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Abstract

This article studies equilibrium singular configurations of gels and addresses open questions
concerning gel energetics. We model a gel as an incompressible, immiscible and saturated
mixture of a solid polymer and a solvent that sustain chemical interactions at the molecu-
lar level. We assume that the energy of the gel consists of the elastic energy of its polymer
network plus the Flory-Huggins energy of mixing. The latter involves the entropic energies
of the individual components plus that of interaction between polymer and solvent, with the
temperature dependent Flory parameter, yx, encoding properties of the solvent. In particular,
a good solvent promoting the mixing regime, is found below the threshold value x = 0.5,
whereas the phase separating regime develops above that critical value. We show that cavi-
ties and singularities develop in the latter regime. We find two main classes of singularities:
(1) drying out of the solvent, with water possibly exiting the gel domain through the bound-
ary, leaving behind a core of exposed polymer at the centre of the gel; (ii) cavitation, in
response to traction on the boundary or some form of negative pressure, with a cavity that
can be either void or flooded by the solvent. The straightforward and unified mathematical
approach to treat all such singularities is based on the construction of appropriate test func-
tions, inspired by the particular states of uniform swelling or compression. The last topic
of the article addresses a statistical mechanics rooted controversy in the research commu-
nity, providing an experimental and analytic study in support of the phantom elastic energy
versus the affine one.

Keywords Gels - Cavitation - Singularities - Nonlinear elasticity - Flory-Huggins -
Logarithmic energies
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1 Introduction

This article addresses singular phenomena in gels as well as modeling issues related to its
mechanics. The former refers to cavitation, and its connection with phase separation, an
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ubiquitously observed behavior in gels. The second involves an experimentally and ana-
Iytically guided study of the elastic energy of gels as formulated across different scientific
communities involved in the highly interdisciplinary field of gel research. We model the gel
as an immiscible, incompressible and saturated mixture of polymer network and solvent, and
in contact with its own fluid. A mixture is said to be incompressible if each one of the indi-
vidual components has such a property. Immiscibility is concerned with the dependence of
the constitutive equations on the volume fraction of each component. A mixture is saturated
if no component, other than polymer and solvent is present, and so the volume fractions of
the latter naturally add up to one.

Mixture theory was first introduced by Gibbs as a theory of fluid mixtures [17], and
shortly after found its application in the study of alloys, as documented in the book by Pen-
rose and Lebowitz [26]. In such a context, one or more of the fluid components was replaced
by solid metals. The solid aspect of such emerging works awoke Ericksen’s appeal to the
theory, as reported in his monograph, Introduction to the Thermodynamics of Solids ([12],
Chap. 8). Although he refers to his own work as an ‘Elementary Theory’, he establishes
fundamental properties of thermodynamics of mixtures, when solids are involved, such as
the scaling properties of the Helmholtz free energy F and the entropy with respect to the
components. The Gibbs thermodynamic potential, G = F + pV, denoting V the volume of
the region partially occupied by solids and p the pressure, plays a main role. He regards the
fluid surrounding the region V as a loading device which can do work on the solids.

From a different point of view, Ericksen also had the foresight of identifying the diffi-
culties that may arise when one of the components of the mixture vanishes from a location
in the domain, pointing to issues of smoothness of the constitutive equations and balance
laws. In the present article, we come across such difficulties, in our modeling of cavities
and dry spots in the gel. Starting in the early 1960’s, mixture theory took a center stage in
the Continuum Mechanics research, with a major contribution by Truesdell, Ericksen and
collaborators at the Johns Hopkins University. In particular, the theory was formulated to be-
came amenable to analysis and partial differential equations. A sample of the rich literature
that emerged from those efforts includes studies of chemically reacting mixtures of gases
[10], liquid crystals [9], elasticity and diffusion, with temperature effects [3, 8], among oth-
ers. These works later proved very relevant in applications to poroelasticity in geophysics
and models for oil recovery.

The theory of mixtures of polymer and solvent was pioneered by Flory and Huggins
within the framework of statistical mechanics, acknowledging that the resulting gel is in-
deed a new material, different from its individual components [13—15, 19]. The application
of the mixture theory to crosslinked polymers, that brought in the elasticity contribution was
carried out by Flory and Rehner [16]. The treatment of ionic effects in the solvent component
of gels became prominent in the Japanese school following works by Tanaka and collabora-
tors [11, 18, 27, 31-33]. If, in addition, electrically charged polymers are taken into account,
observed swelling (and also compressing) rates may reach an order higher than 500 percent,
bringing up again the importance of a sound formulation of the elastic energy of the gel,
with Ericksen’s skills becoming again very much relevant.

Properties of the gels can be, in part, inferred from their solvent and, in particular, we can
distinguish between a good solvent and a 8-solvent. Water is the typical good solvent, with
the slight charge separation of its molecules inducing an expanding effect in the polymer;
this is due to the mixing effect, a consequence of the dominance of the polymer-solvent
interaction. In a 6-solvent, the polymer tends to become clustered as a result of the primary
polymer-polymer interaction. The temperature at which the latter interaction becomes of the
same order as the steric effects is known as the 6-temperature [22].
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In this paper, we address questions of the gel energetics and also explore issues of singu-
larities forming in gels. The energy of a gel consists of the elastic contribution of the polymer
network, defined in the reference configuration of its domain, plus the Flory-Huggins energy
depending on the volume fractions of the components in the deformed gel domain. The latter
consists of the entropic energy of the individual components plus that of interaction between
polymer and solvent. The latter is encoded in the temperature dependent parameter x > 0,
the Flory parameter, reflecting the solvent properties, and dictate whether component mixing
or phase separation occur. In our model, the good solvent regime corresponds to x < 0.5,
0 solvent to x = 0.5, x > 0.5 is the poor solvent regime. The singular behavior that we
analyze takes place in the latter regime.

The great bulk of works in gel mechanics dealing with crosslinked polymers use the
neo-Hookean energy to model the elastic deformation of polymers. Owing to its statistical
mechanics derivation, the use of such a model in the literature differs on whether the loga-
rithmic term of the Jacobian determinant of the deformation map is included or not, resulting
in the so called affine or phantom models of polymer distortion, respectively. A full discus-
sion of this issue, with the supporting references, is presented in Sect. 4. Our conclusion in
favor of the phantom model is based on own experimental analysis together with an analytic
proof, all carried out within the good solvent regime of the gel. We think that clarifying
such an issue, in addition to its intellectual value, it also may provide a service to the gel
community, since, it is, otherwise, very difficult to compare results from different workers
that use the different energy formats.

The formation of voids in gels may happen due to causes analogous to those of polymer
networks, such as some inherent weaknesses in the material or other unspecified triggers.
Two types of responses have been identified and investigated. A rapid rearrangement of
the polymer network near the newly formed cavity that reaches a stable state. An unstable
response has also been observed in some cases leading to the development of fracture. While
the latter event is irreversible, the first one is reversible, with the material having the ability
to close down the cavity under proper conditions. The occurrence of either of such events
has been linked to the type of solvent, with the reversible behavior being associated with a
good solvent and the irreversible fracture to a 8 solvent [22].

The mathematical treatments of cavitation in nonlinear elasticity as well as in gels, in-
cluding ours, are built of spherically symmetric configurations of the material. Pence and
coworkers studied cavitation by swelling, without accounting for the explicit presence of
solvent, arriving at compelling and physically realistic results [25]. In work by Duda and
coauthors, the model includes solvent and the Flory-Huggins interaction. Our independently
developed approach yields results fully consistent with the former, in a simpler and straight-
forward fashion. Moreover, most of our parameters are obtained from our own experimental
work.

The role of cavitation and formation of singularities in gels tends to be physically more
complex than the analogous phenomena in liquids and in elastic solids, and to our knowledge
has much less studied than the two former cases. In particular, the properties of the solvent
as well as those of the interaction between solvent and polymer network add complexity to
the cases that concern either only solvent or only polymer network. Indeed, this compels us
to distinguish between the formation of two types of singular structures: (i) drying out of
the solvent, with water leaving the gel domain through the boundary, leaving behind a core
of polymer exposed at the centre of the gel; (ii) cavitation, in response to traction on the
boundary or some form of negative pressure, with a cavity that can be either void or flooded
by the solvent and, in some cases, leading to fracture.
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Although not directly used in this article, we cannot ignore the decisive role of the Baker-
Ericksen inequalities in the analysis of cavitation in nonlinear elasticity. In the article Dis-
continous Equilibrium Solutions and Cavitation in Nonlinear Elasticity [2], Ball shows that
the Baker-Ericksen inequalities are satisfied by rank-one convex, isotropic stored energy
functions, and brings up the connection, first observed by Knowles [21], between such in-
equalities and the monotonicity of the Cauchy stress in the radial direction. From this, it
follows that the radial stress is well defined in the cavity, allowing to impose the zero radial
stress (natural) boundary condition at the center. This leads to the finding that the critical
load required to break the material is a multiple of the expression in the Baker-Ericksen in-
equalities. The same inequalities also show that, above the critical dead-load, the cavitated
solution is stable (belonging to a branch of the supercritical bifurcation).

This article is organized as follows. After the first section devoted to the introduction, in
Sect. 2 we present the model. Section 3 is devoted to the analysis of singular and cavitational
solutions, with 3.1 devoted to voids and flooded locations and Sect. 3.2 to dry singularities.
The remarks on the free energy are presented in Sect. 4, with Sect. 5 devoted to the conclu-
sions.

2 Mechanical Model of a Gel

We assume that a gel is in contact with its own fluid and model it as a saturated, incompress-
ible and immiscible mixture of elastic solid and fluid constituents. Let  C R? be a bounded
domain, with smooth boundary, representing the reference configuration of the polymer net-
work. The deformation of the polymer is represented by the vector field map

0:XeQ—yeR (1

We assume it to be continuously differentiable and will explicitly indicate possible excep-
tions in connection with formation of cavities. We assume that ¢(2) is either fully or par-
tially surrounded by a fluid domain R that has the role of providing or taking water from
the gel in processes of swelling and de-swelling, respectively. We label the polymer and
fluid components with indices / and 2, respectively. According to the theory of mixtures, a
point y in the current (deformed) configuration is occupied by, both, fluid and solid at vol-
ume fractions ¢; = ¢ (y) and ¢, = ¢, (y), respectively. An immiscible mixture is such that
the constitutive equations depend explicitly on the volume fractions ¢;,i = 1, 2. We let p;
denote the mass density of the ith component (per unit volume of deformed gel). It is re-
lated to the intrinsic density, y;, by the equation p; = y;¢;, i = 1, 2. Moreover y; = constant,
i =1, 2 define a mixture with incompressible constituents, dubbed an incompressible mix-
ture. The assumption of saturation of the mixture expressing that no species other than fluid
and polymer are present, is expressed by the constraint

¢+ =1 (@)

As a consequence, it suffices to know the volume fraction of polymer, which henceforth will
be denoted simply by ¢:

¢ (y) := ¢»(y) = (swollen) polymer vol. fraction at y. 3)

In addition to the polymer domain €2, the reference configuration of the gel is also charac-
terized by the scalar field 0 < ¢ (x) < 1, x € €2 that represents the reference volume fraction
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of the polymer. The equation of balance of mass of the polymer states that, for every subset
E CQ,

/ $(y)dy = / Jo(x) dx. 4
@(E) E

Formally, in the absence of cavities, it reduces to a pointwise relation
¢ (p(x))det F(x) =¢o(x), F(x)=Vep(x), forall xeQ. (®)]

We appeal to our article [30] for the detailed justification of the energy of the gel and present
here a necessary summary. The total energy consists of two terms, the elastic energy of the
polymer network plus the Flory-Huggins contribution of mixing the solvent and the polymer
components:

£= / Wa(Ve () dx + / Wena (6 (¥)) dy. ©)
Q ()

As customary in the gel literature, we assume that W, is Neo-Hookean:
G o
Wa (F) := 5|F| ., G>0, @)

with an elastic modulus G that has dimensions of energy density. The Flory-Huggins energy
density of mixing ([7, Eq. 2.62], [28, p. 143]), has the form

kT 1
WFH(¢):=§—<¢11n¢1+N¢zln¢z+x¢1¢z), pri=1—6¢, dr=¢. ©)

Here V,, represents the volume occupied by one monomer of solvent; kg the Boltzmann
constant; N > 1 is the number of segments occupied by the polymer in the lattice model
for polymer solutions (the solvent molecules being assumed to occupy each a single lattice
site); and x is the Flory-Huggins interaction parameter. The first and second terms in (8)
correspond to the entropy of the polymer and fluid, respectively, and the third term represents
attractive or repulsive forces between the two components.

The mixing energy density must be integrated on the current (swollen) configuration,
where the interaction between the two species takes place. In order to combine it with the
elastic energy, we carry out a change to the reference (Lagrangian) variables, that in the case
that the deformation is regular gives

/ Wi (#(0(x)) ) detF) dx. ©)
Q
Let us introduce the notation

kgT G
B, y:=—, J:=detF,

Vi=—
Vi v

and the dimensionless expression
1
H(J):= ;J Wen(®), ¢ =d¢o/J,
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1
= 5o =g =T aox (1= D) =g (0)

We will take v as a reference —entropic— energy density unit. Dividing the total energy of
the gel by v and by its volume in the initial state, and taking the mass balance equation (5)
into account, we arrive finally at the following dimensionless quantity:

E:/ YIFR+ H(J)dx. (11)
02

Determining the values of x such that H (J) is convex and finding the critical value x. above
which the convexity is lost is relevant to our problem [7, Sect. 2.4]. In the later case, the gel
separates into the polymer and fluid phases, which is relevant to cavities forming in the gel.
A direct calculation gives

, 1 ¢
wU):JiU)Z—;H@)Z—Nﬁ4ml—¢%+¢+xf, d=¢o/J, (12)
where
dw,
M(¢) = — W (@) + ¢ dqu + Wen (0) (13)
is the osmotic pressure of the polymer solution. Also,
¢ dIT ¢ 1 1
H()=——=-|—-+——--1-2 . 14
) 0 dp U N'+1-—¢ xXo (14)
Hence H(J) is convex in the whole range J € (¢, o0) if and only if [7, Eq. 2.67]
(+ =) (15)
< = — .
X<3 ~
— —

=Xc

This range for x corresponds to the mixing regime for the gel [28]. Furthermore, since H
is convex then the energy density %|F|2 + H(detF) in (11) is a polyconvex function [1, 6]
of the deformation gradient. The available existence theory for polyconvex energy densities
(e.g., [1, 6, 24]) do not cover the low coercivity situation at hand. However, as is the case
for neo-Hookean materials, under appropriate boundary conditions energy minimizers are
expected to exist.

In the regime x < x. the osmotic pressure is positive. The loss of convexity of H(J),
corresponding to x > x. and allowing for negative osmotic pressure, is associated with
cavities forming in the gel. The well-posedness of the minimization problem requires adding
a regularizing term |V¢|? in the energy (6) [5, 36].

From now on, we will consider the N — oo approximation for the mixing energy of the

1

gel, so that x, = 3

3 Cavitation

Throughout this section, we consider spherically symmetric configurations of the gel and
assume that it occupies a spherical domain of radius R, > 0. The reference configuration of
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Fig.1 Plots of H(J) Note the -0.12 T T T -
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fraction is set to ¢g = 0.2 [30]
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the polymer component is the domain
Qo={xeR x| <R}, ¢=do (16)

where ¢y is the volume fraction of the polymer. We study radially symmetric deformations
of the gel:

r=r(R), =0, ¢=0a, (17)
¢ =¢(R). (18)

The deformation gradient tensor is

2
r®) TR, getF= Ry

F = diag[r'(R), , .
iaglr'(R), —=. — =

(19)
3.1 Voids and Flooded Locations

Let us assume that some additional negative pressure appears, such as water evaporation.
In order to simplify the analysis, let us represent this situation with an expansive Dirichlet
condition. More precisely, we perturb the free swelling solution

r(R)=A*R, 0<R <Ry, (20)

where A* is obtained from the equation for the equilibrium between the elastic and the
osmotic forces [30]

AH'(O3) = —y, (1)
by imposing a further expansion of the gel through the displacement boundary condition

r(R)) =AR, (22)
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for values of A > A*. We compare two alternative ways in which the gel can respond to this
requirement. One is by means of the uniform expansion

r(R)=AR, O<R<R,. (23)

The other is by opening up a cavity, while at the same time keeping the polymer and solvent
volume fractions of the swelling equilibrium state. This second alternative is obtained from
the following equation:

2.

J=0) = =~ =0 forall R (24)
= =R (25)
= PR =M R>+C. (26)

The constant C can be obtained from the boundary condition:
OR)'=OR)’+C = C=R{(H’ -0, Q27)
giving the deformation
1/3
r(R) = (R + RIS = () (28)
This deformation opens up a cavity of radius:
cavity radius = lim+ r(R) = Riv/A3 — (A%)3, (29)
R—0

which begins as a zero radius when A = A* and grows as the radial stretch A imposed at the
outer boundary becomes larger. Note that

5() = 0 if0<r<RJA— ("3, 5= %o
T le* itERYAI— ()3 <r <ARy, e

where ¢* is the polymer volume fraction at swelling equilibrium. (We point out that, both,
the radial distance r and the current polymer volume fraction ¢ are defined in the deformed
configuration).

The energy of the uniform expansion, compared to the energy at swelling equilibrium, is

(4T 5 G 3
£ = (TR (5302 - 0+ BE(HE) - HG)) 60

The energy of the cavitated configuration, also compared to the energy of the swelling
equilibrium, is

R
EZ(A):/ 1(47rR2dR)-< (' (R)? +2r (R) —30?) 31)
0
kgT , r? N
+ “jn (H(r (R) ) — H (0 )3))) (32)
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Uniform expansion vs. radial opening of a cavity Uniform expansion vs. radial opening of a cavity
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Fig. 2 Comparison of the energies of a uniformly expanded state (blue) and that of a configuration with a
void (green), for different values of x

R G (R _r(R)? 4r . G
— 2, = _ " p3 %12
_47r/0 R 2(( R ) +2- )R — R 2365 (33)

since, in this case, the Jacobian is constant and equal to (A*)3. The above relation can also
be written as

R 3
Ex®) :/ 1 R*W (v(R))dR — &W(x*),
4 0 3
with
W) = g((x*)%—4 +20%), w(R):= %. (34)

Following [2, Eq. (5.27)], we observe that
V(R = R7(GAR + RIGA = 0:9) = A1) + RGP = W) )R™

_R@ -y d dW dv

X .
R ¥ — (93 dR (W(”(R))) ~ dv dR’
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Uniform compression vs. a dry spot
Ry=50 mm, x=0.65
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Fig.3 Comparison of the energies of a uniformly compressed state (blue) and that of a configuration with a

dry spot (green), for different values of x

Integrating by parts yields

E; ()
4

_ RO -
3(1)3 —

) -
(2)?)

1 / RIS =
3 /o V3 —

Note that, as R — 0, the tangential stretch v(R) =

of the cavity. Hence,

E>r(M)
4 p3
TR

Now,

A

aw

- =2G(v — (%) =2Gv°(v°
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W(v(R)

R=0
043 dW dv R} .
— —dR — —W A*
()3  dv dR (5.
r(R) . . .
= tends to infinity due to the opening

aw
(x*)3 dv
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Therefore,

=WQ) — WR* +2G(° — (W9 /oo v+ (W)Hdv
A

=WQ) — WR* +2G60° — (19 /w V2 4+ (A3 dv
A

=WH) - WO + %(# - (x*)3)(4r‘ + (A*)%“).

Figure 2 show the energetically prevalent configuration for different values of the Flory
parameter x . For a related stability analysis, we calculate the derivatives of both expressions
with respect to A, evaluated at A = A™:

dE

a kpT 3KpT

2l =3GA+ ——H' () 332 = =2 (yA + A2H'(W)).
TRy Vi '

Evaluating it . = A* and using equation (21) also at A*, we find that

dE, _
da N
A=A*
The second derivative is given by
dZEl
5L 3KRT
2 2B () L 00H' () + 30 H 0).
2R} Vi
3
At L = A*, we obtain
d’E, KT h e
G| SRSy 300 G,
A=A*

Let us now carry out the analogous calculations for E,

di;z(l) 3G 3 2

A % _
=—(@Ar+ A1), and
TR 2

2B, (1)

—X= 3G
d) *\349 =3

=@ =217
ZR 2

Gathering the expressions for £; and E, we find that

=107 R;GL* > 0,

d
H(Ez()») —Ei(M)
P

2

d
W(Ez(?») —Ei(3)

kgT
=47 R}
v,

m

Qy =30 H"((F))).

A=A*

In conclusion, we find that when A starts growing above A*, the cavitation solution becomes
energetically higher than the homogeneous deformation. However, for values of y > % (that
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is, in the phase-separation regimen when H (J) is not convex), after a small energetic barrier
is overcome, the cavitation solution has less energy than the homogeneous expansion.

3.2 DrySpots

We now consider a similar analysis, but with A < 1*. We compare the homogeneous defor-
mation r(R) = AR against the following second alternative:

R if R <R,
r(R) := 1/3 35
) (WR?+ R =) if R <R=Ry. &>
This solution is characterized by the fact that
1 R < R}L ¢0
R)) = * = . 36
““)){w kr<1 =T (36)

The fluid is taken away from the subregion B(0, R;) in the centre of the reference configu-
ration, leaving the polymer exposed.

The value of R, is determined by the requirement of continuity of the deformation map
at R=R,:

PR, = (AR’ + R} (2 — 01, (37)
giving
3 ()\*)3 ;
BaNrO m&' %)

We assume that A3 > ¢y so that the radius R, , thus defined, is less than R;.

When x < 5 the energy density is polyconvex and it can be shown that the homogeneous
deformation (the first alternative) is the global minimizer (even compared to non-radially
symmetric deformations). Indeed, the deformation given by r(R) above is in W', and
polyconvexity, as is well known [1], implies W!"*-quasiconvexity. More specifically, for
the affine Dirichlet boundary data ¢(x) = Ax for x € €, Jensen’s inequality yields:

famer
—|Ve|* + H(detVe)dx > —
Q) 2

2
G

][V(pdx + H /dethodx.
2 Qo Qo

For all ¢ € W'3(Q, R?) that are one-to-one a.e. and satisfy det Vo > 0 a.e. and the bound-
ary condition, both integrals on the right-hand side coincide with the corresponding expres-
sions for the affine deformation x — Ax. Hence, the dry spot will not be seen. However, in
the phase-separation regime, when x > % and H (J) is not convex in J, the second alterna-
tive might have a better energy.

The energy of the homogeneous deformation, compared against the energy at swelling
equilibrium, is given by equation (30). The energy of the competing dry cavity (35) is

E>(x Ry . kgT
43( 3 =R (3R2dR)(W(u(R))+ 5
TRI R;, m

H(r/(R)u(R)2)>
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3G 53 kT . G wo kT 13
+R3( T lim HO)) = 5365 = S H ()

2 m J%d)of
R Ri p3rrr:\3 _ 13
I ~ R3((V)3 = A3) dW dv
:R 3R3 R _R 3/ 1 - -
1 W(U( )) 1 R ()\'*)3_1)3 dv de
R=R;,
R oo R + ¢2/3 W)
Vo R3
. x 1 dw
=WO) — WHr *W 173 A*3—A3/ A |
B =W =2 W)~ O =) | e g
3G o5 ksT .
+F(7 o = S HON)

Sy (@ — (90 — LLH(())

=WQ) — WK* A3 =3
() = WO + () =2 2 =

+((° A)/ 26 + (W) v )dv

Using again the expression (34), we find

—4/3 42 #\6y _ kpT 3
Ex(A) - - w3 $¢, (dg — (A5)°) = F-H((A")")
=WQ)-W(i AP =23
Ty = O - WO+ @Y )= =
+(O =5 T 400"+ 0 = 0

=WQ) — W(A*)

+ ((}\*) )( (4¢0 1/3 4 (A. ) 4)74/3 4)‘.—] _ ()"*)3)\'—4)

G _ _ kT H((\*)3
_E(()”*)3¢04/3+¢01/3)_ B («( )))

Vin ()\*)3 — o
=W@) — Wi
FO9 =566, -4 - %) - L),

Figure 3 shows the energy of the uniformly compressed and cavitated state for different
values of the Flory parameter x. In conclusion,

E> (M)
e

3G - kgT
= () =) (T @ =T = THODY)

3G
- 7((A*)2 —1%). (39)

Now, we compute the derivative with respect to A. For the homogeneous deformation the
expressions are the same as in the case when A > A*. Regarding the deformation creating a
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dry spot, we have

3G _ kgT
L= (080" 4 37

m

H((OH3HA2 (40)

Evaluating it at > = A*, we find:

— 47 R} (g((%‘l” 4t =3¢y P 0M?)
A=A*

d
E(Ez()») —EW)

kT
+ V

m

H(G)0?). (1)

4 Remarks on the Elastic Energy Density

By means of the experimental and analytic studies presented next, we justify the validity of
the phantom energy model of the gel, that is, neglecting the logarithmic term in the elastic
energy of the polymer, versus the competitor affine model. For this, we continue experimen-
tal results reported in [30] on the swelling of a thin rectangular polyacrylamide (PAAm) gel
completely bonded to a rigid substrate. Specifically, we report that the phantom model for
the elastic distortion gives a better agreement, compared to the affine model, with our lateral
swelling experiments. We conclude the section with an analytic proof, which is valid in the
mixture regime.

In the statistical mechanics derivation of the Gaussian model for polymers different ex-
pressions are obtained for the elastic distortion energy density according to whether the gel
is assumed to follow the same affine deformation as the infinitesimal polymer block that is
subject to a homogeneous deformation. When that assumption is made, the resulting expres-
sion, which includes a logarithmic term:

Waﬁ(F):%(|F|2_3)_G1nJ, (42)

is known as the affine model for the elastic distortion (see, e.g., [13, 20, 23, 34, 35]). In con-
trast, in the phantom model for the elastic distortion, where the polymer chains are allowed
to move freely through one another and the network junctions fluctuate around their mean
positions, the resulting expression is just

G
Won(F) = E(IFI2 -3 (43)

(see, e.g., [7, Sects. 3.3.1, 3.3.2, 3.4.1], [23, 34]). For a solid incompressible polymer, the
expressions are equivalent. However, when the polymers are exposed to a solvent and an
accurate description of the volume increase due to solvent absorption, it is unclear whether
the affine or the phantom model should be considered. In this section we report results
based on finite element simulations comparing both models against experimental results of
the lateral swelling in a thin PAAm gel fully bonded to a glass substrate. A better agreement
is found with the phantom model.

The finite element simulations for the affine and phantom model are compared against
our experimental work reported in [30] (Sect. 2). Numerical simulations are implemented
(as those in [30] (Sect. 4.1) in the open-source finite element library Netgen/NGSolve (www.
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2 y2

A V1 Y3 A s

(Main view) (Left view)

Fig.4 Shapes of a completely bonded gel at swelling equilibrium. The illustration exaggerates the rounding-
off at the upper corners, and the outward displacement of the lateral surfaces (the actual aspect ratio d/a, in
the main view, is of the order of 94 : 3, as can be seen in Table 1. The frame y{, y;, y3, with the notation used
in the expressions y = x + u(x), X = (x1, x2,x3), Y = (¥1, y2, y3) in the mathematical model, is depicted
with heavy lines (in particular, the vertical direction is denoted by y,) [30]

Table 1 Experimental and finite

element simulation results for the ~ Configuration a b ¢ d ¢ ! 8
swelling of a 90.0 [mm] x
1.62 [mm] x 15.0 [mm] Reference 162 1.62 900 900 150 150 162
rectanlgullargAlzn(ljgel | Gel 1 331 205 88.08 9390 1142 19.00 1.75
completely bonded to a glass Gel 2 335 213 8839 9385 11.68 1899 1.78
slide, data from [30]
Gel 3 350 201 8831 9356 1149 1879 1.72
Gel 4 345 223 8825 9362 11.86 19.00 1.64
Average 340 211 8826 9373 1161 1895 1.72
SD 0.09 010 013 017 020 010 006

Affine model 3.02 176 87.64 9370 12.62 18.80 1.70
Phantom model 3.19 1.72 86.96 9398 12.27 19.12 1.65

ngsolve.org) [29]. The computational domain is discretized with tetrahedral meshes and con-
tinuous piecewise cubic finite element spaces are used to approximate the displacement vari-
able. The resulting system of nonlinear boundary value problems are solved with a damped
Newton’s method. In order to have an adequate initial condition for Newton’s scheme, the
‘incremental softening’ technique is applied, consisting in solving first the nonlinear sys-
tem for more rigid gels (with shear moduli of five or ten times larger than the measured
G =0.13 MPa).

4.1 Measurements

Table 1 presents the experimental and the finite elements results for both the affine and the
phantom model. The gel is observed to swell mostly in the direction normal to the substrate,
since the attempt to swell along the width and length directions is largely prevented by
the constraining glass slide. Nevertheless, as one moves away from the substrate, a small
and increasing amount of lateral swelling can indeed be observed. In order to quantitatively
describe this ‘bread loafing’ effect, measurements a, b, ¢, d, e, f, and g are made as depicted
in Fig. 4.

As can be seen in Table 1, the amount of lateral displacement is observed to be very sim-
ilar in the two horizontal directions, close to 2 mm on each side: the difference of 3.73 mm
between the measurement d and the length of 90.0 mm of the gel in its initial state, accounts
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for the sum of the displacements towards the left and towards the right of the sample. The
difference of 3.95 mm between the measurement f and the initial width of 15.0 mm ac-
counts for the displacement towards the back and the front. The largest deformation occurs
in the direction normal to the substrate, where the gel reaches a thickness of 3.40 mm (mea-
surement a made in the middle of the sample). Given the initial thickness of 1.62 mm, this
corresponds to a vertical extension of:

3.40
A =—==2.0988, 44
1.62 )
that is, it stretches by approximately 110%.
Regarding the numerical simulations, as explained in [30] they are obtained by minimiz-
ing the energy functional

/ Wa(F) +
Q

where F = | + Vu is the deformation gradient. As explained in [30] (Sect. 4 and Appendix),
the penalty term 10° - f |(x2 4 u»(x))”"|*dx is also added in order to prevent an unphys-
ical interpenetration of the glass substrate due to a protrusion originated from the left and
right facets. The polymer volume fraction ¢y in the reference configuration is approximately
¢ = 0.20 (see [30] (Sect. 2.2.1) for more details on the synthesis of the PAAm gel). In the
simulations the values for kg and V,, were 1.38-10~2 m?kgs~2K~! and 3-10~2° m?, yield-
ing an approximate value of 136.6 MPa for the prefactor % in the Flory-Huggins term.
The value of the Flory parameter x was obtained from our free swelling experiments
reported in [30] (Sect. 2.3.1), the results of which are summarized in Table 2. The resulting
value of x depends on whether the affine or the phantom model is adopted for the elas-
tic distortion. In the three repetitions of the experiment a homogeneous deformation was
observed, very close to an isotropic expansion, as predicted by the model. The volume at
swelling equilibrium was approximately Ji5, = 3.29 times the volume of the reference con-
figuration. The pointwise energy minimizers of the above energy density are of the form
F = AR, where R is a rotation and A is obtained from the condition of equilibrium of forces:

o
J 9

S (=g in — )+ xu(1 =) s, =detF, ¢ =

m

P(Al)=0, P(F)= % + k‘lj—TH/(J)F", (45)

where P is the Piola-Kirchhoff stress tensor and where by F¢ we have denoted the cofactor
matrix of F. For the phantom model this gives [30] (Sect. 3.4)

o—2( . 1-1/3 . . . o G
=— J In(1 — , = , = 46
Kon = =@ (A H I =9 +47). $1=0 =m0
whereas for the affine model
xar=—@" 2 (4, =y I 1 =g +9). 97 = j_’O : 47)
1S0

The PAAm gel samples prepared were found [30] (Sect. 2.3.3) to have an elastic modulus
of G =0.13 MPa, thus yielding

Xph = 0348, Xaff = 0.426. (48)
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Table2 Shape of PAAm gels at swelling equilibrium with reference configuration of 90.0 mm x 3.0 mm x
23.5 mm (n = 3). The average Jacobian determinant in equilibrium is 3.2908 (standard deviation 0.0068),
which corresponds to a ratio of isotropic extension g, := J 1/3 = 1.4874, from [30]

Configuration Length (mm) Width (mm) Thickness (mm) Jacobian determinant J
Reference 90.0 23.5 3.0 1

Gel 1 134.24 34.69 4.48 3.2880

Gel 2 134.49 34.68 4.47 3.2858

Gel 3 134.62 34.78 4.47 3.2908

Average 134.45 4.47 34.72 3.2908

SD 0.19 0.0058 0.055 0.0068

Strecth factor 1.4865 1.4911 1.4773

Fig.5 Points Deformed coordinate Y

y= (1,2, y3) € () colored -5.7e-02 05 1 1.5 2 25  3.0e+00
in pink are those for which _———— | |

yp > (0.95) maxgq y;. The values
of ¢ and e in the last two rows of

Table 1 correspond to the length i \
and width of the essentially flat
region formed by those magenta
points
| - "

Both in experiments and in simulations (carried out with the above values of x ), most of
the top surface remains essentially flat after the deformation, giving way to a rounding of the
corners starting at a small distance from the edges. However, the definition of parameters
c and e in Fig. 4 is subjective. In Table 1, the (arbitrarily chosen) criterion to measure
parameters ¢ and e from the affine model and the phantom model simulations was: y, >
(0.95)max y; (see Fig. 5).
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4.2 Comparison of the Models - Lateral Swelling

The main parameters in the description of the lateral swelling are the total deformed length
d and the total deformed width f. The relative errors in d for the affine and the phantom
models, compared to experimental results, are, respectively, of —0.003% and of +0.27%.
The relative errors in f are, respectively, —0.8% and of +0.9%. Therefore, in measurements
d and f both models very precisely capture the lateral swelling of close to 2 mm on each
side and there is no significative difference between the models.

Regarding parameter c, the relative errors for the affine and the phantom models are
—0.7% and —1.5%. The relative errors for parameter e are of 8.7% and 5.7%. As explained
before, the precise definition of this parameter is subjective and it is difficult to have a precise
comparison between simulations and experiments.

The height b after deformation of the middle point of the edge at the top and at the right
of the sample is the measurement in which the models depart most from the experiment. For
the affine model the relative error is of —16.6% and for the phantom model it is of —18.5%.
As for the height g of the middle point of the top edge of the front facet, the relative errors
are —1.16% and —4.07%, respectively.

4.3 Comparison of the Models - Vertical Swelling

Due to the constraint imposed by the bonding surface, most of the deformation occurs in the
direction normal to it. For example, the deformed width of 18.95 mm is 26.3% more than
the reference width of 15 mm (and it is not observed for points of all heights, only those
on the top surface), whereas the thickness increases by 110% (and the same holds for the
height of most points in the sample). The relative errors in the affine and phantom models
for the measurement a of this vertical swelling are, respectively, of —11.2% and —6.2%.
Given the much more significant role of the extension in this direction as compared to the
lateral extension in these experiments, and given the ability of both models to capture well
the lateral swelling (with errors of less than 1% in the measurements d and f of the length
and width after deformation), we conclude that this difference between a —11.2% and a
—6.2% error in the estimation of the vertical extension is very significative, and that the
agreement of the phantom model to the experiment is much better.

Apart from comparing the finite element simulations of both models against the exper-
iments, we can also compared the experimentally observed vertical stretch against the the-
oretical prediction in the idealized thin-film limit [30] (Sect. 3.6), [4] (Sect. 3). This corre-
sponds to a homogeneous uniaxial extension in which the normal component of the osmotic
pressure on the top surface balances out with the normal component of the elastic forces,
namely,

P(diag(l,,\, 1))n=0, n=e, 49)

with the Piola-Kirchhoff tensor P being as in (45). For the affine and the phantom model
this gives

Y $o o5 . P
Auni — — +1In(1 — —_— =0 Auni &~ 1.88, 50
Y Au )‘-uni + n( )Luni) + Xaff)\ﬁni + )‘-uni = u ( )
2
Y i + In(1 — j’o )+xphf70 + f‘) =0 = Am~199. (51
uni uni uni
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The relative errors of these theoretical predictions against the measured vertical stretch of
A =2.10 of Eq. (44) are, respectively, of —10.5% and —5.2%. This is consistent with the
difference of the relative errors of —11.2% and —6.2% in the numerical simulations (where
the aspect ratio 1.62/90 = 1.8% is small but not zero).

We end this subsection by noting that the reduced swelling in the affine model compared
to the prediction in the phantom model is observed not only in the vertical extension, corre-
sponding to measurement a in Fig. 4, but in all of the parameters from a to g (that is, also in
the measurements of the lateral swelling). Indeed, the main parameters d and f (deformed
length and width) are smaller in the affine model. Regarding the heights b and g after the
lateral facets of the gel roll over due to the lateral swelling, a larger value of these parameters
in the affine model indicate that the top edge has not fallen down as much as it has done in
the phantom model, which shows a less pronounced lateral swelling. Analogously, a larger
value of ¢ and e corresponds to a larger portion of the top surface that remains flat and a
smaller effect of rounding of the top edges and corners, which is again indicative of a less
pronounced lateral swelling.

4.4 Lateral Swelling in y; vs. Lateral Swelling in y3

Both models capture the experimental observation of a lateral swelling that is more pro-
nounced on the long edge of the gel (towards the back and the front) than on the short edges
(towards the left and the right). The difference between d and c is 93.73 — 88.26 = 5.47 mm
whereas between f and e is 18.95 — 11.61 = 7.34 mm. If these values are compared to the
respective dimensions of 90 mm and 15 mm, the difference is more evident, as can be seen
in the figure Fig. 5c) of the top view of the deformed gel in the simulation. Also, g is less
than b in the experiments (they differ by 18.5%) and in the simulations with both models
(differing by 4.1% in the model without the logarithmic term and by 3.4% in the model with
the logarithmic term).

4.5 Rigorous Proof of the Reduced Vertical Swelling in the Affine Model

When fitting the model against the free swelling experiment, the logarithmic term favors
expansions of the polymer network, hence a larger x of 0.426 is obtained compared to the
0.348 in the model without —G In J. However, for the bonded experiment, the hydrophobic
effect of the larger x is more pronounced than the expansion favored by the —G In J term.
In the end, in this experiment the gel swells more in the model without the logarithmic
term: 3.19 mm thickness compared to 3.02 mm; 93.98 mm length compared to 93.70 mm;
19.12 mm width compared to 18.80 mm.

To better understand this, which is not intuitive, let us state more precisely that we are
comparing the Ay, =~ 1.99 obtained using the model without the logarithmic term, with
x = 0.348, against the ):u,,i ~ 1.88 obtained from the model with the logarithmic term, with
X = 0.426. The first comes from the equation

®o & o
Auni + In(1 — — =0 52
Y Auni + In( )»uni)Jerﬁm + . (52)
while the second comes from
2
Yiami — 2=+l = 2 4+ 5 5’520 2o (53)
uni uni uni )tuni
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The values of x and ¥ come from the equations

v

1S0

4 14

)‘iso Jiso

+1In(1 = ¢iso) + X P20 + Piso =0, (54)

+ 111(1 - ¢iso) + XA¢1250 + d’iso =0. (55)

A

The equations for Ay, Aui, X, and x are of the form

f(x(s),s)=0, g(x(s),A(s),s5)=0, (56)
with

Y s 2
FO6D = 5 = Il = ) + X B+ i, (57)
sy =ya— S0 (58)

UG A $) =Yh = 4 o (A,

_ ®o %o

H(x,J)=( —¢o)In(1 - 7)+X¢0(1 - 7), (59)

taking s = 0 for Ay, s = y for )A\uni and y (s), A(s) being the functions of s defined implicitly
by (56).
The dependence of f on both x and s is affine, hence it can be seen easily that

8X _ 8f/3S _ 1/Jiso _ Jiso

=_ = = (60)
s df/dx 2 o
Differentiating now g(x (s), A(s), s) = 0 with respect to s we find that

dg oA d dg 0
980%__0%8 89X 61)
JdA Os ds dx os

s 9*H\or 1 # Jiso Jiso = A(s)

IR R o i 7). 62

(” HPCREFYE ) s As) A 9 (s)? (62)

The prefactor on the left-hand side of (62) is positive since H is convex in J for every fixed
X - On the other hand, as the strength s of the logarithmic term —sIn J added to the stored-
energy density %|F|2 + H(J) increases from s = 0 to s = y, the optimal uniaxial extension
A(S$) = Auni(s) remains always below Ji, since A(s) is the Jacobian of the deformation gradi-
ent diag(1, A(s), 1) for the uniaxial extension, and a confined gel never increases its volume
more than in the free swelling experiment. All in all, A(s) is decreasing in s, that is, the
bonded gel in the model with the logarithmic term swells less than in the model without it.

5 Conclusions
In this article, we set the stage for a thorough investigation of singular phenomena in gels,
that further connects the mathematical aspects of the work with the triggering mechanisms,

whether in the form of heat or ionic interaction. In particular, the former may be related with
the coffee ring phenomenon that occurs by solvent evaporation, as explained by Doi [7]. In
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future work, we aim at providing a measure theoretical study of the conservation of mass,
involving the notion of distributional determinant, which will also allow us to extend our
studies of singularities to dynamics.
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