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Abstract
We prove a natural generalization of the classical three gap theorem, for rotations on
adelic tori. Our proof is an adaptation to the adeles of the lattice-based approach to
gaps problems in Diophantine approximation originally introduced by Marklof and
Strömbergsson.
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1 Introduction

The classical three gap theorem (also known as the three distance theorem and as the
Steinhaus problem) asserts that, for any α ∈ R and N ∈ N, the collection of points
nα mod 1, 1 ≤ n ≤ N , partitions R/Z into component arcs having one of at most
three distinct lengths. This theoremwas first proved independently in the 1950s by Sós
[8, 9], Surányi [10], and Świerczkowski [11], and it has since been reproved numerous
times and generalized in many ways (see the introductions and bibliographies of [2,
3]).

With a view toward understanding problems in dynamics which are sensitive to
arithmetic properties of return times to regions, it is desirable to generalize classical
results about rotations onR/Z to the setting of rotations on adelic tori. In this paper we
will prove an adelic version of the three gap theorem. For readers unfamiliar with the
adeles or adelic tori, we provide definitions and basic properties in the next section.
Here we briefly present our results.
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Let P = {p1, p2, . . .} be a non-empty subset of prime numbers and let AP denote
the projection of the rational adeles A onto the places indexed by {∞} ∪ P . The
additive group �P = Z[1/p1, 1/p2, . . .] can be diagonally embedded into AP as a
subgroup, and we identify it with its image under this embedding. The adelic torus
XP is then defined as XP = AP/�P . We will write elements α ∈ XP as α =
(α∞, αp1 , αp2 , . . .).

We are going to define gaps as nearest neighbor distances, but first we must specify
a metric on XP . A natural choice of metric on AP is given by

|α − β| =

⎧
⎪⎪⎨

⎪⎪⎩

max
{|α∞ − β∞|∞,maxp∈P |αp − βp|p

}
if |P| < ∞,

max
{
|α∞ − β∞|∞,maxp∈P

|αp−βp |p
p

}
if |P| = ∞.

(1.1)

This metric induces the usual restricted product topology on AP , and we use it to
define the metric

‖α − β‖ = min{|α − β − γ | : γ ∈ �P } (1.2)

on XP , which induces the quotient topology (see [4, 12]).
Given α ∈ AP and N ∈ N, let

SN (α) = {ξn = nα + �P : 1 ≤ n ≤ N } ⊂ XP ,

and for each 1 ≤ n ≤ N let δn,N = δn,N (α) denote the distance from ξn to its nearest
neighbor in SN (α). That is,

δn,N = min
{‖ξm − ξn‖ > 0 : 1 ≤ m ≤ N

}
. (1.3)

We are interested in the number of distinct nearest neighbor distances, which we write
as

gN (α) = |{δn,N (α) : 1 ≤ n ≤ N }|.

The main result of this paper is the following theorem.

Theorem 1.1 Let P be any non-empty set of prime numbers. For any α ∈ XP and
N ∈ N, we have that gN (α) ≤ 3. Furthermore, there exist α ∈ XP and N ∈ N for
which gN (α) = 3.

Our proof of this theorem is an adaptation to the adeles of the lattice-based approach to
gaps problems in Diophantine approximation first introduced by Marklof and Ström-
bergsson in [6] to give a new proof of the three gap theorem. The utility of their
approach lies in its flexibility for generalization to higher dimensional problemswhere
other techniques do not work well (see [2, 3, 5]).

Readers who are familiar with the references in the previous paragraph will rec-
ognize the overall structure of our proof of Theorem 1.1. However, technical details
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aside, here there are two new difficulties which must be overcome. The first is to
prove that a certain function (the function F defined in Sect. 3) on the space of
lattices SL(2, �P )\SL(2, AP ) is well-defined. For this we use an adelic version of
Minkowski’s theorem from the geometry of numbers, which was developed indepen-
dently by McFeat [7] and Bombieri and Vaaler [1]. The second difficulty is to prove
that the bound of 3 in our theorem is best possible. Of course, for specific choices
of P this can be done by a computer, but to deal with arbitrary P a small amount of
ingenuity is required.

The structure of this paper is as follows. In Sect. 2 we discuss background material
and notation, and we establish basic preliminary results. In Sect. 3 we reformulate the
problem of bounding gN (α) as a problem about bounding a certain function on the
space of lattices of determinant 1 in A

2
P . In Sect. 4 we prove the upper bound gN ≤ 3,

and in Sect. 5 we give examples showing that this bound is best possible, in the sense
described in Theorem 1.1.

2 Preliminaries and notation

For any prime number p, we write Qp for the field of p-adic numbers and | · |p for the
usual p-adic absolute value on this field. The ring of p-adic integers Zp is the set of
x ∈ Qp with |x |p ≤ 1. We also use | · |∞ to denote the usual Archimedean absolute
value on R.

The ring of rational adeles A of Q is a topological ring consisting of all points of
the form

α = (α∞, α2, α3, α5, . . .) ∈ R ×
∏

p

Qp,

satisfying the condition that αp ∈ Zp for all but finitely many primes p (the product
above is over all prime numbers). Addition and multiplication of elements are defined
pointwise,with closure under addition guaranteed by the strong triangle inequality, and
the topology on A is the restricted product topology with respect to the sets Zp ⊆ Qp.

As in the introduction, for a non-empty set of prime numbers P = {p1, p2, . . .} we
writeAP for the topological ring obtained byprojectingAonto the coordinates indexed
by {∞}∪P , and provided with the final topology with respect to this projection. With
this topology, the additive group of AP is a locally compact Abelian group, therefore
it has a translation invariant Haar measure which is unique up to scaling.

The space AP is metrizable, so there are of course many metrics which induce its
topology. The problems that we are studying depend on the choice of metric, and in
this paper we choose to use the metric defined by (1.1). For the case when |P| < ∞
this is the maximum metric, which is a canonical choice. When |P| = ∞ this is a
natural metric, which has been used before in this context [4, 12].

The additive group �P = Z[1/p1, 1/p2, . . .] can be diagonally embedded intoAP
by the injective homomorphism γ 	→ γ = (γ, γ, γ, . . .), and we identify �P with its
image under this map (in the same way, we also denote the diagonal embedding of
any element of Q into AP by bold face). The group �P is a discrete subgroup of AP ,

123



A. Das, A. Haynes

and the quotient group

XP = AP/�P

is compact. The metric ‖ · ‖ defined by (1.2) induces the quotient topology on XP
(this follows from the same arguments given in [4]). For clarity of notation, we also
mention that there is a natural action of �P on AP , given by γα = γα.

To help with some of the calculations below, it is worth pointing out that a strict
fundamental domain for the quotient group XP can be identified with the set

FP = [0, 1) ×
∏

p∈P
Zp.

The reader should take care to note that this is only a Cartesian product of sets, not a
direct product of groups—the group structure is slightly different because of the fact
that �P is diagonally embedded in AP .

Finally, we conclude this section with the following useful observation, which is a
good exercise in some of the definitions above.

Proposition 2.1 If α,β ∈ FP then

‖α − β‖ = min
γ∈{0,±1} |α − β − γ |. (2.1)

Proof First of all, since

|α∞ − β∞|∞ < 1 and |αp − βp|p ≤ 1 for all p ∈ P,

we have that

‖α − β‖ ≤ |α − β|
{

≤ 1 if |P| < ∞,

< 1 if |P| = ∞.
(2.2)

Choose γ ∈ �P so that

‖α − β‖ = |α − β − γ |.

If, for some prime p ∈ P , we had |γ |p > 1 then it would follow that

|αp − βp − γ |p ≥ p,

This would give that

‖α − β − γ ‖
{

> 1 if |P| < ∞,

≥ 1 if |P| = ∞,
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which would contradict (2.2). It follows that γ ∈ Zp for all p ∈ P , which implies that
γ ∈ Z. Now if |γ |∞ ≥ 2, then we would have that

‖α − β‖ ≥ |α∞ − β∞ − γ |∞ > 1,

again contradicting (2.2). Therefore γ = −1, 0, or 1, as required. �


3 Formulation of the problem in terms of lattices

LetG = SL(2, AP ) and� = SL(2, �P ). The goal of this section is to explain how the
quantity gN (α) can be obtained as the value of a function on the quotient space �\G.
This space can be identified in a natural way with the space of lattices of determinant
1 in A

2
P , since such a lattice is determined as the �P -span of the rows of a matrix in

G, which is unique up to left multiplication by an element of � (i.e., change of basis).
Suppose that α ∈ AP and N ∈ N, and write N+ = N + 1/2. Beginning from

definition (1.3), for each 1 ≤ n ≤ N we have

δn,N (α) = min {|(m − n)α + γ | > 0 : 0 < m < N+, γ ∈ �P }
= min {|kα + γ | > 0 : −n < k < N+ − n, γ ∈ �P }
= min

{

|kα + γ | > 0 : −n

N+
< k < 1 − n

N+
, γ ∈ �P

}

.

For each non-zero t ∈ Q define

At (α) =
(
1 α

0 1

)(
t−1 0
0 t

)

=
(
t−1 tα
0 t

)

∈ G, (3.1)

and note that, for any β, γ ∈ �P ,

(β, γ )AN+(α) =
(

β

N+
, N+(βα + γ )

)

.

It follows from this and the computation above that, for each 1 ≤ n ≤ N , the quantity
δn,N is equal to

1

N+
min

{

|v| �= 0 : (u, v) ∈ �2
P AN+(α),

−n

N+
< u∞ < 1 − n

N+
,

|u p|p ≤ 1

|N+|p for all p ∈ P
}

. (3.2)
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Next, for any M ∈ G, t ∈ (0, 1), and z ∈ N, let us define

Q(M, t, z) =
{
(u, v) ∈ �2

PM : v �= 0, − t < u∞ < 1 − t,

|u p|p ≤
∣
∣
∣
∣
2

z

∣
∣
∣
∣
p
for all p ∈ P

}

, (3.3)

and

F(M, t, z) = min {|v| : (u, v) ∈ Q(M, t, z)} . (3.4)

The reason for these definitions will be made clear below. However, before proceeding
further, we must verify the following proposition.

Proposition 3.1 The quantity F is well-defined as a function from �\G × (0, 1) × N

to R>0.

Proof First of all let (M, t, z) ∈ G × (0, 1) × N and choose ε > 0 small enough so
that:

(i) ε < min{t, 1 − t},
(ii) pε < |2/z|p, for all primes p|2z, and
(iii) �2

PM contains no non-zero lattice points (u, v) satisfying |u| ≤ ε and |v| = 0.

Condition (iii) is possible because of the uniform discreteness of the lattice.
Now write

S =
{
(α,β) ∈ A

2
P : |α| < ε

}
,

and suppose that (α,β) ∈ S. Then from condition (i) we have that

−t < α∞ < 1 − t .

If |P| < ∞ then for all primes p ∈ P we have from (ii), together with the fact that
ε < 1, that

|αp|p ≤ ε <

∣
∣
∣
∣
2

z

∣
∣
∣
∣
p
.

If |P| = ∞ then for primes p ∈ P with p|2z we have from (ii) that

|αp|p ≤ pε <

∣
∣
∣
∣
2

z

∣
∣
∣
∣
p
.

In this case for primes p ∈ P with p � 2z we use the discreteness of the p-adic
absolute value to deduce that

|αp|p
p

≤ ε < 1 ⇒ |αp|p ≤ 1 =
∣
∣
∣
∣
2

z

∣
∣
∣
∣
p
.
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These arguments show that

S ∩ �2
PM ⊆ Q(M, t, z).

Since S is a symmetric and convex subset ofA
2
P with infinite Haar measure, it follows

from the adelic analog of Minkowski’s convex body theorem (see [1, Sect. III]) that
S contains a non-zero element of �2

PM . Therefore Q(M, t, z) is non-empty.
The existence of the minimum in the definition of F follows from the uniform

discreteness of the lattice �2
PM , and this also guarantees that F never takes the value

0. Finally, since the same lattice is determined by choosing any other representative
for M from �\G, the function F is well-defined on �\G × (0, 1) × N. �

Comparing Eqs. (3.2)–(3.4), we have that

δn,N (α) = 1

N+
F

(

AN+(α),
n

N+
, 2N + 1

)

.

Motivated by this observation, for M ∈ G and z ∈ N we define

G(M, z) = |{F(M, t, z) : 0 < t < 1}|,

and for N ∈ N, we also set

GN (M) =
∣
∣
∣
∣

{

F

(

M,
n

N+
, 2N + 1

)

: 1 ≤ n ≤ N

}∣
∣
∣
∣ .

It follows that

gN (α) = GN (AN+) ≤ G(AN+ , 2N + 1). (3.5)

This reduces the problem of finding an upper bound for the number of gaps to that of
finding an upper bound for the function G. We conclude this section with the following
basic observation.

Proposition 3.2 For any M ∈ G and z ∈ N, we have that G(M, z) < ∞.

Proof Proposition 3.1 implies that there exists a vector (u, v) ∈ Q(M, 1/2, z). By
symmetry, we also have that (−u,−v) ∈ Q(M, 1/2, z). For any t ∈ (0, 1), one of
±u∞ lies in the interval (−t, 1−t), and so one of the vectors±(u, v) lies in Q(M, t, z).
It follows that F(M, t, z) ≤ |v|, for all t ∈ (0, 1). By the uniform discreteness of the
lattice �2

PM , there are finitely many vectors (u′, v′) in the set

Q(M, z) =
⋃

t∈(0,1)

Q(M, t, z), (3.6)

satisfying the condition |v′| ≤ |v|. Therefore the set of values taken by the function
F(M, t, z), as t varies over (0, 1), is a finite set. �
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4 Proof of Theorem 1.1, part 1

In this section we will prove the following result.

Theorem 4.1 Let P be a non-empty set of prime numbers. For any M ∈ G and z ∈ N,
we have that G(M, z) ≤ 3.

In view of inequality (3.5), this theorem implies the upper bound in the statement of
Theorem 1.1.

To establish Theorem 4.1, suppose that M ∈ G and z ∈ N, and let Q(M, z) be
defined as in (3.6). Note that, by the symmetry of the lattice and of the definition of
Q(M, z),

(u, v) ∈ Q(M, z) ⇔ (−u,−v) ∈ Q(M, z). (4.1)

By Proposition 3.2, there exists a number K ∈ N such that G(M, z) = K . It is clear
from definitions that we can fix vectors (u1, v1), . . . , (uK , vK ) ∈ Q(M, z) for which
the following properties hold:

(V1) 0 < |v1| < |v2| < · · · < |vK |,
(V2) For each t ∈ (0, 1), there exists 1 ≤ i ≤ K such that F(M, t, z) = |vi | , and
(V3) For each 1 ≤ i ≤ K , there exists t ∈ (0, 1) such that (ui , vi ) ∈ Q(M, t, z) and

F(M, t, z) = |vi |.
We also have the following proposition.

Proposition 4.2 If G(M, z) = K then we can choose the vectors (ui , vi ) as above, so
that they satisfy conditions (V1)-(V3), and so that ui,∞ ≥ 0 for each 1 ≤ i ≤ K.

Proof Suppose that 1 ≤ i ≤ K and that ui,∞ < 0. It is clear that the vector (−ui ,−vi )

satisfies property (V2), and we wish to show that it also satisfies (V3). Since (ui , vi )
itself satisfies (V3), there exists a number t ∈ (0, 1) with (ui , vi ) ∈ Q(M, t, z) and
F(M, t, z) = |vi |. This implies that there are no vectors (u, v) ∈ Q(M, z) with
|v| < |vi | and u∞ ∈ (−t, 1− t). Writing t ′ = 1− t and using (4.1), we see that there
are also no vectors (u, v) ∈ Q(M, z) with |v| < |vi | and u∞ ∈ (−t ′, 1 − t ′). Since
(−ui ,−vi ) ∈ Q(M, t ′, z), this implies that F(M, t ′, z) = | − vi |, and we see that
(V3) holds for this vector.

It follows that, for each 1 ≤ i ≤ K with ui,∞ < 0, we can replace the vector
(ui , vi ) by its negative, to obtain a new list of vectors satisfying the conclusion of the
proposition. �

We will henceforth assume, without loss of generality, that the vectors (ui , vi ) have
been chosen as above, so that they also satisfy:

(V4) ui,∞ ≥ 0 for each 1 ≤ i ≤ K .

Next we have the following proposition.

Proposition 4.3 If (u, v) ∈ Q(M, z) and |u∞| < 1/2, then F(M, t, z) ≤ |v| for all
t ∈ (0, 1).
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Proof By replacing (u, v) with its negative if necessary, we may assume without
loss of generality that u∞ ∈ [0, 1/2). We then have that (u, v) ∈ Q(M, t, z) for all
t ∈ (0, 1 − u∞), and that (−u,−v) ∈ Q(M, t, z) for all t ∈ (u∞, 1). Therefore
F(M, t, z) ≤ |v| for all t in the union of these two intervals. If u∞ < 1/2, then
the union of these two intervals is all of (0, 1), and the statement of the proposition
follows. �

Finally, we have the following proposition.

Proposition 4.4 If 1 ≤ i ≤ K and if (u, v) ∈ Q(M, z) satisfies |u∞|∞ ≤ ui,∞, then
|v| ≥ |vi |.
Proof Suppose that the hypotheses are satisfied and, by replacing (u, v) by its negative
if necessary, suppose that u∞ ≥ 0. By property (V3), there exists a t ∈ (0, 1) such
that (ui , vi ) ∈ Q(M, t, z) and F(M, t, z) = |vi |. Then since

−t < 0 ≤ u∞ ≤ ui,∞ < 1 − t,

we also have that (u, v) ∈ Q(M, t, z). This implies that F(M, t, z) ≤ |v|, which
gives the desired conclusion. �

Note that Proposition 4.4 implies that

0 ≤ uK ,∞ < uK−1,∞ < · · · < u1,∞ < 1.

Now we are ready to complete the proof of Theorem 4.1. Let K1 denote the number
of indices 1 ≤ i ≤ K with ui,∞ < 1/2, and let K2 denote the number of indices with
1/2 ≤ ui,∞ < 1.

By Proposition 4.3, together with properties (V1) and (V2), we have that K1 ≤ 1,
and if K1 = 1 then the corresponding index i is equal to K .

If K2 ≤ 2 then clearly we have that K = K1 + K2 ≤ 3. Therefore suppose that
K2 ≥ 3, and let 1 ≤ i, j, k ≤ K be the smallest three indices with ui,∞, u j,∞, uk,∞ ≥
1/2. Without loss of generality, by relabeling if necessary, we may assume that i < j
and that vi,∞ and v j,∞ are either both negative, or both non-negative. This guarantees
that

|vi,∞ − v j,∞|∞ ≤ max{|vi,∞|∞, |v j,∞|∞},

and by using the strong triangle inequality at the non-Archimedean places we obtain
the bound

|vi − v j | ≤ max
{|vi |, |v j |

} = |v j |. (4.2)

However, it is also the case that

|ui,∞ − u j,∞|∞ < 1/2 ≤ u j,∞,
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and that

|ui,p − u j,p|p ≤ max
{|ui,p|p, |u j,p|p

} ≤
∣
∣
∣
∣
2

z

∣
∣
∣
∣
p
,

for all p ∈ P . It follows that the vector (u, v) = (ui , vi ) − (u j , v j ) lies in Q(M, z)
and satisfies |u∞| < 1/2. By Proposition 4.3, we must have that

F(M, t, z) ≤ |v| = |vi − v j |,

for all t ∈ (0, 1). Combining this with (4.2), and with (V1), we conclude in this case
that j = K , K1 = 0, K2 = 3, and K = K1 + K2 = 3. This completes the proof of
Theorem 4.1, and also the proof of the upper bound in the statement of Theorem 1.1.

5 Proof of Theorem 1.1, part 2

To complete the proof of Theorem 1.1 we must show that, for any choice of P , there
are examples of α ∈ XP and N ∈ N for which gN (α) = 3. Since the definition of the
metric in (1.1) depends on whether |P| is finite or infinite, we will consider these two
cases separately. In the examples below, we make repeated implicit use of Proposition
2.1.
Finite case (|P| < ∞). Suppose that |P| < ∞ and consider the following examples:

(F1) If P = {2}, take α = (α∞, α2) = (351/100, 1) and N = 52. By direct compu-
tation we have that

δ1,N (α) = ‖51α‖ = 1

100
,

δ2,N (α) = ‖35α‖ = 3

20
, and

δ18,N (α) = ‖16α‖ = 4

25
,

which gives gN (α) = 3.
(F2) If P = {3}, take α = (α∞, α3) = (16/5, 1) and N = 5. Again by direct

computation, we have that

δ1,N (α) = ‖4α‖ = 1

5
,

δ2,N (α) = ‖3α‖ = 3

5
, and

δ3,N (α) = ‖α‖ = 4

5
,

which gives gN (α) = 3.
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(F3) IfP = {p1, . . . , pk},with p1 < · · · < pk and p1 · · · pk ≥ 5, let N = p1 · · · pk+
1 and

α =
(

1

4p1 · · · pk ,−1, . . . ,−1

)

.

For each 1 ≤ n ≤ N − 3 we have that

−n �= 0 mod pi , for some 1 ≤ i ≤ k,

and that

−n �= 1 mod p j , for some 1 ≤ j ≤ k.

It follows from Proposition 2.1 that ‖nα‖ = 1 for all such n. From this we see
that

δ1,N (α) = ‖(p1 · · · pk)α‖ = max

{
1

4
,
1

p1

}

≤ 1/2,

δ2,N (α) = ‖(p1 · · · pk − 1)α‖ = 3

4
+ 1

4p1 · · · pk , and

δ3,N (α) = ‖α‖ = 1,

which gives gN (α) = 3. It is worth mentioning that one reason this construction
does not work in the cases described in the previous two examples is because
the corresponding value of N is too small.

It is clear that examples (F1)-(F3) cover all possibilities with |P| < ∞.

Infinite case (|P| = ∞). Suppose that |P| = ∞ and consider the following examples:

(I1) If the smallest prime in P is 3 then let α∞ = 1/9, α3 = 1, and αp = 0 for all
p ∈ P with p �= 3, and take N = 11. Then we have that

δ1,N (α) = ‖10α‖ =
{

1
5 if 5 ∈ P,
1
9 if 5 /∈ P,

δ2,N (α) = ‖7α‖ = 2

9
, and

δ5,N (α) = ‖α‖ = 1

3
,

which gives gN (α) = 3.
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(I2) If P contains the primes 2 and 3 then let α∞ = 27/50, α2 = −1, and αp = 0
for all p ∈ P with p �= 2, and take N = 6. Then we have that

δ1,N (α) = ‖5α‖ = 3

10
,

δ2,N (α) = ‖4α‖ = 1

3
, and

δ3,N (α) = ‖α‖ = 23

50
,

which gives gN (α) = 3. We note that in the calculation of δ1,N and δ2,N , it is
important that α3 = 0.

(I3) If P contains the prime 2 but not the prime 3 then let α∞ = 8/49, α2 = −1,
and αp = 0 for all p ∈ P with p �= 2 or 5. Also let α5 = 3 if 5 ∈ P , and take
N = 8. Then we have that

δ1,N (α) = ‖7α‖ = 1

7
,

δ2,N (α) = ‖5α‖ = 1

4
, and

δ4,N (α) = ‖2α‖ = 16

49
,

which gives gN (α) = 3. The assumption on α5 (if 5 ∈ P) is important in the
calculation of δ1,N .

(I4) If the smallest prime q in P is greater than or equal to 5 then let α∞ =
q−1

q(q−2) , αq = −1, and αp = 0 for all p ∈ P with p �= q, and take N = q. Then,
by the type of argument given in example (F3) above, we have that

δ1,N (α) = ‖(q − 1)α‖
= max

{
1

q(q − 2)
,max

{
1

p
: p ∈ P, p �= q

}}

<
1

q
,

δ2,N (α) = ‖(q − 2)α‖ = 1

q
, and

δ3,N (α) = ‖α‖ = 1

q
+ 1

q(q − 2)
,

which gives gN (α) = 3.

Examples (I1)–(I4) cover all possibilities with |P| = ∞. This therefore completes the
proof of Theorem 1.1.

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.
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