇(2)f2(x, x) = −v, and ∇2f2(x, x) = 0. Let F (γ) = f2(π1(γ0), π1(γ(ε))). Then, for 
τ ! ε,

Fτ (γ) = P (2)
T ′−τ,T ′−εf2(x,π1γτ ),

∇⊥
0 Fτ = ∇(1)P (2)

T ′−τ,T ′−εf2(x,π1γτ ) + Sτ∇(2)P (2)
T ′−τ,T ′−εf2(x,π1γτ ) = v + o(ε),

∇⊥
τ Fτ = Sτ∇(2)P (2)

T ′−τ,T ′−εf2(x,π1γτ ) = −v + o(ε),

|∇⊥
τ ∇⊥

0 Fτ | ! |∇(2)∇(1)P (2)
T ′−τ,T ′−εf2(x,π1γτ )| + |∇(2)∇(2)P (2)

T ′−τ,T ′−εf2(x,π1γτ )| = o(ε).

Inserting both choices into (5.2) we get

(Rc∇ +1
2∂(g − b))ε(v, v) = (Rc∇ +1

2∂t(g − b))|t=T ′−ε(S−1
ε v, S−1

ε v) = o(ε).

Letting ε → 0 we get (Rc∇ +1
2∂t(g − b))|t=T ′ = 0. !

Theorem 5.2. For an evolving family of manifolds (M, gt, Ht)t∈[0,T ], the following are 
equivalent:

(1) The generalized Ricci flow is satisfied:

∂t(g − b) = −2 Rc∇ .

(2) Let 0 ! σ ! T ′ ! T and F ∈ CT ′ . Then the induced martingales satisfy the gradient 
estimate

|∇⊥
σ Fτ1 | ! E(x,T ′)[|∇⊥

σ Fτ2 ||Στ1 ]

for all 0 ! τ1 ! τ2 ! T ′ and x ∈ M .
(3) Let 0 ! σ ! T ′ ! T and F ∈ CT ′ . Then the induced martingales satisfy the gradient 

estimate

|∇⊥
σ Fτ1 |2 ! E(x,T ′)[|∇⊥

σ Fτ2 |2|Στ1 ]

for all 0 ! τ1 ! τ2 ! T ′ and x ∈ M .
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(4) Let 0 ! σ ! T ′ ! T and F ∈ CT ′ . Then we have the gradient estimate

|∇xE(x,T ′)[F ]|2 ! E(x,T ′)[|∇⊥
0 F |2]

for all x ∈ M .
(5) For any T ′ ∈ [0, T ], F ∈ CT ′ , the induced martingales satisfy the quadratic variation 

estimate

E(x,T ′)

[
d[F, F ]τ

dτ

]
! 2E(x,T ′)[|∇⊥

τ F |2],

for all τ ∈ [0, T ′] and x ∈ M .

Proof. (1) ⇒ (2) ⇒ (3): (2) immediately follows from (5.1) and integrating in τ and 
taking expectations. Claim (3) follows then from (2) by Cauchy-Schwarz:

|∇⊥
σ Fτ1 |2 !

(
E(x,T ′)

[
|∇⊥

σ Fτ2 ||Στ1

])2 ! E(x,T ′)
[
|∇⊥

σ Fτ2 |2|Στ1

]

for all τ2 # τ1.
(3) ⇒ (5): Note that according to Theorem 4.19 d[F, F ]τ = 2|∇⊥

τ Fτ |2 dτ and hence 
(3) yields

E(x,T ′)

[
d[F, F ]τ

dτ

]
= 2E(x,T ′)[|∇⊥

τ Fτ |2] ! 2E(x,T ′)
[
E(x,T ′)[|∇⊥

τ F |2|Στ ]
]

= 2E(x,T ′)[|∇⊥
τ F |2].

(5) ⇒ (4): This follows by recalling from Corollary 4.18 that d
dτ [F, F ]τ = 2|∇⊥

τ Fτ |2
and applying (5).

(4) ⇒ (1): This follows by choosing 1-point and 2-point cylinder functions similarly 
as in the proof of the implication Theorem 5.1 (3) ⇒ (1). !

Theorem 1.2. For an evolving family of manifolds (M, gt, Ht)t∈[0,T ], the following are 
equivalent:

(1) The generalized Ricci flow is satisfied:

∂t(g − b) = −2 Rc∇ .

(2) For any 0 ! σ ! T ′ ! T and any F ∈ CT ′ , we have the estimate

E(x,T ′)[|∇⊥
σ Fσ|2] + 2

T ′∫

0

E(x,T ′)[|∇⊥
τ ∇⊥

σ Fτ |2] dτ ! E(x,T ′)[|∇⊥
σ F |2]

for all x ∈ M .
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(3) For any 0 ! τ1 ! τ2 ! T ′ ! T the Ornstein-Uhlenbeck operator L(τ1,τ2) on parabolic 
path space L2(PT ′M) satisfies the Poincaré inequality

E(x,T ′)[(Fτ2 − Fτ1)2] ! 2E(x,T ′)[F L(τ1,τ2)F ]

for all x ∈ M .
(4) For any 0 ! τ1 ! τ2 ! T ′ ! T the Ornstein-Uhlenbeck operator L(τ1,τ2) on parabolic 

path space L2(PT ′M) satisfies the log-Sobolev inequality

E(x,T ′)[(F 2)τ2 log((F 2)τ2) − (F 2)τ1 log((F 2)τ1)] ! 4E(x,T ′)[F L(τ1,τ2)F ]

for all x ∈ M .

Moreover, if one of the conditions (1)-(4) is satisfied, we have:

(3a) For any 0 ! T ′ ! T , F ∈ CT ′ , we have the Poincaré Hessian estimate

E(x,T ′)[(F − E(x,T ′)[F ])2] + 4
T ′∫

0

T ′∫

0

E(x,T ′)[|∇⊥
τ ∇⊥

σ Fτ |2] dσ dτ

! 2
T ′∫

0

E(x,T ′)[|∇⊥
σ F |2] dσ

for all x ∈ M .
(4a) For any 0 ! T ′ ! T , F ∈ CT ′ , we have the log-Sobolev Hessian estimate

E(x,T ′)[F 2 log(F 2)] − E(x,T ′)[F 2] log(E(x,T ′)[F 2])

+ 2
T ′∫

0

T ′∫

0

E(x,T ′)[(F 2)τ |∇⊥
τ ∇⊥

σ log((F 2)τ )|2] dσ dτ ! 4
T ′∫

0

E(x,T ′)[|∇⊥
σ F |2] dσ

for all x ∈ M .

Proof. (1) ⇒ (2): Assertion (2) follows directly from integrating Theorem 5.1 (2) and 
taking expectations.

(2) ⇒ (3): Using Ito’s isometry and Theorem 5.2 yields

E(x,T ′)[(Fτ2 − Fτ1)2] = 2E(x,T ′)[
τ2∫

τ1

|∇⊥
σ Fσ|2 dσ]

! 2E(x,T ′)[
τ2∫

τ1

|∇⊥
σ F |2 dσ] = 2E(x,T ′)[F L(τ1,τ2)F ],
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where we used Theorem 5.2 (2) in the inequality.
(3) ⇒ (1): Dividing (3) by τ2 − τ1 and letting τ2 − τ1 → 0 we find

E(x,T ′)

[
d[F, F ]τ

dτ

]
! 2E(x,T ′)[|∇⊥

τ F |2],

which is Theorem 5.2 (5).
(1) ⇒ (4): Take G = F 2. Then, by (4.9)

E(x,T ′)[(F 2)τ2 log(F 2)τ2 − (F 2)τ1 log(F 2)τ1 ]

= E(x,T ′)




τ2∫

τ1

G−1
τ |∇⊥

τ Gτ |2 dτ





! E(x,T ′)




τ2∫

τ1

G−1
τ E(x,T ′)

[
|∇⊥

τ GT ′ ||Στ

]2
dτ





! 4E(x,T ′)




τ2∫

τ1

|∇⊥
τ F |2 dτ





= 4E(x,T ′)[FL(τ1,τ2)F ],

where we used Theorem 5.2 (2) in the second step and Cauchy-Schwarz in the third.
(4) ⇒ (3): We apply (4) to F 2 = 1 + εG and obtain by Taylor approximation

1
2E(x,T ′)[ε2G2

τ2 − ε2G2
τ1 ] ! ε2E(x,T ′)[GL(τ1,τ2)G] + o(ε2).

Dividing by ε2 and letting ε → 0 we obtain

1
2E(x,T ′)[G2

τ2 −G2
τ1 ] ! E(x,T ′)[GL(τ1,τ2)G].

Noticing that E(x,T ′)[G2
τ2 −G2

τ1 ] = E(x,T ′)[(Gτ2 −Gτ1)2] proves the claim.
This proves the equivalence of (1)-(4). Next we show the remaining implications.
(2) ⇒ (3a): Apply Proposition 4.16 and Ito’s isometry and integrate (2) on (0, T ′).
(1) ⇒ (4a): Let G = F 2 and consider Xτ = G−1

τ |∇HGτ |2 − Gτ log(Gτ ). Note that 
according to Corollary 4.24, we have that

dXτ =
〈
∇⊥

τ Xτ , dWτ

〉
+ 2Gτ




T ′∫

0

|∇⊥
τ ∇⊥

σ log(Gτ )|2 dσ



 dτ

+ 2G−1
τ




T ′∫

0

(Rc∇ +1
2∂t(g − b))τ (∇⊥

τ Gτ ,∇⊥
σGτ ) dσ



 dτ
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#
〈
∇⊥

τ Xτ , dWτ

〉
+ 2Gτ




T ′∫

0

|∇⊥
τ ∇⊥

σ log(Gτ )|2 dσ



 dτ,

where we used (1) in the last equation. Integration and taking expectations yields

E(x,T ′)[X ′
T ] − E(x,T ′)[X0] # 2E(x,T ′)




T ′∫

0

Gτ




T ′∫

0

|∇⊥
τ ∇⊥

σ log(Gτ )|2 dσ



 dτ



 ,

and evaluating the expectations on the left hand side

E(x,T ′)[X0] = − E(x,T ′)[F 2] log(E(x,T ′)[F 2])

E(x,T ′)[XT ′ ] = 4E(x,T ′)[|∇HF |2] − E(x,T ′)[F 2 log(F 2)].

Putting everything together yields

4E(x,T ′)[|∇HF |2] − E(x,T ′)[F 2 log(F 2)] + E(x,T ′)[F 2] log(E(x,T ′)[F 2])

# 2
T ′∫

0

T ′∫

0

E(x,T ′)
[
(F 2)τ |∇⊥

τ ∇⊥
σ log((F 2)τ )|2

]
dσ dτ,

which is (4a). !

6. Appendix: Integration by parts

Proof of Theorem 4.11. Since DV satisfies the product rule, it is enough to show that

E(x,T ′)[DV F ] = 1
2E(x,T ′)



F
T ′∫

0

〈
d

dτ
hτ − Sτ (Rc∇ +1

2∂t(g − b))†T ′−τS
−1
τ hτ , dWτ

〉



for all F ∈ CT ′ . We prove this by induction on the order k of the cylinder function F .
k = 1: Let F (γ) = f(xσ) and let s = T ′ − σ. Since w(x, t) = Pt,sf(x) satisfies the 

heat equation, the gradient satisfies

∇t gradgt w = ∆gtw − (Rc∇ +1
2∂t(gt − bt))(gradgt w, ·)

#gt

by Proposition 3.3. By the Feynman-Kac formula (Proposition 4.6) we have

gradgT ′ w(x, T ′) = E(x,T ′)[Rσ Sσ gradgs f(Xσ)], (6.1)
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where Rτ = Rτ (γ) : (TxM, gT ′) → (TxM, gT ′) solves the ODE d
dτRτ = Rτ Sτ (Rc∇ +

1
2∂t(g − b))T ′−τS−1

τ with R0 = id, and where we view (Rc∇ +1
2∂t(g − b))T ′−τ as endo-

morphism of TM using the metric gT ′−τ . Note also by (4.3)

f(Xσ) = w(x, T ′) +
σ∫

0

Eiw̃(Uτ ) dW i
τ , (6.2)

where w̃ is the invariant lift.
Let (zτ )τ∈[0,T ′] ∈ H. Then by (6.2) and Ito’s isometry

E(x,T ′)



f(Xσ)
σ∫

0

〈
R†

τ żτ , dWτ

〉


 = E(x,T ′)




σ∫

0

Eiw̃(Uτ ) dW i
τ

σ∫

0

〈
R†

τ żτ , dWτ

〉




= 2E(x,T ′)




σ∫

0

〈
∇Ew̃(Uτ ), U−1

0 R†
τ żτ

〉
dτ





= 2E(x,T ′)




σ∫

0

〈
RτU0∇Ew̃(Uτ ), żτ

〉
g′
T
dτ



 ,

where R†
τ is the transpose of Rτ .

Let Nτ := RτU0∇Ew̃(Uτ ) = RτSτ gradgT ′−τ
w(Xτ , T ′− τ). Integration by parts gives

E(x,T ′)




σ∫

0

〈Nτ , żτ 〉gT ′ dτ



 = E(x,T ′)



〈zσ, Nσ〉gT ′ −
σ∫

0

〈zτ , dNτ 〉gT ′ dτ





= E(x,T ′)
[
〈zσ, Nσ〉gT ′

]
,

where we used in the last step that Nτ is a martingale, cf. equation (4.5). With this we 
obtain

E(x,T ′)



f(Xσ)
T ′∫

0

〈
R†

τ żτ , dWτ

〉


 = 2E(x,T ′)
[〈
R†

σzσ, Sσ gradgσ f(Xσ)
〉
gT ′

]
,

where we used that E(x,T ′)
[
f(Xσ)

∫ T ′

σ

〈
R†

τ żτ , dWτ

〉]
= 0. Finally, let hτ = R†

τzτ . Then

R†
τ żτ = ḣτ − Sτ (Rc∇ +1

2∂t(g − b))†T ′−τS
−1
τ hτ ,

which is the claim.
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Now we prove the inductive step, assuming the result for k−1-point cylinder functions. 
Let F (γ) = f(xσ1 , . . . , xσk) and let si = T ′ − σi. Then

E(x,T ′)[DV F ] =
k∑

j=1
E(x,T ′)

〈
hσj , Sσj grad(j)

gsj
f(Xσ1 , . . . , Xσk)

〉

gT ′
. (6.3)

We define a function

α(x1, . . . , xk−1) := E(xk−1,sk−1)f(x1, . . . , xk−1, X
′
σk−σk−1),

where X ′ is based at xk−1. Then, for j = 1, . . . , k − 2, we have

grad(j)
gsj

α(x1, . . . , xk−1) = E(xk−1,sk−1) grad(j)
gsj

f(x1, . . . , xk−1, X
′
σk−σk−1). (6.4)

For j = k − 1 we have by the product rule and (6.1)

grad(k−1)
gsk−1

α(x1, . . . , xk−1) = E(xk−1,sk−1) grad(k−1)
gsk−1

f(x1, . . . , xk−1, X
′
σk−σk−1)

+ E(xk−1,sk−1)[R′
σk−σk−1S

′
σk−σk−1 gradgsk

f(x1, . . . , xk−1, X
′
σk−σk−1)],

(6.5)

where R′
τ = R′

τ (γ) : (Txk−1M, gsk−1) → (Txk−1M, gsk−1) solves the ODE d
dτR

′
τ =

R′
τS

′
τ (Rc∇ +1

2∂t(g − b))sk−1−τS′ −1
τ with R0 = id. Now, let Γ : P(x,T ′)M → R be the 

(k − 1)-point cylinder function induced by α

G(γ) = α(xσ1 , · · · , xσk−1).

Then, by (6.3), (6.4), and (6.5), and by the law of total expectation

E(x,T ′)[DV F ] = E(x,T ′)[DV G] + E(x,T ′)

[〈
hσk , Sσk grad(k)

gsk
f(Xσ1 , . . . , Xσk)

〉

gT ′

]

− E(x,T ′)

[
E(Xσk−1 ,sk−1)

×
[〈

hσk−1 , Sσk−1R
′
σk−σk−1S

′
σk−σk−1 gradgsk

f(Xσ1 , . . . , Xσk−1 , X
′
σk−σk−1)

〉

gT ′

]]
(6.6)

By induction, the claim holds for k − 1 and thus

E(x,T ′)[DV G] = 1
2E(x,T ′)



G
sk−1∫

0

〈
d

dτ
hτ − Sτ (Rc∇ +1

2∂t(g − b))†T ′−τS
−1
τ hτ , dWτ

〉

 .

(6.7)

The second term on the right hand side of (6.6) we decompose into
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E(x,T ′)

[〈
hσk , Sσk grad(k)

gsk
f(Xσ1 , . . . , Xσk)

〉

gT ′

]

= E(x,T ′)

[〈
hσk − hσk−1 , Sσk grad(k)

gsk
f(Xσ1 , . . . , Xσk)

〉

gT ′

]

+ E(x,T ′)

[〈
hσk−1 , Sσk grad(k)

gsk
f(Xσ1 , . . . , Xσk)

〉

gT ′

]
.

(6.8)

Then, for the first term in (6.8) the Markov property at (Xσk−1 , sk−1) together with the 
induction hypothesis for one-point cylinder functions implies

E(x,T ′)

[〈
hσk − hσk−1 , Sσk grad(k)

gsk
f(Xσ1 , . . . , Xσk)

〉

gT ′

]

= E(x,T ′)E(Xσk−1 ,sk−1)

×
[〈

S−1
σk−1(hσk − hσk−1), S′

σk−σk−1 grad(k)
gsk

f(Xσ1 , . . . , Xσk−1 , X
′
σk−σk−1)

〉

gsk−1

]

= 1
2E(x,T ′)



F
sk∫

sk−1

〈
d

dτ
hτ − Sτ (Rc∇ +1

2∂t(g − b))†S−1
τ (hτ − hσk−1), dWτ

〉


 .

(6.9)

Similarly for the other term in (6.8)

E(x,T ′)

[〈
hσk−1 , Sσk grad(k)

gsk
f(Xσ1 , . . . , Xσk)

〉

gT ′

]

= E(x,T ′)E(Xσk−1 ,sk−1)

×
[〈

S−1
σk−1hσk−1 , S

′
σk−σk−1 grad(k)

gsk
f(Xσ1 , . . . , Xσk−1 , X

′
σk−σk−1)

〉

gsk−1

]
,

which we combine with the third term on the right hand side in (6.6) and obtain

E(x,T ′)E(Xσk−1 ,sk−1)

×
[〈

S−1
σk−1hσk−1 , S

′
σk−σk−1 grad(k)

gsk
f(Xσ1 , . . . , Xσk−1 , X

′
σk−σk−1)

〉

gsk−1

]

− E(x,T ′)E(Xσk−1 ,sk−1)

×
[〈

hσk−1 , Sσk−1R
′
σk−σk−1S

′
σk−σk−1 gradgsk

f(Xσ1 , . . . , Xσk−1 , X
′
σk−σk−1)

〉

gT ′

]

= E(x,T ′)E(Xσk−1 ,sk−1)

×
[〈

(id −R′
σk−σk−1)

†S−1
σk−1hσk−1 , S

′
σk−σk−1 gradgsk

f(Xσ1 , . . . , Xσk−1 , X
′
σk−σk−1)

〉

gsk−1

]
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= −1
2E(x,T ′)



F
sk∫

sk−1

〈
Sτ (Rc∇ +1

2∂t(g − b))†S−1
τ hσk−1 , dWτ

〉


 . (6.10)

Here, we used the induction hypothesis for

wτ := (id −R′ †
τ−σk−1)S

−1
σk−1hσk−1 .

Then a simple calculation shows that

d

dτ
wτ − S′

τ−σk−1(Rc∇ +1
2∂t(g − b))†S′ −1

τ−σk−1wτ

= −S′
τ−σk−1(Rc∇ +1

2∂t(g − b))†S′ −1
τ−σk−1S

−1
σk−1hσk−1 ,

which gives (6.10).
Adding (6.7), (6.9), (6.10), we obtain

E(x,T ′)[DV F ]

= 1
2E(x,T ′)



G
sk−1∫

0

〈
d

dτ
hτ − Sτ (Rc∇ +1

2∂t(g − b))†T ′−τS
−1
τ hτ , dWτ

〉



+ 1
2E(x,T ′)



F
sk∫

sk−1

〈
d

dτ
hτ − Sτ (Rc∇ +1

2∂t(g − b))†S−1
τ (hτ − hσk−1), dWτ

〉




− 1
2E(x,T ′)



F
sk∫

sk−1

〈
Sτ (Rc∇ +1

2∂t(g − b))†S−1
τ hσk−1 , dWτ

〉




= 1
2E(x,T ′)



F
T ′∫

0

〈
d

dτ
hτ − Sτ (Rc∇ +1

2∂t(g − b))†T ′−τS
−1
τ hτ , dWτ

〉

 ,

which proves the theorem. !
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