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We derive a family of weighted scalar curvature monotonicity formulas for generalized
Ricci flow, involving an auxiliary dilaton field evolving by a certain reaction-diffusion
equation motivated by renormalization group flow. These scalar curvature monotonic-
ities are dual to a new family of Perelman-type energy and entropy monotonicity
formulas by coupling to a solution of the associated weighted conjugate heat equation.
In the setting of Ricci flow, we further obtain a new family of convex Nash entropies

and pseudolocality principles.

1 Introduction

A dominant theme in the analysis of Ricci flow is the understanding of curvature
positivity conditions preserved by the flow [13, 14, 22, 23, 25]. Most fundamental among
these, as observed by Hamilton in his original paper [22], is the preservation of a lower
bound on the scalar curvature. This bound is essential for detailed analyses of heat
kernels, ancient solutions, and singularity formation of Ricci flow (cf. e.g., [11, 16, 18,
26, 47-49]). A second dominant theme is the key role played by self-similar solutions of
the flow, that is, Ricci solitons, which partly indicate the subtle interplay between Ricci
flow and the diffeomorphism group. Such solutions, and the interaction between Ricci
flow and the diffeomorphism group, lie at the foundation of various key estimates for
Ricci flow, such as Hamilton’'s Harnack estimate [24], and Perelman’s energy, entropy,
reduced volume functionals, and differential Harnack estimate [32]. These various tools

combine to reveal the structure of singular sets of Ricci flow [7-9, 32], leading to deep
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topological applications [10, 33]. In this paper, we extend the fundamental circle of
ideas around scalar curvature monotonicity, Harnack estimates, and heat kernels to
generalized Ricci flow. In the process, we obtain several new estimates for Ricci flow,
in particular a new family of convex Nash entropies, and pseudolocality estimates
Given a smooth manifold M, a one-parameter family of metrics g, and closed

three-forms H, is a solution of generalized Ricci flow if H, = Hy + db, and

3g= —2Rc+iH?
ot N
9

—b= —d!H,

ot g

where H2(X,Y) = (iXH JiyH ), with iy denoting the interior product and the inner product
taken with respect to the time-dependent metric. This equation arises independently
in mathematical physics [31, 34], complex geometry [40, 42], and generalized geometry
[19, 36, 41], and we refer to [20] for further background. Some global existence and
convergence results can be found in [2, 27, 37, 39]. Note that H = 0 is preserved by
the flow (cf. [20] Proposition 4.20), and the metric then solves Ricci flow. Thus, in the
remainder of this paper, many results are for generalized Ricci flow, with the attendant

results for Ricci flow occurring as a special case.

1.1 Scalar curvature monotonicity

Given a metric g, closed three-form H, and smooth function f, let

Rof =Ro—1H? + V2f - } (dpH +igeH), RO i=R— 5 |H|? +22f - |Vf]%
The tensor Rc” reduces to the Ricci tensor of the Bismut connection with torsion H
when f = 0, and in general can be motivated by extending ideas from Bakry-Emery [5]
to the Laplacian of the Bismut connection acting on one-forms. The scalar curvature
RHS arises in the Lichnerowicz-type formula for the cubic Dirac operator of Bismut
[12] in the case f = 0. The general case occurs when computing this formula using a
weighted volume form (cf. [6, 32]).

Perelman’s energy and entropy monotonicity formulas can be interpreted as
differential inequalities for the weighted scalar curvature R'. The key point is to allow
the weight u = e/ to evolve by the conjugate heat equation. In this circle of ideas, the
function u = e/ is the “dilaton” in physics terminology. Interestingly, in mathematical

physics literature, a different equation is suggested for the dilaton in the RG flow
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Scalar Curvature, Entropy, and Generalized Ricci Flow 3

of the H-twisted nonlinear sigma model [34]. Specifically, given (g;, H;) a solution of
3

2 -
solution to the associated dilaton flow,

generalized Ricci flow, we let 0 = A denote the forward heat operator, and fix ¢ a

O¢ = & |H|2.

With the setup above, we then obtain the following evolution equation for the general-

ized scalar curvature:

Proposition 1.1. (cf. Proposition 2.4) Given (M",g,, H,, ¢,) a solution to generalized

Ricci flow, one has

ORI = 2 |[Reft#|2, (1.1)

Remark 1.2. In the case of Ricci flow, the dilaton flow is simply the forward heat flow.
Here, the weighted scalar curvature monotonicity appears in ([17] Chapter 7 Lemma
6.88). There, monotonicity formulas are shown for a one-parameter family of dilaton
flows interpolating between the forward heat flow and the conjugate heat equation,

which incidentally also extend to generalized Ricci flow.

Proposition 1.1 implies that a lower bound on R is preserved on a compact

manifold. Also, by applying the strong maximum principle, we obtain a rigidity result.

Corollary 1.3. (cf. Corollary 2.6) Let (M, g, H, ¢) satisfy RE¢ > 0. If M is compact, then

either

1. The triple (g, H, ¢) defines a generalized Ricci soliton and R¥¢ = 0
2. The manifold M admits a triple (g, H, ¢) such that RHE® = 0 everywhere.

Remark 1.4. The scalar curvature evolution equation of Proposition 1.1 and attendant
corollaries can be generalized in several ways. In particular, noting that all quantities
involved ultimately only depend on df, one may replace df with a general one-form «
evolving by the operator o = %d |H|?, and obtain a monotone curvature quantity (cf.
§2.2). Furthermore, the tensor H may be replaced with a formal linear combination of
differential forms of all degrees, and with an appropriately weighted scalar curvature
and dilaton flow, one again obtains a monotone curvature quantity (cf. §2.3). One special

case of this is the extended Ricci flow system of List [29], coupling to an exact 1-form.
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4 J. Streets

Another special case is the Ricci-Yang-Mills flow ([35, 39, 45, 46]), a coupling of the
Ricci and Yang-Mills flows which in the case of abelian structure group corresponds to

the case that H is a two-form, specifically the principal curvature.

1.2 Entropy formulas and Harnack estimates

Further structure is revealed when we treat e as a volume density, mirroring the
role played by u = e/ in Perelman’s work. Perelman'’s idea underlying his energy and
entropy formulas is to let u = e/ be a solution of the conjugate heat equation [T*u = 0,
where

0

0*=—— —A+R.
i o7

Given this, one obtains the differential equation
7 (Rfu) — ‘Rcf‘ 2y, (1.2)

This is the pointwise computation underlying the monotonicity of Perelman’s F-
functional, and including a further weighting of u by a time scale yields Perelman’s
entropy density monotonicity. There is a curious duality between equations (1.1) (in the
setting of Ricci flow) and (1.2). On the one hand, the weighted scalar curvature is a
supersolution to a forward heat equation when the weight satisfies the forward heat
equation. On the other hand, after coupling to a solution of the conjugate heat equation,
the weighted scalar curvature is a subsolution to the conjugate heat equation. We next
clarify and deepen this apparent linkage, generalizing the circle of ideas around scalar
curvature, entropy formulas, and conjugate heat kernels.

We return to the setting of generalized Ricci flow, where the conjugate heat

operator takes the form

3
D*:—&—A+R—i|H|2.

The fundamental formula ([20] Chapter 6) underlying the energy monotonicity that

generalizes (1.2) is then

mE (RH'fu) = —2 ‘Rch‘ 2y, (1.3)
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Scalar Curvature, Entropy, and Generalized Ricci Flow 5

When integrated against e~ dV,, this pointwise formula yields the gradient flow
interpretation for generalized Ricci flow. As natural as this differential equation may
seem, it is difficult to exploit in part because the conjugate heat operator itself is
difficult to control. In the setting of Ricci flow, the a priori lower bound on the scalar
curvature controls the reaction term in the conjugate heat operator, and this plays a key
role in many applications.

We get a better behaved heat kernel by including a further weight given by
a solution to the dilaton flow. Indeed, the conjugate of the heat operator, taken with

respect to the measure dm = e‘¢dVg, is
0
«_ 9 H,¢
D¢_ o A+ 2V¢p + R*?.

We then obtain a generalization of (1.3):

Proposition 1.5. (cf. Proposition 3.3) Let (M, g,, H,, ¢;) denote a solution to generalized

Ricci flow, and suppose u = e~/ is a solution of Dj;u = 0. Then
0 (RH'f+‘7’u) = -2 ‘RCH'JCM‘ 2u.

Note that in this formula there are naturally two functional degrees of freedom
given by a solution to the dilaton flow, and then a solution to the weighted conjugate
heat equation. This furthermore yields a generalization of the gradient flow property of
generalized Ricci flow (cf. Proposition 3.7).

By including further weighting of u by a time scale we also obtain a general-
ization of Perelman’s shrinker entropy monotonicity and differential Harnack estimate,

parameterized by the choices of f and ¢. In particular, recall Perelman’s entropy density
WHE = tRHF L F —n,

To obtain a monotone quantity under generalized Ricci flow, we must include a further
functional parameter that measures the concentration of H, namely a solution to the

conjugate dilaton flow. In particular, we let ¢ denote a solution of
05 (Yw) = —§ |H| *u.

We then obtain:
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6 J. Streets

Proposition 1.6. (cf. Proposition 3.12) Let (M, g,, H,, ;) denote a solution to generalized
Ricci flow, and suppose u = (4nr)_%e‘f is a solution of D;‘)u = 0, wherer = T — t for

some fixed T. Furthermore, suppose ¢ is a solution of the conjugate dilaton flow. Then

2

1
o [(WH'f+¢ + w)u] = —2¢|RHATT — —g|2u.
2T

This yields that if u approaches a weighted Dirac delta at some forward time
then

WHI* L yyu <o,

generalizing Perelman’s Harnack estimate (cf. Corollary 3.14). Due to the presence of the
conjugate dilaton flow solution, finding further geometric applications requires a more

detailed understanding of the torsion H.

1.3 Further applications to Ricci flow

To conclude, we observe some formal extensions of some key results in the analysis of
Ricci flow to the setting of weighted scalar curvature. First we note an extension of the
definition of the Nash and Perelman entropies, adapted to weighted scalar curvature.
In Proposition 4.2, we show convexity of the Nash entropy, extending fundamental
observations in [26]. Going further, recall a key application of Perelman’s differential
Harnack estimate is the pseudolocality estimate [32], which roughly says that almost
Euclidean regions will regularize for a short time. The strength of this result is that
“almost Euclidean,” is measured in a very weak sense, namely by a lower scalar curva-
ture bound and an almost-Euclidean isoperimetric inequality. Based on the generalized
entropy monotonicity formulas above, we give an extension of this result, involving
the weighted scalar curvature and isoperimetric inequality (Theorem 1.7). The proof
follows Perelman’s original proof until the final stages, where the entropy integrand
is manipulated to exploit the weighted scalar curvature bound. In the end, we require
a technical result relating the weighted isoperimetric inequality to the weighted log-

Sobolev inequality (Theorem 4.7), proved using the method of Steiner symmetrization.

Theorem 1.7. (cf. Theorem 4.8) For every a > 0, there exist §,¢ > 0 satisfying the
following: suppose we have a smooth pointed Ricci flow solution (M, (py, 0), g;) defined
for t € [0, (ery)?], such that each time slice is complete. Suppose that there exists ¢, €
C5° (M) such that
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Scalar Curvature, Entropy, and Generalized Ricci Flow 7

1. R%(p,0) > —ry for any p € By(py, 1),

$o(p,0) = —é for any p € By(py, Tp),
The ¢,-weighted isoperimetric constant of B, (p,, 1)) satisfies >a- 8)c,,

where ¢,, denotes the Euclidean isoperimetric constant.

Then [Rm| (p, t) < at™! + (ery) "2 whenever 0 < t < (er)? and d,(p, py) < €7y.

2 Weighted Scalar Curvature Monotonicity Formulas

In this section, we show several monotonicity formulas for weighted scalar curvatures
and certain further generalizations. First, we prove Proposition 1.1 of the introduction,
and derive a rigidity result using the strong maximum principle. Then we extend to a
more general setting where df is replaced by an arbitrary 1-form, and then to the setting
where the metric flow is coupled to the heat flow for differential forms of arbitrary

degree.

2.1 Weighted scalar curvature monotonicity and rigidity results

To begin, we formalize some definitions from the introduction.

Definition 2.1. Given a smooth manifold M, a triple (g, H, ¢) of a Riemannian metric,

closed three-form H, and function ¢ determine a twisted Bakry—-Emery curvature
Rcf? = Re _}IHZ + V2 — % (d;H + iW)H) .
These data also determine a generalized scalar curvature
RH? .= R— L |H|? +2A¢ — V| 2.

Definition 2.2, Given (M, g;, H;) a solution to generalized Ricci flow, a one-parameter

family ¢, satisfies the dilaton flow if

O¢ = & 1H|2.

Remark 2.3. We separate the terminology of a solution to the dilaton flow associated
to a solution of generalized Ricci flow to emphasize that the two flows are decoupled,
and for instance the initial data for ¢ are arbitrary. On the other hand, for convenience,
we will also refer to a triple (g;, H;, ¢,) as a solution of generalized Ricci flow, where a

particular solution ¢ to the dilaton flow has been selected.
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8 J. Streets

Proposition 2.4. (cf. Proposition 1.1) Let (M",g,, H;, ¢;) be a solution to generalized

Ricci flow. Then
ORHY = 2 ‘RCH'¢" 2,
Proof. We compute the heat operator acting on each term of R¥¢ separately. First, a
standard computation (cf. [20] Lemma 5.11) yields
OR = — JAIH|?+ } divdivH? + 2(Re, Re — 1 H2).
Also, we have

O(—4 1H12) = (382 - } Re, H2)

12 8 (AdHrH>+ﬁA|H|2'

~ %
Next, we have
DA¢ = (2Re—3H2 V) + (-4 divH? + Ld|H]|?, dg)
+A(A¢+é|H|2) — AAY

- <2 Rc—%Hz,VZQ)) + <—% divH? + 1d |H]| 2,d¢> + LA H|Z

Furthermore, using the Bochner formula

O|ve|2 = 2<v (A¢ +LH]| 2) ,v¢> + <2Rc—%H2,d¢ ® d¢> — A V|2
= —2|V2%|*+ 1V IHI%, Vo) - } (B2, do @ dg).
Combining the above formulas and using the definition of R?*¢ yields
ORF® = 2(Re, Ro—1H2) + (LH? — } Re, H2) + 2 (2Re — 1 H2, V20) + 2| V29| ?
+ (- divE? + Jd|H|% dg) - § (VIHI% Vo) + } (H, do © do) (2.1)

1 201 gioqiog2 _ 1
— {3 A |H|? + 5 divdivH® — § (A4H, H).
We further recall the identity (cf. [20] Lemma 3.19)

divH® = LV |H|* - (dH, H),
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Scalar Curvature, Entropy, and Generalized Ricci Flow 9

where <d;H, H> = (d;H)leikl. This has the further consequence
. . 2 2 2
divdivH? = LA |H| % + L (A H, H)+ ‘d;H‘ .
Plugging these into (2.1) yields
ORF® = 2[Re—1H2 + V26| 2 + J|dsH + iy, H|? = 2 [Re#|2,

as claimed. [ |

Corollary 2.5. Let (M",g,, H;, ¢,) be a solution to generalized Ricci flow on a compact

manifold. Then, for any smooth existence time ¢, one has

inf R®® > inf RHE?.
Mx{t} M x{0}

Proof. This follows from the maximum principle applied to Proposition 2.4 |

Corollary 2.6. (cf. Corollary 1.3) Let (M, g, H, ¢) satisfy RZ¢ > 0. If M is compact, then
either

1. The triple (g, H, ¢) defines a generalized Ricci soliton and R¥¢ = 0
2. The manifold M admits a triple (g, H, ¢) such that RH$ = 0 everywhere.

Proof. This follows from the strong maximum principle applied to the evolution

equation of Proposition 2.4. |

2.2 One-form scalar curvature monotonicity

In the context of generalized geometry, the dilaton ¢, or more accurately its differential
d¢, plays the role of a divergence operator [19, 20], which is necessary to define the
generalized Ricci tensor. A natural class of divergence operators are defined by a 1-
form which need not even be closed. Next, we extend the results above to this more

general setting.

Definition 2.7. Given a smooth manifold M, a triple (g, H,«) of a Riemannian metric,

closed three-form H, and one-form o determine a generalized scalar curvature

RP® =R — L |H|? - 2d*a — |a| %
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10 J. Streets

Definition 2.8. Given (M, g,, H,) solution to generalized Ricci flow, a one-parameter

family «, satisfies the dilaton flow if

3
50 = Ago+ 5d|H| 2. (2.2)

Proposition 2.9. Let (M",g,, H,, «,) be a solution to generalized Ricci flow. Then

ORHA = 2 ‘Rc—}—LHz +L1 9%+ 5ldal® + 3 ‘dZHJr ianH‘ 2
2

Proof. The proof is nearly identical to that of Proposition 2.4. We first note
Od*a = (2Re—}H?, Vo) + (-} divH? + }d|H|%, «
+d (Aga+ §d|HI?) - Ad'a
- <2 Rc—%Hz,Va> n <—% divH? + Ld |H]| 2,a> +1aH2,
Furthermore, using the Bochner formula
Ola|? = 2<Ada +Ld|H| 2,a>+<2Rc—%H2,a ®oe> — Ala)?

= —2|Va|?+ %<d|H|2,a>— %<H2,a®a>.

Using these and arguing as in Proposition 2.4, we obtain

ORM* =2 ‘Rc—}}Hz —I—V(x‘ 2+ 3

diH + iauH‘ 2

—2 ‘Rc—}LHZ +11,,9|%+ 3 1dal? + } |dgH +i,H|
2

as claimed. [ |

Remark 2.10. An a priori lower bound for R as in Corollary 2.5 and a rigidity result

as in Corollary 1.3 are immediate consequences.

2.3 Further generalizations of Ricci flow

The results of this paper extend to a more general class of geometric evolution equations

coupled to differential forms. In particular, let H = @y_, H;, denote a closed section of
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Scalar Curvature, Entropy, and Generalized Ricci Flow 11

A*T*M, where the subscript indicates the degree of the differential form, and consider

the system of equations
a 122 0
&g = -2 Rc +§H , &H = AdH' (2-3)

where as before HZ(X, Y) = (iXH, in). We note that the constant factor of % on the
term H? may seem arbitrary, but as the coupled partial differential equation for H is
linear, this constant can be tuned to any positive value, independently for each value
of k if desired. This system of equations obeys the same fundamental regularity of
properties as generalized Ricci flow, and has an interpretation as Ricci flow on more
general Courant algebroids (cf. [20]). For this setup, we define the generalized scalar

curvature

n
R =R 3 F[H|* +280 = 991"
k=1

Also, we attach a dilaton flow of the form

Op =1 D L H, |2 (2.4)
k=1

Proposition 2.11. Suppose (g,, H;) is a solution of (2.3) and ¢, is a solution of (2.4). Then

ORH? =2 ‘Rc—}LHZ + V2¢) 2+ 3 ’d;H-‘r iyoH| 2.

Proof. For a closed differential form H; of degree k, one has the Bianchi identities

1

divdivHf = 4 A [Hy| > + 1 (AgH, H) +

2
dyH|*

Using these, a straightforward modification of the proof of Proposition 2.4 gives the

result. u

Remark 2.12. An a priori lower bound for RF/¢ as in Corollary 2.5 and a rigidity result

as in Corollary 1.3 are immediate consequences.
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12 J. Streets
3 Weighted Energy and Entropy Formulas

In [32], Perelman introduced differential inequalities for the weighted scalar curvature,
coupled to a solution of the conjugate heat equation. These key estimates complement
the a priori scalar curvature lower bound, and underpin the proofs of x-noncollapsing
and pseudolocality for Ricci flow. In this section, complementary to our a priori lower
bound for the generalized scalar curvature, we generalize these estimates to the case
of generalized Ricci flow, by further coupling to a solution of the dilaton flow. The key
point is to treat the auxiliary solution to the dilaton flow as a shift in Perelman’s dilaton
f, in particular constructing f as a solution to the ¢-weighted conjugate heat equation.
This leads to a family of differential inequalities with now two auxiliary functional

parameters ¢ and f.

3.1 Weighted conjugate heat operators

In this subsection, we define the weighted conjugate heat operator, then show some
elementary properties of this equation and its relation to the classic conjugate heat

equation.

Definition 3.1. Let (M, g;, H;, ¢,) denote a solution to generalized Ricci flow. Define the
conjugate heat operator
d

D*:—a—A+R—}1|H|2.

Also, we define the weighted conjugate heat operator

0
* 2 H,$
0% =3 A+ 2V¢p + R,
Lemma 3.2. Let (M,g;, H;, ¢,) denote a solution to generalized Ricci flow. Given u,, v,
smooth functions, we have

& [uvdV, = [, vOu — ud*v) dV,.

& [uve=?dV, = [, (vOu — ujv)e~?dv,.

A solution to O*u = 0 preserves mass against dVg, that is, % fM udVg =0.

W b=

A solution to Dj;)u = 0 preserves mass against e‘¢dVg, that is, dit fM ue‘¢dVg =
0.
5. One has O*(ue™?) = (D(’;u)e*‘f’.
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Items (1) and (3) are elementary consequences of the generalized Ricci flow

equations. To show item (2), we compute

d
—¢
a LM uve dVg

S £ 5 5

J

0 9
v—u+u—v+uv(—-R+L1H?*-A —le) e ?dv
gt uggy v (CR+ HHIP - a9 - i 4

0
vu+u (e¢A(e‘¢v) + EV + v(—R + ﬁ |H|? - A(ﬁ))} e‘¢dVg

[ 0
vu+u (&V-I— AV —2(Vv,V¢)+v (—R + % |H|? — 2A¢ + |Vo| 2))j| e*¢dVg

3
viu+u (5 +A—2Vep— RH'¢) v} e ?dv,

_VDu — uD;;V] e_¢dVg,

as claimed. Item (4) is an elementary consequence of item (2). To show item (5), we

directly compute

at

O (ue?) = @*we ? —2(Vu, Ve ?) —u (i + A) e ?

[(—%—A+2V¢+R—£IH|2) u}e¢+u(%¢+A¢—|V¢IZ)e¢

b
[(_8_t_A+zv¢+R—ﬁ|H|2+2A¢>—|V¢|2) u}e‘¢

(D:}j u) e ?,

as claimed. |

3.2 Energy density monotonicity

Proposition 3.3. (cf. Proposition 1.5) Let (M, g,, H;, ¢;) denote a solution to generalized

Ricci flow, and suppose u = e is a solution of D;‘bu = 0. Then

05 (RH'f+¢u) = -2 ‘RCH'JCM‘ 2u.
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14 J. Streets

Proof. In [20] Theorem 6.12, it is shown that if v = e~ is a solution of the conjugate

heat equation (0*v = 0, then
o (RH'FV) = —2 )RCH'F‘ v.

It follows from Lemma 3.2 item (5) that v = ue ® = e /=% is a solution of *v = 0.

Furthermore, again using Lemma 3.2 item (5), we compute
(D:’; (Rf+¢u)) e =0 (wav) =-2 ‘RCH'erd)‘ ue ?,

giving the claim. u

Corollary 3.4. Let (M",g,, H;, ¢, denote a solution to generalized Ricci flow. Suppose

u = e/ is a solution of D;‘)u = 0. Then

sup RE/*¢ > gup RESY,
Mx{t} Mx {0}

Proof. It follows from Proposition 1.5 that Rf*? is a subsolution of a backwards heat-
type equation; therefore, by the maximum principle, its supremum is nonincreasing as

a function of —t, therefore nondecreasing as a function of t. [ |

3.3 Gradient property revisited and steady solitons

The results in the previous subsection underpin a generalization of the gradient flow
interpretation of generalized Ricci flow. To begin, we recall the usual gradient flow

interpretation. Define

FoHH = [ (1912 + R 1H1%) e T av,,
M

rMg, H) = inf F(g,H,f).
1 fyefdvg=1}
Following [32], it was shown in [31] that generalized Ricci flow is the gradient flow of
. Furthermore, there is a general monotonicity formula for 7 once u = e~/ is imposed
to solve the conjugate heat equation along the flow. By explicitly including the dilaton
shift ¢, we get an infinite dimensional family of eigenvalues A for which generalized

Ricci flow is the gradient flow, following Proposition 1.5.
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Scalar Curvature, Entropy, and Generalized Ricci Flow 15

Definition 3.5. Given (M", g, H, ¢), we define

Mg H, ¢) = inf F@9.H f+¢).
f | [peTe?dv,=1}

Lemma 3.6. The quantity A(g, H, ¢) is the lowest eigenvalue of the operator

L =—4A +4V¢ + RHY,

. I
Proof. Integrating by parts, we can express, forw =e~ 2,

F@g Hf+¢) = / (4|Vw| 2 +RH'¢WZ) e_¢dVg,
M

and the result follows from a standard argument |

Proposition 3.7. Generalized Ricci flow is the gradient flow of A(g, H, ¢).

Critical points for A are steady generalized Ricci solitons, and recent con-
structions and classification results for these objects have appeared in [4, 38, 43, 44],
including examples on compact manifolds. The next proposition shows that, on such a
steady soliton, the dilaton flow (suitably normalized) converges to the relevant soliton

function f.

Proposition 3.8. Suppose (M",g,H,f) is a steady generalized Ricci soliton, that is,
RcES = 0, and let » = Mg, H). Given ¢, € C*®°(M) a smooth function, the solution to

the gauge-fixed normalized dilaton flow
@O+ =gHI? A
with initial condition ¢, exists on [0, o0) and lim; , ¢, = f + ¢ for some c € R.

Proof. We recall the basic identities for a soliton:
R-LHI*+Af=0,
RS = .

The first follows by tracing Rc¥ = 0 and the second follows by first observing that Rf
is constant by a Bianchi identity (cf. [20] Proposition 4.33), then observing by integration
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16 J. Streets

against f, suitably normalized, that this constant must be A(g, H). Using these identities,

we compute

O+ VAP - =& HI* = r+Af — |VfI?

o=

HI? = (R = 5 H|2 4+ 28f — |Vf|%) + Af = |Vf1?

—R+ LHI?-Af
=0.

As 0+4Vf is a strictly parabolic operator with no constant term, it follows from standard

results that ¢, exists for all time, and moreover that ¢ — f approaches a constant. ]

3.4 Entropy density monotonicity

Definition 3.9. Given a smooth manifold M, a triple (g, H, F) of a Riemannian metric,

closed three-form H, function F and r > 0 determine a generalized entropy density

WHF — tREF L F _ .

In the setting of Ricci flow, the quantity W’ is Perelman’s entropy density,
which satisfies a key monotonicity property. To obtain a monotone entropy quantity for
generalized Ricci flow, we require a further functional parameter, which can be used to

measure the concentration of H at a given point.

Definition 3.10. Let (M", g, H; ¢, denote a solution to generalized Ricci flow, and
suppose u is a solution of [Jyu = 0. A function ¥ is a solution of the conjugate dilaton
flow if

05 (Yu) = —§ [H| *u.

The lemma below shows that the flow is well-posed for arbitrary smooth

terminal data.

Lemma 3.11. Given (M", g;, H;, ¢;) a solution of generalized Ricci flow, suppose u = e
is a positive solution of [Jyu = 0. Then ¥ is a solution of the conjugate dilaton flow if

and only if

9
(—&—A+2V(f+¢))1ﬂ =—%|H|%
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Scalar Curvature, Entropy, and Generalized Ricci Flow 17

Proof. Given a smooth function ¥, we formally compute

a
5 (Yu) = ((_ﬁ — A+ 2V¢) w) u+yhu—2(Vy, Vu)
0
= ((—a — A+ 2V(f+¢>)) w) u.
Using that u is positive, the result follows. |

Proposition 3.12. (cf. Proposition 1.6) Let (M, g,, H;, ¢;) denote a solution to generalized
Ricci flow, and suppose u = (4nt)" e is a solution of D;’;u = 0, where t = T — t for

some fixed T. Furthermore, suppose ¥ is a solution of the conjugate dilaton flow. Then

1
0% [(WH’f+¢ + 1ﬁ)u] — — 27 |[RcHS T —5-9 2u.
T
Proof. First observe, using D;‘,u =0,
8 n
0=u= (_5 ~A+2V¢ +RH'¢) (arr2e)
3 (3.1)
= (g0 + AP =191V 2090, 5f) 4 B (@r0) Ee ).
2T Jat

Now we compute using Proposition 1.5,

9
(_E — A+ 2V¢) wHJ+9o

9 d
= RHS* 4 ¢ <_8_t - A+2V¢)RHf+¢ + (_& - A+2V¢) f + )

= (28 +9) — IVf + 9|2+ R - %5 |H?)
+7(-2|Re—3H2 + VA(f + )| — L |dH + i H|? — 2( VRS, VE))

n
+(—52 — V12 +28¢ = V812 + R — 5 1H?) + (-280 + 21V9l 2 - } 1HI?)

1
Ro—3H +VA(f+9) - -9/ — 3

= 27

. 2 1 2
d3H + Lv(f+¢)H( +1H]

_ 2<V(er+¢’), Vf> _2|Vf|2 = 2(VF, V)

1
=2t R g
T

24+ LIH|? - 2(VWESe, vf).
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18 J. Streets

We then obtain

d

9
((—& A+ 2v¢) WH'f+¢) u+ WO — 2<VWH'f+¢, Vu>

1
— — 27 |[RcHS*? ~5-9 ‘u+ §H|?u,

and the result follows. [ |

3.5 Perelman’s Harnack estimate

To prove the generalization of Perelman’s Harnack estimate, we require some technical
estimates for the conjugate heat kernel along solutions to generalized Ricci flow, which
follow from straightforward modifications of results in [15] (cf. also [30, 47]). We fix
(M™, g,,H;, ¢;) a solution of generalized Ricci flow on M x [0, T], and let Z(x, t, y, s) denote
the fundamental solution of Ou = 0. We fix p € M and define u(x,t) = Z(p, T, x,t). It
follows that u is a solution of the conjugate heat equation (0*u = 0. We define f by
u = (47'[1’)_%8_f as above, where r = T — t. Furthermore, we fix 0 < t; < T and let
h;, > 0 denote a smooth compactly supported function, and let h, denote the solution
to Lk = 0 on [¢y, T] with initial condition h, . We then claim the following fundamental

characteristics for the entropy density W+,

Proposition 3.13. (cf. [15] Theorem 7.1) Given the setup above,
1. Forany t, <t < T one has that k(WS e L1 (M, g,).

2. Foranyty, <t; <t, < T onehas

t2
H.f Hf 1 2
/MhW dVgtl </1‘th dVgt2 +/tl /MGh|H| udVgtdt.

3. One has

lim sup/ hWH'degt <0.
t—->T- JM

Corollary 3.14. Let (M", g, H; ¢;) denote a solution to generalized Ricci flow on a
compact manifold, defined for ¢ € [0, T]. Suppose u = (4x (T — t))*%e*f approaches e¢’8x0

as t — T and solves DZu = 0. Finally, let ¥ denote the unique solution of the conjugate
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Scalar Curvature, Entropy, and Generalized Ricci Flow 19

dilaton flow associated to u with ¥/ = 0. Then, for any 0 < ¢, < T, one has

(WH'f”’ + w) u<0.

Proof. Suppose there exists a point (y, ¢;) such that
V= (WH'f+¢ + w) u(yo, to) > 0.

Choose a smooth nonnnegative function 2 such that h(y,) = 1 and supy,, 2 < 1. Solve
the forward heat equation OOk = 0 on [¢y, T] with initial data h at time t,. Note that by
the maximum principle h remains nonnegative. We then compute using Lemma 3.2 and

Proposition 3.12,
d —¢ * 170~ ¢
— hVe ?dV, = — hD¢Ve dv_ > 0.
dt M g9 M 9

However, we obtain a contradiction since by construction L[ZVIhVe*‘?’dVgt0 > 0 and by
Proposition 3.13 and the fact that ¥ =0,

li hVe %dV, = 0.
S .

4 Weighted Nash Entropy and Pseudolocality Estimates

In this section, we give an extension of the Nash entropy convexity for Ricci flow to
the setting of weighted scalar curvature. Then, we derive a pseudolocality principle for
Ricci flow in terms of weighted scalar curvature generalizing Perelman'’s result [32]. The
key new technical point is a weighted isoperimetric inequality and its relationship to a

weighted log-Sobolev inequality.

4.1 Weighted Nash and Perelman Entropies

Definition 4.1. Given a smooth Riemannian manifold (M, g), f,¢ € C°) and T > O,
let dv = (4nt)*%e_fe_¢dVg, and define the weighted Nash entropy by

NG, 6. f,7) :=/fdv—ﬁ. @.1)
M 2
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20 J. Streets

Furthermore, define the weighted Perelman entropy by

W(g, ¢.f,7) = / [er+¢ +f— n] dv. (4.2)
M

Proposition 4.2. Let (M,g,, ¢, denote a solution to Ricci flow defined on (—T, 0], and

suppose u, is a solution of the conjugate heat equation D(’;u = 0, and define f via u =

(4rt)"ze, where r = —t, and suppose the measure dv has unit mass. Then
d d 1
— (@N) =W, —W = —21'/ ‘Rof"'d’——g 2dv.
dt dt M 2t

Proof. Since D;u =0, an elementary computation shows that we have that

4 gy = (u_lAu —2u"l Ve, Vu) — Ag + |V 2) dv.
dr

Furthermore, using the evolution equation (3.1) satisfied by f and integration by parts,

we compute

d _ 2 o _ 1
= [ fo= [ (af=19f12 —2096,5p) + R - Z) o
+/ f(u—lAu—Zu—l (V$,Vu) — Ap + |V¢|2) dv
M

= /M (Rf+¢ - %) dv.

Thus, using that [, dv = 1, we obtain

d
— (N) = / [er+¢ +f—n]dv =W,
dt M

as claimed. Furthermore, we note that we can express

W:/M[Wf+¢ —¢] dv.

Then, it follows by Lemma 3.2 and Proposition 3.12 with ¥ = 0 that

d d
W — f+é _ -¢ — * Y +o _ * —¢
dtw_dt/M[(W ¢)ule dVg_/M[D(,,(W w) +ug — ¢Tul e ?av,
1
= —2r/ ‘Rcf“’——g 2dv,
M 21'
as claimed. |
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Scalar Curvature, Entropy, and Generalized Ricci Flow 21
4.2 Weighted log-Sobolev and isoperimetric inequalities

Definition 4.3. Given a Riemannian manifold (M™, g) and ¢ € C°° (M), we say that these
data satisfy a ¢-weighted Sobolev inequality if there exists A = A(g, ¢) > —oo such that
for all u = (27)"2e~/ such that Jur ue*d’dVg =1 one has

/M (% IVFI2 +f — n) ue ?dv, > A. (4.3)

Remark 4.4. Given ¢ € W'?(M), define f by
w2 = (Zn)—%e—f/ yle?dv, = u/ y2e?dv,.
M M

It then follows that (4.3) is equivalent to

/ (2|v1p|2 —wzlong) e%dv, + log (/ " e_¢dVg)/ y2e?dv,
M M M

n
i -¢
> (zlog(27r)+n+A)/ ve dVg.

Definition 4.5. Fix (M, g) a Riemannian manifold and ¢ a smooth function. We say that
(M, g) satisfies a ¢-weighted isoperimetric inequality with constant If; if for all compact

domains Q@ ¢ M with C! boundary one has

n—1
[Area, 44, O] > If [Vole_¢dvg(9)]

Remark 4.6. The ¢-weighted isoperimetric inequality is scale-invariant for the metric

g, whereas for a constant A an elementary argument shows that Iﬁ“ = e"\Iﬁ.

Theorem 4.7. Suppose (M",g) is a Riemannian manifold and fix ¢ a smooth function.
Suppose B(x,, R) is compact, and that (B(xy, R),g) satisfies a ¢-weighted isoperimetric
inequality with constant I,f. Then, for any C! function ¢ compactly supported in B(x,, R),

one has
/ (2 V|2 — y2log 1/[2) e‘¢dVg + log (/ 1//2e_‘7’dVg)/ W e‘¢dVg
M M M

n 1$
= n -9
> (2 log(2n)+n+log(0n))/ yre ?dvg,
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where ¢, denotes the Euclidean isoperimetric constant. In particular, (B(xy, R),g)

satisfies a ¢-weighted Sobolev inequality with constant

¢
A =log C—" : (4.4)

Proof. For simplicity of notation, we can just set M = B(xy,R). Also, we perform a
2

useful rescaling. If we set g = (;’7’;) g, then the required inequality is equivalent to

n

2

C n _ _ _
/ 2(7;;) VY| — y?logy? | e ?dV; + log (/ v2e ¢dV§)/ yre ?dvy
M I M M

n

(4.5)

n 25=6 4V~
> (Zlog(Zn)—i—n)/MI// e dVg.

We will show (4.5), dropping the tildes from the notation for simplicity. By an
approximation argument, it suffices to consider the case ¥ > 0. For s > 0, let
My ={xeM|y >s}. Let I'y = dMj, and let

F(s) := Voledeg (My).
Choose ry < oo such that
Vol,-sqy, (¥ > 0)) = w,rg = Volgy, (B).
Choose the unique rotationally invariant function h : R™ — R such that
Volgy_, ({h > s}) = F(s),

and such that h(x) = 0 for |x| > r,. Furthermore, set M; = {h > s}, and I'; = dM;. We

recall the statement of the co-area formula,

o
/ H|Vf| dVg =/ HdAds.
M —00 J{f=s}

Applying this with H = ¢ |Vy/| ! and f = ¢ on M, yields

o0
F(t) = Volg-gqy, (M) = / / |Vy| le ?dAds.
t Jiy=s)
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This implies that for almost all s one has

F
—d—(s) =/ [Vy | “le ?dA.
ds (w=s)

Thus, for an arbitrary Lipschitz function A, we have

o0 dF o
—/ A—ds:/ A/ IVy | “le ?dAds.
o ds 0 (W=s}

On the other hand, applying the co-area formula with H = A(y) [Vy| ~le™? yields

/ A(w)e_¢dVg:/ooA(s)/ IVy | “le ?dAds.
{y>0} 0 {Y=s)

Integrating by parts, we have

* da _
—Fds:/ r(y)e ?dv,.
o ds )

By construction, we may argue similarly with the function A(h) on R" to obtain
o da 6
A(h)d Vg, = —ZF(s) = r(yre?dv,.
{h>0} o ds {¥>0})

Choosing A(s) = (log s?)s? and A(s) = s? thus implies

/M (log y*)y*)dV, = /R _(logh*)h?d Vg, /M YAV, = - h?dVign. (4.6)

This reduces the result to comparing to comparing the gradient terms. By the co-area

formula, we have
o 00
/ VY| e ?dA,ds = F(t) :/ / |Vh| ~'dAgnds.
t Is t Iy
Differentiating this yields

/F VY| lem?dA = /F |Vh| ~'dAgn.
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Furthermore, note that by construction, one has

(Area(T'y)" = ¢, (Vol(My)" " = ¢, Vol gy, (M)

CT'L n
< (Areaoaa ()"
n

Furthermore, using that h is rotationally symmetric, and applying Hélder's inequality,

we get
/ |Vh|dARn-/ |Vh| "'dAg» = (Area(T'}))?
I I
2
< Sn " (Area,—¢ g4 (I ))2
I’(g e A\ s

2
C n
< (—”) IVyle ®dA, - | |Vy| le?dA,.
¢ g g
I, s s
This then implies

2
C n
|Vh|dAp. < |2 /|v le ?dA,.
/r; N (I?; ry v 7

The co-area formula then implies

2 2
En n/ vy 2etdv, = ( Sn n/oo Vi e ?dAds
12) Ju $\g) Jo Jr g

o
> / VA dAgn (4.7)
0 A

- /n |Vh|2dVgn.
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Combining (4.6), (4.7) and applying the Euclidean logarithmic Sobolev inequality [21]
yields

2
/ Z(CT’;) V|2 — y2log y2 e‘¢dVg + log (/ ¥ e‘¢dVg)/ 4 e_¢dVg
M I M M

n
_(= —¢
(2 log(2n)+n)/ ve dVg

> / (2 IVR|2 — h? loghz) AV + log (/ hdeRn)/ h2d Vs
n Rn Rn
(3 :
—(Z10g21) +n) h2dVgn
2 e

201

as required. |

4.3 Weighted pseudolocality estimate

Theorem 4.8. (cf. Theorem 1.7) For every o > 0, there exist §,¢ > 0 satisfying the
following: suppose we have a smooth pointed Ricci flow solution (M, (py, 0), g;) defined
for t € [0, (erg)?], such that each time slice is complete. Suppose that there exists ¢, €
C5° (M) such that

1. R%(p,0) > —ry? for any p € By(py, rp),

2. ¢o(p,0) = —8 for any p € By(py, To),
3. The ¢,-weighted isoperimetric constant of By(p,, ry) satisfies >a- 8)c,,

where c,, denotes the Euclidean isoperimetric constant.

Then [Rm| (p, t) < at™! + (ery) "2 whenever 0 < t < (er)? and d,(p, py) < €ry-

Remark 4.9. In the hypotheses above, there is both a lower bound for ¢, in item (2) and
an implicit upper bound for ¢, in item (3) (cf. Remark 4.6).

Proof. We follow the proof in [28] and briefly indicate the initial phases. By scale

invariance of the hypotheses and conclusion, it suffices to consider the case ry = 1

1
100n

Ricci flow solutions (M, (po,k,O),gk) and functions qbg, which satisfy the hypotheses
of the theorem but for which there exists (py, t;) with 0 < t;, < €, d(py, t;) < €, but
IRm| (py, ty) = at,;l + 6,;2. Choose 4; =

and also o < . If the theorem is false, there exist sequences ¢, — 0,8, — 0 pointed

—IOOlnek' and employ ([28] Lemma 31.1) to obtain a
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new sequence (py, t), which lie at the center of parabolic balls of a controlled size. We
let up = (4n(ty, — t))~ze Tk satisfy O*u;, = 0 and limt_%; u(p,t) = 55, (p). Furthermore,
let W* = W¥«, 1t follows from ([28] Lemma 33.4) that there exists 8 > 0 so that for
all sufficiently large k, there exists ¢, € [, — %aagl,ikl with ka wkdv, < —B, where
Qy, = |Rm| (By, ty), and By = By, (Dy, /T, — tx)-

The aim is to use this to contradict the weighted log-Sobolev inequality at the
initial time. We drop the subscripts and work with a particular large k. One constructs a
function h on spacetime from a modified distance function satisfying certain estimates
we will use below (cf. [28] §34). Using Perelman’s Harnack estimate and estimates for
h, we produce a function u = (47{75)_%6*}'" at time zero with mass arbitrarily close to 1,
which satisfies (cf. [28] (34.6))

pa-a? < [ whhuav,
We drop the subscript on ¢, and define f via F = f + ¢. We thus express

pU-AT < / [(~28¢ = 2AF + IV(F + )12 = R) T = (f + @) + n| hudV,
M
(@.8)
- / [(-R? — 2af +19f12 + 2(YF,¥6)) T~ (F + 9 + n| hudv,,
M

We setf = f — logh and integrate by parts to obtain

/ (—2Af+ IVF|2 4+ 2(Vf, v¢>) he—f—¢dVg
M
- / (2 <Vf’ V(he_f_‘/’)> + (IVf1? + 2(Vf, V¢>)he—f—¢) dv,
M
= / <Vf: 2h~Vh — Vf> he_f—¢dvg
M

:/ (_ |VF| % +h2 |Vh|2) he/~¢av,.
M

Furthermore, by hypothesis —R?h < 1 and by construction h~! |Vh|?2 < (101:6)2, so that

2
/i VAl —R%h)udv, < A7? + €2
M h g
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Also, by construction, we have
—/ uhlogh < cA™?
M

for a controlled constant c. Finally, by hypothesis (2), we note that

/ —¢phu < 4.
M

Plugging the above observations into (4.8) yields
B1—A"2)—(14+0A2—e?-5< /M (—%|Vf| 2_Fu4 n) @nt te e ?dv,.
For ¢, § sufficiently small, it follows then that
3B < /M (—f|Vf| 2_F+ n) (4nf)_%e_fe_¢dVg.

For § chosen sufficiently small, this contradicts hypothesis (3) using Theorem 4.7. |

Remark 4.10. Theorem 1.7 implies via smoothing a diffeomorphism finiteness result
for the class of manifolds with a weighted scalar curvature lower bound, almost
nonnegative weight, volume upper bound, and almost-Euclidean weighted isoperimetric
inequality (cf. [28] Theorem 37.1).
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