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Abstract

We prove a natural generalization of the classical three gap theorem, for rotations on
adelic tori. Our proof is an adaptation to the adeles of the lattice-based approach to
gaps problems in Diophantine approximation originally introduced by Marklof and
Strombergsson.
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1 Introduction

The classical three gap theorem (also known as the three distance theorem and as the
Steinhaus problem) asserts that, for any « € R and N € N, the collection of points
naemod 1, 1 <n < N, partitions R/Z into component arcs having one of at most
three distinct lengths. This theorem was first proved independently in the 1950s by Sés
[8, 9], Surdnyi [10], and Swierczkowski [11], and it has since been reproved numerous
times and generalized in many ways (see the introductions and bibliographies of [2,
3D.

With a view toward understanding problems in dynamics which are sensitive to
arithmetic properties of return times to regions, it is desirable to generalize classical
results about rotations on R /Z to the setting of rotations on adelic tori. In this paper we
will prove an adelic version of the three gap theorem. For readers unfamiliar with the
adeles or adelic tori, we provide definitions and basic properties in the next section.
Here we briefly present our results.
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Let P = {p1, p2, ...} be a non-empty subset of prime numbers and let Ap denote
the projection of the rational adeles A onto the places indexed by {oo} U P. The
additive group I'p = Z[1/p1, 1/p2, ...] can be diagonally embedded into Ap as a
subgroup, and we identify it with its image under this embedding. The adelic torus
Xp is then defined as Xp = Ap/I'p. We will write elements &« € Xp as « =
(oo, Cpy, Apyy . ).

We are going to define gaps as nearest neighbor distances, but first we must specify
a metric on Xp. A natural choice of metric on Ap is given by

max {|aoo — Boloos max,ecp lop — ,Bplp} if |P| < oo,
le — B| = (L.1)

max {|ozC>O — Booloo, Max pep %} if |P| = oo.

This metric induces the usual restricted product topology on Ap, and we use it to
define the metric

le — B = min{la — B —y|:y € I'p} (1.2)

on Xp, which induces the quotient topology (see [4, 12]).
Givena € Ap and N € N, let

Sv(@) = (£, =na+Tp:1<n<N}CXp,

and foreach 1 <n < N let§, n = 8, n () denote the distance from &, to its nearest
neighbor in Sy (o). That is,

8oy =min{[|&, —&,1>0:1<m<N}. (1.3)

We are interested in the number of distinct nearest neighbor distances, which we write
as

gn(a) = [{Syn(): 1 <n < N}

The main result of this paper is the following theorem.

Theorem 1.1 Let P be any non-empty set of prime numbers. For any & € Xp and
N € N, we have that gn(a) < 3. Furthermore, there exist @ € Xp and N € N for
which gn(a) = 3.

Our proof of this theorem is an adaptation to the adeles of the lattice-based approach to
gaps problems in Diophantine approximation first introduced by Marklof and Strom-
bergsson in [6] to give a new proof of the three gap theorem. The utility of their
approach lies in its flexibility for generalization to higher dimensional problems where
other techniques do not work well (see [2, 3, 5]).

Readers who are familiar with the references in the previous paragraph will rec-
ognize the overall structure of our proof of Theorem 1.1. However, technical details
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aside, here there are two new difficulties which must be overcome. The first is to
prove that a certain function (the function F defined in Sect. 3) on the space of
lattices SL(2, I'p)\SL(2, Ap) is well-defined. For this we use an adelic version of
Minkowski’s theorem from the geometry of numbers, which was developed indepen-
dently by McFeat [7] and Bombieri and Vaaler [1]. The second difficulty is to prove
that the bound of 3 in our theorem is best possible. Of course, for specific choices
of P this can be done by a computer, but to deal with arbitrary P a small amount of
ingenuity is required.

The structure of this paper is as follows. In Sect. 2 we discuss background material
and notation, and we establish basic preliminary results. In Sect. 3 we reformulate the
problem of bounding gy () as a problem about bounding a certain function on the
space of lattices of determinant 1 in A%. In Sect. 4 we prove the upper bound gy < 3,
and in Sect. 5 we give examples showing that this bound is best possible, in the sense
described in Theorem 1.1.

2 Preliminaries and notation

For any prime number p, we write Q,, for the field of p-adic numbers and | - |, for the
usual p-adic absolute value on this field. The ring of p-adic integers Z,, is the set of
x € Qp with |x| » < 1. We also use | - oo to denote the usual Archimedean absolute
value on R.

The ring of rational adeles A of Q is a topological ring consisting of all points of
the form

a = (doo, @2, 03,05, . ..) eRanp,
P

satisfying the condition that ¢, € Z, for all but finitely many primes p (the product
above is over all prime numbers). Addition and multiplication of elements are defined
pointwise, with closure under addition guaranteed by the strong triangle inequality, and
the topology on A is the restricted product topology with respect to the sets Z, € Q,,.

As in the introduction, for a non-empty set of prime numbers P = {p1, p2, ...} we
write Ap for the topological ring obtained by projecting A onto the coordinates indexed
by {oo} UP, and provided with the final topology with respect to this projection. With
this topology, the additive group of Ap is a locally compact Abelian group, therefore
it has a translation invariant Haar measure which is unique up to scaling.

The space Ap is metrizable, so there are of course many metrics which induce its
topology. The problems that we are studying depend on the choice of metric, and in
this paper we choose to use the metric defined by (1.1). For the case when |P| < oo
this is the maximum metric, which is a canonical choice. When |P| = oo this is a
natural metric, which has been used before in this context [4, 12].

The additive group I'p = Z[1/p1, 1/pa2, . ..] can be diagonally embedded into Ap
by the injective homomorphism y — y = (y, v, v, ...), and we identify ['p with its
image under this map (in the same way, we also denote the diagonal embedding of
any element of QQ into Ap by bold face). The group I'p is a discrete subgroup of Ap,
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and the quotient group

Xp=Ap/Tp
is compact. The metric || - || defined by (1.2) induces the quotient topology on Xp
(this follows from the same arguments given in [4]). For clarity of notation, we also
mention that there is a natural action of I'p on Ap, given by ya = pya.

To help with some of the calculations below, it is worth pointing out that a strict
fundamental domain for the quotient group X can be identified with the set

Fp=10,1) x ]‘[ Zp.
peP
The reader should take care to note that this is only a Cartesian product of sets, not a
direct product of groups—the group structure is slightly different because of the fact
that I'p is diagonally embedded in Ap.

Finally, we conclude this section with the following useful observation, which is a
good exercise in some of the definitions above.

Proposition 2.1 If o, B € Fp then

— Bl = mi —B -yl 2.1
le =Bl = min le—p -y @.1)

Proof First of all, since
|too — Booloo <1 and e, — Bpl, < 1forall p € P,
we have that

<1 if |P] < o0,
_ — 2.2
o = Bl < la le 1P| = 22)

Choose y € I'p so that
le —Bll =l —B -yl
If, for some prime p € P, we had |y|, > 1 then it would follow that
lep = Bp = vlp = P
This would give that

> 1 if |P| < o0,

a_ —
lle —B vl > 1 i [P] = oo,
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which would contradict (2.2). It follows that y € Z, for all p € P, which implies that
y € Z.Now if |y |s > 2, then we would have that

lle = BIl = lotoo — Boo — Vloo > 1,

again contradicting (2.2). Therefore y = —1, 0, or 1, as required. O

3 Formulation of the problem in terms of lattices

Let G = SL(2, Ap)and " = SL(2, I'p). The goal of this section is to explain how the
quantity gy (o) can be obtained as the value of a function on the quotient space I'\G.
This space can be identified in a natural way with the space of lattices of determinant
1in A%, since such a lattice is determined as the I'p-span of the rows of a matrix in
G, which is unique up to left multiplication by an element of I" (i.e., change of basis).

Suppose that « € Ap and N € N, and write Ny = N + 1/2. Beginning from
definition (1.3), foreach 1 < n < N we have

San(a) =minf{|(m —n)a+y|>0:0<m < Ny,y € I'p}
=min{lka +y|>0:—n<k <Ny —n,y € I'p}

—n n
= min i |ka + 0:— <k<l——,yel'p;.
i {|¢x vl > N+< < N, 4 7;}

For each non-zero t € Q define

1a)/t710 t~ ! ta
At(a):<01><0 t)=<0 t)eG, 3.1

and note that, for any 8, y € I'p,

B, ¥)An, (o) = <Ni Ny (Pa + )’)) .

+

It follows from this and the computation above that, for each 1 < n < N, the quantity
8n.N 1s equal to

n

1 _
N—+min{|v| #0: (u,v) € THAy, (@), N—z <o < 1=

lupl, < forallpeP}. (3.2)

IN+1p
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Next, forany M € G, t € (0, 1), and z € N, let us define

Q(M,z,z)z{(u,v)er%M:vyso, < < 1—1,

luplp <

forall p € 73} , 3.3)
P

and
F(M,t,z) =min{|v|: (u,v) € Q(M,1t,2)}. (3.4)

The reason for these definitions will be made clear below. However, before proceeding
further, we must verify the following proposition.

Proposition 3.1 The quantity F is well-defined as a function from I'\G x (0, 1) x N
to R-y.
Proof First of all let (M, t,z) € G x (0, 1) x N and choose € > 0 small enough so
that:

(i) € < min{z, 1 —t},

(ii) pe < |2/z|p, for all primes p|2z, and

(iii) I‘%M contains no non-zero lattice points (u, v) satisfying |u| < € and |v| = 0.

Condition (iii) is possible because of the uniform discreteness of the lattice.
Now write

S:[(a,ﬂ)eA%:|a| <e},
and suppose that (e, ) € S. Then from condition (i) we have that
— <O <1—1t.

If |P| < oo then for all primes p € P we have from (ii), together with the fact that
€ < 1, that

laplp <€ <

p

If |P| = oo then for primes p € P with p|2z we have from (ii) that

2
leplp < pe < ’_
Zlp

In this case for primes p € P with p t 2z we use the discreteness of the p-adic
absolute value to deduce that

2

||
PP <e<l = Jayl, <1=|=
<

p

p
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These arguments show that
SNTHM S QM. 1, 2).

Since S is a symmetric and convex subset of A%) with infinite Haar measure, it follows
from the adelic analog of Minkowski’s convex body theorem (see [1, Sect. III]) that
S contains a non-zero element of F%M . Therefore Q(M, ¢, 7) is non-empty.

The existence of the minimum in the definition of F follows from the uniform
discreteness of the lattice F%M , and this also guarantees that F never takes the value
0. Finally, since the same lattice is determined by choosing any other representative
for M from '\ G, the function F is well-defined on I'\G x (0, 1) x N. O

Comparing Egs. (3.2)—(3.4), we have that
Sy @) = —F Ay (@), = 2N + 1
o) = — o), —, .
n,N N+ N4 N+
Motivated by this observation, for M € G and z € N we define

GWM,z)=|{F(M,t,z):0 <t <1},

and for N € N, we also set

gN(M)=HF<M,i,2N+1> 1 gngN”.
Ny

It follows that
gn() =GN (An,) < G(AN,, 2N +1). (3.5)

This reduces the problem of finding an upper bound for the number of gaps to that of
finding an upper bound for the function G. We conclude this section with the following
basic observation.

Proposition 3.2 Forany M € G and z € N, we have that G(M, z) < oo.

Proof Proposition 3.1 implies that there exists a vector (u,v) € Q(M, 1/2,z). By
symmetry, we also have that (—u, —v) € Q(M, 1/2, 7). For any t € (0, 1), one of
du liesin the interval (—#, 1—t), and so one of the vectors +(u, v) liesin Q(M, ¢, 7).
It follows that F'(M, t, z) < |v|, for all ¢ € (0, 1). By the uniform discreteness of the
lattice F%M , there are finitely many vectors (#’, v’) in the set

oM.2)= ) oM.1.2). (3.6)

te(0,1)

satisfying the condition |v’| < |v|. Therefore the set of values taken by the function
F(M,t,z), as t varies over (0, 1), is a finite set. O
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4 Proof of Theorem 1.1, part 1

In this section we will prove the following result.

Theorem 4.1 Let P be a non-empty set of prime numbers. Forany M € G and z € N,
we have that G(M, z) < 3.

In view of inequality (3.5), this theorem implies the upper bound in the statement of
Theorem 1.1.

To establish Theorem 4.1, suppose that M € G and z € N, and let Q(M, z) be
defined as in (3.6). Note that, by the symmetry of the lattice and of the definition of
0M, z2),

w,v)e QM,z) & (—u,—v)e QM,z2). 4.1)

By Proposition 3.2, there exists anumber K € N such that G(M, z) = K.Itis clear
from definitions that we can fix vectors (u, v1), ..., (ug, vg) € Q(M, z) for which
the following properties hold:

(VD) 0 < |vi| < fvaf <--- < vkl,

(V2) Foreacht € (0, 1), there exists | <i < K such that F(M, ¢, z) = |v;|, and

(V3) Foreach1 <i < K, thereexistst € (0, 1) such that (u;, v;) € Q(M, ¢, z) and
F(M,t,z)=|v;l.

We also have the following proposition.

Proposition 4.2 If G(M, z) = K then we can choose the vectors (u;, v;) as above, so
that they satisfy conditions (VI1)-(V3), and so that u; oo > 0 foreach 1 <i < K.

Proof Supposethat]l <i < K andthatu; o, < 0.Itis clear that the vector (—u;, —v;)
satisfies property (V2), and we wish to show that it also satisfies (V3). Since (u;, v;)
itself satisfies (V3), there exists a number ¢ € (0, 1) with (u;, v;) € Q(M, ¢, z) and
F(M,t,z) = |v;|. This implies that there are no vectors (u,v) € Q(M,z) with
|v] < |vi| and uso € (—1, 1 —t). Writing ’ = 1 — ¢ and using (4.1), we see that there
are also no vectors (u, v) € Q(M, z) with |v| < |v;| and u € (—t’, 1 —t’). Since
(—u;, —v;) € Q(M, 1, z), this implies that F(M,t',z) = | — v;|, and we see that
(V3) holds for this vector.

It follows that, for each 1 < i < K with u; . < 0, we can replace the vector
(u;, v;) by its negative, to obtain a new list of vectors satisfying the conclusion of the
proposition. O
We will henceforth assume, without loss of generality, that the vectors (u;, v;) have
been chosen as above, so that they also satisfy:

(V4) u; oo > 0foreachl <i < K.

Next we have the following proposition.

Proposition4.3 If (u,v) € Q(M, z) and |uso| < 1/2, then F(M, t, z) < |v| for all
t € (0,1).
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Proof By replacing (u, v) with its negative if necessary, we may assume without
loss of generality that u~, € [0, 1/2). We then have that (u, v) € Q(M,t, z) for all
t € (0,1 — uy), and that (—u, —v) € Q(M,t,z) for all t € (U, 1). Therefore
F(M,t,z) < |v| for all ¢ in the union of these two intervals. If uy, < 1/2, then
the union of these two intervals is all of (0, 1), and the statement of the proposition
follows. O

Finally, we have the following proposition.

Proposition4.4 If 1 <i < K and if (u, v) € Q(M, z) satisfies |uooloo < Ui 00, then
[v] > |vil.

Proof Suppose that the hypotheses are satisfied and, by replacing (u, v) by its negative
if necessary, suppose that u, > 0. By property (V3), there exists a t € (0, 1) such
that (u;, v;) € Q(M,t,z) and F(M,t, z) = |v;|. Then since

—1 <0< ZUj00<1—t,

we also have that (u,v) € Q(M,t,z). This implies that F (M, t,z) < |v|, which
gives the desired conclusion. O

Note that Proposition 4.4 implies that
0<UgK oo <UK—loo <+ <Ulco <]l

Now we are ready to complete the proof of Theorem 4.1. Let K denote the number
of indices 1 <i < K with u; oo < 1/2, and let K, denote the number of indices with
1/2 <ujoo < 1.

By Proposition 4.3, together with properties (V1) and (V2), we have that K| < 1,
and if K1 = 1 then the corresponding index i is equal to K.

If K> < 2 then clearly we have that K = K| + K, < 3. Therefore suppose that
K> > 3,andlet1 < i, j, k < K be the smallest three indices with #; oo, 1,00, Uk,00 =
1/2. Without loss of generality, by relabeling if necessary, we may assume thati < j
and that v; » and v « are either both negative, or both non-negative. This guarantees
that

|Ui,oo - Uj,oo|oo =< maX{|Ui,oo|00a |Uj,oo|oo},

and by using the strong triangle inequality at the non-Archimedean places we obtain
the bound

lvi —v;| < max {|vi], [v|} = |vj]. (42)
However, it is also the case that
[thi 00 — Uj coloo < 1/2 S Uj o,
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and that

|ui,p _uj,p|p = max{lui,p|pv |uj,p|p} =

’

p

for all p € P. It follows that the vector (u, v) = (u;, v;) — (u;, v;) liesin Q(M, z)
and satisfies |uso| < 1/2. By Proposition 4.3, we must have that

F(M,t,2) < |v| = |v; —vj],

for all + € (0, 1). Combining this with (4.2), and with (V1), we conclude in this case
that j = K, K1 =0, K» = 3,and K = K| + K> = 3. This completes the proof of
Theorem 4.1, and also the proof of the upper bound in the statement of Theorem 1.1.

5 Proof of Theorem 1.1, part 2

To complete the proof of Theorem 1.1 we must show that, for any choice of P, there
are examples of « € Xp and N € N for which gy (e) = 3. Since the definition of the
metric in (1.1) depends on whether |P| is finite or infinite, we will consider these two
cases separately. In the examples below, we make repeated implicit use of Proposition
2.1.

Finite case (|P| < 00). Suppose that |P| < oo and consider the following examples:

(F1) If P = {2}, take @ = (0, ¥2) = (351/100, 1) and N = 52. By direct compu-
tation we have that

1
Sin(@) = [I5lafl = —

100’

3
S2.n(e) = [35e]| = 75, and
S18.n () = [[16a|| = !
IS,N - - 259

which gives gy () = 3.
(F2) If P = {3}, take ¢ = (o0, ®3) = (16/5,1) and N = 5. Again by direct
computation, we have that

1
Sin(a) = [[4af = 3
3
S v () = || 3|l = 3 and
4
d3,n () = [lafl = 5

which gives gy () = 3.
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(F3) If P = {p1, .

-+ Pk}, withpy < -+ < prand p; -
1 and

“pk = 5,1etN = py--- pr+

1
ot=(—,—l,...,—1).
4pi--- pr

Foreach 1 <n < N — 3 we have that

—n #0mod p;, forsome 1 <i <k,

and that

—n # 1mod p;, forsome 1 < j <k.
It follows from Proposition 2.1 that ||[nec|| = 1 for all such n. From this we see
that

1
—} <1/2,
p

N

Si.n(e) = [[(p1--- pr)e|]| = max {
3
SN =(p1---pr— Deal| = Z

_— and
4p
3. n(a) = [lef| =1,

which gives gy (e) = 3. It is worth mentioning that one reason this construction

does not work in the cases described in the previous two examples is because
the corresponding value of N is too small.

It is clear that examples (F1)-(F3) cover all possibilities with |P| < oo

Infinite case (|P| = 00). Suppose that |P| = oo and consider the following examples:

(I1) If the smallest prime in P is 3 then let aoo = 1/9, 3 = 1, and ), = 0 for all
p € P with p # 3, and take N = 11. Then we have that

if5eP,

81.n () = [[10e]| = { it5¢P

\O|— n|—

2

Sn() = |Tal = % and
1
o5 n(a) = || = =,
sy () = [l 3

which gives gy () = 3.
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(I2) If P contains the primes 2 and 3 then let o = 27/50, 00 = —1, and o), =0
for all p € P with p # 2, and take N = 6. Then we have that

3
) =I5 = —,
1N () = [[5a| 0
1
S,y () = |4 = 3 and
3, n () = lla| =
) = |||l = -,
N 50

which gives gy (o) = 3. We note that in the calculation of §; y and &7 y, it is
important that a3 = 0.

(I3) If P contains the prime 2 but not the prime 3 then let ¢oo = 8/49, ap = —1,
and o), = Oforall p € P with p # 2 or 5. Also let as = 3if 5 € P, and take
N = 8. Then we have that

S1.n () = ||7e]| =

’

S n(@) =[5 = —, and

—_— = Q] =
(@)}

d4.n (o) = [2a]l = 19’
which gives gy (o) = 3. The assumption on o5 (if 5 € P) is important in the
calculation of §; .

(I4) If the smallest prime ¢ in P is greater than or equal to 5 then let oy =
#__12), oy = —1,and e, = Oforall p € P with p # ¢, and take N = ¢. Then,
by the type of argument given in example (F3) above, we have that

S1,n () = [l(g — Del

el I
————max\—:peEP. pFqr <,
) p q

=max{
qlq—2

1
San(@) =1l(g — 2|l = p and

1 1
Sy = llaf| = = + ————,
q q(q@—2)

which gives gy () = 3.

Examples (I1)—(I4) cover all possibilities with | P| = co. This therefore completes the
proof of Theorem 1.1.

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.
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