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Abstract

In preparation for a more thorough study based on our own experimental work of the

debonding of a thin film gel by stress concentration on the interface with a rigid substrate,

in this article we revisit, from the viewpoint of the synergy between mathematics, exper-

iments, and finite element simulations, the problem of the swelling of a thin rectangular

polyacrylamide gel covalently bonded on the bottom surface to a glass slide. With meth-

ods of the calculus of variations and perturbation theory we show that the solution to the

corresponding zero-displacement boundary value problem converges, in the thin film limit,

to a uniquely defined uniform uniaxial extension on the direction normal to the substrate.

Both the experiments and the finite element simulations that we perform confirm that the

amount of lateral swelling is very small, with a very good quantitative agreement between

the two approaches. The proposed model of minimizing an energy functional comprising

both a term for the elastic distortion and the Flory-Huggins expression for the entropy of

mixing is thus experimentally and numerically validated, with parameters coming from ex-

perimental measurements, including the initial polymer volume fraction of the hydrogel

synthesized in the laboratory (which is taken as the reference configuration instead of the

dry polymer).
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1 Introduction

The present article builds upon the variational model proposed by Calderer, Garavito,

Henao, Tapia & Lyu [9] for the debonding of a gel from a rigid substrate. The goal is to

aid in the design of the synthetic polymers that coat a pacemaker, or other medical implants,

by determining how thin the gel coating ought to be in order for it to be stable against

debonding from the mechanical substrate. This challenging task needs to take into account

the curvature of the substrate; the nature of the adhesion between the gel film and the sub-

strate; the entropic gain due to the absorption of water from the high moisture environment

of the body, and the geometry and topology of the debonded regions of the gel/substrate

interface, among others.
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In [9] a simplified, essentially two-dimensional setting, was considered, as a first step.

The advantage of the simplified problem is that it yields a closed-form formula for the

threshold thickness for stability against debonding (see Sect. 3.8 for a more detailed expla-

nation). The explicit nature of this formula makes it potentially valuable in medical device

development.

The underlying simplifying assumptions are incompatible with a curved substrate, truly

three-dimensional expansions, rate-dependent debonding, curved debonding fronts, and

multiple debonded regions of the gel/substrate interface. This article goes a step further

in this program. First, we perform free-swelling and fully-bonded experiments with poly-

acrylamide gel, in light of which the variational model is adjusted and the distance between

the actual three-dimensional expansion and the idealized thin-film-limit uniaxial solution is

measured. Second, we perform finite element simulations, obtaining a more thorough com-

parison between the model and the experiments in the laboratory. Regarding the improve-

ments on the model due to the understanding from the experimental work and the numerical

simulations: (a) now all the parameters are obtained from experimental measurements; (b)

the reference configuration is taken with the physical initial polymer volume fraction φ0 and

the shear modulus is that of the synthetized hydrogel (instead of working with φ0 = 1 and

the shear modulus of the dry polymer), and (c) the thin film asymptotic analysis is now made

for the full 3D problem (instead of working with a class of deformations where swelling is

possible only in the vertical direction and in one of the horizontal directions, as is done in

[9]). Regarding the agreement between the experimental observations, the thin film theoret-

ical prediction for the vertical stretch in the bonded sample, and the finite element solutions,

the results are encouraging and might motivate new research on this rich mechanical/gel

polymer physics problem.

This work strongly relies on the natural synergy between mathematics and experiments,

and how they inform each other throughout the course of the work. In particular, the exper-

imental measurements combined with the model have contributed to determining the value

of the Flory-Huggins parameter χ and the shear modulus of the gel under investigation. A

message for a mechanician is to reassess the role of the choice of the reference configuration

of the problem. In many works on gels, including [9], the reference configuration is chosen

to be that of the dry polymer, that is, with φ0 = 1. However, a consistent experimental set up

would require a large energy expense to arrive at such a goal. The finite element simulation

of the model shares some analogies with a previous study of gel equilibrium by the method

of mixed finite elements, involving a related but different equilibrium model than the present

one. No experimental work was directly associated to that analysis [28].

We now include a brief survey of gel research to illustrate the highly interdisciplinary

nature of the field, fully aware that justice will not be served to the many important contri-

butions of past and current researchers. Many of the current approaches to modeling gels

rely in great part on the theory of mixtures of two components, a polymer network and sol-

vent, specifically in the form of poroelasticity. With its origins in the prominent work by Biot

[5], it played a prominent role in geophysics, in connection with the problem of extraction

of oil from the earth substrates, and, in particular, driving the development of analysis and

numerical methods for such systems [2]. Research on mixture theory from the point of view

of continuum mechanics was simultaneously carried out by the group of Ericksen and Trues-

dell in Johns Hopkins University, with many of such contributions reported in the volume

by Truesdell and Noll [32]. In particular, these authors contributed to making precise some

fundamental concepts in mixture models, and making their mathematical formulations pre-

cise. One such instance is the concept of a mixture with incompressible constituents, where

each isolated individual component is incompressible. However, while the Jacobian of such
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deformations of such a material in a separate setting has value one, this is not the case in

a mixture. The ‘averaged material’ does sustain deformations with determinant larger than

one. (In the case of polyelectrolyte gels, such a Jacobian can be larger than 500.) The situ-

ation is very different in geophysical mixtures that are genuinely compressible, since they

involve individual components, such as natural gas, with that property. As a result, a general

well-posedness theory of compressible mixtures is lacking.

The works by the Ericksen and Truesdell’s group on mixture theories mostly deal with

fluid components, with the treatment of solid-liquids being pursued afterwards by several

authors in that community, starting with linearized elasticity models for the solid component.

Works in this direction include those of Bowen [8], Weinman & Rajagopal [34], and Pence

[26].

As many authors, including de Gennes, Doi, and Tanaka, have made clear, a gel is not a

poroelastic material in its strict sense (as one could think, for instance, of a sponge), since

chemical interactions among the components are essential for the new material, the gel, to

arise. This motivates us to bring forward the studies of interacting polymer and solvent mix-

tures by Flory and Huggins ([15], [20]) and Flory and Rehner [16], focused on the study of

gels. Tanaka and Fillmore published a leading article on the kinematics of gels, based on lin-

ear elasticity but with emphasis on the non-diffusive nature of the swelling regimes [31]. Doi

later incorporated nonlinear elasticity and focused on the volume phase transition caused by

swelling-collapse processes. A gel monograph by this author gives a very clear perspective

of the status of the research of gel mechanics up to date [14]. A full incorporation of nonlin-

ear elasticity with the Flory theory was promoted in the articles by Suo and co-authors, with

models closely developed alongside experiments [6, 19, 21, 33]. In particular, with the aim

of removing the limitations of the linear approaches, they suggested a new procedure to fit

the experimental data with the nonlinear theory. Furthermore, they proposed an indentation

experiment as an effective method for characterizing the mechanical and transport proper-

ties of polymer gels. Work by the latter authors also addresses surface instabilities in gel,

with examples of cavitation presented in the work of Pence [27] and fibrillation by Doi [14].

See also the work by Mora & Boudaoud [23] on the formation of wavy periodic patterns

in thin soft gels clamped to a stiff gel. Another challenge in the mathematical treatments

of gels is the role of the boundary conditions, either in free swelling or under confinement.

In both cases, one has to take into account the permeability properties of the gel boundary,

ranging from fully permeable, semi permeable or impermeable [10]. In confinement, gels

may develop stress concentrations on the boundary leading to possible debonding from the

substrate [9]. Although not immediately related to the topic of the current article, polylec-

trolyte gels make a primary field of gel research. With the prominent role of the chemical

interaction between components, the role of ions in the vicinity of charged polymers gives

the materials outstanding properties such as swelling ratios above 500. Models of such gels

required the coupling of mechanical equations with those of Poisson-Nernst-Planck type

[24]. The electro-mechanical coupling also presents the opportunity for a myriad of devices.

An example can be found in a rhythmic drug delivery device, powered by glucose, that

harnesses swelling-collapse transitions [4, 13, 22, 35].

The present article is organized as follows. Section 2 is devoted to the description of the

gel experiments and the materials used. In Sect. 3, we present the model, including the for-

mulation of the energy, the setting of the stress tensor, and the derivation of uniform, energy

minimizing solutions, including the free swelling and the partially bonded configurations.

At this point, we have gathered sufficient information so that, combining the model with the

experimental results, we calculate the Flory-Huggins parameter χ of the gel. We continue

with the formulation of the boundary value problems in three space dimensions and obtain
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the thin film limit, result that to the best of our knowledge, is obtained here for the first

time. Section 4 is devoted to the finite element simulation of the solutions of the boundary

value problems, emphasizing the quantitative connections with the experiments. In Sect. 5,

we draw some conclusions.

2 Experimental Section

2.1 Materials

Acrylamide (AAm, A8887; Sigma-Aldrich, St. Louis, MO), N ,N -methylenebisacrylamide

(MBAA, 146072; Sigma-Aldrich, St. Louis, MO), ammonium persulphate (APS, A3678;

Sigma-Aldrich, St. Louis, MO), N ,N ,N ’,N ’-tetramethylethylenediamine (TEMED, T9281;

Sigma-Aldrich, St. Louis, MO), functional silane 3-(trimethoxysilyl) propyl methacrylate

(TMSPMA, 440159; Sigma-Aldrich, St. Louis, MO), acetic acid (VWR International LLC.,

Radnor, PA), ethanol (EtOH; VWR International LLC., Radnor, PA), and acetone (Fisher

Chemical, Fair Lawn, NJ) were used as received.

2.2 Methods

2.2.1 Preparation of Polyacrylamide (PAAm) Gel

PAAm gels were synthesized by vortexing 10 mL degassed (dry N2 purging for 10 min)

aqueous precursor solution (2.3 g AAm, 5.1 mg MBAA, and 4.3 mg APS) with 10 µL

TEMED, quickly pouring the mixture into laser cut acrylic molds with specified shapes,

covering with pre-cleaned glass plates, and keeping it overnight for stabilization.

The volume fraction occupied by the polymer phase in the resulting hydrogels was ap-

proximately

φ0 = 0.2035. (1)

2.2.2 Free Swelling Experiment

Rectangular PAAm gels (length: 90.0 mm, thickness: 3.0 mm, width: 23.5 mm) were im-

mersed in deionized (DI) water (frequently changed to remove extra chemicals) for 10 days

(after which was at swelling equilibrium). The length, width, and thickness of the gels at

equilibrium were measured with a digital caliper (General Tools & Instruments, Andover,

MN). All the experiments were carried out at T = 296 K.

2.2.3 Swelling of a Completely Bonded Gel

Rectangular gels (length: 90.0 mm, thickness: 1.62 mm, and width: 15.0 mm) were com-

pletely covalently anchored on glass substrates following the procedure of Sect. 2.2.4. They

were immersed in DI water (changed three times) for around 72 hours to reach swelling equi-

librium. Dimensions in the equilibrium state were measured using the same digital caliper.
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Fig. 1 Illustration of covalent bonding of the PAAm gel to a glass slide

2.2.4 Gel Anchoring on a Glass Substrate

Gels were chemically anchored on a glass substrate following a protocol from reference [36].

Briefly, surfaces of glass slides were functionalized by grafting functional silane TMSPMA.

Glass slides were thoroughly cleaned with acetone, ethanol, and DI water, and were then

completely dried. Cleaned glass slides were treated with air plasma (50 W under a pressure

of 300 mtorr; Plasma Etch Inc., Carson City, NV) for 5 min. Immediately after the air plasma

treatment, the glass surface was covered with silane solution (100 mL DI water, 10 µL acetic

acid with pH=3.5, and 2 mL TMSPMA), and incubated for 2 hours. Glass slides were

washed with ethanol and completely dried. Functionalized substrates were stored in a 0%

RH desiccator before use. The procedure is illustrated in Fig. 1.

2.2.5 Elastic Modulus (G)

Mechanical properties of disk shaped (diameter: 25 mm, thickness: 6.3 mm) PAAm gels

were determined under amplitude oscillation mode using an RSA-G2 solids analyzer with a

parallel plate (diameter: 25 mm) geometry (TA Instruments, New Castle, DE). Each gel was

placed on the bottom plate after zero gap calibration. Dynamic storage and loss moduli were

measured with oscillation strain 0.01%–1% and fixed angular frequency 1 rad/s with base-

line compression of approximately 10 g. Measurements were completed within 2 minutes

to avoid any redistribution of water inside the gel.

2.3 Results

2.3.1 Free Swelling Experiment

The dimensions of the gel at swelling equilibrium, in three repetitions of the experiment,

are presented in Table 1. In the three repetitions a homogeneous deformation was observed,

with stretches given approximately by 1.49, 1.49, and 1.48 (along the length, thickness,

and width directions, respectively). This was very close to the isotropic expansion with a

Jacobian determinant of 3.29 (the factor by which the volume of the gel increased in each

of the repetitions of the experiment).

2.3.2 Swelling of a Completely Bonded Gel

For the gel completely bonded to a glass slide, the experiment was repeated four times. The

deformation reached after swelling was close to a homogeneous uniaxial extension, normal
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Table 1 The Jacobian determinant J is the ratio between the volume at the swelling equilibrium and the

volume of the reference configuration. It gives the increased volume factor for each of the three repetitions of

the experiment. The average Jacobian is 3.2908 (standard deviation 0.0068) which corresponds to a ratio of

isotropic extension λ̂iso := J 1/3 = 1.4874. The stretch factor presented in the table is the average, considering

the three repetitions of the experiment, of the ratio Leq/Li , where Leq is the dimension (length, width, or

thickness) of the gel at swelling equilibrium and Li is the corresponding dimension in the initial state

Configuration Length (mm) Thickness (mm) Width (mm) Jacobian determinant J

Reference 90.0 3.0 23.5 1

Gel 1 134.24 4.48 34.69 3.2880

Gel 2 134.49 4.47 34.68 3.2858

Gel 3 134.62 4.47 34.78 3.2985

Average 134.45 4.47 34.72 3.2908

SD 0.19 0.0058 0.055 0.0068

Stretch factor 1.4865 1.4911 1.4773

Fig. 2 Observed shape of the completely bonded gel at swelling equilibrium. The illustration exaggerates the

rounding-off at the upper corners, and the outward displacement of the lateral surfaces (the actual aspect ratio

d/a, in the main view, is of the order of 94 : 3, as can be seen in Table 2 and in Figure 19). The frame y1, y2,

y3 , with the notation that will be used in the expressions y = x + u(x), x = (x1, x2, x3), y = (y1, y2, y3) in

the mathematical model, is depicted here with heavy lines in both the main and the left views (in particular,

we denote the vertical direction by y2)

to the substrate. The final thickness a, measured in the middle region of the sample; and

the deviation from the idealized uniaxial extension, measured by the parameters c, d (main

view) and e, f (left view) of the schematic representation of Fig. 2, are presented in Table 2.

Most of the gel was observed to swell uniformly, almost entirely in the direction normal

to the glass slide. Nevertheless, detailed cross-sections show a relatively small ‘bread loaf-

ing’ effect, i.e., a tendency to lateral swelling that increases as one moves away from the

bonding surface. The amount of lateral displacement is very similar in the two horizontal

directions, close to 2 mm on each side: the difference of 3.73 mm between the measurement

d and the length of 90.0 mm of the gel in its initial state, accounts for the sum of the dis-

placements to the left and to the right of the sample; the difference of 3.95 mm between the

measurement f and the initial width of 15 mm, accounts for the displacements towards the

back and the front.

2.3.3 Elastic Modulus

The PAAm gel samples prepared were found to have an elastic modulus of

G = 0.13 MPa. (2)



Experiments, Modelling, and Simulations for a Gel Bonded. . .

Table 2 The table shows the parameters (in mm) a, b, c, d , e, f , and g of Fig. 2, in four repetitions of

the completely bonded swelling experiment. The thickness of the sample in the middle region (parameter

a) is 3.40 mm in average. The deformation is close to a homogeneous uniaxial extension, by a factor of

λ̂uni := 3.40/1.62 ≈ 2.10, in the direction normal to the glass slide

Configuration a b c d e f g

Reference 1.62 1.62 90.0 90.0 15.0 15.0 1.62

Gel 1 3.31 2.05 88.08 93.90 11.42 19.00 1.75

Gel 2 3.35 2.13 88.39 93.85 11.68 18.99 1.78

Gel 3 3.50 2.01 88.31 93.56 11.49 18.79 1.72

Gel 4 3.45 2.23 88.25 93.62 11.86 19.00 1.64

Average 3.40 2.11 88.26 93.73 11.61 18.95 1.72

SD 0.09 0.10 0.13 0.17 0.20 0.10 0.06

3 Model

We assume that a gel is a saturated and immiscible mixture of elastic solid and fluid, con-

stituents which are both assumed to be incompressible. In the reference configuration, which

will be chosen to be the initial state obtained with the preparation of the rectangular PAAm

gels (as described in Sects. 2.2.1, 2.2.2, and 2.2.3) the polymer occupies a domain � ⊂ R
3.

When the samples are immersed in water, deformation of the polymer occurs by the absorp-

tion of fluid. We describe deformation by the one-to-one, differentiable map

y = x + u(x), which satisfies det(I + ∇u(x)) > 0, x ∈ �, (3)

where u : � → R
3, u(x) =

(

u1(x), u2(x), u3(x)
)

is the displacement field and I denotes the

3 × 3 identity matrix. The domain occupied by the gel after the deformation is the image

�′ := (id + u)(�) of � by the deformation map id + u (hereforth id will denote the identity

map, so that id + u evaluated at x gives y). We label the fluid and polymer components with

indices 1 and 2, respectively. According to the theory of mixtures, a point y in the current

(deformed) configuration is occupied by, both, fluid and solid at volume fractions φ1 = φ1(y)

and φ2 = φ2(y), respectively. An immiscible mixture is such that the constitutive equations

depend explicitly on the volume fractions φi, i = 1,2. We let ρi denote the mass density of

the i-th component (per unit volume of deformed gel). It is related to the intrinsic density,

γi , by the equation ρi = γiφi , i = 1,2. Moreover γi = constant, i = 1,2 defines a mixture

with incompressible constituents. The assumption of saturation of the mixture

φ1 + φ2 = 1 (4)

expresses that no species other than fluid and polymer are present. As a consequence, it

suffices to know the volume fraction of polymer, which henceforth will be denoted simply

by φ:

φ(y) := φ2(y) = (swollen) polymer vol. fraction at y. (5)

The equation of balance of mass of the polymer states that, for every subset ω̃ ⊂ �,

ˆ

(id+u)(ω̃)

φ(y) dy =
ˆ

ω̃

φ0 dx, (6)
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where 0 < φ0(x) < 1 denotes the volume fraction of polymer in the reference configuration.

Formally, it reduces to a pointwise relation

φ(x + u(x))J (x) = φ0(x), for all x ∈ �, (7)

where we have set

J (x) = det F(x), with F(x) = I + ∇u(x). (8)

Forthcoming calculations involve expressing vectors and tensors in components. For this,

we let {e1, e2, e3} denote the canonical basis of the Euclidean space R
3 and {x1, x2, x3} the

associated coordinate system.

3.1 Energy of the Gel

As is customary in the gel literature, two different contributions to the total energy of a

gel are considered. First, there is a contribution
´

�
Wel(F(x)) dx associated to the elastic

distortion of the polymer network. For simplicity, following Doi [14, Sects. 3.3.1, 3.3.2,

3.4.1], we assume that

Wel(F) := G

2
|F|2, G > 0, (9)

with an elastic modulus G that has dimensions of energy density. Second, we consider the

Flory-Huggins energy of mixing ([14, Eq. 2.62], [29, p. 143]),

ˆ

�′
WFH

(

φ(y)
)

dy,

where

WFH(φ) := kBT

Vm

(φ1 lnφ1 + 1

N
φ2 lnφ2 + χφ1φ2), φ1 := 1 − φ, φ2 = φ. (10)

Here Vm represents the volume occupied by one solvent molecule; kB is the Boltzmann

constant; N � 1 is the number of segments of occupied by the polymer in the lattice model

for polymer solutions (the solvent molecules being assumed to occupy each a single lattice

site); and χ is the Flory-Huggins interaction parameter. The first and second terms in (10)

correspond to the entropy of the fluid and polymer, respectively, and the third term represents

attractive or repulsive interactions between two components.

The mixing energy density must be integrated on the current (swollen) configuration,

where the interaction between the two species takes place. So as to be able to compare it

against the elastic energy, we map it back to the original (Lagrangian) variables, obtaining

ˆ

�

WFH

(

φ
(

x + u(x)
)
)

det F(x) dx.

Let us introduce the notation

ν := kBT

Vm

, γ := G

ν
, J := detF,
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and the dimensionless expression

H(J ) := 1

ν
J WFH(φ), φ = φ0/J,

= 1

N
φ0 ln

φ0

J
+ (J − φ0) ln(1 − φ0

J
) + φ0χ(1 − φ0

J
), J > 1. (11)

We will take ν as a reference energy density unit. Dividing the total energy of the gel by ν

and by its volume in the initial state, and taking the mass balance equation (7) into account,

we arrive finally at the following dimensionless quantity:

E =
 

�

γ

2
|F|2 + H(J )dx, (12)

where
ffl

denotes the average integral.

In this article we will neglect the effect of gravity and of the external fluid pressure on

the unbonded surfaces. Were they to be included, the corresponding additional terms would

be: on the one hand,
ffl

ρ0g

ν
(x2 + u2(x)) dx, where ρ0 is the density of gel in the reference

configuration, g is the gravitational acceleration, and u2 is the vertical displacement; on the

other hand,
ffl

P0

ν
J dx, assuming the external pressure to be constant and equal to P0.

Determining the values of χ such that H(J ) is convex and finding the critical value χc

above which the convexity is lost is relevant to our problem [14, Sect. 2.4]. In the later case,

the gel separates into the polymer and fluid phases, which is outside the regime relevant to

the applications that we consider. A direct calculation gives

ω(J ) := H ′(J ) = −1

ν

(φ) = − φ

N
+ ln(1 − φ) + φ + χφ2, φ = φ0/J, (13)

where


(φ) := −WFH(φ) + φ
dWFH

dφ
+ WFH(0) (14)

is the osmotic pressure of the polymer solution. Also,

H ′′(J ) = φ

νJ

d


dφ
= φ

J

(

1

N
+ 1

1 − φ
− 1 − 2χφ

)

. (15)

Hence H(J ) is convex in the whole range J ∈ (φ0,∞) if and only if [14, Eq. 2.67]

χ <
1

2

(

1 + 1√
N

)2

︸ ︷︷ ︸

:=χc

. (16)

This range for χ corresponds to the mixing regime for the gel [29]. Furthermore, since H is

convex then the energy density
γ

2
|F|2 + H(det F) in (12) is a polyconvex function [3, 12] of

the deformation gradient, and energy minimizers, under appropriate boundary conditions,

are expected to exist [3, 12, 25].

From now on, we will consider the N → ∞ approximation for the mixing energy of

the gel. Hence, we will use the following expressions to determine, in Sect. 3.4, the Flory-

Huggins interaction parameter χ and in the numerical simulations presented in Sect. 4:

H(J ) = (J − φ0) ln(1 − φ) + χφ0(1 − φ), φ = φ0/J, (17)
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Fig. 3 Plots of H(J ) (left) and ω(J ) := H ′(J ) + ζ , with ζ = P0/ν (right) as functions of the Jacobian

determinant J . Note the loss of convexity of H as χ increases. In both graphs, we set φ0 = 0.2, as in (1).

For the plot on the right we set χ = 0.348, as in (31). The plot shows that the external fluid pressure can be

neglected in the applications that we consider, since arterial pressures are normally of the order of 8–16 kPa,

which makes the ratio ζ = P0/ν (of the external pressure to the reference energy density unit ν ≈ 136.6 MPa)

of the order of ζ ∼ 10−4

ω(J ) = H ′(J ) = −1

ν

(φ) = ln(1 − φ) + φ + χφ2, (18)

χc = 1

2
. (19)

3.2 Cauchy and Piola-Kirchhoff Stress Tensors

We now introduce the Piola-Kirchhoff stress tensor, which can be obtained by differentiating

the (Lagrangian) energy density

Wel(F) + WFH(φ0/det F)det F

with respect to the deformation gradient F. Denoting the cofactor matrix of F by F
c we

obtain

P = GF − 
(φ)Fc = ν
(

γ F + ω(J )Fc
)

, (20)

where we have used that the term WFH(0) in the definition of the osmotic pressure, given in

(14), vanishes. (Recall the definition of ω(J ) as H ′(J ) in (13) and (18).) The corresponding

Cauchy stress tensor is

T = J−1
PF

T = GJ−1
FF

T − 
(φ)I = ν
(

γ J−1
FF

T + ω(J )I
)

. (21)

From this expression for the Cauchy stress it is clear that the term νω(J )F c in the Piola-

Kirchhoff stress is actually a pressure term associated to the change in volume. The ten-

sor P consists of the elastic stress GF = νγ F and the osmotic (Eulerian) pressure −
F
c

coming from the entropic Flory-Huggins energy. (In case the external fluid pressure were

considered, the total Eulerian pressure to be equilibrated with the elastic stress would be

−
 + P0 = νω(J ), with ω(J ) = H ′(J ) + P0/ν.) In classical incompressible elasticity
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Fig. 4 The left and right plots represent λiso and λuni , respectively, for values of γ between 10−4 and 10−2.

(This corresponds to elastic moduli ranging from tens of kilopascals to a few megapascals.) The plots were

made setting φ0 = 0.2 and χ = 0.348

(without mixing), the Cauchy stress tensor is composed of a term coming from the deriva-

tives of the stored-energy function Wel(F) with respect to F, and a pressure term that enforces

the kinematic constraint of incompressibility. For example, when Wel(F) = G
2
|F|2, as in (9),

then the Cauchy stress is given by GJ−1FFT − p(x)I for some Lagrange multiplier p(x).

Comparing it with (21), replacing p with the osmotic pressure 
, the same mathematical

structure is found in the hydrogel model, even though the mechanics are very different (re-

call, in particular, that here the mixture is a new material that is not incompressible, even if

its constituents are).

The traction boundary conditions due to the external pressure correspond to the balance

of internal and external forces at the boundary, namely, the relation P n0 = 0, where n0

denotes the unit normal to ∂�. Using (20), the condition can be formulated as

ω(J )Fcn0 = −γ Fn0. (22)

3.3 Minimum Energy Solutions

As a consequence of the isotropy assumption on the gel, the stress-free states are isotropic

expansions, that is, homogeneous solutions with a constant deformation gradient of the form

F = λisoR, R ∈ SO(3) (23)

such that P = 0 (see [14, Chap. 3], [10]). Taking F as in (23), from (20) we obtain

J
1/3

iso ω(Jiso) = −γ, Jiso := λ3
iso, (24)

or

(

φ0/φ
∗)1/3

ω
(

φ0/φ
∗) = −γ, with φ∗ := φ0(λiso)

−3. (25)

The equilibrium swelling factor φ∗, depends on the initial polymer volume fraction φ0 and

the Flory-Huggins parameter, and has a prominent role in the study of gels [14, Chap. 3].

Other types of uniform solutions that will play a role in this paper are those with a uni-

axial extension along the direction normal to the bonding substrate:

F = diag(1, λuni,1), (26)
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with λuni given by the pressure boundary condition (22) along the vertical direction n0 = e2:

ω(λuni) = −γ λuni. (27)

The dependence of λiso and λuni on the (elastic vs. mixing) ratio γ is depicted in Fig. 4.

3.4 Determining the Flory-Huggins Parameter χ

According to Eqs. (18) and (24), in the free swelling experiment the gel is predicted to

undergo an isotropic expansion whose determinant Jiso satisfies

ln(1 − φ∗) + φ∗ + χ(φ∗)2 = −γ J
−1/3

iso , φ∗ = φ0/Jiso. (28)

Hence, χ can be retrieved from φ0 and Jiso as:

χ = −(φ∗)−2
(G

ν
J

−1/3

iso + ln(1 − φ∗) + φ∗
)

, φ∗ = φ0/Jiso, ν = kBT

Vm

. (29)

Replacing Jiso with the experimental value of J = 3.29 reported in Sect. 2.3.1; φ0 with

the value φ0 = 0.2 reported in Sect. 2.2.1; G with the value G = 0.13 MPa in Sect. 2.3.3;

the temperature with the value T = 296 K in Sect. 2.2.2, and Vm with the volume Vm =
2.99151095 · 10−29 m3 of a single molecule of water, yields

ν = 136.6 MPa (30)

and

χ = 0.348 (31)

as the Flory-Huggins interaction parameter χ (with three-digits precision1) for the PAAm

gel.

3.5 Boundary Value Problem

3.5.1 Nondimensionalization

Let us denote the length, thickness, and width of the gel in its initial state by 
, d , and w.

Placing the origin at the middle of the bottom surface of the rectangular gel, we obtain:

� = {(x1, x2, x3) : − 


2
< x1 <




2
, 0 < x2 < d, −w

2
< x3 <

w

2
}. (32)

We first scale the variables and fields of the problem according to the dimensions of the

domain:

ξ1 = x1



, ξ2 = x2

d
, ξ3 = x3

w
; (33)

υ1(ξ) = x1 + u1(x)



, υ2(ξ) = x2 + u2(x)

d
, υ3(ξ) = x3 + u3(x)

w
. (34)

1Rounding up χ to χ = 0.35 already has an impact on the value of λiso in Eq. (24), turning it into λiso = 1.48

instead of the experimentally observed value of λ̂iso = 1.49.
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The previous expressions render the deformation field υ(ξ) dimensionless. Set

η := d/
, θ := w/
. (35)

We aim to show that as η becomes increasingly smaller (while θ = w/
 remains fixed), the

solution to the boundary value problem corresponding to the completely bonded experiment

becomes arbitrarily close to a uniform uniaxial extension by a factor of λuni in the direction

normal to the substrate, where λuni is the value uniquely determined by Eq. (27). Using the

chain rule we find the following expression for the deformation gradient and its determinant:

F = I + ∇u(x) =

⎛

⎝

∂1υ1 η−1∂2υ1 θ−1∂3υ1

η∂1υ2 ∂2υ2 ηθ−1∂3υ2

θ∂1υ3 θη−1∂2υ3 ∂3υ3

⎞

⎠ (36)

J = det F = det

(
⎛

⎝




d

w

⎞

⎠

⎛

⎝

∂1υ1 ∂2υ1 ∂3υ1

∂1υ2 ∂2υ2 ∂3υ2

∂1υ3 ∂2υ3 ∂3υ3

⎞

⎠

⎛

⎝


−1

d−1

w−1

⎞

⎠

)

= ∂(υ1, υ2, υ3)

∂(ξ1, ξ2, ξ3)
.

(37)

The total energy per volume (12), in the reference energy density unit ν, becomes:

E =
ˆ 1/2

−1/2

ˆ 1

0

ˆ 1/2

−1/2

(

γ

2
|F|2 + H(J )

)

dξ3 dξ2 dξ1. (38)

3.5.2 Governing Equations

The Euler-Lagrange equations for this energy functional are:

γ
∂2υ1

∂ξ 2
1

+ γ

η2

∂2υ1

∂ξ 2
2

+ γ

θ2

∂2υ1

∂ξ 2
3

+ divξ

(

ω(J )
(∂(υ2, υ3)

∂(ξ2, ξ3)
,
∂(υ2, υ3)

∂(ξ3, ξ1)
,
∂(υ2, υ3)

∂(ξ1, ξ2)

)
)

= 0

(39)

η2γ
∂2υ2

∂ξ 2
1

+ γ
∂2υ2

∂ξ 2
2

+ η2 γ

θ2

∂2υ2

∂ξ 2
3

+ divξ

(

ω(J )
(∂(υ3, υ1)

∂(ξ2, ξ3)
,
∂(υ3, υ1)

∂(ξ3, ξ1)
,
∂(υ3, υ1)

∂(ξ1, ξ2)

)
)

= 0

(40)

θ2γ
∂2υ3

∂ξ 2
1

+ θ2 γ

η2

∂2υ3

∂ξ 2
2

+ γ
∂2υ3

∂ξ 2
3

+ divξ

(

ω(J )
(∂(υ1, υ2)

∂(ξ2, ξ3)
,
∂(υ1, υ2)

∂(ξ3, ξ1)
,
∂(υ1, υ2)

∂(ξ1, ξ2)

)
)

= 0.

(41)

Thanks to Piola’s identity [11], by which the cofactor matrix of ∇ξυ is divergence-free, the

equations can be rewritten as

γ
∂2υ1

∂ξ 2
1

+ γ

η2

∂2υ1

∂ξ 2
2

+ γ

θ2

∂2υ1

∂ξ 2
3

+ H ′′(J )
∂(J,υ2, υ3)

∂(ξ1, ξ2, ξ3)
= 0 (42)

η2γ
∂2υ2

∂ξ 2
1

+ γ
∂2υ2

∂ξ 2
2

+ η2 γ

θ2

∂2υ2

∂ξ 2
3

+ H ′′(J )
∂(υ1, J,υ3)

∂(ξ1, ξ2, ξ3)
= 0 (43)
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θ2γ
∂2υ3

∂ξ 2
1

+ θ2 γ

η2

∂2υ3

∂ξ 2
2

+ γ
∂2υ3

∂ξ 2
3

+ H ′′(J )
∂(υ1, υ2, J )

∂(ξ1, ξ2, ξ3)
= 0. (44)

3.5.3 Boundary Conditions

Free swelling experiment. For the free swelling experiment we impose the zero traction

boundary condition (22) on all the six faces of the rectangular gel. It can be verified easily

that the deformation map

x1 + u1(x) = λisox1, x2 + u2(x) = λisox2, x3 + u3(x) = λisox3, (45)

with λiso given by (24), which corresponds to υ(ξ) = λisoξ , solves the boundary value prob-

lem. The same can be said if the isotropic expansion (45) is followed, or preceded, by a

rotation and/or a translation. Presumably, these constitute all the minimizers of the energy

of the gel.

Completely bonded gel. For the case of a gel bonded to a glass slide on the bottom surface,

we will assume that the bonding is infinitely strong so that a zero displacement boundary

condition can be imposed at the gel/substrate interface:

υ(ξ1,0, ξ3) = (ξ1,0, ξ3), −1

2
< ξ1, ξ3 <

1

2
. (46)

At the remaining five faces of the rectangular gel we impose the zero traction boundary

condition (22). On the top surface it reads

ω(J )η
∂(υ2, υ3)

∂(ξ3, ξ1)
= −γ η−1∂2υ1,

ω(J )
∂(υ3, υ1)

∂(ξ3, ξ1)
= −γ ∂2υ2, ω(J )η

∂(υ1, υ2)

∂(ξ3, ξ1)
= −γ θη−1∂2υ3.

(47)

At the left and the right surfaces, the traction-free condition is

ω(J )
∂(υ2, υ3)

∂(ξ2, ξ3)
= −γ ∂1υ1,

ω(J )η−1 ∂(υ3, υ1)

∂(ξ2, ξ3)
= −γ η∂1υ2, ω(J )θ−1 ∂(υ1, υ2)

∂(ξ2, ξ3)
= −γ θ∂1υ3.

(48)

At the front and at the back of the gel, the condition is

ω(J )θ
∂(υ2, υ3)

∂(ξ1, ξ2)
= −γ θ−1∂3υ1,

ω(J )θη−1 ∂(υ3, υ1)

∂(ξ1, ξ2)
= −γ ηθ−1∂3υ2, ω(J )

∂(υ1, υ2)

∂(ξ1, ξ2)
= −γ ∂3υ3.

(49)

3.6 Thin Film Limit

Imagine a sequence
(

�(j)
)

j∈N
of ever thinner rectangular prisms with dimensions 
(j), d(j),

w(j), such that the ratio w(j)/
(j) of their widths and lengths remains constant and the ratio

d(j)/
(j) tends to zero as j → ∞:

η(j) = d(j)


(j)

j→∞−→ 0,
w(j)


(j)
= θ for all j ∈N. (50)
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For each fixed j , the total (nondimensionalized) energy E in (38), which we will now denote

by E(j), depends on j through the term |F|2; specifically, through the parameter η appearing

in (36). Suppose that we can find a sequence
(

υ(j)
)

j∈N of maps from the (fixed) unit cube

(−1/2,1/2) × (0,1) × (−1/2,1/2) to R
3, each of them fulfilling the zero-displacement

condition (46) at the bottom surface, such that for each j ∈N the function υ(j) minimizes the

energy E(j) in a suitable admissible class of orientation-preserving and injective maps from

the unit cube to R
3 satisfying the bonding condition (46). In particular, we shall assume that,

for each j , υ(j) solves the governing partial differential equations and corresponding zero-

traction conditions. Now assume that, furthermore, the maps υ(j) converge, in a suitable

sense, to some limit map (υ1, υ2, υ3). We will study the limit equations satisfied by υ .

First of all, the explosive terms with a prefactor η−2 in Eqs. (42)–(44) can be assumed

(formally) to vanish in the thin film η(j) → 0 limit (since none of the remaining terms blow

up and are, thus, unable to equilibrate them). Therefore,

∂2υ1

∂ξ 2
2

≡ ∂2υ3

∂ξ 2
2

≡ 0. (51)

Consequently, the dependence on the vertical coordinate ξ2 is affine (with coefficients de-

pending on ξ1, ξ3) both for υ1 and υ3.

The traction condition (47) on the top surface suggests that both ∂2υ
(j)

1 and ∂2υ
(j)

3 are of

order (η(j))
2
. Hence, in the limit, both ∂2υ1 and ∂2υ3 vanish at ξ2 = 1. Since, for every fixed

(ξ1, ξ3) at the basis, the derivatives ∂2υ1 and ∂2υ3 are independent of ξ2, it follows that

for all (ξ1, ξ2, ξ3), ∂2υi(ξ1, ξ2, ξ3) = ∂2υi(ξ1,1, ξ3) = 0. (52)

This implies that υ1 and υ3 themselves (not only their vertical derivatives) are independent

of ξ2. Combining this with the bonding condition at the bottom, we obtain

υ1(ξ1, ξ2, ξ3) = ξ1, υ3(ξ1, ξ2, ξ3) = ξ3 for all (ξ1, ξ2, ξ3). (53)

Plugging the above into the expression (36) for the deformation gradient yields

F =

⎛

⎝

1 0 0

0 · ∂1υ2 ∂2v2 0 · θ−1 · ∂3υ2

0 0 1

⎞

⎠ =

⎛

⎝

1

∂2υ2

1

⎞

⎠ . (54)

One of the consequences is that

J (ξ1, ξ2, ξ3) = det F = ∂2υ2(ξ1, ξ2, ξ3). (55)

Let us call β(ξ) to

β(ξ) := ∂υ2

∂ξ2

(ξ), ξ ∈ (−1/2,1/2) × (0,1) × (−1/2,1/2). (56)

With the previous findings, the equations (42)–(44) simplify to

H ′′(β(ξ)
) ∂(β,υ2)

∂(ξ1, ξ2)
= 0, (57)

γ
∂β

∂ξ2

+ H ′′(β(ξ)
) ∂β

∂ξ2

= 0, (58)
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H ′′(β(ξ)
) ∂(υ2, β)

∂(ξ2, ξ3)
= 0. (59)

From Eq. (58), since we are in the mixing regime (16) for the gel in which H ′′(J ) > 0

for all J > φ0, we conclude that the vertical stretch β = ∂2υ2 is independent of ξ2. On the

other hand, the traction-free condition on the top surface shows that

ω
(

β(ξ1,1, ξ3)
)

= −γβ(ξ1,1, ξ3). (60)

Hence, for all − 1
2

< ξ1, ξ3 < 1
2
, the value of β(ξ1,1, ξ3) is the unique solution2 λ to the

equation ω(λ) = −γ λ, which is nothing other than the vertical stretch λuni in the energy-

minimizing uniaxial extension of Sect. 3.3. Now, the bonding boundary condition at ξ2 = 0

tells us that υ2 ≡ 0 on the gel/substrate interface. The fundamental theorem of calculus then

gives us that

for all ξ1, ξ2, ξ3 : υ2(ξ1, ξ2, ξ3) = 0 +
ˆ ξ2

0

∂2υ2(ξ1, s, ξ3)ds = λuniξ2. (61)

All in all, together with (53), there is enough analytical evidence to conclude, at least for-

mally, that the energy minimizers υ(j) converge, as j → ∞, to a homogeneous uniaxial

extension in the vertical direction, with principal stretches 1, λuni, and 1.

3.7 Comparison Between the Thin-Film-Limit Uniaxial Solution and the Vertical

Stretches in the Completely Bonded Experiment

As mentioned in Sect. 2.3.2, the deformation observed in the completely bonded gel is in-

deed close to a homogeneous uniaxial extension. On the other hand, the perfectly uniaxial

and uniform swelling is only achieved in the theoretical thin film limit. In a real sample,

the aspect ratio η is small but not zero. The gel does take advantage of the liberty to swell

outwards as one moves away from the confining glass slide. We already observed that the

lateral displacement was between 1.85 and 2.0 mm towards the front, back, left, and right of

the sample, which is a small displacement compared to the width of 15 mm in the reference

configuration, and, most of all, compared to its length of 90 mm. Now we focus on the com-

parison between the theoretical prediction, in the idealized thin film limit, for the stretch in

the vertical direction and the experimental observation.

First, for convenience, we have summarized the parameters of the model in Table 3.

Plugging them into (27) and (18), using a nonlinear solver we obtain the theoretical value of

λuni = 1.99, (62)

with two digits of precision. As mentioned in Sect. 2.3.2, the thickness of the swollen gel,

measured in the middle region, was approximately 3.40 mm. This corresponds to a vertical

extension by a factor of

λ̂uni = 3.40/1.62 ≈ 2.10, (63)

since the thickness before immersing the PAAm gel into water was of 1.62 mm. The ex-

perimental and theoretical values λ̂uni and λuni differed, therefore, by 5% (relative to each

other).

2It can be seen that the solution is unique because ω(J ) is an increasing function of J , since we are in the

mixing regime where ω′(J ) = H ′′(J ) > 0 for all J > φ0 .
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Table 3 Parameters of the model and their symbols

Reference polymer volume fraction φ0 0.2

Elastic shear modulus G 0.13 MPa

Flory-Huggins parameter χ 0.348

Absolute temperature T 296 K

Boltzmann constant kB 1.38064852 ∗ 10−23 m2 kg s−2 K−1

Volume of a water molecule Vm 3 ∗ 10−29 m3

Energy per unit volume ν = KBT
Vm

136.6 MPa

Elastic vs. mixing energy density ratio γ = G
ν 0.00095

3.8 Formula for the Threshold Thickness in a Simplified 2D Setting

Consider, in this subsection only, the simplified situation in which the gel is placed between

two parallel walls at the front and at the back (that is, following the notation of (32), walls

along the planes x3 = w
2

and x3 = −w
2

, respectively), along which it is free to slide. The gel

can only swell in the direction normal to the substrate and along the length direction, so that

the nondimensionalized deformation map ξ =
(

x1



,

x2

d
,

x3

w

)

∈ � �→ (υ1, υ2, υ3) of Eq. (34)

takes the form

υ1(ξ) = x1 + u1(x1, x2)



, υ2(ξ) = x2 + u2(x1, x2)

d
, u3(x) = 0. (64)

The expression for the deformation gradient simplifies to

F = I + ∇u(x) =

⎛

⎝

∂1υ1 η−1∂2υ1 0

η∂1υ2 ∂2υ2 0

0 0 1

⎞

⎠ . (65)

With this simpler expression, it is possible to study the stability of the gel against debonding,

following the principle in fracture mechanics [1, 7, 17, 18] that if the free energy released

by the detachment of the gel, at a certain portion of the bonding interface, is insufficient

to compensate the energy required for detachment, then the breaking of bonds will not be

observed. Assuming that the debonding is produced at the left and right ends of the inter-

face with the substrate, and that the solution is symmetric with respect to the vertical plane

{x1 = 0}, we are left to study the minimization of the free energy

|�| · E = 
dwν

ˆ 1/2

−1/2

ˆ 1

0

ˆ 1/2

−1/2

(

γ

2
|F|2 + H(det F)

)

dξ3 dξ2 dξ1

= 2
dwν

ˆ 1/2

0

ˆ 1

0

γ

2

(

(∂1υ1)
2 + η−2(∂2υ1) + η2(∂1υ2)

2 + (∂2υ2)
2 + 1

)

+ H

(∣
∣
∣
∣

∂1υ1 ∂2υ1

∂1υ2 ∂2υ2

∣
∣
∣
∣

)

dξ2 dξ1
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among all admissible deformations satisfying the zero displacement boundary condition

only at a fraction δ of the interface:

υ1(ξ1,0, ξ3) = ξ1 and υ2(ξ1,0, ξ3) = 0 for all − δ

2
< ξ1 <

δ

2
,

where 0 < δ < 1 is the proportion of the interface that remains bonded and E is the energy

per unit volume (38) measured taking ν = kBT

Vm
as the reference energy density unit. Let us

denote, for every fixed 0 < δ < 1, the minimum energy by Emin[δ]. Then, the rate of change

(per unit increase in debonded area) is to be compared against the adhesive toughness σ (the

fracture energy required per unit debonded area):

∣
∣
∣

d
dδ

(


dwν · Emin[δ]
)∣
∣
∣

∣
∣
∣

d
dδ

(

(1 − δ)
w
)∣
∣
∣

≤ σ.

This yields the following threshold for the thickness of the gel below which it can be ex-

pected to be stable against debonding:

d ≤ dmax := σ

νR(χ,G,φ0)
, R(χ,G,φ0) := d

dδ
Emin[δ].

As argued in [9], a formal asymptotic analysis indicates that as the aspect ratio η = d/


vanishes any sequence of solutions to the equilibrium equations converges pointwise to the

piecewise affine deformation

(υ1, υ2) =
{

(ξ1, λuniξ2), if ξ1 ≤ δ
(

λ∗ξ1 + δ(1 − λ∗), λ∗ξ2 + β0

)

, if δ ≤ ξ1 ≤ 1
,

for a certain constant β0 > 0, where λuni is the optimal stretch factor (27) for a uniaxial

swelling normal to the substrate and λ∗ is the unique solution to

ω
(

(λ∗)2
)

= −γ, (66)

which corresponds to the optimal stretch factor for a equi-biaxial swelling along the vertical

and the length directions. Therefore, to first order the threshold thickness is given by

dmax = σ

ν
(
(

γ

2
(2 + λ2

uni) + H(λuni)
)

−
(

γ

2
(2(λ∗)2 + 1) + H

(

(λ∗)2
))

) ,

that is,

dmax = σ

G
2

(

1 + λ2
uni − 2(λ∗)2

)

+ kBT

Vm

(

H(λuni) − H
(

(λ∗)2
)
) . (67)

For example, taking φ0 = 0.2, ν = kBT

Vm
= 136.6 MPa, G = 0.13 MPa, and χ = 0.348, as in

Sect. 3.4; for an adhesive toughness σ in the range from 1 to 2 kJ/ m2 (see, e.g., [36]), the

threshold thickness for stability obtained from the two-dimensional formula (67) goes from

9.6 to 19.3 mm.
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We have thus shown that the formula obtained in [9, Eqs. (84)–(85)], taking a dry polymer

as the reference configuration, remains unchanged in the real situation where the hydrogel

in synthesis already contains a large amount of solvent (as reported in Sect. 2.2.1, the fluid

phase occupies 80% of the initial volume in the PAAm gels synthetized in our experiments).

The only difference for the value of the threshold thickness dmax between the model assum-

ing a dry reference configuration and the more realistic model hereby considered comes

from the dependence of H(J ), defined in (17), and the dependence of λuni and λ∗, through

Eqs. (18), (27), and (66), on the initial polymer volume fraction φ0.

4 Finite Element Simulations

Numerical simulations for both the free swelling and the completely bonded gels exposed

to solvent were carried out. The free swelling situation served for validation purposes while

the completely bonded simulation allowed for a comparison between the prediction of the

model (without having to take the thin film limit) and the observations in the laboratory.

4.1 Methods

Simulations were carried out with the same values of the parameters as in Sect. 3.4

φ0 = 0.2, γ = 0.13

136.6
, χ = 0.348. (68)

For the finite element simulations, we discretize the computational domain with tetrahe-

dral meshes and use continuous piecewise cubic finite element spaces to approximate the

displacement variable. All the simulations were implemented in the open-source finite ele-

ment library Netgen/NGSolve (www.ngsolve.org) [30]. The system of nonlinear equations

arising from the finite element approximation of our nonlinear boundary value problems

were solved using the damped Newton’s method. However, the implementation of the New-

ton’s method did not work well when the tangent stiffness was computed at states of large

deformation (possibly because of the almost horizontal nature of the function ω(J ) for large

values of J , as can be seen in Fig. 3). This was particularly delicate in the case of the bonded

gel experiment. To solve this problem, we propose a technique of ‘incremental softening’,

solving the nonlinear system first for gels that are much more rigid (for values of γ five

or ten times larger than the desired γ = 0.13/136.6 ≈ 10−3), and then using the previous

solution as the first iteration of the Newton’s method for the next (smaller) value of γ . The

stopping criteria used was defined to be the following: that the absolute value of the L2-inner

product between the residuals and the difference of the successive solutions had to be less

than a certain tolerance (or that a certain prescribed maximum number maxits of iterations

were reached). The deformed configurations and color maps associated to the components

of the displacement were finally visualized in ParaView. Note that mesh refinement at the

corners of the sample did not give any noticeable difference in the solutions and, hence, for

this problem, appears to be unnecessary.

4.1.1 Free Swelling

Solutions were sought among displacement fields that were symmetric with respect to the

coordinate axes (placing the origin at the middle of the sample, also in the vertical direction).

This was done in order to break the translational and rotational symmetry of the boundary

http://www.ngsolve.org
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Fig. 5 Displacement towards the left and right (y1 direction) as a colormap for the top view of the deformed

gel in the free swelling experiment

value problem, thus falling into a problem with a unique solution. To implement this, the

considered computational domain was only an octant of the rectangular prism representing

the gel, and the slip boundary conditions u(x) · n(x) = 0 were imposed for x on the three

facets of the computational domain that belonged to the interior of the gel (one on the plane

x1 = 0, another on the plane x2 = 0, and the remaining one on the plane x3 = 0). The cho-

sen length, thickness, and width (in mm) of the computational domain were, accordingly,

half those reported in Sect. 2.2.2, namely: 45.0, 1.5, and 11.75, respectively. The specified

parameter for the mesh generator prescribed that all elements in the triangulation had a di-

ameter of less than 2 mm (interpreting the dimensions 45, 1.5, 11.75 of the computational

domain as measured in mm). The damping parameter for the Newton’s method was set to

0.1, the tolerance for the stopping criteria was 10−8 and maxits was 500.

4.1.2 Bonded Experiment

Length, thickness, and width (in mm) of the computational domain were chosen as those

of the reference configuration in Sect. 2.2.3: 90.0, 1.62, and 15.0, respectively. Zero-

displacement boundary conditions, u(x) = 0 for x = (x1,0, x3), were imposed on the bottom

surface. The specified parameter for the mesh generator prescribed that all elements in the

triangulation had a diameter of less than 1 mm (interpreting the dimensions 90, 1.62, and 15

of the computational domain as measured in mm). The damping parameter for the Newton’s

method was set to be 0.05. In the process of ‘incremental softening’, 15 different values of γ

were considered between 0.066 and the desired value of 0.13/136.6 ≈ 0.00095. In each of

these 15 preparatory resolutions of the Newton’s method, the chosen tolerance for the stop-

ping criteria was 10−3 and maxits= 100. In the final resolution of the Newton’s method,

finally with the right value of γ , the chosen tolerance for the stopping criteria was 10−8 and

maxits was 500.

4.2 Results

4.2.1 Free Swelling

Towards the left and the right of the sample (y1 direction) the observed displacement is of

21.93 mm on each side (see Fig. 5). This corresponds to an extension by a factor of 1.49

along the length direction.

The upward and downward displacement, respectively, at the top and bottom surfaces, is

of 0.73 mm. This is an extension by a factor of 1.49 in the vertical direction.
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Fig. 6 Displacement towards the front and the back (y3 direction) as a colormap for the top view of the

deformed gel in the free swelling experiment

Fig. 7 Swollen configuration, with the magnitude of the displacement of each material point as the asso-

ciated colormap. The colors indicate that the origin remains fixed and that the amount of displacement is

proportional to the distance to the origin, which is characteristic of the isotropic expansion

Towards the front and the back of the sample (y3 direction), the observed displacement

is of 5.73 mm on each side (see Fig. 6). This corresponds to an extension by a factor of 1.49

along the width. All in all, the expected solution of an isotropic expansion with an strecth of

1.49 is obtained in the numerical experiments (see Fig. 7), thus validating the correctness of

the code and the accuracy of the approximation obtained with the fine meshes used.

4.2.2 Bonded Experiment

The obstacle problem: the first finite element simulations we performed for the gel com-

pletely bonded at its bottom surface showed that it is necessary to take into account that

the glass slide in the experiment at the laboratory is larger than the base of the gel sam-

ple. The reason is that if nothing else is implemented apart from the zero-displacement

boundary condition at the {x2 = 0} surface and the zero-traction natural boundary condition

on the lateral and top surfaces of the domain, then a portion of the gel exhibits a down-

wards displacement that goes beyond the substrate level y2 = 0 (even up to y2 = −0.32 mm,

which is significant compared to the initial thickness of 1.6 mm and the final thickness

of 3.2 mm; see Fig. 8). Although this is observed only in a very small portion of the

gel around the four bottom corners (inside the region {45.0 < |y1| < 45.9, 6.5 < |y3| <

8.5}), the formation of this bulge is counter intuitive. Since the bottom surface is subject

to a zero-displacement boundary condition, the material points reaching deformed loca-

tions below the horizontal y2 = 0 plane come from the lateral boundaries (x1 = ±
/2,
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Fig. 8 Left view (slice at x1 = −45) of the swollen specimen in the simulation without implementing the

obstacle problem. The color map is associated to the vertical coordinate y2(x) = x2 + u2(x) of the deformed

material point, with extreme values of −0.32 and 3.17


 = 90, and x3 = ±w/2, w = 15) and from the interior of the gel. After a number of

revisions, we are confident that it is an outcome of the model and not a numerical er-

ror. In particular, the gel still bulges from the lower corners even if the mesh is fur-

ther refined at the corners. Presumably, it is the result of the need to compatibilize,

on the one hand, the desire of the lateral faces to rotate in order to attain a multiax-

ial extension, and, on the one hand, the zero-displacement condition at the bottom sur-

face.

In order to overcome this difficulty, we included a local repulsive force in the form of a

penalty term added to the energy functional, so that minimizers were sought for

ˆ

�

γ

2
|I + ∇u|2 + H(det∇u) + A

∣
∣
∣

(

x2 + u2(x)
)−

∣
∣
∣

2

dx, A = 100000, (69)

where the expression (s)− above denotes the negative part of s:

(s)− =
{

|s|, if s ≤ 0,

0, if s ≥ 0.

If the penalty factor A were sent to infinity, minimizers for the penalized functional are

expected to converge to minimizers of the original energy functional among deformations

satisfying the Signorini constraint y2(x) ≥ 0 for all x ∈ � (which, in turn, satisfy the as-

sociated natural boundary conditions involving a normal reaction term in the parts of the

boundary in contact with the substrate {y2 = 0}). With the value chosen of A = 100000, the

constraint y2 ≥ 0 is essentially fulfilled: for the detailed verification of this, the reader is

referred to the Appendix.

Comparison with experiments: the deformed configuration at equilibrium is presented

in Fig. 9. Most of the gel swells uniformly upwards, but a tendency lo lateral swelling is

observed, and is more pronounced as one departs from the substrate, in agreement with the

experimental observation.

The maximum vertical displacement, which is attained in almost all of the top surface,

is 1.57 mm. This corresponds to a vertical stretch of 1.97, which captures the measurement

in the laboratory of λ̂uni = 2.10 (see Sect. 3.7) with an error of 6.6%. The obtained vertical

extension differs from the idealized thin-film-limit uniaxial extension of λuni = 1.99 by an

error of 1%.
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Fig. 9 Gel at numerical swelling equilibrium

The width of the swollen gel in the numerical simulation (in the y3 direction) is of

19.12 mm, that is, 4.12 mm more than the 15 mm width in the reference state. This cap-

tures the measurement of 3.95 mm for the lateral swelling, obtained from f ) in Sect. 2.3.2,

by an error of 4.3%. Note that this larger lateral swelling, towards the front and the back,

compensates the smaller vertical extension compared to the experiments.

The swollen gel is 93.98 mm long (in the y1 direction) in the numerical simulation, cap-

turing measurement d) of 93.73 mm in Sect. 2.3.2 by an error (3.98/3.73) of 6.7%.

Regarding why the swelling is comparable (of about 2.0 mm to each side) in the two

horizontal directions y1 and y3, given that one of the dimensions (90 mm) is much larger

than the other (15 mm), note that most of the swelling comes from a small portion near the

lateral faces: points with a displacement of more than 0.5 mm towards the right are found

only in {x ∈ � : 42.5 < x1 ≤ 45}, and points with a displacement of more than 0.5 mm

towards the front only in {x ∈ � : 4.2 < x3 ≤ 7}.
Incorporating the effect of the interfacial energy between the polymer and the solvent

might bring more accuracy in the model and will be part of future work.

5 Conclusions

This work emphasizes the connection between theory and experiments on the problems of

swelling equilibria of free as well as fully bonded gels. We obtain a thin film limit of a three

dimensional gel, without any intermediate two dimensional assumptions. We also outline a

method to calculate experimental parameters by combining the theory with the laboratory

measurements. Numerical simulations of the solutions to the boundary value problems and

based on the finite element method are also presented. Ongoing research to be reported in

the near future and also based on our own experimental work addresses the phenomenon of

debonding by stress concentration on the boundary.

Appendix

Figures 10 – 19 and numerical measurements show that the constraint y2 ≥ 0 is essentially

fulfilled when adding the substrate energy term A
(
(

x2 + u2(x)
)−

)2

of (69) to the energy,

with the value chosen of A = 100000.
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Fig. 10 Left view of the gel at numerical swelling equilibrium, A = 100000. The body now remains essen-

tially above the substrate {y2 = 0}, as opposed to the situation depicted in Fig. 8 where some points reached

heights as low as y2 = −0.32 mm

Fig. 11 Cross-section {y1 = 0} of the deformed configuration. Colors indicate the deformed vertical coordi-

nate. Grid lines are drawn at y2 = 0, y2 = 3.19, and y3 = ±9.56

Fig. 12 Cross-section {y1 = 30} of the deformed configuration. Colors indicate the deformed vertical coor-

dinate. Grid lines are drawn at y2 = 0, y2 = 3.19, and y3 = ±9.56. There is almost no difference with the

slice at y1 = 0
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Fig. 13 Cross-section {y1 = 45.1} of the deformed configuration. (The clamped bottom surface ends at

y1 = 45, so this slice is taken slightly to the right of the region bonded to the substrate.) Colors indicate

the deformed vertical coordinate. Grid lines are drawn at y2 = 0, y2 = 3.19, and y3 = ±9.56. Note the

smaller tichkness compared to the cross-sections at y1 = 0 and y1 = 30 of Figs. 11–12. This illustrates how

the gel, as it swells towards the right, also rotates and falls down a little, which is consistent with the left view

of Fig. 10

Fig. 14 Cross-section {y1 = 46.5} of the deformed configuration. (The right-most points of the swollen gel

are found at y1 = 46.99, y3 = 0.) Colors indicate the deformed vertical coordinate. Grid lines are drawn at

y2 = 0, y2 = 3.19, and y3 = ±9.56
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Fig. 15 Cross-section {y1 = 45.57} of the deformed configuration. Colors indicate the deformed vertical

coordinate. Grid lines are drawn at y2 = −0.06, y2 = 0.00, y3 = −8.2, and y3 = −7.5. The point in red has

the lowest vertical coordinate of the whole deformed gel, at y2 = −0.057 mm. This cross-section is also the

one for which the region that violates the constraint y2 ≥ 0 of the obstacle problem falls within the largest

range of values along the width direction: −8.17 ≤ y3 ≤ −7.87. Therefore, even in the worst of the cross-

sections, the Signorini constraint is violated in a very tiny portion of the gel (in a range of the order of 50

microns). As the prefactor A in the penalization term in (69) tends to infinity, the region where the constraint

is violated of not pushing the glass slide downwards is expected to disappear

Fig. 16 Cross-section {y1 = 45.4} of the deformed configuration. Colors indicate the deformed vertical co-

ordinate. Grid lines are drawn at y2 = −0.06, y2 = 0.00, y3 = −8.2, and y3 = −7.5. The lowest vertical

coordinate in this cross-section is y2 = −0.02 mm (the violation of the constraint is already a third of the

violation of −0.057 in the worst of the cross-sections, that of Fig. 15). In this corner (at the back and at the

bottom of the gel), the effect of pushing downwards the glass slide disappears already at the {y1 = 45.2}
cross-section when moving to the left, and at {y1 = 45.8} when moving to the right (the Signorini constraint

is violated in a very tiny portion of the gel). As the prefactor A → ∞ in the penalization in (69), the region

where the constraint is violated is expected to disappear
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Fig. 17 Localization (view from the front) in the reference configuration of the portion of the gel reaching

heights below {y2 = 0} after the deformation. Colors indicate the deformed vertical coordinate (in the range

from −0.01 to 0.00 -and higher-). Grid lines are drawn at x1 = 43.9 and x2 = 0.7. As the prefactor A → ∞
in the penalization in (69), the region where the constraint is violated is expected to disappear

Fig. 18 Localization (view from the back) in the reference configuration of the portion of the gel reaching

heights below {y2 = 0} after the deformation. Colors indicate the deformed vertical coordinate (in the range

from −0.02 -and lower- to 0.00 -and higher-). Grid lines are drawn at x1 = 44.7, x2 = 0.7, and x3 = −7.5.

As the prefactor A → ∞ in the penalization in (69), the region where the constraint is violated is expected to

disappear

Fig. 19 Main view (from the front) of the swollen gel. Colors indicate the displacement towards the left or

the right. Most of the gel exhibits no displacement in this direction. The portion around the corners where the

gel bends downwards beyond the {y2 = 0} level is negligible
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