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Abstract

This article studies equilibrium singular configurations of gels and addresses open questions

concerning gel energetics. We model a gel as an incompressible, immiscible and saturated

mixture of a solid polymer and a solvent that sustain chemical interactions at the molecu-

lar level. We assume that the energy of the gel consists of the elastic energy of its polymer

network plus the Flory-Huggins energy of mixing. The latter involves the entropic energies

of the individual components plus that of interaction between polymer and solvent, with the

temperature dependent Flory parameter, χ , encoding properties of the solvent. In particular,

a good solvent promoting the mixing regime, is found below the threshold value χ = 0.5,

whereas the phase separating regime develops above that critical value. We show that cavi-

ties and singularities develop in the latter regime. We find two main classes of singularities:

(i) drying out of the solvent, with water possibly exiting the gel domain through the bound-

ary, leaving behind a core of exposed polymer at the centre of the gel; (ii) cavitation, in

response to traction on the boundary or some form of negative pressure, with a cavity that

can be either void or flooded by the solvent. The straightforward and unified mathematical

approach to treat all such singularities is based on the construction of appropriate test func-

tions, inspired by the particular states of uniform swelling or compression. The last topic

of the article addresses a statistical mechanics rooted controversy in the research commu-

nity, providing an experimental and analytic study in support of the phantom elastic energy

versus the affine one.

Keywords Gels · Cavitation · Singularities · Nonlinear elasticity · Flory-Huggins ·
Logarithmic energies
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1 Introduction

This article addresses singular phenomena in gels as well as modeling issues related to its

mechanics. The former refers to cavitation, and its connection with phase separation, an

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10659-023-10000-5&domain=pdf


M.C. Calderer et al.

ubiquitously observed behavior in gels. The second involves an experimentally and ana-

lytically guided study of the elastic energy of gels as formulated across different scientific

communities involved in the highly interdisciplinary field of gel research. We model the gel

as an immiscible, incompressible and saturated mixture of polymer network and solvent, and

in contact with its own fluid. A mixture is said to be incompressible if each one of the indi-

vidual components has such a property. Immiscibility is concerned with the dependence of

the constitutive equations on the volume fraction of each component. A mixture is saturated

if no component, other than polymer and solvent is present, and so the volume fractions of

the latter naturally add up to one.

Mixture theory was first introduced by Gibbs as a theory of fluid mixtures [17], and

shortly after found its application in the study of alloys, as documented in the book by Pen-

rose and Lebowitz [26]. In such a context, one or more of the fluid components was replaced

by solid metals. The solid aspect of such emerging works awoke Ericksen’s appeal to the

theory, as reported in his monograph, Introduction to the Thermodynamics of Solids ([12],

Chap. 8). Although he refers to his own work as an ‘Elementary Theory’, he establishes

fundamental properties of thermodynamics of mixtures, when solids are involved, such as

the scaling properties of the Helmholtz free energy F and the entropy with respect to the

components. The Gibbs thermodynamic potential, G = F + pV , denoting V the volume of

the region partially occupied by solids and p the pressure, plays a main role. He regards the

fluid surrounding the region V as a loading device which can do work on the solids.

From a different point of view, Ericksen also had the foresight of identifying the diffi-

culties that may arise when one of the components of the mixture vanishes from a location

in the domain, pointing to issues of smoothness of the constitutive equations and balance

laws. In the present article, we come across such difficulties, in our modeling of cavities

and dry spots in the gel. Starting in the early 1960’s, mixture theory took a center stage in

the Continuum Mechanics research, with a major contribution by Truesdell, Ericksen and

collaborators at the Johns Hopkins University. In particular, the theory was formulated to be-

came amenable to analysis and partial differential equations. A sample of the rich literature

that emerged from those efforts includes studies of chemically reacting mixtures of gases

[10], liquid crystals [9], elasticity and diffusion, with temperature effects [3, 8], among oth-

ers. These works later proved very relevant in applications to poroelasticity in geophysics

and models for oil recovery.

The theory of mixtures of polymer and solvent was pioneered by Flory and Huggins

within the framework of statistical mechanics, acknowledging that the resulting gel is in-

deed a new material, different from its individual components [13–15, 19]. The application

of the mixture theory to crosslinked polymers, that brought in the elasticity contribution was

carried out by Flory and Rehner [16]. The treatment of ionic effects in the solvent component

of gels became prominent in the Japanese school following works by Tanaka and collabora-

tors [11, 18, 27, 31–33]. If, in addition, electrically charged polymers are taken into account,

observed swelling (and also compressing) rates may reach an order higher than 500 percent,

bringing up again the importance of a sound formulation of the elastic energy of the gel,

with Ericksen’s skills becoming again very much relevant.

Properties of the gels can be, in part, inferred from their solvent and, in particular, we can

distinguish between a good solvent and a θ -solvent. Water is the typical good solvent, with

the slight charge separation of its molecules inducing an expanding effect in the polymer;

this is due to the mixing effect, a consequence of the dominance of the polymer-solvent

interaction. In a θ -solvent, the polymer tends to become clustered as a result of the primary

polymer-polymer interaction. The temperature at which the latter interaction becomes of the

same order as the steric effects is known as the θ -temperature [22].
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In this paper, we address questions of the gel energetics and also explore issues of singu-

larities forming in gels. The energy of a gel consists of the elastic contribution of the polymer

network, defined in the reference configuration of its domain, plus the Flory-Huggins energy

depending on the volume fractions of the components in the deformed gel domain. The latter

consists of the entropic energy of the individual components plus that of interaction between

polymer and solvent. The latter is encoded in the temperature dependent parameter χ > 0,

the Flory parameter, reflecting the solvent properties, and dictate whether component mixing

or phase separation occur. In our model, the good solvent regime corresponds to χ < 0.5,

θ solvent to χ = 0.5, χ > 0.5 is the poor solvent regime. The singular behavior that we

analyze takes place in the latter regime.

The great bulk of works in gel mechanics dealing with crosslinked polymers use the

neo-Hookean energy to model the elastic deformation of polymers. Owing to its statistical

mechanics derivation, the use of such a model in the literature differs on whether the loga-

rithmic term of the Jacobian determinant of the deformation map is included or not, resulting

in the so called affine or phantom models of polymer distortion, respectively. A full discus-

sion of this issue, with the supporting references, is presented in Sect. 4. Our conclusion in

favor of the phantom model is based on own experimental analysis together with an analytic

proof, all carried out within the good solvent regime of the gel. We think that clarifying

such an issue, in addition to its intellectual value, it also may provide a service to the gel

community, since, it is, otherwise, very difficult to compare results from different workers

that use the different energy formats.

The formation of voids in gels may happen due to causes analogous to those of polymer

networks, such as some inherent weaknesses in the material or other unspecified triggers.

Two types of responses have been identified and investigated. A rapid rearrangement of

the polymer network near the newly formed cavity that reaches a stable state. An unstable

response has also been observed in some cases leading to the development of fracture. While

the latter event is irreversible, the first one is reversible, with the material having the ability

to close down the cavity under proper conditions. The occurrence of either of such events

has been linked to the type of solvent, with the reversible behavior being associated with a

good solvent and the irreversible fracture to a θ solvent [22].

The mathematical treatments of cavitation in nonlinear elasticity as well as in gels, in-

cluding ours, are built of spherically symmetric configurations of the material. Pence and

coworkers studied cavitation by swelling, without accounting for the explicit presence of

solvent, arriving at compelling and physically realistic results [25]. In work by Duda and

coauthors, the model includes solvent and the Flory-Huggins interaction. Our independently

developed approach yields results fully consistent with the former, in a simpler and straight-

forward fashion. Moreover, most of our parameters are obtained from our own experimental

work.

The role of cavitation and formation of singularities in gels tends to be physically more

complex than the analogous phenomena in liquids and in elastic solids, and to our knowledge

has much less studied than the two former cases. In particular, the properties of the solvent

as well as those of the interaction between solvent and polymer network add complexity to

the cases that concern either only solvent or only polymer network. Indeed, this compels us

to distinguish between the formation of two types of singular structures: (i) drying out of

the solvent, with water leaving the gel domain through the boundary, leaving behind a core

of polymer exposed at the centre of the gel; (ii) cavitation, in response to traction on the

boundary or some form of negative pressure, with a cavity that can be either void or flooded

by the solvent and, in some cases, leading to fracture.
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Although not directly used in this article, we cannot ignore the decisive role of the Baker-

Ericksen inequalities in the analysis of cavitation in nonlinear elasticity. In the article Dis-

continous Equilibrium Solutions and Cavitation in Nonlinear Elasticity [2], Ball shows that

the Baker-Ericksen inequalities are satisfied by rank-one convex, isotropic stored energy

functions, and brings up the connection, first observed by Knowles [21], between such in-

equalities and the monotonicity of the Cauchy stress in the radial direction. From this, it

follows that the radial stress is well defined in the cavity, allowing to impose the zero radial

stress (natural) boundary condition at the center. This leads to the finding that the critical

load required to break the material is a multiple of the expression in the Baker-Ericksen in-

equalities. The same inequalities also show that, above the critical dead-load, the cavitated

solution is stable (belonging to a branch of the supercritical bifurcation).

This article is organized as follows. After the first section devoted to the introduction, in

Sect. 2 we present the model. Section 3 is devoted to the analysis of singular and cavitational

solutions, with 3.1 devoted to voids and flooded locations and Sect. 3.2 to dry singularities.

The remarks on the free energy are presented in Sect. 4, with Sect. 5 devoted to the conclu-

sions.

2 Mechanical Model of a Gel

We assume that a gel is in contact with its own fluid and model it as a saturated, incompress-

ible and immiscible mixture of elastic solid and fluid constituents. Let � ⊂R
3 be a bounded

domain, with smooth boundary, representing the reference configuration of the polymer net-

work. The deformation of the polymer is represented by the vector field map

ϕ : x ∈ � −→ y ∈R
3. (1)

We assume it to be continuously differentiable and will explicitly indicate possible excep-

tions in connection with formation of cavities. We assume that ϕ(�) is either fully or par-

tially surrounded by a fluid domain R that has the role of providing or taking water from

the gel in processes of swelling and de-swelling, respectively. We label the polymer and

fluid components with indices 1 and 2, respectively. According to the theory of mixtures, a

point y in the current (deformed) configuration is occupied by, both, fluid and solid at vol-

ume fractions φ1 = φ1(y) and φ2 = φ2(y), respectively. An immiscible mixture is such that

the constitutive equations depend explicitly on the volume fractions φi, i = 1,2. We let ρi

denote the mass density of the ith component (per unit volume of deformed gel). It is re-

lated to the intrinsic density, γi , by the equation ρi = γiφi , i = 1,2. Moreover γi = constant,

i = 1,2 define a mixture with incompressible constituents, dubbed an incompressible mix-

ture. The assumption of saturation of the mixture expressing that no species other than fluid

and polymer are present, is expressed by the constraint

φ1 + φ2 = 1. (2)

As a consequence, it suffices to know the volume fraction of polymer, which henceforth will

be denoted simply by φ:

φ(y) := φ2(y) = (swollen) polymer vol. fraction at y. (3)

In addition to the polymer domain �, the reference configuration of the gel is also charac-

terized by the scalar field 0 ≤ φ0(x) ≤ 1, x ∈ � that represents the reference volume fraction
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of the polymer. The equation of balance of mass of the polymer states that, for every subset

E ⊂ �,

ˆ

ϕ(E)

φ(y) dy =
ˆ

E

φ0(x) dx. (4)

Formally, in the absence of cavities, it reduces to a pointwise relation

φ(ϕ(x))detF(x) = φ0(x), F (x) = ∇ϕ(x), for all x ∈ �. (5)

We appeal to our article [30] for the detailed justification of the energy of the gel and present

here a necessary summary. The total energy consists of two terms, the elastic energy of the

polymer network plus the Flory-Huggins contribution of mixing the solvent and the polymer

components:

E =
ˆ

�

Wel(∇ϕ(x)) dx +
ˆ

ϕ(�)

WFH(φ(y)) dy. (6)

As customary in the gel literature, we assume that Wel is Neo-Hookean:

Wel(F) := G

2
|F|2, G > 0, (7)

with an elastic modulus G that has dimensions of energy density. The Flory-Huggins energy

density of mixing ([7, Eq. 2.62], [28, p. 143]), has the form

WFH(φ) := kBT

Vm

(φ1 lnφ1 + 1

N
φ2 lnφ2 + χφ1φ2), φ1 := 1 − φ, φ2 = φ. (8)

Here Vm represents the volume occupied by one monomer of solvent; kB the Boltzmann

constant; N � 1 is the number of segments occupied by the polymer in the lattice model

for polymer solutions (the solvent molecules being assumed to occupy each a single lattice

site); and χ is the Flory-Huggins interaction parameter. The first and second terms in (8)

correspond to the entropy of the polymer and fluid, respectively, and the third term represents

attractive or repulsive forces between the two components.

The mixing energy density must be integrated on the current (swollen) configuration,

where the interaction between the two species takes place. In order to combine it with the

elastic energy, we carry out a change to the reference (Lagrangian) variables, that in the case

that the deformation is regular gives

ˆ

�

WFH

(

φ
(

ϕ(x)
)
)

det F(x) dx. (9)

Let us introduce the notation

ν := kBT

Vm

, γ := G

ν
, J := det F,

and the dimensionless expression

H(J ) := 1

ν
J WFH(φ), φ = φ0/J,
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= 1

N
φ0 ln

φ0

J
+ (J − φ0) ln(1 − φ0

J
) + φ0χ(1 − φ0

J
), J > φ0. (10)

We will take ν as a reference –entropic– energy density unit. Dividing the total energy of

the gel by ν and by its volume in the initial state, and taking the mass balance equation (5)

into account, we arrive finally at the following dimensionless quantity:

E =
ˆ

�

γ

2
|F|2 + H(J )dx. (11)

Determining the values of χ such that H(J ) is convex and finding the critical value χc above

which the convexity is lost is relevant to our problem [7, Sect. 2.4]. In the later case, the gel

separates into the polymer and fluid phases, which is relevant to cavities forming in the gel.

A direct calculation gives

ω(J ) := H ′(J ) = −1

ν
�(φ) = − φ

N
+ ln(1 − φ) + φ + χφ2, φ = φ0/J, (12)

where

�(φ) := −WFH(φ) + φ
dWFH

dφ
+ WFH(0) (13)

is the osmotic pressure of the polymer solution. Also,

H ′′(J ) = φ

νJ

d�

dφ
= φ

J

(

1

N
+ 1

1 − φ
− 1 − 2χφ

)

. (14)

Hence H(J ) is convex in the whole range J ∈ (φ0,∞) if and only if [7, Eq. 2.67]

χ <
1

2

(

1 + 1√
N

)2

︸ ︷︷ ︸

:=χc

. (15)

This range for χ corresponds to the mixing regime for the gel [28]. Furthermore, since H

is convex then the energy density
γ

2
|F|2 + H(det F) in (11) is a polyconvex function [1, 6]

of the deformation gradient. The available existence theory for polyconvex energy densities

(e.g., [1, 6, 24]) do not cover the low coercivity situation at hand. However, as is the case

for neo-Hookean materials, under appropriate boundary conditions energy minimizers are

expected to exist.

In the regime χ < χc the osmotic pressure is positive. The loss of convexity of H(J ),

corresponding to χ > χc and allowing for negative osmotic pressure, is associated with

cavities forming in the gel. The well-posedness of the minimization problem requires adding

a regularizing term |∇φ|2 in the energy (6) [5, 36].

From now on, we will consider the N → ∞ approximation for the mixing energy of the

gel, so that χc = 1
2
.

3 Cavitation

Throughout this section, we consider spherically symmetric configurations of the gel and

assume that it occupies a spherical domain of radius R0 > 0. The reference configuration of
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Fig. 1 Plots of H(J ) Note the

loss of convexity of H as χ

increases. The reference volume

fraction is set to φ0 = 0.2 [30]

the polymer component is the domain

�0 = {x ∈ R
3 : ‖x‖ < R1}, φ = φ0 (16)

where φ0 is the volume fraction of the polymer. We study radially symmetric deformations

of the gel:

r =r(R), θ = �, ϕ = 
, (17)

φ =φ(R). (18)

The deformation gradient tensor is

F = diag[r ′(R),
r(R)

R
,
r(R)

R
], J := det F = r ′(R)

r2(R)

R2
. (19)

3.1 Voids and Flooded Locations

Let us assume that some additional negative pressure appears, such as water evaporation.

In order to simplify the analysis, let us represent this situation with an expansive Dirichlet

condition. More precisely, we perturb the free swelling solution

r(R) ≡ λ∗R, 0 ≤ R < R1, (20)

where λ∗ is obtained from the equation for the equilibrium between the elastic and the

osmotic forces [30]

λH ′(λ3) = −γ, (21)

by imposing a further expansion of the gel through the displacement boundary condition

r(R1) = λR1 (22)
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for values of λ > λ∗. We compare two alternative ways in which the gel can respond to this

requirement. One is by means of the uniform expansion

r(R) ≡ λR, 0 ≤ R < R1. (23)

The other is by opening up a cavity, while at the same time keeping the polymer and solvent

volume fractions of the swelling equilibrium state. This second alternative is obtained from

the following equation:

J ≡ (λ∗)3 ⇒ r2r ′

R2
= (λ∗)3 for all R (24)

⇒ (r3)′ = ((λ∗R)3)′ (25)

⇒ r3(R) = (λ∗R)3 + C. (26)

The constant C can be obtained from the boundary condition:

(λR1)
3 = (λ∗R1)

3 + C ⇒ C = R3
1(λ

3 − (λ∗)3), (27)

giving the deformation

r(R) =
(

(λ∗R)3 + R3
1(λ

3 − (λ∗)3)
)1/3

. (28)

This deformation opens up a cavity of radius:

cavity radius = lim
R→0+

r(R) = R1
3
√

λ3 − (λ∗)3, (29)

which begins as a zero radius when λ = λ∗ and grows as the radial stretch λ imposed at the

outer boundary becomes larger. Note that

φ(r) =
{

0 if 0 ≤ r < R1
3
√

λ3 − (λ∗)3,

φ∗ if R1
3
√

λ3 − (λ∗)3 < r ≤ λR1,
φ∗ = φ0

(λ∗)3
,

where φ∗ is the polymer volume fraction at swelling equilibrium. (We point out that, both,

the radial distance r and the current polymer volume fraction φ are defined in the deformed

configuration).

The energy of the uniform expansion, compared to the energy at swelling equilibrium, is

E1(λ) =
(4π

3
R3

1

)

·
(G

2
· 3(λ2 − (λ∗)2) + kBT

Vm

(

H(λ3) − H((λ∗)3)
)

.
)

(30)

The energy of the cavitated configuration, also compared to the energy of the swelling

equilibrium, is

E2(λ) =
ˆ R1

0

(4πR2dR) ·
(G

2

(

r ′(R)2 + 2
r2(R)

R2
− 3(λ∗)2

)

(31)

+ kBT

Vm

(

H
(

r ′(R)
r2

R2

)

− H
(

(λ∗)3
)
))

(32)
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Fig. 2 Comparison of the energies of a uniformly expanded state (blue) and that of a configuration with a

void (green), for different values of χ

= 4π

ˆ R1

0

R2 · G

2
(

(
(λ∗)3R2

r(R)2

)2

+ 2
r(R)2

R2
)dR − 4π

3
R3

1 · G

2
· 3(λ∗)2, (33)

since, in this case, the Jacobian is constant and equal to (λ∗)3. The above relation can also

be written as

E2(λ)

4π
=
ˆ R1

0

R2Ŵ (v(R))dR − R3
1

3
Ŵ (λ∗),

with

Ŵ (v) := G

2
((λ∗)6v−4 + 2v2), v(R) := r(R)

R
. (34)

Following [2, Eq. (5.27)], we observe that

v(R)3 = R−3
(

(λ∗R)3 + R3
1(λ

3 − (λ∗)3)
)

= (λ∗)3 + R3
1(λ

3 − (λ∗)3)R−3

R3 = R3
1(λ

3 − (λ∗)3)

v3 − (λ∗)3
,

d

dR

(

Ŵ
(

v(R)
)
)

= dŴ

dv

dv

dR
.



M.C. Calderer et al.

Fig. 3 Comparison of the energies of a uniformly compressed state (blue) and that of a configuration with a

dry spot (green), for different values of χ

Integrating by parts yields

E2(λ)

4π
= R3

1(λ
3 − (λ∗)3)

3(v3 − (λ∗)3)
Ŵ

(

v(R)
)

∣
∣
∣
∣
∣

R1

R=0

− 1

3

ˆ R1

0

R3
1(λ

3 − (λ∗)3)

v3 − (λ∗)3

dŴ

dv

dv

dR
dR − R3

1

3
Ŵ (λ∗).

Note that, as R → 0+, the tangential stretch v(R) = r(R)

R
tends to infinity due to the opening

of the cavity. Hence,

E2(λ)
4π
3

R3
1

= Ŵ (λ) − Ŵ (λ∗) + (λ3 − (λ∗)3)

ˆ ∞

λ

1

v3 − (λ∗)3

dŴ

dv
dv.

Now,

dŴ

dv
= 2G(v − (λ∗)6v−5) = 2Gv−5(v6 − (λ∗)6) = 2Gv−5(v3 + (λ∗)3)(v3 − (λ∗)3).
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Therefore,

E2(λ)
4π
3

R3
1

= Ŵ (λ) − Ŵ (λ∗) + 2G(λ3 − (λ∗)3)

ˆ ∞

λ

v−5(v3 + (λ∗)3)dv

= Ŵ (λ) − Ŵ (λ∗) + 2G(λ3 − (λ∗)3)

ˆ ∞

λ

v−2 + (λ∗)3v−5dv

= Ŵ (λ) − Ŵ (λ∗) + G

2
(λ3 − (λ∗)3)

(

4λ−1 + (λ∗)3λ−4
)

.

Figure 2 show the energetically prevalent configuration for different values of the Flory

parameter χ . For a related stability analysis, we calculate the derivatives of both expressions

with respect to λ, evaluated at λ = λ∗:

dE1

dλ

4π
3

R3
1

= 3Gλ + kBT

Vm

H ′(λ3) · 3λ2 = 3KBT

Vm

(γ λ + λ2H ′(λ3)).

Evaluating it λ = λ∗ and using equation (21) also at λ∗, we find that

dE1

dλ

∣
∣
∣
∣
∣
λ=λ∗

= 0.

The second derivative is given by

d2E1

dλ2

4π
3

R3
1

= 3KBT

Vm

(γ + 2λH ′(λ3) + 3λ4H ′′(λ3)).

At λ = λ∗, we obtain

d2E1

dλ2

∣
∣
∣
∣
∣
λ=λ∗

= 4πR3
1

KBT

Vm

(−γ + 3(λ∗)4H ′′((λ∗)3)).

Let us now carry out the analogous calculations for E2,

dE2(λ)

dλ

4π
3

R3
1

= 3G

2
(4λ + (λ∗)3λ−2), and

d2E2(λ)

dλ

4π
3

R3
1

= 3G

2
(4 − 2(λ∗)3λ−3).

Gathering the expressions for E1 and E2 we find that

d

dλ
(E2(λ) − E1(λ))

∣
∣
∣
∣
∣
λ=λ∗

= 10πR3
1Gλ∗ > 0,

d2

dλ2
(E2(λ) − E1(λ))

∣
∣
∣
∣
∣
λ=λ∗

= 4πR3
1

kBT

Vm

(2γ − 3(λ∗)4H ′′((λ∗)3)).

In conclusion, we find that when λ starts growing above λ∗, the cavitation solution becomes

energetically higher than the homogeneous deformation. However, for values of χ > 1
2

(that
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is, in the phase-separation regimen when H(J ) is not convex), after a small energetic barrier

is overcome, the cavitation solution has less energy than the homogeneous expansion.

3.2 Dry Spots

We now consider a similar analysis, but with λ < λ∗. We compare the homogeneous defor-

mation r(R) ≡ λR against the following second alternative:

r(R) :=

⎧

⎨

⎩

φ
1/3

0 R if R ≤ Rλ
(

(λ∗R)3 + R3
1(λ

3 − (λ∗)3)
)1/3

if Rλ ≤ R ≤ R1.
(35)

This solution is characterized by the fact that

φ
(

r(R)
)

=
{

1 R < Rλ

φ∗ Rλ < R < 1,
φ∗ = φ0

(λ∗)3
. (36)

The fluid is taken away from the subregion B(0,Rλ) in the centre of the reference configu-

ration, leaving the polymer exposed.

The value of Rλ is determined by the requirement of continuity of the deformation map

at R = Rλ:

φ0R
3
λ = (λ∗Rλ)

3 + R3
1(λ

3 − (λ∗)3), (37)

giving

R3
λ = (λ∗)3 − λ3

(λ∗)3 − φ0

R3
1 . (38)

We assume that λ3 > φ0 so that the radius Rλ, thus defined, is less than R1.

When χ < 1
2
, the energy density is polyconvex and it can be shown that the homogeneous

deformation (the first alternative) is the global minimizer (even compared to non-radially

symmetric deformations). Indeed, the deformation given by r(R) above is in W 1,∞, and

polyconvexity, as is well known [1], implies W 1,∞-quasiconvexity. More specifically, for

the affine Dirichlet boundary data ϕ(x) = λx for x ∈ �0, Jensen’s inequality yields:

 

�0

G

2
|∇ϕ|2 + H(det∇ϕ)dx ≥ G

2

∣
∣
∣
∣
∣

 

�0

∇ϕ dx

∣
∣
∣
∣
∣

2

+ H

(
ˆ

�0

det∇ϕ dx

)

.

For all ϕ ∈ W 1,3(�0,R
3) that are one-to-one a.e. and satisfy det∇ϕ > 0 a.e. and the bound-

ary condition, both integrals on the right-hand side coincide with the corresponding expres-

sions for the affine deformation x �→ λx. Hence, the dry spot will not be seen. However, in

the phase-separation regime, when χ > 1
2

and H(J ) is not convex in J , the second alterna-

tive might have a better energy.

The energy of the homogeneous deformation, compared against the energy at swelling

equilibrium, is given by equation (30). The energy of the competing dry cavity (35) is

E2(λ)
4π
3

R3
1

= R−3
1

ˆ R1

Rλ

(3R2dR)
(

Ŵ (v(R)) + kBT

Vm

H
(

r ′(R)v(R)2
)
)
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+ R3
λ

R3
1

(3G

2
φ

2/3

0 + kBT

Vm

lim
J→φ−

0

H(J )
)

− G

2
· 3(λ∗)2 − kBT

Vm

H((λ∗)3)

= R−3
1 R3Ŵ (v(R))

∣
∣
∣
∣
∣

R1

R=Rλ

− R−3
1

ˆ R1

Rλ

R3
1((λ

∗)3 − λ3)

(λ∗)3 − v3

dŴ

dv

dv

dR
dR

− R−3
1

kBT

Vm

H((λ∗)3)R3
λ + R3

λ

R3
1

· 3G

2
φ

2/3

0 − Ŵ (λ∗)

= Ŵ (λ) − Ŵ (λ∗) − R3
λ

R3
1

Ŵ (φ
1/3

0 ) − ((λ∗)3 − λ3)

ˆ λ

φ
1/3
0

1

(λ∗)3 − v3

dŴ

dv
dv

+ R3
λ

R3
1

(3G

2
φ

2/3

0 − kBT

Vm

H((λ∗)3)
)

= Ŵ (λ) − Ŵ (λ∗) + ((λ∗)3 − λ3)

G
2
φ

−4/3

0 (φ2
0 − (λ∗)6) − kBT

Vm
H((λ∗)3)

(λ∗)3 − φ0

+ ((λ∗)3 − λ3)

ˆ λ

φ
1/3
0

2G(v−2 + (λ∗)3v−5)dv

Using again the expression (34), we find

E2(λ)
4π
3

R3
1

= Ŵ (λ) − Ŵ (λ∗) + ((λ∗)3 − λ3)

G
2
φ

−4/3

0 (φ2
0 − (λ∗)6) − kBT

Vm
H((λ∗)3)

(λ∗)3 − φ0

+ ((λ∗)3 − λ3)
G

2
(4φ

−1/3

0 + (λ∗)3φ
−4/3

0 − 4λ−1 − (λ∗)3λ−4)

= Ŵ (λ) − Ŵ (λ∗)

+ ((λ∗)3 − λ3)

(

G

2

(

4φ
−1/3

0 + (λ∗)3φ
−4/3

0 − 4λ−1 − (λ∗)3λ−4
)

− G

2

(

(λ∗)3φ
−4/3

0 + φ
−1/3

0

)

− kBT

Vm

H((λ∗)3)

(λ∗)3 − φ0

)

= Ŵ (λ) − Ŵ (λ∗)

+ ((λ∗)3 − λ3)
(G

2

(

3φ
−1/3

0 − 4λ−1 − (λ∗)3λ−4
)

− kBT

Vm

H((λ∗)3)
)

.

Figure 3 shows the energy of the uniformly compressed and cavitated state for different

values of the Flory parameter χ . In conclusion,

E2(λ)
4π
3

R3
1

= ((λ∗)3 − λ3)
(3G

2
(φ

−1/3

0 − λ−1) − kBT

Vm

H((λ∗)3)
)

− 3G

2
((λ∗)2 − λ2). (39)

Now, we compute the derivative with respect to λ. For the homogeneous deformation the

expressions are the same as in the case when λ > λ∗. Regarding the deformation creating a
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dry spot, we have

dE2(λ)

dλ

4π
3

R3
1

= 3G

2
((λ∗)3φ

−1/3

0 + 4λ) + 3
kBT

Vm

H((λ∗)3)λ2. (40)

Evaluating it at λ = λ∗, we find:

d

dλ
(E2(λ) − E1(λ))

∣
∣
∣
∣
∣
λ=λ∗

=4πR3
1

(G

2

(

(φ
−1/3

0 + 4)λ∗ − 3φ
−1/3

0 (λ∗)2
)

+ kBT

Vm

H((λ∗)3)(λ∗)2
)

. (41)

4 Remarks on the Elastic Energy Density

By means of the experimental and analytic studies presented next, we justify the validity of

the phantom energy model of the gel, that is, neglecting the logarithmic term in the elastic

energy of the polymer, versus the competitor affine model. For this, we continue experimen-

tal results reported in [30] on the swelling of a thin rectangular polyacrylamide (PAAm) gel

completely bonded to a rigid substrate. Specifically, we report that the phantom model for

the elastic distortion gives a better agreement, compared to the affine model, with our lateral

swelling experiments. We conclude the section with an analytic proof, which is valid in the

mixture regime.

In the statistical mechanics derivation of the Gaussian model for polymers different ex-

pressions are obtained for the elastic distortion energy density according to whether the gel

is assumed to follow the same affine deformation as the infinitesimal polymer block that is

subject to a homogeneous deformation. When that assumption is made, the resulting expres-

sion, which includes a logarithmic term:

Waff(F) = G

2
(|F|2 − 3) − G lnJ, (42)

is known as the affine model for the elastic distortion (see, e.g., [13, 20, 23, 34, 35]). In con-

trast, in the phantom model for the elastic distortion, where the polymer chains are allowed

to move freely through one another and the network junctions fluctuate around their mean

positions, the resulting expression is just

Wph(F) = G

2
(|F|2 − 3) (43)

(see, e.g., [7, Sects. 3.3.1, 3.3.2, 3.4.1], [23, 34]). For a solid incompressible polymer, the

expressions are equivalent. However, when the polymers are exposed to a solvent and an

accurate description of the volume increase due to solvent absorption, it is unclear whether

the affine or the phantom model should be considered. In this section we report results

based on finite element simulations comparing both models against experimental results of

the lateral swelling in a thin PAAm gel fully bonded to a glass substrate. A better agreement

is found with the phantom model.

The finite element simulations for the affine and phantom model are compared against

our experimental work reported in [30] (Sect. 2). Numerical simulations are implemented

(as those in [30] (Sect. 4.1) in the open-source finite element library Netgen/NGSolve (www.

http://www.ngsolve.org
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Fig. 4 Shapes of a completely bonded gel at swelling equilibrium. The illustration exaggerates the rounding-

off at the upper corners, and the outward displacement of the lateral surfaces (the actual aspect ratio d/a, in

the main view, is of the order of 94 : 3, as can be seen in Table 1. The frame y1 , y2 , y3 , with the notation used

in the expressions y = x + u(x), x = (x1, x2, x3), y = (y1, y2, y3) in the mathematical model, is depicted

with heavy lines (in particular, the vertical direction is denoted by y2) [30]

Table 1 Experimental and finite

element simulation results for the

swelling of a 90.0 [mm] ×
1.62 [mm] × 15.0 [mm]

rectangular PAAm gel

completely bonded to a glass

slide, data from [30]

Configuration a b c d e f g

Reference 1.62 1.62 90.0 90.0 15.0 15.0 1.62

Gel 1 3.31 2.05 88.08 93.90 11.42 19.00 1.75

Gel 2 3.35 2.13 88.39 93.85 11.68 18.99 1.78

Gel 3 3.50 2.01 88.31 93.56 11.49 18.79 1.72

Gel 4 3.45 2.23 88.25 93.62 11.86 19.00 1.64

Average 3.40 2.11 88.26 93.73 11.61 18.95 1.72

SD 0.09 0.10 0.13 0.17 0.20 0.10 0.06

Affine model 3.02 1.76 87.64 93.70 12.62 18.80 1.70

Phantom model 3.19 1.72 86.96 93.98 12.27 19.12 1.65

ngsolve.org) [29]. The computational domain is discretized with tetrahedral meshes and con-

tinuous piecewise cubic finite element spaces are used to approximate the displacement vari-

able. The resulting system of nonlinear boundary value problems are solved with a damped

Newton’s method. In order to have an adequate initial condition for Newton’s scheme, the

‘incremental softening’ technique is applied, consisting in solving first the nonlinear sys-

tem for more rigid gels (with shear moduli of five or ten times larger than the measured

G = 0.13 MPa).

4.1 Measurements

Table 1 presents the experimental and the finite elements results for both the affine and the

phantom model. The gel is observed to swell mostly in the direction normal to the substrate,

since the attempt to swell along the width and length directions is largely prevented by

the constraining glass slide. Nevertheless, as one moves away from the substrate, a small

and increasing amount of lateral swelling can indeed be observed. In order to quantitatively

describe this ‘bread loafing’ effect, measurements a, b, c, d , e, f , and g are made as depicted

in Fig. 4.

As can be seen in Table 1, the amount of lateral displacement is observed to be very sim-

ilar in the two horizontal directions, close to 2 mm on each side: the difference of 3.73 mm

between the measurement d and the length of 90.0 mm of the gel in its initial state, accounts

http://www.ngsolve.org
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for the sum of the displacements towards the left and towards the right of the sample. The

difference of 3.95 mm between the measurement f and the initial width of 15.0 mm ac-

counts for the displacement towards the back and the front. The largest deformation occurs

in the direction normal to the substrate, where the gel reaches a thickness of 3.40 mm (mea-

surement a made in the middle of the sample). Given the initial thickness of 1.62 mm, this

corresponds to a vertical extension of:

λ = 3.40

1.62
= 2.0988, (44)

that is, it stretches by approximately 110%.

Regarding the numerical simulations, as explained in [30] they are obtained by minimiz-

ing the energy functional

ˆ

�

Wel(F) + kBT

Vm

(

(J − φ0) ln(1 − φ) + χφ0(1 − φ)
)

dx, J = det F, φ = φ0

J
,

where F = I + ∇u is the deformation gradient. As explained in [30] (Sect. 4 and Appendix),

the penalty term 105 ·
´

|(x2 + u2(x))−|2 dx is also added in order to prevent an unphys-

ical interpenetration of the glass substrate due to a protrusion originated from the left and

right facets. The polymer volume fraction φ0 in the reference configuration is approximately

φ = 0.20 (see [30] (Sect. 2.2.1) for more details on the synthesis of the PAAm gel). In the

simulations the values for kB and Vm were 1.38 ·10−23 m2 kg s−2 K−1 and 3 ·10−29 m3, yield-

ing an approximate value of 136.6 MPa for the prefactor
kBT

Vm
in the Flory-Huggins term.

The value of the Flory parameter χ was obtained from our free swelling experiments

reported in [30] (Sect. 2.3.1), the results of which are summarized in Table 2. The resulting

value of χ depends on whether the affine or the phantom model is adopted for the elas-

tic distortion. In the three repetitions of the experiment a homogeneous deformation was

observed, very close to an isotropic expansion, as predicted by the model. The volume at

swelling equilibrium was approximately Jiso = 3.29 times the volume of the reference con-

figuration. The pointwise energy minimizers of the above energy density are of the form

F = λR, where R is a rotation and λ is obtained from the condition of equilibrium of forces:

P(λI) = 0, P(F) = ∂Wel(F)

∂F
+ kBT

Vm

H ′(J )Fc, (45)

where P is the Piola-Kirchhoff stress tensor and where by F
c we have denoted the cofactor

matrix of F. For the phantom model this gives [30] (Sect. 3.4)

χph = −(φ�)−2
(

γ J
−1/3

iso + ln(1 − φ�) + φ�
)

, φ� = φ0

Jiso

, γ = G

kBT/Vm

(46)

whereas for the affine model

χaff = −(φ�)−2
(

γ J
−1/3

iso − γ J−1
iso + ln(1 − φ�) + φ�

)

, φ� = φ0

Jiso

. (47)

The PAAm gel samples prepared were found [30] (Sect. 2.3.3) to have an elastic modulus

of G = 0.13 MPa, thus yielding

χph = 0.348, χaff = 0.426. (48)
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Table 2 Shape of PAAm gels at swelling equilibrium with reference configuration of 90.0 mm × 3.0 mm ×
23.5 mm (n = 3). The average Jacobian determinant in equilibrium is 3.2908 (standard deviation 0.0068),

which corresponds to a ratio of isotropic extension λ̂iso := J 1/3 = 1.4874, from [30]

Configuration Length (mm) Width (mm) Thickness (mm) Jacobian determinant J

Reference 90.0 23.5 3.0 1

Gel 1 134.24 34.69 4.48 3.2880

Gel 2 134.49 34.68 4.47 3.2858

Gel 3 134.62 34.78 4.47 3.2908

Average 134.45 4.47 34.72 3.2908

SD 0.19 0.0058 0.055 0.0068

Strecth factor 1.4865 1.4911 1.4773

Fig. 5 Points

y = (y1, y2, y3) ∈ ϕ(�) colored

in pink are those for which

y2 ≥ (0.95)max� y2 . The values

of c and e in the last two rows of

Table 1 correspond to the length

and width of the essentially flat

region formed by those magenta

points

Both in experiments and in simulations (carried out with the above values of χ ), most of

the top surface remains essentially flat after the deformation, giving way to a rounding of the

corners starting at a small distance from the edges. However, the definition of parameters

c and e in Fig. 4 is subjective. In Table 1, the (arbitrarily chosen) criterion to measure

parameters c and e from the affine model and the phantom model simulations was: y2 ≥
(0.95)maxy2 (see Fig. 5).
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4.2 Comparison of theModels – Lateral Swelling

The main parameters in the description of the lateral swelling are the total deformed length

d and the total deformed width f . The relative errors in d for the affine and the phantom

models, compared to experimental results, are, respectively, of −0.003% and of +0.27%.

The relative errors in f are, respectively, −0.8% and of +0.9%. Therefore, in measurements

d and f both models very precisely capture the lateral swelling of close to 2 mm on each

side and there is no significative difference between the models.

Regarding parameter c, the relative errors for the affine and the phantom models are

−0.7% and −1.5%. The relative errors for parameter e are of 8.7% and 5.7%. As explained

before, the precise definition of this parameter is subjective and it is difficult to have a precise

comparison between simulations and experiments.

The height b after deformation of the middle point of the edge at the top and at the right

of the sample is the measurement in which the models depart most from the experiment. For

the affine model the relative error is of −16.6% and for the phantom model it is of −18.5%.

As for the height g of the middle point of the top edge of the front facet, the relative errors

are −1.16% and −4.07%, respectively.

4.3 Comparison of theModels – Vertical Swelling

Due to the constraint imposed by the bonding surface, most of the deformation occurs in the

direction normal to it. For example, the deformed width of 18.95 mm is 26.3% more than

the reference width of 15 mm (and it is not observed for points of all heights, only those

on the top surface), whereas the thickness increases by 110% (and the same holds for the

height of most points in the sample). The relative errors in the affine and phantom models

for the measurement a of this vertical swelling are, respectively, of −11.2% and −6.2%.

Given the much more significant role of the extension in this direction as compared to the

lateral extension in these experiments, and given the ability of both models to capture well

the lateral swelling (with errors of less than 1% in the measurements d and f of the length

and width after deformation), we conclude that this difference between a −11.2% and a

−6.2% error in the estimation of the vertical extension is very significative, and that the

agreement of the phantom model to the experiment is much better.

Apart from comparing the finite element simulations of both models against the exper-

iments, we can also compared the experimentally observed vertical stretch against the the-

oretical prediction in the idealized thin-film limit [30] (Sect. 3.6), [4] (Sect. 3). This corre-

sponds to a homogeneous uniaxial extension in which the normal component of the osmotic

pressure on the top surface balances out with the normal component of the elastic forces,

namely,

P
(

diag(1, λ,1)
)

n = 0, n = e2, (49)

with the Piola-Kirchhoff tensor P being as in (45). For the affine and the phantom model

this gives

γ λuni −
γ

λuni

+ ln(1 − φ0

λuni

) + χaff

φ2
0

λ2
uni

+ φ0

λuni

= 0 ⇒ λuni ≈ 1.88, (50)

γ λuni + ln(1 − φ0

λuni

) + χph

φ2
0

λ2
uni

+ φ0

λuni

= 0 ⇒ λuni ≈ 1.99. (51)
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The relative errors of these theoretical predictions against the measured vertical stretch of

λ = 2.10 of Eq. (44) are, respectively, of −10.5% and −5.2%. This is consistent with the

difference of the relative errors of −11.2% and −6.2% in the numerical simulations (where

the aspect ratio 1.62/90 = 1.8% is small but not zero).

We end this subsection by noting that the reduced swelling in the affine model compared

to the prediction in the phantom model is observed not only in the vertical extension, corre-

sponding to measurement a in Fig. 4, but in all of the parameters from a to g (that is, also in

the measurements of the lateral swelling). Indeed, the main parameters d and f (deformed

length and width) are smaller in the affine model. Regarding the heights b and g after the

lateral facets of the gel roll over due to the lateral swelling, a larger value of these parameters

in the affine model indicate that the top edge has not fallen down as much as it has done in

the phantom model, which shows a less pronounced lateral swelling. Analogously, a larger

value of c and e corresponds to a larger portion of the top surface that remains flat and a

smaller effect of rounding of the top edges and corners, which is again indicative of a less

pronounced lateral swelling.

4.4 Lateral Swelling in y1 vs. Lateral Swelling in y3

Both models capture the experimental observation of a lateral swelling that is more pro-

nounced on the long edge of the gel (towards the back and the front) than on the short edges

(towards the left and the right). The difference between d and c is 93.73 − 88.26 = 5.47 mm

whereas between f and e is 18.95 − 11.61 = 7.34 mm. If these values are compared to the

respective dimensions of 90 mm and 15 mm, the difference is more evident, as can be seen

in the figure Fig. 5c) of the top view of the deformed gel in the simulation. Also, g is less

than b in the experiments (they differ by 18.5%) and in the simulations with both models

(differing by 4.1% in the model without the logarithmic term and by 3.4% in the model with

the logarithmic term).

4.5 Rigorous Proof of the Reduced Vertical Swelling in the AffineModel

When fitting the model against the free swelling experiment, the logarithmic term favors

expansions of the polymer network, hence a larger χ of 0.426 is obtained compared to the

0.348 in the model without −G lnJ . However, for the bonded experiment, the hydrophobic

effect of the larger χ is more pronounced than the expansion favored by the −G lnJ term.

In the end, in this experiment the gel swells more in the model without the logarithmic

term: 3.19 mm thickness compared to 3.02 mm; 93.98 mm length compared to 93.70 mm;

19.12 mm width compared to 18.80 mm.

To better understand this, which is not intuitive, let us state more precisely that we are

comparing the λuni ≈ 1.99 obtained using the model without the logarithmic term, with

χ = 0.348, against the λ̂uni ≈ 1.88 obtained from the model with the logarithmic term, with

χ̂ = 0.426. The first comes from the equation

γ λuni + ln(1 − φ0

λuni

) + χ
φ2

0

λ2
uni

+ φ0

λuni

= 0 (52)

while the second comes from

γ λ̂uni −
γ

λ̂uni

+ ln(1 − φ0

λ̂uni

) + χ̂
φ2

0

λ̂2
uni

+ φ0

λ̂uni

= 0, (53)
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The values of χ and χ̂ come from the equations

γ

λiso

+ ln(1 − φiso) + χφ2
iso + φiso = 0, (54)

γ

λiso

− γ

Jiso

+ ln(1 − φiso) + χ̂φ2
iso + φiso = 0. (55)

The equations for λuni, λ̂uni, χ , and χ̂ are of the form

f (χ(s), s) = 0, g(χ(s), λ(s), s) = 0, (56)

with

f (χ, s) = γ

λiso

− s

Jiso

+ ln(1 − φiso) + χφ2
iso + φiso, (57)

g(χ,λ, s) = γ λ − s

λ
+ ∂H

∂J
(χ,λ), (58)

H(χ,J ) = (J − φ0) ln(1 − φ0

J
) + χφ0(1 − φ0

J
), (59)

taking s = 0 for λuni, s = γ for λ̂uni and χ(s), λ(s) being the functions of s defined implicitly

by (56).

The dependence of f on both χ and s is affine, hence it can be seen easily that

∂χ

∂s
= − ∂f/∂s

∂f/∂χ
= 1/Jiso

φ2
iso

= Jiso

φ2
0

. (60)

Differentiating now g
(

χ(s), λ(s), s
)

= 0 with respect to s we find that

∂g

∂λ

∂λ

∂s
= −∂g

∂s
− ∂g

∂χ

∂χ

∂s
, (61)

(

γ + s

λ2
+ ∂2H

∂J 2

)

∂λ

∂s
= 1

λ(s)
− φ2

0

λ(s)2

Jiso

φ2
0

= −Jiso − λ(s)

λ(s)2
. (62)

The prefactor on the left-hand side of (62) is positive since H is convex in J for every fixed

χ . On the other hand, as the strength s of the logarithmic term −s lnJ added to the stored-

energy density
γ

2
|F|2 + H(J ) increases from s = 0 to s = γ , the optimal uniaxial extension

λ(s) = λuni(s) remains always below Jiso since λ(s) is the Jacobian of the deformation gradi-

ent diag(1, λ(s),1) for the uniaxial extension, and a confined gel never increases its volume

more than in the free swelling experiment. All in all, λ(s) is decreasing in s, that is, the

bonded gel in the model with the logarithmic term swells less than in the model without it.

5 Conclusions

In this article, we set the stage for a thorough investigation of singular phenomena in gels,

that further connects the mathematical aspects of the work with the triggering mechanisms,

whether in the form of heat or ionic interaction. In particular, the former may be related with

the coffee ring phenomenon that occurs by solvent evaporation, as explained by Doi [7]. In
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future work, we aim at providing a measure theoretical study of the conservation of mass,

involving the notion of distributional determinant, which will also allow us to extend our

studies of singularities to dynamics.
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