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SURVEY DESCENT: A MULTIPOINT GENERALIZATION OF
GRADIENT DESCENT FOR NONSMOOTH OPTIMIZATION"

X.Y. HANT AND ADRIAN S. LEWIST

Abstract. For strongly convex objectives that are smooth, the classical theory of gradient de-
scent ensures linear convergence relative to the number of gradient evaluations. An analogous non-
smooth theory is challenging. Even when the objective is smooth at every iterate, the corresponding
local models are unstable, and the number of cutting planes invoked by traditional remedies is diffi-
cult to bound, leading to convergence guarantees that are sublinear relative to the cumulative number
of gradient evaluations. We instead propose a multipoint generalization of the gradient descent itera-
tion for local optimization. While our iteration was designed with general objectives in mind, we are
motivated by a “max-of-smooth” model that captures the subdifferential dimension at optimality.
We prove linear convergence when the objective is itself max-of-smooth, and experiments suggest a
more general phenomenon.
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1. Introduction. To approach our target—a fast local iteration for nonsmooth
optimization—Iet us recall, as motivation, the classical foundations of gradient descent
(GD). For some function h, denote the linear approximation of h centered at some
differentiable iterate T by
8 (z) = (@) + V(@) (- 7),

x

where Vh(-) is the gradient of h. When h is smooth, given a step-size %, the canonical
GD step 27 = :E—%Vh(:%) produces the global minimum of the following local model:

x

(L1) hEP(w) = £h(a) + 4 o — 7

The model h$P incorporates the local linear behavior observed around # through the
gradient Vh(Z) as well as the prior belief that the gradients themselves are L-Lipschitz
functions of z. After iterating, one then builds a new model around Z and repeats the
procedure. Indeed—on convex, L-smooth objectives—canonical results (as described
in standard texts such as [2, Chapter 10]) guarantee that every GD iteration will both
reduce the objective value and move closer to the true global minimizer of h.

When the Hessian is available, one can alternatively consider the Newton model

x

(1.2) hYewton () = (B () + % (z—3)" V(i) (z—I).

For first-order methods, however, the Hessian V2h(Z) is inaccessible. This motivates
popular quasi-Newton approaches such as the Broyden—Fletcher—Goldfarb—Shanno
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(BFGS) algorithm (as described in standard texts such as [39, Chapter 6]) that min-
imizes an approximation to (1.2) after estimating V2h(Z) using only gradient differ-
ences and then performs a line search.

For nonsmooth objectives, both of the above smoothness-hypothesizing quadratic
models—and their variants—are inadequate for generating theoretically guaranteed
improvement at every step: They fail to capture the discontinuity of objective gradi-
ents. Thus, some algorithms work instead with a richer class of model functions. For
example, one class of multipoint methods (discussed later in section 1.4) adaptively
refines a lower cutting-plane model of the objective through a series of “null steps”
around each iterate until it achieves descent in a “serious step.” Such methods work
well under reasonable conditions, finitely many null steps always sufficing to construct
a successful serious step. However, analyzing convergence relative to all steps (null
and serious) is challenging. Current bounds on the cumulative number of steps remain
sublinear due to the difficulty of uniformly bounding the number of “in-between” null
steps.

1.1. The survey descent iteration. In this work, we will propose and analyze
a new local survey descent iteration for nonsmooth objectives h.

DEFINITION 1 (survey descent iteration {(P;°)}r_,). Given a survey of k points,
S ={s;}F_,, at which the nonsmooth objective h is differentiable and a step-control pa-

rameter L, for each i = 1,...k, define the ith subproblem (P°) as
follows:
1 2
(1.3) min ||z — (si — Vh(si)>
z L 9
(1.4) s.t. Ei(m)—i—é\\m—sﬂ@ﬁé?(m) Y j#i.

We refer to the solving of all subproblems {(Pis) le as a survey descent iteration.

When (Pf) is feasible, we denote its optimal solution as s;. When all subprob-
lems are feasible, we say that the entire survey descent iteration is feasible and call
ST = {s{}%_| the outputs of the iteration; otherwise, we say the entire iteration is
infeasible. After a feasible iteration, we would update S+-S™ and repeat the survey
descent iteration on the updated survey.

Observe that, if k=1, survey descent reduces to GD since there is then only one
subproblem (P{) and survey point s;, the constraints (1.4) are then empty, and the
objective (1.3) of (Pf) is then minimized by s;— Vh(s1), which is the GD step from
s1. Thus, we can consider survey descent a generalization of GD.

1.1.1. Main results. When the function A is a maximum of & smooth functions,
we prove local linear convergence of the survey descent iteration to the minimizer un-
der reasonable conditions (Theorems 17-19). More precisely, we prove the following
local properties of survey descent given input surveys sufficiently close to the mini-
mizer of h:

e Survey descent iterations are always feasible.

e Survey descent outputs are always unique, and h remains differentiable at
these outputs.

e Surveys converge Q-linearly to arg min, h(z) when survey descent is applied
repeatedly.

e Survey function values converge R-linearly to min, h(z) when survey descent
is applied repeatedly.
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Here, we follow the terminology of [41, Chapter 9]. A major assumption for
our development and any practical implementation is the availability of a workable
choice of the survey size, k, a question associated with the “active structure” of h
at its minimizer. We discuss this choice throughout the exposition and present some
empirical heuristics in Remark 20.

1.2. Linear convergence and nonsmooth objectives. In Figure 1, we il-
lustrate a simple experiment on a max-of-smooth function objective suggesting linear
convergence. Figure 2 suggests that this behavior persists in higher dimensions. More-
over, Figures 3 and 4, which apply survey descent on objectives not expressible as the

Survey Descent on Simple Max-Function Example
hmax (2,y) = |z — y?| + 2% +2y°
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Fic. 1. Survey descent iteration on maz-function. We use survey descent iterations to
minimize the nonsmooth objective hmax(x,y) that achieves minimum value 0 at unique minimizer
Z = (0,0). We use step-control parameter L = 10 and initialize with survey points s1 = (0.9,1)
and s3 = (1.1,1). Panel (a) visualizes hmax. The survey descent iterates (blue and orange dots)
are shown in the xy-plane along with the x = y? curve (red) on which hmax is nondifferentiable.
Panel (b) shows the location of iterates in the xy-plane where darker colors correspond to later
iterations. Panel (c) shows the step-size (the magnitude of the difference between two consecutive
iterates) at each iteration. Panel (d) shows the function value of the iterates. Iterates and function
values converge linearly to global minimizer and minimum, respectively. Both survey points, s1 and
s2, remain on the same smooth piece of the objective throughout the optimization. Sections 24
will theoretically derive these behaviors on objectives that are the maximum of smooth functions—of
which hmax s a simple example.

Survey Descent in Higher Dimensions
hy (z) = max, (aiz + 2T A;x) zeR"” k=n/5

for random vectors a; and positive semidefinite matrices A;
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Fi1Gc. 2. Panels plot the best objective values over 25 iterations, on 5 instances, for dimension
n =100, 250, 500. The initialization heuristic always chose the true number of components, k, as the
survey size without a priori information. The data A; = CiTCi and a; were generated from square
matrices C; and vectors with standard Gaussian entries, the set {a;} being adjusted to ensure that
its convex hull contains zero, giving the optimal solution z* = 0.
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Survey Descent (with BFGS init.) on Non-Max-of-Smooth Objective

x oy z
hue (z,y, 2, w) = MaxEigenvalue | |y —z w
z w -1
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Fic. 3. Survey descent of non-max-of-smooth objective. We use survey descent iterations
with step-control parameter L = 10 to minimize hpyg with minimum value 0 at minimizer T =
(0,0,0,0). hprg is nonsmooth and not expressible as a mazimum of smooth functions, as is clear by
noting hyp(x,y,0,0) = \/x2 + y2. To create an initializing survey, we run 20 preliminary iterations
of BFGS ezactly as described in [31] starting from (1,1,1,1). We then chose both the size of a
initializing survey—3 points—as well as the survey points themselves through an empirical heuristic
based on the dimensionality of the BFGS iterate gradients. The left and right panels plot the objective
values and step-sizes (the magnitude of the difference between two consecutive iterates), respectively,
of each survey point during the survey descent iterations. After some initial fluctuations, we see the
objective value and iterates of all survey descent survey-iterates converge at stably linear rates to the
optimum. Thus, survey descent displays desirable performance even on an objective not captured by
the theory in sections 2—4.

maximum of smooth functions, suggest that survey descent may retain this linear con-
vergence behavior even on more general nonsmooth functions, hinting at its potential
as a local nonsmooth, minimization technique.

Many popular first-order methods exhibit empirical linear convergence on non-
smooth objectives. For example, our Figures 5 and 6 illustrate the linear convergence
of BFGS when minimizing two simple nonsmooth objectives, and [31, 32] explicitly
discuss this aspect of the algorithm. Similarly, the experiments of [47] show that first-
order multipoint methods also display linear convergence when applied to a variety
of nonsmooth machine learning tasks.

However, these behaviors are thought-provoking because modern nonsmooth, con-
vex optimization theory has typically only proven that canonical first-order methods
converge sublinearly when smoothness assumptions are absent—even in the pres-
ence of desirable properties such as strongly convex objectives: For example, see
[38, Chapter 3.2] or [2, Chapter 8] that analyzes the subgradient method as well as
[22] that analyzes mirror descent. Even for popular multipoint methods designed
for nonsmooth optimization, previous theoretical guarantees have remained generally
sublinear (discussed later in section 1.4). For comparison, in smooth settings, GD
variants possess well-recognized linear convergence guarantees of on L-smooth and
d-strongly convex objectives [2, Theorem 10.29]. Our derivation of local linear con-
vergence for survey descent on nonsmooth objectives will directly connect to these
smooth GD results.
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Survey Descent on Larger Eigenvalue Optimization Problems

hMes (z) = MaxEigenvalue O3x3 Osx7 + 24110 xiAi) z € R*
O7x3  —Irxr

for random symmetric A4; € R!0*10
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Fic. 4. Survey descent on larger eigenvalue optimization problems. We use survey descent to
minimize four instances of hyge. The set {A;} = {CT + C;} was generated from square matrices
C; with standard Gaussian entries, shifted to ensure linear independence and an optimal solution
at zero. The initialization heuristic always chose dim(0hyp2(0))+1 =6 as the survey size without
a priori information. Panel (a) plots best objective values over 75 iterations. Panel (b) shows two-
dimensional projections of Ohyrg2(0) formed by sampling 10° gradients within a ball of radius 1078,
The outputs do not cluster around finitely many points, confirming heuristically that the instances
are not mazx-of-smooth.

Simple Max-Function Example with BFGS
hmax (z,y) = |z — y?| + 22 + 242
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Fic. 5. Differentiability and linear convergence on nonsmooth objectives. We use BFGS to
minimize the nonsmooth objective hmax(x,y) that achieves minimum value 0 at unique minimizer
z = (0,0). BFGS is implemented ezactly as described in [31], initialized at (1,0.5) and ran for 30
iterations. Panel (a) visualizes hmax. It shows the iterates (blue dots) in the xy-plane as well as
the x = y? curve (red) on which hmax is nondifferentiable. Panels (b) and (c), respectively, show
the gradients at and locations of each iterate with darker colors indicating later iterations. Panel
(b) shows gradients form a convex hull that empirically resembles Ohmax(0,0)’s one-dimensional
structure. Panel (c) (in symmetric-log scale) shows that iterates lie within smooth subregions of the
objective. Panel (d) records the linear convergence of the objective value.
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Simple Elliptical-Norm Example with BFGS

hcllipsc (:L'v y) =V x? + 2y2
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vt x Iteration
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Fic. 6. Differentiability and linear convergence on nonsmooth objectives. We use BFGS to
minimize the nonsmooth objective Rellipse (%, y) that achieves minimum value 0 at unique minimizer
z = (0,0). BFGS is implemented exactly as described in [31], initialized at (1,0.5) and ran for 30
iterations. Panel (a) visualizes hellipse- It shows the iterates (blue dots) in the xy-plane as well
as the origin (red) at which hmax is nondifferentiable. Panels (b) and (c), respectively, show the
gradients at and locations of each iterate with darker colors indicating later iterations. Panel (b)
shows gradients forming a convex hull that empirically resembles Ohenipse(0,0)’s two-dimensional
structure. Panel (c) (in symmetric-log scale) shows all iterates lie within differentiable regions of
the domain. Panel (d) records the linear convergence of the objective value.

1.3. Motivation of survey descent. Before the formal analysis, we first de-
scribe and motivate some characteristic features within survey descent’s design. First,
note that the subproblems are simple quadratic programs with Euclidean ball con-
straints. Thus, they are efficiently solvable using second-order conic solvers. When all
constraints moreover hold with equality, as occurs in our local convergence analysis,
solving them further simplifies to routine linear algebra.

Next, the differentiability of input survey points is inspired by the common “dif-
ferentiability of every iterate” behavior exhibited by a variety of popular first-order
methods! when applied to nonsmooth objectives. To illustrate, Figures 5(c) and 6(c)
show that the BFGS iterates minimizing the figures’ nonsmooth objectives are always
differentiable. This behavior also manifests in [31], for example, when minimizing
the nonsmooth Rosenbrock and Chebyshev-Rosenbrock objectives. Recent works
have begun developing theoretical explanations for this occurrence. In particular, [3]
proved that, under standard assumptions, (stochastic) GD iterates are differentiable
with probability one? even when objectives are nonconvex. Thus, we can easily imag-
ine creating a survey of points at which A is differentiable by running BFGS or GD
for a few initializing iterates and collecting some subset of those iterates. (For further
discussion of implementation, see section 5.)

Lastly, the size k of the survey itself relates to the dimension of the subdifferential
of h at its global minimizer Z (assuming it exists), while the individual points {s;}¥_,
“survey the landscape” of h near . The next two subsections elaborate on these
intuitions.

IBundle methods (discussed in section 1.4) are a notable exception. Their iterates often land
exactly on the nonsmooth points of their associated objectives as a consequence of minimizing their
underlying cutting-plane models.

2We distinguish the notion of “almost all iterates of a first-order method are differentiable” from
the also common notion of “almost all points in the domain are differentiable” —describing how all
locally Lipschitz functions are nondifferentiable on an at most measure-zero set in their domain. The
latter result is often called Rademacher’s theorem.
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1.3.1. Dimension of the subdifferential. The dimensionality of subdifferen-
tials captures key nonsmoothness properties. For example, smooth functions possess
everywhere zero-dimensional subdifferentials since they contain only one point: the
gradient. In comparison, Figure 5 shows an objective possessing a one-dimensional
subdifferential at its minimizer characterized by

o e (L]

where conv(-) denotes the convex hull. The objective is actually “partly smooth”: It
has a “smooth edge” in the [0, 1]7-direction orthogonal to Ohyayx(Z). Partial smooth-
ness is formalized and explored in detail by [30] and follow-up works.

Similarly, Figure 6 shows an objective where the subdifferential at its minimizer
is a two-dimensional ellipse in the R? domain:

(1.6) Ohellipse (T) = {(a@y) c 2?4 %yQ < 1} .

The “full-dimensionality” of Oheiipse(Z) captures the fact that Aenipse is nondifferen-
tiable in all R? directions.

Our focus on subdifferentials is also empirically motivated: When employing first-
order methods to minimize some objective h, the gradients of iterates near the global
minimizer Z typically have a convex hull whose dimension empirically coincides with
the dimension of the subdifferential Oh(Z). Figures 5(a) and (b) and 6(a) and (b)
demonstrate this behavior. Moreover, this phenomenon occurs despite none of the
iterates actually achieving the global minimum (Figures 5(c) and 6(c)). This is un-
surprising since Oh(Z) is the convex hull of the limit of gradients at nearby points [9,
Theorem 2.5.1]. This motivates the creation of a “survey” of points near Z such that
their gradients capture the dimensionality of Oh(Z). Introducing the max-of-smooth
model clarifies this intuition.

1.3.2. Max-of-smooth model. As is well known, Fenchel conjugacy allows us
to represent any continuous, convex function as the supremum of a family of affine
functions (see, for example, [6, Chapter 3.3]). More generally, continuous, convex
functions are instances of lower-C! functions, which are functions representable as
maximums of smooth and compactly parameterized functions.

DEFINITION 2 (lower-C! functions; [46], [10, Corollary 3]). A locally Lipschitz
function h : R™ — R is called lower-C' if, for every z € R", there exists a compact
parameterizing set T, a neighborhood X around T, and functions g : T x X — R such
that g(t,z) and V,g(t,x) are jointly continuous in t and x and if

1.7 h(z)= t,z).
(1.7) () =maxg (t,2)
Lower-C functions are exactly the locally Lipschitz and approximately convex func-

tions, where “approrimately convex” relaxes the canonical notion of convexity and is
defined in [10].

Lower-C' functions subsume the entire class of continuous, convex objectives.
Definition 2 implies that, for any global minimizer Z of the objective h, there exists
a family of functions {g(¢,-) }+er satisfying (1.7) at  =Z. This family also allows us
to describe h’s subdifferential at its minimizer:

(1.8) Oh(Z)=conv{V,g(t,z): teT'},
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where T' = {t: g(t,Z) = h(Z)}. For more details on (1.8), see [44, Theorem 10.31].
This characterization inspires us to consider a structurally revealing approximating
model for convex, nonsmooth objectives where T is finite and T =T". In this setting,
(1.7) reduces to a maz-of-smooth function:

(1.9) fa)= max_filw)
where k is a finite integer and each f; is a differentiable function. Just like in classical
analyses of GD (see, for example, [2, Chapter 10.6]), we will assume that each f; is a
C? function and strongly convex.

When the objective is a max-of-smooth function (1.9), we could “survey” the
landscape of f by somehow obtaining a point, s;, from each region R; = {x :
fi(z) > fj(z) Vj # i} for all i. If the gradients {Vf;(Z)}F_; are moreover affinely
independent—meaning 7 is a “nondegenerate” minimizer—and the s;’s are sufficiently
close to Z, the dimension of the convex hull of the survey gradients, conv({V f;(s;)}£_,),
will coincide with the dimension of the objective’s subdifferential at its minimizer,
0f(z) = conv({V£;(Z)}£_,). Moreover, the dimension of df(Z) is then k—1. In other
words, it is exactly one less than the size of the survey.

Next, observe from Definition 1 that each survey descent subproblem simply per-
forms one projected GD step onto the feasible region defined by (1.4). The max-of-
smooth objective intuitively motivates this region. In this case, when survey descent
is equipped with an initializing survey consisting of one point in each R; as discussed
above, f(s;) = fi(s;) and Vf(s;) = Vfi(s;) for all i. Then, since the components
fi are L-smooth, the constraints for the ith survey descent subproblem (1.4) restrict
solutions to a region where the linear lower bound of f; is at least the quadratic upper
bounds of the remaining f;, j # ¢. Therefore, when the ith subproblem is feasible,
its output s would necessarily remain within R,. Section 2 formalizes these ideas
in detail, but their geometry is simple: Figure 1 shows the behavior of survey de-
scent on a simple max-of-smooth objective on R?, while Figure 7 presents an abstract
illustration of the above intuitions.

Fic. 7. Intuition of survey descent. Abstract depiction of survey descent on maz-of-smooth
objectives (1.9) with k = 2 components and using two survey points (circular dots). Each survey
point, s;, is associated with one f;-component of the objective fori € {1,2}. In the ith survey descent
subproblem, a gradient step (arrow) from the ith survey point is projected onto the subproblem’s con-
straints (illustrated with dashed-line boundaries). The constraints (1.4) prevent subproblem outputs
(stars) from crossing the “nonsmooth boundary” (red line). In other words, the ith output must
remain in the subregion of the domain where the f;-component is “active.”
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Despite our discussions of {f;}¥_,, note the very important feature that perform-
ing the survey descent iteration on max-of-smooth function objectives does not require
access to individual f;’s. It only involves function value and gradient evaluations of
the overall objective f. Moreover—although survey descent is intuitively motivated by
the max-of-smooth function objective and possesses a structurally revealing local lin-
ear convergence theory on these objectives (sections 2—4)—it is broadly implementable
on any objective function. Indeed, survey descent still displays promising behavior
even on objectives not expressible as the maximum of finitely many smooth functions.
For instance, Figures 3 and 4 show the visibly linear convergence of survey descent on
max-matrix-eigenvalue objectives whose eigenvalues are nonsmooth functions of the
input variables.

1.4. Related works. A well-known example of [37] shows sublinear worst-case
global complexity for any first-order method for arbitrary nonsmooth convex objec-
tives. That example focuses on an initial sequence of iterates of length less than the
dimension of the domain. In contrast, we prove that survey descent achieves linear
convergence, but only locally and asymptotically, and on an interesting subclass of
objectives.

Also worth noting for comparison is classical work on minimizing the maximum
of finitely many given smooth functions f;, where one can access each component f;
rather than just their pointwise maximum, as in survey descent. Such problems are
standard in classical optimization, easily solved by reduction to classical nonlinear
programs. [24] developed a more sophisticated two-phase method, first identifying
a search direction by solving a quadratic program built from the function values f;
and gradients Vf; and then performing a line search. More recently, [38, Scheme
2.3.13] computes a linearization of each f;-component, {Eé” (z)}k_,, at some iterate
Z; performs a proximal-point iteration on max; K? (2); and then determines the next
iteration using a carefully designed momentum step. Both [24] and [38, Scheme
2.3.13] achieve global, linear convergence on strongly convex, max-of-smooth function
objectives.

At large scale, motivated by modern machine learning applications, [8] describes
a more sophisticated approach. Using function value and gradient evaluations of the
fi-components, [8] implements a ball regularized optimization oracle (BROO) that
returns the minimizer of the objective—subject to a proximal-regularizer—within a
ball around a queried point. Using this BROO, [8] then designs an efficient minimiza-
tion procedure by repeatedly updating an iterate using subroutines of line searches
and BROO calls. [8] prove global, sublinear convergence rates for this procedure on
max-of-smooth function objectives.

Within the derivative-free setting, researchers have also studied max-of-smooth
objectives [21] as well as generalizations into (potentially nonconvex) objectives that
are the composition of multiple component functions [23]. By leveraging careful line
searches and (approximations to) active set information at individual iterates, these
methods guarantee convergence using only function-value evaluations of individual ob-
jective components without any need for gradient evaluations. Convergence rates are
challenging to derive in derivative-free settings and are generally sublinear where they
do exist (for example, in [19]). For more detailed discussions on works investigating
such derivative-free methods, see [23].

[24, 38, 8] and the derivative-free methods above differ from survey descent since
they crucially rely on access to the individual components of a max function objec-
tive. In comparison, survey descent only assumes a first-order oracle that returns the
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function value and gradient of f without access to any component f;’s. Thus, survey
descent is implementable on any objective, even those without max-of-smooth struc-
ture, suggesting a promising future research direction. Also notable is the distinction
in computational style: survey descent subproblems consist of k parallel projected
GD steps, updating an entire collection of survey points rather than only one iterate
as in the works above.

On the other hand, more sophisticated structural oracles can lead even to super-
linear convergence on nonsmooth objectives, as remarked in several prior works. For
eigenvalue optimization, [42] and [40] develop quadratically convergent procedures by
incorporating in particular a Hessian oracle within a nearby U-subspace [29]. On
general nonsmooth objectives, using U/-Hessians and proximal operators on the ob-
jective, [35] presents a VU-algorithm whose serious steps converge superlinearly. In
contrast, although survey descent conceptually relies on a max-of-smooth model, its
implementation is general, requiring only function and gradient evaluations.

Among multipoint methods, one popular class for nonsmooth optimization is
bundle methods [27, 49], which possess a long, successful history (described in [36]). In
its most transparent proximal form, they rely on a multipoint collection (a “bundle”)
to build a piecewise-linear, cutting-plane model that is minimized in each step with a
proximal operator around a current iterate (a “center”). If the proximal-step outputs
a point that sufficiently decreases the function value, the method takes a “serious
step” updating the center with the outputted point; otherwise, the method takes a
“null step” which does not update the center but adds the outputted point to the
running point collection to improve the cutting-plane model.

The related “level-bundle” approach [14, 25, 28] also shares some similarities with
survey descent. Each iteration projects the current center onto a sublevel set for the
current cutting-plane model, the update being either accepted if the objective value
decreases satisfactorily—a serious step—or rejected, in which case the cutting-plane
model is updated. The projection ingredient is similar in both methods, but survey
descent solves k parallel subproblems at each iteration, whereas level-bundle methods
perform projections sequentially, enforcing objective decrease for serious steps.

Bundle methods work well in practice [5, 18, 45, 48] and enjoy a robust global
convergence theory: see [13] for a comprehensive survey. In particular, relative to
the number of serious steps, bundle methods converge linearly on convex objec-
tives whose subdifferentials satisfy certain growth conditions away from the mini-
mizer, as a consequence of a more general framework of [43] and developed further
in [1).3

However, relative to both null and serious steps, prior published studies [15, 16,
26] have only derived sublinear convergence guarantees, even when the objective is
strongly convex (although [12] is a recent promising advance). Two recent works
[33, 34] unify and present optimal iteration complexities for proximal bundle meth-
ods, all of which converge sublinearly, even on strongly convex objectives. In con-
trast, we show in this paper that the survey descent iteration—at least in the case of
strongly convex, max-of-smooth function objectives—achieves a local, linear conver-
gence rate.

3Two independent related works [1, 12] were announced recently. The first is a flexible, unified
analysis of linearly convergent descent methods on weakly convex objectives, in particular covering
the serious step sequence for bundle methods. A transparent analysis of survey descent in this
framework is not immediately apparent; the original approach we present here is direct. The second
announcement presents an interesting blackbox randomized first-order method that is nearly linear
convergent with high probability.
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Finally, we remark that survey descent surveys and bundle method bundles serve
different functional roles. In bundle methods, null steps query points sequentially to
improve the objective model around the center. In survey descent, there are neither
auxiliary null steps nor a center. Instead, a fixed-size survey of points is cautiously
updated in parallel trying to mimic the steady progress of GD.

2. Survey descent on the max-of-smooth objectives. We are particularly
interested in convex objective functions f with a nondegenerate minimizer x:

(2.1) Z=arg min f(x) and 0 € relint (0f(7)),

zeR”

where relint(-) denotes the relative interior. We further assume the following structure
around Z.

DEFINITION 3. A function f:R"™ — R is a strong C? maz function if it is locally
expressible near T as

(2.2) flz)= max fi(x),

i=1,...

where k is some finite number, the components {f;}¥_, are C?-functions satisfying
fi(Z) = f(z) for all i, their gradients {V f;(Z)}F_, are affinely independent, and their
Hessians V2 f;(z) are positive definite. As a consequence, there exists constants §, L>0
such that their Hessians satisfy

(2.3) SI V2 f(x) LIV i=1,... k,

for x near T—where I is the n X n identity matriz.

Our analysis in this paper is entirely local, but we assume for the rest of this paper
that f is a strong C? max function with nondegenerate minimizer z. For simplicity,
we also assume that the properties in Definition 3 hold globally for all x € R™. In this
setting, we refer to k—which is necessarily unique—as the degree of f. Moreover, note
that (2.3) implies all components {f;}¥_ | are L-smooth, both f and its components
are d-strongly convex, and T is f’s unique minimizer.

To study survey descent (Definition 1) on the objective f, we choose the above-
presented L as the step-control parameter and define the following notions of wvalid
and minimizing surveys.

DEFINITION 4 (S, X-surveys and validity). For the objective f, define a survey
as a matriz S = [sy,...,s,] € R™F consisting of k columns? (the “survey points”),
where k is the degree of f; valid surveys as surveys satisfying fi(s;) > f;(si) for all
i # j; and the minimizing survey as X = [7,...,Z] whose survey points are all equal
tox.

On the space of surveys, we adopt the norm

(2.4) ISI=Nlls1,- - sl

2,00 = 10X [lsily,

4We can equivalently consider S as a set {s; 5:1' We will use the matrix and set interpretations
interchangeably.
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which allows us to quantify the distance between a survey S from X using |S—X||,
an intuitive measure of the distance to the furthest survey point. The precise choice
of norm is immaterial to our computations and theory.

Given a valid S sufficiently close to X, survey descent exhibits many desirable
properties when minimizing f. As a preliminary, note that (2.1) and Definition 3
imply there exists unique critical weights {\;}¥_; >0 such that

(2.5) i =1,

-

i=1

>~1

8l

Vfi(z)=0.

k
(2.6) >
=1

As we will see, the Lagrange multipliers of survey descent subproblems will lie “close”
to {A\;}%_; > 0, while the subproblem outputs {s; }¥_; will lie near z. To character-
ize the order of magnitude of these distances, we adopt the “Big-Oh” notation. In
particular, for a mapping g : E=F between two Euclidean spaces and letting || - ||P
denote an arbitrary Euclidean norm raised to the pth power, we use the notation
g(z) = O(||z||”) to indicate the property that there exists a constant K > 0 such that
llg(x)]| < K|jz||” holds for all small z. By itself, we let O(||z||P) denote an element of
the class of all functions with this property.

With this terminology, we present our primary theoretical setting as well as our
first result.

SETTING A (local analysis of survey descent). Consider an iteration of survey
descent on a strong C?> max function objective, f, with a survey S that is valid and
sufficiently close to X. For i=1,...,k, denote the output of the ith survey descent
subproblem by s .

THEOREM 5 (local feasibility, uniqueness, tightness, and smoothness of survey
descent). Assume Setting A. Then for all i, the survey descent subproblem (Pf) is
feasible and has a unique solution s;r, which satisfies all the constraints with equality,
with unique associated Lagrange multipliers )\;- for the jth constraint within the ith
subproblem (for j #1i). The solutions and multipliers depend smoothly on the input
survey S and satisfy
27 sF(S)=z+0(|S=X|) and A S)=X+O0(|S—X|) Vj#i.

Proof. The proof follows from a routine analysis of the subproblem’s first-order
optimality conditions combined with the implicit function theorem. ]

We refer to Appendix B of [20] for a more direct and elementary proof that is
computationally revealing. In particular, it shows we can compute s} (S) and A5(S)
entirely with linear algebra routines and a scalar square-root.

Theorem 5 plays a key role in deducing many theoretical results in this pa-
per. Most immediately, under the assumptions of the theorem, the output survey
St = {5}k, of a survey descent iteration will also be valid. First, note that f is
differentiable at every valid survey point and the associated gradients satisfy

(28) Vf(Sl):Vfl (Sl) V’L'Zl,...,k‘,

which leads to the following observation.
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OBSERVATION 6 (survey descent iterations on max-of-smooth objectives). Assume
that S is a valid survey for the objective f. Then, for all i, the ith subproblem (P?)
of survey descent (Definition 1) is equivalent to

T — (52 - %Vfi (Sz'))

L
(2.9) st 00 () + 5 lle = silla < tli(a) v j #i.

2
min
xT

2

Using Theorem 5 and Observation 6, we deduce the aforementioned validity of
ST.
THEOREM 7 (preservation of validity). Assuming Setting A, the output survey

ST of a survey descent iteration is valid.

Proof. Consider any fixed i. If s} = s;, then the fact that fi(s]) > f;(s;") for all
j # 1 immediately follows since Theorem 5 assumes S is valid.

Now, consider the s;” # s; case. By Theorem 5, s; satisfies the constraints of
(P?) with equality. Using Observation 6, we express this as

. 3 L o
(2.10) Ei(sj’)zﬁﬁ;(sj‘)—kg||sj'—sJH§ Y j#£i.

The §-strong convexity of f; implies

— 7S; K2

. 1) .
fi (s) >0di(sh) + 3 s+ — 51”2 >€£z(sj),

where the strict inequality follows from sj # s;. Next, by the L-smoothness of
{f; };?:1, the right-hand side of (2.10) is a s;-centered quadratic upper bound of f;
evaluated at s;r. Thus,

L
(s +5

D45 lst = silly= 15 (s7) Vi

Therefore,

, ‘ L .,
Ji(s) > s = th (s + 5 st = silly = £ () Vi i
This completes the proof. 0

3. Connecting survey descent and GD. We will build a local convergence
theory by connecting survey descent to projected GD steps on the smooth components
{fi}k_, of the objective f. To form this connection, we first identify the affine U-
subspace possessing the following equivalent characterizations:

(3.1) U=Z+span{Vf;(z) — Vfi(z):1<i,j<k}"
k k 1
(3.2) =T+ {Z%sz(m) : Z’yi ZO}
(3.3) =z+{zeR": V(@) z=Vfi(@) 2 V1<ij<k}.

U is so named because the Z-centered, linear subspace {U/ —z} is commonly called
the “‘U-subspace” [29] and captures the directions in which f is smooth around Z. The-
orem 11 will show that the outputs of survey descent subproblems are approximately—
up to an O(||S — X||?) term—a convex combination of U-projected GD steps on the
smooth components {f;}5_;.
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To prove Lemmas 8-10 leading to Theorem 11, we adopt the following notation
for the gradients and Hessians of the components of f (Definition 3):

(3.4) a;=Vfi(z) and A, =V3fi(z)Vi=1,... k.

Additionally, assuming ¥ = 0 without loss of generality will simplify many of our
proofs. In this case, the second-order Taylor expansion of f; around zero is

(3.5) fi(z)=f(0) +al x + %LETAZ':L‘ +r(x)Vi=1,...,k,

where r;(z) is a residual function.

LEMMA 8. For all i, the residual function r;(x) in (3.5) satisfies ri(x) = O(||z|?)
and Vri(z) =O(||z|)).

Proof. r;(z) = O(||x||?) follows directly from Taylor’s theorem. Next, observe
that

ri(x) = fi(r) — (f(O) +alz+ ;a:TAia:> .

Thus, since f; is C2, the residual 7; must also be C?, so its gradient and Hessian are
well defined. This implies V7;(x) is then C. Taylor expanding Vr; around zero then
gives the desired Vr;(z) = O(||z||) after observing that Vr;(0) is the zero-vector and
V27;(0) is the zero-matrix (since r; is the residual of the Taylor expansion of f; around
z€ero). d

We now prove and present the main results of this section.

LEMMA 9. Assume Setting A, and suppose T=0. Then, sj satisfies

1 Ai
Palsi]=5=5Pa [S ARk (Si)}

Aj 1 .
2 55 a [ —Lv,msj)} +O(ISI?) Yi=1....k,
J#i !

where Py is the projection operator onto the U-subspace (3.1).

Proof. Without loss of generality, assume 7 = k. Scale the objective of problem
(2.9) by £, and consider the equivalent problem
min —

1
xr — (Sk - Zka (Sk))
(3.6) * v
s.t. @c; () + 3 lx — s]||§ < K{: (x) V j#k.

I 2

2

By Theorem 5 and Observation 6, there exist unique Lagrange multipliers {}; }5;11
(we omit the k-superscript for simplicity) satisfying the following first-order optimality
condition for (3.6):

k—1

0=L (8Z - <3k - %ka (Sk))> +) N (Vi (s5) + L (sf = s5) = Vi (k) -

j=1
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After rearranging this gives
k—

(3.7) 0_L<1+Z)\j>s L<sk+z/\s])+kask Z (Vi(s5) = Vfr(sk)).

j=1 j=1

Define the following scalars:

k—1
(3.8) Me=1-) "),
j=1
(39) ujzj\j—)\jijl,...,k.

For j # k, Theorem 5 gives p; = O(||S||). For j =k, combining (3.8)-(3.9) with
(2.5) implies

k-1

=M= | 1=D N | =X = [1=D_A | +OSIh=0(ISsI)-

j=1
Thus,
(3.10) 1y =O(ISI) ¥ j=1,....k.

Substituting (3.9) into (3.7), applying identities (2.5)—(2.6), collecting O(||S||?) terms,
and solving for sﬁ gives

(3.11) sh = ! s —&Vf (sk) +ki1 A s-flVf-(s-)

' A D Vi L Zo-n 7 LY

1
+ (2 )\ Zﬂjvf7 +O(||S|| )
Adopting the notation (3.4) and applylng the Taylor expansion (3.5), observe
k
(3.12) Z/iavfj (s5) Zﬂy (aj + Ajsj 4+ Vrj(s;)) Zﬂjay +0 (”S” )
Jj=1 j=1 j=1

where the last equality follows from (3.10) and Lemma 8. Substituting (3.12) into
(3.11) then leads to

(3.13) =1 [ e Vf s }:21 A { Vf(s )}
' FTo o, | k (s1) — 2 X EAN
1 N )

‘*‘m;lhaa +O(IISI1%) -

N——

()
Next, again combine (3.8)—(3.9) with (2.5) to deduce

Z iAf)\ =0.

Jj=1 J=1

Then, it follows from (3.2) that Py{(x)] = 0. The desired result then follows from
applying P;; to (3.13). d
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LEMMA 10. Assume Setting A, and let =0. Then, s satisfies

P [sH]1=0(ISI?) Vi=1,...,k,

where Pr1 is the projection operator onto the orthogonal complement of the U-subspace
(3.1).

Proof. Consider any fixed i. By Theorem 5, the constraints of (P°) are tight.
Thus, by Observation 6, sj‘ satisfies

fj (S]) + Vf] (S]')T (Sj_ — 3]’) + £ Hsj_ — 83”; = fz (Sl) + sz (SZ)T (Sj_ — Si) V j 75 1.

2
Using (3.5) in the above gives, for all j #1,
1 . L
FO0) +ajsj+ 55 Ajsj 1 (s5) + (a5 + Agsj + Vri(s)))” (57— s5) + 5 |5 = 54|
1
= f(0) +a s;i + islTAisi 1 (80) + (@i + Aisi + Vri(s) (s — i) -
After simplification and rearrangement, we obtain
(3.14) (aj — ai)T Sj_ =— (Aij — Ajs; + V’I“j (S]) —Vr; (Sl))T Sj_

L
- llst —silly = s (s3) + i (s0) ¥ 5 #i,

where we define the functions
1
¢j(x) = —§xTij +ri(@) = Vri@) Tz V¥V j=1,...,i.

By Lemma 8, ¢;(z) is O(||z||?). Since we assume Z =0, by Theorem 5, s = O(||S||).
We then deduce that all terms on the right-hand side of (3.14) are O(||S||?):
(3.15) (aj—a;)" s =0 (|S|?) ¥ j#i.
By (3.1),
HL:span{aifaj :1<4,j<k}=span{a; —a;: j#i}.

Combined with the affine independence of {a; };?:1 (Definition 3), the above implies
{—Cff — a;}j»; forms a basis for HL. Therefore, we can express the projection onto

U in terms {a; — a;}j»;. The result now follows from (3.15) and standard linear
algebra. 0

THEOREM 11 (gradient descent approximation of survey updates). Assume Setting
A. Then the solution of the ith survey descent subproblem satisfies, for all i,

(3.16) st=s+0(|s- ),
where we define
1

% j#i

Aj
2N\

Py {Sj - inj(sj)} ,

and Py is the projection operator onto the U-subspace (3.1).
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Proof. Without loss of generality, assume that £ = 0. Then, the desired result
follows from decomposing s; = Pylsi] + Py [s{] and applying Lemmas 9 and 10.
We can deduce the general T # 0 case with the change of variables z<(x — ). O

4. Local linear convergence of surveys. Observe that the constituent terms
of §; in (3.17) are U-projected gradient steps on the L-smooth and §-strongly convex
component functions {f;}*_; (Definition 3). Thus, we can apply classical theory on
projected GD described in standard texts such as [2, Theorem 10.29]. The idea of
tracking iterates relative to their projections onto some nearby “active” manifold is
familiar in nonsmooth optimization. Recent examples include [7, 17, 11].

THEOREM 12 (projected GD behavior). Assume that S is a valid survey for
the strong C? max function objective f. Then, the following holds for all i and any

constant L >L:
1 17 d )
[Pa s 3vne] =2 <(1-F) sl

i (Pafsi - 20 ) - 5@ < £ (1- ) o2l

Proof. Consider any fixed . It is easy to check that z = argmin_ g fi(x) using
first-order optimality conditions combined with (2.5)—(2.6) and (3.3). The desired
result then follows from classical projected GD convergence results (given in standard
texts such as [2, Theorem 10.29]) after observing that i is convex and f; is L-smooth
and é-strongly convex. ]

To prove local linear convergence, we show below that the survey points contract
towards Z. The corresponding contraction ratios will depend on the minimum critical
weight defined as follows:

(4.1) Amin = min \; > 0.

LEMMA 13. Assume Setting A, and suppose T = 0. Then, the following must
hold:

Amind
~ 112 min .
il < (1= 2220 o s ¥ i= 1ok

where §; and Amin are as defined in (3.17) and (4.1), respectively.

Proof. Consider any fixed i. Then,
2

-2 1 5\1- A 1
1512 = PP A {31 -7 Vi (Si)} + ; 5 _Jj\i Pu Kin Lij(Sj)}
¢ 2
(Substitute (3.17))
5 2 5 2
1 Ai Aj 1
< _ o Y Ny I =g — = (g
=90, Py [51 I V fi (Sz)} , +§ 2— N Pu [Sy vay(sj)] ,
(Convexity)
1 5\1(5 2 o 5‘]’ 2
< (1 L)nsinﬁ(lL);%Xinsm

(Theorem 12 where L = XL)
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i 1 9 A )
§<1 L> 2/_\i5i2+;25\i”5j”2

Nnind ,
< (1-2220) max sl

)

This completes the proof. 0

THEOREM 14 (survey-norm contraction). Assume Setting A. Then the following
must hold:

— xmind _ —
w17~} < (1-2220) e sy 2l +0 (s - 7).

j=1,...,

where Amin is defined as in (4.1).

Proof. Without loss of generality, assume  =0. Consider any fixed i. By Lemma
13, 5, = O(]|S]|)- Then,

HSHE =5+ 0O (||S||2)||§ (Theorem 11)
= (13l +2 (3, 0 (IISI)) + O (IISII*)
j\miné
< (1 -7 )erllanHsJH% +O (ISII’) (Lemma 13).

The right-hand side is independent of 4, so taking the max over 7 on the left-hand side
leads to the desired result. We can deduce the general T # 0 case with the change of
variables z<(z — ). |

Theorem 14 implies that for input surveys S, sufficiently close to X', survey descent
outputs a survey St that is strictly closer to X. As a result, the feasibility and
validity guarantees of Theorems 5 and 7 will continue to hold in repeated applications
of survey descent iterations, allowing us to repeat the procedure indefinitely. Letting
N denote the nonnegative natural numbers, we formalize these ideas below.

PROCEDURE B (repeated iterations of survey descent). For the strong C_2 max
function objective f, assume S° is a valid initial survey sufficiently close to X, and
initialize t =0. Iterate the following steps:

1. Solve the survey descent iteration {(PS)}¥_, and denote the output S'+! =
(8)*.
2. Increment t <1t +1.
COROLLARY 15 (well-definedness of survey descent repetitions). Procedure B is
well defined: for eacht=0,1,2..., the survey descent iteration {(PS')}*_| is feasible
and produces a valid output survey.

Proof. For S° sufficiently close to X', Theorem 14 inductively implies that [|S**!—
X|| < ||St — X|| for all t € N. In other words, output surveys will always move closer
to X', and Theorems 5 and 7 continue to hold for survey descent iterations {(Pft) k
for all £ € N. Thus, Theorem 5 implies the feasibility of all survey descent iterations,

while Theorem 7 implies the validity of output surveys. ]

OBSERVATION 16. The proof of Corollary 15 more generally shows that, for all
t €N, all surveys St will remain sufficiently close to X. Thus, the conclusions from
Theorems 5-14 apply to every iteration of Procedure B.
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Having established that the repeated application of survey descent is locally well
defined, we now deduce the local Q-linear convergence induced by this procedure.

THEOREM 17 (Q-linear convergence of survey points). Procedure B satisfies the
following property:

St+1 - ‘)E ? xmind
(4.2) limsupM < (1 — ) ,
o s =] L
where Amin is defined as in (4.1).
Proof. By Theorem 14 and Observation 16, there exists K > 0 such that

Y, j\min(S S, %,
st — &) < <1 - L) IS'— Z|P + K||S' — |’ v teN.
Corollary 15 implies that S? is a valid survey. By Definition 4, X is not a valid survey
because f;(Z) = f;(z) for all 4,5. Thus, S'# X, so ||S* — X||? is nonzero and we can
divide both sides by it. We deduce

St+1 - ‘)E ? j\min(s >
HS (1—) +KH$t—XH VteN.
Is7 =[] L
For SY sufficiently close to X, this inequality guarantees that ||S*—X|| monotonically
_ < t+1_
decreases with ¢ and, in particular, | St—XH < A‘L“‘Ig‘s for all t € N. Thus, H <1

implying tlim |St—X|| = 0. Taking the lim-sup with t—oc on both sides of the above
—r00
inequality then gives the desired result. 0

Combining Theorem 17 with the L-smoothness assumptions (Definition 3), we
can immediately establish a loose R-linear convergence result on the objective values.

COROLLARY 18 (R-linear convergence of objective values, weak version). Con-
sider Procedure B. Then, for any K >max; ||V f;(Z)||2,
f(st») —f(E)SKHStf)EH Vi=1,...,k, and t € N.

3

Consequently, survey objective values { f(s!)}ien converge R-linearly to f(x) for alli.

Proof. The proof follows from the L-smoothness of the f;-components and a
routine application of the Cauchy-Schwarz inequality. R-linear convergence follows
from the Q-linear convergence of {||S'—X||};en (Theorem 17). |

Compared to classical GD convergence guarantees on smooth objectives [2, The-
orem 10.29], Corollary 18 is rather weak: Firstly, the upper-bounding sequence is
{||S*—X||}ten rather than the tighter {||S*—X||?};en seen in the smooth GD case;
secondly, the constant K depends on max; ||V f;(Z)|l2, which does not appear in
the smooth GD case. A stronger function-value convergence guarantee for survey
descent—more structurally similar to the aforementioned GD results—is indeed pos-
sible.

THEOREM 19 (R-linear vonvergence of objective values, strong version). Consider

Procedure B. Fiz K > /—\5—L (1 — %) Then,

FY) = f@) <K|S'—X|* Vi=1,...,k, and t € N.

K2

Consequently, survey objective values { f(s!)}ien converge R-linearly to f(x) for alli.
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Proof. The proof follows from combining Theorem 11, Theorem 12, and the L-
smoothness and §-strong convexity assumptions on the components { f;}¥_;. We defer
a detailed description to Appendix A. ]

Note that the rates of linear convergence presented in Theorems 17 and 19 are
conservative. Experiments suggest that these rate bounds are far from tight.

5. Implementing survey descent. Stepping back from our theoretical analy-
sis on strong C? max functions f, we conclude with two remarks on the potential
implementation of survey descent on general nonsmooth objectives h (Definition 1).

Remark 20 (informal heuristic for survey initialization). We sketch an informal
idea. First, run some initializing iterations of a standard method such as BFGS or a
subgradient or proximal bundle method, and collect the gradients at these iterates.
(As discussed, these iterates are typically points of differentiability.) In practice, the
iterates explore the nonsmooth landscape effectively. In particular, on max functions,
they “bounce” between the active functions near the minimizer: for BFGS, see our
Figure 5 and [31, Figure 5.5,6], and for the subgradient method, see the figures and
discussion on “oscillations” in [4]. As discussed, the convex hulls of nearby iterate
gradients thus approximate the subdifferential at optimality, so we can estimate its
dimension d via singular value decomposition. An initialization heuristic could then
select a survey of k = d + 1 iterates with robustly affinely independent gradients.
Implementing such heuristics is intricate: we defer further discussion to future work.

Remark 21 (possible acceleration of survey kescent). First, note that we can solve
the k constituent subproblems of survey descent (Definition 1) in parallel. Second,
when all subproblems are feasible, we found in exploratory experiments that the
following adjustment expedites survey descent’s empirical convergence:

For all i, only update s; + s when h(s]) < h(s;); otherwise, keep s;
the same in the subsequent survey.

This also tends to make survey descent compatible with a wider variety of initial-
izing heuristics. For simplicity, we omit this additional enhancement from Definition 1
and do not apply it in this paper’s experiments.

Appendix A. Stronger R-linear convergence of function values
(Theorem 19). In section 4, we analyzed the distance of the survey descent up-
dates, ST = {sF}¥_,, from the objective minimizer by examining the set of reference
points {5;}¥_,—which coincides with S* up to O(||S||?) terms and is defined in (3.17).
This appendix will prove Theorem 19—showing R-linear function-value convergence—
through an analogous strategy. To simplify the derivations, we adopt the following
notation:

In this notation, (3.17) simplifies to

N S Ao
For any fixed ¢, we will prove Theorem 19 in three steps:

1. Lemma 22: Bounding the deviation between f;(s;) and f($;) because §; does
not necessarily satisfy f;(s;) = f($;). Similarly, we also bound the difference
between f;(§;) and f(8;).
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2. Lemma 23: Using convexity and Theorem 12 to bound f(3;).
3. Lemma 24: Bounding the difference between f(s;) and f(3;).

We will again need to invoke the Taylor expansion (3.5) to construct our bounds.
However, we require a stronger version of Taylor’s theorem than that in Lemma
8—using “Little-Oh” rather than “Big-Oh.” In particular, for a mapping g : E—F
between two Euclidean spaces and letting || - ||? denote an arbitrary Euclidean norm
raised to the pth power, we use the notation g(u) = o(||u||?) to indicate the property of
g that—given any constant K > 0—there exists Ux > 0 such that |g(u)| < K||u|[P for
all |Jul]| <Ugk. By itself, we let o(]|u||P) denote an element of the class of all functions
with this property. Then, an identical argument as that in Lemma 8 shows that the
residual function in (3.5) satisfies

(A.3) ri(x):o(||a:||2) and Vr;(x)=o(||z]]).

We now prove our main result.

LEMMA 22. Assume Setting A, and suppose T=0. Then, the following inequali-
ties hold:

. . L
60 = P < 5 (1= ) sl +o (1),
L A0
R0 =761 < 55 (122 I +o (1s13).
Proof. Using the Taylor expansion (3.5), observe for all pairs 4, j that

£ (8:) = f5 (83)| = | (ai — a;)T'$ ; 8; (Ai—Aj)8i+mi(8) —rj(8)

1 o .
2% ST (A — Aj) 8+ (8) — 1 (8)

L
5 ||sl||2 +o (||sl|| ) (by L-smoothness and (A.3))

<Z(1-— )
<3 (1 >||8l||2+0(||81|| ) (Theorem 12)

(by & €U and (3.1))

=~

Observe the right-hand side is independent of j, so the above still holds after replacing
f; with f = max; f;, which gives our desired result. An analogous argument for 3;,
which replaces % with %, shows

L il
(s = 1601 = 55 (1= 22 ) sl o (i)

This completes the proof. 0

LEMMA 23. Assume Setting A, and suppose T = 0 and f(z) = 0. Then, the
following inequality holds:

(A.4) f )<= @5M“

2 2
max ||S; +o( S )
/\min >J'—1,,..,k|| jHQ || || 5

where 3; and Apin are as defined in (3.17) and (4.1), respectively.
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Proof. Using (A.2), Theorem 11, and convexity, we deduce

(AB)  fGB)=Tf : -5 + Z 5 ;\jf 8

J#l

Define the quantity

L Amind

,||8j||§
Z

Applying Lemma 22 to (A.5) combined with the facts that Ay, < A; < 1 for all j
gives

(A.6) FGi) =3 (35) A +o ([IS117)-

5 i (3) +Z

J#i
(%)

Theorem 12 implies the following bound on (*):

1 L Y 5 L ) X\
<———=(1-=)sillF+5 (1—- =+ I Is;l15 < A.
% gora (1) 5 (1) Dt it s

Substituting the above into (A.6) gives the desired

f(&) <28 +0(|IS]3)

L 65\min
= o (1‘ L ) 5 ”Szll +§2_ 1512 +o (IS]2)

L (SS‘min 9 9
= Yo <1_ I )jjrllf}?f’kllsj-llz+o(||5|| ),
which is our desired result. .

LEMMA 24. Assume Setting A, and suppose T = 0 and f(z) = 0. Then, the
following inequality holds:

f(sT)—F(5)<

4L (1 ~ Amind

2 3
0 o, sil3+0(ISIP).

>l

where 3; and Amin are as defined in (3.17) and (4.1), respectively.

Proof. Consider any fixed i. By Theorem 5, all constraints of (P{°) are tight, so
s; satisfies the constraints of Observation 6 with equality for all j # i:

. L 2 .
(A7) o (s5) + 5 s = ssll, =L (1) -

Define & = si —5;. In other words, & is the O(||S||?) term in (3.16). Consider any
fixed j. Substituting s;” = 3; + & into (A.7) and expanding the quadratic term gives

o L, _ _ L .
0l (3) + Y (s)7 6+ 5 lIsi— sills + L (3 — 55,6) + 3 €117 = €L (3:) + V fils:) .
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Applying the Taylor expansion (3.5) to V fi(s;) and V f;(s;) gives

, - L
£ () + (0 + A3+ Try(s)" 6t 28— syl L5~ 580 + 5 il

Note that the terms Vr;(s;), Vr;(s;), and §; are all O(||S||) by Lemma 8 and (3.17),
and so is s; by definition. Thus, collecting O(||S||?) terms simplifies the above to

L L, _ . o
(A.8) Efj (8:)+ aJT& + 3 I5; — st; +0 (||S||3) = E{; (3,) +al¢;.

Multiplying (A.8) by );, summing over j # i, and using identities (2.5) and (2.6) gives

- L <
>t G = Nal &+ (N5 s5l3) + O (ISIF)
J#i i#i

=(1-X) 0 (5)+ (1 - X)) T

Adding j\iﬁfqi (8;) to both sides and again applying Lemma 8 leads to

fw +2 5 (Ml = sl2) +0 (ISI?)

J#
2@2 (3:) +al& =0l (s) — (Assi + Vi (si)" &
o(lIsI®)

X;L 13; — s:]|3 term to the

Again collecting O(||S||?) terms and adding a nonnegative
left-hand side leads to the following inequality:

w\bc

5 (N 115 = 503) + 0 (ISI°) = € ()

Jj=1

k
>N (5) +
(A.9) P
(%)

For ( %¥), the assumed d-strong convexity on f; (Definition 3) implies
(A 10)

k k
- 0. )
ZA 463 (560§ 5= s)2) < max, 1550 S,

7

=r(5)

where the rightmost inequality follows from (2.5). Substituting (A.10) into (A.9) leads
to

(A1) rE+ g (1-2) X (Wl - sl) +0 (ISP

Jj=1
+ 2
s = sill,

>t (sH) = fi (s7) -

m\h
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where the second inequality follows from the L-smoothness of f; (Definition 3). By
Theorem 7, 5] is a valid survey point, so f;(si) = f(s;"). Substituting this into (A.11)
and rearranging gives

L ) - L
(1) £ <16+ (1= ) 3 (Wl - silB) 45 s = sl +0 (SIP).
—

(1)

We use Jensen’s inequality to bound (*):

2
(< max |l —sll,

Hence,

<2 (st + e, 1)

L j=1,...,
<4 max [ls,[3+0 (IS]).

2 (2 - Amin‘s) max_||s;[[3+O ([|S|I¥) (Theorem 14)

An analogous argument (using Lemma 13 on §; instead of Theorem 14 on s;") gives

~ 2 2
(1) < max |5 —sll, <4 max [s;>.

EERRE) )

Substituting these bounds on (f) and (x) into (A.12), we deduce
)
< £ (5 - = 12 112 3
Pty <@ v2n (1) max sl 20 max, sl +0 (1T

. 4 2
= 1) +4z (1= 57 ) mox i3+ 0 (ISIF).

If k=1, survey descent reduces to GD, and the result is trivial from [2, Theorem
10.29] or [38, Theorem 2.1.15]. When k > 2, the property (2.5) implies Apin < % < %

Thus, (1 — %) < (1 — ’_\m—L‘“‘S) We then deduce

4L

)\min

f(sh)<fG)+

S\min(; 2 3
(1 z >J_§%axk|si|2+o(s ).

.....

This completes the proof. ]

THEOREM 19 (R-linear convergence of objective values, strong version). Consider
Procedure B. Fiz K > 5L (1 — %) Then,

P
F(s8Y) — f@) <K|S'—2|* Vi=1,....k, and t eN.

Consequently, survey objective values { f(st)}ien converge R-linearly to f(z) for alli.
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Proof. Without loss of generality, assume Z = 0 and f(Z) = 0. Consider any
fixed i and t. For simplicity, adopt the notation s; = st and s;” = sf“. Adding the
inequalities in Lemmas 23 and 24 gives

5L Amin®
1 _
(-2

< —
f(Sl ) - )\min

) max, 513 + 0 (ISI2) + O (ISIP).
=o(|IS]1?)

Then, for any K >0 and for all S sufficiently close to X', we have

5L j\miné‘ 5L j‘min 1)
rn) < o (1= 220 Y s it = (22 (1-220) 4 k) s

Denote K = ;2 (1 - %) + K >0. Since K can be any strictly positive constant,

min

choosing K is equivalent to choosing an arbitrary K > ;\5—L (1 — %) Under such
a choice,

f(sh) < K|S,

which is our desired result. The general case follows from applying the change of
variables z<—(x—Z) and function-value shift f(-)«<(f()—f(Z)). 0
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