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ABSTRACT. The three distance theorem (also known as the three gap theorem or
Steinhaus problem) states that, for any given real number « and integer NN, there are
at most three values for the distances between consecutive elements of the Kronecker
sequence «, 2q, ..., Namod 1. In this paper we consider a natural generalisation of the
three distance theorem to the higher dimensional Kronecker sequence &, 24, ..., Nd
modulo an integer lattice. We prove that in two dimensions there are at most five
values that can arise as a distance between nearest neighbors, for all choices of &
and N. Furthermore, for almost every &, five distinct distances indeed appear for
infinitely many IV and hence five is the best possible general upper bound. In higher
dimensions we have similar explicit, but less precise, upper bounds. For instance
in three dimensions our bound is 13, though we conjecture the truth to be 9. We
furthermore study the number of possible distances from a point to its nearest neighbor
in a restricted cone of directions. This may be viewed as a generalisation of the gap
length in one dimension. For large cone angles we use geometric arguments to produce
explicit bounds directly analogous to the three distance theorem. For small cone angles
we use ergodic theory of homogeneous flows in the space of unimodular lattices to show
that the number of distinct lengths is (a) unbounded for almost all & and (b) bounded
for @ that satisfy certain Diophantine conditions.

1. INTRODUCTION

Consider a finite set Sy comprising N distinct points &;,...,&y on the unit torus
T = R/Z. The points in Sy partition T into N intervals, representing the gaps of
Sn. We denote by 0, n the size of the nth gap, i.e., the distance between ¢, and
its nearest neighbor to the right. We denote by gy = [{op,n | 1 < n < N} the
number of distinct gap sizes. For a generic choice of Sy one has gy = N, since all gap
lengths are generically distinct. A striking observation, known as the three distance
(or three gap) theorem, is that for the Kronecker sequence &, = na + Z, one has
gy < 3, for any @ € R and N € N; see [38, 39, 40, 41] for the original proofs and
(24, 27, 31, 33, 35, 36, 37] for alternative approaches. Natural extensions to return
maps for billiards in rectangles and interval exchange transformations are discussed in
(17, 20, 21, 22] and [42], respectively. There are various generalisations of the three
gap theorem to higher dimensions, several of which require Diophantine conditions on
the choice of parameter. In the present paper we discuss natural extensions of the
three distance theorem to higher dimensional Kronecker sequences, which represent

Date: 14 September 2020/30 June 2021.
Key words and phrases. Steinhaus problem, three gap theorem, homogeneous dynamics.
AH: Research supported by NSF grant DMS 2001248.
JM: Research supported by EPSRC grant EP/S024948/1.
MSC 2020: 11J71, 37A44.
1



2 ALAN HAYNES, JENS MARKLOF

translations of a multidimensional torus by a vector a@. We will here consider nearest
neighbor distances as well as distances to neighbors in restricted directions. The former
may be viewed as a special case of the setting of Biringer and Schmidt [2], who considered
the number of distinct nearest neighbor distances for an orbit generated by an isometry
of a general Riemannian manifold. If distances are measured by the maximum norm
rather than a Riemannian metric, Chevallier [8, Corollaire 1.2] showed that there are at
most five distinct distances for Kronecker sequences on two-dimensional tori. Related
studies in this context include the papers by Chevallier [9, 10, 12] and by Vijay [43].
For other higher dimensional variants of the three distance theorem, see [1, 3, 4, 5, 11,
13, 19, 23, 25, 27, 28, 29, 32].

Our setting is as follows. Let £ be a unimodular lattice in R? (one example to keep
in mind is Z?) and consider a point set Sy = {&,...,&v} on the d-dimensional torus
T¢ =R?/L. The point set Sy that we are interested in is the d-dimensional Kronecker
sequence,

(1.1) Sy = Sn(@ L) ={& =nd+L|1<n<N}CT

for given @ € R?. Note that the &, are not necessarily distinct if & € QL; in this case we
remove all multiple occurrences, and as a result the number of elements in Sy remains
bounded as N — oo.

Let 6, n be the distance of , to its nearest neighbor with respect to the standard
flat Riemannian metric on T?. As above, gy = gy (&, £) denotes the number of distinct
nearest neighbor distances d,, . Biringer and Schmidt [2] proved that, for all choices of
L,a, and N,

(1.2) gn(@, L) <3+ 1.

Our first theorem improves this bound, and also gives the best possible result in dimen-
sion d = 2.

Theorem 1. For every unimodular lattice £, & € RY and N € N we have that

5 if d =2,

1.3 v, L) <

where oy is the kissing number for R,

Recall that the kissing number o4 for R? is the maximum number of non-overlapping
spheres of radius one in R? which can be arranged so that they all touch the unit
sphere in exactly one point. The study of kissing numbers has a long and interesting
history, and is connected to many areas of mathematics (see [6] and [34] for surveys of
results). It is interesting to note that the three distance theorem in dimension d =1 is
compatible with the bound gy < o; + 1 = 3, but that already in dimension d = 2 this
becomes suboptimal, since here o5 +1 =7 > 5. A table of known bounds for kissing
numbers in dimensions d < 24 is provided in Figure 1. Our corresponding bounds for
gy in dimensions d = 3,...,10 are therefore 13, 25, 46, 79, 135, 241, 365, 555. We
do not claim that these bounds are optimal for any dimension d > 3. In particular,
we conjecture that gy(a, L) < 9 for d = 3. This conjecture is based on numerical
experiments by Dettmann [16] that produced no more than 9 distinct gaps. Figures
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d | Upper bound || d | Upper bound
for oy for oy
1 2 13 2069
2 6 14 3183
3 12 15 4866
4 24 16 7355
5 45 17 11072
6 78 18 16572
7 134 19 24812
8 240 20 36764
9 364 21 54584
10 554 22 82340
11 870 23 124416
12 1357 24 196560

FiGURE 1. A table of known bounds for kissing numbers. All bounds are
taken from [6], and bounds listed in bold face are known to be best pos-
sible.

2 and 3 show examples where 5 (for d = 2) and 7 (for d = 3) distinct distances are
obtained.

For general d, it follows from Theorem 1 together with an estimate for o4 due to
Kabatiansky and Levenshtein (see [30, Theorem 4, Corollary 1] or [14, Chapter 9]) that

(1.4) gn (@, L£) < 20401d+old)  ug g oo,

The rate of convergence of the o(d) term in this estimate can be made more precise and
explicit (non-asymptotic) upper bounds can also be obtained by applying [30, Equation
(52)].

Values of @ for which gy (@, £) = 5 are surprisingly rare. Our first computer search,
which took 1000 randomly and uniformly selected numbers @ € [0,1)? and checked
gn(@,Z%) for all N < 10%, found only five values of @ for which there was an N with
g N(O_Z, Z2> = 9.

Nevertheless, as we will now see, every numerical example gives rise to a lower bound
for an infinite sequence of N and for almost every @. In what follows, we say a sequence
N; < Ny < N3 < ... of integers is sub-exponential if

Nit1

(1.5) lim =05 = 1.

Theorem 2. Let £ and Ly be unimodular lattices. There is a P C R of full Lebesque
measure, such that for every @ € P, &y € R?, and for every sub-exponential sequence
(N;);i, we have

(1.6) lim sup g, (&, £) > sup gn(do, Lo).

i—00 NeN
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@ =(0.38,0.132), N = 9 & = (0.105,0.275), N = 12

FIGURE 2. The nearest neighbor graph for the Kronecker sequence na +
Z? (n=1,...,N) in the torus R?/Z? (the unit square with opposite sides
identified), for N = 9 (left) and N = 12 (right) and different choices of
@. The vertex representing na + Z? is labeled by n and colored in pink.
The blue directed edges point from a vertex to its nearest neighbour(s).
The blue edge labels correspond to the indices of each of the five distinct
distances. Note that in each example there is a vertex with two nearest
neighbours: vertex n = 5 on the left and n = 6 on the right.

In dimension d = 2, the choice dy = (%, %), N =9 and Ly = Z? (this is the example

in Figure 2, left) produces precisely five distinct distances given by

3793
Sin = Y 20,0688, don = V2 ~0.3484, 4§y = VIO ~ (0.3488,

157
oy = Vo ~ 0.3544, 855 = Y221 ~ (.3568.

Moreover, for d = 3, dy = (%, é%:g, 5%—30), N =15 and Ly = Z? (cf. Figure 3), we have
seven distinct distances,

7 13513 37
bin = VB < 02504, Gy = V2o ~ 03288, 6oy = VE & 03613,

/177 /19237
058 = Y5 & 0.3763, dgn = V52— ~ 0.3923, &7y = Y5 ~ 0.4283,

23577

Jon = Yo ~ 0.4343.

Applying these data to Theorem 2, combined with the upper bound of 5 in Theorem 1,
we immediately obtain the following result.

Theorem 3. Let d =2 or 3. For any unimodular lattice £ in R?, there is a set P C R?
of full Lebesgue measure, such that for every & € P, and for every sub-exponential
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F1GURE 3. The nearest neighbor graph for the Kronecker sequence na +
Z3 (n=1,...,15) in the torus R?/Z? (the unit cube with opposite faces
identified), for a = (%65, %, %). The vertex representing na + Z3 is
labeled by n and colored in pink. The blue directed edges point from a
vertex to its nearest neighbour(s). The blue edge labels correspond to the

indices of each of the seven distinct distances.

sequence (N;);, we have that

(1.7) lim sup gy, (&, £)

1—>00

=5 ifd=2,
>7 ifd=3.

Thus the upper bound of 5 in Theorem 1 is indeed optimal for every L, almost every
a and infinitely many N.

In dimension d = 1 nearest neighbour distances do not necessarily coincide with the
set of gap lengths, as gaps are the distance to the nearest neighbor in a fixed direction.
To generalise this interpretation of a gap to higher dimensions, fix a subset D of the
unit sphere S¢7!, and denote by 0.~ (D) the distance from &, to its nearest neighbor in

the direction of D. More precisely, denote by En € R? a fixed representative of the coset
&, mod L so that &, = &, + £ and define

(1.8) 5o (D) =min{|&, — En 4+ 0] | & —En+ L €RoyD, 1<m <N, [ € L},

where | - | is the standard Euclidean norm in R%. For D = S{~! we recover the nearest
neighbor distance
(1.9) S (ST =6,y =min{|&, =&, + 0 >0|1<m <N, [ eL}.

In particular, note that the nearest neighbor of &, might be &, itself; in this case
dpn.n = || for suitable non-zero ¢ € L.
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As an illustration consider dimension d = 1. The circle of radius one is S = {—1,1}
and the choice D = {1} produces the distance to the nearest neighbor to the right (which
leads to the classical three distance theorem). On the other hand D = {—1,1} yields
the distance to the nearest neighbor (in both directions). Since we are in dimension one,
the set of distances to nearest neighbors is contained in the set of distances to nearest
neighbors to the right, but it is not necessarily equal to it. However, for the case of the
Kronecker sequence, the three distance theorem also holds also for nearest neighbors.
In other words, there are examples of & and N for which the number of distinct nearest
neighbor distances is equal to three (e.g. take a = e and N =5).

The central object of our study is the number gy (D) of distinct nearest neighbor
distances in direction D C S¢,

(1.10) gn(P) = {oun(D) |1 <n < N},

for d > 2. We will also write gn(D) = gn(D,ad, L) to highlight the dependence on
vector and lattice.

We first present detailed results for dimension d = 2. In this case S{~! is the unit
circle in R?. The following theorem deals with the case when D C S% is an interval of
arclength 7 > 7. (The case 7 = 27 has already been covered in Theorem 1 and we
include it here for completeness.)

Theorem 4. Let d = 2, and assume D C S! is a half-open interval of arclength T > 7.
Then for any unimodular lattice £, & € R? and N € N we have that

(5 of T =2m,
9 if 5m/3 < T <2,
8 if T =5m/3,

(1.11) gn(D,d, L) < 9 if 4m/3 <7 < bm/3,
8 if T =47/3,
\12+2L%J if m<T<d4m/3.

Related results in various settings have been obtained independently by Chevallier
9, 10, 12] and Vijay [43], but the precise description of the nearest neighbor problem
which we give here does not appear to have been considered. However, the problem
studied by Vijay in his paper “Eleven Euclidean distances are enough” [43] is roughly
comparable to the special case of 7 = 37/2 in Theorem 4 above.

By way of contrast with the upper bounds above, our next result demonstrates that
the restriction in Theorems 1 and 4 to a “large” set of directions D is essential. Note
that the upper bound for gy in the final case of Theorem 4 tends to infinity as 7 — 7.
In fact, in dimension d = 2 intervals D C S} of lengths 7 < 7 produce unbounded
numbers of distinct distances, for almost every a@. This is part of the content of the
following theorem, which also deals with analogous regions D in higher dimensions.

Theorem 5. Let d > 2 and L a unimodular lattice. There ezists a set P C R
of full Lebesque measure, such that for every D C S~ with non-empty interior and
closure contained in an open hemisphere, for every a € P, and for every sub-exponential
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sequence (N;);, we have
(1.12) supgNi(D,(Y, L) = oo, liminf gn, (D, a, L) < oo.

Our final observation is that the finite distance phenomenon is recovered in any
dimension, for general test sets D, if we impose Diophantine conditions on a. We
say that @ € R? is badly approzimable by QL if there is a constant ¢ > 0 such that
In@ — 0o > cn Y4 for all £ € £, n € N. Here | - |o denotes the maximum norm.

Theorem 6. Let d > 2, L a unimodular lattice and & € R? badly approximable by QL.
For D C Silil with non-empty interior, we have that

(1.13) sup gy (D, a, L) < 0.
NeN

For comparison, the more precise bounds in Theorems 1 and 4 hold for all @, but
only for a restricted class of D.

To relate the above Diophantine condition on & to the standard notion of badly
approzimable by Q% (which corresponds to the special case £ = Z9), take M, € SL(d, R)
so that £ = Z?M,. We then see that @ € R? is badly approximable by QL if and only if
dp = aM; ' is badly approximable by Q. (The positive constants ¢ appearing in both
definitions are not necessarily the same.) Furthermore, by Khintchine’s transference
principle (see the Corollary to Theorem II in [7, Chapter V]), the vector dj is badly
approximable by Q7 if and only if there is ¢ > 0 such that |7 - do||g/z > c|[mi|™ for
all non-zero m € Z*. Here ||z||r/z = mingez |z + k| denotes the distance to the nearest
integer.

The key strategy of the proofs of the above theorems is to express the quantities
Sn(d), 6,,n(D) and gn (D) in terms of functions on the space SL(d+1,Z)\ SL(d+1,R)
of unimodular lattices in R9*!. This is explained in detail in Section 2. Once this
connection is established, the proofs of Theorems 1 and 4 reduce to geometric arguments
involving lattices and sphere coverings, which are laid out in Sections 3-5 in dimension
d = 2 and in Section 6 for dimensions d > 3. The proofs of Theorems 2, 5, and 6 require
upper and lower bounds for the relevant functions on the space of lattices, combined
with the same ergodic-theoretic arguments used in [28]. This material is presented in
Section 7.

Acknowledgments: We would like to thank Nicolas Chevallier for helpful comments, and
Felipe Ramirez and Carl Dettmann for discussions that led to an improvement of our
bounds in Theorem 1 in dimension d > 3. We would also like to thank the anonymous
referees who carefully read our paper and provided many useful comments. The images
in Figures 2-7 were generated using the computer software packages SageMath, Jmol,
GeoGebra, and Inkscape. Finally, we would like to thank Timothy Haynes for his help
in optimizing our Python code, which aided in the discovery of the examples illustrated
in Figures 2 and 3.
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2. REFORMULATION IN TERMS OF LATTICES

This section follows the approach developed for the three gap theorem [33] and higher
dimensional variants concerning gaps in values taken by linear forms, and hitting times
for toral rotations [28].

By substituting k¥ = m — n in equation (1.8), we find that the distance from &, to its
nearest neighbor in the direction of D is given by

8o (D) = min{|kd@ + 0] | k@ + € RoyD, —n <k <N —n, { € L}
=min{|k@+ (] | k& + (€ RoyD, —-n <k < N, —n, [ € L},
where Ny := N + 3. Select My € SL(d,R) so that £ = Z*My, and let

e a@maao= () 5 E) (% )

Then we have that

(2.1)

(2.3) S,n(D) = N;""min {m (u,¥) € Z™ Ay, (@),

n n
—— <u<l——, 7R, (D
N+ U N+’U >0 }7

for all 1 < n < N. To cast this in a more general setting, let G = SL(d + 1,R) and
I' = SL(d+ 1,Z). Then for general M € G and t € (0, 1), define

(2.4) Op(M,t) = {(u,?) € Z""'M | —t <u<1—t, ¥ €R(D}
and
(2.5) Fp(M,t) = min {|] | (u,7) € Qp(M,t)}.
In this notation it is clear that
_ . n
(2.6) b (D) = N2V Fp (Am(a» N_+>'

Before proceeding further, we first establish the following basic result.

Proposition 1. If D C S has non-empty interior, then Fp is well-defined as a
function T\G x (0,1) — Ryo.

Proof. We first show that the set Op(M,t) is non-empty for all M € G and t € (0,1).
Fix any w € D°, and denote by ¥; C R? the (d— 1)-dimensional hyperplane perpendic-
ular to @. Denote by ¥, the orthogonal projection of ¢’ to ¥,. Given (M, t), let € > 0
be sufficiently small so that (i) € < min{¢, 1 — ¢}, (ii) there is no non-zero lattice point

in Z¥'M within e-distance to the origin. Furthermore, fix § > 0 sufficiently small so
that

(2.7) {FeRY| W -T>e€ |7.] <6} CRsyD.
Such a ¢ exists since W € D°. By construction

(2.8) {(0,7) € ZM | |u| < €, @ -T > ¢, |[0.] <8} C Op(M, 1)
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In view of Minkowski’s theorem, the symmetric, convex set {(u,?) € R | |u| <
€, |7L| < 8} contains a non-zero element of Z4*1M. By construction there is no non-
zero lattice point in Z4T'M within e-distance to the origin, and furthermore Z+' M
is symmetric under reflection at the origin. We can therefore conclude that the set in
(2.8), and therefore also Qp(M,t), is non-empty. Hence by the uniform discreteness of
Z3* M the minimum value in the definition of Fp exists.

Finally, note that Fp(yM,t) = Fp(M,t) for v € T, and hence F is well-defined on
MG x (0,1). O

Note that for R € SO(d) we have

(2.9) Fon (M (é %) ,t) — Fp(M,1).

Let us define

(2.10) Op(M) = | QoM t)={(u,¥) € Z'"'M | Ju| <1, 7 € R.¢D}.
te(0,1)

The set

(2.11) Mop(M) = {|7] | (u,7) € Qp(M)}

contains the set of values taken by the function ¢t — Fp(M,t). Tt is a locally finite
subset of Ry, i.e., there are at most finitely many points in any bounded interval. It
follows that for fixed M, the function t — Fp(M,t) is piecewise constant.

We denote by

(2.12) Gp(M) = |{Fp(M,t) |0 <t <1}
the number of distinct values attained by the function ¢t — Fp(M,t). For N > 0, let
(2.13) Gpn(M) ={Fp(M,5-) [ 1 <n < N}

We have Gp (M) < Gp(M), and so in particular
(2.14) 9n(P) = Gp (AN, (0)) < Gp(An, ().

3. GEOMETRIC LEMMAS IN DIMENSION d = 2

To fix notation for our subsequent discussion, we define a representative set of vectors
(u;, ;) € Qp(M), for which the lengths |v;| are distinct, and each of which corresponds
to an element in the set

(3.1) Fo(M) = {Fp(M,t) |0 <t <1}.

To be specific, for each M € I'\G we fix vectors (uy, v), ..., (uk, Ux) € Qp(M) with
K = Gp(M), so that the following conditions hold:

(V1) 0 < |th| < |ta] < - < |Uk].

(V2) For each § € Fp(M) there exists an 1 < i < K such that 0 = |5

(V3) For each 1 < i < K, there exists a t € (0,1) such that (u;,7;) € Qp(M,t) and
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Let us now focus on the case d = 2. In the following we identify the unit circle S}
with the interval [—, 7) mod 27, so that 0 corresponds to direction (1,0) € Si. In view
of the rotation invariance (2.9) we may assume without loss of generality that D C S}
is centered at 6 = 0, i.e., D = [—7/2,7/2), which we still view as a subset of S} (not R).

Our proof of Theorem 4, or rather the proofs of the more general Theorems 7 and
8 below, will be divided into three main cases, which together cover all possible angles
T € (m, 27| described in (1.11). In each of these cases we will partition D into subsets,
consisting of a symmetric set S C D (symmetric with respect to the rotation 6 +—
0 + m mod 27) and up to three asymmetric subsets. For notational convenience, let us
set

(3.2) p=2r—7€[0,7r) and ¢=7—m€ (0,7

First we specify our definitions of the asymmetric subsets in each of the three main
cases.

Case (C1): If 57/3 < 7 < 27 then we define one asymmetric subset .4y C D by
(3.3) Ao = [-/2,¢/2).
(Note that this is the empty set if 7 = 27.)

Case (C2): If 47/3 < 7 < 57/3 then we define two asymmetric subsets A_; and A,
by

(34) A= [_w/27 O)? A = [07 ¢/2)

Case (C3): If 7 < 7 < 47/3 then we define three asymmetric subsets A_1, Ay, and A;
by

(3.5) Ay =[=9/2,—7/6), Ay =[-7/6,7/6), A =[r/6,¢/2).

In all three cases, we define the symmetric subset S by

(3.6) S=1[-7/2,—v/2)U[¢/2,7/2).

It is clear that S is the largest symmetric subset of D, that D is the disjoint union of &
and its asymmetric subsets, and that each asymmetric subset is a half-open interval of
length at most 7/3.

Now we will establish several propositions which will help streamline the proofs of
Theorems 7 and 8 below (which in turn will imply Theorem 4). First we will need the
following elementary fact which, for future reference, we state for arbitrary dimension
d> 2.

Proposition 2. If d > 2 and if the angle between two non-zero vectors Wy, Wy € R? is
less than /3, then

(37) |1171 — @U2| < max{|u71|, |1172|} .

Furthermore, this inequality also holds if the angle between w1, Wy € R is equal to m/3,
as long as |Wy| # |Wa).
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Proof. For the first part of the proposition, suppose without loss of generality that
|W| < |wWy|. Then the vectors W /|wWs| and Wy /|Ws| lie in the closed unit ball and are
separated by an angle less than 7/3. Therefore

wh Wo

(3.8) <1,

|Wa| |l
and the result follows. Furthermore, under the assumptions of the second part of the
proposition, we draw the same conclusion. O

Next we will prove several propositions which place various restrictions on the integer
K = Gp(M) defined at the start of this section; recall (V1)-(V3).

Proposition 3. If for some integer 1 < i < K, we have that v; € (—1/2,1/2) and
U; € RyoS, then we must have that i = K.

Proof. Suppose first that u; € [0,1/2). Then for any 0 < ¢ < 1 — u;, we have
that (u;, v;) € Qp(M,t) and thus |v;] > Fp(M,t). By the symmetry of & we have
(—ui, —0;) € Qp(M). Thus for any u; < t < 1, we have that (—u;, —;) € Qp(M,t) and
thus |;| > Fp(M,t). Since u; < 1/2, we conclude that |0;| > Fp(M,t) for all0 <t < 1,
which proves i = K. The case u; € (—1/2,0] follows from the same argument. O

Proposition 4. If for some i and j with 1 <i,j < K, we have that u; € (—1/2,0] and
u; €[0,1/2), theni=K orj =K.

Proof. Under the hypotheses of the proposition, we have |v;| > Fp(M,t) for —u; <t <1
and |U;| > Fp(M,t) for 0 <t < 1 —u;. This covers all possible values of ¢t € (0,1), and
shows that ¢ or j must equal K. O

Proposition 5. If1 <i,7 < K and u; = u;, then i = j.

Proof. Suppose by way of contradiction that ¢ # 7, and without loss of generality that
i < j. Then for any t € (0, 1) satisfying —t < u; = u; < 1 — ¢, we would have by (V1)
that

(3.9) Fo(M,1) < [5i] < [,

However this contradicts condition (V3), so we must have that ¢ = j. 0J
Proposition 6. Let 1 <i < K and (u,?) € Qp(M). If

(3.10) —1l<u<u<0 or 0<u<uy <1

then |v;| < |v].

~—

Proof. Suppose that 0 < u < u; < 1; the other case follows by symmetry. By (V3
there exist t; € (0,1 — u;) such that Fp(M,t;) = |0;|. Furthermore Fp(M,t) < |v] f
all t € (0,1 — u). Thus, taking t =¢; € (0,1 — u), we have |7;| < |4].

Proposition 7. Let 1 <1, < K. If
(3.11) —l<u; <u; <0 or  0<uy; <y <1

Os

then |v;| < |U;| and i < j.

Proof. In view of (V1), this is a direct consequence of Proposition 6. O
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Proposition 8. Let 7 > 7, 1 < j < K and (u,0) € Qp(M) such that U; # v and
0 < |v] < |v;]. Suppose the angle between the vectors U; and U is less than w/3. If

(3.12) —l<u<u; <-1/2 or 1/2 <wuj <u<l,
then j = K.

Proof. We consider the case 1/2 < u; < u < 1; the proof for the alternative follows
from the same argument by symmetry. By the assumption on the angle between the
vectors U; and U, we have by Proposition 2 that |t; — U| < |v;|. Since 0; # ¥ and 7 > m,
we have that at least one of U; — ¥, ¥ — ¥; is in R(¢D.

First suppose that ¥ — ¢; € R5¢D. Then, since

0<u—u; <1/2<u; <1,
we have (v — u;, v — U;) € Qp(M) and by Proposition 6 that | — ;| > |v;|. This is a
contradiction, so we conclude that v — U; ¢ R.¢D.
The only other possibility is that ¥, —¢ € Ry D. In this case, (u;—u, U;—7) € Qp(M),
(3.13) u;—u<0 and w—u; <1—uj
It follows from this that, for u —u; < t < 1, we have Fp(M,t) < |t — ;| < |7;| and

|
for 0 < ¢ < 1 —u; (which in particular holds for all ¢ with 0 < ¢ < u — u;), we have
Fp(M,t) <|v;|. Therefore j = K. O

Proposition 9. Let 7 > 7w and 1 < 4,5 < K. Suppose the angle between the vectors v;
and v is less than w/3. If

(3.14) 1<y <u; <—-1/2 or 1/2 <wj <wu; <1,
then j = K.
Proof. This is a direct corollary of Proposition 8 (take u = u;). 0

Proposition 10. Let 7 > 7 and 1 < 1,7 < K. Suppose the angle between the vectors
U; and U; is less than 7/3. If

(3.15) —1/2 <u; <u; <0 or  0<wu; <wu; <1/2,
then v; — v; ¢ RooD and
(3.16) o] <[ — 7] < |55].

Proof. We assume 0 < u; < u; < 1/2; the other case follows by symmetry. It follows
from Proposition 7 that ¢ < j and |7;| < |7;], and it follows from Proposition 2 that
5~ 5| < [T

Suppose, contrary to what we are trying to prove, that ¥; — 7; € R5¢D. Then, since
0 <u; —uj <1/2, we have (uj; —u;, U; — ;) € Qp(M) and hence for v; —u; <t <1 we
have Fp(M,t) < |t; — ¥;| < |0;]. Furthermore, for 0 < ¢ < 1 —w; we have Fp(M,t) <
U;| < |¥;]. Now w; —u; < 1 —wy, so Fp(M,t) < |v;] for all ¢ € (0,1). But by (V3)
there is t € (0,1) such that Fp(M,t) = |0;]. This is a contradiction, so we conclude
that 17j — Uz ¢ R>OD.

It remains to show that |v;| < |t — ¥;|. Since U; — v; ¢ Ro¢D and 7 > 7 we have
1_);‘ — 17} € R>0D. Then (Ul — Uj,?_]; — 17]) € QD(M> with 0 < w; — u; < 1/2 Thus
for 0 <t < 1— (u; —u;) we have Fp(M,t) < |v; — 7U;|. Note that by (V3) there
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exists a t; € (0,1 — u;) such that Fp(M,t;) = |v;|. Now 1 —u; <1 — (u; —u;) and so
Fp(M,t;) = |v;| < |v; — U] as needed. O

The previous proposition will be used in the proof of Theorem 7 in conjunction with
the following two elementary geometric propositions.

Proposition 11. Suppose that

e we are in case (C1) or (C3) and Wy, Wy € RopAg, or
e we are in case (C2) and Wy, Wy € RogA_q, or
e we are in case (C2) and Wy, Wy € RypAj.

If
(3.17) |Wh| < |wWy — Wa| < |Wal,
then Wy — Wy € Ry¢D.

Proof. First suppose that we are in case (C2), that w; and @y point in direction A,
and that (3.17) holds. We will argue using Figure 4.

D

FIGURE 4. Diagram of A; in case (C2)

In the figure, angle AOB measures ¢)/2 and sweeps out 4;, and the line through H
and C is parallel to the z-axis. The vector w; is shown, and the angles HCF and HCG
also measure ¥ /2. Also, we have labeled the angle between w; and the positive real
axis as # (not to be confused with other uses of # outside the scope of this proof).

By condition (3.17), vector w, has to lie outside of both the circle of radius ||
centered at O, and the circle of radius |w;| centered at C. The circle of radius ||
centered at C intersects the boundary of Ryg.A; at the three points D, O, and E, and
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the points F and G have also been chosen so that they lie on this circle. We will show
(as indicated in the figure) that F and G lie outside of R-¢.A;. This will complete the
proof in this sub-case since, if Wy —w; were not in Ry D then wsy would have to lie in the
cone swept out by angle FCG, above the ray originating from C and passing through
G, and on or below the ray originating from C and passing through F. This, together
with the condition that it lies outside of the circle of radius |w;| centered at C, would
force it to lie outside of R+ y.4;, which is contradictory to our hypotheses.

It is clear from the fact the ¢/2 < 7/3 that G lies below the z-axis, so it cannot be
in R.pA; (in fact we only need 1/2 < 7/2 for this to hold). To see why F is not in
R<oA;, first note that angle OCH has measure 6, from which it follows that angle CIO
has measure ™ — 1 (to avoid circular reasoning, the point I is defined as the intersection
of the line through C and F with the line through O and A). On the other hand, angle
CDO has measure ¥/2 — 6 and, since 31/2 < 7, we have that

(3.18) )2 —0 < m—1b.

This implies that the point F lies on or to the left of the line through O and D, therefore
it is not in R.g.4;. The proof for case (C2) when @; and w, point in direction A_;
follows by symmetry.

Next suppose that we are in case (C1), that w; and Wy point in direction Ay, and
that (3.17) holds. Here the proof is similar, and we will argue using Figure 5. Once
again, let # denote the angle between w; and the positive real axis.

D~

FIGURE 5. Diagram of Ay in case (C1)

First assume that 0 < 6 < /2. Since ¥/2 < 7/6, the argument given above implies
again that F lies outside of Ry¢.Ay. Angle HCO has measure 6, therefore angle OCI has
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measure /2 — 6, and it follows that angle CIO has measure m — . Since triangle OCE
is isosceles, angle CEO has measure 1/2 + 6, and since

(3.19) V/2+0 <7 —1,

this implies that G lies outside of R-¢A4y. This argument actually works for all ¢
and 1 satisfying 0 < 0 < ¥/2 < 7/4, and a symmetrical argument applies when
—7m/4 < —p/2 < 0 < 0. The proof for case (C3), when w; and w, point in direction
Ay, follows from the same argument.

O

Proposition 12. Suppose that we are in case (C8) and that W, Wy, ..., W, are any
vectors which all point in direction A_y1, or which all point in direction Ay. If, for each
1 <i<n-—1, we have that w;; 1 — W; € R<oyD and that

(3.20) |W;| < |W; — Wiyq| < |Wiga],

then we must have that

i 2 6
(3.21) n<1+ flnw +/ )J .
sin(t — )
Proof. Suppose w1, Wy, . . .,w, point in direction A; and consider Figure 6.
A
G iy c
W .
)

FIGURE 6. Diagram of A; in case (C3)

In the figure, angle AOB measures 1/2 — 7/6 < /3 and sweeps out A;, the vector
wi has initial point O and terminal point C, and the line through G and C is parallel
to the z-axis. For each 1 <i <n — 1, we have that W, ; — w; € R.oD and

(3.22) |Wiy1 — wi| > |y ],
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so it follows that

(3.23) n—1< {

Line segment CF is longest when 6 = 0, which (using the law of sines) gives the bound

| sin(y/2 — 7/6)
sin(m — 1)

(3.24) ICF| <

Substituting ¥ = 2w — 7 gives
|CF| < sin(7/2 + 7/6)

|wy| = sin(r —m)

(3.25)

Combining this with (3.23) completes the proof of the proposition. O

Finally, to obtain the bounds reported in some of the cases of Theorem 4, we will
need to gather together a few more facts. The following proposition is an extension of
Proposition 6, for the special case when one of the vectors in the hypotheses lies in the
direction determined by the symmetric set S.

Proposition 13. Let 1 <i,57 < K, i # j, and let U; € R5,S. If
(3.26) —l<u<—u; <0 or 0< —u; <y <1,
then |0;| < |U;| and i < j.

Proof. The vector —; is in S, and hence (—u;, —v;) € Qp(M). Proposition 6 then
yields the statement. ]

Proposition 14. Let 1 < i,j < K, and let U; € R5,S. Assume the angle between v;
and —vj; is less than w/3. If

(3.27) —l<w <—u;<—-1/2 or 1/2<—u; <u; <1,
then j = K.

Proof. The proof is similar to that of Proposition 8, which would directly apply if we
had assumed o; € R5(S rather than 7; € R.(S.

The assumption on the angle implies ¢ # j. We consider the case 1/2 < —u; < u; < 1;
the proof for the alternative follows from the same argument by symmetry. By the
assumption on the angle between the vectors 7; and —%;, we have by Proposition 2 that
|U; + v;| < |U;|. Since ¥; # ¥; and 7 > 7, we have that at least one of £(¥; + ¥;) is in
R-¢D. Suppose 7; + U; € Ro(D.

Then, since —(u;, v;) € Qp(M) and

O§u1+uj<l/2§—uj<1,

we have (u; + u;,0; + U;) € OQp(M) and by Proposition 6 that |0; + ¢;] > |v;], a
contradiction. Therefore ; + U; ¢ R-oD and we must have —(0; + 0;) € Ro¢D. This
means —(u; + u;j, U; + U;) € Op(M) and
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It follows from this that, for all ¢ with w;+u; <t < 1, we have Fp(M,t) < |0;+7;| < |Uj]
and for 0 < ¢ < 1+w; (which in particular holds for all ¢t with 0 < ¢ < u; 4+ u;), we have
Fp(M,t) <|v;|. Therefore j = K. O

The previous proposition allows us to deduce the following simple and useful result.
Recall that ¢ = 7 — 7, so that 7 = ¢ + 2¢.

Proposition 15. Let Sy denote the number of integers i with 1 < i < K, v; € RS,
and u; € (—1,—1/2]U[1/2,1). Then

142 2] i € ReoS and i € (<1.-1/2)U[1/2.),
(3.29) S

IN

2 Lri;g—‘ otherwise.

Proof. The quantity ¢ is the angle swept out by the part of & which lies above the
z-axis. The maximum number of vectors which can be placed in this region, so that
the angles between any two vectors is at least 7/3, is [¢/(7/3)]. The upper bound in
(3.29) therefore follows from combining the results of Propositions 9 and 14. O

4. EXPLICIT UPPER BOUNDS IN DIMENSION d = 2, PART 1

Throughout this section we take d = 2. In view of (2.14), the following statement
directly implies all cases of Theorem 4, except the case when D = S} (which is handled
in the next section).

Theorem 7. Let d = 2, and assume D C S} is a half-open interval of arclength 7 > .
Then for any M € SL(3,R) we have that

(

if bm/3 < T <2m,

f T =5m/3,

if 4m/3 < T <bn/3,
if T =4n/3,

12 +2 LMJ if ™<rt<Adn/3.

sin(7—m)

(4.1) Gp(M) <

o ©O© oo ©
<

The remainder of this section is dedicated to the proof of this theorem. For the
proof, we will apply the propositions from the previous section to each of the five cases
described in (4.1). To summarize the main points of our arguments:

(i) Let S; denote the number of 1 < i < K with u; € (—1/2,1/2) and v; € R.S.

Proposition 3 guarantees that S; < 1, and that if S; = 1 then the corresponding
value of 7 equals K.

(ii) Let Sy denote the number of 1 < i < K with w; € (—=1,—1/2] U [1/2,1) and
U; € RooS. Proposition 15 gives an upper bound for Ss.

(iii) Let A; denote the number of 1 < i < K with u; € (—1/2,1/2) and with 7 in
direction of any asymmetric subset. Propositions 4 and 10-12 give upper bounds
for Al + Sl'
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(iv) Let Ay denote the number of 1 <4 < K with u; € (—1,—1/2] U [1/2,1) and with
U; in direction of any asymmetric subset. Propositions 5-9 give upper bounds for
As + Ss.

In all cases, we have that Gp(M) = K = S; + A; + 52 + Ay. In what follows, recall that
Yv=2r—7and ¢ =7 —T.

Case (C1), 7 = 2m: This is actually not one of the cases considered in Theorem 7,
but we include it as a demonstration of the proof technique, and to provide an easy
argument that Gp(M) < 6. This bound will be improved in the next section, by a
slightly more complicated argument, to show that Gp(M) < 5.

In this case ¢y = 0 and ¢ = m, so it is clear that A; = Ay = 0. We claim that Sy < 5.
Suppose by way of contradiction that S; > 6. Since 7 = 27, we may assume without
loss of generality that the vectors (u;, ;) have been chosen so that u; € [0, 1) for each
i. Then we can find 1 < i < j < K with 1/2 < w;,u; < 1, and for which the angle
between ; and v; is less than or equal to 7/3. By the second part of Proposition 2, we
then have that

(42) 15— 5 <[5
However, since |u; — u;| < 1/2 and v; — v; € RS, this implies that
(43) Fo(M,1) < |7 — 5] < |71,

for all ¢t € (0, 1), which contradicts assumption (V3). Therefore Sy < 5. Since S; < 1,
this gives the bound Gp(M) < 6.

Case (C1), 57/3 < 7 < 2m: In this case 0 < ¢ < 7/3 and 27/3 < ¢ < w. There is
only one asymmetric subset, Ay = [—1/2,1/2).

A. Assume S; = 1. Then by Proposition 3 we must have that
(4.4) ug € (—1/2,1/2).

Proposition 4 implies that we cannot have ¢ and j with 1 <i,j < K, u; € (—=1/2,0],
and u; € [0,1/2). Therefore, by Propositions 10 and 11, we have that A; < 1.

Since (7%1 = 3 and (4.4) holds, Proposition 15 implies that Sy < 6. We claim
that, in this sub-case, Sy + Ay < 7. It is clear from Proposition 9 that, since (4.4)
holds, we must have that A; < 2, and that if Ay = 2 then one element has its first
component in (—1,—1/2] and the other in [1/2,1). In order to establish our claim
we only need to consider what happens when Sy > 5. If S5 > 5 then there must
be at least three values of 1 < i < K with u; € (—=1,—1/2] and 0; € R5,S, or at
least three values with u; € [1/2,1) and ¢; € R5¢S (or possibly both, if Sy = 6).
The argument in both cases is the same, so suppose without loss of generality that
the former condition holds. Then, there are at least 2 values 1 <i < j < K with
ui,u; € (—1,-1/2], v;,v; € RyoS, and with v; and ¥; either both above or both
below the z-axis. If there were also a value of 1 < k < K with u, € (—1,—1/2]
and v}, € A then, since ¢ + 1 = 7, at least one pair of the vectors v;, v}, and vy,
would be separated by an angle of less than /3. This, together with Proposition
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9, would contradict (4.4), therefore such a k cannot exist. This means A; < 1, and
So+A<64+1=T.

Combining the above bounds gives that Gp(M) <1+14+6+1=09.

B. Assume S; = 0. Then by Propositions 10 and 11, we have that A; < 2. If A} =2
then by Proposition 4 we again have that (4.4) holds. The same argument as in the
previous Case A yields So+ As < 6+1 = 7, and therefore Gp(M) < 0+24+6+1=19.

Assume now A; < 1. Since [-2.] = 3 we have by Proposition 15 that S, < 7, and

w/3

the case Sy = 7 can only arise if vx € RS and ugx € (—1,—1/2] U [1/2,1).

(a) Assume first Sy = 7. Then there exist vectors 4, ..., 0;; € R5oS with indices

(4.5)

(b)

()

1<iyi<ia< - <ig< K

chosen so that the vectors have the smallest possible lengths. There must be at
least 2 of these vectors, say 9; and v;, which both lie above or below the z-axis,
and with corresponding u; values either both in (—1,—1/2] or both in [1/2,1).
If there were also a value of 1 < k < K with u; € (—1,—1/2] and 0} € Ay
then, since ¢ + 1 = m, at least one pair of the vectors v;, v, and 7}, would be
separated by an angle of less than 7/3. Proposition 9 implies that one of the
indices has to be equal to K. Since i, 7 < K, we have k = K, contradicting the
fact that U € R5oS. We have therefore Ay < 1,50 Gp(M) <0+1+7+1=09.
Assume now Sy = 5 or 6. In this case we claim that Ay < 2. To see why this is
true, suppose that Ay > 3. Then, by Proposition 9, we have 1 <i < j < K such
that 0;, U, Uk € Ap and w;, uj, ux ¢ (—1/2,1/2) with u; and u; having opposite
sign. Since S5 > 5, there are at least five values of £ with 1 </ < K, v, € RS,
and uy ¢ (—1/2,1/2). By the same arguments as above, at least two of these
would have to lie either above or below the z-axis, and have u, values both
in (=1,—1/2] or both in [1/2,1). This, by Proposition 9, would then imply
that one of 7 or j, or one of these ¢ values, equals K, which is a contradiction.
Therefore Ay <2, Sy <6 andso Gp(M)<0+14+6+2=09.

Finally, assume Sy < 4. By Proposition 9 we have that A; < 3, so Gp(M) <
O+1+4+3=8.

Case (C1), 7 = 57/3: In this case ¢ = 7/3 and ¢ = 27/3, and there is only one
asymmetric subset, Ay = [—7/6,7/6). In this case the argument is similar to the
previous case. The key improvement is in the application of Proposition 15, since now

(751 =

2.

A. If S; = 1 then (4.4) holds and we conclude as in the previous Case A that A; <1,
Sy < 4. Proposition 9 and (4.4) imply that A; < 2, and so Gp(M) < 14+1+44+42 =38.

B. If S; =0 then A; < 2 as in Case B above. If A; = 2 then (4.4) holds, so Sy < 4 by
Proposition 15 and we conclude Gp(M) <0+2+4+2=38.

Now assume A; < 1. Proposition 15 gives Sy < 5. If S; = 5 then, by the argument in
Case B (b) above, Ay < 2. We conclude Gp(M) < 0+1+5+2=8. If Sy <4 then,
by the same argument as in Case B (c) above, Ay < 3 and Gp(M) < 0+1+4+4+3 = 8.



20

ALAN HAYNES, JENS MARKLOF

Case (C2), 47/3 < 7 < 57/3: In this case 7/3 < ¢ < 27/3 and 7/3 < ¢ < 27/3.
There are two asymmetric subsets, A_; = [—/2,0) and A; = [0,/2). The argument
here is similar to that given above, except that now when we use Propositions 10 and
11, they must be applied to both asymmetric subsets.

A. Assume S; = 1. Then (4.4) holds, and Propositions 10 and 11 imply that A; < 2
(the same argument as in Case A above, now applied to each of the two asymmetric
cones). Furthermore f%} = 2 and thus Proposition 15 yields Sy < 4.

(a)

()

We claim that, if S5 > 3, then Ay < 2. Suppose by way of contradiction that
Sy > 3, that 1 < 4,5,k < K, w;,uj,ux ¢ (—1/2,1/2), and that ;, v}, vy, are
distinct vectors in direction A_; U A;. It could not be the case that either
wi, uj, u, € (—1,—1/2] or that w;, u;, ux € [1/2,1), otherwise we would have to
have by Proposition 9 that i, j, or k equals K. Therefore two of the numbers
u;, u;, and wuy lie in one of the intervals (—1,—1/2] or [1/2,1), and the other
number lies in the other interval. Without loss of generality (the argument is the
same in all cases) let us suppose that u;, u; € (—1,—1/2] and that u;, € [1/2,1).
Then there cannot be any values of 1 < ¢ < K with u, € (—1,—1/2] and
Uy € RyoS. If there were then, again since ¥ + ¢ = m, at least one pair of the
three vectors ¥, U;, and v, would be separated by an angle of less than /3,
giving the contradiction that i, j, or £ equals K. This means that there are at
least three values of 1 < ¢ < K for which u, € [1/2,1) and U, € R5(S. At least
two of these vectors lie either above or below the x-axis. Since u; is also in
[1/2,1), this means (by the same argument just given) that either ug, or one of
these u, values, is ug. This is also a contradiction, so we conclude that A; < 2.
Putting this all together, we have that Gp(M) <1+2+4+2=0.

If Sy =1 or 2, then we must have that Ay < 3. To see why, suppose Ay > 4
and choose 1 < 4 < iy < i3 < iy < K so that w;,...,u; ¢ (—1/2,1/2)
and 7;,,...,0;, ¢ S. By the same argument as before, we cannot have three
of these u; values in either (—1,—1/2] or in [1/2,1). Therefore two of them
must be in one of these intervals, and the other two must be in the other
interval. There is at least one value of 1 < ¢ < K with u, ¢ (—1/2,1/2) and
Uy € RooS, and as before, this implies that one of the vectors we have just
listed is Uk; a contradiction with (4.4). Therefore Ay < 3. This shows that
Gp(M)<1+2+2+3=8.

Assume Sy = 0. By Proposition 9, we have that Ay < 5, and so Gp(M) <
1424+0+5=8.

B. Assume S; = 0. Then A; < 4 by Propositions 10 and 11. But A; = 4 contradicts
Proposition 4, so in fact A; < 3. If A; = 3 then by Proposition 4 we have that
(4.4) holds and, for the problem of bounding A; + S5, we are in the same position
as we just were in Case A. By exactly the same arguments, we therefore have that
Ay + S5 <6, and that Gp(M) <0+3+6=09.

If Ay <2 then S5 <5 by Proposition 15, and we again break the problem into cases.
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(a) If Sy = 5 then vk € R.(S, and we claim that Ay < 2. To see why, suppose that
1 <wuy <--- <uy < K are chosen so that v, , . .., U;, are in direction S. Suppose
that at least three of these vectors all have their u; values either in (—1,—1/2] or
in [1/2,1) and without loss of generality, suppose these values lie in (—1, —1/2].
Then as before, since at least two of these vectors both lie either above or below
the z-axis, there cannot be a value of 1 < j < K with u; € (—1, —1/2] and with
U; ¢ R-(S. Furthermore, by Proposition 9, there can be at most two values
of 1 <j < K with u; € [1/2,1) and v; ¢ S, which gives Ay < 2. The other
possibility is that two of values of w;,,...,u;, lie in (—1,—1/2], and two lie in
[1/2,1). In this case, by the same arguments as above, there cannot be two
values of 1 < j < K with 0; ¢ R.(S and with u; € (—1, —1/2], and neither can
there be two values with u; € [1/2,1). This again gives A; < 2. This shows
that if Ay <2 and Sy, =5 then Gp(M) <0+2+4+5+2=09.

(b) If S; = 3 or 4 then we claim that Ay < 3. To see why this is true, suppose by
way of contradiction that Sy = 3 or 4 and that @, ...,7;, ¢ R5oS are distinct
vectors with corresponding w; values all in (—1,—1/2] U [1/2,1). We cannot
have four of these values all in (—1,—1/2] or all in [1/2,1). If three of them
all lie in one of these intervals, then without loss of generality let us suppose
that the interval is (—1, —1/2], the corresponding indices are i, i3, and i4 and
that the largest of these indices is 74. We must then have that iy = K. We
have that u;, lies in [1/2,1), so to avoid contradiction there can be at most two
values of 1 < ¢ < K with u, € [1/2,1) and ¥y € R5¢S. Then, there must be
at least one value of ¢ with u, € (=1, —1/2] and ¥, € R.(S. However, we then
conclude by previous arguments that either this u, value, or one of w;, or w,,,
must equal ug. This is a contradiction. We are left with the possibility that
two of the numbers u;,, ..., u; lie in (—1,—1/2], and that the other two lie in
[1/2,1). This then implies that there is at most one value of 1 < ¢ < K with
Up € RooS and uy € (—1,—1/2], and similarly at most one with #;, € R.,S and
ug € [1/2,1). This contradicts the assumption that Sy = 3 or 4, so we conclude
that in this case Ay < 3. This gives that Gp(M) <0+2+4+3=0.

(c) Finally, if Sy < 2 we use the bound Ay < 5 and obtain Gp(M) < 04+2+2+45 = 9.

Case (C2), 7 = 4n/3: In this case ¢ = 27/3 and ¢ = 7/3, and so (7%] = 1. There
are two asymmetric cones, A_; = [—7/3,0) and A; = [0, 7/3).

A. Assume S} = 1. Then (4.4) holds, and as in the previous Case A we have A; < 2 and
Sy < 2. If Sy = 2 then choose 1 < i,j < K—1withi # j and 7;, U; € R5S. If u; and
u; both lie in (—1, —1/2] then there can be at most one value of 1 <k < K —1 with
U & RopS and with u;, € (—1,—1/2], and at most two values with wu;, € [1/2,1),
which gives Ay < 3. Similarly if u; and u; both lie in [1/2,1). If w; € (=1, —1/2] and
u; € [1/2,1), or vice-versa, then there can be at most one value of 1 < k < K —1 with
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U & RS and with uy, € (—1,—1/2], and also at most one value with wu; € [1/2,1),
so in this case Ay < 2. This gives the bound Gp(M) <1+4+2+2+3 =28.

If Sy = 0 or 1 we use the bound Ay < 4, which follows from Proposition 9 and (4.4).
Thus Gp(M) <1+2+1+4=38.

B. Assume S; = 0. Then A; < 3. If A; = 3 then (4.4) holds and, for the problem of
bounding A, + Sy, we may follow exactly the same arguments just used in Case A
to obtain the bound Ay 4+ Sy < 5. Therefore Gp(M) <0+ 345 = 8.

If A; < 2 we use the bound Sy < 3 from Proposition 15. By arguments similar to
those in the previous Case B (b) and (c): If Sy = 3 then Ay < 3 and Gp(M) <
0+2+3+3=81IfS=1or2then Ay <4and Gp(M) <0+2+2+4=28. If
Sy =0 then Ay <5 and Gp(M) <0+24+0+5="7.

Case (C3), 7 < 7 < 4x/3: In this case 27/3 < ¢ < m and 0 < ¢ < 7/3. Now
there are three asymmetric subsets, Ay = [—¢/2,—7/6), Ay = [-7/6,7/6), and
Ay = [7/6,1/2). The argument is similar to those given previously, except that to
bound the number of vectors v; in the direction of A_; U .A; with w; € (—=1/2,1/2), we
must now use Proposition 12. Also, we do not try to optimize the argument as much,
since the bound in Proposition 12 is probably already sub-optimal.

A, If S; = 1 then (4.4) holds. As before, Proposition 4 guarantees that all vectors v
with ¢ < K have corresponding w; values all in (—1/2,0] or all in [0,1/2). Therefore,
by Propositions 10 and 11 there is at most one such vector pointing in the direction
of Ay. Similarly, by Propositions 10 and 12 (applied to each of the cones A_; and
Ay), the number of such vectors lying in the direction of A_; U A; is at most

949 LSiD(T/Q + W/G)J ‘

sin(r — )

(4.6)

This gives the bound

an 4 <340 rmu/zﬂm)J |

sin(7 — )

Since (%}J = 1, Proposition 15 implies that Sy < 2. Also, Proposition 9 (applied

to each of the three asymmetric sets) implies that Ay < 6, so we have that

(48) Go(M) <12 42 {sm('T/Q—I—?T/G)J '
sin(r — )
B. Finally, suppose that S; = 0. In this case, again by Propositions 10-12, there can
be at most
(1.9) 549 sin(7/2 + 7/6)
' sin(7 — 7)

indices 1 < i < K with ¢; in an asymmetric set and with w; € [0,1/2). In addition
to these vectors, if there is any other vector v; in an asymmetric set, with u; €
(—1/2,0), then it would follow from Proposition 4 that j = K. Therefore there
can be at most one such vector v;. The same argument applies with the intervals
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[0,1/2) and (—1/2,0) replaced by (—1/2,0] and (0, 1/2), respectively, and this gives
the bound

(4.10) A <442 FHWZ i 7/6)J .

sin(t — )

If equality holds in this inequality then we know that (4.4) holds, we are in the
same situation just encountered in Case A, and we again use the bounds S, < 2 and
Ay <6, arriving at the same bound (4.8) for Gp(M).

If there is strict inequality in (4.10) then Proposition 15 implies that Sy < 3, and
it also tells us that if Sy = 3 then U lies in a symmetric set. Similarly, we have from
Proposition 9 that A; < 7, and that if Ay = 7 then v lies in an asymmetric set.
Therefore we cannot have both S, = 3 and A, = 7. This gives that S; + Ay < 9,
which again implies that (4.8) holds.

5. EXPLICIT UPPER BOUNDS IN DIMENSION d = 2, PART 2

Throughout this section we set d = 2 and D = S}. In this case the upper bound of 6
obtained in the previous section falls just short of establishing the claimed five distance
theorem. We will first deduce a little more information about the possible distances
which can occur in this case. The goal of this section is to prove the following theorem,
which will thereby complete the proof of Theorem 4 and the d = 2 case of Theorem 1.

Theorem 8. For any M € SL3(R) we have that
(5.1) gs}(M) < 5.

Since we are dealing with the case D = S we can assume, by replacing each vector
(u;, ;) by its negative if necessary, that u; > 0 for 1 < i < K. For simplicity we make

this assumption for the duration of this section. It is convenient at this point to gather
together some additional properties which must be satisfied by the vectors ;.

Proposition 16. If Gsi(M) = K then, for all1 <i < j < K —1,

(5.2) |7 — 7| > |75,
and for all1 <i1<j <k <K —1,
(5.3) 5= 5 — 5l > [

Proof. Let 1 <i < j < K —1. To prove (5.2) first note that by Proposition 3, together
with the above mentioned convention that u;, u; > 0, we have

Since Gg1 (M) = K we must have that u; > 1/2. Therefore, applying Proposition 6 to
the vector (u; — u;, 0; — U;) € Qp(S]) gives that

(5.5) |U; — U5] = |51

If there were equality in this inequality then, by the argument used in the proof of

Proposition 3, we would have that j = K, which is a contradiction. Therefore, the
strict inequality (5.2) holds.
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Next, to prove (5.3),let 1 <7 < j <k < K—1. We have that 1/2 <y, < u; <u; <1,
and therefore that

(5.6) 0 < g+ u; — u; < u.

Applying Proposition 6 to the vector (uy + u; — u;, Uy + U; — 0;) € Op(S]) gives that

(5.7) |V + U — V| > | U],

which proves the result. O
As a corollary of Proposition 16, we also deduce the following result.

Proposition 17. If Gsi(M) = K then, for all 1 <i < j < K — 1, the angle between
U; and U; must be greater than w/3. Also, for all1 <i < j <k < K — 1, the vector v;
does not lie in the positive cone determined by vU; and vy,.

Proof. For the first part of the proposition, if 1 <17 < j < K — 1, then the fact that the
angle between ¥; and ¥; must be greater than 7 /3 follows (5.2) together with Proposition
2.

Ficure 7. Illustration corresponding to the contradictory hypothesis
that ¥ lies in the positive cone determined by v; and .

For the second part, suppose by way of contradiction that 1 << j < k < K — 1,
and that the vector 7; does lie in the positive cone determined by ¥; and ). Note that
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|U;| < |U;| < |U)| and that, by the first part of the proposition, the angle between ¥; and
Uy is greater than 27 /3. With these observations in mind, consider Figure 7. The figure
is rotated so that the vector v} is aligned with the positive x-axis. Depending on the
orientation of the vectors involved, it may also be reflected about the z-axis. The vector
—U; — U, must lie in the sector indicated in red. Once ; is chosen, the vector v; —U; — ¥,
must lie in a sector of the circle of radius |7;| centered at —;; — tj, as indicated by the
blue region in the figure. However, no matter what choice is made for ¥}, this sector
will lie completely within the open disc of radius |v| centered at the origin.

Since this contradicts (5.3), we conclude that o; can not lie in the positive cone
determined by v; and . OJ

Proof of Theorem 8. Suppose, contrary to the statement of the theorem, that gs%(M) >
6. Consider the collection of vectors v;, with 1 < i < 5. We will say that two vectors
from this collection are consecutive if there is no other vector from the collection which
lies in their positive cone. Every vector in the collection is consecutive to two others.
By Proposition 17, the angle between any pair of consecutive vectors is greater than
7/3. Since there are five vectors in the collection, it follows that if 7, j, and k are distinct
indices with 1 < ¢,7,k < 5 and if ; is consecutive to both U; and ¥}, then the angle
between v; and ¥ is less than 7. In other words, in the situation just described, the
vector #j; lies in the positive cone determined by ¢; and ). Therefore, by Proposition
17, if 4, j, and k are distinct and if o; is consecutive to both ¥; and vy, then it must
be the case that ¢ > min{j, k}. However, the vector 7 is consecutive to two vectors v;

and v}, with 1 < j < k, and this gives a contradiction. Therefore we conclude that

6. EXPLICIT UPPER BOUNDS IN DIMENSION d > 2

Let G = SL(d+ 1,R) and I' = SL(d + 1,Z). As in the proof of Theorem 7, for each
M € T'\G we suppose that K € N and {(u;, %;)}, € M are chosen so that conditions
(V1)-(V3) hold. In this section we will prove the following statement, which by (2.14)
implies Theorem 1 in dimension d > 3.

Theorem 9. Let d > 3 and D = S%'. Then for any M € G we have that
We will use the following analogues of Propositions 3 and 9.

Proposition 18. Let d > 3 and D = S¢'. If (u,¥) € Qp(M) with u € (—1/2,1/2),
then |Ux| < |U]. It follows that if, for some integer 1 < i < K we have that u; €
(—1/2,1/2), then we must have that i = K.

Proof. Suppose first that u € (—1/2,0]. Then —u € [0,1/2) and (—u, —0) € Qp(M).
Therefore, for any ¢t € (0,1), any shortest vector in Qp(M,t) can have length at most
|U]. If uw € [0,1/2) the argument is symmetric, so this verifies the first claim of the
proposition.

For the second claim, apply the first with (u,v) = (u;,¥;). Then it follows from
properties (V1)-(V3) that i = K. O
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Proposition 19. Let d >3 and D =S!"'. If1<i,j < K and
(6.2) 1<y <u; <—-1/2 or 1/2 <wj <wu; <1,
then the angle between U; and U; is greater than /3.

Proof. Suppose the hypotheses of the proposition are satisfied and that u;, u; € (—1,—1/2]
with u; < wj. Then conditions (V1) and (V3) imply that i < j and that |0} < |v}]
(this follows, for example, from the argument used in the proof of Proposition 6). If the
angle between 7; and 0; were less than or equal to 7/3 then by Proposition 2 we would
have that

(6.3) |0 = 7] < |75].

Since (u; — uj, U; — U;) € Qp(M) satisfies u; — u; € (—1/2,1/2), we could then deduce
from Proposition 18 that

(6.4) Ok | < |05 = 5] < |5,

which contradicts (V1). Therefore the angle between v; and v} is greater than 7/3. The
argument is symmetric if u;, u; € [1/2,1) with u; > u;. O

Proof of Theorem 9. By Proposition 18, there is at most one value of 1 <1 < K with
w; € (—1/2,1/2). If such a value exists then it must be K.
Foreach 1 <i< K —1 let

(6.5) 7= L

— e St
|| !

By Proposition 19 any points Z; and #; with ¢ # j are separated by an angle greater
than 7/3. Therefore the collection of spheres of radius 1/2 centered at the points 7,
for 1 <17 < K — 1, do not overlap, and they are all tangent to the sphere of radius 1/2
centered at the origin. It follows that

(6.6) K—1<oy,
and this completes the proof of Theorem 9. O

7. CONTINUITY AND LOCAL UPPER/LOWER BOUNDS

We now turn to the case of general D C Sf’l. We will show in this section that
there are choices of D for which Fp(M,t) is unbounded. First we establish local upper
bounds (i.e. upper bounds for M on compacta) that hold for general D.

Proposition 20. Suppose that D C S{™' has non-empty interior and that C C T\G x
(0,1) is compact. Then the following must hold:

(i) There exists a number k(C) > 0 such that Fp(M,t) < x(C) if (I'M,t) € C, and
(ii) F is continuous at every point (I'M,t) € C with

(7.1) (ZM N\ {0}) Na((—t,1 —t) x (0,x(C)]D) = 0.

We emphasise that in (ii), relation (7.1) needs to be verified only for one specific but
arbitrary x(C) > Fp(M,1).
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Proof. 1t follows from the proof of Proposition 1 above that F(M,t) is finite, for any
choice of M and t. The actual bound obtained by that argument depends on the choice
of € in the proof. By Mahler’s compactness criterion, since C is compact, it is possible
to choose a single value of € > 0 which works for every (M,t) € C. This implies the
existence of a constant x(C) satisfying the condition in (i).

The proof of (ii) is then analogous to the proof of [28, Prop. 2]. O]

Let us now extend the above uniform upper bound to all ¢ € (0,1), with M in a
compact set. Given a bounded subset A C R with non-empty interior, and M € G,
we define the covering radius (also called inhomogeneous minimum)

(7.2) p(M, A) =inf{f > 0| A+ Z'M =R}

Because A has non-empty interior, p(M,A) < oco. We will in the following take A
to be of the foorm A = (0,1) x (0,7]D. Then A C AA for any A > 1, and thus
A + ZHM = R for every 6 > p(M, A). Therefore, for such 6, the set 64 + ¥
intersects Z4*' M in at least one point, for every & € R4*!,

For a given set C C I'\G, we define

(7.3) p(C, A) = sup p(M,A).

'MecC

It is well known that p(C, A) < oo for every compact C C I'\G. This follows, for
example, from the comments about finiteness and continuity of inhomogeneous minima
of balls at the tops of pages 231 and 234 of [26] (an upper bound for p(C, .A) is obtained
from an upper bound with A replaced by a ball contained in A). For 6 > 0, set

(7.4) poy= (" 0 Vea

' 0 e_lld ’

Proposition 21. Let D C S‘f‘l with non-empty interior. Assume C C T'\G is compact,
and 0 > p(C, (0,1) x (0,1]D). Then

(7.5) Fp(M,t) < %!

forTM € CD(0)™" and t € (0,1).

Proof. For each t € (0, 1), the set

(7.6) Aig = (—t,1—1t) x (0,0]D c R

has non-empty interior. For any TM € CD(A)~! and t € (0,1), it follows from the
definition of the function Fp that, if A, intersects Z¥' M in at least one point, then
(7.5) holds. Now A; g NZ4 M +# ) is equivalent to 074, NZ4 M D() # (. The latter
holds because the assumption that § > p(C, (0, 1)x (0, 1]D) implies that 0.4, ;NZ4T M’ #
() for every TM’ € C. Now choose M’ = MD(f) and note that TMD(f) € C by
assumption. Il

As a consequence of the previous proposition, we have the following result.

Proposition 22. Let D C S¢7 have non-empty interior. Assume C C I\G is compact,
and 0 > p(C,(0,1) x (0,1]D). Then there is a constant Cyp < oo such that

(7.7) Gp(M) < Cypp
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for TM € CD(6)~.

Proof. 1t follows from Proposition 21, together with the definition of the function Gp,
that for any T'M € CD(6)7!, the quantity Gp(M) is bounded above by the number of
lattice points in Z*1 M which lie in the region

(7.8) (—=1,1) x [0,07]D C R4,

In view of Mahler’s criterion, the number of such lattice points is uniformly bounded
above for all ' M in the compact subset CD(#)~! of I'\G. O

The key point is now that, in addition to the above upper bounds, we can find open
sets U C I'\G, on which Gp n(M) can exceed any given value. This requires however
that D is contained in a hemisphere. Let H C Sffl be an (arbitrary) open hemisphere,
and D C S!7! with non-empty interior so that D C H. Choose d 4 1 row vectors
€0, €1, ..., 8 € S with the properties

(i) €1 € D° and € € ‘H \ D such that é; - €; > 0;

(i) €,...,€; ¢ D such that (&1,...,¢é;) forms an orthonormal basis of R? with
€1
det | : | =1.
€q

Given € > 0, define the matrix

€ —e€p
0 €
(7.9) M, =10 e~1/d-Dg,

6 6-1/(&-1)@

Note that det M, = 1, and thus the vectors

by = (€, —€&y), b = (0,&), by = (0, D) ..., by = (0, Ve

form a basis of the unimodular lattice £, = Z41M..

Let L(z) denote the largest integer strictly less than x. That is, in terms of the floor
function L(z) = |z] ifx ¢ Z and L(z) =x — 1 if x € Z.
Proposition 23. Let D C H and M, be as above. Then there exist X € (0,1) and
€0 > 0 such that, for any € € (0,¢] and t € (A, 1),

(1) FD<M€,t) = ’51 — EL(€_1(1 — t))éb’ and

(ii) Fp is continuous at (M., t) € T\G x (0,1) if t ¢ 1 + €Z.

Proof. Fix sy € (0,€, - €1), and denote by s_ < 0 < s, the infimum and supremum of

all s such that €] — séy € R.D; since e; € D° we have s_ < 0 < s,. Note also that

d S — éb . 51
7.10 —ley — sey| = ——— <0
( ) d8| ! Ol ‘51 —850‘

if s < sq.



A FIVE DISTANCE THEOREM FOR KRONECKER SEQUENCES 29

Proof of (i): We are interested in the lattice points from Z4*1 M, contributing to (2.4),
ie.,

(7.11) Op (M, t) = {(u,0) € Z"'M, | —t <u<1—t, ¥€R.D},
and in particular those with minimal |#]. We begin with those elements of the form
(712) (U,l_f) = mogo + mlgl = (emo,mlé'l — Gmogo), mo € Z, my € Zzl‘

By construction, we have mi€; — emgéy € R5¢D° if and only if s_ < emg/m; < sy; and
m1€) — empey € RooDY if and only if s_ < emg/my < sy. In view of (7.10), the length
|1 — emg/mqéy| is strictly decreasing (as a function of mg/my) if emg/my < so. Let
us restrict our attention to those ¢ for which 1 — ¢ < min{so, s }. Then the condition
emy < 1 —t implies emg/my < sy and emg/my < sg for all m; > 1. Hence the smallest
value of |mi€; — emyey| is obtained for my = L(e"*(1 —t)) and m; = 1. In summary,
we have shown thus far that for ¢ > 1 — min{so, s },

(7.13) Fp(M,t) < |e) —eL(e (1 —1))éy).
Note that
(714) |€1—8€0|:\/1—28€0'€1+82<1

for 0 < s < sp and € - € > sg, and hence Fp(M,,t) < 1.
What we need to establish now is that all other elements in Qp(M,,t) that are not
of the form (7.12) have larger |#]. Consider first the set of vectors

(715) (U,g) = mogo + mlgl = (emo,m1€1 — Emogo), mo € Z, my € Zgo,

Since €y € H \ D and €} € D° we have myé; — emgéey ¢ R-¢D for all my <0, and hence
the corresponding vectors are not in Qp (M., 1).
Next consider the remaining cases

(7.16)  (u, @) = mobo + - + maba,  mo,m1 € Z, (ma,...,myg) € Z41\ {0}.
We need to understand whether any of these vectors can lie in Qp(M,,t) and satisfy
|| < 1. We make the following observations:
(a) The domain (—1,1) x (0,1)D is bounded.
(b) The vector moby has bounded length |mgbo| = v/2|emo| < V2 (since —1 <
€moy < 1)
(c) The vector m by + - - - + mgbg has length at least e~*/(4=1) since (ma, ..., mq) €
7371\ {0}.
Therefore, as long as € is sufficiently small, (—1,1) x (0, 1)D will not contain any vectors
of the form (7.16). Since we have now considered all vectors for our restricted values of
t, this establishes claim (i) with A = 1 — min{so, s }.

Proof of (ii): We need to establish that, for A < ¢ < 1, t ¢ 1 + €Z, the function Fp
is continuous at (I'M,,t). By Proposition 20 (with C = {(I'M,,t)}), it is sufficient to
check that
(7.17) (Z M\ {0}) NO((—t,1 —t) x (0,]D) = 0,
for any fixed choice of kK > Fp(I'M,,t). We fix k so that Fp(I'M,,t) < k < 1 and
(7.18) K & {|mi€1 — emgep| | (mo,m1) € Zél}.
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Since vectors with (my, ..., mg) € Z21\{0} are outside the bounded domain ((—t,1—
t) x (0,x]D) for e sufficiently small (by the argument in the proof of fact (i) above),
what we are aiming to show is equivalent to

(7.19)  {(emq, m1€y — emoéy) | (mo,m1) € (Z*\ {0}) NO((—t,1 —t) x (0,]D)} = (.

By the same argument as above, for m; < 0 we have m;&; — emoey ¢ R>oD (unless
(mg, my1) = 0, which is excluded). So we can assume m; > 1 from now on. Then, for
mo < 0, we have by the monotonicity (7.10) that |mie; — emgep| > my|éi| > |é1| = 1.
Therefore mye; — empéy ¢ [0, k]D. What remains is to check that

(7.20) {(emo, myé1 — emoéo) | (mo,my) € Z2, N O((—t, 1 —1t) x (0,K]D)}
The truth of relation (7.20) is equivalent to the truth of both

(721) {(€m07m1€1 — Emogo) ‘ (mo, ml) € ZQZI N ({—t, 1— t} X [O, KZ]IDCI)} = @
and

(722) {(Emo, m1€1 — emoéb) ‘ (mo, ml) € ZQZI N ([—t, 1-— t] X 8((0, H]D)))} == (Z)

The first relation (7.21) is automatically satisfied since (a) by assumption emgy # 1 —t
for any integer my, and (b) emg # —t because t > 0 and mg > 0.

As to the second relation (7.22), the statement myé; — emoéy € 9((0, k]|D) implies
S_ = emg/my or sy = emgy/my or |myé; — emoéy| = k. The first option is not possible
since s_ < 0, and third is excluded by assumption. If the second option holds, then,
since emg € [—t,1 —t], we have mys, < 1—t and thus s, < 1—¢. But this contradicts
our assumption 1 —t < s;. Hence (7.22) holds and the proof is complete. 0

0.

The following lower bound on the number of distinct values of ¢ +— Fp(M,t) is a
corollary of the previous proposition.

Proposition 24. Let H C S be an arbitrary open hemisphere, and suppose that
D C S has non-empty interior and satisfies DY C H. Then there is a constant
cp > 0 such that, for any € > 0, there exists an open subset U. C I'\G and integer N,
with the property that, for allTM € U, and N > N,

(723) Q’DyN(M) Z CDE_I.

Proof. Proposition 23 (i) shows that Gp(M,) > cpe~! for a sufficiently small ¢cp > 0.
Denote the distinct elements of the set {Fp(M,t) |t € (A\,1)} by 0 < 1 < -+ <
©gpm) < 1. Let 6 = max;(¢i11—;). Then by the continuity established in Proposition
23 (ii), there exists a neighbourhood U, C T'\G of I'M, and an 7. > 0 such that for
t ¢ 1+ eZ, we have that

(7.24) |Fp(M,t") — Fp(M,,t)| < §/2,

whenever M € U, and t' € (t — n,t +n.). For N > n-! we can find an integer n so
that NL+ € (t — ne,t + ). This implies Gp x(M) > Gp(M.) > cpe* for all TM € U,
and N > L. O
Proof of Theorem 5. The proof of Theorem 5 now follows from the same argument as
the proof of [28, Theorem 1]. For & € P, we have that the set {FAN#%(&) | i € N}
is dense in I'\G; see Section 2 of [28] for details. The claim on the limit inferior then
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follows from Proposition 21, since by density we have infinite returns to a given compact
subset. The claim on the limit superior follows from Proposition 24, since by density
the above set intersects any given open neighbourhood /.. OJ

Proof of Theorem 6. This is analogous to the proof of to the proof of Theorem 2 in [28].
Let

s e’ 0
(7.25) d° = ( 0 es/dld) eG.

A special case of Dani’s correspondence [15, Theorem 2.20] states that, for any @ € R?,
the orbit

. (o} O

is bounded in I'\G if and only if @ is badly approximable by Q¢.
Note that for Z¢M, = Z*M, and @ = ayM,

o (1 @\ (N0 10
) o= (0B (5 W) ().

By assumption & is badly approximable by QL, i.e., d; is badly approximable by Q<.
It follows from Dani’s correspondence that the set {TAy, (@gMo, Z9My) | N € N} is
contained in a compact subset of I'\G. The claim then follows from Proposition 21. O

S € R>0}

We now return to the special case D = S¢7!, and provide the remaining ingredients
for the proof of Theorem 2.

Proposition 25. Let D = S{ ™', and fir a matriz Ay, (@) as in (2.2) with Ny := N+1,
N € N. Then the following hold.

(i) For givenn =1,..., N, the functiont — Fp(An, (d),t) is constant on the interval
I, = (N{'(n - 3), Ni'n).
(ii) Fp is continuous at (T Ay, (@),t) € T\G x (0,1) ift,1 —t ¢ N;'Z.

Proof. Throughout this proof set D = S¢~!. Then
(7.28) Fp(An, (d@),t) = Ny/" min {[kd@ + ] > 0
| — Nyt <k <N (1—t), k€Z [ €ZM)}.

The set (—Nyt, No(1 —1t))NZ is independent of the choice of ¢ € I,,; this proves (i). In
view of Proposition 20, claim (ii) holds if

(7.29) (Z An (@) \ {0}) NO((—t,1 —t) x (0,K]D) = 0,
for a fixed choice of k > sup;¢ (g 1) Fp(An, (@),t). The set
(7.30) M(M) = {|5] > 0] (u,7) € Z™' M, |u| < 1}

is discrete for every fixed M € G (cf. (2.11)), so clearly we can choose x ¢ M(Ay, (@)).
This means that the lattice Z*' Ay, (@) does not intersect the set [—1,1] x D. Fur-
thermore, by the assumption t,1 —t ¢ N;lZ, we have

(7.31) (ZH An, (@) \ {0}) N ({~t,1 —t} x (0,K]D) = 0,
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which establishes (7.29), and hence completes the proof of claim (ii). O

Proof of Theorem 2. In the following D = S{~!. We fix N € N until the last step of the
proof. By (2.6) and Proposition 25 (i) we have

(7.32) 8o N (D) = NV Fp (A, (o, Lo), 1),
for any t,, € I,,, and hence
(7.33) gn (Ao, Lo) = {Fp(An, (do, Lo), tn) [n=1,...,N}|.

Choose ¢ > 0 sufficiently small so that the elements of the set {Fp(An, (G, Lo),tn) |
n=1,..., N} are separated by at least §. Fix any ¢, € I, such that t,,1 —t, ¢ N;'Z.
Proposition 25 (ii) implies that Fp is continuous at (I'An, (0, £o),t,), forn=1,..., N.
That is, there exists a neighbourhood U C I'\G of the point I' Ay, (o, £Lo) and an n > 0
such that

(7.34) |Fp(M,t") — Fp(An, (do, Lo), tn)| < /2,
whenever I'M € U and t' € (t, —n,t,+n). For every integer N>plandn=1,...,N
we can find a positive integer m,, < N so that ’]% € (t, — n,t, +n). This implies that

Gp (M) > Gp(An, (G0, Lo)) = gn(do, Lo) for all TM € Y and N > n~2.
We can now conclude the proof as for Theorem 5. Let @ € P. The density of the
orbit {I'Ay, 1(d, L) | i € N} implies

(7.35) limsup gy, (@, L) > gn(do, Lo).
1—+00
Theorem 2 now follows by taking the supremum over N € N. O
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