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We derive a family of weighted scalar curvature monotonicity formulas for generalized

Ricci flow, involving an auxiliary dilaton field evolving by a certain reaction–diffusion

equation motivated by renormalization group flow. These scalar curvature monotonic-

ities are dual to a new family of Perelman-type energy and entropy monotonicity

formulas by coupling to a solution of the associated weighted conjugate heat equation.

In the setting of Ricci flow, we further obtain a new family of convex Nash entropies

and pseudolocality principles.

1 Introduction

A dominant theme in the analysis of Ricci flow is the understanding of curvature

positivity conditions preserved by the flow [13, 14, 22, 23, 25]. Most fundamental among

these, as observed by Hamilton in his original paper [22], is the preservation of a lower

bound on the scalar curvature. This bound is essential for detailed analyses of heat

kernels, ancient solutions, and singularity formation of Ricci flow (cf. e.g., [11, 16, 18,

26, 47–49]). A second dominant theme is the key role played by self-similar solutions of

the flow, that is, Ricci solitons, which partly indicate the subtle interplay between Ricci

flow and the diffeomorphism group. Such solutions, and the interaction between Ricci

flow and the diffeomorphism group, lie at the foundation of various key estimates for

Ricci flow, such as Hamilton’s Harnack estimate [24], and Perelman’s energy, entropy,

reduced volume functionals, and differential Harnack estimate [32]. These various tools

combine to reveal the structure of singular sets of Ricci flow [7–9, 32], leading to deep
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2 J. Streets

topological applications [10, 33]. In this paper, we extend the fundamental circle of

ideas around scalar curvature monotonicity, Harnack estimates, and heat kernels to

generalized Ricci flow. In the process, we obtain several new estimates for Ricci flow,

in particular a new family of convex Nash entropies, and pseudolocality estimates

Given a smooth manifold M, a one-parameter family of metrics gt and closed

three-forms Ht is a solution of generalized Ricci flow if Ht = H0 + dbt and

∂

∂t
g = − 2 Rc +1

2H2,

∂

∂t
b = − d∗

gH,

where H2(X, Y) =
〈
iXH, iYH

〉
, with iX denoting the interior product and the inner product

taken with respect to the time-dependent metric. This equation arises independently

in mathematical physics [31, 34], complex geometry [40, 42], and generalized geometry

[19, 36, 41], and we refer to [20] for further background. Some global existence and

convergence results can be found in [2, 27, 37, 39]. Note that H ≡ 0 is preserved by

the flow (cf. [20] Proposition 4.20), and the metric then solves Ricci flow. Thus, in the

remainder of this paper, many results are for generalized Ricci flow, with the attendant

results for Ricci flow occurring as a special case.

1.1 Scalar curvature monotonicity

Given a metric g, closed three-form H, and smooth function f , let

RcH,f = Rc −1
4H2 + ∇2f − 1

2

(
d∗

gH + i∇f H
)

, RH,f := R − 1
12 |H| 2 + 2"f − |∇f | 2.

The tensor RcH,f reduces to the Ricci tensor of the Bismut connection with torsion H

when f = 0, and in general can be motivated by extending ideas from Bakry–Emery [5]

to the Laplacian of the Bismut connection acting on one-forms. The scalar curvature

RH,f arises in the Lichnerowicz-type formula for the cubic Dirac operator of Bismut

[12] in the case f = 0. The general case occurs when computing this formula using a

weighted volume form (cf. [6, 32]).

Perelman’s energy and entropy monotonicity formulas can be interpreted as

differential inequalities for the weighted scalar curvature Rf . The key point is to allow

the weight u = e−f to evolve by the conjugate heat equation. In this circle of ideas, the

function u = e−f is the “dilaton” in physics terminology. Interestingly, in mathematical

physics literature, a different equation is suggested for the dilaton in the RG flow
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Scalar Curvature, Entropy, and Generalized Ricci Flow 3

of the H-twisted nonlinear sigma model [34]. Specifically, given (gt, Ht) a solution of

generalized Ricci flow, we let ! = ∂
∂t − " denote the forward heat operator, and fix φ a

solution to the associated dilaton flow,

!φ = 1
6 |H| 2.

With the setup above, we then obtain the following evolution equation for the general-

ized scalar curvature:

Proposition 1.1. (cf. Proposition 2.4) Given (Mn, gt, Ht, φt) a solution to generalized

Ricci flow, one has

!RH,φ = 2
∣∣∣RcH,φ

∣∣∣ 2. (1.1)

Remark 1.2. In the case of Ricci flow, the dilaton flow is simply the forward heat flow.

Here, the weighted scalar curvature monotonicity appears in ([17] Chapter 7 Lemma

6.88). There, monotonicity formulas are shown for a one-parameter family of dilaton

flows interpolating between the forward heat flow and the conjugate heat equation,

which incidentally also extend to generalized Ricci flow.

Proposition 1.1 implies that a lower bound on RH,φ is preserved on a compact

manifold. Also, by applying the strong maximum principle, we obtain a rigidity result.

Corollary 1.3. (cf. Corollary 2.6) Let (M, g, H, φ) satisfy RH,φ " 0. If M is compact, then

either

1. The triple (g, H, φ) defines a generalized Ricci soliton and RH,φ ≡ 0

2. The manifold M admits a triple (g, H, φ) such that RH,φ > 0 everywhere.

Remark 1.4. The scalar curvature evolution equation of Proposition 1.1 and attendant

corollaries can be generalized in several ways. In particular, noting that all quantities

involved ultimately only depend on df , one may replace df with a general one-form α

evolving by the operator !α = 1
6d |H| 2, and obtain a monotone curvature quantity (cf.

§2.2). Furthermore, the tensor H may be replaced with a formal linear combination of

differential forms of all degrees, and with an appropriately weighted scalar curvature

and dilaton flow, one again obtains a monotone curvature quantity (cf. §2.3). One special

case of this is the extended Ricci flow system of List [29], coupling to an exact 1-form.
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4 J. Streets

Another special case is the Ricci–Yang–Mills flow ([35, 39, 45, 46]), a coupling of the

Ricci and Yang–Mills flows which in the case of abelian structure group corresponds to

the case that H is a two-form, specifically the principal curvature.

1.2 Entropy formulas and Harnack estimates

Further structure is revealed when we treat e−φ as a volume density, mirroring the

role played by u = e−f in Perelman’s work. Perelman’s idea underlying his energy and

entropy formulas is to let u = e−f be a solution of the conjugate heat equation !∗u = 0,

where

!∗ = − ∂

∂t
− " + R.

Given this, one obtains the differential equation

!∗
(
Rf u

)
= − 2

∣∣∣Rcf
∣∣∣ 2u. (1.2)

This is the pointwise computation underlying the monotonicity of Perelman’s F-

functional, and including a further weighting of u by a time scale yields Perelman’s

entropy density monotonicity. There is a curious duality between equations (1.1) (in the

setting of Ricci flow) and (1.2). On the one hand, the weighted scalar curvature is a

supersolution to a forward heat equation when the weight satisfies the forward heat

equation. On the other hand, after coupling to a solution of the conjugate heat equation,

the weighted scalar curvature is a subsolution to the conjugate heat equation. We next

clarify and deepen this apparent linkage, generalizing the circle of ideas around scalar

curvature, entropy formulas, and conjugate heat kernels.

We return to the setting of generalized Ricci flow, where the conjugate heat

operator takes the form

!∗ = − ∂

∂t
− " + R − 1

4 |H| 2.

The fundamental formula ([20] Chapter 6) underlying the energy monotonicity that

generalizes (1.2) is then

!∗
(
RH,f u

)
= − 2

∣∣∣RcH,f
∣∣∣ 2u. (1.3)
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Scalar Curvature, Entropy, and Generalized Ricci Flow 5

When integrated against e−f dVg, this pointwise formula yields the gradient flow

interpretation for generalized Ricci flow. As natural as this differential equation may

seem, it is difficult to exploit in part because the conjugate heat operator itself is

difficult to control. In the setting of Ricci flow, the a priori lower bound on the scalar

curvature controls the reaction term in the conjugate heat operator, and this plays a key

role in many applications.

We get a better behaved heat kernel by including a further weight given by

a solution to the dilaton flow. Indeed, the conjugate of the heat operator, taken with

respect to the measure dm = e−φdVg, is

!∗
φ = − ∂

∂t
− " + 2∇φ + RH,φ .

We then obtain a generalization of (1.3):

Proposition 1.5. (cf. Proposition 3.3) Let (M, gt, Ht, φt) denote a solution to generalized

Ricci flow, and suppose u = e−f is a solution of !∗
φu = 0. Then

!∗
φ

(
RH,f +φu

)
= − 2

∣∣∣RcH,f +φ
∣∣∣ 2u.

Note that in this formula there are naturally two functional degrees of freedom

given by a solution to the dilaton flow, and then a solution to the weighted conjugate

heat equation. This furthermore yields a generalization of the gradient flow property of

generalized Ricci flow (cf. Proposition 3.7).

By including further weighting of u by a time scale we also obtain a general-

ization of Perelman’s shrinker entropy monotonicity and differential Harnack estimate,

parameterized by the choices of f and φ. In particular, recall Perelman’s entropy density

WH,F = τRH,F + F − n,

To obtain a monotone quantity under generalized Ricci flow, we must include a further

functional parameter that measures the concentration of H, namely a solution to the

conjugate dilaton flow. In particular, we let ψ denote a solution of

!∗
φ(ψu) = −1

6 |H| 2u.

We then obtain:
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6 J. Streets

Proposition 1.6. (cf. Proposition 3.12) Let (M, gt, Ht, φt) denote a solution to generalized

Ricci flow, and suppose u = (4πτ )−
n
2 e−f is a solution of !∗

φu = 0, where τ = T − t for

some fixed T. Furthermore, suppose ψ is a solution of the conjugate dilaton flow. Then

!∗
φ

[
(WH,f +φ + ψ)u

]
= − 2τ

∣∣∣∣RcH,f +φ − 1
2τ

g
∣∣∣∣

2u.

This yields that if u approaches a weighted Dirac delta at some forward time

then

(WH,f +φ + ψ)u # 0,

generalizing Perelman’s Harnack estimate (cf. Corollary 3.14). Due to the presence of the

conjugate dilaton flow solution, finding further geometric applications requires a more

detailed understanding of the torsion H.

1.3 Further applications to Ricci flow

To conclude, we observe some formal extensions of some key results in the analysis of

Ricci flow to the setting of weighted scalar curvature. First we note an extension of the

definition of the Nash and Perelman entropies, adapted to weighted scalar curvature.

In Proposition 4.2, we show convexity of the Nash entropy, extending fundamental

observations in [26]. Going further, recall a key application of Perelman’s differential

Harnack estimate is the pseudolocality estimate [32], which roughly says that almost

Euclidean regions will regularize for a short time. The strength of this result is that

“almost Euclidean,” is measured in a very weak sense, namely by a lower scalar curva-

ture bound and an almost-Euclidean isoperimetric inequality. Based on the generalized

entropy monotonicity formulas above, we give an extension of this result, involving

the weighted scalar curvature and isoperimetric inequality (Theorem 1.7). The proof

follows Perelman’s original proof until the final stages, where the entropy integrand

is manipulated to exploit the weighted scalar curvature bound. In the end, we require

a technical result relating the weighted isoperimetric inequality to the weighted log-

Sobolev inequality (Theorem 4.7), proved using the method of Steiner symmetrization.

Theorem 1.7. (cf. Theorem 4.8) For every α > 0, there exist δ, ε > 0 satisfying the

following: suppose we have a smooth pointed Ricci flow solution (M, (p0, 0), gt) defined

for t ∈ [0, (εr0)2], such that each time slice is complete. Suppose that there exists φ0 ∈
C∞

0 (M) such that
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Scalar Curvature, Entropy, and Generalized Ricci Flow 7

1. Rφ0(p, 0) " −r−2
0 for any p ∈ B0(p0, r0),

2. φ0(p, 0) " −δ for any p ∈ B0(p0, r0),

3. The φ0-weighted isoperimetric constant of B0(p0, r0) satisfies Iφ0
n " (1 − δ)cn,

where cn denotes the Euclidean isoperimetric constant.

Then |Rm| (p, t) < αt−1 + (εr0)−2 whenever 0 < t # (εr0)2 and dt(p, p0) # εr0.

2 Weighted Scalar Curvature Monotonicity Formulas

In this section, we show several monotonicity formulas for weighted scalar curvatures

and certain further generalizations. First, we prove Proposition 1.1 of the introduction,

and derive a rigidity result using the strong maximum principle. Then we extend to a

more general setting where df is replaced by an arbitrary 1-form, and then to the setting

where the metric flow is coupled to the heat flow for differential forms of arbitrary

degree.

2.1 Weighted scalar curvature monotonicity and rigidity results

To begin, we formalize some definitions from the introduction.

Definition 2.1. Given a smooth manifold M, a triple (g, H, φ) of a Riemannian metric,

closed three-form H, and function φ determine a twisted Bakry–Emery curvature

RcH,φ = Rc −1
4H2 + ∇2φ − 1

2

(
d∗

gH + i∇φH
)

.

These data also determine a generalized scalar curvature

RH,φ := R − 1
12 |H| 2 + 2"φ − |∇φ| 2.

Definition 2.2. Given (M, gt, Ht) a solution to generalized Ricci flow, a one-parameter

family φt satisfies the dilaton flow if

!φ = 1
6 |H| 2.

Remark 2.3. We separate the terminology of a solution to the dilaton flow associated

to a solution of generalized Ricci flow to emphasize that the two flows are decoupled,

and for instance the initial data for φ are arbitrary. On the other hand, for convenience,

we will also refer to a triple (gt, Ht, φt) as a solution of generalized Ricci flow, where a

particular solution φ to the dilaton flow has been selected.
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8 J. Streets

Proposition 2.4. (cf. Proposition 1.1) Let (Mn, gt, Ht, φt) be a solution to generalized

Ricci flow. Then

!RH,φ = 2
∣∣∣RcH,φ

∣∣∣ 2.

Proof. We compute the heat operator acting on each term of RH,φ separately. First, a

standard computation (cf. [20] Lemma 5.11) yields

!R = − 1
2" |H| 2 + 1

2 div div H2 + 2
〈
Rc, Rc −1

4H2
〉
.

Also, we have

!
(
− 1

12 |H| 2
)

=
〈

1
8H2 − 1

2 Rc, H2
〉
− 1

6

〈
"dH, H

〉
+ 1

12" |H| 2.

Next, we have

!"φ =
〈
2 Rc −1

2H2, ∇2φ
〉
+

〈
−1

2 div H2 + 1
4d |H| 2, dφ

〉

+ "
(
"φ + 1

6 |H| 2
)

− ""φ

=
〈
2 Rc −1

2H2, ∇2φ
〉
+

〈
−1

2 div H2 + 1
4d |H| 2, dφ

〉
+ 1

6" |H| 2.

Furthermore, using the Bochner formula

! |∇φ| 2 = 2
〈
∇

(
"φ + 1

6 |H| 2
)

, ∇φ
〉
+

〈
2 Rc −1

2H2, dφ ⊗ dφ
〉
− " |∇φ| 2

= − 2
∣∣∣∇2φ

∣∣∣ 2 + 1
3

〈
∇ |H| 2, ∇φ

〉
− 1

2

〈
H2, dφ ⊗ dφ

〉
.

Combining the above formulas and using the definition of RH,φ yields

!RH,φ = 2
〈
Rc, Rc −1

4H2
〉
+

〈
1
8H2 − 1

2 Rc, H2
〉
+ 2

〈
2 Rc −1

2H2, ∇2φ
〉
+ 2

∣∣∣∇2φ
∣∣∣ 2

+
〈
− div H2 + 1

2d |H| 2, dφ
〉
− 1

3

〈
∇ |H| 2, ∇φ

〉
+ 1

2

〈
H2, dφ ⊗ dφ

〉

− 1
12" |H| 2 + 1

2 div div H2 − 1
6

〈
"dH, H

〉
.

(2.1)

We further recall the identity (cf. [20] Lemma 3.19)

div H2 = 1
6∇ |H| 2 −

〈
d∗

gH, H
〉
,
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Scalar Curvature, Entropy, and Generalized Ricci Flow 9

where
〈
d∗

gH, H
〉
= (d∗

gH)klHikl. This has the further consequence

div div H2 = 1
6" |H| 2 + 1

3

〈
"dH, H

〉
+

∣∣∣d∗
gH

∣∣∣ 2.

Plugging these into (2.1) yields

!RH,φ = 2
∣∣∣Rc −1

4H2 + ∇2φ
∣∣∣ 2 + 1

2

∣∣∣d∗
gH + i∇φH

∣∣∣ 2 = 2
∣∣∣RcH,φ

∣∣∣ 2,

as claimed. $

Corollary 2.5. Let (Mn, gt, Ht, φt) be a solution to generalized Ricci flow on a compact

manifold. Then, for any smooth existence time t, one has

inf
M×{t}

RH,φ " inf
M×{0}

RH,φ .

Proof. This follows from the maximum principle applied to Proposition 2.4 $

Corollary 2.6. (cf. Corollary 1.3) Let (M, g, H, φ) satisfy RH,φ " 0. If M is compact, then

either

1. The triple (g, H, φ) defines a generalized Ricci soliton and RH,φ ≡ 0

2. The manifold M admits a triple (g, H, φ) such that RH,φ > 0 everywhere.

Proof. This follows from the strong maximum principle applied to the evolution

equation of Proposition 2.4. $

2.2 One-form scalar curvature monotonicity

In the context of generalized geometry, the dilaton φ, or more accurately its differential

dφ, plays the role of a divergence operator [19, 20], which is necessary to define the

generalized Ricci tensor. A natural class of divergence operators are defined by a 1-

form which need not even be closed. Next, we extend the results above to this more

general setting.

Definition 2.7. Given a smooth manifold M, a triple (g, H, α) of a Riemannian metric,

closed three-form H, and one-form α determine a generalized scalar curvature

RH,α = R − 1
12 |H| 2 − 2d∗α − |α| 2.
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10 J. Streets

Definition 2.8. Given (M, gt, Ht) solution to generalized Ricci flow, a one-parameter

family αt satisfies the dilaton flow if

∂

∂t
α = "dα + 1

6d |H| 2. (2.2)

Proposition 2.9. Let (Mn, gt, Ht, αt) be a solution to generalized Ricci flow. Then

!RH,α = 2
∣∣∣∣Rc −1

4H2 + L1
2 α*

g
∣∣∣∣

2 + 1
2 |dα| 2 + 1

2

∣∣∣d∗
gH + iα*H

∣∣∣ 2.

Proof. The proof is nearly identical to that of Proposition 2.4. We first note

!d∗α =
〈
2 Rc −1

2H2, ∇α
〉
+

〈
−1

2 div H2 + 1
4d |H| 2, α

〉

+ d∗
(
"dα + 1

6d |H| 2
)

− "d∗α

=
〈
2 Rc −1

2H2, ∇α
〉
+

〈
−1

2 div H2 + 1
4d |H| 2, α

〉
+ 1

6" |H| 2.

Furthermore, using the Bochner formula

! |α| 2 = 2
〈
"dα + 1

6d |H| 2, α
〉
+

〈
2 Rc −1

2H2, α ⊗ α
〉
− " |α| 2

= − 2 |∇α| 2 + 1
3

〈
d |H| 2, α

〉
− 1

2

〈
H2, α ⊗ α

〉
.

Using these and arguing as in Proposition 2.4, we obtain

!RH,α = 2
∣∣∣Rc −1

4H2 + ∇α
∣∣∣ 2 + 1

2

∣∣∣d∗
gH + iα*H

∣∣∣ 2

= 2
∣∣∣∣Rc −1

4H2 + L1
2 α*

g
∣∣∣∣

2 + 1
2 |dα| 2 + 1

2

∣∣∣d∗
gH + iα*H

∣∣∣ 2,

as claimed. $

Remark 2.10. An a priori lower bound for RH,α as in Corollary 2.5 and a rigidity result

as in Corollary 1.3 are immediate consequences.

2.3 Further generalizations of Ricci flow

The results of this paper extend to a more general class of geometric evolution equations

coupled to differential forms. In particular, let H = ⊕n
k=1 Hk denote a closed section of
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Scalar Curvature, Entropy, and Generalized Ricci Flow 11

+∗T∗M, where the subscript indicates the degree of the differential form, and consider

the system of equations

∂

∂t
g = −2 Rc +1

2H2,
∂

∂t
H = "dH, (2.3)

where as before H2(X, Y) =
〈
iXH, iYH

〉
. We note that the constant factor of 1

2 on the

term H2 may seem arbitrary, but as the coupled partial differential equation for H is

linear, this constant can be tuned to any positive value, independently for each value

of k if desired. This system of equations obeys the same fundamental regularity of

properties as generalized Ricci flow, and has an interpretation as Ricci flow on more

general Courant algebroids (cf. [20]). For this setup, we define the generalized scalar

curvature

RH,φ = R − 1
4

n∑

k=1

1
k

∣∣Hk
∣∣ 2 + 2"φ − |∇φ| 2.

Also, we attach a dilaton flow of the form

!φ = 1
4

n∑

k=1

k−1
k

∣∣Hk
∣∣ 2. (2.4)

Proposition 2.11. Suppose (gt, Ht) is a solution of (2.3) and φt is a solution of (2.4). Then

!RH,φ = 2
∣∣∣Rc −1

4H2 + ∇2φ
∣∣∣ 2 + 1

2

∣∣∣d∗
gH + i∇φH

∣∣∣ 2.

Proof. For a closed differential form Hk of degree k, one has the Bianchi identities

div H2
k = −

〈
d∗Hk, Hk

〉
+ 1

2k
d

∣∣Hk
∣∣ 2

div div H2
k = 1

2k"
∣∣Hk

∣∣ 2 + 1
k

〈
"dH, H

〉
+

∣∣∣d∗
gHk

∣∣∣ 2.

Using these, a straightforward modification of the proof of Proposition 2.4 gives the

result. $

Remark 2.12. An a priori lower bound for RH,φ as in Corollary 2.5 and a rigidity result

as in Corollary 1.3 are immediate consequences.
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12 J. Streets

3 Weighted Energy and Entropy Formulas

In [32], Perelman introduced differential inequalities for the weighted scalar curvature,

coupled to a solution of the conjugate heat equation. These key estimates complement

the a priori scalar curvature lower bound, and underpin the proofs of κ-noncollapsing

and pseudolocality for Ricci flow. In this section, complementary to our a priori lower

bound for the generalized scalar curvature, we generalize these estimates to the case

of generalized Ricci flow, by further coupling to a solution of the dilaton flow. The key

point is to treat the auxiliary solution to the dilaton flow as a shift in Perelman’s dilaton

f , in particular constructing f as a solution to the φ-weighted conjugate heat equation.

This leads to a family of differential inequalities with now two auxiliary functional

parameters φ and f .

3.1 Weighted conjugate heat operators

In this subsection, we define the weighted conjugate heat operator, then show some

elementary properties of this equation and its relation to the classic conjugate heat

equation.

Definition 3.1. Let (M, gt, Ht, φt) denote a solution to generalized Ricci flow. Define the

conjugate heat operator

!∗ = − ∂

∂t
− " + R − 1

4 |H| 2.

Also, we define the weighted conjugate heat operator

!∗
φ = − ∂

∂t
− " + 2∇φ + RH,φ .

Lemma 3.2. Let (M, gt, Ht, φt) denote a solution to generalized Ricci flow. Given ut, vt

smooth functions, we have

1. d
dt

∫
uvdVg =

∫
M (v!u − u!∗v) dVg.

2. d
dt

∫
uve−φdVg =

∫
M

(
v!u − u!∗

φv
)
e−φdVg.

3. A solution to !∗u = 0 preserves mass against dVg, that is, d
dt

∫
M udVg = 0.

4. A solution to !∗
φu = 0 preserves mass against e−φdVg, that is, d

dt

∫
M ue−φdVg =

0.

5. One has !∗(ue−φ) =
(
!∗

φu
)
e−φ .
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Scalar Curvature, Entropy, and Generalized Ricci Flow 13

Proof. Items (1) and (3) are elementary consequences of the generalized Ricci flow

equations. To show item (2), we compute

d
dt

∫

M
uve−φdVg

=
∫

M

[
v

∂

∂t
u + u

∂

∂t
v + uv

(
−R + 1

4 |H| 2 − "φ − 1
6 |H| 2

)]
e−φdVg

=
∫

M

[
v!u + u

(
eφ"(e−φv) + ∂

∂t
v + v(−R + 1

12 |H| 2 − "φ)

)]
e−φdVg

=
∫

M

[
v!u + u

(
∂

∂t
v + "v − 2 〈∇v, ∇φ〉 + v

(
−R + 1

12 |H| 2 − 2"φ + |∇φ| 2
))]

e−φdVg

=
∫

M

[
v!u + u

(
∂

∂t
+ " − 2∇φ − RH,φ

)
v
]

e−φdVg

=
∫

M

[
v!u − u!∗

φv
]

e−φdVg,

as claimed. Item (4) is an elementary consequence of item (2). To show item (5), we

directly compute

!∗ (
ue−φ

)
= (!∗u)e−φ − 2

〈
∇u, ∇e−φ

〉
− u

(
∂

∂t
+ "

)
e−φ

=
[(

− ∂

∂t
− " + 2∇φ + R − 1

4 |H| 2
)

u
]

e−φ + u
(

∂

∂t
φ + "φ − |∇φ| 2

)
e−φ

=
[(

− ∂

∂t
− " + 2∇φ + R − 1

12 |H| 2 + 2"φ − |∇φ| 2
)

u
]

e−φ

=
(
!∗

φu
)

e−φ ,

as claimed. $

3.2 Energy density monotonicity

Proposition 3.3. (cf. Proposition 1.5) Let (M, gt, Ht, φt) denote a solution to generalized

Ricci flow, and suppose u = e−f is a solution of !∗
φu = 0. Then

!∗
φ

(
RH,f +φu

)
= − 2

∣∣∣RcH,f +φ
∣∣∣ 2u.
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14 J. Streets

Proof. In [20] Theorem 6.12, it is shown that if v = e−F is a solution of the conjugate

heat equation !∗v = 0, then

!∗
(
RH,Fv

)
= − 2

∣∣∣RcH,F
∣∣∣ v.

It follows from Lemma 3.2 item (5) that v = ue−φ = e−f −φ is a solution of !∗v = 0.

Furthermore, again using Lemma 3.2 item (5), we compute

(
!∗

φ

(
Rf +φu

))
e−φ = !∗

(
Rf +φv

)
= −2

∣∣∣RcH,f +φ
∣∣∣ ue−φ ,

giving the claim. $

Corollary 3.4. Let (Mn, gt, Ht, φt) denote a solution to generalized Ricci flow. Suppose

u = e−f is a solution of !∗
φu = 0. Then

sup
M×{t}

RH,f +φ " sup
M×{0}

RH,f +φ .

Proof. It follows from Proposition 1.5 that Rf +φ is a subsolution of a backwards heat-

type equation; therefore, by the maximum principle, its supremum is nonincreasing as

a function of −t, therefore nondecreasing as a function of t. $

3.3 Gradient property revisited and steady solitons

The results in the previous subsection underpin a generalization of the gradient flow

interpretation of generalized Ricci flow. To begin, we recall the usual gradient flow

interpretation. Define

F(g, H, f ) =
∫

M

(
|∇f | 2 + R − 1

12 |H| 2
)

e−f dVg,

λ(g, H) = inf
{f |

∫
M e−f dVg=1}

F(g, H, f ).

Following [32], it was shown in [31] that generalized Ricci flow is the gradient flow of

λ. Furthermore, there is a general monotonicity formula for F once u = e−f is imposed

to solve the conjugate heat equation along the flow. By explicitly including the dilaton

shift φ, we get an infinite dimensional family of eigenvalues λ for which generalized

Ricci flow is the gradient flow, following Proposition 1.5.
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Scalar Curvature, Entropy, and Generalized Ricci Flow 15

Definition 3.5. Given (Mn, g, H, φ), we define

λ(g, H, φ) = inf
{f |

∫
M e−f e−φdVg=1}

F(g, H, f + φ).

Lemma 3.6. The quantity λ(g, H, φ) is the lowest eigenvalue of the operator

L = −4" + 4∇φ + RH,φ .

Proof. Integrating by parts, we can express, for w = e− f
2 ,

F(g, H, f + φ) =
∫

M

(
4 |∇w| 2 + RH,φw2

)
e−φdVg,

and the result follows from a standard argument $

Proposition 3.7. Generalized Ricci flow is the gradient flow of λ(g, H, φ).

Critical points for λ are steady generalized Ricci solitons, and recent con-

structions and classification results for these objects have appeared in [4, 38, 43, 44],

including examples on compact manifolds. The next proposition shows that, on such a

steady soliton, the dilaton flow (suitably normalized) converges to the relevant soliton

function f .

Proposition 3.8. Suppose (Mn, g, H, f ) is a steady generalized Ricci soliton, that is,

RcH,f ≡ 0, and let λ = λ(g, H). Given φ0 ∈ C∞(M) a smooth function, the solution to

the gauge-fixed normalized dilaton flow

(! + ∇f ) φ = 1
6 |H| 2 − λ

with initial condition φ0 exists on [0, ∞) and limt→∞ φt = f + c for some c ∈ R.

Proof. We recall the basic identities for a soliton:

R − 1
4 |H| 2 + "f = 0,

RH,f = λ.

The first follows by tracing RcH,f = 0 and the second follows by first observing that Rf

is constant by a Bianchi identity (cf. [20] Proposition 4.33), then observing by integration
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16 J. Streets

against f , suitably normalized, that this constant must be λ(g, H). Using these identities,

we compute

(! + ∇f )(φ − f ) = 1
6 |H| 2 − λ + "f − |∇f | 2

= 1
6 |H| 2 −

(
R − 1

12 |H| 2 + 2"f − |∇f | 2
)

+ "f − |∇f | 2

= − R + 1
4 |H| 2 − "f

= 0.

As !+∇f is a strictly parabolic operator with no constant term, it follows from standard

results that φt exists for all time, and moreover that φ − f approaches a constant. $

3.4 Entropy density monotonicity

Definition 3.9. Given a smooth manifold M, a triple (g, H, F) of a Riemannian metric,

closed three-form H, function F and τ > 0 determine a generalized entropy density

WH,F = τRH,F + F − n.

In the setting of Ricci flow, the quantity WF is Perelman’s entropy density,

which satisfies a key monotonicity property. To obtain a monotone entropy quantity for

generalized Ricci flow, we require a further functional parameter, which can be used to

measure the concentration of H at a given point.

Definition 3.10. Let (Mn, gt, Ht, φt) denote a solution to generalized Ricci flow, and

suppose u is a solution of !∗
φu = 0. A function ψ is a solution of the conjugate dilaton

flow if

!∗
φ(ψu) = −1

6 |H| 2u.

The lemma below shows that the flow is well-posed for arbitrary smooth

terminal data.

Lemma 3.11. Given (Mn, gt, Ht, φt) a solution of generalized Ricci flow, suppose u = e−f

is a positive solution of !∗
φu = 0. Then ψ is a solution of the conjugate dilaton flow if

and only if
(

− ∂

∂t
− " + 2∇(f + φ)

)
ψ = −1

6 |H| 2.
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Scalar Curvature, Entropy, and Generalized Ricci Flow 17

Proof. Given a smooth function ψ , we formally compute

!∗
φ(ψu) =

((
− ∂

∂t
− " + 2∇φ

)
ψ

)
u + ψ!∗

φu − 2 〈∇ψ , ∇u〉

=
((

− ∂

∂t
− " + 2∇(f + φ)

)
ψ

)
u.

Using that u is positive, the result follows. $

Proposition 3.12. (cf. Proposition 1.6) Let (M, gt, Ht, φt) denote a solution to generalized

Ricci flow, and suppose u = (4πτ )−
n
2 e−f is a solution of !∗

φu = 0, where τ = T − t for

some fixed T. Furthermore, suppose ψ is a solution of the conjugate dilaton flow. Then

!∗
φ

[
(WH,f +φ + ψ)u

]
= − 2τ

∣∣∣∣RcH,f +φ − 1
2τ

g
∣∣∣∣

2u.

Proof. First observe, using !∗
φu = 0,

0 = !∗
φu =

(
− ∂

∂t
− " + 2∇φ + RH,φ

) (
(4πτ )−

n
2 e−f

)

=
(

− n
2τ

+ ∂f
∂t

+ "f − |∇f | 2 − 2 〈∇φ, ∇f 〉 + RH,φ
) (

(4πτ )−
n
2 e−f

)
.

(3.1)

Now we compute using Proposition 1.5,

(
− ∂

∂t
− " + 2∇φ

)
WH,f +φ

= RH,f +φ + τ

(
− ∂

∂t
− " + 2∇φ

)
RH,f +φ +

(
− ∂

∂t
− " + 2∇φ

)
(f + φ)

=
(
2"(f + φ) − |∇f + φ| 2 + R − 1

12 |H| 2
)

+ τ
(
−2

∣∣∣Rc −1
4H2 + ∇2(f + φ)

∣∣∣ 2 − 1
2

∣∣∣d∗
gH + i∇(f +φ)H

∣∣∣ 2 − 2
〈
∇RH,f +φ , ∇f

〉)

+
(
− n

2τ
− |∇f | 2 + 2"φ − |∇φ| 2 + R − 1

12 |H| 2
)

+
(
−2"φ + 2 |∇φ| 2 − 1

6 |H| 2
)

= −2τ

∣∣∣∣Rc −1
4H2 + ∇2(f + φ) − 1

2τ
g
∣∣∣∣

2 − τ
2

∣∣∣d∗
gH + i∇(f +φ)H

∣∣∣ 2 + 1
6 |H| 2

− 2
〈
∇(τRf +φ), ∇f

〉
− 2 |∇f | 2 − 2 〈∇f , ∇φ〉

= −2τ

∣∣∣∣RcH,f +φ − 1
2τ

g
∣∣∣∣

2 + 1
6 |H| 2 − 2

〈
∇WH,f +φ , ∇f

〉
.
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18 J. Streets

We then obtain

!∗
φ

(
WH,f +φu

)
=

(
− ∂

∂t
− " + 2∇φ + RH,φ

)
(WH,f +φu)

=
((

− ∂

∂t
− " + 2∇φ

)
WH,f +φ

)
u + WH,f +φ!∗

φu − 2
〈
∇WH,f +φ , ∇u

〉

= − 2τ

∣∣∣∣RcH,f +φ − 1
2τ

g
∣∣∣∣

2u + 1
6 |H| 2u,

and the result follows. $

3.5 Perelman’s Harnack estimate

To prove the generalization of Perelman’s Harnack estimate, we require some technical

estimates for the conjugate heat kernel along solutions to generalized Ricci flow, which

follow from straightforward modifications of results in [15] (cf. also [30, 47]). We fix

(Mn, gt, Ht, φt) a solution of generalized Ricci flow on M × [0, T], and let Z(x, t, y, s) denote

the fundamental solution of !u = 0. We fix p ∈ M and define u(x, t) = Z(p, T, x, t). It

follows that u is a solution of the conjugate heat equation !∗u = 0. We define f by

u = (4πτ )−
n
2 e−f as above, where τ = T − t. Furthermore, we fix 0 < t0 < T and let

ht0
" 0 denote a smooth compactly supported function, and let ht denote the solution

to !h = 0 on [t0, T] with initial condition ht0
. We then claim the following fundamental

characteristics for the entropy density WH,f .

Proposition 3.13. (cf. [15] Theorem 7.1) Given the setup above,

1. For any t0 < t < T one has that hWH,f ∈ L1(M, gt).

2. For any t0 < t1 < t2 < T one has

∫

M
hWH,f dVgt1

#
∫

M
hWH,f dVgt2

+
∫ t2

t1

∫

M

1
6h |H| 2udVgt

dt.

3. One has

lim sup
t→T−

∫

M
hWH,f dVgt

# 0.

Corollary 3.14. Let (Mn, gt, Ht, φt) denote a solution to generalized Ricci flow on a

compact manifold, defined for t ∈ [0, T]. Suppose u = (4π(T − t))−
n
2 e−f approaches eφδx0

as t → T and solves !∗
φu = 0. Finally, let ψ denote the unique solution of the conjugate
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Scalar Curvature, Entropy, and Generalized Ricci Flow 19

dilaton flow associated to u with ψT ≡ 0. Then, for any 0 # t0 # T, one has

(
WH,f +φ + ψ

)
u # 0.

Proof. Suppose there exists a point (y0, t0) such that

V :=
(
WH,f +φ + ψ

)
u(y0, t0) > 0.

Choose a smooth nonnnegative function h such that h(y0) = 1 and supM h # 1. Solve

the forward heat equation !h = 0 on [t0, T] with initial data h at time t0. Note that by

the maximum principle h remains nonnegative. We then compute using Lemma 3.2 and

Proposition 3.12,

d
dt

∫

M
hVe−φdVg = −

∫

M
h!∗

φVe−φdVg " 0.

However, we obtain a contradiction since by construction
∫

M hVe−φdVgt0
> 0 and by

Proposition 3.13 and the fact that ψT ≡ 0,

lim
t→T

∫

M
hVe−φdVg = 0. $

4 Weighted Nash Entropy and Pseudolocality Estimates

In this section, we give an extension of the Nash entropy convexity for Ricci flow to

the setting of weighted scalar curvature. Then, we derive a pseudolocality principle for

Ricci flow in terms of weighted scalar curvature generalizing Perelman’s result [32]. The

key new technical point is a weighted isoperimetric inequality and its relationship to a

weighted log-Sobolev inequality.

4.1 Weighted Nash and Perelman Entropies

Definition 4.1. Given a smooth Riemannian manifold (M, g), f , φ ∈ C∞(M) and τ > 0,

let dν = (4πτ )−
n
2 e−f e−φdVg, and define the weighted Nash entropy by

N (g, φ, f , τ ) :=
∫

M
f dν − n

2
. (4.1)
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20 J. Streets

Furthermore, define the weighted Perelman entropy by

W(g, φ, f , τ ) :=
∫

M

[
τRf +φ + f − n

]
dν. (4.2)

Proposition 4.2. Let (M, gt, φt) denote a solution to Ricci flow defined on (−T, 0], and

suppose ut is a solution of the conjugate heat equation !∗
φu = 0, and define f via u =

(4πτ )−
n
2 e−f , where τ = −t, and suppose the measure dν has unit mass. Then

d
dτ

(τN ) = W,
d
dτ

W = −2τ

∫

M

∣∣∣∣Rcf +φ − 1
2τ

g
∣∣∣∣

2dν.

Proof. Since !∗
φu = 0, an elementary computation shows that we have that

d
dτ

dν =
(
u−1"u − 2u−1 〈∇φ, ∇u〉 − "φ + |∇φ| 2

)
dν.

Furthermore, using the evolution equation (3.1) satisfied by f and integration by parts,

we compute

d
dτ

∫

M
f dν =

∫

M

(
"f − |∇f | 2 − 2 〈∇φ, ∇f 〉 + Rφ − n

2τ

)
dν

+
∫

M
f

(
u−1"u − 2u−1 〈∇φ, ∇u〉 − "φ + |∇φ| 2

)
dν

=
∫

M

(
Rf +φ − n

2τ

)
dν.

Thus, using that
∫

M dν ≡ 1, we obtain

d
dτ

(τN ) =
∫

M

[
τRf +φ + f − n

]
dν = W,

as claimed. Furthermore, we note that we can express

W =
∫

M

[
Wf +φ − φ

]
dν.

Then, it follows by Lemma 3.2 and Proposition 3.12 with ψ ≡ 0 that

d
dτ

W = d
dτ

∫

M

[(
Wf +φ − φ

)
u

]
e−φdVg =

∫

M

[
!∗

φ(Wf +φu) + u!φ − φ!∗
φu

]
e−φdVg

= − 2τ

∫

M

∣∣∣∣Rcf +φ − 1
2τ

g
∣∣∣∣

2dν,

as claimed. $
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Scalar Curvature, Entropy, and Generalized Ricci Flow 21

4.2 Weighted log-Sobolev and isoperimetric inequalities

Definition 4.3. Given a Riemannian manifold (Mn, g) and φ ∈ C∞(M), we say that these

data satisfy a φ-weighted Sobolev inequality if there exists + = +(g, φ) > −∞ such that

for all u = (2π)−
n
2 e−f such that

∫
M ue−φdVg = 1 one has

∫

M

(
1
2 |∇f | 2 + f − n

)
ue−φdVg " +. (4.3)

Remark 4.4. Given ψ ∈ W1,2(M), define f by

ψ2 = (2π)−
n
2 e−f

∫

M
ψ2e−φdVg = u

∫

M
ψ2e−φdVg.

It then follows that (4.3) is equivalent to

∫

M

(
2 |∇ψ | 2 − ψ2 log ψ2

)
e−φdVg + log

(∫

M
ψ2e−φdVg

) ∫

M
ψ2e−φdVg

"
(n

2
log(2π) + n + +

) ∫

M
ψ2e−φdVg.

Definition 4.5. Fix (M, g) a Riemannian manifold and φ a smooth function. We say that

(M, g) satisfies a φ-weighted isoperimetric inequality with constant Iφ
n if for all compact

domains / ⊂ M with C1 boundary one has

[
Areae−φdA(∂/)

]n " Iφ
n

[
Vole−φdVg

(/)
]n−1

.

Remark 4.6. The φ-weighted isoperimetric inequality is scale-invariant for the metric

g, whereas for a constant λ an elementary argument shows that Iφ+λ
n = e−λIφ

n .

Theorem 4.7. Suppose (Mn, g) is a Riemannian manifold and fix φ a smooth function.

Suppose B(x0, R) is compact, and that (B(x0, R), g) satisfies a φ-weighted isoperimetric

inequality with constant Iφ
n . Then, for any C1 function ψ compactly supported in B(x0, R),

one has

∫

M

(
2 |∇ψ | 2 − ψ2 log ψ2

)
e−φdVg + log

(∫

M
ψ2e−φdVg

) ∫

M
ψ2e−φdVg

"
(

n
2

log(2π) + n + log

(
Iφ
n

cn

))∫

M
ψ2e−φdVg,
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22 J. Streets

where cn denotes the Euclidean isoperimetric constant. In particular, (B(x0, R), g)

satisfies a φ-weighted Sobolev inequality with constant

+ = log

(
Iφ
n

cn

)

. (4.4)

Proof. For simplicity of notation, we can just set M = B(x0, R). Also, we perform a

useful rescaling. If we set g̃ =
(

cn

Iφ
n

) 2
n

g, then the required inequality is equivalent to

∫

M



2

(
cn

Iφ
n

) 2
n

|∇ψ | 2 − ψ2 log ψ2



 e−φdVg̃ + log
(∫

M
ψ2e−φdVg̃

) ∫

M
ψ2e−φdVg̃

"
(n

2
log(2π) + n

) ∫

M
ψ2e−φdVg̃.

(4.5)

We will show (4.5), dropping the tildes from the notation for simplicity. By an

approximation argument, it suffices to consider the case ψ " 0. For s > 0, let

Ms = {x ∈ M | ψ " s}. Let 0s = ∂Ms, and let

F(s) := Vole−φdVg
(Ms).

Choose r0 < ∞ such that

Vole−φdVg
({ψ > 0}) = ωnrn

0 = VoldVRn (Br0
).

Choose the unique rotationally invariant function h : Rn → R such that

VoldVRn ({h " s}) = F(s),

and such that h(x) = 0 for |x| " r0. Furthermore, set M ′
s = {h " s}, and 0′

s = ∂M ′
s. We

recall the statement of the co-area formula,

∫

M
H |∇f | dVg =

∫ ∞

−∞

∫

{f =s}
HdAds.

Applying this with H = e−φ |∇ψ | −1 and f = ψ on Mt yields

F(t) = Vole−φdVg
(Mt) =

∫ ∞

t

∫

{ψ=s}
|∇ψ | −1e−φdAds.
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This implies that for almost all s one has

−dF
ds

(s) =
∫

{ψ=s}
|∇ψ | −1e−φdA.

Thus, for an arbitrary Lipschitz function λ, we have

−
∫ ∞

0
λ

dF
ds

ds =
∫ ∞

0
λ

∫

{ψ=s}
|∇ψ | −1e−φdAds.

On the other hand, applying the co-area formula with H = λ(ψ) |∇ψ | −1e−φ yields

∫

{ψ>0}
λ(ψ)e−φdVg =

∫ ∞

0
λ(s)

∫

{ψ=s}
|∇ψ | −1e−φdAds.

Integrating by parts, we have

∫ ∞

0

dλ

ds
Fds =

∫

{ψ>0}
λ(ψ)e−φdVg.

By construction, we may argue similarly with the function λ(h) on Rn to obtain

∫

{h>0}
λ(h)dVRn =

∫ ∞

0

dλ

ds
F(s) =

∫

{ψ>0}
λ(ψ)e−φdVg.

Choosing λ(s) = (log s2)s2 and λ(s) = s2 thus implies

∫

M
(log ψ2)ψ2)dVg =

∫

Rn
(log h2)h2dVRn ,

∫

M
ψ2dVg =

∫

Rn
h2dVRn . (4.6)

This reduces the result to comparing to comparing the gradient terms. By the co-area

formula, we have

∫ ∞

t

∫

0s

|∇ψ | −1e−φdAgds = F(t) =
∫ ∞

t

∫

0′
s

|∇h| −1dARnds.

Differentiating this yields

∫

0s

|∇ψ | −1e−φdA =
∫

0′
s

|∇h| −1dARn .
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Furthermore, note that by construction, one has

(Area(0′
s))

n = cn(Vol(M ′
s))

n−1 = cn(Vole−φdVg
(Ms))

n−1

# cn

Iφ
n

(Areae−φdA(0s))
n.

Furthermore, using that h is rotationally symmetric, and applying Hölder’s inequality,

we get

∫

0′
s

|∇h| dARn ·
∫

0′
s

|∇h| −1dARn = (Area(0′
s))

2

#
(

cn

Iφ
n

) 2
n

(Areae−φdA(0s))
2

#
(

cn

Iφ
n

) 2
n ∫

0s

|∇ψ | e−φdAg ·
∫

0s

|∇ψ | −1e−φdAg.

This then implies

∫

0′
s

|∇h| dARn #
(

cn

Iφ
n

) 2
n ∫

0s

|∇ψ | e−φdAg.

The co-area formula then implies

(
cn

Iφ
n

) 2
n ∫

M
|∇ψ | 2e−φdVg =

(
cn

Iφ
n

) 2
n ∫ ∞

0

∫

0s

|∇ψ | e−φdAgds

"
∫ ∞

0

∫

0′
s

|∇h| dARn

=
∫

Rn
|∇h| 2dVRn .

(4.7)
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Combining (4.6), (4.7) and applying the Euclidean logarithmic Sobolev inequality [21]

yields

∫

M



2

(
cn

Iφ
n

) 2
n

|∇ψ | 2 − ψ2 log ψ2



 e−φdVg + log
(∫

M
ψ2e−φdVg

) ∫

M
ψ2e−φdVg

−
(n

2
log(2π) + n

) ∫

M
ψ2e−φdVg

"
∫

Rn

(
2 |∇h| 2 − h2 log h2

)
dVRn + log

(∫

Rn
h2dVRn

) ∫

Rn
h2dVRn

−
(n

2
log(2π) + n

) ∫

Rn
h2dVRn

" 0,

as required. $

4.3 Weighted pseudolocality estimate

Theorem 4.8. (cf. Theorem 1.7) For every α > 0, there exist δ, ε > 0 satisfying the

following: suppose we have a smooth pointed Ricci flow solution (M, (p0, 0), gt) defined

for t ∈ [0, (εr0)2], such that each time slice is complete. Suppose that there exists φ0 ∈
C∞

0 (M) such that

1. Rφ0(p, 0) " −r−2
0 for any p ∈ B0(p0, r0),

2. φ0(p, 0) " −δ for any p ∈ B0(p0, r0),

3. The φ0-weighted isoperimetric constant of B0(p0, r0) satisfies Iφ0
n " (1 − δ)cn,

where cn denotes the Euclidean isoperimetric constant.

Then |Rm| (p, t) < αt−1 + (εr0)−2 whenever 0 < t # (εr0)2 and dt(p, p0) # εr0.

Remark 4.9. In the hypotheses above, there is both a lower bound for φ0 in item (2) and

an implicit upper bound for φ0 in item (3) (cf. Remark 4.6).

Proof. We follow the proof in [28] and briefly indicate the initial phases. By scale

invariance of the hypotheses and conclusion, it suffices to consider the case r0 = 1

and also α < 1
100n . If the theorem is false, there exist sequences εk → 0, δk → 0 pointed

Ricci flow solutions (Mk, (p0,k, 0), gk) and functions φk
0, which satisfy the hypotheses

of the theorem but for which there exists (pk, tk) with 0 < tk # εk, d(pk, tk) # εk, but

|Rm| (pk, tk) " αt−1
k + ε−2

k . Choose Ak = 1
100nεk

, and employ ([28] Lemma 31.1) to obtain a
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new sequence (pk, tk), which lie at the center of parabolic balls of a controlled size. We

let uk = (4π(tk − t))−
n
2 e−Fk satisfy !∗uk = 0 and limt→t−k

u(p, t) = δpk
(p). Furthermore,

let Wk = WFk . It follows from ([28] Lemma 33.4) that there exists β > 0 so that for

all sufficiently large k, there exists t̃k ∈ [tk − 1
2αQ−1

k , tk] with
∫

Bk
WkdVk # −β, where

Qk = |Rm| (pk, tk), and Bk = B̃tk
(pk,

√
tk − t̃k).

The aim is to use this to contradict the weighted log-Sobolev inequality at the

initial time. We drop the subscripts and work with a particular large k. One constructs a

function h on spacetime from a modified distance function satisfying certain estimates

we will use below (cf. [28] §34). Using Perelman’s Harnack estimate and estimates for

h, we produce a function u = (4πt)−
n
2 e−F at time zero with mass arbitrarily close to 1,

which satisfies (cf. [28] (34.6))

β(1 − A−2) # −
∫

WFhudVg.

We drop the subscript on φ0 and define f via F = f + φ. We thus express

β(1 − A−2) #
∫

M

[(
−2"φ − 2"f + |∇(f + φ)| 2 − R

)
t − (f + φ) + n

]
hudVg

=
∫

M

[(
−Rφ − 2"f + |∇f | 2 + 2 〈∇f , ∇φ〉

)
t − (f + φ) + n

]
hudVg.

(4.8)

We set f̃ = f − log h and integrate by parts to obtain

∫

M

(
−2"f + |∇f | 2 + 2 〈∇f , ∇φ〉

)
he−f −φdVg

=
∫

M

(
2

〈
∇f , ∇(he−f −φ)

〉
+ (|∇f | 2 + 2 〈∇f , ∇φ〉)he−f −φ

)
dVg

=
∫

M

〈
∇f , 2h−1∇h − ∇f

〉
he−f −φdVg

=
∫

M

(
−

∣∣∇ f̃
∣∣ 2 + h−2 |∇h| 2

)
he−f −φdVg.

Furthermore, by hypothesis −Rφh # 1 and by construction h−1 |∇h| 2 # 10
(10Aε)2 , so that

∫

M
t
( |∇h| 2

h
− Rφh

)
udVg # A−2 + ε2.
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Also, by construction, we have

−
∫

M
uh log h # cA−2

for a controlled constant c. Finally, by hypothesis (2), we note that

∫

M
−φhu # δ.

Plugging the above observations into (4.8) yields

β(1 − A−2) − (1 + c)A−2 − ε2 − δ #
∫

M

(
−t

∣∣∇ f̃
∣∣ 2 − f̃ + n

)
(4πt)−

n
2 e−f̃ e−φdVg.

For ε, δ sufficiently small, it follows then that

1
2β #

∫

M

(
−t

∣∣∇ f̃
∣∣ 2 − f̃ + n

)
(4πt)−

n
2 e−f̃ e−φdVg.

For δ chosen sufficiently small, this contradicts hypothesis (3) using Theorem 4.7. $

Remark 4.10. Theorem 1.7 implies via smoothing a diffeomorphism finiteness result

for the class of manifolds with a weighted scalar curvature lower bound, almost

nonnegative weight, volume upper bound, and almost-Euclidean weighted isoperimetric

inequality (cf. [28] Theorem 37.1).
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