
 1 

Spectral characteristics of hydraulic-fracturing 1 

induced seismicity can distinguish between activation 2 

of faults and fractures 3 

Nadine Igonin1*, Daniel T. Trugman2, Keyla Gonzalez3, and David W. Eaton4 4 

1. Bureau of Economic Geology, Jackson School of Geoscience, University of Texas at 5 
Austin, Austin, Texas, U.S.A. 6 

2. Nevada Seismological Laboratory, University of Nevada, Reno, U.S.A.  7 

3. Tomlinson Geophysical Services Inc. (TGS), Houston, Texas, U.S.A. 8 

4. Department of Geoscience, University of Calgary, Calgary, Alberta, Canada. 9 

* Corresponding Author. Email: nadine.igonin@beg.utexas.edu 10 

 11 

 12 

  13 

Manuscript Click here to
access/download;Manuscript;Igonin_etal.SourceSpectra.10_Cl

https://www.editorialmanager.com/srl/download.aspx?id=316217&guid=1bc0e3da-a9f9-4b76-89fe-033c0ce62982&scheme=1
https://www.editorialmanager.com/srl/download.aspx?id=316217&guid=1bc0e3da-a9f9-4b76-89fe-033c0ce62982&scheme=1


 2 

ABSTRACT 14 

Analysis of earthquake spectra can aid in understanding source characteristics like stress drop 15 

and rupture complexity. There is growing interest in probing the similarities and differences of 16 

fault rupture for natural and human-induced seismic events.  Here we analyze waveform data 17 

from a shallow, buried geophone array that recorded seismicity during a hydraulic fracturing 18 

operation near Fox Creek, Alberta. Starting from a quality-controlled catalog of 4,000 events 19 

between magnitude 0 and 3.2, we estimate source spectral corner frequencies using methods 20 

that account for the band-limited nature of the sensor response. The stress-drop values are found 21 

to be approximately self-similar, but with a slight magnitude dependence in which larger events 22 

have higher stress drop (~10 MPa). Careful analysis of the relative corner frequencies shows 23 

that individual fault and fracture segments experienced systematic variations in relative corner 24 

frequency over time, indicating a possible change in the stress state. Clustering analysis of 25 

source spectra based on the relative proportion of high and low frequency content relative to 26 

the Brune model further shows that event complexity evolves over time. Additionally, the faults 27 

produce earthquakes with systematically larger stress drop values than the fractures. Combined, 28 

these results indicate that the features activated by hydraulic fracturing experience observable 29 

changes in source behavior over time and exhibit different properties depending on the 30 

orientation, scale and fabric of the structural feature on which they occur on.  31 

32 
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1. INTRODUCTION 33 

Induced seismicity initiated by hydraulic fracturing has been observed worldwide (Atkinson et 34 

al., 2020; Schultz et al., 2020) and has been associated with events up to magnitude 5.7 (Lei et 35 

al., 2020). In general, hydraulic fracturing can trigger moderate magnitude seismicity by 36 

interaction with pre-existing faults (e.g., Chang and Segall, 2016; Wang et al., 2020). As such, 37 

there is much that can be learned from careful analysis of injection induced seismicity that is 38 

relevant to natural seismicity (Ellsworth, 2013). 39 

Source spectral analysis has been used for decades to determine the corner frequency, stress 40 

drop, directivity and source complexity of earthquakes (Aki, 1972). These parameters are useful 41 

for understanding the rupture style and relative earthquake scaling, such as low vs. high stress 42 

drop. There has been considerable debate about whether stress-drop values from induced 43 

earthquakes are comparable to those from natural earthquakes. Many studies show evidence 44 

that stress drop from injection induced earthquakes is lower than their tectonic counterparts 45 

(Abercrombie and Leary, 1993; Boyd et al., 2017; Chen and Shearer, 2013, 2011; Fehler and 46 

Phillips, 1991; Goertz-Allmann et al., 2011; Hough, 2015, 2014; Reiter et al., 2012; Sumy et 47 

al., 2017; Yu et al., 2020); conversely, many studies show that stress-drop values of induced 48 

earthquakes are consistent with natural earthquakes at the same depth (Clerc et al., 2016; 49 

Holmgren et al., 2019; Huang et al., 2017; Spottiswoode and McGarr, 1975; Tomic et al., 2009; 50 

Zhang et al., 2019). Therefore, analysis of the corner frequency and stress drop of earthquakes 51 

from injection induced seismicity, especially at lower magnitudes, is of interest to further 52 

understand these observations.  53 

There are many different techniques for analyzing spectra, including spectral fitting and 54 

empirical Green’s functions (Abercrombie, 2021). Spectral fitting involves fitting a model of 55 

the displacement spectrum S(f) to the observed data, 56 

  𝑆(𝑓) =  
Ω0𝑒

−𝜋𝑓𝑡0
𝑄 𝑒−𝜋𝜅𝑓

[1+ (
𝑓

𝑓𝑐
)

𝛾𝑛
]

1
𝛾

  ,   [1] 57 

where Ω0 is the low-frequency spectral amplitude, 𝑡0 is the travel time to the sensor from the 58 

origin, 𝑄 is the quality factor that describes path attenuation, 𝑓𝑐 is the corner frequency, 𝜅 is the 59 

site attenuation parameter (Anderson and Hough, 1984), 𝛾 is a constant controlling the spectral 60 

shape, and 𝑛 controls the rate of high-frequency falloff (Abercrombie, 1995). The shape 61 

constant 𝛾 is assigned a value of 1 for the Brune model and 2 for the Boatwright model, and 62 
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the falloff is typically set to 2 (Boatwright, 1980; Brune, 1970). There is a tradeoff between Q 63 

and 𝜅, both of which relate to the attenuation of waveforms at different frequencies. Obtaining 64 

an independent estimate of Q and 𝜅 is desirable, but often not possible in practice (e.g. Atkinson 65 

and Silva, 1997; Hassani et al., 2011). In the following sections, we will describe the methods 66 

we used to try to determine an estimate for these parameters. Then, Equation [1] is used to solve 67 

for the corner frequency, which can be further related to other characteristics of the source, 68 

such as the stress drop.  69 

Empirical Green’s functions (EGFs) can also be used to remove path and site effects (e.g. 70 

Baltay et al., 2011; Mori and Frankel, 1990).  This approach uses small events that occur in 71 

close proximity to a larger target event as a reference event, to remove the path/site effects that 72 

all the events have in common. Although the EGF method was developed using larger 73 

earthquakes (Hough, 1997), it has also been shown to be valuable when applied to small 74 

magnitude (M < 2) datasets (e.g. Imanishi and Ellsworth, 2006). Later in this paper, we use this 75 

approach to help constrain the potential Q values for our dataset.  76 

The dataset used in this study is from a dense local geophone array near Fox Creek, Alberta, a 77 

region that has been associated with hydraulic-fracturing induced seismicity with magnitudes 78 

up to 4.2 (Schultz et al., 2020). As part of the monitoring strategy, a local, shallow-buried 10 79 

Hz geophone array was used to determine precise locations and provide detailed insight into 80 

the induced seismicity (Eaton et al., 2018). Although this provides high-resolution epicentral 81 

locations, the use of geophones introduces a bandwidth limitation. The use of this type of sensor 82 

for estimation of source parameters has been successful, but often carries a larger uncertainty 83 

than broadband seismometer-based datasets (Klinger and Werner, 2021). For this reason, in 84 

this paper we employ several different strategies to constrain and account for the precise ranges 85 

of frequencies within which spectral analysis can be reliably carried out. We also impose strict 86 

quality-control criteria based on uncertainty calculations.  87 

The goal of obtaining a catalog of corner frequencies and stress drops is to analyze if there are 88 

any statistically significant differences between the faults and fracture networks that were 89 

activated. In this paper, a fault is defined as a discontinuous surface across which there is a net 90 

shear displacement (Childs et al., 2009; Davatzes and Aydin, 2003; Peacock et al., 2016), while 91 

a fracture is a discontinuous surface across which there has been separation (Pollard and Aydin, 92 

1988). Unlike fractures, faults generally contain core zones with gouge material formed by 93 

repeated failure. As such, fractures and faults have different geomechanical characteristics, 94 

which may be manifested in the stress drop or source complexity (e.g. Candela et al., 2011). In 95 

the absence of drillcores or image-log data, distinguishing between faults and fractures must 96 
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rely on indirect measurements from earthquakes, such as b-values; seismicity due to fault 97 

activation tends to have b-values close to 1, while microseismicity associated with fractures is 98 

characterized by b-values closer to 2 (e.g. Eaton and Maghsoudi, 2015; Igonin et al., 2018).  99 

In this paper, we start by introducing the Tony Creek dual Microseismic Experiment (ToC2ME) 100 

dataset, a high-resolution passive seismic dataset that recorded small earthquakes induced 101 

during hydraulic-fracturing operations. We use the highest quality events from this dataset for 102 

source-spectral analysis, estimation of Q, empirical Green’s functions and spectral fitting. After 103 

obtaining robust estimates for the corner frequencies of each event, we calculate the static stress 104 

drop and the residual source spectra (i.e. the difference between the observed and model-105 

predicted spectra), which are later used for clustering analysis and evaluation of source 106 

complexity (Uchide and Imanishi, 2016). Through this, we demonstrate that there are 107 

differences between the distribution of corner frequencies, stress drop and frequency content 108 

of event populations depending on whether they originate from faults or fractures.  109 

2. DATA AND RESULTS 110 

2.1. ToC2ME dataset 111 

The Tony Creek Dual Microseismic Experiment (ToC2ME) is a passive seismic dataset 112 

acquired west of Fox Creek, Alberta, Canada that recorded seismicity near a 4-well hydraulic 113 

fracturing pad in late 2016 (Eaton et al., 2018). This dataset has been extensively studied and 114 

interpreted (Igonin et al., 2021, 2018; Zhang et al., 2019) and contains at least 18,040 events 115 

that occurred during hydraulic-fracturing operations (Figure 1a).  The station distribution (blue 116 

triangles, Figure 1b) makes it suitable for source-spectral analysis due to the azimuthal 117 

coverage and close proximity to the seismicity, which occurred at an average depth of 3.5 km 118 

below the surface. Three-component 10 Hz geophones were deployed in 69 shallow borehole 119 

arrays 27 m deep, which is below the weathering layer in this region. For this reason, geophone 120 

waveforms are relatively unaffected by near-surface attenuation and are thus characterized by 121 

relatively high signal-to-noise ratios (SNR), even for small earthquakes. Out of 18,040 events, 122 

4,083 events have a signal to noise ratio (SNR) of over 5 on all stations, calculated by dividing 123 

the root-mean-square of the windowed signal by the root-mean-square of windowed noise 124 

before the signal. P- and S-wave picks are available at most of the stations for this high SNR 125 

event subset used in this paper. There were also six broadband seismometer stations deployed 126 

for the program, but they were not used for this analysis due to the higher noise conditions at 127 

the surface (Paes, 2020; Zhang et al., 2019).   128 
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There are three primary kinds of seismicity observed for this dataset (Figure 1a), as detailed by 129 

Igonin et al. (2021):  130 

1. Fault activation (NS1-3): seismicity on linear structures, clusters having a b-value of 131 

~1.  NS1 and NS2 are on near-vertical strike-slip faults and contain the largest events 132 

of the sequence. NS3 is on a regional N/S trending fault and consists largely of normal 133 

faulting mechanisms, although the seismicity follows a NE/SW trend that straddles the 134 

primary fault structure. All of these event hypocenters are located above the injection 135 

zone.  136 

2. Fracture network activation (NESW): A broad clustering of NE/SW parallel features 137 

that have b-values close to 2, are above the injection zone, and have strike-slip focal 138 

mechanisms consistent with the feature orientation.  139 

3. Operational microseismicity: Within the injection depth and with a timing that matches 140 

the injection schedule. These events are within 100-200 m of the injection well and 141 

represent a minority of events within the 18,040 event catalog.  142 

The events studied in this paper belong to either type 1 or 2; all of the operational seismicity 143 

had SNR values that were too small for source analysis. A primary aim of this paper is to 144 

determine if there are systematic, statistically-significant differences in the source 145 

characteristics of the events depending on whether they occur on faults or fractures.  146 

2.2. Instrument response correction and displacement spectra calculation 147 

The first step in the analysis was to perform an instrument-response correction to the data 148 

acquired using 10 Hz geophones (OYO GSX type) with a sampling rate of 0.002 seconds. Due 149 

to the stronger attenuation of the S-waves in the shallow subsurface, we focus our analysis on 150 

the P-waves only (Eaton et al., 2018). The data were first de-trended and tapered using a 151 

maximum percentage of 0.01. The instrument response correction was carried out on the 152 

vertical-component of the data windowed around the P-wave pick (10 samples before the pick 153 

and 160 samples after the pick). The ObsPy package (Beyreuther et al., 2010) was used for 154 

removing the instrument response, with a pre-filter of [0.5, 2.0, 200, 250].  155 

For the 4076 events (median of 58 stations per event) we estimate the displacement spectra at 156 

each station using a multi-taper algorithm (Prieto, 2022) to calculate the power-spectral density. 157 

We used a time bandwidth product of 3.5 and set the number of tapers to 5 (e.g. Viegas et al., 158 

2010). Then, we convert to displacement, and resample all the spectra to equal log-spacing. 159 
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2.3. Corner frequency and residual source spectra 160 

2.3.1. Q estimation and spectral fitting  161 

Two different approaches were used to constrain the P-wave attenuation (QP) value for this 162 

dataset. The first method uses EGF analysis, which resulted in a QP estimate of 50-80 (see 163 

Supplementary Material for details and results). There are limitations with these results, such 164 

as the small sample size (only 6 usable corner frequencies from the EGF method), and the 165 

narrow range of frequencies that could be used for the spectral fitting so there is significant 166 

uncertainty with this estimate.  This first-order estimate is consistent with findings for QP close 167 

to the study region, which range from 25 to 75 (Bosman et al., 2015; Calixto and van der Baan, 168 

2015).  169 

To narrow down the range, we then used an iterative fitting of the source spectra (using 170 

Equation [1]) with different QP and  values. By comparing the error for the total catalog for 171 

different trial values, we can more precisely determine an appropriate QP/ combination for 172 

this dataset. Figure 2a shows the individual displacement spectra and median displacement 173 

spectra for one event across the 69 stations. The vertical dashed lines show the upper and lower 174 

limits for the fit, which are based on the signal to noise ratios in the frequency domain for each 175 

event. The lower frequency limit was fixed to the value where the lower frequency band range 176 

SNR first exceeded 2 (20-30 Hz for the smallest events) and defaulted as a minimum of 10 Hz 177 

for the larger events, due to the limited geophone sensitivity at low frequencies. The upper 178 

frequency limit also corresponded to the highest frequency value where the SNR remained 179 

above the threshold value of 2. This value is lower than many studies, which typically suggest 180 

using a SNR of 3-10 (Klinger and Werner, 2021; Oth et al., 2011; Shearer and Abercrombie, 181 

2021; Trugman et al., 2017), but given the bandwidth limitations, we opted for a lower bound 182 

to allow for a broader frequency range that was still suitable for our spectral fitting approach. 183 

Since the true low-frequency plateau (at 0 Hz) cannot be determined from the raw data, we 184 

estimate Ω0 by assuming an initial stress drop of 1 MPa to calculate the theoretical corner 185 

frequency for each given event given an estimate of the seismic moment (using Equation 1). 186 

Then, we use the observed amplitude at 10 Hz, the trial fc, and theoretical fc  to get the theoretical 187 

low-frequency plateau at 0 Hz (see Supplementary Material). The L2 norm is then used to 188 

minimize the misfit between the observed and modelled data. The best-fit model is shown in 189 

Figure 2b; in the illustrated case, it resulted in a corner frequency of 17 Hz for the M 0.65 event.  190 

We then used the best-fit model to obtain residual spectra, defined as the difference between 191 

the observed spectra and the best-fit model. This gives a measure of the relative proportion of 192 
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frequency that is either above or below the model value. We also use the residual to calculate 193 

the median absolute error for each event. The error was calculated for each event using Q values 194 

of ranging between 50 and 140, 𝜅= 0-0.011, using both the Brune (n=1) and Boatwright (n=2) 195 

models. Comparisons of the medians of the histograms of errors for each of the versions of the 196 

catalogs showed that, for both the Brune and Boatwright models, QP = 80 and 𝜅 = 0.007 197 

provided the best fit (see Supplementary Material for a comparison of the histograms). 198 

Additionally, the Boatwright models consistently had lower error than the Brune models. 199 

Therefore, for the remainder of the paper, we use the Boatwright model for the fit, a QP value 200 

of 80 and 𝜅 = 0.007. This is in close correspondence with Rodríguez-Pradilla and Eaton 201 

(2019), who found a QP of 60 for this same dataset.  202 

2.3.2. Bootstrap uncertainty analysis and corner frequency   203 

With the parameters for fitting Equation [1] to the data sufficiently constrained, we calculated 204 

uncertainties in the corner frequencies for the events using bootstrapping.  During each 205 

bootstrap iteration, we re-sampled the 69 station spectra with replacement, keeping the total 206 

number of spectra to 69 each time. Then, we calculated the median of the station spectra in 207 

each resampled instance and carried out the spectral fitting on the median, solving for the corner 208 

frequency (Figure 2b). This was repeated 500 times and the median corner frequency from the 209 

500 iterations was taken as the corner frequency for that event. An example histogram of the 210 

distribution of corner frequencies for a well-constrained event and a poorly-constrained event 211 

can be found in the Supplementary Material (Figure S9). The standard deviation of fc obtained 212 

from bootstrapping for each event ranged from 5-80 Hz (Supplementary Material). In the 213 

following section we will impose a cut-off of standard deviation of 10 Hz for the uncertainty. 214 

We acknowledge that this is a large range, further illustrating the challenges of working with 215 

band-limited data.  216 

2.4. Stress drop  217 

To estimate stress drop, we used the expression  218 

Δ𝜎 =  
7

16
𝑀0 (

𝑓𝑐

𝑘𝑣𝑠
)

3
  ,    [2] 219 

where 𝑘 is a numerical constant, and 𝑣𝑠 is the S-wave velocity in the source region (Eshelby, 220 

1957). Based on the numerical results of Kaneko and Shearer (2014), we set 𝑘 =  0.38, 221 
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appropriate for P-wave spectra. From nearby well log data, we set 𝑣𝑠 to 2100 m/s. The corner 222 

frequency is known from the bootstrap analysis.  223 

Although estimates of M0 are available from Igonin et al., 2018, for consistency, we re-224 

calculated the M0 and MW for this dataset using a similar approach to the corner frequency, 225 

using the median of the spectral amplitudes from 5 to 20 Hz as a reference point for the low-226 

frequency plateau for this dataset. The updated magnitudes match very closely with the original 227 

magnitudes, but there is some minor deviation for a small subset of events at MW < 0.5 228 

(Supplementary Material). Uncertainties for M0 were calculated using a bootstrap approach in 229 

the same way as for the corner frequency.  230 

Figure 3 shows a crossplot of the corner frequency with the moment. The events are colored 231 

based on standard deviation, and whether the inverted corner frequency is within the SNR > 2 232 

range for each individual event. The uncertainty criterion preferentially eliminates events with 233 

higher corner frequencies, which is expected due to the low signal to noise ratios for most 234 

events above 80 Hz.  235 

In order to quantify apparent departure from self-similarity, we fit a linear equation to the data 236 

binned at increments of 0.2 in the log10 (M0) domain (Kanamori, 2004; Trugman et al., 2017; 237 

Walter et al., 2006). The linear equation is 238 

log10  𝑓 𝑐 = 𝜓0 + 𝜓1 log10 𝑀0  .     [3] 239 

Based on the implied trend-line, we then calculate the normalized, magnitude-corrected corner 240 

frequency, which is given by: 241 

𝑍𝑓𝑐 =  
log10 𝑓𝑐−𝐸[log10 𝑓𝑐|𝑀0]

𝑆𝑇𝐷{log10 𝑓𝑐−𝐸[log10 𝑓𝑐|𝑀0]}
  ,   [4] 242 

where E[] refers to the expected corner frequency based on an input M0 and the constants from 243 

Equation [3]. Positive values indicate corner frequencies that are larger than the line of best fit, 244 

while negative values correspond to smaller-than-expected corner frequencies. This re-245 

parameterization of the dataset allows us to distinguish events that are enriched or depleted in 246 

high-frequency energy compared to typical events of the same size. According to the 247 

parameterization in Equation (3), a 𝜓1 value of -0.333 corresponds to a self-similar 248 

relationship; smaller negative 𝜓1values indicate an increase in the stress drop with magnitude, 249 

while larger negative 𝜓1values correspond to a decrease in stress drop with magnitude. For this 250 
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dataset, 𝜓1 has a best-fit value of -0.198. It should be noted that for the magnitude range of 1.2 251 

to 2.5, a linear fit yields a 𝜓1 value of -0.28, closer to self-similarity. Due to the band-limited 252 

nature of the geophones, it is possible that apparent breakdown in self-similarity reflects 253 

insufficient SNR at higher frequencies, which leads to an apparent decrease in the event corner 254 

frequency. The expected corner frequencies for the events of magnitude 1.2 to 2.5 are on the 255 

order of 10-30 Hz, which is well-resolved given the signal to noise relationships discussed 256 

previously.  257 

Analysis of normalized corner frequency reveals coherent spatial and temporal trends. In 258 

Figures 4-5, we use a colorscale where blue denotes positive normalized corner frequencies 259 

(enriched in high-frequency energy) and red denotes events with negative normalized corner 260 

frequencies (depleted in high-frequency energy). Each of the clusters (as labeled in Figure 1) 261 

exhibit different behavior over time. NS1, the largest N/S trending feature, begins with 262 

consistently lower normalized corner frequencies, but then towards the end of the acquisition 263 

period shifts to consistently higher normalized corner frequencies (Figure 4a,c). NS3, which 264 

resides on a regional N/S trending fault, has an opposite trend to NS1, in that the sequence 265 

begins with higher normalized fc and then shifts to lower overall normalized fc values over time 266 

(Figure 4b,d). An animation of the normalized corner frequency over time relative to the 267 

operations schedule is included in the supplementary material.  268 

Figure 4 also shows the timing of the hydraulic fracturing stages relative to the event 269 

progression. The event locations closely follow the nearest hydraulic fracturing stages, and 270 

injection can be clearly attributed as the cause of activation (see also Igonin et al., 2021). Well 271 

C was hydraulically fractured first and used an atypical completion procedure, with many 272 

closely-spaced small-volume stages (1 perforation shot per stage). During the completion of 273 

well C, the NESW cluster was activated, as well as the southern half of NS1. After all of the 274 

stages of well C were done, operations began on wells A, B, and D concurrently. These wells 275 

were hydraulically fractured using a zipper approach with the plug-and-perf method (Eaton, 276 

2018), with 4 perforation shots per stage. Wells A, B and D featured larger volumes and larger 277 

stage spacing than well C. Well A, which is the closest well to NS3, is interpreted to be 278 

responsible for the activation of that fault feature. The data collection using the shallow buried 279 

array was completed prior to the end of the hydraulic fracturing programs, so only half of the 280 

stages of wells A, B and D were recorded.  281 

The NE/SW trending features are shown together over time in Figure 5. Collectively, there is 282 

an overall negative normalized corner frequency across the entire sequence, with two 283 

exceptions. At the onset, there is a reversal of normalized fc from negative to positive (dashed 284 
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region in Figure 5). There is also an increase in normalized fc toward the end of the data-285 

collection period, and this corresponds to a magnitude 3 event occurring at the intersection of 286 

one of the parallel NE/SW trending features and the northern part of NS1.  287 

In terms of the injection timing, the NESW clusters were first activated during the hydraulic 288 

fracturing of well C. The largest central portion of the NESW clusters was activated twice; the 289 

second time being during the closest stages of well B.  290 

From the combined behaviour of the events on faults and fractures, we postulate that the events 291 

on the faults are more likely to have higher normalized corner frequency, whereas fractures are 292 

more likely to have lower normalized corner frequency. Both features exhibit reversals from 293 

one mode to the other. In the Discussion section, we explore these observations further. 294 

2.5. Spectral clustering analysis  295 

To analyze the corner frequency and how the proportion of high- and low-frequency content 296 

varies for each event, we calculate residual spectra using the best-fit Boatwright model at the 297 

inverted corner frequency, S (f | fc ), and the observed spectra S*( f ): 298 

𝑅𝑆(𝑓) = log10 𝑆(𝑓|𝑓
𝑐
) − log

10
𝑆∗(𝑓) .   [5] 299 

The residual spectra provides a measure of the relative proportions of frequency above/below 300 

the best-fit model (Uchide and Imanishi, 2016). For example, some events may have higher 301 

proportions of higher frequency energy, while others may have decreases in frequency content 302 

in other frequency bands. These relative proportions within different frequency bands reflect 303 

event complexity; departure from the Boatwright best-fit model is inferred to represent complex 304 

rupture. By clustering the residual spectra into groups, we can determine if there are any 305 

consistent trends that correlate with either spatial features (fractures vs. faults) or the timing of 306 

the earthquakes.   307 

For this purpose we use a spectral clustering algorithm (e.g. von Luxburg, 2007) implemented 308 

in scikit-learn, a Python package (Pedregosa et al., 2011). We window the data in the range 309 

[20,60 Hz], because the majority of events have SNR > 2 within that range, whereas only the 310 

larger events have energy outside that band. As a quality-control step, we use only the residual 311 

spectra for events where the standard deviation of the corner frequency was less than 20 Hz, 312 

resulting in a subset with 3078 events. The spectral clustering algorithm requires a few 313 

hyperparameters: the number of clusters, the affinity metric, and the number of neighbors. We 314 



 12 

set the number of clusters to 8 and use the cosine affinity with 10 neighbors. Figure 6 shows 315 

the normalized residual spectra, by cluster, within the frequency band that was used.  316 

All of the clusters are negative or close to zero at less than 30 Hz, suggesting that the best-fit 317 

Boatwright model underestimates the lower frequencies (Figure 6). This corresponds to an 318 

observation of the geophone data having low-frequency noise that results in an increase in low-319 

frequency content (as seen in Figure 2). Each of the clusters have a different prevalence of 320 

energy within the [30 60] Hz band, and some clusters show notches at specific frequencies. An 321 

interesting note is that most of the clusters are approximately the same size (on the order of 322 

100s of events), with the exception of cluster 5, which only contains 5 events that have spectra 323 

that does not visually match any of the other clusters.  Excluding this small cluster, we can 324 

classify three broad groups. First, clusters 1 and 2 are similar and have the largest deviations 325 

from the Boatwright model (dashed line at zero residual), Second, clusters 3 and 4 are similar 326 

to each other, but have smaller residual values than clusters 1 and 2. Third, clusters 5, 6 and 7 327 

all display notches at 32, 44 and/or 52 Hz, but are the closest to having zero residual.   328 

To study the significance of the clustering further, Figure 7 shows a time series of the clusters 329 

obtained from spectral clustering, with each subplot showing the proportion of each cluster in 330 

a) NS1, b) NS3, and c) NESW with the colors matching Figure 6. Both fault features (NS1 and 331 

NS3) are dominated by cluster 1 (yellow). Clusters 2, 3 and 4 (orange and greens) are also 332 

prevalent in both fault features. In contrast, the NESW clusters show more diversity in the 333 

spectral clusters, and clusters 5, 6 and 7 (purple, and blues) are more present. In the Discussion, 334 

we explore the potential significance of these differences.  335 

Figure 7d shows a map view of the events colored by the clusters from the spectral clustering 336 

algorithm. Cluster 3 (light green) is present in all the features, which shows that the spectral 337 

clustering is not biased based on the source location. Likewise, cluster 2 (orange) is seen in 338 

both NS1 and NS3, though both of them are from opposite ends of the study area. Therefore, 339 

we believe that the data processing and careful selection of usable frequencies has removed 340 

biases associated with events coming from the same location. Similarly, there is no magnitude 341 

dependence with the clusters (see Supplementary Material), since they occur equally for all 342 

magnitudes.  343 

3. DISCUSSION 344 

In this section we start by discussing the limitations of the results and sources of uncertainty 345 

and bias in the data. Then, we split the normalized corner frequency values depending on which 346 
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feature they originate (fault vs. fracture), to show there are statistically significant differences. 347 

Finally, we discuss the results of the spectral clustering analysis in more detail and integrate 348 

those results with the observations from the corner-frequency distributions to make inferences 349 

about seismicity along faults and fractures.  350 

3.1. Sources of uncertainty 351 

The bandlimited nature of the geophone data introduces difficulties in determining accurate 352 

corner frequencies and stress drops. For example, Ide and Beroza (2001) demonstrated that 353 

bandlimited data can cause apparent deviation of self-similarity of stress drop with magnitude 354 

due to an underestimation of the radiated energy. Likewise, there are challenges in determining 355 

the Q and 𝜅 values independently and accurately (Ktenidou et al., 2014). Some studies have 356 

shown that is it possible to get corner frequencies and stress drop values from geophone data 357 

that is consistent with that observed with broadband seismometer data (e.g. Glasgow et al., 358 

2018; Goertz-Allmann et al., 2011; Klinger and Werner, 2021; Viegas et al., 2012), though in 359 

all cases similar challenges were faced with the data processing.  360 

Although we found a breakdown in scaling for the stress drops in this study (Figure 3), the 361 

robustness of this observation is limited by the narrow range of frequencies with good SNR 362 

(e.g., Ruhl et al., 2017). However, there are several plausible physical mechanisms that could 363 

cause deviations from self-similarity, and number of studies have reported such trends (Bindi 364 

et al., 2020; Oth et al., 2011; Pacor et al., 2016; Trugman, 2020; Trugman et al., 2017; Trugman 365 

and Shearer, 2018, 2017; Wang et al., 2019). A systematic change in rupture velocity, fault 366 

geometry or rupture aspect ratio could perturb the measured corner frequency (e.g. Kaneko and 367 

Shearer, 2015; McGuire and Kaneko, 2018) in a manner that could be interpreted as a 368 

magnitude-dependent stress drop. Similarly, larger earthquakes are preferentially more likely 369 

to activate frictional weakening mechanisms that could lead to higher stress drops (e.g., Tullis, 370 

2015). In the case of induced seismicity, it also is possible that small and large earthquakes are 371 

fundamentally different, with smaller events usually associated with anthropogenic stressing 372 

and stress release, and larger ones triggered by, or relieving, anthropogenic stresses (Ellsworth 373 

et al., 2019). In this case, there was a combination of fault and fracture related events, which 374 

may further explain the difference in scaling if there are two superimposed distributions (e.g., 375 

Yu et al., 2020). The band-limited nature of our dataset prevents us from making any strong 376 

claim in these regards.  377 

Another source of uncertainty is the fixed high-frequency falloff rate, represented by the 378 

parameter n (Shearer et al., 2019; Trugman, 2022, 2020; Trugman and Shearer, 2017; Yin et 379 
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al., 2018). Broadly speaking, a falloff rate defined by n = 2 is consistent with observations for 380 

most earthquakes (Hough, 2001), but minor deviations have been observed and can be 381 

attributed to increasing the uncertainty in the inverted corner frequency and stress drop (Walter 382 

et al., 2017). Especially in the case of geophone data, constraining n is an added challenge 383 

(Klinger and Werner, 2021; Yenier et al., 2016). 384 

3.2. Stress drop distribution by feature type 385 

One observation made by analysing the spatial distribution of the normalized corner frequency 386 

is that the events located on faults tend to have higher normalized fc than those on fractures. To 387 

analyze this further, Figure 8 shows a histogram comparing normalized fc from faults (NS1-3) 388 

vs. fractures (NESW). The median of the normalized fc of the faults is 0.21, and the median of 389 

the normalized fc of the fractures is -0.25.  However, it should be noted that most of the largest 390 

events within the dataset (MW > 2) have low normalized fc values (Figure 3). 391 

This difference in distributions suggests that earthquakes on faults release more high-frequency 392 

energy than comparably sized events on fractures. Both populations of events occurred at the 393 

same depths (Poulin et al., 2019), so the differences in the normalized corner frequency are not 394 

related to differences in the depth. These differences may reflect geomechanical differences 395 

between faults and fractures; that is the properties of the faults allow them to sustain higher 396 

stress-drop events than fracture networks. Laboratory studies show a link between fault 397 

heterogeneity and stress drop, with larger stress drops for smooth, homogeneous faults (Goebel 398 

et al., 2013, 2015). Fractures in this context may be thought of as immature fault surfaces, 399 

which lack the strength and smoothness of more mature fault surfaces; the increased relative 400 

roughness of the fractures may be what prevents them from experiencing higher relative stress 401 

drops. Furthermore, it is likely that the faults and fractures have different frictional stability, as 402 

brittle fault materials are more likely to be associated with larger stress drops (Gu and Wong, 403 

1991; He et al., 2003; Rubin and Ampuero, 2005). Both the faults and fractures are located 404 

within the Ireton Formation, which is a shale unit with low organic content (Knapp et al., 2017). 405 

This formation itself would be classified as more ductile than brittle, but there is documented 406 

lateral heterogeneity based on seismic data from the study region (Weir et al., 2018). The fault 407 

rheology is expected to differ from the host formation due to the presence of fault gouge 408 

material. The mineralogical content of the fault gouge in this region is likely a combination of 409 

Ireton-derived material, and material brought by fluid upwelling from the Precambrian 410 

basement (Galloway et al., 2018).  411 
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The intraplate setting of this study area also likely plays a role; laboratory experiments show 412 

that longer interseismic periods lead to an increase in asperity strength and stress drop on a fault 413 

(Beeler et al., 2001). That is, due to the longer healing time, the faults in the Fox Creek region 414 

have well-developed asperities and non-negligible cohesion, which may then allow for the 415 

build-up of larger stresses on the fault. Similar observations have been made in Oklahoma when 416 

comparing slip on a fault that was activated due to fluid injection and slip on faults in 417 

tectonically active regions (Pennington et al., 2022). In any case, in the absence of drillcore 418 

data from faults and fractures, neither of these possibilities can be conclusively tested.  419 

3.3. Clustering analysis  420 

Analysis of the residual spectra into clusters using the spectral clustering algorithm shows that 421 

there are distinct families of spectra for the ToC2ME dataset. These families show some 422 

preference for the host type of structure (Figure 7). The clusters that are the most prevalent on 423 

the fault features (clusters 1, 2 and 4) are the least prevalent on the fractures, with the exception 424 

of cluster 3 which is prevalent on both types of features. As evident in Figure 6, each of these 425 

clusters has a similar type of residual spectra - relatively smooth and positive in the 35-50 Hz 426 

range. In contrast, residual spectra associated with the events on the fractures (clusters 5, 6 and 427 

7) are all closer to the best-fit model, and have peaks at 42 and/or 52 Hz. This leads us to the 428 

conclusion that there is a distinct difference between the source spectra of faults and fractures.  429 

A physical interpretation of the spectral complexity is that it may be indicative of subevents 430 

(e.g., Wu et al., 2019; Ye et al., 2016). Subevents are caused by different portions of a fault 431 

surface experiencing displacement at different times, but close enough in time that they are 432 

nevertheless considered to be one earthquake. One cause of such behaviour is fault-surface 433 

heterogeneity, which has been observed for moderate-to-small earthquakes in the same 434 

magnitude range as those presented here (Abercrombie, 2014; Abercrombie et al., 2020; Chen 435 

et al., 2016; Ide, 2001; Ruhl et al., 2017; Uchida et al., 2015; Wang et al., 2014; Yamada, 2005). 436 

In this study, observations point to two types of rupture surfaces, with their own modes of 437 

heterogeneity, which then causes the residual spectra of the faults and fractures to be distinct. 438 

Another possible interpretation is that if rupture is actually continuous (no subevents), then 439 

complex spectra may arise from interference of stopping phases (Ben-Menahem, 1961; 440 

Madariaga, 1976). These stopping phases are present in cases of runaway rupture when the 441 

rupture area reaches a boundary (Wen et al., 2018). Given the geological limitations on the fault 442 

dimensions in this study area, and the two types of rupture surfaces, both subevents and 443 

runaway rupture in bounded strata may explain the spectral complexity.  444 
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Comparing the time series of the spectral clustering analysis (Figure 7) to the results of the 445 

normalized corner frequency over time (Figures 4 and 5) does not indicate any significant 446 

trends. Both the fault and fracture features experience reversals in the normalized corner 447 

frequency over time, but there is no clear link between those reversals and the prevalence of 448 

different clusters based on the spectral clustering. For example, NS1 starts with negative 449 

normalized fc and has little spectral variability (cluster 1 is dominant); then NS1 ends with 450 

positive normalized fc and there are many clusters active. Conversely, NS3 goes from positive 451 

to negative normalized fc over time, and likewise contains several clusters. However, it should 452 

be noted that cluster 1 only became dominant around November 22, which corresponds to the 453 

reversal in normalized fc. For the NESW events, many clusters are active throughout, and there 454 

is no distinct trend between the normalized fc and cluster prevalence.  455 

Another interesting observation is that events with similar spectra are more likely to occur at a 456 

time when there are many events of the same kind (e.g., the steepness of increase of the clusters 457 

in Figure 7c). This could be a reflection of a similar location or similar source properties (e.g., 458 

Trugman et al., 2020; Zhang et al., 2019). From an energy-balance perspective, it may be easier 459 

to sustain activity along the same feature than to divert energy into creating/activating new 460 

features.  461 

Finally, we consider changes in the normalized corner frequency over time. One potential 462 

interpretation of the systematic transitions from positive to negative fc (or vice versa) is that it 463 

is a reflection of the subsurface stress state. There is some evidence that there are higher stress 464 

drops in regions of higher background stress (Allmann and Shearer, 2009; Negishi et al., 2002; 465 

Pennington et al., 2021). For example, some studies have noted an increase in stress drop with 466 

depth, and one potential explanation for this is that the stresses are higher at depth (Goebel et 467 

al., 2015; Hardebeck and Aron, 2009; Hardebeck and Hauksson, 1997; Jones and Helmberger, 468 

1996; Oth et al., 2010; Pacor et al., 2016; Shearer et al., 2006; Trugman et al., 2017; 469 

Venkataraman and Kanamori, 2004). Other studies have found temporal changes in stress drop 470 

as well, and attribute the changes to lateral or depth variability in the fault strength 471 

(Abercrombie, 2014; Oth and Kaiser, 2014; Sumy et al., 2017).  472 

In this study, event magnitudes tend to be larger during periods when the normalized fc is 473 

positive (such as during the MW 3 events on NS1), and smaller when the normalized fc is 474 

negative (such as during NS3 after the reversal to negative normalized fc). This invites 475 

speculation that the average normalized corner frequency be used to determine if there will be 476 

a continuation of larger magnitude events. At the end of the recording period, the only cluster 477 

with positive normalized fc is NS1. The preceding pattern suggests that this cluster is more 478 



 17 

likely to host larger events after the recording period ended. Indeed, after the cessation of 479 

recording on the local array, the regional broadband network picked up multiple events > MW 480 

2 from the approximate location of NS1 (see Table 1 in the Supplementary Material). More 481 

detailed studies in different regions and tectonic settings are required to determine if these 482 

observations are generally representative.  483 

Altogether, the observations in this paper suggest that there are statistically significant 484 

differences between the corner frequencies and stress drops on different structural units (faults, 485 

fractures), likely reflecting their respective orientation, scale and fabric. These observations can 486 

be applied to natural fault systems where there is interaction with fractures, or other datasets 487 

with injection induced seismicity and pre-existing fracture networks. A temporal change in 488 

normalized fc of induced seismicity, if shown to be indicative of the subsurface stress state as 489 

suggested by our data, represents an intriguing prospect as an indicator of elevated risk.  490 

4. CONCLUSION 491 

After comprehensive analysis of source spectra from the ToC2ME induced seismicity dataset, 492 

we show that there are significant differences between event populations located on faults and 493 

fractures, with on-fault events having larger normalized corner frequency (and therefore stress 494 

drop) than off-fault events. The events on the faults also show temporal changes in normalized 495 

corner frequency that we interpret as indicative of an evolving subsurface stress state. During 496 

times of higher normalized corner frequency events there is a greater likelihood of larger-497 

magnitude events, which may correspond to periods of elevated subsurface stress due to the 498 

nearby injection.  On-fault events show more variability in the residual spectra, and a larger 499 

departure from the best-fit source model. We observe a mild departure from self-similarity over 500 

three orders of magnitude, which may represent changes in rupture velocity, fault geometry or 501 

rupture aspect ratio, although it may simply reflect a limitation of geophone data. Combined, 502 

these observations indicate that there are distinctions between the corner frequencies, stress 503 

drops, and frequency content of earthquakes on faults and fractures.  504 

Data and Resources  505 

Continuous raw data (geophone and broadband recordings, network code 5B with start date: 506 

2016-10-25 and end date: 2016-12-01) are available through the IRIS Data Center. The event 507 

catalogs used in this study are available at the ToC2ME GitHub website 508 

(https://github.com/ToC2ME, last accessed January 2023). Additional information about the 509 

ToC2ME dataset is also available at www.toc2me.com (last accessed January 2023). All of the 510 

https://github.com/ToC2ME
http://www.toc2me.com/
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figures were made using Matlab Software, which is available at 511 

www.mathworks.com/products/matlab (last accessed September 2022). The supplementary 512 

material contains further details on the workflow, empirical Green’s functions analysis, error 513 

distributions by Q and 𝜅 value, additional information about bootstrapping, the re-calculated 514 

magnitudes, an animation of the normalized corner frequency over time, and additional plots 515 

of the spectral clustering results.  516 
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LIST OF FIGURE CAPTIONS 892 

Figure 1: a) Map view of ToC2ME seismicity epicenters scaled by magnitude, with events 893 

color-coded in time. Well trajectories are shown in white and the stations are indicated with 894 

green triangles. b) Distribution of the complete set of geophone arrays around the wells. The 895 

labels NS1, NS2, NESW, and NS3 denote different clusters of events, as described in the text. 896 

Figure 2: Source spectra from an event on November 25, 00:03:43. a) Individual station 897 

spectra, colored by distance from the event. Black solid line shows the median. Noise spectra 898 

are shown in grey, and the white solid line is the median. The minimum and maximum 899 

frequency for the fit are shown as vertical dashed lines, and the inverted corner frequency is 900 

shown with the vertical white line. b) Bootstrap realizations of the median source spectra, 901 

colored by the best-fitting corner frequency. The Boatwright model is also plotted in blue with 902 

the median bootstrap corner frequency, and the background shading corresponds to 95% of the 903 

range of obtained fc values.   904 

Figure 3: Cross plot of corner frequency and magnitude, with a line of best fit from the median 905 

of data binned at magnitude increments of 0.2 in the log10(M0) domain (black squares). Dark 906 

green symbols denote events for which the standard deviation of the inverted corner frequency 907 

was greater than 10 Hz. The two lighter shades of green are events with a standard deviation of 908 

less than 10 Hz, but the lighter circles have corner frequencies that are less than the SNR 2 909 

threshold for the upper frequency limit (fmax in Figure 2a). Dashed lines of equal stress drop 910 

are labelled between 0.01 MPa and 100 MPa.       911 

Figure 4: Normalized magnitude-corrected fc. Time series for NS1(a) and NS3 (b). Occurrence 912 

of nearest hydraulic fracturing operations is shown with vertical lines colored by well; yellow 913 

for well A, red for well C and grey for well D. Thick black lines show the cumulative 914 

normalized fc. Circles are used for events along NS1 and squares are used for events along 915 

NS3. c) map view of NS1, with wells labelled and closest stages shown with ‘x’ symbols.  d) 916 

map view of NS3.  917 

Figure 5: Normalized magnitude-corrected fc for the NE/SW trending features. a) Time series 918 

for with timing of nearest hydraulic fracturing operations shown with vertical lines colored by 919 

well; yellow for well A, white for well B, red for well C and grey for well D. Thick black line 920 

shows the cumulative normalized fc. b) Map view of NE/SW features. The magnitude 3.1 event 921 

is indicated on both panels and corresponds to an increase in normalized fc for the cluster.  922 
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Figure 6: Normalized residual spectra by cluster, highlighting prevalence of high/low relative 923 

frequencies for certain clusters. Each subpanel (a-h) shows a different cluster, with the median 924 

of the cluster shown with a thick black line and one standard deviation shown with the thin 925 

black lines.  926 

Figure 7: Spatial and temporal view by cluster from spectral clustering algorithm. Time series 927 

of events within a) NS1, b) NS3, and c) NESW. d) Map view of events colored by cluster from 928 

spectral clustering algorithm (Figure 6).   929 

Figure 8: Histogram of normalized corner frequency depending on whether the event occurred 930 

on a fault (yellow) or a fracture network (magenta). The peaks of the two distributions are 931 

distinct, as illustrated by the solid lines (kernel density estimates).  932 
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Figure 1: a) Map view of ToC2ME seismicity epicenters scaled by magnitude, with events 4 

color-coded in time. Well trajectories are shown in white and the stations are indicated with 5 

green triangles. b) Distribution of the complete set of geophone arrays around the wells. The 6 

labels NS1, NS2, NESW, and NS3 denote different clusters of events, as described in the text. 7 
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 10 

Figure 2: Source spectra from an event on November 25, 00:03:43. a) Individual station 11 

spectra, colored by distance from the event. Black solid line shows the median. Noise spectra 12 

are shown in grey, and the white solid line is the median. The minimum and maximum frequency 13 

for the fit are shown as vertical dashed lines, and the inverted corner frequency is shown with 14 

the vertical white line. b) Bootstrap realizations of the median source spectra, colored by the 15 

best-fitting corner frequency. The Boatwright model is also plotted in blue with the median 16 

bootstrap corner frequency, and the background shading corresponds to 95% of the range of 17 

obtained fc values.   18 

 19 

Figure 3: Cross plot of corner frequency and magnitude, with a line of best fit from the median 20 

of data binned at magnitude increments of 0.2 in the log10(M0) domain (black squares). Dark 21 

green symbols denote events for which the standard deviation of the inverted corner frequency 22 

was greater than 10 Hz. The two lighter shades of green are events with a standard deviation 23 

of less than 10 Hz, but the lighter circles have corner frequencies that are less than the SNR 2 24 

threshold for the upper frequency limit (fmax in Figure 2a). Dashed lines of equal stress drop 25 

are labelled between 0.01 MPa and 100 MPa.       26 
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 27 

Figure 4: Normalized magnitude-corrected fc. Time series for NS1(a) and NS3 (b). Occurrence 28 

of nearest hydraulic fracturing operations is shown with vertical lines colored by well; yellow 29 

for well A, red for well C and grey for well D. Thick black lines show the cumulative normalized 30 

fc. Circles are used for events along NS1 and squares are used for events along NS3. c) map 31 

view of NS1, with wells labelled and closest stages shown with ‘x’ symbols.  d) map view of 32 

NS3.  33 
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 36 

Figure 5: Normalized magnitude-corrected fc for the NE/SW trending features. a) Time series 37 

for with timing of nearest hydraulic fracturing operations shown with vertical lines colored by 38 

well; yellow for well A, white for well B, red for well C and grey for well D. Thick black line 39 

shows the cumulative normalized fc. b) Map view of NE/SW features. The magnitude 3.1 event 40 

is indicated on both panels and corresponds to an increase in normalized fc for the cluster.  41 
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 44 

Figure 6: Normalized residual spectra by cluster, highlighting prevalence of high/low relative 45 

frequencies for certain clusters. Each subpanel (a-h) shows a different cluster, with the median 46 

of the cluster shown with a thick black line and one standard deviation shown with the thin 47 

black lines.  48 
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 6 

 56 

Figure 7: Spatial and temporal view by cluster from spectral clustering algorithm. Time series 57 

of events within a) NS1, b) NS3, and c) NESW. d) Map view of events colored by cluster from 58 

spectral clustering algorithm (Figure 6).   59 
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 61 

Figure 8: Histogram of normalized corner frequency depending on whether the event occurred 62 

on a fault (yellow) or a fracture network (magenta). The peaks of the two distributions are 63 

distinct, as illustrated by the solid lines (kernel density estimates).  64 
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