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Synchronization of dust acoustic waves in a forced Korteweg—de Vries—Burgers model
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The synchronization of dust acoustic waves to an external periodic source is studied in the framework of
a driven Korteweg—de Vries—Burgers equation that takes into account the appropriate nonlinear and disper-
sive nature of low-frequency waves in a dusty plasma medium. For a spatiotemporally varying source term,
the system is shown to demonstrate harmonic (1:1) and superharmonic (1:2) synchronized states. The existence
domains of these states are delineated in the form of Arnold tongue diagrams in the parametric space of the
forcing amplitude and forcing frequency and their resemblance to some past experimental results is discussed.
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I. INTRODUCTION

The nonlinear phenomenon of frequency synchronization
is ubiquitous in many physical, chemical, and biological sys-
tems and has been the subject of a large number of studies
over the past several years [1-3]. The simplest mathematical
model describing this phenomenon consists of an ensemble of
globally coupled nonlinear point oscillators that adjust their
intrinsic frequencies to a common collective frequency as
the coupling strength is increased [4-7]. Such a nonlinear
phenomenon can also be observed in a continuum medium
(a fluid) where a self-excited oscillation or a wave can in-
teract with a driving force and adjust its oscillation or wave
frequency [8—13]. A plasma system with its wide variety of
collective modes and complex nonlinear dynamics provides a
rich and challenging medium for the exploration of synchro-
nization phenomena. A number of past experimental studies
have examined the driven response of a plasma to an ex-
ternal frequency source [9-11,14-23]. These studies include
the synchronization of waves and oscillations at ion and dust
dynamical scales as well as chaos and wave turbulence. There
have also been a few studies devoted to an investigation of
mutual synchronization between two plasma devices [24-26].

More recently, synchronization phenomena have been ex-
perimentally explored in dusty plasma devices where it is
easy to visualize the low-frequency wave activity using fast
video imaging. A dusty plasma is a four-component plasma of
electrons, ions, neutral gas atoms, and micron-size particles of
solid matter [27-29]. It can be produced in a laboratory device
like a glow discharge plasma, by introducing micron-sized
solid particles [30-33]. These small solid particles (dust) get
negatively charged by absorbing more electrons which have a
higher mobility than ions. Such a charged medium consisting
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of dust, ions, and electrons can sustain a variety of collec-
tive modes [29,34-36]. The dust acoustic wave (DAW) or
dust density wave (DDW) first theoretically predicted by Rao
et al. [37] is one such well-known low-frequency compres-
sional mode that is analogous to the ion acoustic wave [29,38].
A DAW can be spontaneously excited due to the onset of
an ion-streaming instability. The DAW has a very low fre-
quency (typically 10-100 Hz) [14,30] due to the large mass
of the dust particles and can consequently be visually ob-
served through its images and video recording [31,39-41].
The term “dust density wave” originated as a generalization
of “dust acoustic wave,” after observing wavefronts (visible
in the dust cloud) that appeared to be oblique with respect
to the ion drift direction [42]. Two key factors led to the use
of the term DDW, namely, the presence of ion drift and an
oblique orientation of the wavefront and its propagation with
respect to the ion drift. Since then, many research groups have
used the term “dust density wave” and “dust acoustic wave”
synonymously [14,31,35,43-45]. The present work focuses
on the synchronization of DAW using the forced Korteweg—de
Vries—Burgers (fKdV-B) model.

Synchronization of dust acoustic waves has been studied
in anodic [15], radio-frequency (RF), and direct-current (DC)
plasmas [14,16,46]. Pilch er al. [15] reported the entrain-
ment of DAWs through a driving modulation to the anode.
Ruhunusiri et al. [14] reported observation of harmonic,
superharmonic, and subharmonic synchrony of self-excited
cnoidal DAWSs. This was achieved through the driven modula-
tion of the streaming ions in the dust cloud. Their experiments
showed parametric regions for the occurrence of such syn-
chrony in the form of Arnold tongue diagrams in the state
space of the driving frequency and driving amplitude. They
also observed features like the branching of the tongues and
the existence of an amplitude threshold for synchronization to
occur. Williams et al. [16] compared DAW synchronization
in RF and DC generated plasmas. Their results suggested
that in a RF plasma, synchronization was restricted to a part
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of the dust cloud volume unlike the complete dust cloud
synchrony in a DC discharge plasma. Deka et al. [46] ob-
served the synchronization of self-excited DDW, through the
suppression mechanism, by modulating ion streaming using
an external sinusoidal driver. Recently, Liu et al. [47] car-
ried out experiments in the Plasma Kristall-4 (PK-4) device
on board the International Space Station (ISS) under micro-
gravity conditions and reported phase locking for harmonic
synchronization. The present work is motivated by Ruhunusiri
et al.’s [14] experiment on global synchronization of a DDW
driven by an ion flow. Unlike the DDW in some experi-
ments [42,48], the wavefronts were not obliquely propagating,
as the experiment was designed to have a planar symmetry,
provided by proximity to a planar electrode, so the wavefronts
were nearly perpendicular to the ion flow direction.

Theoretical efforts toward interpretation and physical un-
derstanding of these experimental results have so far been
limited to providing qualitative comparisons with results
obtained from very simple dynamical models. One of the
commonly employed mathematical model is the periodically
forced Van der Pol (fVdP) oscillator [1,3,49],

2

fle —(c1 - c2x2>fl—f + wpx = Agr oS furt), (1)
which describes the displacement x of a harmonic oscillator
with a natural frequency wy, with terms for a nonlinear damp-
ing cox?dx/dt, a source of energy for self-excitation c;dx/dt,
and a periodic driving source of amplitude A, at a frequency
far- The £VdP oscillator can exhibit synchronization not only
at fy/fo ~ 1, which is called “harmonic” synchronization,
but at ratios that are rational numbers. If f;./fo > 1, the
synchronization is said to be “superharmonic,” whereas if
far/fo < 11t is “subharmonic.” Although the VdP oscillator
model has been used in the past as a reference for character-
izing synchronization phenomena in plasmas and other media
that support the propagation of waves [10,11,14,18,24,46,50],
it should be pointed out that as a point oscillator model its
dynamics is restricted to nonlinear oscillations and it can-
not correctly represent nonlinear waves. This is also evident
from the fact that the VAP model is an ordinary differential
equation in time and therefore has no spatial dynamics that
characterizes a propagating wave. In addition, for nonlinear
dust acoustic or dust density waves dispersion plays an im-
portant role in defining their propagation characteristics and
this is not built into the VAP model. As a promising step in
capturing spatial properties of a wave, one modeling approach
to explain cluster or partial synchronization of propagating
DDWs [51] under microgravity conditions [42] used a chain
of coupled Van der Pol oscillators [52]. As a further advance,
however, there remains a need to develop a simple theoretical
model, based on a wave equation, that successfully describes
the global synchronization of waves exhibiting both nonlin-
earity and dispersion, in a plasma medium.

In this paper, we present such a model and use it to demon-
strate synchronization of nonlinear dust acoustic waves to an
external driver. The fKdV-B model is a generalization of the
fKdV model that was developed by Sen et al. [53] for driven
nonlinear acoustic waves and subsequently extensively used
to study nonlinear precursor solitons in dusty plasma experi-
ments [54,55]. For our study we include viscous dissipation in

the model, an important feature of most laboratory studies of
dusty plasmas [56,57], which converts the fKdV to a fKdV-B
model. Such a model provides a proper theoretical frame-
work for the study of synchronization in a realistic dispersive
plasma system that includes natural growth and dissipation
of waves. The driving term is chosen to have an oscillatory
form that has both a temporal and spatial periodicity. Our nu-
merical solution of the model equation shows clear signatures
of harmonic (1:1) and superharmonic (1:2) synchronization.
The characteristic features of the synchronization are delin-
eated using power spectral density (PSD) plots, phase space
plots, and Lissajous plots obtained from the time-series data
collected at one spatial location. A parametric plot in the
form of an Arnold tongue diagram shows multiple tongues,
each corresponding to the existence region of a harmonic or a
higher order superharmonic synchronized state. The harmonic
tongue also show a branching behavior.

The rest of the paper is organized as follows. Sec-
tion II briefly describes the fKdV-B model and the numerical
approach adopted to solve it. The section also presents
some numerical results for the undriven KdV and KdV-B
equations as background information on the characteristic
nonlinear features of the waves and to describe the diagnostic
tools to be used for identifying synchronization phenomena.
Section III presents our main results on harmonic and super-
harmonic synchronization using the fKdV-B model. A brief
summary and some concluding discussion are provided in
Sec. IV.

II. THE FKDV-B EQUATION AND THE
NUMERICAL APPROACH

The fKdV-B equation, a one-dimensional driven nonlinear
partial differential equation, is of the form

on(x,t) on(x,t) 33n(x, 1) 3%n(x, t)
1t -
ot + an(x, 1) ox P ox3 7 dx2
= F(x, 1). (2)

Here n(x, t) is the dependent variable (the perturbed density
in this case) and F;(x, t) is an external spatiotemporal forcing
term. o, 8, and n are positive quantities representing the
strength of nonlinearity, dispersion, and viscous damping, re-
spectively. The spatial coordinate x and time ¢ are normalized
by the plasma Debye length Ap and the dust plasma period
a);dl , respectively.

It should be mentioned that the KdV equation [i.e., Eq. (2)
in the absence of the viscous damping and driving term] has
been shown to model the evolution of weakly nonlinear waves
in dusty plasmas both in the presence [38] and in the ab-
sence [37] of ion streaming. Hence, it can correctly represent
both nonlinear dust density and dust acoustic waves. Recently,
Liu et al. [38] showed that the cnoidal solution of the KdV
shows excellent agreement with the DDW profiles observed
in the dusty plasma experiments [58,59]. Theoretically, the
experimental DDW evolution was modeled by the KdV model
in which the ion streaming was taken into consideration [38].
Earlier, a theoretical model based on the fKdV equation [60]
was used to explore the nonlinear mixing of longitudinal dust
lattice waves observed in the dusty plasma experiment [61].
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Nonlinear mixing means the natural mode and the external
forcing mode retain their identity after interaction and ex-
cited frequencies are different combinations of addition and
subtraction of the natural and forcing modes. The present the-
oretical fKdV-B model is proposed to understand the global
synchronization of the dust acoustic wave as was observed in
the dusty plasma experiment [ 14]. Synchronization means the
natural mode loses its identity and the system is controlled
by the external driver. Here, we model synchronization by in-
corporating the viscous damping instead of nonlinear mixing
as was done in Ref. [60]. The fKdV-B equation can be derived
from the full fluid-Poisson set of equations, in the weakly non-
linear, dispersive, and dissipative regime by using a reductive
perturbation method [56,62]. Such a derivation in the absence
of the viscosity term has been given in detail by Sen ef al. [53].
The KdV-B equation [i.e., Eq. (2) in the absence of the driving
term] is well known in the literature [56,57,62] and has been
employed in the past to model oscillatory shocks in dusty plas-
mas [56,63]. The model has also been used to study temporal
chaos or spatial chaos by using a randomly time-varying [64]
or randomly space-varying [65] driving term. In earlier work
by Sen et al. [53], the source term was taken to be a constant,
while in this work, we use a spatiotemporally varying periodic
source and carry out a numerical investigation of Eq. (2) to
study the synchronization of DAWSs based on the fKdV-B
model.

The driving source is taken to be of the form of a cnoidal-
square traveling wave,

Fi(x, 1) = Ayen®[2K (k){x /s — fit}s K], 3)

where cn is the Jacobi elliptic function, A, is the driving
amplitude, X is the spatial wave length, and f; is the driving
frequency. K (x) is the complete elliptic integral of first kind
and the elliptic parameter « is a measure of the nonlinearity of
the wave. The cnoidal-square traveling wave is an exact solu-
tion of the KdV equation. It can therefore mimic the driving
of the system by a DAW arising from an external (coupled)
plasma source. For the numerical solution of Eq. (2), the initial
waveform is also taken to be of the form

n(x, 1 = 0) = Agen®[2K (ko){x/ro}; ol “4)

with the values of Ag, fy, and )¢ different from those of the
driving source. The idea is to see whether the final driven
modes of the system synchronize to the frequency of the
driver. Equation (2) is solved for various values of f; and A, in
order to find the regions of synchronization in the parameter
space of (As, f5)-

Our numerical investigation of the fKdV-B equation is
based on the pseudospectral method [66] and uses periodic
boundary conditions. The code is first bench marked by
reproducing earlier results [53,67] obtained for the fKdV
equation. The various parameter values associated with the
model are taken to be as follows: The Jacobi elliptic parame-
ters kg = k; = 0.98 for Egs. (3) and (4). The wave vector of
the initial perturbation, i.e., ko = 12k, where k,, = 2m)/L,
is the minimum wave vector associated with a system of
length L, = 6. The corresponding wavelength, i.e., Ay =
(2m)/ky and amplitude Ao of the initial perturbation [i.e.,
Eq. (4)] are kept fixed throughout the analysis. We have
taken k; = 12k, and k; = 2 x 12k, for studying harmonic

(1:1) and superharmonic (1:2) synchronization states. The
corresponding forcing wavelength is A, = (27)/k,. Through-
out the analysis, we have only varied the forcing amplitude,
A;, and forcing frequency, f;. The coefficient @ in Eq. (2)
is given by the expression a = [8> + (38 + o)o + (8/2)(1 +
o2)1/(8 — 1)? [55] and B = 0.5. We evaluate o = 2.3 with
o = Ty/T,0 = 0.0036 where electron and ion temperatures
are T,o =7 eV and Tjy = 0.025 eV, respectively, and § =
nio/ne = 3.4 where electron and ion densities are n,) =
2 x 10 m™3 and nj = 6.8 x 10" m™3, respectively. The
nonlinearity parameters o was measured from experimental
parameters reported by Flanagan et al. [58] for a wave exper-
iment using a setup similar to that of Ruhunusiri et al. [14].
Since there is no measurement of the viscosity parameter in
Flanagan et al. [58] and no value is reported for the experi-
mental setup of Ruhunusiri ef al. [14], we treat the viscosity
coefficient to be a free parameter, which we adjust to obtain
a good quantitative agreement with the signatures of dissi-
pation in the experimental data of Ruhunusiri et al. [14],
namely the Arnold tongues. A value of n = 0.0025 best
fits the experimental data. Using the experimental plasma
parameters [58] and assuming dust temperature 7; = 2 eV,
we calculate Coulomb coupling strength I' = 92 and Debye
screening parameter kp = 2.8. Referring to molecular dy-
namics simulations for dusty plasmas for the corresponding
closest I' = 100 and kp = 3, the value of normalized viscosity
is n* =0.04 [68,69]. This value of viscosity translates to
n = 0.0027 as per the KdV-B equation normalization, which
is fairly close to our chosen value of viscosity for the simu-
lations of the fKdV-B model. Furthermore, we take the same
experimental values of the natural and driver frequencies as
reported in the experiment [14] to carry out numerical solu-
tions of the fKdV-B model, i.e., Eq. (2). Also, based on the
chosen parameters o, B, ko, and ko, the initial perturbation
has amplitude Ay = 46.32 and frequency fy = 22 Hz, which
are derived using the relationship provided by Mir et al. [60].
The amplitude of the initial perturbation chosen in this fashion
will be governed by the exact solution of the KdV and will be
a stable solution of KdV for this particular amplitude.

We evolve the initial perturbation in Eq. (2) over long
times for these various different parameter values. During
the spatiotemporal evolution, we collect a time series of the
density field at a fixed spatial location and use it to calculate
the power spectral density. The PSD provides a useful tool
for distinguishing between synchronized and unsynchronized
states.

As an illustrative example, we show in Fig. 1 the PSD, the
time series, and the phase space plot of the solution, obtained
for a KdV (solid line) equation [Eq. (2) for n = A; = 0].
The time-series data has been collected up to #,,x = 80 w;d'
with a time step dt = 107> a)’dl. The maximum sampling
frequency fs = 1/dt and the Nyquist frequency is fy = fs/2.
This leads to a frequency resolution of df = 1/ty.x for the
collected time series. The time-series data corresponding to
the first few tens of periods are discarded to remove transient
effects while constructing the PSD. In Fig. 1, the nonlinear
character of the mode is evident from the presence of the
higher harmonics in the PSD and from the shape of wave form
in the time series. The natural mode of KdV has a frequency
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FIG. 1. PSD for the times series of KdV (solid line) and KdV-B (dash-dotted line) equations with initial perturbation Eq. (4). Insets (I) and
(II) show the phase space plots and time series, respectively, for KdV (solid line) and KdV-B (dash-dotted line) models.

Jfo =22 Hz. The single-cycle phase space plot (solid line)
with its form resembling a separatrix curve indicates an
undamped nonlinear periodic wave, in this case the exact
cnoidal-square wave. Also, for comparison, we present in
Fig. 1 the corresponding results for the undriven KdV-B (dash-
dotted) equation [Eq. (2) for n = 0.0025 and A; = 0] on top of
the KdV (solid line) equation. The effect of viscous damping
is seen in the frequency shift of the fundamental component
in the PSD toward a lower value of fO" = 15 Hz, the reduced
amplitude in the time series, and the spiraling of the phase
space plot (dash-dotted) toward the origin. It is clear that in
the presence of finite viscosity the cnoidal-square wave can
no longer be sustained as a nonlinear solution of Eq. (2)
with F; = 0 and the initial perturbation decays in time. The
question is whether by driving the system with a periodic
source one can revive and sustain a nonlinear solution that is
also synchronized with the driver. The answer is in the positive
and we next present our results on such a phenomenon.

III. SYNCHRONIZATION IN FKDV-B MODEL

In this section, we present the main results of our work,
namely, the synchronization of the solutions of Eq. (2) to an
external driver of the form given by Eq. (3). We begin by dis-
cussing harmonic (1:1) synchronization for which we choose
the driving frequency to be slightly away from the fundamen-
tal frequency of fy = 22 Hz that is characteristic fundamental
frequency of the undriven system. Two cases are considered,
namely, f; =21 and f; = 23 Hz. The driving amplitude in
both cases is taken to be A; = 0.404. Figure 2 shows the
attainment of harmonic (1:1) synchronization for both these
cases with Figs. 2(a) and 2(b) devoted to f; =21 Hz and
Figs. 2(c) and 2(d) to f; = 23 Hz, respectively. As can be seen
from the time-series plots in Figs. 2(a) and 2(c), the driven so-
lutions are indeed locked to the driver. This is also clearly seen
in the PSDs where the fundamental frequencies of the driven
solutions are indeed at the frequency of the driver. Further-
more, the phase space plots in Figs. 2(b) and 2(d) show that
these solutions constitute undamped nonlinear periodic waves
that are maintained by a balance between the nonlinear steep-
ening, dispersive broadening, viscous damping, and amplifi-

cation due to the external pumping by the driving term. The
resultant phase space curve that has the characteristic shape of
a separatrix represents a stationary cnoidal wave solution. The
presence of dissipation seems to be necessary for sustaining
this synchronized driven solution. We have found that in the
partial differential equation (2), including not just nonlinear
and dispersive terms but also a linear dissipative term allowed
achieving synchronization of a wave. When we turned off dis-
sipation, by setting the viscosity coefficient to zero in Eq. (2),
we did not observe synchronization of the wave, for the con-
ditions that we studied here. This is different from the case of
a point oscillator, as described by the Van der Pol oscillator
Eq. (1), which requires a nonlinear dissipation term to obtain
synchronization. In the absence of viscosity, one only gets
nonlinear mixing from the model as has been reported earlier
in Mir et al. [60,67]. The amount of viscosity also determines
the threshold condition for the driver amplitude.

To explore superharmonic (1:2) synchronization, we again
consider two cases of f; =43 Hz and f; =45 Hz which
are slightly below and above the first harmonic frequency
2 fo = 44 Hz of the undriven system. The results are shown in
Fig. 3 where Figs. 3(a) and 3(c) are devoted to f; = 43 Hz and
Figs. 3(b) and 3(d) to f; = 45 Hz, respectively. As in the pre-
vious case of harmonic synchronization, we see clear evidence
of superharmonic (2:1) synchronization in the time-series
plots, the PSDs, and the phase space plots. The Lissajous
figures have a figure eight-like trajectory which is indicative of
a (1:2) synchronized state. One significant difference from the
harmonic synchronization case is that the minimum threshold
amplitude for the driver to achieve a (1:2) state is different for
the cases f; < 2fp and f; > 2fy. They are A; = 0.604, and
Ag = 0.504, respectively.

Finally, in Fig. 4 we present a consolidated picture of the
existence domain of these synchronized states in the param-
eter space of the driver frequency f; and driver amplitude A,
in form of an Arnold tongue diagram. To obtain the Arnold
tongue diagram, A; is varied in steps of 4.63 (which is 0.10A4)
from O to 32.42 (which is 0.704() while f; is varied in steps
of 0.5 Hz for harmonic synchronization and 1.0 Hz for the su-
perharmonic case. Figure 4 shows the (1:1) and (1:2) entrained
state tongues in the fKdV-B model.
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FIG. 2. The harmonic (1:1) synchronization in the fKdV-B model with f; < fi and f; > f,. The time series of the fKdV-B model (solid

line) and the forcing (dash-dotted line) at driver frequency (a) f; = 21 Hz with threshold amplitude A, = 0.404, and (b) f; = 23 Hz with
threshold amplitude A; = 0.404,. (c) PSD of time series (a). (d) PSD of time series (b). The inset (I) is the phase space plot and the inset (II)
is the Lissajous figure which reflects the frequency locking at the driver frequency.

We observe several interesting features in the Arnold
tongue diagram. To start with, there is always a threshold
amplitude A; below which no synchronization occurs. For
the harmonic (1:1) synchronization, it is Ay = 0.104¢ for
n = 0.0025. This is unlike the harmonic synchronization phe-
nomenon observed in a driven Van der Pol model where no

such threshold is found [70]. Another important feature is
a distinctive branching of the Arnold tongue that is clearly
seen for the (1:1) states at low forcing amplitudes marked
with arrows. The branching gives rise to a nonsynchronized
region between the frequencies f; = 22 Hz to f; = 18 Hz at
driver amplitude A; = 0.10A¢. This branching narrows down
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FIG. 3. The superharmonic (1:2) synchronization in the fKdV-B model with f; < 2f, and f; > 2. The time series of the fKdV-B model
(solid line) and the forcing (dash-dotted line) at driver frequency (a) f; = 43 Hz with threshold amplitude A; = 0.604, and (b) f; = 45 Hz
with threshold amplitude A; = 0.50A,. (c) PSD of times series (a). (d) PSD of time series (b). The inset (I) is the phase space plot and the inset
(II) is the Lissajous figure which reflects the frequency locking at half of the driver frequency.
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FIG. 4. The Arnold tongue diagram for harmonic (1:1) and su-
perharmonic (1:2) synchronization states in the fKdV-B model. The
amplitude is varied from A; = 0.104y to A; = 0.70A, for 1:1, and
A, = 0.204, to A; = 0.704, for 1:2 synchronization.

with the increase in A;. Another branch is seen in between
fs = 18 Hz and f; = 16.5 Hz, which also narrows down with
increase in A;. A third feature is the asymmetric nature of the
tongue structures about fy. The frequency width over which
synchronization can be obtained is much broader for f; < fy
compared to f; > fo.

IV. SUMMARY AND CONCLUSIONS

To summarize, we have studied the phenomenon of syn-
chronization of dust acoustic waves to an external periodic
driver in a model system described by the forced Korteweg—
de Vries—Burgers equation. This equation provides a proper

theoretical framework and a better physical model compared
to the Van der Pol oscillator model for studying the dynamics
of nonlinear dust acoustic waves by properly accounting for
nonlinear, dispersive, and dissipative influences on the waves.
Using the model, we have successfully demonstrated har-
monic (1 : 1) and superharmonic (1 : 2) synchronization states
of DAWs for the experimental values reported by Ruhunusiri
et al. [14]. In particular, comparison of our theoretical Arnold
tongue diagram with their experimental one shows the follow-
ing common features. As in the experimental Arnold tongue
diagram, we see the existence of amplitude thresholds as well
as clear evidence of the branching phenomena. However, there
are also important differences. With our model, we have not
been able to obtain subharmonic synchronization that have
been observed in the experiment. Furthermore, our model uses
an external driver that closely resembles a nonlinear natural
mode of the system whereas in the experiment a purely time-
varying external sinusoidal driver has been used. However,
it is not clear what form this driver takes inside the plasma
system and whether it manifests itself as a spatiotemporally
varying perturbation. These and other questions, such as the
absence of subharmonic synchronization in the equation and
the neglect of dissipation arising from gas friction on the dust
particles, remain to be explored in the future in order to further
improve the model.
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