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ABSTRACT
Analysis of earthquake spectra can aid in understanding source characteristics like stress drop
and rupture complexity. There is growing interest in probing the similarities and differences of
fault rupture for natural and human-induced seismic events. Here we analyze waveform data
from a shallow, buried geophone array that recorded seismicity during a hydraulic fracturing
operation near Fox Creek, Alberta. Starting from a quality-controlled catalog of 4,000 events
between magnitude 0 and 3.2, we estimate source spectral corner frequencies using methods
that account for the band-limited nature of the sensor response. The stress-drop values are found
to be approximately self-similar, but with a slight magnitude dependence in which larger events
have higher stress drop (~10 MPa). Careful analysis of the relative corner frequencies shows
that individual fault and fracture segments experienced systematic variations in relative corner
frequency over time, indicating a possible change in the stress state. Clustering analysis of
source spectra based on the relative proportion of high and low frequency content relative to
the Brune model further shows that event complexity evolves over time. Additionally, the faults
produce earthquakes with systematically larger stress drop values than the fractures. Combined,
these results indicate that the features activated by hydraulic fracturing experience observable
changes in source behavior over time and exhibit different properties depending on the

orientation, scale and fabric of the structural feature on which they occur on.
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1. INTRODUCTION

Induced seismicity initiated by hydraulic fracturing has been observed worldwide (Atkinson et
al., 2020; Schultz et al., 2020) and has been associated with events up to magnitude 5.7 (Lei et
al., 2020). In general, hydraulic fracturing can trigger moderate magnitude seismicity by
interaction with pre-existing faults (e.g., Chang and Segall, 2016; Wang et al., 2020). As such,
there is much that can be learned from careful analysis of injection induced seismicity that is

relevant to natural seismicity (Ellsworth, 2013).

Source spectral analysis has been used for decades to determine the corner frequency, stress
drop, directivity and source complexity of earthquakes (Aki, 1972). These parameters are useful
for understanding the rupture style and relative earthquake scaling, such as low vs. high stress
drop. There has been considerable debate about whether stress-drop values from induced
earthquakes are comparable to those from natural earthquakes. Many studies show evidence
that stress drop from injection induced earthquakes is lower than their tectonic counterparts
(Abercrombie and Leary, 1993; Boyd et al., 2017; Chen and Shearer, 2013, 2011; Fehler and
Phillips, 1991; Goertz-Allmann et al., 2011; Hough, 2015, 2014; Reiter et al., 2012; Sumy et
al., 2017; Yu et al., 2020); conversely, many studies show that stress-drop values of induced
earthquakes are consistent with natural earthquakes at the same depth (Clerc et al., 2016;
Holmgren et al., 2019; Huang et al., 2017; Spottiswoode and McGarr, 1975; Tomic et al., 2009;
Zhang et al., 2019). Therefore, analysis of the corner frequency and stress drop of earthquakes
from injection induced seismicity, especially at lower magnitudes, is of interest to further

understand these observations.

There are many different techniques for analyzing spectra, including spectral fitting and
empirical Green’s functions (Abercrombie, 2021). Spectral fitting involves fitting a model of

the displacement spectrum S(f) to the observed data,

where () is the low-frequency spectral amplitude, t; is the travel time to the sensor from the
origin, Q is the quality factor that describes path attenuation, f is the corner frequency, k is the
site attenuation parameter (Anderson and Hough, 1984), y is a constant controlling the spectral
shape, and n controls the rate of high-frequency falloff (Abercrombie, 1995). The shape

constant y is assigned a value of 1 for the Brune model and 2 for the Boatwright model, and
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the falloff is typically set to 2 (Boatwright, 1980; Brune, 1970). There is a tradeoff between O
and k, both of which relate to the attenuation of waveforms at different frequencies. Obtaining
an independent estimate of Q and « is desirable, but often not possible in practice (e.g. Atkinson
and Silva, 1997; Hassani et al., 2011). In the following sections, we will describe the methods
we used to try to determine an estimate for these parameters. Then, Equation [1] is used to solve
for the corner frequency, which can be further related to other characteristics of the source,

such as the stress drop.

Empirical Green’s functions (EGFs) can also be used to remove path and site effects (e.g.
Baltay et al., 2011; Mori and Frankel, 1990). This approach uses small events that occur in
close proximity to a larger target event as a reference event, to remove the path/site effects that
all the events have in common. Although the EGF method was developed using larger
earthquakes (Hough, 1997), it has also been shown to be valuable when applied to small
magnitude (M < 2) datasets (e.g. Imanishi and Ellsworth, 2006). Later in this paper, we use this

approach to help constrain the potential Q values for our dataset.

The dataset used in this study is from a dense local geophone array near Fox Creek, Alberta, a
region that has been associated with hydraulic-fracturing induced seismicity with magnitudes
up to 4.2 (Schultz et al., 2020). As part of the monitoring strategy, a local, shallow-buried 10
Hz geophone array was used to determine precise locations and provide detailed insight into
the induced seismicity (Eaton et al., 2018). Although this provides high-resolution epicentral
locations, the use of geophones introduces a bandwidth limitation. The use of this type of sensor
for estimation of source parameters has been successful, but often carries a larger uncertainty
than broadband seismometer-based datasets (Klinger and Werner, 2021). For this reason, in
this paper we employ several different strategies to constrain and account for the precise ranges
of frequencies within which spectral analysis can be reliably carried out. We also impose strict

quality-control criteria based on uncertainty calculations.

The goal of obtaining a catalog of corner frequencies and stress drops is to analyze if there are
any statistically significant differences between the faults and fracture networks that were
activated. In this paper, a fault is defined as a discontinuous surface across which there is a net
shear displacement (Childs et al., 2009; Davatzes and Aydin, 2003; Peacock et al., 2016), while
a fracture is a discontinuous surface across which there has been separation (Pollard and Aydin,
1988). Unlike fractures, faults generally contain core zones with gouge material formed by
repeated failure. As such, fractures and faults have different geomechanical characteristics,
which may be manifested in the stress drop or source complexity (e.g. Candela et al., 2011). In

the absence of drillcores or image-log data, distinguishing between faults and fractures must
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rely on indirect measurements from earthquakes, such as b-values; seismicity due to fault
activation tends to have b-values close to 1, while microseismicity associated with fractures is

characterized by b-values closer to 2 (e.g. Eaton and Maghsoudi, 2015; Igonin et al., 2018).

In this paper, we start by introducing the Tony Creek dual Microseismic Experiment (ToC2ME)
dataset, a high-resolution passive seismic dataset that recorded small earthquakes induced
during hydraulic-fracturing operations. We use the highest quality events from this dataset for
source-spectral analysis, estimation of O, empirical Green’s functions and spectral fitting. After
obtaining robust estimates for the corner frequencies of each event, we calculate the static stress
drop and the residual source spectra (i.e. the difference between the observed and model-
predicted spectra), which are later used for clustering analysis and evaluation of source
complexity (Uchide and Imanishi, 2016). Through this, we demonstrate that there are
differences between the distribution of corner frequencies, stress drop and frequency content

of event populations depending on whether they originate from faults or fractures.

2. DATA AND RESULTS

2.1. ToC2ME dataset

The Tony Creek Dual Microseismic Experiment (ToC2ME) is a passive seismic dataset
acquired west of Fox Creek, Alberta, Canada that recorded seismicity near a 4-well hydraulic
fracturing pad in late 2016 (Eaton et al., 2018). This dataset has been extensively studied and
interpreted (Igonin et al., 2021, 2018; Zhang et al., 2019) and contains at least 18,040 events
that occurred during hydraulic-fracturing operations (Figure 1a). The station distribution (blue
triangles, Figure 1b) makes it suitable for source-spectral analysis due to the azimuthal
coverage and close proximity to the seismicity, which occurred at an average depth of 3.5 km
below the surface. Three-component 10 Hz geophones were deployed in 69 shallow borehole
arrays 27 m deep, which is below the weathering layer in this region. For this reason, geophone
waveforms are relatively unaffected by near-surface attenuation and are thus characterized by
relatively high signal-to-noise ratios (SNR), even for small earthquakes. Out of 18,040 events,
4,083 events have a signal to noise ratio (SNR) of over 5 on all stations, calculated by dividing
the root-mean-square of the windowed signal by the root-mean-square of windowed noise
before the signal. P- and S-wave picks are available at most of the stations for this high SNR
event subset used in this paper. There were also six broadband seismometer stations deployed
for the program, but they were not used for this analysis due to the higher noise conditions at

the surface (Paes, 2020; Zhang et al., 2019).
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There are three primary kinds of seismicity observed for this dataset (Figure 1a), as detailed by
Igonin et al. (2021):

1. Fault activation (NS1-3): seismicity on linear structures, clusters having a b-value of
~1. NS1 and NS2 are on near-vertical strike-slip faults and contain the largest events
of the sequence. NS3 is on a regional N/S trending fault and consists largely of normal
faulting mechanisms, although the seismicity follows a NE/SW trend that straddles the
primary fault structure. All of these event hypocenters are located above the injection
zone.

2. Fracture network activation (NESW): A broad clustering of NE/SW parallel features
that have b-values close to 2, are above the injection zone, and have strike-slip focal
mechanisms consistent with the feature orientation.

3. Operational microseismicity: Within the injection depth and with a timing that matches
the injection schedule. These events are within 100-200 m of the injection well and

represent a minority of events within the 18,040 event catalog.

The events studied in this paper belong to either type 1 or 2; all of the operational seismicity
had SNR values that were too small for source analysis. A primary aim of this paper is to
determine if there are systematic, statistically-significant differences in the source

characteristics of the events depending on whether they occur on faults or fractures.

2.2. Instrument response correction and displacement spectra calculation

The first step in the analysis was to perform an instrument-response correction to the data
acquired using 10 Hz geophones (OYO GSX type) with a sampling rate of 0.002 seconds. Due
to the stronger attenuation of the S-waves in the shallow subsurface, we focus our analysis on
the P-waves only (Eaton et al., 2018). The data were first de-trended and tapered using a
maximum percentage of 0.01. The instrument response correction was carried out on the
vertical-component of the data windowed around the P-wave pick (10 samples before the pick
and 160 samples after the pick). The ObsPy package (Beyreuther et al., 2010) was used for
removing the instrument response, with a pre-filter of [0.5, 2.0, 200, 250].

For the 4076 events (median of 58 stations per event) we estimate the displacement spectra at
each station using a multi-taper algorithm (Prieto, 2022) to calculate the power-spectral density.
We used a time bandwidth product of 3.5 and set the number of tapers to 5 (e.g. Viegas et al.,

2010). Then, we convert to displacement, and resample all the spectra to equal log-spacing.
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2.3. Corner frequency and residual source spectra

2.3.1. O estimation and spectral fitting

Two different approaches were used to constrain the P-wave attenuation (Qp) value for this
dataset. The first method uses EGF analysis, which resulted in a Op estimate of 50-80 (see
Supplementary Material for details and results). There are limitations with these results, such
as the small sample size (only 6 usable corner frequencies from the EGF method), and the
narrow range of frequencies that could be used for the spectral fitting so there is significant
uncertainty with this estimate. This first-order estimate is consistent with findings for Qp close
to the study region, which range from 25 to 75 (Bosman et al., 2015; Calixto and van der Baan,

2015).

To narrow down the range, we then used an iterative fitting of the source spectra (using
Equation [1]) with different Op and « values. By comparing the error for the total catalog for
different trial values, we can more precisely determine an appropriate Qr/k combination for
this dataset. Figure 2a shows the individual displacement spectra and median displacement
spectra for one event across the 69 stations. The vertical dashed lines show the upper and lower
limits for the fit, which are based on the signal to noise ratios in the frequency domain for each
event. The lower frequency limit was fixed to the value where the lower frequency band range
SNR first exceeded 2 (20-30 Hz for the smallest events) and defaulted as a minimum of 10 Hz
for the larger events, due to the limited geophone sensitivity at low frequencies. The upper
frequency limit also corresponded to the highest frequency value where the SNR remained
above the threshold value of 2. This value is lower than many studies, which typically suggest
using a SNR of 3-10 (Klinger and Werner, 2021; Oth et al., 2011; Shearer and Abercrombie,
2021; Trugman et al., 2017), but given the bandwidth limitations, we opted for a lower bound
to allow for a broader frequency range that was still suitable for our spectral fitting approach.
Since the true low-frequency plateau (at 0 Hz) cannot be determined from the raw data, we
estimate (), by assuming an initial stress drop of 1 MPa to calculate the theoretical corner
frequency for each given event given an estimate of the seismic moment (using Equation 1).
Then, we use the observed amplitude at 10 Hz, the trial £;, and theoretical /. to get the theoretical
low-frequency plateau at 0 Hz (see Supplementary Material). The L, norm is then used to
minimize the misfit between the observed and modelled data. The best-fit model is shown in

Figure 2b; in the illustrated case, it resulted in a corner frequency of 17 Hz for the M 0.65 event.

We then used the best-fit model to obtain residual spectra, defined as the difference between

the observed spectra and the best-fit model. This gives a measure of the relative proportion of
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frequency that is either above or below the model value. We also use the residual to calculate
the median absolute error for each event. The error was calculated for each event using Q values
of ranging between 50 and 140, k = 0-0.011, using both the Brune (n=1) and Boatwright (n=2)
models. Comparisons of the medians of the histograms of errors for each of the versions of the
catalogs showed that, for both the Brune and Boatwright models, Or = 80 and x = 0.007
provided the best fit (see Supplementary Material for a comparison of the histograms).
Additionally, the Boatwright models consistently had lower error than the Brune models.
Therefore, for the remainder of the paper, we use the Boatwright model for the fit, a Op value
of 80 and x = 0.007. This is in close correspondence with Rodriguez-Pradilla and Eaton

(2019), who found a Qp of 60 for this same dataset.

2.3.2. Bootstrap uncertainty analysis and corner frequency

With the parameters for fitting Equation [1] to the data sufficiently constrained, we calculated
uncertainties in the corner frequencies for the events using bootstrapping. During each
bootstrap iteration, we re-sampled the 69 station spectra with replacement, keeping the total
number of spectra to 69 each time. Then, we calculated the median of the station spectra in
each resampled instance and carried out the spectral fitting on the median, solving for the corner
frequency (Figure 2b). This was repeated 500 times and the median corner frequency from the
500 iterations was taken as the corner frequency for that event. An example histogram of the
distribution of corner frequencies for a well-constrained event and a poorly-constrained event
can be found in the Supplementary Material (Figure S9). The standard deviation of f; obtained
from bootstrapping for each event ranged from 5-80 Hz (Supplementary Material). In the
following section we will impose a cut-off of standard deviation of 10 Hz for the uncertainty.
We acknowledge that this is a large range, further illustrating the challenges of working with
band-limited data.

2.4. Stress drop

To estimate stress drop, we used the expression

Ao = —M, (i)3 , 2]

16 kvg

where k is a numerical constant, and v; is the S-wave velocity in the source region (Eshelby,

1957). Based on the numerical results of Kaneko and Shearer (2014), we set k = 0.38,
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appropriate for P-wave spectra. From nearby well log data, we set v, to 2100 m/s. The corner

frequency is known from the bootstrap analysis.

Although estimates of M, are available from Igonin et al., 2018, for consistency, we re-
calculated the My and Mw for this dataset using a similar approach to the corner frequency,
using the median of the spectral amplitudes from 5 to 20 Hz as a reference point for the low-
frequency plateau for this dataset. The updated magnitudes match very closely with the original
magnitudes, but there is some minor deviation for a small subset of events at My < 0.5
(Supplementary Material). Uncertainties for M, were calculated using a bootstrap approach in

the same way as for the corner frequency.

Figure 3 shows a crossplot of the corner frequency with the moment. The events are colored
based on standard deviation, and whether the inverted corner frequency is within the SNR > 2
range for each individual event. The uncertainty criterion preferentially eliminates events with
higher corner frequencies, which is expected due to the low signal to noise ratios for most

events above 80 Hz.

In order to quantify apparent departure from self-similarity, we fit a linear equation to the data
binned at increments of 0.2 in the logio (Mo) domain (Kanamori, 2004; Trugman et al., 2017;
Walter et al., 2006). The linear equation is

logyo fc =¥ +P1logio My . [3]

Based on the implied trend-line, we then calculate the normalized, magnitude-corrected corner

frequency, which is given by:

log10 fC_E[IOgIO fClMO] [4]
STD{logyo fc—E[log1o fc|Mol} ’

Zfe =
where E[] refers to the expected corner frequency based on an input M, and the constants from
Equation [3]. Positive values indicate corner frequencies that are larger than the line of best fit,
while negative values correspond to smaller-than-expected corner frequencies. This re-
parameterization of the dataset allows us to distinguish events that are enriched or depleted in
high-frequency energy compared to typical events of the same size. According to the
parameterization in Equation (3), a i, value of -0.333 corresponds to a self-similar
relationship; smaller negative 1, values indicate an increase in the stress drop with magnitude,

while larger negative Y, values correspond to a decrease in stress drop with magnitude. For this
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dataset, Y; has a best-fit value of -0.198. It should be noted that for the magnitude range of 1.2
to 2.5, a linear fit yields a 1, value of -0.28, closer to self-similarity. Due to the band-limited
nature of the geophones, it is possible that apparent breakdown in self-similarity reflects
insufficient SNR at higher frequencies, which leads to an apparent decrease in the event corner
frequency. The expected corner frequencies for the events of magnitude 1.2 to 2.5 are on the
order of 10-30 Hz, which is well-resolved given the signal to noise relationships discussed

previously.

Analysis of normalized corner frequency reveals coherent spatial and temporal trends. In
Figures 4-5, we use a colorscale where blue denotes positive normalized corner frequencies
(enriched in high-frequency energy) and red denotes events with negative normalized corner
frequencies (depleted in high-frequency energy). Each of the clusters (as labeled in Figure 1)
exhibit different behavior over time. NSI1, the largest N/S trending feature, begins with
consistently lower normalized corner frequencies, but then towards the end of the acquisition
period shifts to consistently higher normalized corner frequencies (Figure 4a,c). NS3, which
resides on a regional N/S trending fault, has an opposite trend to NSI, in that the sequence
begins with higher normalized f: and then shifts to lower overall normalized f: values over time
(Figure 4b,d). An animation of the normalized corner frequency over time relative to the

operations schedule is included in the supplementary material.

Figure 4 also shows the timing of the hydraulic fracturing stages relative to the event
progression. The event locations closely follow the nearest hydraulic fracturing stages, and
injection can be clearly attributed as the cause of activation (see also Igonin et al., 2021). Well
C was hydraulically fractured first and used an atypical completion procedure, with many
closely-spaced small-volume stages (1 perforation shot per stage). During the completion of
well C, the NESW cluster was activated, as well as the southern half of NS1. After all of the
stages of well C were done, operations began on wells A, B, and D concurrently. These wells
were hydraulically fractured using a zipper approach with the plug-and-perf method (Eaton,
2018), with 4 perforation shots per stage. Wells A, B and D featured larger volumes and larger
stage spacing than well C. Well A, which is the closest well to NS3, is interpreted to be
responsible for the activation of that fault feature. The data collection using the shallow buried
array was completed prior to the end of the hydraulic fracturing programs, so only half of the

stages of wells A, B and D were recorded.
The NE/SW trending features are shown together over time in Figure 5. Collectively, there is

an overall negative normalized corner frequency across the entire sequence, with two

exceptions. At the onset, there is a reversal of normalized f; from negative to positive (dashed

10
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region in Figure 5). There is also an increase in normalized f. toward the end of the data-
collection period, and this corresponds to a magnitude 3 event occurring at the intersection of

one of the parallel NE/SW trending features and the northern part of NS1.

In terms of the injection timing, the NESW clusters were first activated during the hydraulic
fracturing of well C. The largest central portion of the NESW clusters was activated twice; the

second time being during the closest stages of well B.

From the combined behaviour of the events on faults and fractures, we postulate that the events
on the faults are more likely to have higher normalized corner frequency, whereas fractures are
more likely to have lower normalized corner frequency. Both features exhibit reversals from

one mode to the other. In the Discussion section, we explore these observations further.
2.5. Spectral clustering analysis

To analyze the corner frequency and how the proportion of high- and low-frequency content
varies for each event, we calculate residual spectra using the best-fit Boatwright model at the

inverted corner frequency, S (f| /¢ ), and the observed spectra S( f):

Rs(f) =log1o S(f|f,) —log,, S'(F) . [5]

The residual spectra provides a measure of the relative proportions of frequency above/below
the best-fit model (Uchide and Imanishi, 2016). For example, some events may have higher
proportions of higher frequency energy, while others may have decreases in frequency content
in other frequency bands. These relative proportions within different frequency bands reflect
event complexity; departure from the Boatwright best-fit model is inferred to represent complex
rupture. By clustering the residual spectra into groups, we can determine if there are any
consistent trends that correlate with either spatial features (fractures vs. faults) or the timing of

the earthquakes.

For this purpose we use a spectral clustering algorithm (e.g. von Luxburg, 2007) implemented
in scikit-learn, a Python package (Pedregosa et al., 2011). We window the data in the range
[20,60 Hz], because the majority of events have SNR > 2 within that range, whereas only the
larger events have energy outside that band. As a quality-control step, we use only the residual
spectra for events where the standard deviation of the corner frequency was less than 20 Hz,
resulting in a subset with 3078 events. The spectral clustering algorithm requires a few

hyperparameters: the number of clusters, the affinity metric, and the number of neighbors. We

11
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set the number of clusters to 8 and use the cosine affinity with 10 neighbors. Figure 6 shows

the normalized residual spectra, by cluster, within the frequency band that was used.

All of the clusters are negative or close to zero at less than 30 Hz, suggesting that the best-fit
Boatwright model underestimates the lower frequencies (Figure 6). This corresponds to an
observation of the geophone data having low-frequency noise that results in an increase in low-
frequency content (as seen in Figure 2). Each of the clusters have a different prevalence of
energy within the [30 60] Hz band, and some clusters show notches at specific frequencies. An
interesting note is that most of the clusters are approximately the same size (on the order of
100s of events), with the exception of cluster 5, which only contains 5 events that have spectra
that does not visually match any of the other clusters. Excluding this small cluster, we can
classify three broad groups. First, clusters 1 and 2 are similar and have the largest deviations
from the Boatwright model (dashed line at zero residual), Second, clusters 3 and 4 are similar
to each other, but have smaller residual values than clusters 1 and 2. Third, clusters 5, 6 and 7

all display notches at 32, 44 and/or 52 Hz, but are the closest to having zero residual.

To study the significance of the clustering further, Figure 7 shows a time series of the clusters
obtained from spectral clustering, with each subplot showing the proportion of each cluster in
a) NS1, b) NS3, and ¢) NESW with the colors matching Figure 6. Both fault features (NS1 and
NS3) are dominated by cluster 1 (yellow). Clusters 2, 3 and 4 (orange and greens) are also
prevalent in both fault features. In contrast, the NESW clusters show more diversity in the
spectral clusters, and clusters 5, 6 and 7 (purple, and blues) are more present. In the Discussion,

we explore the potential significance of these differences.

Figure 7d shows a map view of the events colored by the clusters from the spectral clustering
algorithm. Cluster 3 (light green) is present in all the features, which shows that the spectral
clustering is not biased based on the source location. Likewise, cluster 2 (orange) is seen in
both NS1 and NS3, though both of them are from opposite ends of the study area. Therefore,
we believe that the data processing and careful selection of usable frequencies has removed
biases associated with events coming from the same location. Similarly, there is no magnitude
dependence with the clusters (see Supplementary Material), since they occur equally for all

magnitudes.

3. DISCUSSION

In this section we start by discussing the limitations of the results and sources of uncertainty

and bias in the data. Then, we split the normalized corner frequency values depending on which

12
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feature they originate (fault vs. fracture), to show there are statistically significant differences.
Finally, we discuss the results of the spectral clustering analysis in more detail and integrate
those results with the observations from the corner-frequency distributions to make inferences

about seismicity along faults and fractures.

3.1. Sources of uncertainty

The bandlimited nature of the geophone data introduces difficulties in determining accurate
corner frequencies and stress drops. For example, Ide and Beroza (2001) demonstrated that
bandlimited data can cause apparent deviation of self-similarity of stress drop with magnitude
due to an underestimation of the radiated energy. Likewise, there are challenges in determining
the QO and k values independently and accurately (Ktenidou et al., 2014). Some studies have
shown that is it possible to get corner frequencies and stress drop values from geophone data
that is consistent with that observed with broadband seismometer data (e.g. Glasgow et al.,
2018; Goertz-Allmann et al., 2011; Klinger and Werner, 2021; Viegas et al., 2012), though in

all cases similar challenges were faced with the data processing.

Although we found a breakdown in scaling for the stress drops in this study (Figure 3), the
robustness of this observation is limited by the narrow range of frequencies with good SNR
(e.g., Ruhl et al., 2017). However, there are several plausible physical mechanisms that could
cause deviations from self-similarity, and number of studies have reported such trends (Bindi
etal., 2020; Oth et al., 2011; Pacor et al., 2016; Trugman, 2020; Trugman et al., 2017; Trugman
and Shearer, 2018, 2017; Wang et al., 2019). A systematic change in rupture velocity, fault
geometry or rupture aspect ratio could perturb the measured corner frequency (e.g. Kaneko and
Shearer, 2015; McGuire and Kaneko, 2018) in a manner that could be interpreted as a
magnitude-dependent stress drop. Similarly, larger earthquakes are preferentially more likely
to activate frictional weakening mechanisms that could lead to higher stress drops (e.g., Tullis,
2015). In the case of induced seismicity, it also is possible that small and large earthquakes are
fundamentally different, with smaller events usually associated with anthropogenic stressing
and stress release, and larger ones triggered by, or relieving, anthropogenic stresses (Ellsworth
et al., 2019). In this case, there was a combination of fault and fracture related events, which
may further explain the difference in scaling if there are two superimposed distributions (e.g.,
Yu et al., 2020). The band-limited nature of our dataset prevents us from making any strong

claim in these regards.

Another source of uncertainty is the fixed high-frequency falloff rate, represented by the
parameter n (Shearer et al., 2019; Trugman, 2022, 2020; Trugman and Shearer, 2017; Yin et
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al., 2018). Broadly speaking, a falloff rate defined by n = 2 is consistent with observations for
most earthquakes (Hough, 2001), but minor deviations have been observed and can be
attributed to increasing the uncertainty in the inverted corner frequency and stress drop (Walter
et al., 2017). Especially in the case of geophone data, constraining z is an added challenge

(Klinger and Werner, 2021; Yenier et al., 2016).

3.2. Stress drop distribution by feature type

One observation made by analysing the spatial distribution of the normalized corner frequency
is that the events located on faults tend to have higher normalized f: than those on fractures. To
analyze this further, Figure 8 shows a histogram comparing normalized f. from faults (NS1-3)
vs. fractures (NESW). The median of the normalized f. of the faults is 0.21, and the median of
the normalized f. of the fractures is -0.25. However, it should be noted that most of the largest

events within the dataset (Mw > 2) have low normalized f; values (Figure 3).

This difference in distributions suggests that earthquakes on faults release more high-frequency
energy than comparably sized events on fractures. Both populations of events occurred at the
same depths (Poulin et al., 2019), so the differences in the normalized corner frequency are not
related to differences in the depth. These differences may reflect geomechanical differences
between faults and fractures; that is the properties of the faults allow them to sustain higher
stress-drop events than fracture networks. Laboratory studies show a link between fault
heterogeneity and stress drop, with larger stress drops for smooth, homogeneous faults (Goebel
et al., 2013, 2015). Fractures in this context may be thought of as immature fault surfaces,
which lack the strength and smoothness of more mature fault surfaces; the increased relative
roughness of the fractures may be what prevents them from experiencing higher relative stress
drops. Furthermore, it is likely that the faults and fractures have different frictional stability, as
brittle fault materials are more likely to be associated with larger stress drops (Gu and Wong,
1991; He et al., 2003; Rubin and Ampuero, 2005). Both the faults and fractures are located
within the Ireton Formation, which is a shale unit with low organic content (Knapp et al., 2017).
This formation itself would be classified as more ductile than brittle, but there is documented
lateral heterogeneity based on seismic data from the study region (Weir et al., 2018). The fault
rheology is expected to differ from the host formation due to the presence of fault gouge
material. The mineralogical content of the fault gouge in this region is likely a combination of
Ireton-derived material, and material brought by fluid upwelling from the Precambrian

basement (Galloway et al., 2018).

14



412
413
414
415
416
417
418
419

420

421
422
423
424
425
426
427
428
429

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

The intraplate setting of this study area also likely plays a role; laboratory experiments show
that longer interseismic periods lead to an increase in asperity strength and stress drop on a fault
(Beeler et al., 2001). That is, due to the longer healing time, the faults in the Fox Creek region
have well-developed asperities and non-negligible cohesion, which may then allow for the
build-up of larger stresses on the fault. Similar observations have been made in Oklahoma when
comparing slip on a fault that was activated due to fluid injection and slip on faults in
tectonically active regions (Pennington et al., 2022). In any case, in the absence of drillcore

data from faults and fractures, neither of these possibilities can be conclusively tested.

3.3. Clustering analysis

Analysis of the residual spectra into clusters using the spectral clustering algorithm shows that
there are distinct families of spectra for the ToC2ME dataset. These families show some
preference for the host type of structure (Figure 7). The clusters that are the most prevalent on
the fault features (clusters 1, 2 and 4) are the least prevalent on the fractures, with the exception
of cluster 3 which is prevalent on both types of features. As evident in Figure 6, each of these
clusters has a similar type of residual spectra - relatively smooth and positive in the 35-50 Hz
range. In contrast, residual spectra associated with the events on the fractures (clusters 5, 6 and
7) are all closer to the best-fit model, and have peaks at 42 and/or 52 Hz. This leads us to the

conclusion that there is a distinct difference between the source spectra of faults and fractures.

A physical interpretation of the spectral complexity is that it may be indicative of subevents
(e.g., Wu et al., 2019; Ye et al., 2016). Subevents are caused by different portions of a fault
surface experiencing displacement at different times, but close enough in time that they are
nevertheless considered to be one earthquake. One cause of such behaviour is fault-surface
heterogeneity, which has been observed for moderate-to-small earthquakes in the same
magnitude range as those presented here (Abercrombie, 2014; Abercrombie et al., 2020; Chen
etal., 2016; Ide, 2001; Ruhl et al., 2017; Uchida et al., 2015; Wang et al., 2014; Yamada, 2005).
In this study, observations point to two types of rupture surfaces, with their own modes of
heterogeneity, which then causes the residual spectra of the faults and fractures to be distinct.
Another possible interpretation is that if rupture is actually continuous (no subevents), then
complex spectra may arise from interference of stopping phases (Ben-Menahem, 1961;
Madariaga, 1976). These stopping phases are present in cases of runaway rupture when the
rupture area reaches a boundary (Wen et al., 2018). Given the geological limitations on the fault
dimensions in this study area, and the two types of rupture surfaces, both subevents and

runaway rupture in bounded strata may explain the spectral complexity.
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Comparing the time series of the spectral clustering analysis (Figure 7) to the results of the
normalized corner frequency over time (Figures 4 and 5) does not indicate any significant
trends. Both the fault and fracture features experience reversals in the normalized corner
frequency over time, but there is no clear link between those reversals and the prevalence of
different clusters based on the spectral clustering. For example, NS1 starts with negative
normalized f. and has little spectral variability (cluster 1 is dominant); then NS1 ends with
positive normalized f;. and there are many clusters active. Conversely, NS3 goes from positive
to negative normalized f: over time, and likewise contains several clusters. However, it should
be noted that cluster 1 only became dominant around November 22, which corresponds to the
reversal in normalized f.. For the NESW events, many clusters are active throughout, and there

is no distinct trend between the normalized f: and cluster prevalence.

Another interesting observation is that events with similar spectra are more likely to occur at a
time when there are many events of the same kind (e.g., the steepness of increase of the clusters
in Figure 7¢). This could be a reflection of a similar location or similar source properties (e.g.,
Trugman et al., 2020; Zhang et al., 2019). From an energy-balance perspective, it may be easier
to sustain activity along the same feature than to divert energy into creating/activating new

features.

Finally, we consider changes in the normalized corner frequency over time. One potential
interpretation of the systematic transitions from positive to negative f; (or vice versa) is that it
is a reflection of the subsurface stress state. There is some evidence that there are higher stress
drops in regions of higher background stress (Allmann and Shearer, 2009; Negishi et al., 2002;
Pennington et al., 2021). For example, some studies have noted an increase in stress drop with
depth, and one potential explanation for this is that the stresses are higher at depth (Goebel et
al., 2015; Hardebeck and Aron, 2009; Hardebeck and Hauksson, 1997; Jones and Helmberger,
1996; Oth et al., 2010; Pacor et al., 2016; Shearer et al., 2006; Trugman et al., 2017
Venkataraman and Kanamori, 2004). Other studies have found temporal changes in stress drop
as well, and attribute the changes to lateral or depth variability in the fault strength

(Abercrombie, 2014; Oth and Kaiser, 2014; Sumy et al., 2017).

In this study, event magnitudes tend to be larger during periods when the normalized f; is
positive (such as during the Mw 3 events on NS1), and smaller when the normalized f: is
negative (such as during NS3 after the reversal to negative normalized f:). This invites
speculation that the average normalized corner frequency be used to determine if there will be
a continuation of larger magnitude events. At the end of the recording period, the only cluster

with positive normalized f; is NS1. The preceding pattern suggests that this cluster is more
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likely to host larger events after the recording period ended. Indeed, after the cessation of
recording on the local array, the regional broadband network picked up multiple events > Mw
2 from the approximate location of NS1 (see Table 1 in the Supplementary Material). More
detailed studies in different regions and tectonic settings are required to determine if these

observations are generally representative.

Altogether, the observations in this paper suggest that there are statistically significant
differences between the corner frequencies and stress drops on different structural units (faults,
fractures), likely reflecting their respective orientation, scale and fabric. These observations can
be applied to natural fault systems where there is interaction with fractures, or other datasets
with injection induced seismicity and pre-existing fracture networks. A temporal change in
normalized f: of induced seismicity, if shown to be indicative of the subsurface stress state as

suggested by our data, represents an intriguing prospect as an indicator of elevated risk.

4. CONCLUSION

After comprehensive analysis of source spectra from the ToOC2ME induced seismicity dataset,
we show that there are significant differences between event populations located on faults and
fractures, with on-fault events having larger normalized corner frequency (and therefore stress
drop) than off-fault events. The events on the faults also show temporal changes in normalized
corner frequency that we interpret as indicative of an evolving subsurface stress state. During
times of higher normalized corner frequency events there is a greater likelihood of larger-
magnitude events, which may correspond to periods of elevated subsurface stress due to the
nearby injection. On-fault events show more variability in the residual spectra, and a larger
departure from the best-fit source model. We observe a mild departure from self-similarity over
three orders of magnitude, which may represent changes in rupture velocity, fault geometry or
rupture aspect ratio, although it may simply reflect a limitation of geophone data. Combined,
these observations indicate that there are distinctions between the corner frequencies, stress

drops, and frequency content of earthquakes on faults and fractures.

Data and Resources

Continuous raw data (geophone and broadband recordings, network code 5B with start date:
2016-10-25 and end date: 2016-12-01) are available through the IRIS Data Center. The event
catalogs wused in this study are available at the ToC2ME GitHub website

(https://github.com/ToC2ME, last accessed January 2023). Additional information about the
ToC2ME dataset is also available at www.toc2me.com (last accessed January 2023). All of the
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figures were made using Matlab  Software, which is available at
www.mathworks.com/products/matlab (last accessed September 2022). The supplementary
material contains further details on the workflow, empirical Green’s functions analysis, error
distributions by Q and k value, additional information about bootstrapping, the re-calculated
magnitudes, an animation of the normalized corner frequency over time, and additional plots

of the spectral clustering results.
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Figure 1: a) Map view of ToC2ME seismicity epicenters scaled by magnitude, with events
color-coded in time. Well trajectories are shown in white and the stations are indicated with
green triangles. b) Distribution of the complete set of geophone arrays around the wells. The

labels NS1, NS2, NESW, and NS3 denote different clusters of events, as described in the text.

Figure 2: Source spectra from an event on November 25, 00:03:43. a) Individual station
spectra, colored by distance from the event. Black solid line shows the median. Noise spectra
are shown in grey, and the white solid line is the median. The minimum and maximum
frequency for the fit are shown as vertical dashed lines, and the inverted corner frequency is
shown with the vertical white line. b) Bootstrap realizations of the median source spectra,
colored by the best-fitting corner frequency. The Boatwright model is also plotted in blue with
the median bootstrap corner frequency, and the background shading corresponds to 95% of the

range of obtained fc values.

Figure 3: Cross plot of corner frequency and magnitude, with a line of best fit from the median
of data binned at magnitude increments of 0.2 in the logio(Mo) domain (black squares). Dark
green symbols denote events for which the standard deviation of the inverted corner frequency
was greater than 10 Hz. The two lighter shades of green are events with a standard deviation of
less than 10 Hz, but the lighter circles have corner frequencies that are less than the SNR 2
threshold for the upper frequency limit (fmax in Figure 2a). Dashed lines of equal stress drop

are labelled between 0.01 MPa and 100 MPa.

Figure 4: Normalized magnitude-corrected f.. Time series for NS1(a) and NS3 (b). Occurrence
of nearest hydraulic fracturing operations is shown with vertical lines colored by well; yellow
for well A, red for well C and grey for well D. Thick black lines show the cumulative
normalized fc. Circles are used for events along NS1 and squares are used for events along
NS3. ¢) map view of NS1, with wells labelled and closest stages shown with ‘x’ symbols. d)
map view of NS3.

Figure 5: Normalized magnitude-corrected f. for the NE/SW trending features. a) Time series
for with timing of nearest hydraulic fracturing operations shown with vertical lines colored by
well; yellow for well A, white for well B, red for well C and grey for well D. Thick black line
shows the cumulative normalized fc. b) Map view of NE/SW features. The magnitude 3.1 event

is indicated on both panels and corresponds to an increase in normalized f. for the cluster.
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Figure 6: Normalized residual spectra by cluster, highlighting prevalence of high/low relative
frequencies for certain clusters. Each subpanel (a-h) shows a different cluster, with the median
of the cluster shown with a thick black line and one standard deviation shown with the thin

black lines.

Figure 7: Spatial and temporal view by cluster from spectral clustering algorithm. Time series
of events within a) NS1, b) NS3, and ¢) NESW. d) Map view of events colored by cluster from

spectral clustering algorithm (Figure 6).
Figure 8: Histogram of normalized corner frequency depending on whether the event occurred

on a fault (yellow) or a fracture network (magenta). The peaks of the two distributions are

distinct, as illustrated by the solid lines (kernel density estimates).
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Figure 1: a) Map view of ToC2ME seismicity epicenters scaled by magnitude, with events
color-coded in time. Well trajectories are shown in white and the stations are indicated with
green triangles. b) Distribution of the complete set of geophone arrays around the wells. The

labels NS1, NS2, NESW, and NS3 denote different clusters of events, as described in the text.
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Figure 2: Source spectra from an event on November 25, 00:03:43. a) Individual station
spectra, colored by distance from the event. Black solid line shows the median. Noise spectra
are shown in grey, and the white solid line is the median. The minimum and maximum frequency
for the fit are shown as vertical dashed lines, and the inverted corner frequency is shown with
the vertical white line. b) Bootstrap realizations of the median source spectra, colored by the
best-fitting corner frequency. The Boatwright model is also plotted in blue with the median
bootstrap corner frequency, and the background shading corresponds to 95% of the range of

obtained fc values.
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Figure 3: Cross plot of corner frequency and magnitude, with a line of best fit from the median
of data binned at magnitude increments of 0.2 in the logo(My) domain (black squares). Dark
green symbols denote events for which the standard deviation of the inverted corner frequency
was greater than 10 Hz. The two lighter shades of green are events with a standard deviation
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are labelled between 0.01 MPa and 100 MPa.
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Figure 4: Normalized magnitude-corrected f.. Time series for NS1(a) and NS3 (b). Occurrence
of nearest hydraulic fracturing operations is shown with vertical lines colored by well; yellow
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Figure 5: Normalized magnitude-corrected f. for the NE/SW trending features. a) Time series
for with timing of nearest hydraulic fracturing operations shown with vertical lines colored by
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shows the cumulative normalized fc. b) Map view of NE/SW features. The magnitude 3.1 event

is indicated on both panels and corresponds to an increase in normalized f. for the cluster.
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Figure 6: Normalized residual spectra by cluster, highlighting prevalence of high/low relative
frequencies for certain clusters. Each subpanel (a-h) shows a different cluster, with the median
of the cluster shown with a thick black line and one standard deviation shown with the thin

black lines.
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Figure 7: Spatial and temporal view by cluster from spectral clustering algorithm. Time series
of events within a) NS1, b) NS3, and c) NESW. d) Map view of events colored by cluster from
spectral clustering algorithm (Figure 6).
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Figure 8: Histogram of normalized corner frequency depending on whether the event occurred
on a fault (vellow) or a fracture network (magenta). The peaks of the two distributions are

distinct, as illustrated by the solid lines (kernel density estimates).



