
Commun. Comput. Phys.
doi: 10.4208/cicp.

Vol. x, No. x, pp. 1-32
xxx 2022

Benchmark Computations of the Phase Field

Crystal and Functionalized Cahn-Hilliard Equations

via Fully Implicit, Nesterov Accelerated Schemes

Jea-Hyun Park1,*, Abner J. Salgado2 and Steven M. Wise2

1 Department of Mathematics, University of California Santa Barbara,
CA 93106, USA.
2 Department of Mathematics, University of Tennessee Knoxville,
TN 37996, USA.

Received ; Accepted (in revised version)

Abstract. We introduce a fast solver for the phase field crystal (PFC) and functional-
ized Cahn-Hilliard (FCH) equations with periodic boundary conditions on a rectangu-
lar domain that features the preconditioned Nesterov’s accelerated gradient descent
(PAGD) method. We discretize these problems with a Fourier collocation method
in space, and employ various second-order schemes in time. We observe a signifi-
cant speedup with this solver when compared to the preconditioned gradient descent
(PGD) method. With the PAGD solver, fully implicit, second-order-in-time schemes
are not only feasible to solve the PFC and FCH equations, but also do so more ef-
ficiently than some semi-implicit schemes in some cases where accuracy issues are
taken into account. Benchmark computations of five different schemes for the PFC
and FCH equations are conducted and the results indicate that, for the FCH experi-
ments, the fully implicit schemes (midpoint rule and BDF2 equipped with the PAGD
as a nonlinear time marching solver) perform better than their IMEX versions in terms
of computational cost needed to achieve a certain precision. For the PFC, the results
are not as conclusive as in the FCH experiments, which, we believe, is due to the fact
that the nonlinearity in the PFC is milder nature compared to the FCH equation. We
also discuss some practical matters in applying the PAGD. We introduce an averaged
Newton preconditioner and a sweeping-friction strategy as heuristic ways to choose good
preconditioner parameters. The sweeping-friction strategy exhibits almost as good
a performance as the case of the best manually tuned parameters.

AMS subject classifications: 74A50, 65M22, 65F08, 65B99

Key words: Phase field crystal, functionalized Cahn-Hilliard, preconditioning, Nesterov acceler-
ation, nonlinear solver.

∗Corresponding author. Email addresses: jhpark1@ucsb.edu (J.-H. Park), asalgad1@utk.edu (A.J. Salgado),
swise1@utk.edu (S.M. Wise)

http://www.global-sci.com/cicp 1 ©2022 Global-Science Press

2 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

1 Introduction

We are interested in fast and accurate numerical solvers for initial value problems (IVPs)
for nonlinear parabolic partial differential equations of the form

∂tu=M∆
δE
δu

(u), t>0, u|t=0=u0, (1.1)

supplemented with periodic boundary conditions. Here, δE
δu denotes the variational deri-

vative of the energy

E(u)=
∫

Ω
f (u,∇u,∆u)dx.

The spatial domain is Ω, which is assumed to be rectangular throughout this paper, and
M : R→R is the so-called mobility constant. While the mobility may depend on the un-
known u in general, we confine ourselves to the case of constant mobility M≡ 1 in this
work. Two real world applications, the phase field crystal (PFC) and functionalized Cahn-
Hilliard (FCH) equations (see Section 2 for more details) take this form and are of our
main interest.

Our focus is on the numerical solvers. Nevertheless, for completeness, let us briefly
mention existing works about the phenomena that the PFC and FCH equations model
and their PDE analyses. These two equations are important models in materials science.
The PFC equation describes crystal formation in a liquid bath, crack propagations in
a crystal layer, and elastic and plastic deformations of a crystal lattice, to name a few.
The FCH equations, on the other hand, describes network formation in a binary mixture
and is a useful tool for modeling bilayer membrane formation and polymer electrolyte
membrane evolution. The reader interested in applications is referred to [1,15–17] for the
PFC, and [22, 23, 30] for the FCH model, respectively. There is some limited amount of
work about these equations at the PDE level. For the PFC equation see [11, 34]; whereas
for the FCH see [6, 12].

Both the PFC and FCH are nonlinear, sixth-order ‘parabolic’ equations. As such, they
share common numerical difficulties, such as accuracy and stability, and there have been
efforts to overcome them; see, for example, [7,24,26,35,39] for the PFC, and [20,27,37,38]
for the FCH, respectively. If one wishes to have a long time evolution of the equations,
explicit discretization schemes in time must typically be excluded due to their stringent
restriction on the time step size, (dt ≈ dx6), for stability. On the other hand implicit
schemes, which are more robust in terms of stability and accuracy, as a rule lead to a
large, highly nonlinear system that must be solved at every time step. A substantial
amount of work has been dedicated to developing schemes that mitigate the numerical
difficulties or instabilities of either of these extreme approaches, fully explicit schemes,
on one hand, and fully implicit schemes, on the other. Examples of this are the convex
splitting technique [7, 24, 26, 27, 35, 37, 38], and the SAV technique [5, 8, 28], to name a
few. Both of these approaches, however, are known to create larger local truncation er-
rors than implicit schemes [36, 38]. If a reliable, robust, and efficient iterative solver is

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 3

available to handle the nonlinear equations resulting from fully implicit schemes, a good
balance between accuracy and the efficiency may be within reach.

In previous work [29], we showed that the preconditioned Nesterov’s accelerated
gradient descent method (PAGD; see Algorithm 3 for definition) can be applied to ap-
proximate the minimizer of a strongly convex objective that is locally Lipschitz smooth as
opposed to globally Lipschitz smooth ones as most of the literature assumes. This signifi-
cantly extends the applicability of the PAGD as a numerical PDE solver. In [29] it is also
reported that the PAGD’s performance can be significantly better than that of the precon-
ditioned gradient descent method (PGD; see Algorithm 2 for definition), especially on
harder problems.

In light of our previous discussion, the construction and analysis of efficient, time-
adaptive, implicit schemes — with the PAGD solver as the central engine — for high-
order nonlinear parabolic equations, such as the PFC and FCH equations, is an under-
developed subject, and our main motivation in writing this contribution. Our first goal
is to establish that the PAGD makes an efficient solver for real world problems (see Sec-
tion 4.2). But this begs the question: Does the PAGD make implicit schemes more attrac-
tive than, say, semi-implicit ones? What should one compare to answer this question? These
questions are addressed in Section 4.3. To compare schemes we measure the compu-
tational cost needed to achieve a certain precision. Under this metric, our experiments
indicate that implicit schemes are indeed a better choice when nonlinearity of the prob-
lem is “strong”. If one compares ‘dollars per digit’ cost — that is, the number of flops
to achieve a desired level of accuracy in a computed solution — as we do in Section 4.3,
our experiments indicate that the implicit schemes are often a better choice over linear
semi-implicit methods.

In the course of achieving our first goal, we also discuss two practical issues. One is
about how to choose parameters involved in the PAGD scheme. To implement the PGD
method, only the step size s needs to be set. In contrast, PAGD contains an additional
tunable parameter, which herein we call friction and label η (see [29] for motivation be-
hind this naming convention). We suggest what we call the sweeping-η or sweeping-friction
strategy rather than finding a single optimal constant by trial and error. It turns out that
the sweeping-η strategy is almost as efficient as the best-tuned constant friction setup
and it is more robust than the latter in the sense that its performance depends less on
different ranges for η to sweep than that of the constant-friction setup does on different
fixed values of η. A detailed discussion and its intuition is explained in Section 3.4. The
second practical issue is how to choose a good preconditioner. Again, rather than find-
ing necessary constants by trial and error, we suggest what we call the averaged Newton
preconditioner, which computes the parameters involved in the preconditioner in such
a way that it mimics the second variation of the objective functional among a certain type
of linear operators. See Section 3.4 for a detailed discussion.

The rest of this paper is organized as follows: Section 2 summarizes the mathematical
formulations of the two models of interest, namely the FCH and PFC equations. In Sec-
tion 3, we detail how to discretize (in time) the PDEs in four different ways, whose result-

4 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

ing solvers are used in the numerical experiments. We also talk about how to construct
the numerical solvers in the same section and explain the sweeping-friction strategy and
the averaged Newton preconditioner in detail. Section 4 summarizes the benchmark
problems, the results of the numerical experiments, and our interpretation of the results.
Finally, we make concluding remarks in Section 5.

2 The phase field crystal and functionalized Cahn-Hilliard

equations

We begin our discussion by providing some details regarding the models that we shall
be interested in.

2.1 Phase field crystal equation

There are several versions of the phase field crystal (PFC) equations [1,14–16,32]. We will
use only the prototypical version, as presented in [15]. The other variants of the model
bring similar numerical challenges. The PFC model, at its heart, describes solidification
of a unary crystal from its liquid phase. The model captures atomic-scale features on
a diffusive time scale. Suppose that u :Ω→R defines an atom density. The free energy of
the system (at constant temperature) is

EPFC(u) :=
∫

Ω

[
1

4
u4+

1−ε

2
u2−|∇u|2+ 1

2
(∆u)2

]
dx, (2.1)

where ε is a parameter that mimics the temperature variation. We assume that u satisfies
periodic boundary conditions on Ω, for simplicity, and that the dynamics for u are mass
conserving and free energy dissipative. This leads to the following system of equations:

∂tu=M∆µ,

µ=
δEPFC

δu
=u3+(1−ε)u+2∆u+∆2u,

(2.2)

which is an H−1-gradient flow with a constant mobility M> 0. Mass is conserved, i.e.,

dt

∫
Ω

u(x,t)dx=0, and energy is dissipated at the rate dtEPFC(u)=−
∫

Ω
|∇µ|2 dx.

2.2 The functionalized Cahn-Hilliard equation

The functionalized Cahn-Hilliard equation is a phase field model that describes network
formation of amphiphilic di-block co-polymer mixtures [22, 23]. As with the PFC, there
are several versions of the FCH equations, as the model needs to be fine-tuned to the
physical system of interest [10, 22, 23, 38]. We will use the same model as that used in the
computational benchmark paper [38]. (See also [10].) Let u : Ω→R denote the volume

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 5

fraction of component A in a binary mixture of molecules. The free energy of the mixture
(at constant temperature) is

EFCH(u) :=
∫

Ω

[
1

2

(
ε2∆u−F′(u)

)2−
(

ε2

2
η1|∇u|2+η2F(u)

)]
dx, (2.3)

where F is a double well potential, ε is an interface thickness parameter; and η1,η2>0 are
material parameters. We assume, for simplicity that u is periodic on the square domain Ω.
The corresponding FCH equation, with constant mobility M>0, reads

∂tu=M∆
δEFCH

δu
=M∆

[(
ε2∆u−F′′(u)

)(
ε2∆u−F′(u)

)
−
(
−ε2η1∆u+η2F′(u)

)]
. (2.4)

Written as a system of three second-order equations, we have, equivalently,

∂tu=M∆µ,

µ=
δEFCH

δu
=
(
ε2∆u−F′′(u)+η1

)
ω+(η1−η2)F′(u),

ω= ε2∆u−F′′(u).

(2.5)

We assume that F :R→R is a polynomial double-well potential of the form

F(ζ)=
1

2
(ζ+1)2

(
1

2
(ζ−1)2+

2

3
τ(ζ−2)

)
,

whose symmetry can be tuned by adjusting τ∈R.
Similar to PFC, the FCH system can be seen as a H−1-gradient flow of the energy

EFCH. As before, mass is conserved, dt

∫
Ω

u(x,t)dx = 0, and energy is dissipated at the

rate dtEFCH(u)=−
∫

Ω
|∇µ|2 dx.

3 Discretization and numerical solvers

In this section, we describe our numerical approach. First, in Section 3.1, we present
our adaptive time discretizations: the fully and semi-implicit BDF2 and midpoint rule
(MP). This reduces our problem to a sequence of time independent, sixth-order, nonlinear
elliptic equations, which are then discretized by a Fourier collocation method as detailed
in Section 3.2. Finally, the ensuing nonlinear systems of equations are solved using the
linear and nonlinear solvers described in Sections 3.3 and 3.4.

3.1 Time discretization

3.1.1 Fully and semi- implicit BDF2 and midpoint rule

We choose four different schemes for time discretization: the fully implicit second-or-
der backward differentiation formula (BDF2), fully implicit midpoint rule (MP), a (lin-
ear) semi-implicit second-order backward differentiation formula (LBDF2), and a (linear)

6 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

semi-implicit midpoint rule (LMP). There are several reasons for these choices. First, we
do not consider explicit schemes since, to be stable, they require extremely stringent time
step size restrictions of the form dt≈dx6; see [20]. Second, we want to compare the per-
formance of fully implicit schemes and their semi-implicit versions. Both of these classes
of schemes are known to be unconditionally stable and accurate. However, at first glance,
one might expect that fully implicit schemes will not be computationally efficient, as they
require solving a nonlinear system every time step. On the other hand, while semi-implicit
schemes, like the first-order convex splitting scheme [2, 9, 18, 19], are known to be often
fast and stable, these properties always come at the expense of accuracy. Thus, a fair com-
parison between these two classes of schemes must be made by considering both speed
and accuracy.

Let us now describe our schemes in more detail. We introduce a nonuniform time grid
{tn}n≥0 with (variable) time step defined by dtn+1 = tn+1−tn. The sequence of functions
{un : Ω→R}n≥0 is meant to be an approximation of u, the solution of (1.1), at the time
grid points, i.e., un(·)≈u(tn,·) for all n≥0.

The fully implicit schemes are defined as follows: given the initial value u0=u0, find
un+1, for n≥0, as the solution of

anun+1+bnun+cnun−1=M∆
δE
δu

(ŭn+1), (3.1)

where the coefficients {an}n≥0,{bn}n≥0,{cn}n≥0, and the choice of the function ŭn+1 : Ω→
R define the various fully implicit schemes. In particular, for the BDF2 scheme, we have

a0=
1

dt1
, b0=−

1

dt1
, c0=0, ŭ1=u1,

and, for n≥1,

an =
1

dtn+1
+

1

dtn+1+dtn
, bn =−

1

dtn+1
− 1

dtn
,

cn =
1

dtn
− 1

dtn+1+dtn
, ŭn+1=un+1.

(3.2)

The MP scheme is defined by

an =
1

dtn+1
, bn =−

1

dtn+1
, cn =0, ŭn+1=

un+1+un

2
, (3.3)

for all n≥0.
The semi-implicit schemes we shall use are of linear IMEX type (see, e.g., [10] for

details). They only require, at each time step, the solution of a linear system of equations.
To achieve this, these methods decompose the chemical potential, δE

δu , into two parts

δE
δu

=L(u)+N(u),

where the linear part L is a linear, positive semi-definite operator. The remaining terms

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 7

constitute the nonlinear part. We have chosen the following decompositions. For the PFC
model (2.2), we set

L(u)=(1+∆)2u,

N(u)=u3−εu.

For the FCH model (2.4), we add and subtract a second and a zeroth order term and
obtain

L(u)= ε4∆2u+κ2(−∆)u+κ0u

N(u)=−κ0u−ε2∆F′(u)−(ε2(F′′(u)−η1)−κ2)∆u+(F′′(u)−η2)F′(u),

where the parameters are set to κ0=(1−2τ2+η2) and κ2=1, respectively. The parameter
κ0 is equal to the linear coefficient of the zeroth-order term (F′′(u)−η2)F′(u), which is
a quintic polynomial in u. The value of the parameter κ2 was found by trial and error.
We note that these parameters are not optimized and that they differ from those in [10]
because it turned out that, in our setting, the values in [10] made some of our schemes
extremely slow. However, we tried several reasonable options and have chosen a com-
bination that yields an expected evolution of the FCH model. The semi-implicit schemes
are obtained by treating the linear part, L(u), implicitly and the nonlinear part, N(u),
explicitly, using a second-order extrapolation of the previous approximations. That is,

anun+1+bnun+cnun−1=M∆
(
L(ūn+1)+N(ŭn+1)

)
, (3.4)

where an, bn, and cn are the same as in (3.2) and (3.3). The extrapolations, for LBDF2 are
given by

ūn+1=un+1,

ŭn+1=un+ρn+1(u
n−un−1),

whereas for LMP they are

ūn+1=
1

2

(
un+un+1

)
,

ŭn+1=
1

2

(
(2+ρn+1)u

n−ρn+1un−1
)

with ρn+1 =
dtn+1

dtn
. When n= 0, an artificial time iterate u−1 := u0 is used, which reduces

the explicit treatment using the extrapolation to a pure explicit one, u0, without extrapo-
lating. Observe that (3.4) is linear in un+1.

3.1.2 Adaptive time stepping

To be able to accurately carry out long time simulations, we employ variable time step
sizes, which are chosen adaptively [25, Chapter III.5]. At every time step, after finding

8 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

our numerical solution, we compute an error indicator and, if it is not smaller than our
prescribed tolerance the current approximation is discarded, the step size reduced, and
a new numerical solution is computed.

For the BDF2, LMP, or LBDF2 schemes, we follow the adaptive strategy detailed
in [10, Section 3.2], which we refer to as AM3 stepping. One exception is that the midAB2
stepping (see below) is used for PFC2 experiment when it is solved by the LMP solver.
This is because midAB2 stepping yields a way better result than AM3 for this compu-
tation. We now describe the AM3 stepping in Algorithm 1. See also Algorithm 4. We
first introduce a predetermined stepping tolerance TOL > 0, as well as maximum and
minimum time step sizes, denoted by dtmin and dtmax, respectively.

We comment that, in (3.7), the number 0.9 is a so-called safety factor, and that the
power of a third in is related to the fact that the local truncation error of our schemes of
interest (MP, BDF2, LMP, and LBDF2) is of order two.

Following a suggestion found in [3], we use a different error estimator in the case of
the MP scheme (and the LMP when solving PFC2 as mentioned above as an exception),
which we call midAB2 stepping. Using the computed values of the solution at tn−2, tn−1,
and tn one can compute approximations at the midpoints tn−1/2 and tn−3/2, these are then
used to construct a second-order polynomial that is then evaluated at t̃n+1= tn+d̃tn+1 to
obtain

ûn+1
AB2=un

(
d̃tn+1+dtn

)(
d̃tn+1+dtn+dtn−1

)

dtn (dtn+dtn−1)

−un−1 d̃tn+1

(
d̃tn+1+dtn+dtn−1

)

dtndtn−1

+un−2 d̃tn+1

(
d̃tn+1+dtn

)

dtn−1(dtn+dtn−1)
. (3.9)

Then, the local truncation error can be computed by

Tn+1=
(

ũn+1
MP −ûn+1

AB2

) 1

1−1/(24Rn)
, (3.10)

where ũn+1
MP is a tentative solution at t̃n+1 using the MP and

Rn =
1

24
+

1

8

(
1+

dtn

d̃tn+1

)(
1+2

dtn

d̃tn+1

+
dtn−1

d̃tn+1

)
. (3.11)

To match the scaling of the error with the AM3 stepping case, we use a L2-normalized
error estimator

ERR=

∥∥ũn+1
MP −ûn+1

AB2

∥∥
L2∥∥ûn+1

AB2

∥∥
L2

1

1−1/(24Rn)
, (3.12)

when determining the tentative step size. In the numerical experiments, the midAB2
stepping applies from the third time step dt3 = t3−t2 because it requires three previous
approximations. For n=1,2, we use AM3 stepping. We refer the reader to [3] for further
details on the midAB2 stepping strategy.

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 9

Algorithm 1: AM3 stepping.

1 Set n=0, d̃t1=dtmin, t0=0.
2 while tn <T do

3 Compute ũn+1. This is a tentative solution at t̃n+1= tn+d̃tn+1, and is obtained
using one of the main schemes (BDF2, LMP, or LBDF2).

4 Compute ûn+1. This is a solution of a higher order accuracy obtained using an
explicit variant of the AM3 scheme

ûn+1=un+
d̃tn+1

6

[
3+2ρn+1

1+ρn+1
R
(
ũn+1

)
+(3+ρn+1)R(un)

− ρ2
n+1

1+ρn+1
R
(
un−1

)
]

(3.5)

with

ρn+1=
d̃tn+1

dtn
, R(v)=M∆

δE
δu

(v).

5 Estimate the error with

ERR=
‖ũn+1−ûn+1‖L2

‖ûn+1‖L2

. (3.6)

6 if ERR≤TOL then

dtn+1= d̃tn+1,

tn+1= tn+dtn+1,

un+1= ũn+1.

Increment n.
else

Compute a tentative time step by

d̄tn+1=0.9

(
TOL

ERR

) 1
3

dtn, (3.7)

d̃tn+1=max
(
dtmin,min(d̄tn+1,dtmax)

)
. (3.8)

Goto 3.
end

end

3.2 Spatial discretization via the Fourier collocation method

To take advantage of the fact that our PDEs are supplemented with periodic boundary
conditions on a square, we use the Fourier collocation method for spatial differentiation
and integration.

10 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

We introduce K∈N, so that the grid resolution is N=2K+1, and the grid spacing is
h=1/N. We define

N
2
0,N =

{
m=(m1,m2)∈Z

2
∣∣ 0≤m1,m2≤N

}
,

N
2
N =

{
m=(m1,m2)∈Z

2
∣∣ 1≤m1,m2≤N

}
,

Z
2
K =

{
r=(r1,r2)∈Z

2
∣∣ −K≤ r1,r2≤K

}
,

and introduce the uniform grid domain

ΩN =[0,L]∩hN
2
0,N . (3.13)

We also define the trial space of periodic grid functions

HN =
{

vN : ΩN→C | vN(0,hm)=vN(L,hm),

vN(hℓ,0)=vN(hℓ,L),(m,ℓ)∈N
2
0,N

}
. (3.14)

In the numerical experiment for the PFC, the domain is translated so that Ω=[−L/2,L/2]
and the grid domain is also shifted accordingly. This is purely a cosmetic matter since we
are dealing with the periodic boundary conditions.

We omit the details of the case where N=2K for brevity but, up to a slight difference
in indexing, a similar construction can be carried out.

Finally, we replace the differential operators in our problems with so-called Fourier
interpolation differentiation; see [4, pp. 123–124], which we now describe in some detail for
the FCH case. For the PFC, a shift of L/2 in each coordinate direction is necessary. First,
we endow HN with the discrete L2-inner product

(uN ,vN)N =h2 ∑
s∈N2

N

uN(xs)vN(xs),

where vN(xs) denotes the complex conjugate.

The Fourier interpolation differentiation can be defined and computed via its diago-
nalization using the discrete Fourier transform (DFT) and the inverse discrete Fourier trans-
form (IDFT). The DFT ŵK of wN∈HN is defined by

ŵK(r)=
(
wN ,e

2π
L ir·(·))

N
=h2 ∑

s∈N2
N

wN(xs)e
− 2π

L ir·xs , r∈Z
2
K.

In particular, given wN∈HN and α∈{−1,1,2}, we set

[
(−∆N)

αwN

]
(xm)= ∑

r∈Z2
K

(
4π2|r|2

L2

)α

ŵK(r)e
2π
L ir·xm . (3.15)

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 11

This defines the discrete Laplacian if α=1, the discrete biharmonic operator if α=2, and
the inverse Laplacian if α =−1 and (wN ,1)N = 0. In this case, however, r = 0 must be
excluded in the summation though it is present for notational convenience. Define the
following mesh-dependent negative norm:

‖wN‖−1,N =
√(

(−∆N)−1wN ,wN

)
N

. (3.16)

In addition to replacing differential operators, the spatial integration is replaced with the
composite trapezoidal rule. This is indicated by the symbol (·, ·)N .

There are two significant advantages of using the Fourier collocation method. First,
it is accurate. For smooth, periodic functions, the two aforementioned operations are
known to be spectrally accurate (see [4, pp. 53, 272], [33]). Second, it is fast. We can take
advantage of the fast Fourier transform (FFT) when computing the Fourier interpolation
differentiation, which reduces the computational cost significantly (see [4, pp. 52–54]).

3.3 Linear solvers for semi-implicit schemes

As mentioned above, the semi-implicit schemes require us to solve a linear equation at
every time step. It turns out that the coefficient matrix of the linear system results only
from differentiation. Since we are using a Fourier collocation method, we apply the FFT
to solve the linear equations involved in the LMP and LBDF2 schemes.

3.4 Nonlinear solvers for fully-implicit schemes

Let us now discuss solvers for the fully implicit schemes. We employ the preconditioned
Nesterov’s accelerated gradient descent method (PAGD) as our main nonlinear solver, whose
convergence theory and applications to nonlinear PDEs are found in [29], and the pre-
conditioned gradient descent method (PGD) for comparison, which is studied in [21]. To
summarize how these solvers work, let us explicitly state the fully discrete problem re-
quired for time marching, where we drop the superscript for the new time marching for
ease of notation and so that it can be viewed as a time-independent problem on its own:
given un−1

N , un
N∈HN , find uN∈HN such that

anuN+bnun
N+cnun−1

N =M∆N
δEN

δu
(ŭN), (3.17)

where, as before, ŭN =uN or
uN+un

N
2 if the BDF2 or MP is used, respectively. By EN we de-

note the discrete version of either the PFC (2.1) of FCH (2.3) energy. Namely, the one that
is defined by replacing the differential operators by Fourier interpolation differentiation,
and integrals by the trapezoidal rule.

Since the problem is nonlinear, we need to employ an iterative method. To this end,
we recast (3.17) as a minimization problem.

12 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

Proposition 3.1 (Minimization problem). Let ΩN be given by (3.13). Then, uN∈HN solves
the discrete PDE (3.17) if and only if it is a critical point of the objective

GN(vN)=
1

2Man
‖anvN+bnun

N+cnun−1
N ‖2

−1,N+ẼN(v̆N), (3.18)

where

ẼN(v̆N)=




EN(vN), if BDF2 is used,

2EN

(
vN+un

N

2

)
, if MP is used.

(3.19)

Proof. First, if vN solves (3.17), the inverse Laplacian of anvN+bnun
N+cnun−1

N is well-
defined since vN has zero mean. To see this, we take the discrete inner product (·,1)N

on both sides of (3.17) and use (3.15) to conclude that the discrete Laplacian of any peri-
odic grid function must have zero mean.

Next, an explicit calculation shows

〈
G′N(vN),wN

〉
=

1

M

(
anvN+bnun

N+cnun−1
N ,wN

)
−1,N

+

〈
δẼN

δu
(v̆N),wN

〉
,

or, in other words,

G′N(vN)=
1

M
(−∆N)

−1
(
anvN+bnun

N+cnun−1
N

)
+

δẼN

δu
(v̆N). (3.20)

The factor 2 in the MP case comes from the chain rule.

Remark 3.1 (Convexity of GN). The objective functional GN , given in (3.18), is not convex
in general. For this reason, we speak of critical points rather than minimizers.

Remark 3.2 (Discrete mass conservation). The iterative solvers that we consider use
a slight variant of the gradient (3.20). Namely, they use the mean-zero projection of inter-
mediate grid functions to ensure mass conservation at the discrete level and to properly
compute the discrete inverse Laplacian. More specifically, we use the negative of the
following gradient as the residual:

G′N(vN)=
1

M
(−∆N)

−1
[
Π0

(
anvN+bnun

N+cnun−1
N

)]
+Π0

δẼN

δu
(v̆N). (3.21)

The first mean-zero projection is not needed if we have an infinite precision since they
must be mean-zero. However, due to round-off error, we need it to keep the mass con-
servation at the discrete level. The second projection really changes the discrete chemical
potential. However, as can be seen from (3.17), adding a constant to the chemical poten-
tial does not change the main unknown uN , i.e., the discrete Laplacian annihilates the
constant added to the discrete chemical potential. Moreover, the second mean-zero pro-
jection allows the inversion of the preconditioner (see below) to be well-defined, which
involves the discrete inverse Laplacian.

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 13

3.4.1 The averaged Newton preconditioner

As the names indicate, the iterative solvers used in this work involve a preconditioner.
There is no general way to construct a suitable preconditioner. For this reason, we make
use the energy structure of the PFC and FCH models to develop what we call an averaged
Newton preconditioner.

To present the idea without introducing unnecessary technicalities, consider the fol-
lowing problem. Let m∈N and suppose that G : Rm→R is a smooth, convex objective
functional with a unique minimizer x=argminx̃∈Rm G(x̃). To find it, our starting point is
to view the Newton’s method as a generalization of the preconditioned gradient descent
method, where the preconditioner is the second variation of the objective. That is,

xn+1= xn−G′′(xn)
−1G′(xn).

Now, the goal is to come up with a preconditioner G (that is independent of n) that re-
sembles G′′(xn) but is easier to invert. For that, we exploit the structure of the objective
function G. We know that, necessarily, G′′(xn) is a linear operator, but that it may depend
on the entries of xn. To make it even simpler to invert, we remove this dependence by
replacing these by averaged quantities.

Let us now move on to our case of interest. The second variation for the PFC model
reads

G′′N(vN)wN =
an

M
(−∆N)

−1wN+(3u2+1−ε)wN+2∆NwN+∆2
NwN , (3.22)

whereas the one for the FCH model is

G′′N(vN)wN =
an

M
(−∆N)

−1wN

+
[
F′′(vN)

2−η2F′′(vN)−ε2∆N F′′(vN)−F′′′(vN)
(
ε2∆NvN−F′(vN)

)]
wN

+
(

F′′(vN)ε
2−η1ε2

)
(−∆NwN)+ε4∆2

NwN .

Both have the form

G′′N(vN)wN =β−2(−∆N)
−1wN+ β̃0wN+ β̃2(−∆N)wN+β4∆2

NwN ,

where the parameters β−2 and β4 are constants while β̃0 and β̃2 are functions of vN for
the FCH equation. The same is true for the PFC model except β̃2 is also a constant. Based
on this observation, we consider a preconditioner of the same form, but where all the
parameters are constants, that is,

LwN :=β−2(−∆N)
−1wN+β0wN+β2(−∆N)wN+β4∆2

NwN .

The question that remains then, is how to choose these constants. Our approach, for the
PFC models, is that if the parameter is constant, then we keep the value, whereas for

14 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

those that are variable we set them to be the absolute value of its average across the do-
main. For the FCH model, however, we have chosen to drop several terms from β0(vN)
when computing its average for practical purposes. More specifically, −ε2∆N F′′(vN) and
−ε2F′′′(vN)∆NvN are not included since their contributions are small (they involve ε2)
and to save computations (they involve computing a Laplacian). At every time-step,
these constants are computed using the initial guess, and kept fixed throughout the iter-
ative process. They are only recomputed once we advance in time.

3.4.2 PGD and PAGD

The PGD method is given in Algorithm 2. This method works the same way as usual gra-
dient descent methods to minimize (3.18) except that, as mentioned above in Remark 3.2,
we take the mean-zero projection on some parts of the gradient when computing the
residual and apply a preconditioner to get the search direction.

Algorithm 2: Preconditioned gradient descent method (PGD).

Data: x0, s>0, TOLiter >0
initial guess, step size, tolerance;
Result: x∞

approximate solution/minimzer;
i=0 initialization;
while ‖di‖∞ <TOLiter do

ri =−G′N(xi) find the residual using (3.21);

di =L−1(ri) find the search direction, i.e., solve Ldi = ri;
xi+1= xi+sdi descent step;
i← i+1;

end

The PAGD is an accelerated version of the PGD. As explained in [29], it requires an
additional parameter η. This corresponds to the friction coefficient of the rolling ball sys-
tem associated to the PAGD. That is, the PAGD is nothing but a discretization of a second-
order ordinary differential equation (ODE) describing the motion of a ball as it rolls down
to the bottom of a well (the graph of the objective functional) in the presence of constant
friction. For more details about this relation, we refer interested readers to [29]. As shown
in [29], the choice of friction parameter η can be justified theoretically if the objective is
strongly convex and the strong convexity constant is known. However, this is not the
case for the PFC nor FCH equations and a different approach is needed. We could have
tried to find an optimal value for the friction coefficient η by trial and error. Instead,
we propose the scheme given in Algorithm 3, which is a slight variant of the PAGD and
we call the sweeping-η or sweeping-friction strategy. Here, the friction coefficient η, takes
a different value from a prescribed list of values at every iteration.

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 15

We note that this strategy, upon choosing a reasonable range of values, works very
well in practice. In fact, it is almost as efficient as the optimally tuned, fixed, choice in
terms of the number of iterations required to reach a prescribed tolerance. Moreover, the
efficiency is less sensitive to a change of the range than it is to that of the fixed value.
Based on the convergence theory of the PAGD in [29], an equally spaced range starting
from some small number (e.g., 0.1) ending at 1/

√
s is possible. However, from our ex-

perience, the right endpoint can be slightly larger than 1/
√

s. The intuition behind this
can be explained by the rolling ball analogy. As opposed to the constant friction case, the
sweeping-η strategy corresponds to “putting on the brake” repeatedly, say, from softly to
hard. If the ball is rolling down to the bottom in this manner, our experience from driv-
ing a vehicle suggests that it will effectively stop the ball near the bottom of the valley
of the landscape, an analogy to converging to a local minimum. Finally, when the PAGD
or PGD is used as a nonlinear solver for time marching equations, a good option for the
initial guess is the extrapolation of the previous two histories, and in fact, this is adopted
in the numerical experiments that follow.

Algorithm 3: Preconditioned Nesterov’s accelerated gradient descent method
(PAGD) with sweeping-η.

Data: x0, x−1 := x0, s>0, (η0,η1,. . .,ηk−1)∈Rk, TOLiter >0;
initial guess, fictitious previous iterate, step size, range of sweeping-η with 0<ηj

(0≤ j≤ k−1), tolerance;
Result: x∞;
approximate local minimizer;
i=0 initialization;
while ‖di‖∞ <TOLiter do

j← i modk sweep over the possible choices of η;

λi =
1−ηj

√
s

1+ηj

√
s

compute the extrapolation coefficient;

yi = xi+λi(xi−xi−1) compute the extrapolated position;
ri =−G′N(yi) find the residual using (3.21);

di =L−1(ri) find the search direction, i.e., solve Ldi = ri;
xi+1=yi+sdi gradient step;
i← i+1;

end

4 Numerical experiments

4.1 Benchmark problems

Our numerical experiments can be divided into two parts: in the first part (Section 4.2),
the performances of the PGD and PAGD are compared, while in the second part (Sec-

16 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

Algorithm 4: Solvers. Since BDF2 and LBDF2 require two previous solutions,
the backward Euler scheme or its semi-implicit version is used for the first time-
step, respectively.

Data: Model, u0, T, time discretization, dtmin, dtmax, TOL;
PFC or FCH; initial condition; final time; MP, BDF2, LMP, or LBDF2; minimum
and maximum time step sizes; stepping tolderance;

Result: (t1,t2,t3,. . .),
(
u1,u2,u3,. . .

)
;

a sequence of times, a sequence of approximate solutions at the prescribed times;
n=0, t0=0 Initialization. Set initial time;

d̃t1=dtmin Initialization. Set step size;
while tn <T do

t̃n+1= tn+d̃tn+1 Tentative new time;

ũn+1 Tentative solution at t̃n+1. The solution depends on the Model and
Solver;

ûn+1 The higher order solution: (3.5) or (3.9);
ERR The error estimator, computed via (3.6) or (3.12);
if ERR≤TOL then

Copy history, and time advances;

dtn+1← d̃tn+1;
tn+1← tn+dtn+1;

un+1← ũn+1;
n←n+1;

end

d̃tn+1 Recompute using (3.7) and (3.8);

end

tion 4.3), comparisons of fully implicit schemes and semi-implicit schemes are made. For
such comparisons, we have chosen five benchmark problems, where we measure the
computational cost taken by each of the proposed solvers for each problem (see corre-
sponding sections for details on how to measure the cost). For the first part, we have
ten combinations: five problems numerically are solved by two solvers, PGD and PAGD,
respectively. For the second part, we have twenty combinations: four different numerical
solvers, i.e., fully implicit MP and BDF2 (both equipped with the PAGD iterative solver),
and semi-implicit LMP and LBDF2, are used to solve five benchmark problems. Three
of the problems are evolutions according to the FCH model with different combinations
of initial condition and parameters of the model, which we refer to as FCH1, FCH2, and
FCH3, respectively, and the other two are according to the PFC model.

The details of the initial conditions of FCH1-3 are found in [38, Sections 5.2 (FCH1), 5.3
(FCH2), and 5.5.1 (FCH3)] and the significance of evolutions similar to FCH2 and FCH3

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 17

(a) t=0 (b) t=2

(c) t=10 (d) t=100

Figure 1: FCH1 evolution.

is studied in [13]. The plots of these three are displayed in Fig. 1(a) (FCH1), Fig. 2(a)
(FCH2), and Fig. 3(a) (FCH3).

The other two benchmark problems are simulations of crack propagation in a crys-
tal strip system and that of crystal growth in a supercooled liquid using the PFC model
for both, which we refer to as PFC1 and PFC2, respectively. Similar computations are
common in the literature, since they vividly illustrate interesting physical phenomena
and highlight the versatility of the model: by tuning some model parameters this single
model is able to describe many different experimentally observed states and transforma-
tions. For more discussions of these simulations, see [15–17, 24, 31, 32].

In the following two paragraphs, we detail the initial conditions of PFC1-2 since they
are not exactly the same as in the literature that they are based on. The initial condition

18 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

(a) t=0 (b) t=2

(c) t=10 (d) t=100

Figure 2: FCH2 evolution.

of PFC1 (see Fig. 4(a) for its plot) is set by

u0(x,y)=φs ·ψ(x,y)+φℓ

(
1−ψ(x,y)

)

+A·ψ(x,y)·
[

cos
(

qt
x

1.2

)
cos

(
qty√

3

)
− 1

2
cos

(
2qty√

3

)]
, (4.1)

where A and qt are constants needed to describe the steady state density field of the solid
type (see [15, Capter II. C]) and set to

A=
4

5
φs+

4

15

√
15ǫ−36φ2

s , qt =

√
3

2
. (4.2)

Following [15, Capter III. D. 2], we set φs = 0.49, and φℓ = 0.79. φs and φℓ represent the
temporal average of the number density of atoms for the solid and liquid state of a crys-

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 19

(a) t=0 (b) t=2

(c) t=10 (d) t=100

Figure 3: FCH3 evolution.

tal strip system in a liquid bath, respectively. The function ψ is a smoothed Heavyside
function defined by

ψ(x,y) :=

(
1

2
− 1

2
tanh

(|y|−γ1

4

))
1

2
+

1

2
tanh




√
(x−x0)

2+(y−y0)
2−γ2

4




. (4.3)

The function ψ is used to create the chip (or a hole) on the strip as well as where the liquid
regions are. The parameters x0 and y0 determine the location of the chip, γ2 how big it is,
and γ1 the liquid regions.

Lastly, the initial condition for the crystal growth simulation (PFC2) used for our ex-
periments is a miniature version of the one implemented in [24, Section 4.1]. The sim-
ulation of the whole domain, i.e., the same one as in [24] except the locations and sizes

20 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

-100 -50 0 50 100

-100

-50

0

50

100

(a) t=0

-100 -50 0 50 100

-100

-50

0

50

100

(b) t=200

-100 -50 0 50 100

-100

-50

0

50

100

(c) t=1000

-100 -50 0 50 100

-100

-50

0

50

100

(d) t=3000

-100 -50 0 50 100

-100

-50

0

50

100

(e) t=10000

Figure 4: PFC1 evolution: zero level curves of the phase variable.

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 21

(a) t=0 (b) t=12

(c) t=30 (d) t=300

Figure 5: PFC2 evolution.

of crystallites, is reproduced in Figs. 6(a)-(e), and the PFC2 simulation considered here
is displayed in Figs. 5(a)-(d). The detailed setting of PFC2 is the same as in [24, Sec-
tion 4.1] except that the spatial domain and the final time are reduced to [−L/2,L/2]2

with L=200 and T=300, respectively. Also, to smooth out the initial condition, it is fil-
tered using a Gaussian filtering that is used in [38, p. 15], which is used also for FCH2-3.
In the case of PFC2, however, an eight-times-finer resolution is used N̂=8N while N̂=2N
for FCH2-3, where N is the original resolution set for the main experiment. See [38, p. 15]
for the details about the filtering.

The snap shots of the evolutions displayed in Figs. 1-5 are generated using the best
performing scheme in terms of CPU time when applied to the experiment conducted in
Section 4.3. However, all solvers produce visually the same evolution with their differ-
ences detected only through numerical errors.

22 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

(a) t=0 (b) t=20

(c) t=150 (d) t=400

(e) t=1000

Figure 6: Simulation of crystal growth in a supercooled liquid, as originally implemented in [24]. Its miniature
version is used for PFC2 benchmark computations.

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 23

0 5 10
0

2

4

6

8

10

12 Stepping Tol: 1e-6

Stepping Tol: 1.3e-4

(a) t=18

6.9 7 7.1 7.2 7.3
10

10.05

10.1

10.15

10.2

10.25

10.3

10.35

10.4
Stepping Tol: 1e-6

Stepping Tol: 1.3e-4

(b) t=18 zoom-in

Figure 7: Different evolutions of FCH3 depending on different time stepping tolerances. Both are level curves of
u(x,y,t=18)=−0.01 obtained by BDF2 with time stepping tolerance 10−6 (solid black) and 1.3×10−4 (dashed
red), respectively. The right figure is a zoom-in around the point (x,y)=(7.1,10.2) (blue box).

To help put things into perspective about overall range of parameters in pursuit of ac-
curacy (e.g., time step sizes, time stepping tolerance, etc.), Fig. 7 illustrates how a milder
time stepping restriction (BDF2 with stepping tolerance 1.3×10−4) leads to a different
evolution in FCH3 than the one achieving the 5-digit objective (BDF2 with stepping tol-
erance 10−6; see Section 4.3 for details on 5-digit objective): the connectivity of the level
curves of the solutions at t=18 is different. When the tolerance is set to 10−6, the maxi-
mum time step size that is actually used by the algorithm is 0.1028 while when the toler-
ance is 1.3×10−4, it is as large as 0.5482. If the time stepping tolerance is slightly larger,
say 1.5×10−4, near t=10.1561 our algorithm does not reach the iteration tolerance before
the maximum number of iterations, which is set to 1000.

Detailed settings for the benchmark comparisons are summarized in Table 1. Let
us make a comment regarding the chosen range for the sweeping-η strategy. This is
obtained by taking square root of a collection of equally spaced 5 numbers in the interval
[0.1,2]. The square root is taken due to PAGD convergence theory. If the minimization
problem is applied to a µ-strongly convex functional, η=

√
µ is the optimal choice from

the convergence analysis; see [29] for more details.

4.2 Performance of PAGD and PGD

One of our main goals in this work is to show that the PAGD is a viable solver for certain
types of challenging PDEs such as the PFC and FCH equations. To achieve this goal, for
each one of these models, we compare the total computational cost of using PAGD vs.
PGD, the latter of which is known to be an efficient solver for such problems; see [10,21].
As a measure of cost, we count the number of FFTs needed to finish the evolution. Each

24 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

Table 1: Parameter settings for the benchmark comparison.

PDE setting Solver setting

Common
dtmax=0.5, TOLiter =10−10,

sweeping-η = (
√

0.1,
√

0.575,
√

1.05,
√

1.525,
√

2)

FCH1
L=2π, Ω=(0,L)2, ǫ=0.18,

η1=ǫ2, η2=ǫ2, τ=0
N=27, s=0.4, dtmin=10−5

FCH2
L=12.8, Ω=(0,L)2, ǫ=0.1,

η1=0.2, η2=0.2, τ=0
N=28, s=0.9, dtmin=10−5

FCH3
L=4π, Ω=(0,L)2, ǫ=0.1,

η1=1.45ǫ, η2=2ǫ, τ=0.125;
N=28, s=0.9, dtmin=10−5

PFC1
L=1.2×32×4× π√

3
,

Ω=(−L/2,L/2)2, ε=1.0
N=29, s=0.9, dtmin=10−4

PFC2
L=200,

Ω=(−L/2,L/2)2, ε=0.25
N=29, s=0.9, dtmin=10−4

of the benchmark problems is simulated using the solver described in Algorithm 4 with
the BDF2 time discretization scheme except that the MP scheme is used for PFC2,† once
equipped with the PGD and another time with the PAGD as a solver. The AM3 adaptive
time stepping is used for FCH1-3 and PFC1 with a stepping tolerance 10−4 while the
midAB2 stepping is utilized for PFC2 with the same stepping tolerance. For the FCH
evolutions, the final time is set to T = 100, whereas for the PFC problems, it is set to
T = 10,000 and T = 300, respectively. All remaining parameter settings are the same as
described in the previous section. The results are shown in Table 2.

As Table 2 shows, the PAGD solver takes as few as half the number of FFTs needed for
the PGD to carry out the same simulations for most of the cases. The exception of PFC2 is
discussed in the next paragraph. We emphasize once more that PGD itself is known to be
an efficient solver for the FCH model (e.g., [10, 38]) and that PAGD needs only one more
vector addition per iteration than PGD. Upon further inspection we observe that, as is the
case at the beginning of the evolution, when the time step size is small, the two solvers
perform almost equally. However, when the time step size is relatively large, the PAGD
costs much less than the PGD does for each time marching. This is in line with what is
reported in [29] in the sense that the acceleration comes into play when the problem is
“hard”.

Table 2: Number of FFTs needed for the PGD and PAGD solvers to complete the evolution. The time stepping
is carried out via BDF2.

FFT FCH1 FCH2 FCH3 PFC1 PFC2

PGD 139841 367246 883543 330908.5 24811.5

PAGD 87097 240374 440807 176887.5 25284.0

†BDF2 somehow makes both solvers extremely slow for PFC2.

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 25

The discussion in the preceding paragraph does not explain the results obtained for
PFC2, where the computational cost (number of FFTs) of both solvers is similar. We
speculate that this peculiarity is due to a well-behaving landscape of the physical energy
functional associated to PFC2. From an intuitive perspective, the evolution described
by PFC2 does not involve many possible bifurcations since the crystallites only grow
as portions of a supercooled liquid (i.e., regions of constant phase variable) coagulate
and continue the crystal pattern near the boundary of the grains. On the other hand,
other simulations bear a certain symmetry in the system so that there are many possible
bifurcations. As a result, there can be many more local minima in the energy functional,
making solving them harder than PFC2. As reported in [29], the acceleration of PAGD
(in comparison to the PGD) tends to play a bigger role in “harder” problems. The same
tendency mentioned in the last two sentences of the previous paragraph is also observed
in PFC2 case. However, a slightly better performance of the PGD in the beginning of the
evolution (when the time step size is small) outweighs a marginally better performance
of the PAGD toward the end of the simulation (when the time step size is big).

4.3 Computational cost

In order to make our comparisons as fair as possible, we take into account both accuracy
and efficiency. To this end, the experiment starts by preparing preliminary data. To be
specific, we choose time t of evolution (long enough for a certain morphological change
to emerge) for each problem, then we choose a point (x,y) in our domain, and the triple
(x,y,t) is formed. Then, we find a highly accurate solution, which is computed by the im-
plicit Euler method with a constant time step that is so small that the difference between
the computed values of u(x,y,t) with the current and a ten times smaller time step is no
larger than 10−6, while keeping a fixed spatial grid spacing.

The implicit Euler method was chosen because, in our experience, this scheme is very
robust. It is possible that the results of the numerical experiment may be different if one
uses another method. However, our preliminary computations showed little difference in
the point values at the reference coordinates. Following the same scheme, the difference
in the reference point values computed by the implicit Euler and the LMP or LBDF2
method ranges from 1.86×10−9 to 7.90×10−7 across the five simulations,‡ suggesting we
obtain a 6-digit precision.

The procedure we now describe aims at a 6-digit precision for the highly accurate
solution at the reference point (x,y,t). Let u[ℓ](x,y,t) be the point value at the reference

point computed by setting the constant step size to 0.1ℓ (ℓ= 1,2,3,.. .). Suppose that we
have obtained that |u[ℓ](x,y,t)−u[ℓ+1](x,y,t)|< 10−6. The second smallest constant time

step size, i.e. 0.1ℓ, is considered “small enough” for a 6-digit precision. Then, the ref-
erence point value is computed once again on a finer grid that has spacing smaller by
a factor of 0.5 than before, and with this small enough time step, i.e., 0.1ℓ. If this point

‡For FCH1-3 and PFC1, the implicit Euler is compared with the LMP while the LBDF2 is compared for PFC2.

26 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

value still differs by less than 10−6 from the original approximation, i.e., the one before
refining the grid spacing, then it is selected as the highly accurate solution, and its point
value is used in the main experiment. In fact, in all problems, this is the case. The refer-
ence coordinates (x,y,t) for each benchmark problem are as listed below and also shown
in Fig. 8 (black dot).

FCH1: (4.71239, 4.71239, 10)
FCH2: (7.1, 8.85, 10)
FCH3: (6.92132, 10.7501, 10)
PFC1 : (20.6773, 5.4414, 1000)
PFC2 : (43.3594, 14.4531, 300)

Now, the main experiment is done as Fig. 9 shows. For each combination of a prob-
lem and a solver, we start with a generous time stepping tolerance 1, which will suggest
rather large time step sizes through the adaptive time stepping. We simulate the evolu-
tion with this setting until it reaches the reference time t, and obtain the point value at
the spatial reference coordinate (x,y). Then, the objective error is computed by the differ-
ence between u(x,y,t) and the value of the precomputed, highly accurate solution at our
reference point. If this error is larger than the objective tolerance 10−5, which aims at a 5-
digit precision, we restart the experiment with a time stepping tolerance that is reduced
by a factor of 0.1. This process is repeated until the objective error is smaller than the
objective tolerance. When this occurs, we record the cost: FFT count (total number of the
FFT and iFFT divided by two), the wall-clock time, and the CPU time consumed.

The results of this experiment are summarized in Table 3. Charts that reorganize our
findings are also given in Fig. 10 so that one can compare the performance easily. As can
be seen in Fig. 10, for FCH1-3, implicit schemes perform significantly better than semi-
implicit schemes. In an extreme case, the MP takes less than a fifteenth CPU time than
the LBDF2 does for the FCH3 benchmark problem. Interestingly, for PFC1, semi-implicit
schemes perform either very poorly (LMP) or very well (LBDF2) while the performance
of implicit schemes is somewhere in the middle. Even more interestingly, for PFC2,
the difference in performance diverges according to the time discretization, MP-based
vs. BDF2-based, rather than fully- vs. semi-implicit nature. And the worst performing
solver for PFC1, namely LMP, shows an extremely good result. We suspect that the fact
that the nonlinearity of the PFC equation is milder than that of the FCH equation (as one
can see from their chemical potentials) explains the good performance of implicit solvers
on FCH1-3. Also, although further investigations are needed, the well-behaving nature
of the PFC2 evolution mentioned in the last paragraph of Section 4.2 seems to make MP-
based schemes more efficient than the BDF2-based ones.

5 Conclusion

In this work, we have introduced an efficient, time-adaptive solver for the FCH and PFC
equations featuring the PAGD as solver. We observed that, if solver parameters are ap-

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 27

(a) FCH1: (x,y,t) = (4.71239, 4.71239, 10) (b) FCH2: (x,y,t) = (7.1, 8.85, 10)

(c) FCH3: (x,y,t) = (6.92132, 10.7501, 10)

-100 -50 0 50 100

-100

-50

0

50

100

(d) PFC1: (x,y,t) = (20.6773, 5.4414, 1000)

(e) PFC2: (x,y,t) = (43.3594, 14.4531, 300)

Figure 8: Reference coordinates for determining accuracy in the benchmark comparisons.

28 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

Start

time stepping
tolerance

(1∼10−10)

point value
at (x,y,t)

(current scheme)simulateerror
(?)
<

(
objective
tolerance

)point value at (x,y,t)
highly accurate solution
record

costYesmore restrictive stepping tolerance (×0.1)No

Figure 9: A flowchart to determine computational cost.

FCH1 FCH2 FCH3 PFC1 PFC2
0

2

4

6

8

10
10

5

MP

BDF2

LMP

LBDF2

(a) FFT count

FCH1 FCH2 FCH3 PFC1 PFC2
0

1000

2000

3000

4000

5000

6000
MP

BDF2

LMP

LBDF2

(b) Clock Time (sec)

FCH1 FCH2 FCH3 PFC1 PFC2
0

1

2

3

4

5

6
10

4

MP

BDF2

LMP

LBDF2

(c) CPU Time (sec)

Figure 10: Comparisons between number of FFTs, the wall-clock time, and CPU time of the MP, BDF2, LMP,
and LBDF2. Implicit schemes perform better than semi-implicit schemes.

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 29

Table 3: Results of benchmark experiment.

Prob Scheme Step tol. Point value Obj. err. FFT Clock (sec) CPU (sec)

FCH1 MP 0.0001 0.8886817507 -2.44E-07 43769 14 81

FCH1 BDF2 1E-06 0.8886738923 -8.1E-06 77385 23 128

FCH1 LMP 1E-08 0.8886791836 -2.81E-06 189479 102 691

FCH1 LBDF2 1E-08 0.8886785837 -3.41E-06 221987 116 791

FCH2 MP 1E-05 0.9254124244 7.77E-06 122049 116 639

FCH2 BDF2 1E-07 0.9254110119 6.36E-06 106425 90 480

FCH2 LMP 1E-08 0.9254006926 -3.96E-06 260438 488 2871

FCH2 LBDF2 1E-08 0.9253997437 -4.91E-06 297146 537 3169

FCH3 MP 1E-05 0.9597908022 -8.85E-06 113089 112 611

FCH3 BDF2 1E-06 0.9598029022 3.25E-06 142293 120 643

FCH3 LMP 1E-09 0.9597965984 -3.05E-06 727975 1366 7946

FCH3 LBDF2 1E-09 0.959796049 -3.6E-06 864888 1639 9519

PFC1 MP 1 -1.190098311 -1.38E-06 78289 595 5980

PFC1 BDF2 1 -1.190094247 2.68E-06 82485 437 4178

PFC1 LMP2 0.0001 -1.190101571 -4.64E-06 616922 5847 55413

PFC1 LBDF22 0.001 -1.190105174 -8.24E-06 16785 141 1319

PFC2 MP 1 0.609267849 9.07E-08 25551 77 505

PFC2 BDF2 0.01 0.609267701 -5.75E-08 237792 747 5174

PFC2 LMP2 0.001 0.609276681 8.92E-06 6026 53 291

PFC2 LBDF22 0.001 0.609269078 1.32E-06 517858 2896 20668

propriatly chosen, a PAGD-based solver outperforms a PGD-based solver, which has
been recently developed and proven to be efficient on its own.

We have also conducted an experiment so that both the accuracy and the efficiency
are measured in some way, and compared the performance of two fully implicit schemes,
the MP and BDF2 equipped with the PAGD, and those of two semi-implicit schemes, the
LMP and LBDF2. Our results show that the implicit schemes can be a good choice from
a practical point of view, particularly for highly nonlinear problems. For such problems,
although some desirable properties (e.g., unique solvability) may be not available for
highly nonlinear, nonconvex problems, implicit schemes tend to take less cost to yield
similarly accurate simulations than the semi-implicit schemes considered in this work,
provided the implicit schemes are equipped with an efficient nonlinear solver such as the
PAGD. This efficient solver can be harnessed without much of tedious paramter tuning
with the help of averaged Newton preconditioner and the sweeping-friction strategy.
Semi-implicit schemes can be very efficient for solving equations of a milder nonlinearity
if an appropriate time discretization is chosen and a good decomposition of the linear part
and nonlinear part is chosen.

30 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

Acknowledgements

The work of J.-H. Park was partially supported by NSF grants DMS-1720213, DMS-
1719854, and DMS-2012634. The work of A. J. Salgado was partially supported by NSF
grants DMS-1720213 and DMS-2111228. The work of S. M. Wise was partially supported
by DMS-1719854 and DMS-2012634.

References

[1] E. Asadi and M. Asle Zaeem, A review of quantitative phase-field crystal modeling of solid-
liquid structures, JOM, 67(1):186–201, 2015.

[2] R. Backofen, S. M. Wise, M. Salvalaglio, and A. Voigt, Convexity splitting in a phase field
model for surface diffusion, Int. J. Numer. Anal. Model., 16(2):192–209, 2019.

[3] J. Burkardt and C. Trenchea, Refactorization of the midpoint rule, Applied Mathematics Let-
ters, 107:106438, 2020.

[4] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods, Scientific Com-
putation, Springer-Verlag, 2006. Fundamentals in single domains.

[5] H. Chen, J. Mao, and J. Shen, Optimal error estimates for the scalar auxiliary variable finite-
element schemes for gradient flows, Numer. Math., 145(1):167–196, 2020.

[6] K. Cheng, C. Wang, S. Wise, and Z. Yuan, Global-in-time gevrey regularity solutions for the
functionalized Cahn-Hilliard equation, Discrete Cont. Dyn. Sys. S, 13:Paper No. 48, 20, 2020.

[7] M. Cheng and J. A. Warren, An efficient algorithm for solving the phase field crystal model,
J. Comput. Phys., 227(12):6241–6248, 2008.

[8] Q. Cheng, C. Liu, and J. Shen, Generalized SAV approaches for gradient systems, J. Comput.
Appl. Math., 394:Paper No. 113532, 19, 2021.

[9] L. Cherfils, H. Fakih, M. Grasselli, and A. Miranville, A convergent convex splitting scheme
for a nonlocal Cahn–Hilliard–Oono type equation with a transport term, ESAIM Math.
Model. Numer. Anal., 55(suppl.):S225–S250, 2021.

[10] A. Christlieb, K. Promislow, Z. Tan, S. Wang, B. Wetton, and S. M. Wise, Benchmark compu-
tation of morphological complexity in the functionalized Cahn-Hilliard gradient flow, 2020.

[11] M. Conti, A. Giorgini, and M. Grasselli, Phase-field crystal equation with memory, J. Math.
Anal. Appl., 436(2):1297–1331, 2016.

[12] S. Dai, Q. Liu, and K. Promislow, Weak solutions for the functionalized Cahn-Hilliard equa-
tion with degenerate mobility, Appl. Anal., 100(1):1–16, 2021.

[13] A. Doelman, G. Hayrapetyan, K. Promislow, and B. Wetton, Meander and pearling of single-
curvature bilayer interfaces in the functionalized Cahn-Hilliard equation, SIAM J. Math.
Anal., 46(6):3640–3677, 2014.

[14] K. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant, Phase-field crystal modeling and
classical density functional theory of freezing, Phys. Rev. B, 77:064107, 2007.

[15] K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium
processing using phase field crystals, Physical review. E, Statistical, nonlinear, and soft matter
physics, 70(5 Pt 1):051605–051605, 2004.

[16] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Modeling elasticity in crystal growth,
Phys. Rev. Lett., 88:245701, 2002.

J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32 31

[17] H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. I. Tóth, G. Tegze, and L. Gránásy,
Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive
time scales: an overview, Advances in Physics, 61(6):665–743, 2012.

[18] D. J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, In:
Computational and mathematical models of microstructural evolution, Vol. 529 of Mater. Res. Soc.
Sympos. Proc., 39–46. MRS, Warrendale, PA, 1998.

[19] D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, Unpublished
article, 1–15, 1998.

[20] W. Feng, Z. Guan, J. Lowengrub, C. Wang, S. M. Wise, and Y. Chen, A uniquely solvable,
energy stable numerical scheme for the functionalized Cahn-Hilliard equation and its con-
vergence analysis, J. Sci. Comput., 76(3):1938–1967, 2018.

[21] W. Feng, A. J. Salgado, C. Wang, and S. M. Wise, Preconditioned steepest descent methods
for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334:45–
67, 2017.

[22] N. Gavish, G. Hayrapetyan, K. Promislow, and L. Yang, Curvature driven flow of bi-layer
interfaces, Physica D: Nonlinear Phenomena, 240(7):675–693, 2011.

[23] N. Gavish, J. Jones, Z. Xu, A. Christlieb, and K. Promislow, Variational models of network
formation and ion transport: Applications to perfluorosulfonate ionomer membranes, Poly-
mers, 4(1):630–655, 2012.

[24] H. Gomez and X. Nogueira, An unconditionally energy-stable method for the phase field
crystal equation, Comput. Methods Appl. Mech. Engrg., 249/252:52–61, 2012.

[25] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations. I, Vol. 8 of
Springer Series in Computational Mathematics, Springer-Verlag, Second edition, 1993. Nonstiff
problems.

[26] Z. Hu, S. M. Wise, C. Wang, and J. S. Lowengrub, Stable and efficient finite-difference
nonlinear-multigrid schemes for the phase field crystal equation, J. Comput. Phys., 228(15):
5323–5339, 2009.

[27] J. S. Jones, Development of a fast and accurate time stepping scheme for the functionalized Cahn-
Hilliard equation and application to a graphics processing unit, ProQuest LLC, Ann Arbor, MI,
2013, Ph.D. Thesis, Michigan State University.

[28] X. Li and J. Shen, Stability and error estimates of the SAV Fourier-spectral method for the
phase field crystal equation, Adv. Comput. Math., 46(3):Paper No. 48, 20, 2020.

[29] J.-H. Park, A. J. Salgado, and S. M. Wise, Preconditioned accelerated gradient descent meth-
ods for locally Lipschitz smooth objectives with applications to the solution of nonlinear
PDEs, J. Sci. Comput., 89(17), 2021.

[30] K. Promislow and B. Wetton, PEM fuel cells: a mathematical overview, SIAM J. Appl. Math.,
70(2):369–409, 2009.

[31] N. Provatas, J. A. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld, and K. R. Elder,
Using the phase-field crystal method in the multi-scale modeling of microstructure evolu-
tion, JOM, 59(7):83–90, 2007.

[32] N. Provatas and K. Elder, Phase-Field Methods in Materials Science and Engineering, Wiley-
VCH Verlag, 2010.

[33] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule, SIAM
Rev., 56(3):385–458, 2014.

[34] C. Wang and S. M. Wise, Global smooth solutions of the three-dimensional modified phase
field crystal equation, Methods Appl. Anal., 17(2):191–211, 2010.

[35] S. M. Wise, C. Wang, and J. S. Lowengrub, An energy-stable and convergent finite-difference

32 J.-H. Park, A.J. Salgado and S.M. Wise / Commun. Comput. Phys., x (2022), pp. 1-32

scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47(3):2269–2288, 2009.
[36] J. Xu, Y. Li, and S. Wu, Convex splitting schemes interpreted as fully implicit schemes in

disguise for phase field modeling, 04 2016.
[37] C. Zhang and J. Ouyang, Unconditionally energy stable second-order numerical schemes

for the functionalized Cahn-Hilliard gradient flow equation based on the SAV approach,
Comput. Math. Appl., 84:16–38, 2021.

[38] C. Zhang, J. Ouyang, C. Wang, and S. M. Wise, Numerical comparison of modified-energy
stable SAV-type schemes and classical BDF methods on benchmark problems for the func-
tionalized Cahn-Hilliard equation, J. Comput. Phys., 423:109772, 35, 2020.

[39] Z. Zhang, Y. Ma, and Z. Qiao, An adaptive time-stepping strategy for solving the phase field
crystal model, J. Comput. Phys., 249:204–215, 2013.

