

1 **Spectral characteristics of hydraulic-fracturing
2 induced seismicity can distinguish between activation
3 of faults and fractures**

4 Nadine Igonin^{1*}, Daniel T. Trugman², Keyla Gonzalez³, and David W. Eaton⁴

5 *1. Bureau of Economic Geology, Jackson School of Geoscience, University of Texas at
6 Austin, Austin, Texas, U.S.A.*

7 *2. Nevada Seismological Laboratory, University of Nevada, Reno, U.S.A.*

8 *3. Tomlinson Geophysical Services Inc. (TGS), Houston, Texas, U.S.A.*

9 *4. Department of Geoscience, University of Calgary, Calgary, Alberta, Canada.*

10 * Corresponding Author. Email: nadine.igonin@beg.utexas.edu

11

12

13

ABSTRACT

Analysis of earthquake spectra can aid in understanding source characteristics like stress drop and rupture complexity. There is growing interest in probing the similarities and differences of fault rupture for natural and human-induced seismic events. Here we analyze waveform data from a shallow, buried geophone array that recorded seismicity during a hydraulic fracturing operation near Fox Creek, Alberta. Starting from a quality-controlled catalog of 4,000 events between magnitude 0 and 3.2, we estimate source spectral corner frequencies using methods that account for the band-limited nature of the sensor response. The stress-drop values are found to be approximately self-similar, but with a slight magnitude dependence in which larger events have higher stress drop (~ 10 MPa). Careful analysis of the relative corner frequencies shows that individual fault and fracture segments experienced systematic variations in relative corner frequency over time, indicating a possible change in the stress state. Clustering analysis of source spectra based on the relative proportion of high and low frequency content relative to the Brune model further shows that event complexity evolves over time. Additionally, the faults produce earthquakes with systematically larger stress drop values than the fractures. Combined, these results indicate that the features activated by hydraulic fracturing experience observable changes in source behavior over time and exhibit different properties depending on the orientation, scale and fabric of the structural feature on which they occur on.

32

33 1. INTRODUCTION

34 Induced seismicity initiated by hydraulic fracturing has been observed worldwide (Atkinson et
35 al., 2020; Schultz et al., 2020) and has been associated with events up to magnitude 5.7 (Lei et
36 al., 2020). In general, hydraulic fracturing can trigger moderate magnitude seismicity by
37 interaction with pre-existing faults (e.g., Chang and Segall, 2016; Wang et al., 2020). As such,
38 there is much that can be learned from careful analysis of injection induced seismicity that is
39 relevant to natural seismicity (Ellsworth, 2013).

40 Source spectral analysis has been used for decades to determine the corner frequency, stress
41 drop, directivity and source complexity of earthquakes (Aki, 1972). These parameters are useful
42 for understanding the rupture style and relative earthquake scaling, such as low vs. high stress
43 drop. There has been considerable debate about whether stress-drop values from induced
44 earthquakes are comparable to those from natural earthquakes. Many studies show evidence
45 that stress drop from injection induced earthquakes is lower than their tectonic counterparts
46 (Abercrombie and Leary, 1993; Boyd et al., 2017; Chen and Shearer, 2013, 2011; Fehler and
47 Phillips, 1991; Goertz-Allmann et al., 2011; Hough, 2015, 2014; Reiter et al., 2012; Sumy et
48 al., 2017; Yu et al., 2020); conversely, many studies show that stress-drop values of induced
49 earthquakes are consistent with natural earthquakes at the same depth (Clerc et al., 2016;
50 Holmgren et al., 2019; Huang et al., 2017; Spottiswoode and McGarr, 1975; Tomic et al., 2009;
51 Zhang et al., 2019). Therefore, analysis of the corner frequency and stress drop of earthquakes
52 from injection induced seismicity, especially at lower magnitudes, is of interest to further
53 understand these observations.

54 There are many different techniques for analyzing spectra, including spectral fitting and
55 empirical Green's functions (Abercrombie, 2021). Spectral fitting involves fitting a model of
56 the displacement spectrum $S(f)$ to the observed data,

$$57 S(f) = \frac{\Omega_0 e^{\frac{-\pi f t_0}{Q}} e^{-\pi \kappa f}}{\left[1 + \left(\frac{f}{f_c}\right)^{\gamma n}\right]^{\frac{1}{\gamma}}}, \quad [1]$$

58 where Ω_0 is the low-frequency spectral amplitude, t_0 is the travel time to the sensor from the
59 origin, Q is the quality factor that describes path attenuation, f_c is the corner frequency, κ is the
60 site attenuation parameter (Anderson and Hough, 1984), γ is a constant controlling the spectral
61 shape, and n controls the rate of high-frequency falloff (Abercrombie, 1995). The shape
62 constant γ is assigned a value of 1 for the Brune model and 2 for the Boatwright model, and

63 the falloff is typically set to 2 (Boatwright, 1980; Brune, 1970). There is a tradeoff between Q
64 and κ , both of which relate to the attenuation of waveforms at different frequencies. Obtaining
65 an independent estimate of Q and κ is desirable, but often not possible in practice (e.g. Atkinson
66 and Silva, 1997; Hassani et al., 2011). In the following sections, we will describe the methods
67 we used to try to determine an estimate for these parameters. Then, Equation [1] is used to solve
68 for the corner frequency, which can be further related to other characteristics of the source,
69 such as the stress drop.

70 Empirical Green's functions (EGFs) can also be used to remove path and site effects (e.g.
71 Baltay et al., 2011; Mori and Frankel, 1990). This approach uses small events that occur in
72 close proximity to a larger target event as a reference event, to remove the path/site effects that
73 all the events have in common. Although the EGF method was developed using larger
74 earthquakes (Hough, 1997), it has also been shown to be valuable when applied to small
75 magnitude ($M < 2$) datasets (e.g. Imanishi and Ellsworth, 2006). Later in this paper, we use this
76 approach to help constrain the potential Q values for our dataset.

77 The dataset used in this study is from a dense local geophone array near Fox Creek, Alberta, a
78 region that has been associated with hydraulic-fracturing induced seismicity with magnitudes
79 up to 4.2 (Schultz et al., 2020). As part of the monitoring strategy, a local, shallow-buried 10
80 Hz geophone array was used to determine precise locations and provide detailed insight into
81 the induced seismicity (Eaton et al., 2018). Although this provides high-resolution epicentral
82 locations, the use of geophones introduces a bandwidth limitation. The use of this type of sensor
83 for estimation of source parameters has been successful, but often carries a larger uncertainty
84 than broadband seismometer-based datasets (Klinger and Werner, 2021). For this reason, in
85 this paper we employ several different strategies to constrain and account for the precise ranges
86 of frequencies within which spectral analysis can be reliably carried out. We also impose strict
87 quality-control criteria based on uncertainty calculations.

88 The goal of obtaining a catalog of corner frequencies and stress drops is to analyze if there are
89 any statistically significant differences between the faults and fracture networks that were
90 activated. In this paper, a fault is defined as a discontinuous surface across which there is a net
91 shear displacement (Childs et al., 2009; Davatzes and Aydin, 2003; Peacock et al., 2016), while
92 a fracture is a discontinuous surface across which there has been separation (Pollard and Aydin,
93 1988). Unlike fractures, faults generally contain core zones with gouge material formed by
94 repeated failure. As such, fractures and faults have different geomechanical characteristics,
95 which may be manifested in the stress drop or source complexity (e.g. Candela et al., 2011). In
96 the absence of drillcores or image-log data, distinguishing between faults and fractures must

97 rely on indirect measurements from earthquakes, such as b -values; seismicity due to fault
98 activation tends to have b -values close to 1, while microseismicity associated with fractures is
99 characterized by b -values closer to 2 (e.g. Eaton and Maghsoudi, 2015; Igonin et al., 2018).

100 In this paper, we start by introducing the Tony Creek dual Microseismic Experiment (ToC2ME)
101 dataset, a high-resolution passive seismic dataset that recorded small earthquakes induced
102 during hydraulic-fracturing operations. We use the highest quality events from this dataset for
103 source-spectral analysis, estimation of Q , empirical Green's functions and spectral fitting. After
104 obtaining robust estimates for the corner frequencies of each event, we calculate the static stress
105 drop and the residual source spectra (i.e. the difference between the observed and model-
106 predicted spectra), which are later used for clustering analysis and evaluation of source
107 complexity (Uchide and Imanishi, 2016). Through this, we demonstrate that there are
108 differences between the distribution of corner frequencies, stress drop and frequency content
109 of event populations depending on whether they originate from faults or fractures.

110 **2. DATA AND RESULTS**

111 **2.1. ToC2ME dataset**

112 The Tony Creek Dual Microseismic Experiment (ToC2ME) is a passive seismic dataset
113 acquired west of Fox Creek, Alberta, Canada that recorded seismicity near a 4-well hydraulic
114 fracturing pad in late 2016 (Eaton et al., 2018). This dataset has been extensively studied and
115 interpreted (Igonin et al., 2021, 2018; Zhang et al., 2019) and contains at least 18,040 events
116 that occurred during hydraulic-fracturing operations (Figure 1a). The station distribution (blue
117 triangles, Figure 1b) makes it suitable for source-spectral analysis due to the azimuthal
118 coverage and close proximity to the seismicity, which occurred at an average depth of 3.5 km
119 below the surface. Three-component 10 Hz geophones were deployed in 69 shallow borehole
120 arrays 27 m deep, which is below the weathering layer in this region. For this reason, geophone
121 waveforms are relatively unaffected by near-surface attenuation and are thus characterized by
122 relatively high signal-to-noise ratios (SNR), even for small earthquakes. Out of 18,040 events,
123 4,083 events have a signal to noise ratio (SNR) of over 5 on all stations, calculated by dividing
124 the root-mean-square of the windowed signal by the root-mean-square of windowed noise
125 before the signal. P- and S-wave picks are available at most of the stations for this high SNR
126 event subset used in this paper. There were also six broadband seismometer stations deployed
127 for the program, but they were not used for this analysis due to the higher noise conditions at
128 the surface (Paes, 2020; Zhang et al., 2019).

129 There are three primary kinds of seismicity observed for this dataset (Figure 1a), as detailed by
130 Igonin et al. (2021):

- 131 1. Fault activation (NS1-3): seismicity on linear structures, clusters having a *b*-value of
132 ~1. NS1 and NS2 are on near-vertical strike-slip faults and contain the largest events
133 of the sequence. NS3 is on a regional N/S trending fault and consists largely of normal
134 faulting mechanisms, although the seismicity follows a NE/SW trend that straddles the
135 primary fault structure. All of these event hypocenters are located above the injection
136 zone.
- 137 2. Fracture network activation (NESW): A broad clustering of NE/SW parallel features
138 that have *b*-values close to 2, are above the injection zone, and have strike-slip focal
139 mechanisms consistent with the feature orientation.
- 140 3. Operational microseismicity: Within the injection depth and with a timing that matches
141 the injection schedule. These events are within 100-200 m of the injection well and
142 represent a minority of events within the 18,040 event catalog.

143 The events studied in this paper belong to either type 1 or 2; all of the operational seismicity
144 had SNR values that were too small for source analysis. A primary aim of this paper is to
145 determine if there are systematic, statistically-significant differences in the source
146 characteristics of the events depending on whether they occur on faults or fractures.

147 **2.2. Instrument response correction and displacement spectra calculation**

148 The first step in the analysis was to perform an instrument-response correction to the data
149 acquired using 10 Hz geophones (OYO GSX type) with a sampling rate of 0.002 seconds. Due
150 to the stronger attenuation of the S-waves in the shallow subsurface, we focus our analysis on
151 the P-waves only (Eaton et al., 2018). The data were first de-trended and tapered using a
152 maximum percentage of 0.01. The instrument response correction was carried out on the
153 vertical-component of the data windowed around the P-wave pick (10 samples before the pick
154 and 160 samples after the pick). The ObsPy package (Beyreuther et al., 2010) was used for
155 removing the instrument response, with a pre-filter of [0.5, 2.0, 200, 250].

156 For the 4076 events (median of 58 stations per event) we estimate the displacement spectra at
157 each station using a multi-taper algorithm (Prieto, 2022) to calculate the power-spectral density.
158 We used a time bandwidth product of 3.5 and set the number of tapers to 5 (e.g. Viegas et al.,
159 2010). Then, we convert to displacement, and resample all the spectra to equal log-spacing.

160 **2.3. Corner frequency and residual source spectra**

161 2.3.1. Q estimation and spectral fitting

162 Two different approaches were used to constrain the P-wave attenuation (Q_P) value for this
163 dataset. The first method uses EGF analysis, which resulted in a Q_P estimate of 50-80 (see
164 Supplementary Material for details and results). There are limitations with these results, such
165 as the small sample size (only 6 usable corner frequencies from the EGF method), and the
166 narrow range of frequencies that could be used for the spectral fitting so there is significant
167 uncertainty with this estimate. This first-order estimate is consistent with findings for Q_P close
168 to the study region, which range from 25 to 75 (Bosman et al., 2015; Calixto and van der Baan,
169 2015).

170 To narrow down the range, we then used an iterative fitting of the source spectra (using
171 Equation [1]) with different Q_P and κ values. By comparing the error for the total catalog for
172 different trial values, we can more precisely determine an appropriate Q_P/κ combination for
173 this dataset. Figure 2a shows the individual displacement spectra and median displacement
174 spectra for one event across the 69 stations. The vertical dashed lines show the upper and lower
175 limits for the fit, which are based on the signal to noise ratios in the frequency domain for each
176 event. The lower frequency limit was fixed to the value where the lower frequency band range
177 SNR first exceeded 2 (20-30 Hz for the smallest events) and defaulted as a minimum of 10 Hz
178 for the larger events, due to the limited geophone sensitivity at low frequencies. The upper
179 frequency limit also corresponded to the highest frequency value where the SNR remained
180 above the threshold value of 2. This value is lower than many studies, which typically suggest
181 using a SNR of 3-10 (Klinger and Werner, 2021; Oth et al., 2011; Shearer and Abercrombie,
182 2021; Trugman et al., 2017), but given the bandwidth limitations, we opted for a lower bound
183 to allow for a broader frequency range that was still suitable for our spectral fitting approach.
184 Since the true low-frequency plateau (at 0 Hz) cannot be determined from the raw data, we
185 estimate Ω_0 by assuming an initial stress drop of 1 MPa to calculate the theoretical corner
186 frequency for each given event given an estimate of the seismic moment (using Equation 1).
187 Then, we use the observed amplitude at 10 Hz, the trial f_c , and theoretical f_c to get the theoretical
188 low-frequency plateau at 0 Hz (see Supplementary Material). The L_2 norm is then used to
189 minimize the misfit between the observed and modelled data. The best-fit model is shown in
190 Figure 2b; in the illustrated case, it resulted in a corner frequency of 17 Hz for the M 0.65 event.

191 We then used the best-fit model to obtain residual spectra, defined as the difference between
192 the observed spectra and the best-fit model. This gives a measure of the *relative* proportion of

frequency that is either above or below the model value. We also use the residual to calculate the median absolute error for each event. The error was calculated for each event using Q values of ranging between 50 and 140, $\kappa = 0.011$, using both the Brune ($n=1$) and Boatwright ($n=2$) models. Comparisons of the medians of the histograms of errors for each of the versions of the catalogs showed that, for both the Brune and Boatwright models, $Q_P = 80$ and $\kappa = 0.007$ provided the best fit (see Supplementary Material for a comparison of the histograms). Additionally, the Boatwright models consistently had lower error than the Brune models. Therefore, for the remainder of the paper, we use the Boatwright model for the fit, a Q_P value of 80 and $\kappa = 0.007$. This is in close correspondence with Rodríguez-Pradilla and Eaton (2019), who found a Q_P of 60 for this same dataset.

2.3.2. Bootstrap uncertainty analysis and corner frequency

With the parameters for fitting Equation [1] to the data sufficiently constrained, we calculated uncertainties in the corner frequencies for the events using bootstrapping. During each bootstrap iteration, we re-sampled the 69 station spectra with replacement, keeping the total number of spectra to 69 each time. Then, we calculated the median of the station spectra in each resampled instance and carried out the spectral fitting on the median, solving for the corner frequency (Figure 2b). This was repeated 500 times and the median corner frequency from the 500 iterations was taken as the corner frequency for that event. An example histogram of the distribution of corner frequencies for a well-constrained event and a poorly-constrained event can be found in the Supplementary Material (Figure S9). The standard deviation of f_c obtained from bootstrapping for each event ranged from 5-80 Hz (Supplementary Material). In the following section we will impose a cut-off of standard deviation of 10 Hz for the uncertainty. We acknowledge that this is a large range, further illustrating the challenges of working with band-limited data.

2.4. Stress drop

To estimate stress drop, we used the expression

$$\Delta\sigma = \frac{7}{16} M_0 \left(\frac{f_c}{kv_s} \right)^3, \quad [2]$$

where k is a numerical constant, and v_s is the S-wave velocity in the source region (Eshelby, 1957). Based on the numerical results of Kaneko and Shearer (2014), we set $k = 0.38$,

222 appropriate for P-wave spectra. From nearby well log data, we set v_s to 2100 m/s. The corner
223 frequency is known from the bootstrap analysis.

224 Although estimates of M_0 are available from Igonin et al., 2018, for consistency, we re-
225 calculated the M_0 and M_W for this dataset using a similar approach to the corner frequency,
226 using the median of the spectral amplitudes from 5 to 20 Hz as a reference point for the low-
227 frequency plateau for this dataset. The updated magnitudes match very closely with the original
228 magnitudes, but there is some minor deviation for a small subset of events at $M_W < 0.5$
229 (Supplementary Material). Uncertainties for M_0 were calculated using a bootstrap approach in
230 the same way as for the corner frequency.

231 Figure 3 shows a crossplot of the corner frequency with the moment. The events are colored
232 based on standard deviation, and whether the inverted corner frequency is within the $SNR > 2$
233 range for each individual event. The uncertainty criterion preferentially eliminates events with
234 higher corner frequencies, which is expected due to the low signal to noise ratios for most
235 events above 80 Hz.

236 In order to quantify apparent departure from self-similarity, we fit a linear equation to the data
237 binned at increments of 0.2 in the $\log_{10}(M_0)$ domain (Kanamori, 2004; Trugman et al., 2017;
238 Walter et al., 2006). The linear equation is

239
$$\log_{10} f_c = \psi_0 + \psi_1 \log_{10} M_0 \quad . \quad [3]$$

240 Based on the implied trend-line, we then calculate the normalized, magnitude-corrected corner
241 frequency, which is given by:

242
$$Z_{fc} = \frac{\log_{10} f_c - E[\log_{10} f_c | M_0]}{STD\{\log_{10} f_c - E[\log_{10} f_c | M_0]\}} \quad , \quad [4]$$

243 where $E[]$ refers to the expected corner frequency based on an input M_0 and the constants from
244 Equation [3]. Positive values indicate corner frequencies that are larger than the line of best fit,
245 while negative values correspond to smaller-than-expected corner frequencies. This re-
246 parameterization of the dataset allows us to distinguish events that are enriched or depleted in
247 high-frequency energy compared to typical events of the same size. According to the
248 parameterization in Equation (3), a ψ_1 value of -0.333 corresponds to a self-similar
249 relationship; smaller negative ψ_1 values indicate an increase in the stress drop with magnitude,
250 while larger negative ψ_1 values correspond to a decrease in stress drop with magnitude. For this

251 dataset, ψ_1 has a best-fit value of -0.198. It should be noted that for the magnitude range of 1.2
252 to 2.5, a linear fit yields a ψ_1 value of -0.28, closer to self-similarity. Due to the band-limited
253 nature of the geophones, it is possible that apparent breakdown in self-similarity reflects
254 insufficient SNR at higher frequencies, which leads to an apparent decrease in the event corner
255 frequency. The expected corner frequencies for the events of magnitude 1.2 to 2.5 are on the
256 order of 10-30 Hz, which is well-resolved given the signal to noise relationships discussed
257 previously.

258 Analysis of normalized corner frequency reveals coherent spatial and temporal trends. In
259 Figures 4-5, we use a colorscale where blue denotes positive normalized corner frequencies
260 (enriched in high-frequency energy) and red denotes events with negative normalized corner
261 frequencies (depleted in high-frequency energy). Each of the clusters (as labeled in Figure 1)
262 exhibit different behavior over time. NS1, the largest N/S trending feature, begins with
263 consistently lower normalized corner frequencies, but then towards the end of the acquisition
264 period shifts to consistently higher normalized corner frequencies (Figure 4a,c). NS3, which
265 resides on a regional N/S trending fault, has an opposite trend to NS1, in that the sequence
266 begins with higher normalized f_c and then shifts to lower overall normalized f_c values over time
267 (Figure 4b,d). An animation of the normalized corner frequency over time relative to the
268 operations schedule is included in the supplementary material.

269 Figure 4 also shows the timing of the hydraulic fracturing stages relative to the event
270 progression. The event locations closely follow the nearest hydraulic fracturing stages, and
271 injection can be clearly attributed as the cause of activation (see also Igonin et al., 2021). Well
272 C was hydraulically fractured first and used an atypical completion procedure, with many
273 closely-spaced small-volume stages (1 perforation shot per stage). During the completion of
274 well C, the NESW cluster was activated, as well as the southern half of NS1. After all of the
275 stages of well C were done, operations began on wells A, B, and D concurrently. These wells
276 were hydraulically fractured using a zipper approach with the plug-and-perf method (Eaton,
277 2018), with 4 perforation shots per stage. Wells A, B and D featured larger volumes and larger
278 stage spacing than well C. Well A, which is the closest well to NS3, is interpreted to be
279 responsible for the activation of that fault feature. The data collection using the shallow buried
280 array was completed prior to the end of the hydraulic fracturing programs, so only half of the
281 stages of wells A, B and D were recorded.

282 The NE/SW trending features are shown together over time in Figure 5. Collectively, there is
283 an overall negative normalized corner frequency across the entire sequence, with two
284 exceptions. At the onset, there is a reversal of normalized f_c from negative to positive (dashed

285 region in Figure 5). There is also an increase in normalized f_c toward the end of the data-
286 collection period, and this corresponds to a magnitude 3 event occurring at the intersection of
287 one of the parallel NE/SW trending features and the northern part of NS1.

288 In terms of the injection timing, the NESW clusters were first activated during the hydraulic
289 fracturing of well C. The largest central portion of the NESW clusters was activated twice; the
290 second time being during the closest stages of well B.

291 From the combined behaviour of the events on faults and fractures, we postulate that the events
292 on the faults are more likely to have higher normalized corner frequency, whereas fractures are
293 more likely to have lower normalized corner frequency. Both features exhibit reversals from
294 one mode to the other. In the Discussion section, we explore these observations further.

295 **2.5. Spectral clustering analysis**

296 To analyze the corner frequency and how the proportion of high- and low-frequency content
297 varies for each event, we calculate residual spectra using the best-fit Boatwright model at the
298 inverted corner frequency, $S(f|f_c)$, and the observed spectra $S^*(f)$:

299
$$R_S(f) = \log_{10} S(f|f_c) - \log_{10} S^*(f) \quad . \quad [5]$$

300 The residual spectra provides a measure of the relative proportions of frequency above/below
301 the best-fit model (Uchide and Imanishi, 2016). For example, some events may have higher
302 proportions of higher frequency energy, while others may have decreases in frequency content
303 in other frequency bands. These relative proportions within different frequency bands reflect
304 event complexity; departure from the Boatwright best-fit model is inferred to represent complex
305 rupture. By clustering the residual spectra into groups, we can determine if there are any
306 consistent trends that correlate with either spatial features (fractures vs. faults) or the timing of
307 the earthquakes.

308 For this purpose we use a spectral clustering algorithm (e.g. von Luxburg, 2007) implemented
309 in scikit-learn, a Python package (Pedregosa et al., 2011). We window the data in the range
310 [20,60 Hz], because the majority of events have $\text{SNR} > 2$ within that range, whereas only the
311 larger events have energy outside that band. As a quality-control step, we use only the residual
312 spectra for events where the standard deviation of the corner frequency was less than 20 Hz,
313 resulting in a subset with 3078 events. The spectral clustering algorithm requires a few
314 hyperparameters: the number of clusters, the affinity metric, and the number of neighbors. We

315 set the number of clusters to 8 and use the cosine affinity with 10 neighbors. Figure 6 shows
316 the normalized residual spectra, by cluster, within the frequency band that was used.

317 All of the clusters are negative or close to zero at less than 30 Hz, suggesting that the best-fit
318 Boatwright model underestimates the lower frequencies (Figure 6). This corresponds to an
319 observation of the geophone data having low-frequency noise that results in an increase in low-
320 frequency content (as seen in Figure 2). Each of the clusters have a different prevalence of
321 energy within the [30 60] Hz band, and some clusters show notches at specific frequencies. An
322 interesting note is that most of the clusters are approximately the same size (on the order of
323 100s of events), with the exception of cluster 5, which only contains 5 events that have spectra
324 that does not visually match any of the other clusters. Excluding this small cluster, we can
325 classify three broad groups. First, clusters 1 and 2 are similar and have the largest deviations
326 from the Boatwright model (dashed line at zero residual), Second, clusters 3 and 4 are similar
327 to each other, but have smaller residual values than clusters 1 and 2. Third, clusters 5, 6 and 7
328 all display notches at 32, 44 and/or 52 Hz, but are the closest to having zero residual.

329 To study the significance of the clustering further, Figure 7 shows a time series of the clusters
330 obtained from spectral clustering, with each subplot showing the proportion of each cluster in
331 a) NS1, b) NS3, and c) NESW with the colors matching Figure 6. Both fault features (NS1 and
332 NS3) are dominated by cluster 1 (yellow). Clusters 2, 3 and 4 (orange and greens) are also
333 prevalent in both fault features. In contrast, the NESW clusters show more diversity in the
334 spectral clusters, and clusters 5, 6 and 7 (purple, and blues) are more present. In the Discussion,
335 we explore the potential significance of these differences.

336 Figure 7d shows a map view of the events colored by the clusters from the spectral clustering
337 algorithm. Cluster 3 (light green) is present in all the features, which shows that the spectral
338 clustering is not biased based on the source location. Likewise, cluster 2 (orange) is seen in
339 both NS1 and NS3, though both of them are from opposite ends of the study area. Therefore,
340 we believe that the data processing and careful selection of usable frequencies has removed
341 biases associated with events coming from the same location. Similarly, there is no magnitude
342 dependence with the clusters (see Supplementary Material), since they occur equally for all
343 magnitudes.

344 **3. DISCUSSION**

345 In this section we start by discussing the limitations of the results and sources of uncertainty
346 and bias in the data. Then, we split the normalized corner frequency values depending on which

347 feature they originate (fault vs. fracture), to show there are statistically significant differences.
348 Finally, we discuss the results of the spectral clustering analysis in more detail and integrate
349 those results with the observations from the corner-frequency distributions to make inferences
350 about seismicity along faults and fractures.

351 **3.1. Sources of uncertainty**

352 The bandlimited nature of the geophone data introduces difficulties in determining accurate
353 corner frequencies and stress drops. For example, Ide and Beroza (2001) demonstrated that
354 bandlimited data can cause apparent deviation of self-similarity of stress drop with magnitude
355 due to an underestimation of the radiated energy. Likewise, there are challenges in determining
356 the Q and κ values independently and accurately (Ktenidou et al., 2014). Some studies have
357 shown that it is possible to get corner frequencies and stress drop values from geophone data
358 that is consistent with that observed with broadband seismometer data (e.g. Glasgow et al.,
359 2018; Goertz-Allmann et al., 2011; Klinger and Werner, 2021; Viegas et al., 2012), though in
360 all cases similar challenges were faced with the data processing.

361 Although we found a breakdown in scaling for the stress drops in this study (Figure 3), the
362 robustness of this observation is limited by the narrow range of frequencies with good SNR
363 (e.g., Ruhl et al., 2017). However, there are several plausible physical mechanisms that could
364 cause deviations from self-similarity, and number of studies have reported such trends (Bindi
365 et al., 2020; Oth et al., 2011; Pacor et al., 2016; Trugman, 2020; Trugman et al., 2017; Trugman
366 and Shearer, 2018, 2017; Wang et al., 2019). A systematic change in rupture velocity, fault
367 geometry or rupture aspect ratio could perturb the measured corner frequency (e.g. Kaneko and
368 Shearer, 2015; McGuire and Kaneko, 2018) in a manner that could be interpreted as a
369 magnitude-dependent stress drop. Similarly, larger earthquakes are preferentially more likely
370 to activate frictional weakening mechanisms that could lead to higher stress drops (e.g., Tullis,
371 2015). In the case of induced seismicity, it also is possible that small and large earthquakes are
372 fundamentally different, with smaller events usually associated with anthropogenic stressing
373 and stress release, and larger ones triggered by, or relieving, anthropogenic stresses (Ellsworth
374 et al., 2019). In this case, there was a combination of fault and fracture related events, which
375 may further explain the difference in scaling if there are two superimposed distributions (e.g.,
376 Yu et al., 2020). The band-limited nature of our dataset prevents us from making any strong
377 claim in these regards.

378 Another source of uncertainty is the fixed high-frequency falloff rate, represented by the
379 parameter n (Shearer et al., 2019; Trugman, 2022, 2020; Trugman and Shearer, 2017; Yin et

380 al., 2018). Broadly speaking, a falloff rate defined by $n = 2$ is consistent with observations for
381 most earthquakes (Hough, 2001), but minor deviations have been observed and can be
382 attributed to increasing the uncertainty in the inverted corner frequency and stress drop (Walter
383 et al., 2017). Especially in the case of geophone data, constraining n is an added challenge
384 (Klinger and Werner, 2021; Yenier et al., 2016).

385 **3.2. Stress drop distribution by feature type**

386 One observation made by analysing the spatial distribution of the normalized corner frequency
387 is that the events located on faults tend to have higher normalized f_c than those on fractures. To
388 analyze this further, Figure 8 shows a histogram comparing normalized f_c from faults (NS1-3)
389 vs. fractures (NESW). The median of the normalized f_c of the faults is 0.21, and the median of
390 the normalized f_c of the fractures is -0.25. However, it should be noted that most of the largest
391 events within the dataset ($M_w > 2$) have low normalized f_c values (Figure 3).

392 This difference in distributions suggests that earthquakes on faults release more high-frequency
393 energy than comparably sized events on fractures. Both populations of events occurred at the
394 same depths (Poulin et al., 2019), so the differences in the normalized corner frequency are not
395 related to differences in the depth. These differences may reflect geomechanical differences
396 between faults and fractures; that is the properties of the faults allow them to sustain higher
397 stress-drop events than fracture networks. Laboratory studies show a link between fault
398 heterogeneity and stress drop, with larger stress drops for smooth, homogeneous faults (Goebel
399 et al., 2013, 2015). Fractures in this context may be thought of as immature fault surfaces,
400 which lack the strength and smoothness of more mature fault surfaces; the increased relative
401 roughness of the fractures may be what prevents them from experiencing higher relative stress
402 drops. Furthermore, it is likely that the faults and fractures have different frictional stability, as
403 brittle fault materials are more likely to be associated with larger stress drops (Gu and Wong,
404 1991; He et al., 2003; Rubin and Ampuero, 2005). Both the faults and fractures are located
405 within the Ireton Formation, which is a shale unit with low organic content (Knapp et al., 2017).
406 This formation itself would be classified as more ductile than brittle, but there is documented
407 lateral heterogeneity based on seismic data from the study region (Weir et al., 2018). The fault
408 rheology is expected to differ from the host formation due to the presence of fault gouge
409 material. The mineralogical content of the fault gouge in this region is likely a combination of
410 Ireton-derived material, and material brought by fluid upwelling from the Precambrian
411 basement (Galloway et al., 2018).

412 The intraplate setting of this study area also likely plays a role; laboratory experiments show
413 that longer interseismic periods lead to an increase in asperity strength and stress drop on a fault
414 (Beeler et al., 2001). That is, due to the longer healing time, the faults in the Fox Creek region
415 have well-developed asperities and non-negligible cohesion, which may then allow for the
416 build-up of larger stresses on the fault. Similar observations have been made in Oklahoma when
417 comparing slip on a fault that was activated due to fluid injection and slip on faults in
418 tectonically active regions (Pennington et al., 2022). In any case, in the absence of drillcore
419 data from faults and fractures, neither of these possibilities can be conclusively tested.

420 **3.3. Clustering analysis**

421 Analysis of the residual spectra into clusters using the spectral clustering algorithm shows that
422 there are distinct families of spectra for the ToC2ME dataset. These families show some
423 preference for the host type of structure (Figure 7). The clusters that are the most prevalent on
424 the fault features (clusters 1, 2 and 4) are the least prevalent on the fractures, with the exception
425 of cluster 3 which is prevalent on both types of features. As evident in Figure 6, each of these
426 clusters has a similar type of residual spectra - relatively smooth and positive in the 35-50 Hz
427 range. In contrast, residual spectra associated with the events on the fractures (clusters 5, 6 and
428 7) are all closer to the best-fit model, and have peaks at 42 and/or 52 Hz. This leads us to the
429 conclusion that there is a distinct difference between the source spectra of faults and fractures.

430 A physical interpretation of the spectral complexity is that it may be indicative of subevents
431 (e.g., Wu et al., 2019; Ye et al., 2016). Subevents are caused by different portions of a fault
432 surface experiencing displacement at different times, but close enough in time that they are
433 nevertheless considered to be one earthquake. One cause of such behaviour is fault-surface
434 heterogeneity, which has been observed for moderate-to-small earthquakes in the same
435 magnitude range as those presented here (Abercrombie, 2014; Abercrombie et al., 2020; Chen
436 et al., 2016; Ide, 2001; Ruhl et al., 2017; Uchida et al., 2015; Wang et al., 2014; Yamada, 2005).
437 In this study, observations point to two types of rupture surfaces, with their own modes of
438 heterogeneity, which then causes the residual spectra of the faults and fractures to be distinct.
439 Another possible interpretation is that if rupture is actually continuous (no subevents), then
440 complex spectra may arise from interference of stopping phases (Ben-Menahem, 1961;
441 Madariaga, 1976). These stopping phases are present in cases of runaway rupture when the
442 rupture area reaches a boundary (Wen et al., 2018). Given the geological limitations on the fault
443 dimensions in this study area, and the two types of rupture surfaces, both subevents and
444 runaway rupture in bounded strata may explain the spectral complexity.

445 Comparing the time series of the spectral clustering analysis (Figure 7) to the results of the
446 normalized corner frequency over time (Figures 4 and 5) does not indicate any significant
447 trends. Both the fault and fracture features experience reversals in the normalized corner
448 frequency over time, but there is no clear link between those reversals and the prevalence of
449 different clusters based on the spectral clustering. For example, NS1 starts with negative
450 normalized f_c and has little spectral variability (cluster 1 is dominant); then NS1 ends with
451 positive normalized f_c and there are many clusters active. Conversely, NS3 goes from positive
452 to negative normalized f_c over time, and likewise contains several clusters. However, it should
453 be noted that cluster 1 only became dominant around November 22, which corresponds to the
454 reversal in normalized f_c . For the NESW events, many clusters are active throughout, and there
455 is no distinct trend between the normalized f_c and cluster prevalence.

456 Another interesting observation is that events with similar spectra are more likely to occur at a
457 time when there are many events of the same kind (e.g., the steepness of increase of the clusters
458 in Figure 7c). This could be a reflection of a similar location or similar source properties (e.g.,
459 Trugman et al., 2020; Zhang et al., 2019). From an energy-balance perspective, it may be easier
460 to sustain activity along the same feature than to divert energy into creating/activating new
461 features.

462 Finally, we consider changes in the normalized corner frequency over time. One potential
463 interpretation of the systematic transitions from positive to negative f_c (or vice versa) is that it
464 is a reflection of the subsurface stress state. There is some evidence that there are higher stress
465 drops in regions of higher background stress (Allmann and Shearer, 2009; Negishi et al., 2002;
466 Pennington et al., 2021). For example, some studies have noted an increase in stress drop with
467 depth, and one potential explanation for this is that the stresses are higher at depth (Goebel et
468 al., 2015; Hardebeck and Aron, 2009; Hardebeck and Hauksson, 1997; Jones and Helmberger,
469 1996; Oth et al., 2010; Pacor et al., 2016; Shearer et al., 2006; Trugman et al., 2017;
470 Venkataraman and Kanamori, 2004). Other studies have found temporal changes in stress drop
471 as well, and attribute the changes to lateral or depth variability in the fault strength
472 (Abercrombie, 2014; Oth and Kaiser, 2014; Sumy et al., 2017).

473 In this study, event magnitudes tend to be larger during periods when the normalized f_c is
474 positive (such as during the M_w 3 events on NS1), and smaller when the normalized f_c is
475 negative (such as during NS3 after the reversal to negative normalized f_c). This invites
476 speculation that the average normalized corner frequency be used to determine if there will be
477 a continuation of larger magnitude events. At the end of the recording period, the only cluster
478 with positive normalized f_c is NS1. The preceding pattern suggests that this cluster is more

479 likely to host larger events after the recording period ended. Indeed, after the cessation of
480 recording on the local array, the regional broadband network picked up multiple events $> M_w$
481 2 from the approximate location of NS1 (see Table 1 in the Supplementary Material). More
482 detailed studies in different regions and tectonic settings are required to determine if these
483 observations are generally representative.

484 Altogether, the observations in this paper suggest that there are statistically significant
485 differences between the corner frequencies and stress drops on different structural units (faults,
486 fractures), likely reflecting their respective orientation, scale and fabric. These observations can
487 be applied to natural fault systems where there is interaction with fractures, or other datasets
488 with injection induced seismicity and pre-existing fracture networks. A temporal change in
489 normalized f_c of induced seismicity, if shown to be indicative of the subsurface stress state as
490 suggested by our data, represents an intriguing prospect as an indicator of elevated risk.

491 4. CONCLUSION

492 After comprehensive analysis of source spectra from the ToC2ME induced seismicity dataset,
493 we show that there are significant differences between event populations located on faults and
494 fractures, with on-fault events having larger normalized corner frequency (and therefore stress
495 drop) than off-fault events. The events on the faults also show temporal changes in normalized
496 corner frequency that we interpret as indicative of an evolving subsurface stress state. During
497 times of higher normalized corner frequency events there is a greater likelihood of larger-
498 magnitude events, which may correspond to periods of elevated subsurface stress due to the
499 nearby injection. On-fault events show more variability in the residual spectra, and a larger
500 departure from the best-fit source model. We observe a mild departure from self-similarity over
501 three orders of magnitude, which may represent changes in rupture velocity, fault geometry or
502 rupture aspect ratio, although it may simply reflect a limitation of geophone data. Combined,
503 these observations indicate that there are distinctions between the corner frequencies, stress
504 drops, and frequency content of earthquakes on faults and fractures.

505 Data and Resources

506 Continuous raw data (geophone and broadband recordings, network code 5B with start date:
507 2016-10-25 and end date: 2016-12-01) are available through the IRIS Data Center. The event
508 catalogs used in this study are available at the ToC2ME GitHub website
509 (<https://github.com/ToC2ME>, last accessed January 2023). Additional information about the
510 ToC2ME dataset is also available at www.toc2me.com (last accessed January 2023). All of the

511 figures were made using Matlab Software, which is available at
512 www.mathworks.com/products/matlab (last accessed September 2022). The supplementary
513 material contains further details on the workflow, empirical Green's functions analysis, error
514 distributions by Q and κ value, additional information about bootstrapping, the re-calculated
515 magnitudes, an animation of the normalized corner frequency over time, and additional plots
516 of the spectral clustering results.

517 **Declaration of Competing Interests**

518 The authors acknowledge that there are no conflicts of interest recorded.

519 **Acknowledgements**

520 The authors are grateful to two anonymous companies for providing access for acquisition of
521 the data. This research was supported in part by funding from SCEC Award 21017, NSF Award
522 EAR-2146687, the Texas Seismological Network and Seismology Research Program of the
523 Bureau of Economic Geology at the University of Texas, the Department of Geoscience at the
524 University of Texas at Austin, and NSERC grant IRCPJ/485692-2014. We thank the sponsors
525 of the Microseismic Industry Consortium for their financial support of this study.

526 **References**

527 Abercrombie, R., Leary, P., 1993. Source parameters of small earthquakes recorded at 2.5 km depth,
528 Cajon Pass, southern California: Implications for earthquake scaling. *Geophysical Research
529 Letters* 20, 4.

530 Abercrombie, R.E., 2021. Resolution and uncertainties in estimates of earthquake stress drop and energy
531 release. *Phil. Trans. R. Soc. A.* 379, 20200131. <https://doi.org/10.1098/rsta.2020.0131>

532 Abercrombie, R.E., 2014. Stress drops of repeating earthquakes on the San Andreas Fault at Parkfield.
533 *Geophys. Res. Lett.* 41, 8784–8791. <https://doi.org/10.1002/2014GL062079>

534 Abercrombie, R.E., 1995. Earthquake source scaling relationships from -1 to $5 M_L$ using seismograms
535 recorded at 2.5-km depth. *J. Geophys. Res.* 100, 24015–24036.
536 <https://doi.org/10.1029/95JB02397>

537 Abercrombie, R.E., Chen, X., Zhang, J., 2020. Repeating Earthquakes With Remarkably Repeatable
538 Ruptures on the San Andreas Fault at Parkfield. *Geophys. Res. Lett.* 47.
539 <https://doi.org/10.1029/2020GL089820>

540 Aki, K., 1972. Scaling Law of Earthquake Source Time-Function. *Geophysical Journal International* 31,
541 3–25. <https://doi.org/10.1111/j.1365-246X.1972.tb02356.x>

542 Allmann, B.P., Shearer, P.M., 2009. Global variations of stress drop for moderate to large earthquakes.
543 *J. Geophys. Res.* 114. <https://doi.org/10.1029/2008JB005821>

544 Anderson, J., Hough, S.E., 1984. A model for the shape of the fourier amplitude spectrum of acceleration
545 at high frequencies. *Bulletin of the Seismological Society of America* 74.
546 <https://doi.org/10.1785/BSSA0740051969>

547 Atkinson, G., Silva, W., 1997. An empirical study of earthquake source spectra for California
548 earthquakes. *Bulletin of the Seismological Society of America* 87, 97–113.
549 <https://doi.org/10.1785/BSSA0870010097>

550 Atkinson, G.M., Eaton, D.W., Igonin, N., 2020. Developments in understanding seismicity triggered by
551 hydraulic fracturing. *Nat Rev Earth Environ* 1, 264–277. [https://doi.org/10.1038/s43017-020-0049-7](https://doi.org/10.1038/s43017-020-
552 0049-7)

553 Baltay, A., Ide, S., Prieto, G., Beroza, G., 2011. Variability in earthquake stress drop and apparent stress.
554 *Geophys. Res. Lett.* 38, n/a-n/a. <https://doi.org/10.1029/2011GL046698>

555 Beeler, N.M., Hickman, S.H., Wong, T. -f., 2001. Earthquake stress drop and laboratory-inferred
 556 interseismic strength recovery. *J. Geophys. Res.* 106, 30701–30713.
 557 <https://doi.org/10.1029/2000JB900242>

558 Ben-Menahem, A., 1961. Radiation of seismic surface-waves from finite moving sources. *Bulletin of the*
 559 *Seismological Society of America* 51, 401–435. <https://doi.org/10.1785/BSSA0510030401>

560 Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., Wassermann, J., 2010. ObsPy: A Python
 561 Toolbox for Seismology. *Seismological Research Letters* 81, 530–533.
 562 <https://doi.org/10.1785/gssrl.81.3.530>

563 Bindi, D., Spallarossa, D., Picozzi, M., Morasca, P., 2020. Reliability of Source Parameters for Small
 564 Events in Central Italy: Insights from Spectral Decomposition Analysis Applied to Both
 565 Synthetic and Real Data. *Bulletin of the Seismological Society of America* 110, 3139–3157.
 566 <https://doi.org/10.1785/0120200126>

567 Boatwright, J., 1980. A spectral theory for circular seismic sources; simple estimates of source
 568 dimension, dynamic stress drop, and radiated seismic energy. *Bulletin of the Seismological*
 569 *Society of America* 70, 1–27. <https://doi.org/10.1785/BSSA0700010001>

570 Bosman, K., Preiksaits, M., Baig, A., Urbancic, T., 2015. From Microseismic to Induced Seismicity:
 571 Monitoring the Full Band of Reservoir Seismicity, in: SEG Technical Program Expanded
 572 Abstracts 2015. Presented at the SEG Technical Program Expanded Abstracts 2015, Society of
 573 Exploration Geophysicists, New Orleans, Louisiana, pp. 4843–4847.
 574 <https://doi.org/10.1190/segam2015-5931654.1>

575 Boyd, O.S., McNamara, D.E., Hartzell, S., Choy, G., 2017. Influence of Lithostatic Stress on Earthquake
 576 Stress Drops in North America. *Bulletin of the Seismological Society of America* 107, 856–
 577 868. <https://doi.org/10.1785/0120160219>

578 Brune, J.N., 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. *J. Geophys.*
 579 *Res.* 75, 4997–5009. <https://doi.org/10.1029/JB075i026p04997>

580 Calixto, F.J., van der Baan, M., 2015. Three Dimensional Attenuation Tomography from
 581 Microseismicity, in: SEG Technical Program Expanded Abstracts 2015. Presented at the SEG
 582 Technical Program Expanded Abstracts 2015, Society of Exploration Geophysicists, New
 583 Orleans, Louisiana, pp. 2430–2434. <https://doi.org/10.1190/segam2015-5829881.1>

584 Candela, T., Renard, F., Bouchon, M., Schmittbuhl, J., Brodsky, E.E., 2011. Stress Drop during
 585 Earthquakes: Effect of Fault Roughness Scaling. *Bulletin of the Seismological Society of*
 586 *America* 101, 2369–2387. <https://doi.org/10.1785/0120100298>

587 Chang, K.W., Segall, P., 2016. Injection-induced seismicity on basement faults including poroelastic
 588 stressing: Induced seismicity on basement faults. *J. Geophys. Res. Solid Earth* 121, 2708–2726.
 589 <https://doi.org/10.1002/2015JB012561>

590 Chen, K.H., Chen, I., Kim, A., 2016. Can slip heterogeneity be linked to earthquake recurrence?:
 591 *Geophys. Res. Lett.* 43, 6916–6923. <https://doi.org/10.1002/2016GL069516>

592 Chen, X., Shearer, P.M., 2013. Correction to “Comprehensive analysis of earthquake source spectra and
 593 swarms in the Salton Trough, California.” *J. Geophys. Res. Solid Earth* 118, 1193–1194.
 594 <https://doi.org/10.1002/jgrb.50098>

595 Chen, X., Shearer, P.M., 2011. Comprehensive analysis of earthquake source spectra and swarms in the
 596 Salton Trough, California. *J. Geophys. Res.* 116, B09309.
 597 <https://doi.org/10.1029/2011JB008263>

598 Childs, C., Manzocchi, T., Walsh, J.J., Bonson, C.G., Nicol, A., Schöpfer, M.P.J., 2009. A geometric
 599 model of fault zone and fault rock thickness variations. *Journal of Structural Geology* 31, 117–
 600 127. <https://doi.org/10.1016/j.jsg.2008.08.009>

601 Clerc, F., Harrington, R.M., Liu, Y., Gu, Y.J., 2016. Stress drop estimates and hypocenter relocations of
 602 induced seismicity near Crooked Lake, Alberta. *Geophys. Res. Lett.* 43, 6942–6951.
 603 <https://doi.org/10.1002/2016GL069800>

604 Davatzes, N.C., Aydin, A., 2003. Overprinting faulting mechanisms in high porosity sandstones of SE
 605 Utah. *Journal of Structural Geology* 25, 1795–1813. [https://doi.org/10.1016/S0191-8141\(03\)00043-9](https://doi.org/10.1016/S0191-8141(03)00043-9)

607 Eaton, D.W., Igonin, N., Poulin, A., Weir, R., Pellegrino, S., Rodriguez, G., 2018. Induced Seismicity
 608 Characterization during Hydraulic-Fracture Monitoring with a Shallow-Wellbore Geophone
 609 Array and Broadband Sensors. *Seismological Research Letters* 89, 11.

610 Eaton, D.W., Maghsoudi, S., 2015. 2b... or not 2b? Interpreting magnitude distributions from
 611 microseismic catalogs. *First Break* 33. <https://doi.org/10.3997/1365-2397.33.10.83159>

612 Ellsworth, W.L., 2013. Injection-Induced Earthquakes. *Science* 341, 1225942.
 613 <https://doi.org/10.1126/science.1225942>

614 Ellsworth, W.L., Giardini, D., Townend, J., Ge, S., Shimamoto, T., 2019. Triggering of the Pohang,
 615 Korea, Earthquake (Mw 5.5) by Enhanced Geothermal System Stimulation. *Seismological*
 616 *Research Letters*. <https://doi.org/10.1785/0220190102>

617 Eshelby, J., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems.
 618 *Proc. R. Soc. Lond. A* 241, 376–396. <https://doi.org/10.1098/rspa.1957.0133>

619 Fehler, M., Phillips, W.S., 1991. Simultaneous inversion for Q and source parameters of
 620 microearthquakes accompanying hydraulic fracturing in granitic rock. *Bulletin of the*
 621 *Seismological Society of America* 81, 553–575. <https://doi.org/10.1785/BSSA0810020553>

622 Galloway, E., Hauck, T., Corlett, H., Pañá, D., Schultz, R., 2018. Faults and associated karst collapse
 623 suggest conduits for fluid flow that influence hydraulic fracturing-induced seismicity. *Proc.*
 624 *Natl. Acad. Sci. U.S.A.* 115. <https://doi.org/10.1073/pnas.1807549115>

625 Glasgow, M.E., Schmandt, B., Hansen, S.M., 2018. Upper crustal low-frequency seismicity at Mount St.
 626 Helens detected with a dense geophone array. *Journal of Volcanology and Geothermal Research*
 627 358, 329–341. <https://doi.org/10.1016/j.jvolgeores.2018.06.006>

628 Goebel, T.H., Schorlemmer, D., Becker, T.W., Dresen, G., Sammis, C.G., 2013. Acoustic emissions
 629 document stress changes over many seismic cycles in stick-slip experiments. *Geophys. Res.*
 630 *Lett.* 40, 2049–2054. <https://doi.org/10.1002/grl.50507>

631 Goebel, T.H.W., Sammis, C.G., Becker, T.W., Dresen, G., Schorlemmer, D., 2015. A Comparison of
 632 Seismicity Characteristics and Fault Structure Between Stick-Slip Experiments and Nature.
 633 *Pure Appl. Geophys.* 172, 2247–2264. <https://doi.org/10.1007/s00024-013-0713-7>

634 Goertz-Allmann, B.P., Goertz, A., Wiemer, S., 2011. Stress drop variations of induced earthquakes at
 635 the Basel geothermal site. *Geophysical Research Letters* 38, 5.
 636 <https://doi.org/10.1029/2011GL047498>

637 Gu, Y., Wong, T., 1991. Effects of loading velocity, stiffness, and inertia on the dynamics of a single
 638 degree of freedom Spring-Slider System. *J. Geophys. Res.* 96, 21677–21691.
 639 <https://doi.org/10.1029/91JB02271>

640 Hardebeck, J.L., Aron, A., 2009. Earthquake Stress Drops and Inferred Fault Strength on the Hayward
 641 Fault, East San Francisco Bay, California. *Bulletin of the Seismological Society of America* 99,
 642 1801–1814. <https://doi.org/10.1785/0120080242>

643 Hardebeck, J.L., Hauksson, E., 1997. Static stress drop in the 1994 Northridge, California, aftershock
 644 sequence. *Bulletin of the Seismological Society of America* 87, 1495–1501.
 645 <https://doi.org/10.1785/BSSA0870061495>

646 Hassani, B., Zafarani, H., Farjoodi, J., Ansari, A., 2011. Estimation of site amplification, attenuation and
 647 source spectra of S-waves in the East-Central Iran. *Soil Dynamics and Earthquake Engineering*
 648 31, 1397–1413. <https://doi.org/10.1016/j.soildyn.2011.05.017>

649 He, C., Wong, T., Beeler, N.M., 2003. Scaling of stress drop with recurrence interval and loading velocity
 650 for laboratory-derived fault strength relations. *J. Geophys. Res.* 108.
 651 <https://doi.org/10.1029/2002JB001890>

652 Holmgren, J.M., Atkinson, G.M., Ghofrani, H., 2019. Stress Drops and Directivity of Induced
 653 Earthquakes in the Western Canada Sedimentary Basin. *Bulletin of the Seismological Society*
 654 *of America* 109, 1635–1652. <https://doi.org/10.1785/0120190035>

655 Hough, S.E., 2015. Shaking intensity from injection-induced versus tectonic earthquakes in the central-
 656 eastern United States. *The Leading Edge* 34, 690–697. <https://doi.org/10.1190/tle34060690.1>

657 Hough, S.E., 2014. Shaking from Injection-Induced Earthquakes in the Central and Eastern United
 658 States. *Bulletin of the Seismological Society of America* 104, 2619–2626.
 659 <https://doi.org/10.1785/0120140099>

660 Hough, S.E., 2001. Empirical Green's Function Analysis of Recent Moderate Events in California.
 661 *Bulletin of the Seismological Society of America* 91, 456–467.
 662 <https://doi.org/10.1785/0119970154>

663 Hough, S.E., 1997. Empirical Green's function analysis: Taking the next step. *J. Geophys. Res.* 102,
 664 5369–5384. <https://doi.org/10.1029/96JB03488>

665 Huang, Y., Ellsworth, W.L., Beroza, G.C., 2017. Stress drops of induced and tectonic earthquakes in the
 666 central United States are indistinguishable. *Science Advances* 8.

667 Ide, S., 2001. Complex source processes and the interaction of moderate earthquakes during the
 668 earthquake swarm in the Hida-Mountains, Japan, 1998. *Tectonophysics* 334, 35–54.
 669 [https://doi.org/10.1016/S0040-1951\(01\)00027-0](https://doi.org/10.1016/S0040-1951(01)00027-0)

670 Ide, S., Beroza, G.C., 2001. Does apparent stress vary with earthquake size? *Geophys. Res. Lett.* 28,
 671 3349–3352. <https://doi.org/10.1029/2001GL013106>

672 Igonin, N., Verdon, J.P., Kendall, J. - Michael, Eaton, D.W., 2021. Large- Scale Fracture Systems Are
 673 Permeable Pathways for Fault Activation During Hydraulic Fracturing. *J Geophys Res Solid*
 674 *Earth* 126. <https://doi.org/10.1029/2020JB020311>

675 Igonin, N., Zecevic, M., Eaton, D.W., 2018. Bilinear Magnitude- Frequency Distributions and
 676 Characteristic Earthquakes During Hydraulic Fracturing. *Geophysical Research Letters* 9.

677 Imanishi, K., Ellsworth, W.L., 2006. Source scaling relationships of microearthquakes at Parkfield, CA,
 678 determined using the SAFOD Pilot Hole Seismic Array, in: Abercrombie, R., McGarr, A.,
 679 Kanamori, H., Di Toro, G. (Eds.), *Geophysical Monograph Series*. American Geophysical
 680 Union, Washington, D. C., pp. 81–90. <https://doi.org/10.1029/170GM10>

681 Jones, L.E., Helmberger, D.V., 1996. Seismicity and stress-drop in the Eastern Transverse Ranges,
 682 southern California. *Geophys. Res. Lett.* 23, 233–236. <https://doi.org/10.1029/96GL00012>

683 Kanamori, H., 2004. Static and Dynamic Scaling Relations for Earthquakes and Their Implications for
 684 Rupture Speed and Stress Drop. *Bulletin of the Seismological Society of America* 94, 314–319.
 685 <https://doi.org/10.1785/0120030159>

686 Kaneko, Y., Shearer, P.M., 2015. Variability of seismic source spectra, estimated stress drop, and
 687 radiated energy, derived from cohesive- zone models of symmetrical and asymmetrical circular
 688 and elliptical ruptures. *J. Geophys. Res. Solid Earth* 120, 1053–1079.
 689 <https://doi.org/10.1002/2014JB011642>

690 Kaneko, Y., Shearer, P.M., 2014. Seismic source spectra and estimated stress drop derived from
 691 cohesive-zone models of circular subshear rupture. *Geophysical Journal International* 197,
 692 1002–1015. <https://doi.org/10.1093/gji/ggu030>

693 Klinger, A.G., Werner, M.J., 2021. Stress drops of hydraulic fracturing induced microseismicity in the
 694 Horn River basin: challenges at high frequencies recorded by borehole geophones. *Geophysical*
 695 *Journal International* 228, 2018–2037. <https://doi.org/10.1093/gji/ggab458>

696 Knapp, L.J., McMillan, J.M., Harris, N.B., 2017. A depositional model for organic-rich Duvernay
 697 Formation mudstones. *Sedimentary Geology* 347, 160–182.
 698 <https://doi.org/10.1016/j.sedgeo.2016.11.012>

699 Ktenidou, O.-J., Cotton, F., Abrahamson, N.A., Anderson, J.G., 2014. Taxonomy of: A Review of
 700 Definitions and Estimation Approaches Targeted to Applications. *Seismological Research*
 701 Letters 85, 135–146. <https://doi.org/10.1785/0220130027>

702 Lei, X., Su, J., Wang, Z., 2020. Growing seismicity in the Sichuan Basin and its association with
 703 industrial activities. *Sci. China Earth Sci.* 63, 1633–1660. <https://doi.org/10.1007/s11430-020-9646-x>

705 Madariaga, R., 1976. Dynamics of an expanding circular fault. *Bulletin of the Seismological Society of*
 706 *America* 66, 639–666. <https://doi.org/10.1785/BSSA0660030639>

707 McGuire, J.J., Kaneko, Y., 2018. Directly estimating earthquake rupture area using second moments to
 708 reduce the uncertainty in stress drop. *Geophysical Journal International* 214, 2224–2235.
 709 <https://doi.org/10.1093/gji/ggy201>

710 Mori, J., Frankel, A., 1990. Source parameters for small events associated with the 1986 North Palm
 711 Springs, California, earthquake determined using empirical Green functions. *Bulletin of the*
 712 *Seismological Society of America* 80, 278–295. <https://doi.org/10.1785/BSSA0800020278>

713 Negishi, H., Mori, J., Sato, T., Singh, R., Kumar, S., Hirata, N., 2002. Size and orientation of the fault
 714 plane for the 2001 Gujarat, India earthquake (Mw7.7) from aftershock observations: A high
 715 stress drop event. *Geophys. Res. Lett.* 29, 10-1-10-4. <https://doi.org/10.1029/2002GL015280>

716 Oth, A., Bindi, D., Parolai, S., Di Giacomo, D., 2011. Spectral Analysis of K-NET and KiK-net Data in
 717 Japan, Part II: On Attenuation Characteristics, Source Spectra, and Site Response of Borehole
 718 and Surface Stations. *Bulletin of the Seismological Society of America* 101, 667–687.
 719 <https://doi.org/10.1785/0120100135>

720 Oth, A., Bindi, D., Parolai, S., Di Giacomo, D., 2010. Earthquake scaling characteristics and the scale-
 721 (in)dependence of seismic energy-to-moment ratio: Insights from KiK-net data in Japan:
 722 EARTHQUAKE SCALING IN JAPAN. *Geophys. Res. Lett.* 37, n/a-n/a.
 723 <https://doi.org/10.1029/2010GL044572>

724 Oth, A., Kaiser, A.E., 2014. Stress Release and Source Scaling of the 2010–2011 Canterbury, New
 725 Zealand Earthquake Sequence from Spectral Inversion of Ground Motion Data. *Pure Appl.*
 726 *Geophys.* 171, 2767–2782. <https://doi.org/10.1007/s00024-013-0751-1>

727 Pacor, F., Spallarossa, D., Oth, A., Luzzi, L., Puglia, R., Cantore, L., Mercuri, A., D'Amico, M., Bindi,
 728 D., 2016. Spectral models for ground motion prediction in the L'Aquila region (central Italy):
 729 evidence for stress-drop dependence on magnitude and depth. *Geophys. J. Int.* 204, 697–718.
 730 <https://doi.org/10.1093/gji/ggv448>

731 Paes, A. da S., 2020. Towards real-time microseismic processing: Efficient and robust methods for event
 732 detection and automated arrival time picking. University of Calgary, Calgary, Alberta, Canada.

733 Peacock, D.C.P., Nixon, C.W., Rotevatn, A., Sanderson, D.J., Zuluaga, L.F., 2016. Glossary of fault and
 734 other fracture networks. *Journal of Structural Geology* 92, 12–29.
 735 <https://doi.org/10.1016/j.jsg.2016.09.008>

736 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
 737 Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., 2011. Scikit-learn: Machine learning
 738 in Python. *The Journal of Machine Learning Research* 12, 2825–2830.

739 Pennington, C.N., Chen, X., Abercrombie, R.E., Wu, Q., 2021. Cross Validation of Stress Drop
 740 Estimates and Interpretations for the 2011 Prague, OK, Earthquake Sequence Using Multiple
 741 Methods. *J Geophys Res Solid Earth* 126. <https://doi.org/10.1029/2020JB020888>

742 Pennington, C.N., Uchide, T., Chen, X., 2022. Slip Characteristics of Induced Earthquakes: Insights
 743 From the 2015 M_w 4.0 Guthrie, Oklahoma Earthquake. *JGR Solid Earth* 127.
 744 <https://doi.org/10.1029/2021JB023564>

745 Pollard, D.D., Aydin, A., 1988. Progress in understanding jointing over the past century. *Geological
 746 Society of America Bulletin* 100, 1181–1204. [https://doi.org/10.1130/0016-7606\(1988\)100<1181:PIUJOT>2.3.CO;2](https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2)

747 Poulin, A., Weir, R., Eaton, D., Igonin, N., Chen, Y., Lines, L., Lawton, D., 2019. Focal-time analysis:
 748 A new method for stratigraphic depth control of microseismicity and induced seismic events.
 749 *Geophysics* 84, 10. <https://doi.org/10.1190/GEO2019-0046.1>

750 Prieto, G.A., 2022. The *Multitaper* Spectrum Analysis Package in Python. *Seismological Research
 751 Letters* 93, 1922–1929. <https://doi.org/10.1785/0220210332>

752 Reiter, D., Leidig, M., Yoo, S.-H., Mayeda, K., 2012. Source characteristics of seismicity associated
 753 with underground wastewater disposal: A case study from the 2008 Dallas-Fort Worth
 754 earthquake sequence. *The Leading Edge* 31, 1454–1460. <https://doi.org/10.1190/tle31121454.1>

755 Rodríguez-Pradilla, G., Eaton, D.W., 2019. The Application of Coda and Energy Methods for Magnitude
 756 Estimation of Microseismic Events. *Seismological Research Letters* 90, 12.
 757 <https://doi.org/10.1785/0220180366>

758 Rubin, A.M., Ampuero, J.-P., 2005. Earthquake nucleation on (aging) rate and state faults: RATE AND
 759 STATE EARTHQUAKE NUCLEATION. *J. Geophys. Res.* 110.
 760 <https://doi.org/10.1029/2005JB003686>

761 Ruhl, C.J., Abercrombie, R.E., Smith, K.D., 2017. Spatiotemporal Variation of Stress Drop During the
 762 2008 Mogul, Nevada, Earthquake Swarm: Stress Drops of the 2008 Mogul, NV, Swarm. *J.
 763 Geophys. Res. Solid Earth* 122, 8163–8180. <https://doi.org/10.1002/2017JB014601>

764 Schultz, R., Skoumal, R.J., Brudzinski, M.R., Eaton, D., Baptie, B., Ellsworth, W., 2020. Hydraulic
 765 Fracturing- Induced Seismicity. *Reviews of Geophysics* 43.

766 Shearer, P.M., Abercrombie, R.E., 2021. Calibrating Spectral Decomposition of Local Earthquakes
 767 Using Borehole Seismic Records—Results for the 1992 Big Bear Aftershocks in Southern
 768 California. *J Geophys Res Solid Earth* 126. <https://doi.org/10.1029/2020JB020561>

769 Shearer, P.M., Abercrombie, R.E., Trugman, D.T., Wang, W., 2019. Comparing EGF Methods for
 770 Estimating Corner Frequency and Stress Drop From *P* Wave Spectra. *J. Geophys. Res. Solid
 771 Earth* 124, 3966–3986. <https://doi.org/10.1029/2018JB016957>

772 Shearer, P.M., Prieto, G.A., Hauksson, E., 2006. Comprehensive analysis of earthquake source spectra
 773 in southern California: SOUTHERN CALIFORNIA SOURCE SPECTRA. *J. Geophys. Res.* 111, n/a-n/a.
 774 <https://doi.org/10.1029/2005JB003979>

775 Spottiswoode, S., McGarr, A., 1975. Source parameters of tremors in a deep-level gold mine. *Bulletin
 776 of the Seismological Society of America* 65. <https://doi.org/10.1785/BSSA0650010093>

777 Sumy, D.F., Neighbors, C.J., Cochran, E.S., Keranen, K.M., 2017. Low stress drops observed for
 778 aftershocks of the 2011 M_w 5.7 Prague, Oklahoma, earthquake. *J. Geophys. Res. Solid Earth*
 779 122, 3813–3834. <https://doi.org/10.1002/2016JB013153>

780 Tomic, J., Abercrombie, R.E., do Nascimento, A.F., 2009. Source parameters and rupture velocity of
 781 small $M \leq 2.1$ reservoir induced earthquakes. *Geophysical Journal International* 179, 1013–
 782 1023. <https://doi.org/10.1111/j.1365-246X.2009.04233.x>

783 Trugman, D.T., 2022. Resolving Differences in the Rupture Properties of M5 Earthquakes in California
 784 Using Bayesian Source Spectral Analysis. *JGR Solid Earth* 127.
 785 <https://doi.org/10.1029/2021JB023526>

786 Trugman, D.T., 2020. Stress-Drop and Source Scaling of the 2019 Ridgecrest, California, Earthquake
 787 Sequence. *Bulletin of the Seismological Society of America* 110, 1859–1871.
 788 <https://doi.org/10.1785/0120200009>

790 Trugman, D.T., Dougherty, S.L., Cochran, E.S., Shearer, P.M., 2017. Source Spectral Properties of Small
 791 to Moderate Earthquakes in Southern Kansas. *J. Geophys. Res. Solid Earth* 122, 8021–8034.
 792 <https://doi.org/10.1002/2017JB014649>

793 Trugman, D.T., Ross, Z.E., Johnson, P.A., 2020. Imaging Stress and Faulting Complexity Through
 794 Earthquake Waveform Similarity. *Geophysical Research Letters* 8.

795 Trugman, D.T., Shearer, P.M., 2018. Strong Correlation between Stress Drop and Peak Ground
 796 Acceleration for Recent M 1–4 Earthquakes in the San Francisco Bay Area. *Bulletin of the*
 797 *Seismological Society of America* 108, 929–945. <https://doi.org/10.1785/0120170245>

798 Trugman, D.T., Shearer, P.M., 2017. Application of an improved spectral decomposition method to
 799 examine earthquake source scaling in Southern California. *J. Geophys. Res. Solid Earth* 122,
 800 2890–2910. <https://doi.org/10.1002/2017JB013971>

801 Tullis, T.E., 2015. Mechanisms for Friction of Rock at Earthquake Slip Rates, in: *Treatise on Geophysics*.
 802 Elsevier, pp. 139–159. <https://doi.org/10.1016/B978-0-444-53802-4.00073-7>

803 Uchida, N., Shimamura, K., Matsuzawa, T., Okada, T., 2015. Postseismic response of repeating
 804 earthquakes around the 2011 Tohoku-oki earthquake: Moment increases due to the fast loading
 805 rate. *J. Geophys. Res. Solid Earth* 120, 259–274. <https://doi.org/10.1002/2013JB010933>

806 Uchide, T., Imanishi, K., 2016. Small Earthquakes Deviate from the Omega- Square Model as Revealed
 807 by Multiple Spectral Ratio Analysis. *Bulletin of the Seismological Society of America* 106,
 808 1357–1363. <https://doi.org/10.1785/0120150322>

809 Venkataraman, A., Kanamori, H., 2004. Observational constraints on the fracture energy of subduction
 810 zone earthquakes. *J. Geophys. Res.* 109. <https://doi.org/10.1029/2003JB002549>

811 Viegas, G., Abercrombie, R.E., Kim, W.-Y., 2010. The 2002 M5.4 Au Sable Forks, NY, earthquake
 812 sequence: Source scaling relationships and energy budget. *J. Geophys. Res.* 115, B07310.
 813 <https://doi.org/10.1029/2009JB006799>

814 Viegas, G., Baig, A., Coulter, W., Urbancic, T., 2012. Effective monitoring of reservoir-induced
 815 seismicity utilizing integrated surface and downhole seismic networks. *First Break* 30.
 816 <https://doi.org/10.3997/1365-2397.30.7.60347>

817 von Luxburg, U., 2007. A tutorial on spectral clustering. *Stat. Comput.* 17, 395–416.
 818 <https://doi.org/10.1007/s11222-007-9033-z>

819 Walter, W.R., Mayeda, K., Gok, R., Hofstetter, A., 2006. The scaling of seismic energy with moment:
 820 Simple models compared with observations, in: Abercrombie, R., McGarr, A., Kanamori, H.,
 821 Di Toro, G. (Eds.), *Geophysical Monograph Series*. American Geophysical Union, Washington,
 822 D. C., pp. 25–41. <https://doi.org/10.1029/170GM05>

823 Walter, W.R., Yoo, S., Mayeda, K., Gök, R., 2017. Earthquake stress via event ratio levels: Application
 824 to the 2011 and 2016 Oklahoma seismic sequences. *Geophys. Res. Lett.* 44, 3147–3155.
 825 <https://doi.org/10.1002/2016GL072348>

826 Wang, E., Rubin, A.M., Ampuero, J.-P., 2014. Compound earthquakes on a bimaterial interface and
 827 implications for rupture mechanics. *Geophysical Journal International* 197, 1138–1153.
 828 <https://doi.org/10.1093/gji/ggu047>

829 Wang, H., Ren, Y., Wen, R., Xu, P., 2019. Breakdown of Earthquake Self- Similar Scaling and Source
 830 Rupture Directivity in the 2016–2017 Central Italy Seismic Sequence. *J. Geophys. Res. Solid*
 831 *Earth* 124, 3898–3917. <https://doi.org/10.1029/2018JB016543>

832 Wang, R., Weingarten, M., Langenbruch, C., DeShon, H.R., 2020. Introduction to the Special Section
 833 on Observations, Mechanisms, and Hazards of Induced Seismicity 6.

834 Weir, R.M., Eaton, D.W., Lines, L.R., Lawton, D.C., Ekpo, E., 2018. Inversion and interpretation of
 835 seismic-derived rock properties in the Duvernay play. *Interpretation* 6, SE1–SE14.
 836 <https://doi.org/10.1190/INT-2017-0149.1>

837 Wen, J., Chen, X., Xu, J., 2018. A Dynamic Explanation for the Ruptures of Repeating Earthquakes on
 838 the San Andreas Fault at Parkfield. *Geophysical Research Letters* 45.
 839 <https://doi.org/10.1029/2018GL079140>

840 Wu, Q., Chen, X., Abercrombie, R.E., 2019. Source Complexity of the 2015 Mw 4.0 Guthrie, Oklahoma
 841 Earthquake. *Geophys. Res. Lett.* 46, 4674–4684. <https://doi.org/10.1029/2019GL082690>

842 Yamada, T., 2005. Radiation efficiency and apparent stress of small earthquakes in a South African gold
 843 mine. *J. Geophys. Res.* 110, B01305. <https://doi.org/10.1029/2004JB003221>

844 Ye, L., Lay, T., Kanamori, H., Rivera, L., 2016. Rupture characteristics of major and great ($M_w \geq 7.0$)
 845 megathrust earthquakes from 1990 to 2015: 2. Depth dependence. *J. Geophys. Res. Solid Earth*
 846 121, 845–863. <https://doi.org/10.1002/2015JB012427>

847 Yenier*, E., Laporte, M., Baturan, D., 2016. Induced-seismicity monitoring: Broadband seismometers
 848 and geophone comparison. Presented at the 2016 SEG International Exposition and Annual
 849 Meeting, p. SEG-2016-13970947.

850 Yin, J., Denolle, M.A., Yao, H., 2018. Spatial and Temporal Evolution of Earthquake Dynamics: Case
851 Study of the M_w 8.3 Illapel Earthquake, Chile: 2015 Illapel earthquake source analysis. *J.*
852 *Geophys. Res. Solid Earth* 123, 344–367. <https://doi.org/10.1002/2017JB014265>

853 Yu, H., Harrington, R.M., Kao, H., Liu, Y., Abercrombie, R.E., Wang, B., 2020. Well Proximity
854 Governing Stress Drop Variation and Seismic Attenuation Associated With Hydraulic
855 Fracturing Induced Earthquakes. *J. Geophys. Res. Solid Earth* 125.
856 <https://doi.org/10.1029/2020JB020103>

857 Zhang, H., Eaton, D.W., Rodriguez, G., Jia, S.Q., 2019. Source-Mechanism Analysis and Stress
858 Inversion for Hydraulic- Fracturing-Induced Event Sequences near Fox Creek, Alberta 16.
859
860

861 **MAILING ADDRESSES**

862 Nadine Igonin
863 Bureau of Economic Geology
864 The University of Texas at Austin
865 P.O. Box X
866 Austin, TX 78713-8924
867
868 Daniel Trugman
869 Laxalt Mineral Engineering
870 Building, Room 322 (MS 0174)
871 University of Nevada, Reno
872 Reno, NV 89557
873
874 Keyla Gonzalez
875 TGS
876 10451 Clay Road
877 Houston, Texas
878 77041, USA
879
880 David Eaton
881 Earth Sciences 118
882 University of Calgary
883 2500 University Drive NW
884 Calgary, AB, Canada
885 T2N 1N4

886

887

888

889

890

891

892 **LIST OF FIGURE CAPTIONS**

893 **Figure 1:** a) Map view of ToC2ME seismicity epicenters scaled by magnitude, with events
894 color-coded in time. Well trajectories are shown in white and the stations are indicated with
895 green triangles. b) Distribution of the complete set of geophone arrays around the wells. The
896 labels NS1, NS2, NESW, and NS3 denote different clusters of events, as described in the text.

897 **Figure 2:** Source spectra from an event on November 25, 00:03:43. a) Individual station
898 spectra, colored by distance from the event. Black solid line shows the median. Noise spectra
899 are shown in grey, and the white solid line is the median. The minimum and maximum
900 frequency for the fit are shown as vertical dashed lines, and the inverted corner frequency is
901 shown with the vertical white line. b) Bootstrap realizations of the median source spectra,
902 colored by the best-fitting corner frequency. The Boatwright model is also plotted in blue with
903 the median bootstrap corner frequency, and the background shading corresponds to 95% of the
904 range of obtained fc values.

905 **Figure 3:** Cross plot of corner frequency and magnitude, with a line of best fit from the median
906 of data binned at magnitude increments of 0.2 in the $\log_{10}(M_0)$ domain (black squares). Dark
907 green symbols denote events for which the standard deviation of the inverted corner frequency
908 was greater than 10 Hz. The two lighter shades of green are events with a standard deviation of
909 less than 10 Hz, but the lighter circles have corner frequencies that are less than the SNR 2
910 threshold for the upper frequency limit (fmax in Figure 2a). Dashed lines of equal stress drop
911 are labelled between 0.01 MPa and 100 MPa.

912 **Figure 4:** Normalized magnitude-corrected f_c . Time series for NS1(a) and NS3 (b). Occurrence
913 of nearest hydraulic fracturing operations is shown with vertical lines colored by well; yellow
914 for well A, red for well C and grey for well D. Thick black lines show the cumulative
915 normalized fc. Circles are used for events along NS1 and squares are used for events along
916 NS3. c) map view of NS1, with wells labelled and closest stages shown with 'x' symbols. d)
917 map view of NS3.

918 **Figure 5:** Normalized magnitude-corrected f_c for the NE/SW trending features. a) Time series
919 for with timing of nearest hydraulic fracturing operations shown with vertical lines colored by
920 well; yellow for well A, white for well B, red for well C and grey for well D. Thick black line
921 shows the cumulative normalized fc. b) Map view of NE/SW features. The magnitude 3.1 event
922 is indicated on both panels and corresponds to an increase in normalized f_c for the cluster.

923 **Figure 6:** Normalized residual spectra by cluster, highlighting prevalence of high/low relative
924 frequencies for certain clusters. Each subpanel (a-h) shows a different cluster, with the median
925 of the cluster shown with a thick black line and one standard deviation shown with the thin
926 black lines.

927 **Figure 7:** Spatial and temporal view by cluster from spectral clustering algorithm. Time series
928 of events within a) NS1, b) NS3, and c) NESW. d) Map view of events colored by cluster from
929 spectral clustering algorithm (Figure 6).

930 **Figure 8:** Histogram of normalized corner frequency depending on whether the event occurred
931 on a fault (yellow) or a fracture network (magenta). The peaks of the two distributions are
932 distinct, as illustrated by the solid lines (kernel density estimates).

933

934

935

936

937

938

939

940

941

942

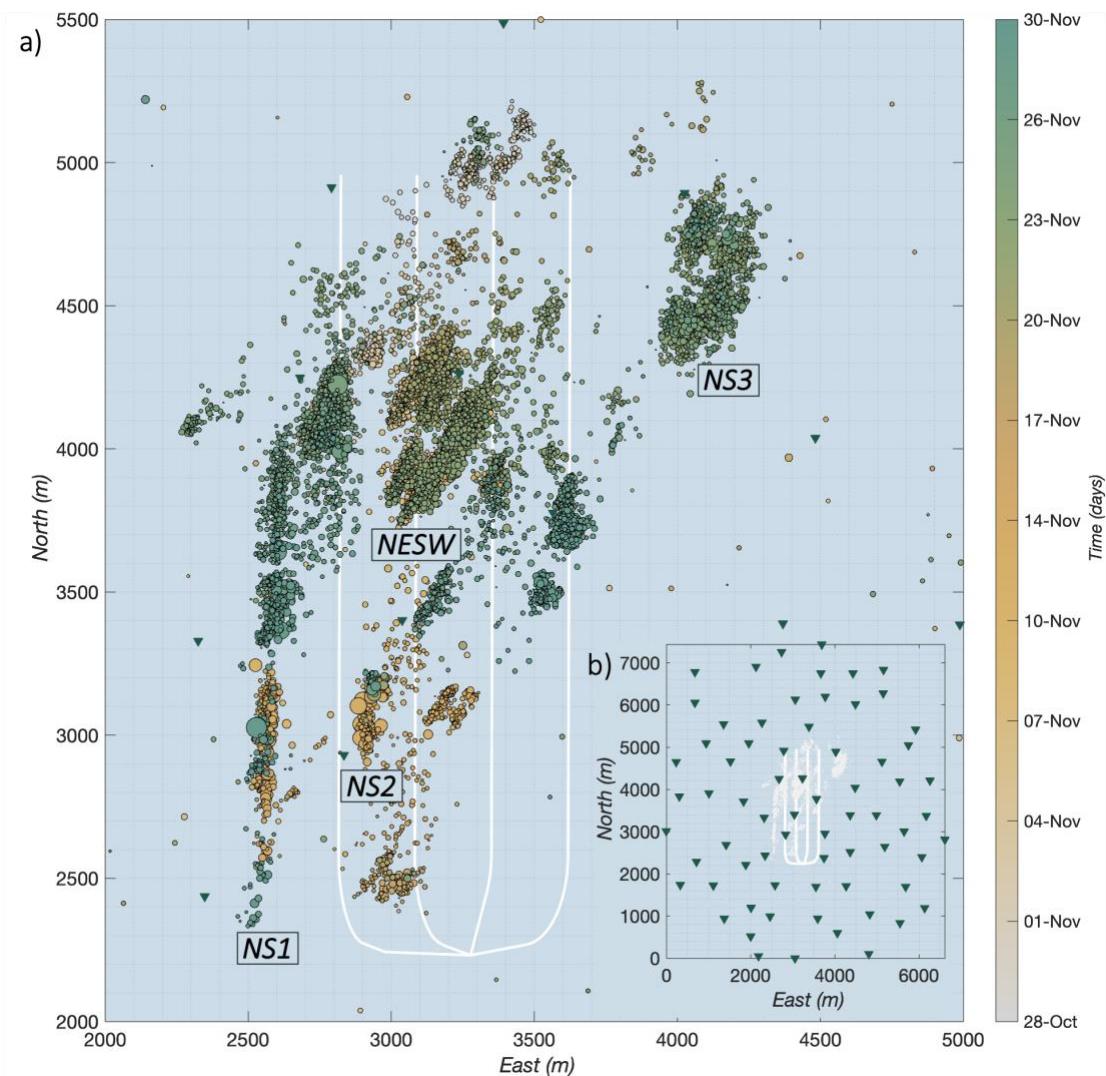
943

944

945

1 **FIGURES**

2

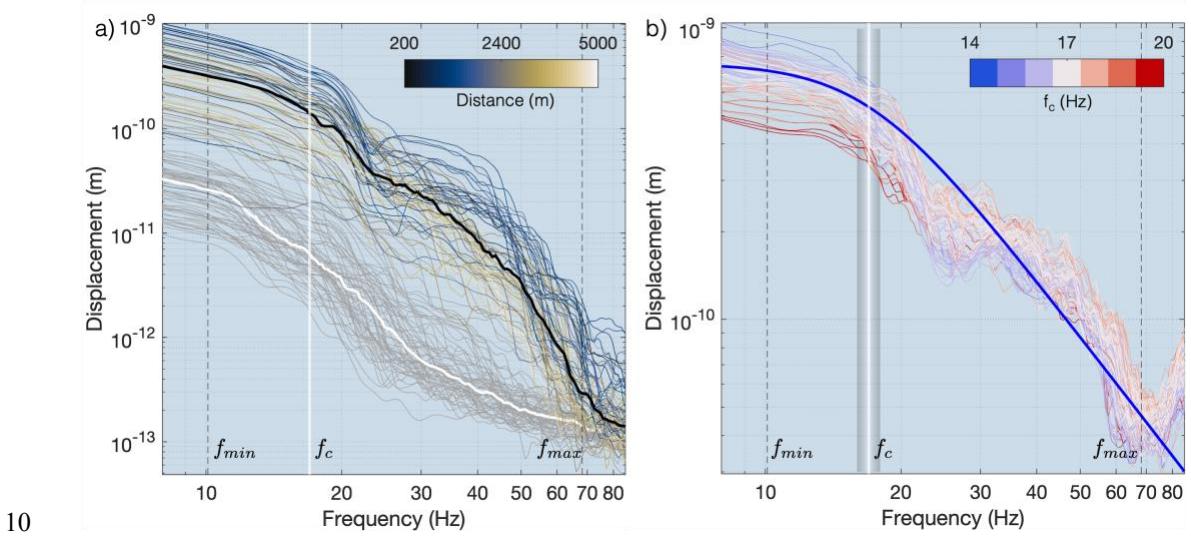


3

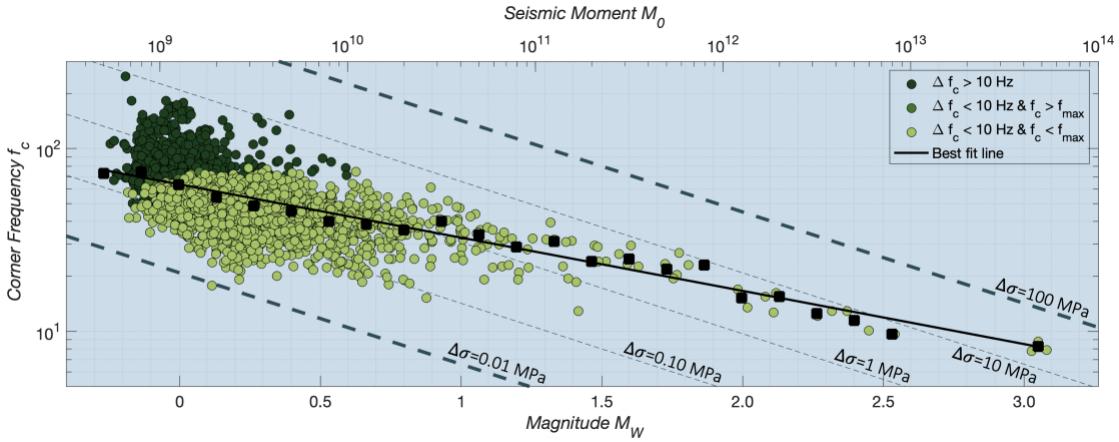
4 *Figure 1: a) Map view of ToC2ME seismicity epicenters scaled by magnitude, with events*
 5 *color-coded in time. Well trajectories are shown in white and the stations are indicated with*
 6 *green triangles. b) Distribution of the complete set of geophone arrays around the wells. The*
 7 *labels NS1, NS2, NESW, and NS3 denote different clusters of events, as described in the text.*

8

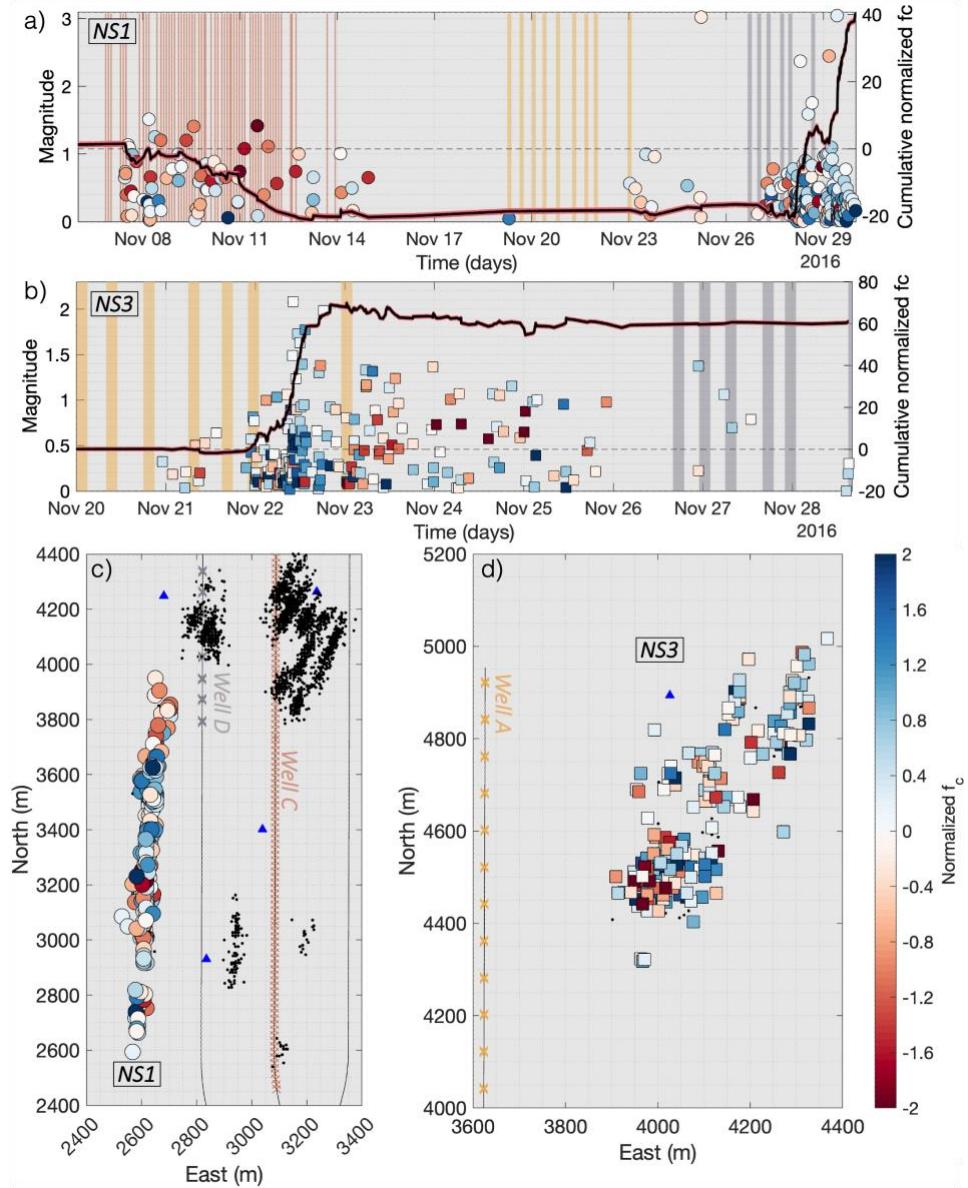
9



11 *Figure 2: Source spectra from an event on November 25, 00:03:43. a) Individual station*
 12 *spectra, colored by distance from the event. Black solid line shows the median. Noise spectra*
 13 *are shown in grey, and the white solid line is the median. The minimum and maximum frequency*
 14 *for the fit are shown as vertical dashed lines, and the inverted corner frequency is shown with*
 15 *the vertical white line. b) Bootstrap realizations of the median source spectra, colored by the*
 16 *best-fitting corner frequency. The Boatwright model is also plotted in blue with the median*
 17 *bootstrap corner frequency, and the background shading corresponds to 95% of the range of*
 18 *obtained f_c values.*



19
 20 *Figure 3: Cross plot of corner frequency and magnitude, with a line of best fit from the median*
 21 *of data binned at magnitude increments of 0.2 in the $\log_{10}(M_0)$ domain (black squares).* Dark
 22 *green symbols denote events for which the standard deviation of the inverted corner frequency*
 23 *was greater than 10 Hz. The two lighter shades of green are events with a standard deviation*
 24 *of less than 10 Hz, but the lighter circles have corner frequencies that are less than the SNR 2*
 25 *threshold for the upper frequency limit (f_{max} in Figure 2a). Dashed lines of equal stress drop*
 26 *are labelled between 0.01 MPa and 100 MPa.*

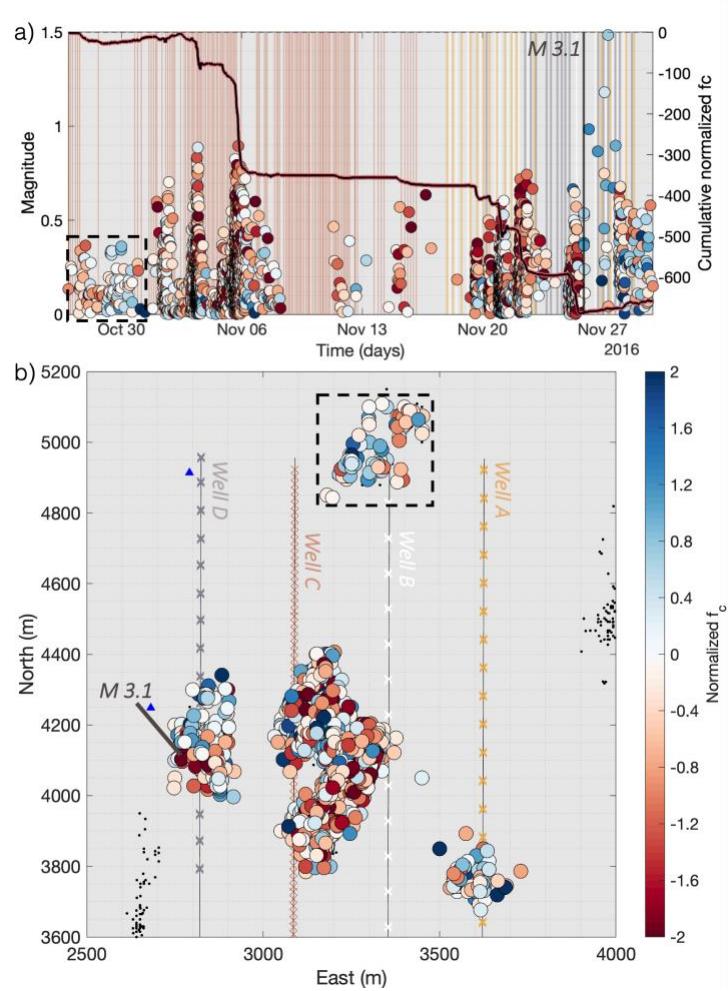


27

28 *Figure 4: Normalized magnitude-corrected f_c . Time series for NS1(a) and NS3 (b). Occurrence*
 29 *of nearest hydraulic fracturing operations is shown with vertical lines colored by well; yellow*
 30 *for well A, red for well C and grey for well D. Thick black lines show the cumulative normalized*
 31 *f_c . Circles are used for events along NS1 and squares are used for events along NS3. c) map*
 32 *view of NS1, with wells labelled and closest stages shown with 'x' symbols. d) map view of*
 33 *NS3.*

34

35

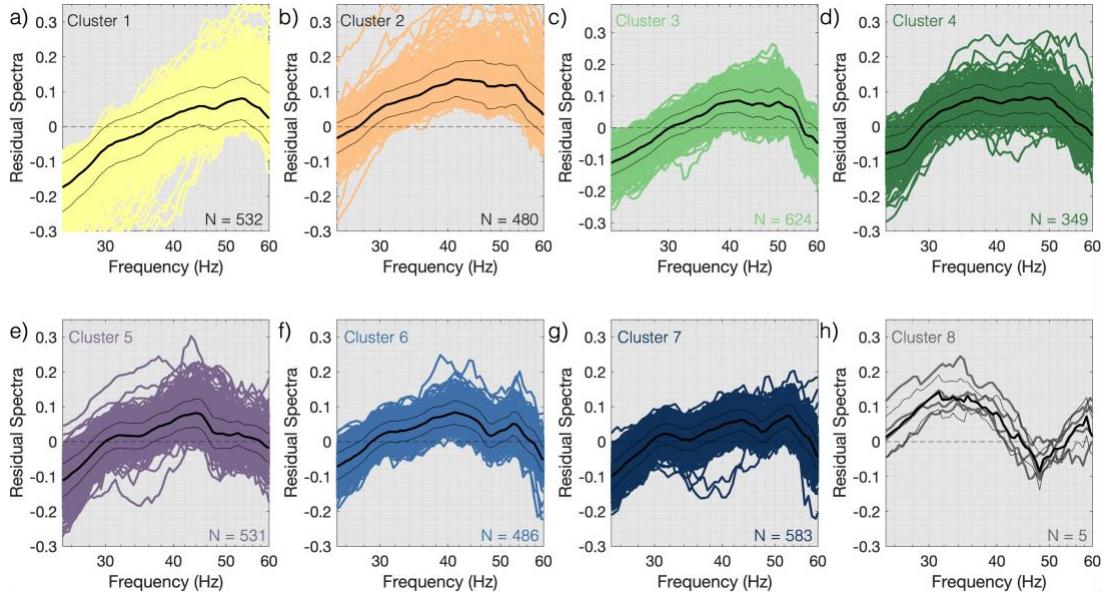


36

37 *Figure 5: Normalized magnitude-corrected f_c for the NE/SW trending features. a) Time series*
 38 *for with timing of nearest hydraulic fracturing operations shown with vertical lines colored by*
 39 *well; yellow for well A, white for well B, red for well C and grey for well D. Thick black line*
 40 *shows the cumulative normalized f_c . b) Map view of NE/SW features. The magnitude 3.1 event*
 41 *is indicated on both panels and corresponds to an increase in normalized f_c for the cluster.*

42

43



44

45 *Figure 6: Normalized residual spectra by cluster, highlighting prevalence of high/low relative*
 46 *frequencies for certain clusters. Each subpanel (a-h) shows a different cluster, with the median*
 47 *of the cluster shown with a thick black line and one standard deviation shown with the thin*
 48 *black lines.*

49

50

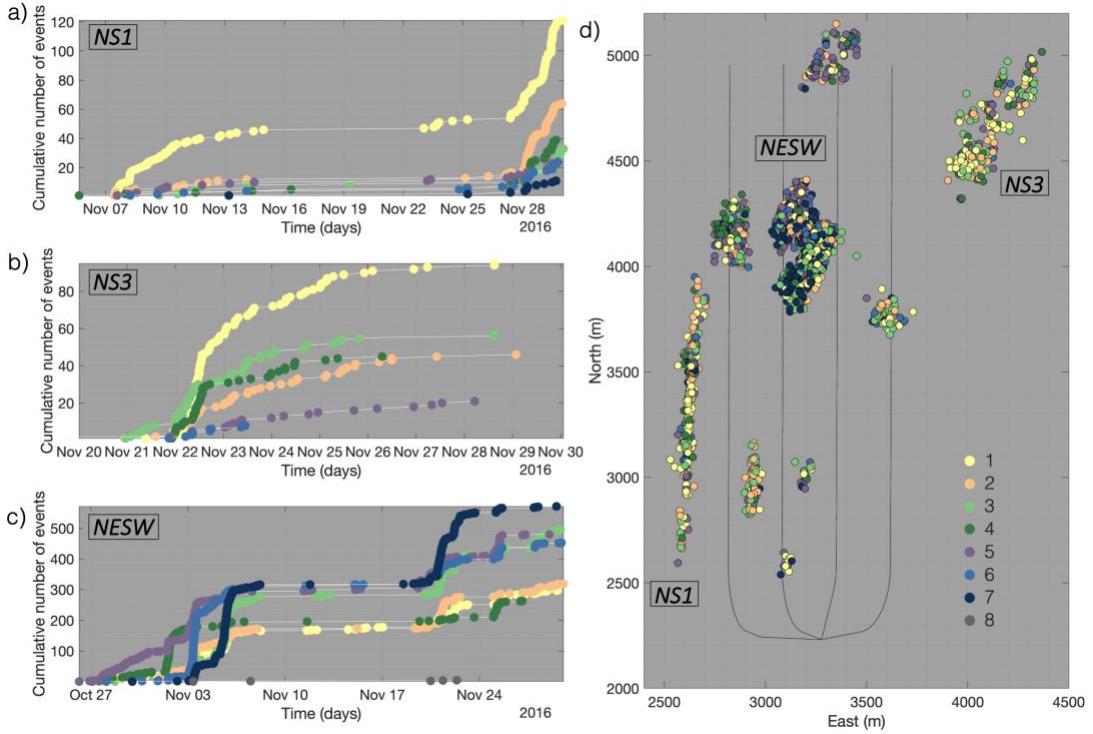
51

52

53

54

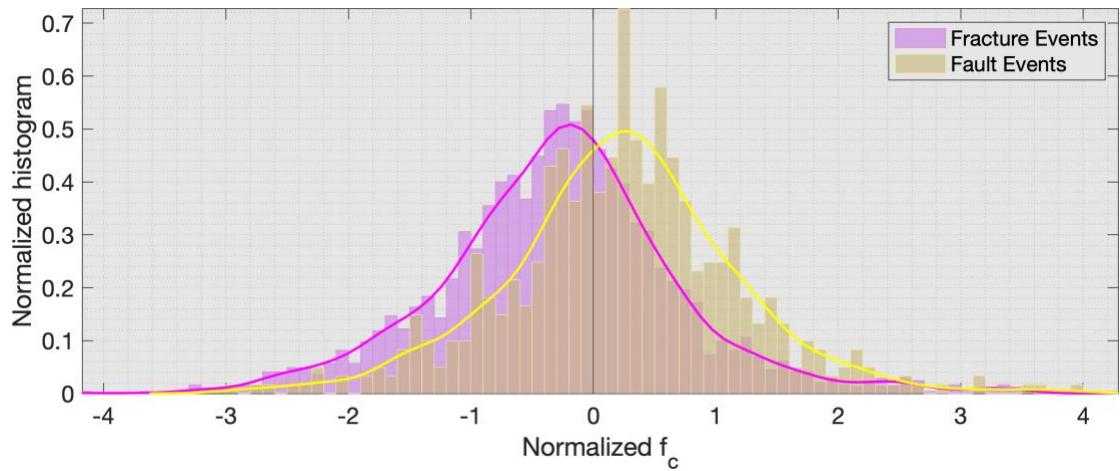
55



56

57 *Figure 7: Spatial and temporal view by cluster from spectral clustering algorithm. Time series*
 58 *of events within a) NS1, b) NS3, and c) NESW. d) Map view of events colored by cluster from*
 59 *spectral clustering algorithm (Figure 6).*

60



61

62 *Figure 8: Histogram of normalized corner frequency depending on whether the event occurred*
 63 *on a fault (yellow) or a fracture network (magenta). The peaks of the two distributions are*
 64 *distinct, as illustrated by the solid lines (kernel density estimates).*

65

66