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Extreme sea levels resulting in coastal flooding are mainly driven by waves, storm surges, and tides, and are 
influenced by changes and variability in relative mean sea level. Understanding the trends in magnitude and 
frequency of these drivers is crucial for an accurate assessment of present and future coastal flood risk, but it is 
challenging, especially at the global scale. Surge and tide information are commonly obtained from tide gauge 
records. Even though tide gauges provide very valuable in-situ sea-level observations, short record lengths in 
many locations (only 15% of tide gauges from the GESLA-21 database have observations longer than 50 years) 
often limit robust statistical analysis and the estimation of secular trends in extreme sea levels. Moreover, the 
spatial distribution of available tide gauge records in South America, Africa, southeast Asia, and the Southern 
Hemisphere in general is sparse and they typically only cover short time periods. Existing tide gauge records can 
be extended through archival  measurements2–5 or by reconstructing data using different modeling techniques 
(requiring atmospheric and/or oceanic reanalysis data as forcing)6–8. Using longer records not only allows for a 
more robust assessment of possible trends in extreme water levels, but also leads to a more accurate representa-
tion of return levels, which are important for coastal risk assessments, design of coastal defense infrastructure, 
and  adaptation2,9.

Atmospheric reanalysis datasets result from the combination of models and observations with the implemen-
tation of data assimilation schemes to generate the state of a system as accurately as possible. Reanalysis datasets 
provide globally gridded atmospheric variables (e.g., sea-level pressure, winds etc.) over multiple decades or 
even centuries. Such information can be used for reconstructing continuous historical storm surge time series 
temporally and spatially where little or no observations  exist10. For example, Cid et al.11 developed a 147-year long 
storm surge reconstruction from a data-driven model for Southeast Asia based on the 20th Century Reanalysis 
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version  2c12 (20CRv2C). Similarly, Cid et al.13 reconstructed storm surges globally from 1871 to 2010 using the 
20CRV2 reanalysis. Ji et al.14 developed a high spatial resolution storm surge reconstruction for southeast China 
using the  ERA4015 and ERA-Interim16 reanalysis datasets, and Tadesse et al.17 presented a global reconstruction 
of storm surges (1836–2019) using five different atmospheric reanalyses (the centennial 20CRV3 and ERA-20C18, 
and satellite era ERA-Interim16, MERAA  V219, and  ERA520). Using a physics-based modelling approach, Muis 
et al.21 used data from the ERA-Interim reanalysis as forcing for a hydrodynamic model to derive a global rea-
nalysis of storm surges and extreme sea levels for the 1979–2014 period. Employing an advanced version of the 
same hydrodynamic model, Muis et al.22 used data from the ERA5 climate reanalysis to derive a global dataset 
of extreme sea levels for 1979–2017. Many other studies have been conducted at the local or regional scale using 
different modelling techniques (data-driven or physics based) to develop storm surge  hindcasts23,24.

Reconstructed storm surge data extending the observational records can be used to investigate trends in the 
storm surge climate at local, regional, and global scales. There is, however, an ongoing discussion about the merits 
of centennial reanalyses to study long-term climate trends. Donat et al.25 detected significant positive trends in 
storminess in western, central, and northern Europe when using the 20CR reanalysis. Wang et al.26 showed that 
for the North Atlantic European region and southeast Australia, trends in 20CR extra-tropical cyclone activ-
ity are in agreement with trends in geostrophic wind extremes from in-situ surface pressure observations. By 
contrast, Krueger et al.27 argued that the trends reported by Donat et al.25 are due to inconsistencies in the 20CR 
reanalysis related to a rapidly decreasing number of assimilated observations in the early twentieth century. In 
response to assertions made by Wang et al.26 that 20CR cyclone trends are in agreement with geostrophic wind 
extremes trends in the North Atlantic-European region, Krueger et al.28 showed that 20CR geostrophic stormi-
ness deviates strongly from the observation-based storminess before the 1940s. As a result, there is a spurious 
long-term trend in the 20CR geostrophic wind extremes which is not reflected in observed geostrophic wind 
extremes. The authors attribute the spurious trends to the inhomogeneities in the 20CR datasets prior to the 
1950s. Inhomogeneities can be caused by inconsistencies in the amount and quality of data that are assimilated 
into the reanalysis products, including changes in the number of stations from where data is available and used, 
changes in measurement frequencies, relocation of stations, or instrumental  changes29. These factors make the 
assessment of long-term climate trends using reanalysis data challenging.

In this study, we address this challenge and quantify trends in the reconstructed daily maximum storm 
surges obtained from the  GSSR17 database along the global coastlines for the periods from 1930, 1950, and 1980 
onwards. The centennial storm surge reconstructions are hereinafter referred to as G-20CR (GSSR surge recon-
struction forced with the 20CRV3 reanalysis, 1836–2015) and G-E20C (GSSR surge reconstruction forced with 
the ERA-20C reanalysis, 1900–2010) whereas the satellite era reconstructions are G-EInt (GSSR surge recon-
struction forced with ERA Interim reanalysis, 1979–2019), G-Merra (GSSR surge reconstruction forced with 
MERRA-2 reanalysis, 1980–2019), G-E5 (GSSR surge reconstruction forced with ERA-5 reanalysis, 1979–2019); 
we also create an ensemble mean of all reconstructions for the overlapping period 1980–2010 (G-EnsMean). 
Given the known limitations of reanalysis products which could lead to spurious trends, we first implement a 
Bayesian change point detection technique to identify time periods where reconstructed storm surge data shows 
suspicious behavior, and those time periods are excluded from further analysis.

To identify time periods where modelled storm surge data is unreliable, it is preferable to validate against in-
situ measurements using metrics such as the Root Mean Squared Error (RMSE) or coefficient of determination 
 (R2), as shown for example in Fig. 6 of Dangendorf et al.30 for the Cuxhaven tide gauge. However, this can only 
be done for tide gauges where observed surges are long enough compared to the corresponding reconstructions. 
This is not the case for the vast majority of tide gauges; for example, only 10 tide gauges in GESLA-2 cover the 
entire twentieth century and none goes back to 1836, as G-20CR does. An alternative way to identify spurious 
trends, in the absence of long observational records, is to investigate only the reconstructed surge time series 
and the corresponding predictors used for the reconstruction. For instance, Fig. 1 shows the daily maximum 
surge time series and annual 99th percentile values for G-20CR and G-E20C. While there is no obvious trend 
in the mean of the daily maximum surge time series, both reconstructions show a persistent decrease (when 
looking backwards) in the variability which translates to spurious trends in the annual 99th percentile values. 
This is especially obvious for G-20CR where the variability declines before the 1940s and is only a fraction in the 
mid-nineteenth century compared to the last 80 or 90 years. Hence, the resulting increase in the 99th percentile 
values over time should not be interpreted as a climate related trend in storm surges, but rather as an artifact 
stemming from inhomogeneities in the 20CR reanalysis. This motivates us to consider the annual variability 
of the reconstructed surges and their predictors as a proxy for determining time periods where the quality of 
the surge reconstruction is poor and leads to spurious trends. A probabilistic change point detection method 
paired with visual inspection is employed to pre-process the reconstructed surges before trends are computed 
(see “Methods” for details).

Based on the model validation results from Tadesse and  Wahl31 and after apply-
ing a set of selection criteria in terms of model performance (see “Methods”), 310 and 320 tide gauges are 
selected with G-20CR and G-E20C surge reconstructions, respectively. These tide gauges adequately cover the 
Northern Hemisphere coastlines and also include several locations in the Southern Hemisphere, while the trop-
ics are under-sampled due to model  inaccuracies47.

We apply the Bayesian change point analysis for all 310 (G-20CR) and 320 (G-E20C) tide gauges on their 
annual variability (measured as standard deviation) time series in order to identify time periods where the data 
is less likely influenced by shortcomings in the reanalyses, and we only consider those time periods for the subse-
quent trend analysis. Figure 2 exemplarily shows the results from the Bayesian change point analysis for Astoria 
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(US) (Fig. 2e,f), along with the annual variability of the three predictors used in Tadesse and  Wahl31 (Fig. 2a–c), 
as well as the annual variability in the surge reconstructions and the observed surge (Fig. 2d). The average of the 
four change point probabilities corresponding to the zonal wind speed, meridional wind speed, mean sea-level 
pressure, and reconstructed surge are computed and presented in Fig. 2e,f. The change point detection algorithm 
computes the probability of each year that it constitutes a change point in the time series (see “Methods” for 

Figure 1.  Reconstructed daily maximum surges from G-20CR (green) and G-E20C (pink) and their respective 
annual 99th percentiles (dashed lines with markers) for the Astoria tide gauge.

Figure 2.  Results of change point analysis for G-20CR and G-E20C for the Astoria tide gauge. Annual 
variability (expressed as standard deviation) time series are shown for (a) sea-level pressure (slpSTD), (b) zonal 
wind speed (uwndSTD), (c) meridional wind speed (vwndSTD), and (d) reconstructed surge (reconSTD). (e,f) 
Bayesian change point probability (BCP) for the surge reconstruction and predictors (colored dots) and the 
average of them (black solid line) for G-20CR (e) and G-E20C (f); vertical dashed gray lines indicate the most 
recent change point year for a given cutoff probability for the average BCP.
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more details). We show here four different cut-off probabilities (probability values above which a given year is 
considered to be a change point) to identify likely change point years: 15%, 20%, 25%, and 30%. In the case of 
Astoria and for G-20CR, all cutoff probabilities indicate that the year 1948 is the most recent change point in the 
time series. This is also apparent from the time series shown in Fig. 2a–d. There is a rapid decrease in the annual 
variability of the predictors before 1948. On the other hand, for G-E20C, three probable change points (1947, 
1972, and 1994) are identified for the 30%, 20%, and 15% cutoff probabilities, respectively. Visual inspection of 
the changes in the variability of the reanalysis predictors and reconstructed storm surge time series (Fig. 2a-d) 
shows a decrease in the variability of all four variables before 1947. Hence, we choose 1947 as the change point 
year and assume that data for the time periods 1949 to 2015 (G-20CR) and 1948 to 2010 (G-E20C) are reliable 
in Astoria. The same change point detection procedure has been applied for all selected G-20CR and G-E20C 
reconstructions (see http:// gssr. info/ chang epoint for detailed results).

After removing suspicious data from G-20CR surge reconstructions for tide gauges in southern Australia, 
New Zealand, Japan, and the northwest coast of the US vary in length from 50 to 75 years, and along the US 
Gulf coast, US East coast, and across Europe between 125 and 150 years (Fig. 3, Table 1). For several tide gauges 
(16 in total) along the US Gulf and East coast, Spain, Portugal, and France, G-20CR provides 150–180 years of 
surge reconstructions after removing suspicious data. Some tide gauges (red triangles in Fig. 3), mainly in Ant-
arctica, southern Africa, and parts of Australia were discarded after the change point analysis due to significant 
(and recent) changes in the annual variabilities of predictors (see “Discussion”). For G-E20C, the lengths of the 
reconstructed surge time series, after removing suspicious data, for tide gauges along the US northwest coast, 
most of New Zealand, and Japan is 50–75 years. However, data lengths for tide gauges in southern Australia are 
between 100 and 110 years, which is in some cases twice as long compared to G-20CR in the same locations, 

Figure 3.  Length of G-20CR (a) and G-E20C (b) reconstructed storm surge time series in years after 
applying change point analysis and removing suspicious data. Red triangles represent tide gauges where surge 
reconstructions are rejected. Rossum, Guido van, et al., The Python Language Reference, Python Software 
Foundation; http:// docs. python. org/ py3k/ refer ence/ index. html.
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pointing to distinct differences in the quality of the reanalysis data. G-E20C provides 50–75 years of data along 
the US Gulf and East coast, which is shorter than G-20CR. In Europe, most of the tide gauges have 100–110 years 
of reconstructed surge data. Similar to G-20CR, there are several tide gauges discarded in the southern polar 
region due to quality issues.

On average, and after removing suspicious data,  GSSR31 has extended the average storm surge data lengths 
at the 310 (G-20CR) and 320 (G-E20C) sites from 30 to 111 years (G-20CR) and 16 to 69 years (G-E20C), with 
significant spatial variability. We find that G-20CR provides at least 100 years of additional surge data (on top of 
available observed surge information) for 40% of the tide gauges and at least 50 additional years for 68% of the 
tide gauges; G-E20C provides at least 100 additional years of surge data for 4% of the tide gauges and at least 50 
additional years for 46% of the tide gauges (Fig. 4). According to the aggregated results in Table 1, G-20CR leads 
to the shortest extension of existing data along the US West coast, adding on average 30 years of data. In Europe, 
on the other hand, an average of 111 additional years of surge data is made available. For instance, at Delfzjil 
(The Netherlands), G-20CR provides a total of 149 years of reconstructed surge data which is 104 more years in 
addition to the 45 years of existing observational data (available in the GESLA-21 database).

G-E20C also provides the shortest extension for tide gauges along the US West coast, with an average of 16 
additional years of data, and a maximum extension in Europe, with 69 additional years on average (Table 1). 
There are 9 tide gauges along the US East and Gulf coast, where the observational data is longer than the recon-
struction when using G-E20C (Fig. 4b). These are tide gauges with particularly long observational records such 
as Galveston (102 years) and Atlantic City (94 years), where change points are detected in the reconstructions 
leading to shorter records compared to observations.

Long-term trends in storm surge magnitude. After removing suspicious data based on the 
change point detection, we calculate and compare trends of the observed and reconstructed surges (see “Meth-
ods” for details) to assess their similarities. We use annual values of high percentiles and chose the 95th and 
99th percentiles here as those have been used in many previous studies and are often considered as thresholds 
when performing extreme value analysis. For this comparison, we select 122 tide gauges with at least 30 years of 
overlapping data between observations, G-20CR, and G-E20C and a minimum of 75% completeness in the ob-
servations. For the majority of the 122 tide gauges, no statistically significant differences (5% level) exist between 
observed trends and reconstruction trends (Fig. 5). Differences between observed surge and G-20CR are found 
at 25% (95th percentile surges) and 19% (99th percentile surges) of the tide gauges. When comparing observa-
tions and G-E20C, significant differences are found at 30% (95th percentile surges) and 18% (99th percentile 
surges) of the tide gauges. These differences with observations mainly exist along the Salish Sea (US West coast), 
New England (northeast US coast), and the Atlantic coast of France. For 64% (95th percentile surges) and 78% 
(99th percentile surges) of the tide gauges, both reconstructions agree with the observed trends, in particular 
along the US southeast coast, Japan, and the German Bight.

Next, we investigate G-20CR and G-E20C trends for the 1950–2010 (2015) and 1930–2010 (2015) periods. 
Those were chosen as a tradeoff between covering relatively long time periods while still having reasonable 
spatial coverage. Figure 6 shows the long-term trends of the annual 99th percentile surges from G-20CR (a–e) 
and G-E20C (f–j) for the 1950–2015 and 1950–2010 periods respectively (Supplementary Figs. S1 and S2 show 
trends for the annual 95th percentile surges). Trends are shown for regions with at least 10 tide gauges. Note that 
the number of tide gauges can be different in the same region for the two reconstructions, because the change 
point analysis may have identified suspicious data post-1950 in one reconstruction but not the other.

For G-20CR, significant trends at the 5% significance level are found at 26% of the tide gauges (which were 
considered originally for change point analysis), notably in the northern UK, Kattegat Bay, southeast Australia, 
and New Zealand. The largest statistically significant positive trends are derived for the northern UK and New 
Zealand with magnitudes of 1.9 mm/year and 1.6 mm/year, respectively (Supplementary Fig. S7). Although 
statistically insignificant, Cuxhaven (Germany) and Esbjerg (Denmark) have the largest trends with magnitudes 
of 2.48 mm/year and 1.89 mm/year respectively. Small but significant negative trends with an average magnitude 
of − 0.6 mm/year are derived at 13 tide gauges and those are mostly located along the Atlantic coasts of France 
and Spain and in the Adriatic Sea.

Similarly, for G-E20C significant trends for the 1950–2010 period are found at 26% of the tide gauges. Posi-
tive trends are derived for the US Gulf coast, UK, Kattegat Bay, and the German Bight. The largest statistically 
significant positive trend of 2.9 mm/year is derived in the southeastern North Sea (for both Cuxhaven in Ger-
many and Delfzjil in the Netherlands), followed by 2.5 mm/year at Nome (Alaska), and 2.1 mm/year at Millport 

Table 1.  Number of years provided/extended by each reconstruction after change point analysis.

Region
G-E20C G-20CR
Total length Observation extension [avg] Total length Observation extension [avg]

Europe 100–110 69 125–150 111
US East Coast + Gulf Coast 50–75 22 125–150 96
US West Coast 50–75 16 50–75 30
Japan + South East China 50–75 32 50–75 46
Australia + New Zealand 50–75 46 50–75 38
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(UK). Very few tide gauges (4%) show negative trends and those are located in the same regions that had negative 
trends in the G-20CR reconstruction. The largest negative trend is − 1.0 mm/year at Villagarcia (Spain) (Fig. 6).

Over the 1930–2015 (G-20CR) and 1930–2010 (G-E20C) periods, 67% and 85% of the 192(142) tide gauges 
analyzed show positive trends in the 99th percentile surges (Fig. 7) (see “Methods” on how tide gauges are 
selected for trend analysis). This is a higher percentage of tide gauges with positive trends compared to the 56% 
(G-20CR) and 63% (G-E20C) during the 1950–2015 and 1950–2010 periods respectively. Furthermore, many 
of the same regions—such as the southeastern North Sea and the Kattegat Bay—show persistent positive trends. 
Tide gauges along the US West coast, Australia (G-20CR), and New Zealand are not included in the analysis 
for this period since the change point analysis indicated suspicious data before the 1940s (Fig. 2a). Significant 
positive trends are derived for tide gauges along the US northeast coast (G-20CR), UK, German Bight, Kattegat 
Bay, and southeast China (G-20CR; results for China are not shown in Fig. 7 because of the small number of tide 
gauges). The largest statistically significant trends are again derived in the southeastern North Sea with magni-
tudes of 4.5 mm/year (G-E20C) and 3.0 mm/year (G-20CR) at Cuxhaven (Germany), followed by 3.6 mm/year 
(G-E20C) at Delfzjil (The Netherlands), 2.3 mm/year (G-20CR) at Gladstone (UK), and 2.0 mm/year (G-20CR) 
at Esbjerg (Denmark).

Figure 4.  Additional years of reliable storm surge data after change point analysis obtained from G-20CR 
(a) and G-E20C (b) compared to the existing observed records. Negative numbers indicate that reliable surge 
reconstructions are shorter than observations. Red triangles represent tide gauges where surge reconstructions 
are rejected. Rossum, Guido van, et al., The Python Language Reference, Python Software Foundation; http:// 
docs. python. org/ py3k/ refer ence/ index. html.
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Trend sensitivity analysis. As discussed in the Introduction, observed surges are usually short and not as con-
tinuous as G-20CR and G-E20C. There exist, however, tide gauges with relatively long surge records that can be 
used to compare against the reconstructed surges. Here we compare 99th percentile observed and reconstructed 
surges by computing their corresponding trends for various overlapping time windows. We start with a window 
length of 30 years which is moved by 1 year each time step and repeat the same analysis for longer time windows 
(adding 1 year each step) (Fig. 8). This allows us to not only compare the reconstructed and observed trends for 

Figure 5.  Tide gauges with significant differences in trends between observed surge and reconstructed surge 
from G-20CR (yellow circles) and G-E20C (red triangles) using the annual 95th (a) and 99th (b) percentiles. 
Tide gauges with insignificant differences in trends are shown as transparent circles and triangles. Trends are 
computed when at least 30 years of overlapping data are available for the 1930–2010 period. Rossum, Guido van, 
et al., The Python Language Reference, Python Software Foundation; http:// docs. python. org/ py3k/ refer ence/ 
index. html.

Figure 6.  Trends (mm/year) for the annual 99th percentile surge values for G-20CR (a–e) and G-E20C (f–j) 
corresponding to 1950–2015 and 1950–2010 respectively. Rectangle markers indicate significant trends at the 
5% significance level. Rossum, Guido van, et al., The Python Language Reference, Python Software Foundation; 
http:// docs. python. org/ py3k/ refer ence/ index. html.
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many more time periods than were used in the previous section, but also shows how multidecadal variability 
affects observed and reconstructed trends. In Cuxhaven (Fig. 8b), for example, negative trends are found in 
observations early in the record when using shorter window lengths; and while G-20CR also shows some nega-
tive trends early in the record and for short window lengths, the overall patterns in both reconstructions are dif-
ferent, with more persistent positive trends compared to observations. At Port Pire (Fig. 8c), also both G-20CR 
and G-E20C show positive trends for most time periods and window lengths, while observed trends are mostly 
negative. In Boston (Fig. 8a), G-E20C agrees well with observations in terms of the sign of the trends, while 
G-20CR shows very different patterns. More examples are provided in Supplementary Fig. S5 with similar con-
clusions, i.e. agreement between reconstructions but not with observations in Astoria, relatively good agreement 
between G-E20C and observations in Brest, and general agreement between all three in Fremantle for most time 
periods and window lengths. Overall, there is more agreement when trends are derived for longer time windows. 
Check Supplementary Tables 1–4 for detailed results of the trend analysis.

Comparison of trends for the satellite era from all GSSR reconstructions. Finally, we compare trends in storm 
surge magnitudes of all five reconstructions available in GSSR with each other and with observations for the 
overlapping period from 1980 to 2010, for which many more tide gauges provide (near-)continuous records. 
We also include an ensemble mean (G-EnsMean) based on all GSSR reconstructions. Satellite data is assimilated 
into all reanalysis products over that time period, and spurious long-term trends due to incosnistancies in the 
assimilated data are less likely to occur. However, over a 30-year period decadal variability can have significant 
effects on trends and those long-term variations may be represented differently in the reanalysis products and 

Figure 7.  Trends (mm/year) for the 99th percentile surges for G-20CR (a–c) and G-E20C (d–f) corresponding 
to 1930–2015 and 1930–2010 respectively. Rectangle markers indicate significant trends at the 5% significance 
level. Rossum, Guido van, et al., The Python Language Reference, Python Software Foundation; http:// docs. 
python. org/ py3k/ refer ence/ index. html.
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associated GSSR reconstructions (as demonstrated for G-20CR and G-E20C in the previous section for selected 
locations).

Trend analysis for the satelite era shows generally good agreement for Europe in terms of the spatial distribu-
tion of observed trends and GSSR trends as well as amongst the different GSSR trends themselves (Fig. 9). All 
seven datasets (including G-EnsMean) show strong negative trends along the southeastern North Sea and the 
Kattegat Bay, the largest negative trend being − 6.9 mm/year at Cuxhaven (G-20CR). The actual magnitude of 
GSSR trends, however, is smaller than that of observed trends (Fig. 10) for most of the tide gauges in Europe. Tide 
gauges along the Atlantic Coast of France, Spain and North Adriatic Sea have larger negative observed trends 
which is not reflected in most GSSR reconstructions. Moreover, tide gauges along the Bay of Brest (Brest, Le 
Conquet) and Loire Estuary (Saint Gildas) show stark differences between observed and GSSR trends. Observed 
trends at all three tide gauges are negative (− 2.58 mm/year at Brest, statistically significant), whereas GSSR 
trends are mostly positive, except for G-EInt and G-Merra. Along the US East coast, in the New England area all 
seven datasets indicate a positive trend for the majority of tide gauges. In the Chesapeake Bay region, there are 
differences between GSSR trends and observed trends. All GSSR reconstructions (except G-E20C) show nega-
tive trends in this region, whereas observed trends are all positive. The largest observed trend has a magnitude 
of 3.4 mm/year (statistically significant) at Chesapeake Bay Bridge Tunnel. Refer to Supplementary Table 5 for 
detailed results of this analysis.

Figure 8.  Trend (mm/year) comparison for 99th percentile observed surge (left), G-20CR (middle), and 
G-E20C (right) for Boston (a), Cuxhaven (b), and Portpire (c). Trends are computed for moving time windows 
(x-axis) starting with a window length of 30 years, which increases 1 year each step (y-axis) up to the length of 
available data. Significant trends at 5% significance level are marked with an asterisk.
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Figure 9.  Trends (mm/year) for the 1980–2010 period for all seven datasets (including ensemble mean); 
significance is assessed at 5% level and significant trends are shown as rectangles. Rossum, Guido van, et al., The 
Python Language Reference, Python Software Foundation; http:// docs. python. org/ py3k/ refer ence/ index. html.

Figure 10.  Comprison of GSSR trends with observed trends for six reconstructions (including ensemble mean) 
and five regions. GSSR trends are subtracted from observed trends, including their signs. Boxes indicate the 
interquartile range (IQR) (difference between 75 and 25th percentiles), upper and lower marks represent 75th 
percentile + 1.5 * IQR and 25th percentile – 1.5 * IQR respectively, and diamonds are considered outliers.
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Along the US Gulf coast there is a positive trend in most datasets (except G-20CR and G-EInt). The observed 
trend at Pensacola is 5.2 mm/year (statistically significant), which is the largest positive trend observed in all 
tide gauges considered in this study during the 1980–2010 period. In general, observed trends are positive and 
larger in magnitude than GSSR trends in this region which leads to the largest differences between GSSR and 
observed trends as shown in Fig. 10.

On the US west coast, differences exist in trends between observed surges and GSSR reconstructions mostly 
for tide gauges on the Columbia River and Salish Sea. While observed trends are negative at Astoria, (− 4.1 mm/
year, statistically insignificant) some GSSR trends are positive (G-20CR, G-E20C, and G-EInt) and others nega-
tive but very small in magnitude (G-Merra, G-E5, and G-EnsMean). In the southwest (Alameda, Monterey, and 
San Francisco), there is a general agreement (statistically insignificant but negative trends) among most datasets 
(except G-E20C).

In Australia, G-20CR and G-E20C generally show positive trends (see also Fig. 10) which is not the case 
for the satellite era reconstrutions (G-EInt, G-Merra, and G-E5). Differences are most pronounced at Portpire 
where observed surge, G-20CR, and G-E20C show statistically insignificant but positive trends and the other 
three GSSR reconstructions show negative trends. The ensemble mean reconstruction (G-EnsMean) gives the 
smallest difference compared to observed trends (Fig. 10).

Trends in storm surge frequency. To study the spatial patterns in frequency trends of extreme surges, we cluster 
tide gauges into eight regions: US east coast, US west coast, US Gulf coast, east Asia (tide gauges from Japan 
and China), Oceania (tide gauges from Australia and New Zealand), Mediterranean, western Europe, and the 
Kattegat Bay (tide gauges from Sweden and Norway). Here we investigate the trends in storm surge frequency 
for both centennial reconstructions (G-20CR and G-E20C) for the 1930–2010 (2015) and 1950–2010 (2015) 
periods, after suspicious data identified from the change point analysis is removed. To quantify storm surge fre-
quency at individual locations, the 95th percentile of the entire reconstructed surge time series is considered as 
a threshold. The number of annual storm surge events exceeding this threshold is derived at each tide gauge and 
the resulting time series are averaged per region and a linear trend is estimated for the regional average annual 
storm surge frequency.

Differences between trends in annual exceedances (after declustering, see “Methods”) above the 95th per-
centile surges for observed surges and reconstructed surges (G-20CR and G-E20C) are computed for 133 tide 
gauges that have storm surge data available during the 1930–2010 (2015) period (detailed results not shown). 
Results show that the trends for the number of annual exceedances above the 95th percentile of the observed 
and reconstructed surges for the overlapping periods are not statistically different (at 5% significance level) for 
73% and 81% at the tide gauges for G-20CR and G-E20C respectively.

Figure 11 shows the trends for six regions, as the other two regions (Mediterranean and US west coast), do 
not show significant trends at the 5% significance level for either of the reconstructions. East Asia does not show 
significant trends in G-E20C, whereas no significant trends exist for the US Gulf and east coasts in G-20R (and 
hence panels are not shown in Fig. 12). Similar to the trend analysis for the surge magnitudes, the frequency 
trends are computed for two time periods, 1950–2010 (2015) and 1930–2010 (2015). The gray lines in Fig. 11 
represent the number of storm surge events exceeding the 95th percentile threshold for individual tide gauges 
in the given region, whereas the bold black line represents the average number of exceedances from which the 
two trends are derived. Results show positive trends for all six regions and the two selected time periods (shown 
by different colors; trend lines are only shown for significant trends). Overall, the largest trends are found across 
the Kattegat Bay and western Europe for both G-20CR and G-E20C.

We apply a Bayesian change point analysis on G-20CR and G-E20C storm surge 
reconstructions as well as the predictors that were used to derive them. The goal is to identify and remove 
suspicious data, related to inconsistencies in the reanalysis products, from the surge reconstructions. Figure 12 
shows the annual variability time series for 20CR predictors and the associated reconstruction G-20CR for five 
tide gauges in the Arctic, Antarctica, Australia, New Zealand, and the US northwest coast. In all cases, sharp 
decreases in the variability of the reanalysis predictors and reconstructed surges exist when going back in time. 
G-E20C (not shown here) also shows such a decrease in annual variability in several but not all of these tide 
gauges. Some of the tide gauges like Base Prat and Kerguelen show a very rapid decline in the variability lead-
ing to a change point year in the 2000s. Therefore, surge reconstructions for these tide gauges and others with 
similar suspicious behavior are not considered for trend analysis. They are marked as red triangles in Figs. 3 
and 4. For most of the other tide gauges in these regions, our change point analysis shows that G-20CR should 
be considered only from the mid-twentieth century onward since change points are detected in the 1940s and 
1950s (see Supplementary Figs. S3 and S4). This aligns with the findings from Brönniman et al.32 who showed the 
strong downward trend in 20CR wind speeds in the Arctic, northeastern Canada, and the northern North Pacific 
before 1940. This is due to the scarcity of observations in these regions used in the data assimilation for the 20CR 
reanalysis. ERA-20C predictors and G-20C, on the other hand, do not show such rapid decline in variability (see 
Supplementary Figs. S3 and S4 for examples). A possible explanation for this might be the assimilation of surface 
marine wind observations into ERA-20C which is not the case for  20CR18,26,27.

The comparison presented in this section is not indicative of the superiority of one surge reconstruction (or 
reanalysis) over the other and should not be interpreted as such. For the majority of the tide gauges used in this 
study, the record lengths of the observed surges are too short to robustly compare trends in the annual variability 
with that of the reconstructed surges. However, the two centennial reconstructions, together with the other GSSR 
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reconstructions (depending on the time period of interest) can be considered as an ensemble (Fig. 10) when used, 
for example, in coastal flood risk assessments to better understand the inherent uncertainties.

Using the long storm surge reconstructions from GSSR, we investigate how the magnitude 
and frequency of extreme surges changed over the last ~ 90 years. One of our key findings is that both storm 
surge reconstructions, G-20CR and G-E20C, indicate a consistent positive trend for the 1930–2010 (15) and 
1950–2010 (15) periods for extreme surges (annual 99th and 95th percentiles) in northern UK, the southern 
North Sea, and the Kattegat Bay. Similar positive trends were reported by Donat et al.25 from analyzing stormi-
ness from the 20CR reanalysis in the North Sea and Baltic Sea regions. Over the 1950–2008 period, Brönniman 
et al.33 also found positive trends in strong and extreme wind speeds in northwestern Europe when using 20CR. 
Dangendorf et al.30 concluded that 20CRv2 provides a useful database for the same region for the time period 
after 1910 because reconstructed storm surges for the tide gauge Cuxhaven showed similar variability and trends 
compared to observed storm surges over that period. In our analysis G-20CR and G-E20C show positive trends 
at Cuxhaven since 1910 (2.6 mm/year and 4.8 mm/year for G-20CR and G-E20C, respectively).

The positive trends we find in GSSR reconstructions for northern UK, the southern North Sea, and the 
Kattegat Bay during the 1950–2015 period can be explained, in part, with long-term variability in the North 
Atlantic Oscillation (NAO) during the 1950–1990  period34. They are also consistent with an eastward shift of 
the NAO’s centers of action that occurred over the same period. NAO is one of the large-scale circulations that 
determine the storminess in the North Sea region. However, the 1930–2010 (2015) trends derived from the 
surge reconstructions are in contrast to the insignificant trends reported for observed surges in northwestern 

Figure 11.  Regional storm frequency trends. Linear trends are fitted to the average number of annual 
exceedances above the 95th percentile (bold black line) for G-E20C reconstructions (left) and G-20CR 
reconstructions (right). Gray lines indicate the number of surge events exceeding the 95th percentile threshold 
for individual tide gauges in the given region. Only regions with at least one significant trend (dashed lines) are 
shown.
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 Europe30,35,36, albeit with considerable interannual and multidecadal variability. Focusing on the period from 
1970 onwards, Menéndez et al.37 found no significant trends in storm surge magnitude in the European Atlantic 
coast. For the same period, we also find insignificant trends in G-20CR and G-E20C (except for a few tide gauges 
in the northern UK).

Next, we showed that during the common period 1980–2010, where all GSSR reconstructions overlap and 
many more tide gauge provide (near-)complete data, spatial distribution of trends is similar across all datasets 
(including an ensemble mean of the GSSR reconstructions) in many regions. This is particularly pertinent to 
tide gauges in northern Europe and northeast coast of the US. There are, however, regions where trends differ (in 
magnitude and sometimes also in sign), particularly in estuaries and bays. For example, at tide gauges along the 
Chesapeake Bay, Columbia River, Salish Sea, Bay of Brest, and Loire Estuary, observed and GSSR trends (for the 
majority of reconstructions) have opposite signs. This could be due to the modulating effect of river discharge 
on water levels in bays and  estuaries38,39 not captured by GSSR.

We also show that GSSR centennial reconstructions exhibit statistically significant positive trends in storm 
surge frequency during the 1930–2010 (2015) and 1950–2010 (2015) periods. The tide gauges with the largest 
positive trends in surge magnitude (95th and 99th percentile) also often have the highest positive trends in the 
storm frequency (e.g., northwestern Europe and the Kattegat Bay). This aligns with previous studies that report 
an increase in the storm frequency for the high-latitude North Atlantic and northern  Europe26, including the 
North  Sea25. On the other hand, Krueger et al.27 argued that the long-term positive trend of the storm index, 
estimated from the 20CR reanalysis in northern Europe and northeast Atlantic, is implausible as the same storm 
index for the upper percentiles of the observed geostrophic wind speeds does not show a similar long-term trend. 
However, the storm indices from the 20CR reanalysis and the observed geostrophic winds behave similarly in 
the second half of the twentieth century.

As noted above, a limiting factor in our analysis is the potential impact of reanalysis inconsistencies on the 
reconstructed surges that might introduce spurious long-term trends in some regions. The Bayesian change point 
detection method successfully identified suspicious changes in the variability of surges and predictors at tide 
gauges along the northwestern coast of the US, northern Australia and some high-latitude regions. These changes 
in the variability, if not accounted for, would lead to significant and implausible trends in high-percentile surge 
time series (such as the annual 95th and 99th percentiles used here). While the change point analysis identified 
instances where that was the case, the methodology might still miss small and subtle trends that can be attributed 
to inconsistencies arising from the atmospheric reanalyses.

The case of Astoria (Fig. 2) for instance, shows some of the challenges related to the change point analysis 
and comparison to in-situ observations. The year 1948 (47) is identified as a change point for G-20CR (G-E20C), 
based on the change point probabilities as well as the visually obvious shift in the four variables during the 1940s. 
This could be associated with the sparse amount of observations assimilated into the reanalysis products dur-
ing and shortly after World War  II40. On the other hand, the specific years (1947 and 1948) where the change 
points are detected, may also be associated with a shift from the warm to the cold phase of the Pacific Decadal 
 Oscillation41. In the Pacific Northwest, the cold phase of the PDO is associated with cooler water temperatures 

Figure 12.  Decreasing variability (expressed as annual standard deviation) for 20CR predictors mean sea-level 
pressure (a), zonal wind speed (b), meridional wind speed (c), and G-20CR (d) for selected tide gauges.
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and changes in streamflow patterns (due to the change in temperature differences between cold and warm PDO 
phases)42, both of which can influence water  levels43,44. Moreover, the year 1948 was particularly stormy, lead-
ing to a large snowpack and the second largest flood on the Columbia River since records  began45. Hence, the 
particular attribution of a change point to the year 1947–1948 may be related in part to natural variability. We 
note, however, that the shift to warm PDO phases in ~ 1925 and ~ 1977 are not picked up by the change point 
analysis. Hence, we conclude that inconsistencies in the reanalysis lead to a drop in the variability in the 1940s, 
with the exact year(s) possibly conflated by background atmospheric/oceanic variability.

To conclude, our trend analysis on GSSR storm surge reconstructions demonstrates that in northwestern 
Europe, both G-20CR and G-E20C show consistent positive trends for the periods starting in 1930 and 1950 
in magnitude as well as frequency, particularly in the southeastern German Bight. From the satellite-era trend 
analysis (1980 to 2010) we find consistently negative trends for major parts of northern Europe, which also agree 
with the observational data. Results are also relatively consistent across reanalysis products in the northeastern 
US, whereas in other regions we find pronounced differences in trends when comparing between reanalysis 
products, for example southern Australia and in bays and estuaries. The ensemble mean often resembles the 
spatial patterns of trends in the observed data best and is hence the preferred approach, but it limits the analysis 
to a relatively short period where all reanalysis products provide data. Trends derived from centennial reanalysis 
products over longer time periods provide useful insights as to where changes in storm surges may have taken 
place in the past (and could continue in the future), while at the same time being cautious in the interpretation 
due to the inhomogeneities in reanalysis products. In addition to performing trend analyses presented here, 
the underlying GSSR data is also useful for other applications, such as studying intra-annual to multi-decadal 
variability. In the future we plan to apply bias correction to the GSSR reconstructions and use those for extreme 
value analysis and to study spatial storm surge  footprints46, among others.

We use daily maximum surge reconstructions obtained from the Global Storm Surge Reconstructions 
database (GSSR, http:// gssr. info) developed in Tadesse and  Wahl31. GSSR comprises two centennial and three 
satellite-era storm surge reconstructions, all of which have been obtained with data-driven models from Tadesse 
et al.47 using wind speed and mean sea-level pressure forcing from five different atmospheric reanalysis prod-
ucts. GSSR reconstructions are available for 882 globally distributed tide gauges, and they have been validated 
against in-situ daily maximum surge observations from tide  gauges47. Observed storm surges are extracted from 
sea-level measurements from the GESLA-2  database1 as the difference between the measured water level and the 
tidal prediction, after removing the annual mean sea level. Hourly water level records for Astoria (1855–1876) 
shown on Fig. 2d were obtained from Talke et al.44.  We only select GSSR reconstructions corresponding to tide 
gauges that show correlations with observed daily maximum surges of 0.7 or greater. This results in 310 and 320 
tide gauges with G-20CR and G-E20C reconstructions, respectively.

Reanalysis products are sensitive to the assimilated meteorological and/or oce-
anic observations (changing over time), which may result in spurious trends in key outputs  variables27,48,49. 
Furthermore, due to sparsity in assimilated observations, atmospheric events, particularly small-scale events 
(hurricanes, atmospheric rivers), may be poorly represented, which may result in an underestimation of mod-
elled variables such as peak wind speeds or minimum  pressure50,51. Systematic underestimations would therefore 
become visible in the variability of output variables from the atmospheric reanalysis products and therefore also 
translate into underestimated variability in the GSSR reconstructions (see Fig. 1). We therefore hypothesize that 
time-periods with a persistent decrease in the variance (or standard deviation) of surges in GSSR and/or its forc-
ing variables likely indicate systematic model drifts rather than real trends.

In order to identify suspicious data in GSSR we apply a Bayesian change point analysis to annual standard 
deviation time series of GSSR surges and the atmospheric forcing datasets from 20CR and ERA-20C. The Bayes-
ian change point analysis is carried out using the R package “bcp” version 4.0.352 in RStudio version 1.1.453. 
The package implements a Markov Chain Monte Carlo (MCMC) approximation of the Bayesian change point 
analysis methodology presented in Wang et al.52. It is based on the product partition  model53,54 that separates 
a time series into several partitions based on different parameters (for instance, the mean and variability of the 
time series). The product partition model considers the number of change points and their positions as random 
variables and assumes that there exists an unknown partition ρ of the set {1, 2,…, n} that divides the time series 
into b contiguous blocks (random variable ranging from 1 to n, where n is the length of the time series). We used 
500 MCMC iterations for our analysis. At the end of each iteration, the posterior distribution for the random 
partition, the number of change points, and change point probability of a given year are updated. For each year, 
we average change point probabilities corresponding to the four variables (the reconstructed surge and the three 
predictors). This is done to find the years in the time series where all (or most) of the variables show unusual 
changes in the variability. Sometimes, one or more variables show a deviation from the "typical” values, but 
this could be an artifact and may not be reflected in other variables. From the estimated average change point 
probabilities, we identify years in the time series where change point probabilities are equal or greater than a set 
of cutoff probabilities. In our analysis, cutoff probabilities of 15%, 20%, 25%, and 30%, are used to find change 
point years. Usually there are multiple years in the annual variability time series where a given cutoff probability 
is exceeded. In that case, we select the most recent year as the change point for the given cutoff probability. Only 
surge data from change point years onward are considered to quantify the trends in magnitude and frequency 
of daily maximum surges.

As mentioned in the introduction, using the RMSE time series between observed and reconstructed surges 
would be the preferred approach to identify spurious trends in reconstructions. Although this is not feasible 
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globally due to lack of data, there are a few tide gauges (Supplementary Fig. S6) with long records for which the 
annual RMSE between daily maximum observed and reconstructed surges time series was used to implement 
change point analysis (in addition to the annual standard deviation time series). There are noticeable differ-
ences in change point analysis results when using annual RMSE vs annual standard deviation time series of the 
reconstruction alone (Supplementary Fig. S6). This could be due to unrealistic surge values in observations (e.g., 
due to time shifts in the tidal analysis or other data issues) or in the GSSR reconstructions that can lead to very 
high RMSE values for individual years which in turn would be wrongly flagged as change points. For instance, 
in Brest (France) there is a change point identified in 1975 with high probability (97%) when the annual RMSE 
time series is used. However, there is no persistent deviation of the annual RMSE time series before or after this 
period. The change point analysis does not detect any change point for the same period when the annual standard 
deviation time series is used. Similar issues are found in Seattle (Supplementary Fig. S6d) when using the annual 
RMSE time series for change point detection (particularly 1960 onward).

As an alternative to the annual standard deviation time series, we tested using the annual interquartile range. 
This is a measure of variability that is more suitable for skewed distributions and is robust against outliers. The 
interquartile range is computed by taking the difference of the 75th percentile and 25th percentile values of 
the system variable (daily maximum observed and reconstructed surges) for a given year. Using the annual 
interquartile range time series for change point analysis showed very similar results to that of annual standard 
deviation. Hence, in this study we focus on the annual standard deviation time series of predictors and surge 
reconstructions to detect change points.

In addition to identifying the change point years corresponding to the different cutoff probabilities, a visual 
inspection of the individual annual variability time series is carried out. This is done to avoid instances where 
extreme events (such as surges caused by hurricanes) not adequately represented in either the observations 
or the reconstructions are identified as change points, or when subtle but consistent changes in the variability 
time series are not picked up by the change point algorithm (i.e., change point probabilities are below the cutoff 
values we considered). Furthermore, we assess if similar shifts occur in the different predictors and the surge 
reconstruction. In other words, if a change point year indicates only a change in one variable but no significant 
change is reflected in other variables, this change point year is disregarded. Hence, while the automated change 
point analysis provides initial indication of when change points occurred, the results are manually corrected in 
some instances for the various reasons outlined here.

First, trends in extreme storm surges are calculated for the two centennial GSSR recon-
structions, after suspicious data was removed, and we focus on the periods 1930 to 2010 (2015) and 1950 to 2010 
(2015). Trends are computed by fitting a linear regression model to the annual 95th and 99th percentile surges 
from G-20CR, G-E20C, and observations where available. The standard errors of the linear regression coef-
ficients representing the trends are adjusted for heteroscedasticity and autocorrelation using the Newey-West 
 estimator55. Before fitting trends to extreme surges from the reconstructions, we compare the trends in extreme 
surges from observations to trends in extreme surges from G-20CR and G-E20C. We limit our analysis to tide 
gauges with > 30 years of data and > 75% completeness between the years 1930 and 2010. Trends are computed 
using the common period between observations and reconstructions at each tide gauge. We check if the trends 
from observations are significantly different from the reconstruction trends at the 5% significance level. Our 
null hypothesis is that there is no significant difference between the trends obtained from observations and 
reconstructions for their period of overlap. For the annual 95th and 99th surge time series, a categorical variable 
is added to differentiate the time series as observation, G-20CR, or G-E20C. An interaction term (product of 
the categorical variable and the years) is then added as an additional predictor to fit linear trends to the annual 
95th and 99th surges. We calculate the p-values for the coefficient of the interaction term and determine its sig-
nificance at the 5% significance level. If the p-value for the coefficient of the interaction term is higher than 0.05 
then the null hypothesis cannot be rejected. In other words, there is no significant difference between the trends 
in observed surges and reconstructed surges.

Following this test, we estimate trends in G-20CR and G-E20C (above 95th and 99th percentiles) for the 
1950–2010 (G-E20C)/1950–2015 (G-20CR) and 1930–2010 (G-E20C)/1930–2015 (G-20CR) periods. As start 
years for the reconstructions vary among tide gauges due to the change point analysis, we constrain G-20CR and 
G-E20C strictly to the chosen time period before computing trends. For instance, when computing trends for 
the 1950–2015 period, we select only tide gauges that have data covering the entirety of this period.

To investigate the sensitivity of trends to start dates and periods covered and to compare and contrast trends 
from observation, G-20CR, and G-E20C (where long enough observations exist), a trend sensitivity analysis is 
carried out (Fig. 8 and Supplementary Fig. S5). A window of 30 years is selected as the starting window length 
where trends are computed, and the window is shifted one year each time step. Trends are then computed for 
each (moving) window length (by increasing the window length by one year until record length is reached). 
Availability of 75% of the data is required for each window. For windows where this is not met, trends are not 
computed (see for example Supplementary Fig. S5b). When gaps exist in observations they are also introduced 
to G-20CR and G-E20C, so that the trend comparison considers exactly the same period. We also compare 
observed trends with trends from all five GSSR reconstructions, including an ensemble mean (G-20CR, G-E20C, 
G-EInt, G-Merra, and G-E5, and G-EnsMean) for the 1980–2010 period where all datasets overlap (Figs. 9, 10) 
and (near-)complete observations are available for many tide gauges. Results are aggregated for five regions 
(Europe, US east Coast, US west Coast, Japan, and Australia) (Fig. 11).

Finally, we compute trends in annual storm surge frequency for G-20CR and G-E20C during the 1930–2010 
(2015) and 1950–2010 (2015) periods. Trends are derived for the number of annual exceedances over the 95th 
percentile threshold (calculated from the reconstructions over the 1930–2010 (2015) period(s)). We use a 3-day 
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window to decluster daily maximum surges that are above the 95th percentile threshold. We group tide gauges 
into eight different regions across the globe and derive the regional time series of annual number of extreme 
surges (> 95th percentile) by averaging them over the tide gauges within each region before fitting a linear 
regression model and adjusting for heteroscedasticity and autocorrelation. We also compare frequency trends 
from reconstructions and observations and test whether they are significantly (5% level) different from each 
other using the same approach as outlined above for comparing observed and reconstructed trend magnitudes.

The Global Storm Surge Reconstructions (GSSR)31 (http:// gssr. info) is a publicly available database that contains 
five daily maximum storm surge reconstruction datasets derived by forcing five climate reanalyses into a data-
driven storm surge  model47. The surge reconstructions obtained after incorporating the change point analysis 
as well as all change point analysis plots can be accessed at (http:// gssr. info/ chang epoint). Trend analysis results 
for all tide gauges are available at (http:// gssr. info/ trends).
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