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We develop the theory of fractional gradient flows: an evolution aimed at the minimiza-

tion of a convex, lower semicontinuous energy, with memory effects. This memory is

characterized by the fact that the negative of the (sub)gradient of the energy equals the
so-called Caputo derivative of the state. We introduce the notion of energy solutions, for

which we provide existence, uniqueness and certain regularizing effects. We also consider

Lipschitz perturbations of this energy. For these problems we provide an a posteriori

error estimate and show its reliability. This estimate depends only on the problem data,

and imposes no constraints between consecutive time-steps. On the basis of this estimate
we provide an a priori error analysis that makes no assumptions on the smoothness of

the solution.

Keywords: Caputo derivative; gradient flows; a posteriori error estimate; variable time

stepping.
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1. Introduction

In recent times problems involving fractional derivatives have garnered considerable

attention, as it is claimed that they better describe certain fundamental relations
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between the processes of interest; see, for instance Refs. 44, 19 and 75. In this, and

many other references the models considered are linear. However, it is well known

that real world phenomena are not linear, not even smooth. It is only natural then

to consider nonlinear/nonsmooth models with fractional derivatives.

The purpose of this work is to develop the theory and numerical analysis of so-

called time-fractional gradient flows: an evolution equation aimed at the minimiza-

tion of a convex and lower semicontinuous (l.s.c.) energy, but where the evolution

has memory effects. This memory is characterized by the fact that the negative of

the (sub)gradient of the energy equals the so-called Caputo derivative of the state.

The Caputo derivative, introduced in Ref. 14, is one of the existing models of

fractional derivatives. It is defined, for α ∈ (0, 1), by

Dα
c w(t) =

1

Γ(1− α)

ˆ t

0

ẇ(r)

(t− r)α
dr, (1.1)

where Γ denotes the Gamma function. This definition, from the onset, seems unnat-

ural. To define a derivative of a fractional order, it seems necessary for the function

to be at least differentiable. Below we briefly describe several attempts at circum-

venting this issue. We focus, in particular, on the results developed in a series of

papers by Li and Liu, see Refs. 36, 39, 37 and 38, where they developed a distribu-

tional theory for this derivative; see also Ref. 23. The authors of these works also

constructed, in Ref. 37, so-called deconvolution schemes that aim at discretizing this

derivative. With the help of this definition and the schemes that they develop the

authors were able to study several classes of equations, in particular time fractional

gradient flows.

Let us be precise in what we mean by this term. Let T > 0 be a final time, H
be a separable Hilbert space, Φ : H → R∪ {+∞} be a convex and l.s.c. functional,

which we will call energy. Given u0 ∈ H, and f : (0, T ] → H we seek for a function

u : [0, T ] → H that satisfies
{
Dα

c u(t) + ∂Φ(u(t)) ∋ f(t), t ∈ (0, T ],

u(0) = u0,
(1.2)

where by ∂Φ we denote the subdifferential of Φ. Our objectives in this work can be

stated as follows: We will introduce the notion of “energy solutions” of (1.2), and

we will refine the results regarding existence, uniqueness, and regularizing effects

provided in Ref. 39. This will be done by generalizing, to non-uniform time steps

the “deconvolution” schemes of Refs. 37 and 39, and developing a sort of “fractional

minimizing movements” scheme. We will also provide an a priori error estimate

that seems optimal in light of the regularizing effects proved above. We also develop

an a posteriori error estimate, in the spirit of Ref. 51 and show its reliability.

We comment, in passing, that nonlinear evolution problems with fractional time

derivative have been considered in other works. From a modeling point of view, their

advantages have been observed in Refs. 19 and 15. Some other types of nonlinear

problems have been studied in Refs. 9, 67, 2, 34, 33, 65, 74, 53 and 62, where
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for a particular type of nonlinear problem, other “energy dissipation inequalities”

than those we obtain are derived. Regularity properties for nonlinear problems with

fractional time derivatives have been obtained in Refs. 32, 18, 31, 1, 73, 72, 71 and

69. Of particular interest to us are Ref. 39 which we described above and Ref. 3

which also considers time fractional gradient flows. The assumptions on the data,

however, are slightly different than ours. As such, some of the results in Ref. 3 are

stronger, and some weaker than ours; in particular, we conduct a numerical analysis

of this problem. Nevertheless, we refer to this reference for a nice historical account

and particular applications to PDEs.

Before proceeding any further, let us detail here what we believe are the major

advancements that this contribution aims to put forward:

• Theory: energy solutions. We develop the theory of energy solutions for prob-

lems of the form (1.2). All that is needed in this context, is for the energy Φ

to be convex, l.s.c., and bounded from below. No other assumptions regarding

smoothness or structure of the energy are made. Nevertheless, we prove existence,

uniqueness, and certain regularizing effects within this solution class.

• Theory: Lipschitz perturbations. The theory of energy solutions is extended

to the case of a Lipschitz perturbation to our convex energy. In this case we also

develop an existence and uniqueness theory.

• Numerics: unconditionally stable scheme. Our extension to arbitrary time

steps of existing deconvolution schemes is, one of the few discretizations of the

Caputo derivative that is unconditionally stable over arbitrary meshes. Most

works consider either uniform, or suitable graded temporal meshes. We com-

ment that, while this work was under review, another discretization with similar

properties appeared in Ref. 43, where the authors consider the time fractional

Allen–Cahn equation. Under some restrictions on the time step and the spa-

tial discretization parameter, the scheme of Ref. 43 is also maximum principle

preserving.

• Numerics: a posteriori error estimator. We construct a reliable a posteriori

error estimator for our numerical scheme. This is the first of its kind for time-

fractional problems.

• Numerics: error estimates. We prove optimal error estimates for our numer-

ical scheme. These do not assume any regularity beyond what the notion of

energy solutions accommodates. For some special cases, where there is additional

regularity, these are improved.

Our presentation will be organized as follows. We will establish notation and

the framework we will adopt in Sec. 2. Here, in particular, we will study several

properties of a particular space, which we denote by Lp
α(0, T ;H), and that will be

used to characterize the requirements on the right-hand side f of (1.2). In addition,

we also review the various proposed generalizations of the classical definition of

Caputo derivatives, with particular attention to that of Refs. 36, 39 and 38; since

this is the one we shall adopt. In Sec. 3, we generalize the deconvolution schemes
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of Refs. 37 and 39 and their properties, to the case of non-uniform time stepping.

Many of the simple properties of these schemes are lost in this case, but we retain

enough of them for our purposes. Section 4 introduces the notion of energy solu-

tions for (1.2) and shows existence and uniqueness of these. This is accomplished

by introducing, on the basis of our generalized deconvolution formulas, a fractional

minimizing movements scheme; and showing that the discrete solutions have enough

compactness to pass to the limit in the size of the partition. In Sec. 5, we provide

an error analysis of the fractional minimizing movements scheme. First, we show

how an error estimate follows as a side result from the existence proof. Then, in the

spirit of Ref. 51, we provide an a posteriori error estimator for our scheme and show

its reliability. This estimator is then used to independently show rates of conver-

gence. This section is concluded with some particular instances in which the rate of

convergence can be improved. Section 6 is dedicated to the case in which we allow a

Lipschitz perturbation of the subdifferential. We extend the existence, uniqueness,

a priori, and a posteriori approximation results of the fractional gradient flow. To

show the extent of applicability of our developments, in Sec. 7, we present a series

of example problems to which our setting applies. Finally, Sec. 8 presents some

simple numerical experiments that illustrate, explore, and expand our theory.

2. Notation and Preliminaries

Let us begin by presenting the main notation and assumptions we shall operate

under. We will denote by T ∈ (0,∞) our final (positive) time. By H we will always

denote a separable Hilbert space with scalar product 〈·, ·〉 and norm ‖ · ‖. As it is

by now customary, by C we will denote a nonessential constant whose value may

change at each occurrence.

2.1. Convex energies

The energy will be a convex, l.s.c., functional Φ : H → R ∪ {+∞} with nonempty

effective domain of definition, that is,

D(Φ) = {w ∈ H : Φ(w) < +∞} 6= ∅.

We will always assume that our energy is bounded from below, that is,

Φinf = inf
u∈H

Φ(u) > −∞.

As we are not assuming smoothness in our energy beyond convexity, a useful sub-

stitute for its derivative is the subdifferential, that is,

∂Φ(w) = {ξ ∈ H : 〈ξ, v − w〉 ≤ Φ(v)− Φ(w) ∀ v ∈ H}.

The effective domain of the subdifferential is D(∂Φ) = {w ∈ H : ∂Φ(w) 6= ∅} .
Recall that, in our setting, we always have that D(∂Φ) = D(Φ). We refer the reader

to Refs. 16 and 56 for basic facts on convex analysis.
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In applications, it is sometimes useful to obtain error estimates on (semi)norms

stronger than those of the ambient space, and that are dictated by the structure of

the energy. For this reason, we introduce the following coercivity modulus of Φ, see

Definition 2.3 in Ref. 51.

Definition 2.1. (Coercivity modulus) For every w1 ∈ D(Φ) and w2 ∈ D(∂Φ), let

σ(w1;w2) ≥ 0 be

σ(w1;w2) = Φ(w2)− Φ(w1)− sup
ξ∈∂Φ(w1)

〈ξ, w2 − w1〉.

Then for every w1, w2 ∈ D(∂Φ) we define

ρ(w1, w2) = σ(w1;w2) + σ(w2;w1)

= inf
ξ1∈∂Φ(w1),ξ2∈∂Φ(w2)

〈ξ1 − ξ2, w1 − w2〉.

We comment that, by the definition, ρ(·, ·) is symmetric, whereas σ(·; ·) might

not be. Furthermore, the separability of H guarantees that σ and ρ are both Borel

measurable; see Remark 2.4 in Ref. 51. One may also refer to Sec. 2.3 of Ref. 51 for

discussions and properties of σ and ρ for certain choices of Φ. Definition 2.1 enables

us to write

ξ ∈ ∂Φ(w) ⇔ 〈ξ, v − w〉+ σ(w; v) ≤ Φ(v)− Φ(w), ∀ v ∈ H. (2.1)

2.2. Vector-valued time dependent functions

We will follow standard notation regarding Bochner spaces of vector-valued func-

tions, see Sec. 1.5 in Ref. 54. For any w ∈ L1(0, T ;H) and E ⊂ [0, T ] that is

measurable, we define the average by
 

E

w(t)dt =
1

|E|

ˆ

E

w(t)dt,

where |E| denotes the Lebesgue measure of E.

Since eventually we will have to deal with time discretization, we also introduce

notation for time-discrete vector-valued functions. Let P be a partition of the time

interval [0, T ]

P = {0 = t0 < t1 < · · · < tN−1 < tN = T}, (2.2)

with variable steps τn = tn − tn−1 and τ = max{τn : n ∈ {1, . . . , N}}. We will

always denote by N the size of a partition. For t ∈ [0, T ] we define

⌊t⌋P = max{r ∈ P : r < t}, ⌈t⌉P = min{r ∈ P : t ≤ r},
and n(t) to be the index of ⌈t⌉P , so that t ∈ (⌊t⌋P , ⌈t⌉P ] = (tn(t)−1, tn(t)]. Given a

partition P, for W = {Wi}Ni=1 ⊂ HN we define its piecewise constant interpolant

with respect to P to be the function WP ∈ L∞(0, T ;H) defined by

WP(t) =Wn(t). (2.3)
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2.2.1. The space Lp
α(0, T ;H)

To quantify the assumptions we need on the right-hand side f of (1.2) we introduce

the following space.

Definition 2.2. (Space Lp
α(0, T ;H)) Let p ∈ [1,∞) and α ∈ (0, 1). We say that

the function w : [0, T ] → H belongs to the space Lp
α(0, T ;H) if and only if

‖w‖Lp
α(0,T ;H) = sup

t∈[0,T ]

(
ˆ t

0

(t− s)α−1‖w(s)‖pds
)1/p

<∞. (2.4)

Let us show some basic embedding results about this space.

Proposition 2.3. (Embedding) Let p ∈ [1,∞), α ∈ (0, 1), and q > p/α. Then we

have that

Lq(0, T ;H) →֒ Lp
α(0, T ;H) →֒ Lp(0, T ;H).

Proof. The second embedding is immediate. For any t ∈ (0, T ]
ˆ t

0

‖w(s)‖pds ≤ sup
s∈[0,t]

(t− s)1−α

ˆ t

0

(t− s)α−1‖w(s)‖pds ≤ T 1−α‖w‖p
Lp

α(0,T ;H)
,

where we used that 1− α > 0.

The proof of the first embedding is a simple application of Hölder inequality.

Indeed, we have
(
ˆ t

0

(t− s)α−1‖w(s)‖pds
)1/p

≤
(
q − p

qα− p

)(q−p)/q

tα−p/q‖w‖Lq(0,t;H),

and hence

‖w‖Lp
α(0,T ;H) ≤

(
q − p

qα− p

)(q−p)/q

Tα−p/q‖w‖Lq(0,T ;H), (2.5)

as we intended to show.

When dealing with discretization we will approximate the right-hand side f of

(1.2) by its local averages over a partition P. Thus, we must provide a bound on

this operation that is independent of the partition.

Lemma 2.4. (Continuity of averaging) Let p ∈ [1,∞), α ∈ (0, 1), f ∈ Lp
α(0, T ;H),

and P be a partition of [0, T ] as in (2.2). Define F = {
ffl tn
tn−1

f(t)dt}Nn=1 ⊂ HN and

let FP be defined as in (2.3). Then, there exists a constant C > 0 only depending

on p and α such that

‖FP‖Lp
α(0,T ;H) ≤ C‖f‖Lp

α(0,T ;H).

Proof. Let p ∈ (1,∞). We first, for n ∈ {1, . . . , N}, bound the integral
ˆ tn

0

(tn − s)α−1‖FP(s)‖pds.
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To achieve this, we decompose this integral as
ˆ tn

0

(tn − s)α−1‖FP(s)‖pds =
n∑

k=1

ˆ tk

tk−1

(tn − s)α−1‖FP(s)‖pds

=

n∑

k=1

‖Fk‖p
ˆ tk

tk−1

(tn − s)α−1ds. (2.6)

We use Hölder inequality in the definition of Fk to obtain that

‖Fk‖p =

∥∥∥∥∥

 tk

tk−1

f(s)ds

∥∥∥∥∥

p

≤
 tk

tk−1

(tn − s)α−1‖f(s)‖pds
(
 tk

tk−1

(tn − s)
1−α
p−1 ds

)p−1

. (2.7)

Since, for every p ∈ (1,∞) the function s 7→ sα−1 belongs to the Muckenhoupt

class Ap(R+), see Example 7.1.7 in Ref. 29, there exists a constant Cp,α that only

depends on p and α such that

 b

a

sα−1ds

(
 b

a

s
1−α
p−1 ds

)p−1

≤ Cp,α, ∀ 0 ≤ a < b.

Therefore, for any k, we have

 tk

tk−1

(tn − s)α−1ds

[
 tk

tk−1

(tn − s)
1−α
p−1 ds

]p−1

=

 tn−tk

tn−tk−1

sα−1ds

[
 tn−tk

tn−tk−1

s
1−α
p−1 ds

]p−1

≤ Cp,α. (2.8)

Substituting (2.7) and (2.8) into (2.6) we get
ˆ tn

0

(tn − s)α−1‖FP(s)‖pds ≤
n∑

k=1

Cp,α

ˆ tk

tk−1

(tn − s)α−1‖f(s)‖pds

= Cp,α

ˆ tn

0

(tn − s)α−1‖f(s)‖pds ≤ Cp,α‖f‖pLp
α(0,T ;H)

.

Now consider t ∈ [0, T ]. Taking advantage of the estimate we obtained above,

we write
ˆ t

0

(t− s)α−1‖FP(s)‖pds =
ˆ ⌊t⌋P

0

(t− s)α−1‖FP(s)‖pds

+

ˆ t

⌊t⌋P

(t− s)α−1‖FP(s)‖pds

=

ˆ ⌊t⌋P

0

(t− s)α−1‖FP(s)‖pds
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+ ‖FP(⌈t⌉P)‖p
ˆ t

⌊t⌋P

(t− s)α−1ds

≤
ˆ ⌊t⌋P

0

(⌊t⌋P − s)α−1‖FP(s)‖pds

+ ‖FP(⌈t⌉P)‖p
ˆ ⌈t⌉P

⌊t⌋P

(⌈t⌉P − s)α−1ds

≤ Cp,α‖f‖pLp
α(0,T ;H)

+

ˆ ⌈t⌉P

0

(⌈t⌉P − s)α−1‖F (s)‖pds

≤ 2Cp,α‖f‖pLp
α(0,T ;H)

.

(2.9)

Therefore by taking supremum over t ∈ [0, T ] and C = (2Cp,α)
1/p, we finish the

proof of this lemma.

For p = 1, the proof proceeds almost the same way as before. The only difference

worth noting is that, instead of (2.7), we have

‖Fk‖ =

∥∥∥∥∥

 tk

tk−1

f(s)ds

∥∥∥∥∥ ≤
 tk

tk−1

(tn − s)α−1‖f(s)‖ds sup
s∈[tk−1,tk]

1

(tn − s)α−1
.

Next, we observe that, since α−1 ∈ (−1, 0), then the function s 7→ sα−1 belongs

to the Muckenhoupt class A1(R+). Thus,

sup
s∈[a,b]

1

sα−1

 b

a

sα−1ds ≤ Cα, ∀ 0 ≤ a < b.

With this information, the proof proceeds without change.

It turns out that averaging is not only continuous, but possesses suitable approx-

imation properties in this space. Namely, we have a control on the difference between

fractional integrals of f ∈ Lp
α(0, T ;H) and its averages.

Lemma 2.5. (Approximation) Let p ∈ [1,∞), α ∈ (0, 1), f ∈ Lp
α(0, T ;H), and

P be a partition of [0, T ] as in (2.2). Let p′ be the Hölder conjugate of p, F =

{
ffl tn
tn−1

f(t)dt}Nn=1 ⊂ HN , and let FP be defined as in (2.3). Then we have

sup
t∈[0,T ]

∥∥∥∥
ˆ t

0

(t− s)α−1
(
f(s)− FP(s)

)
ds

∥∥∥∥ ≤ Cτα/p
′‖f − FP‖Lp

α(0,T ;H)

≤ C ′τα/p
′‖f‖Lp

α(0,T ;H), (2.10)
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where the constants C,C ′ depend only on p and α. In addition, for any β ∈ (0, 1)

we also have

sup
r∈[0,T ]

ˆ r

0

(r − t)α−1

∥∥∥∥
ˆ t

0

(t− s)β−1(f(s)− FP(s))ds

∥∥∥∥
p

dt

≤ C1τ
pβ‖f − FP‖pLp

α(0,T ;H)
≤ C ′

1τ
pβ‖f‖p

Lp
α(0,T ;H)

, (2.11)

where the constants C1, C
′
1 depend on p, α, and β. As usual, when p = 1, we have

p′ = ∞ and 1/p′ is treated as 0.

Proof. We first notice that the second inequalities in both (2.10) and (2.11) follow

directly from Theorem 2.4 and the triangle inequality.

To show the first inequality in (2.10), given P we consider t ∈ [0, T ]. Using that

f − FP has zero mean on each subinterval of the partition, we can write

ˆ t

0

(t− s)α−1
(
f(s)− FP(s)

)
ds

=

ˆ t

⌊t⌋P

(t− s)α−1(f(s)− FP(s))ds

+

n(t)−1∑

k=1

ˆ tk

tk−1

(t− s)α−1(f(s)− FP(s))ds

=

ˆ t

⌊t⌋P

(t− s)α−1(f(s)− FP(s))ds+

n(t)−1∑

k=1

ˆ tk

tk−1

((t− s)α−1

− (t− tk−1)
α−1)(f(s)− FP(s))ds = I1(t) + I2(t). (2.12)

For the first term, denoted I1(t), we have

‖I1(t)‖ ≤
(
ˆ t

⌊t⌋P

(t− s)α−1
∥∥f(s)− FP(s)

∥∥p ds
)1/p(

ˆ t

⌊t⌋P

(t− s)α−1ds

)1/p′

≤ ‖f − FP‖Lp
α(0,T ;H)

(
1

α
(t− ⌊t⌋P)α

)1/p′

≤ C1τ
α/p′‖f − FP‖Lp

α(0,T ;H),

where C1 only depends on p and α. For the second term, noticing that t−tk−1+τ >

t− s for s ∈ (tk−1, tk) we have

‖I2‖ ≤
ˆ ⌊t⌋P

0

(
(t− s)α−1 − (t− s+ τ)α−1

)
‖f(s)− FP(s)‖ds

≤
[
ˆ ⌊t⌋P

0

(t− s)α−1
∥∥f(s)− FP(s)

∥∥p ds
]1/p
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×



ˆ ⌊t⌋P

0

(t− s)α−1

[
1−

[
t− s+ τ

t− s

]α−1
]p′

ds



1/p′

≤ ‖f − FP‖Lp
α(0,T ;H)

(
ˆ ⌊t⌋P

0

(t− s)α−1 − (t− s+ τ)α−1ds

)1/p′

.

Since

ˆ ⌊t⌋P

0

(t− s)α−1 − (t− s+ τ)α−1ds =
1

α
(tα − (t− ⌊t⌋P)α − (t+ τ)α

+(t− ⌊t⌋P + τ)α)

≤ 1

α
((t− ⌊t⌋P + τ)α − (t− ⌊t⌋P)α) ≤

τα

α
,

we obtain

‖I2(t)‖ ≤ C2τ
α/p′‖f − FP‖Lp

α(0,T ;H),

and (2.10) follows after combining the bounds for I1(t) and I2(t) that we have

obtained.

To prove (2.11) we apply the Hölder inequality to (2.12) with α replaced by β

to get

∥∥∥∥
ˆ t

0

(t− s)β−1
(
f(s)− FP(s)

)
ds

∥∥∥∥
p

≤ II1(t)
p−1 · (II2(t) + II3(t)),

where

II1(t) =

ˆ t

⌊t⌋P

(t− s)β−1ds+

n(t)−1∑

k=1

ˆ tk

tk−1

[
(t− s)β−1 − (t− tk−1)

β−1
]
ds,

II2(t) =

ˆ t

⌊t⌋P

(t− s)β−1
∥∥f(s)− FP(s)

∥∥p ds,

II3(t) =

n(t)−1∑

k=1

ˆ tk

tk−1

(
(t− s)β−1 − (t− tk−1)

β−1
) ∥∥f(s)− FP(s)

∥∥p ds.

Arguing as in the bound for I2(t)

II1(t) =
1

β
(t− ⌊t⌋P)β +

ˆ ⌊t⌋P

0

[(t− s)β−1 − (t− s+ τ)β−1]ds ≤ 2

β
τβ .

Thus, to obtain (2.11) it suffices to show that, for every r ∈ [0, T ],

ˆ r

0

(r − t)α−1(II2(t) + II3(t))dt ≤ C2τ
β‖f − FP‖pLp

α(0,T ;H)
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with some constant C2 only depending on p, α, and β. To estimate the fractional

integral of II2 by Fubini’s theorem we have
ˆ r

0

(r − t)α−1II2(t)dt =

ˆ r

0

‖f(s)− FP(s)‖p

×
ˆ ⌈s⌉P∧r

s

(r − t)α−1(t− s)β−1dtds, (2.13)

where we set a∧ b = min{a, b}. We claim that there exists a constant C3 depending

on α and β such that
ˆ ⌈s⌉P∧r

s

(r − t)α−1(t− s)β−1dt ≤ C3(r − s)α−1τβ . (2.14)

On the one hand, for r − s ≤ 2τ , we simply have
ˆ ⌈s⌉P∧r

s

(r − t)α−1(t− s)β−1dt ≤
ˆ r

s

(r − t)α−1(t− s)β−1dt

=
Γ(α)Γ(β)

Γ(α+ β)
(r − s)α+β−1

≤ Γ(α)Γ(β)

Γ(α+ β)
(r − s)α−1(2τ)β .

On the other hand, if r − s > 2τ , then
ˆ ⌈s⌉P∧r

s

(r − t)α−1(t− s)β−1dt ≤
ˆ s+τ

s

(r − t)α−1(t− s)β−1dt

≤
ˆ s+τ

s

(
r − s

2

)α−1

(t− s)β−1dt

=
21−α

β
(r − s)α−1τβ .

Therefore (2.14) is proved, and thus (2.14) implies that
ˆ r

0

(r − t)α−1II2(t)dt ≤ C3τ
β

ˆ r

0

(r − s)α−1
∥∥f(s)− FP(s)

∥∥p ds

≤ C3τ
β‖f − FP‖pLp

α(0,T ;H)
.

For II3(t), we again apply Fubini’s theorem to obtain
ˆ r

0

(r − t)α−1II3(t)dt =

ˆ r

0

∥∥f(s)− FP(s)
∥∥p

×
ˆ r

s

(r − t)α−1
(
(t− s)β−1 − (t− s+ τ)β−1

)
dtds.

To conclude, we claim that

A =

ˆ r

s

(r − t)α−1((t− s)β−1 − (t− s+ τ)β−1)dt ≤ C4τ
β(r − s)α−1, (2.15)
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for a constant C4 depending on α and β. Indeed, if this is the case, we have
ˆ r

0

(r − t)α−1II3(t)dt ≤ C4τ
β

ˆ r

0

(r − s)α−1
∥∥f(s)− FP(s)

∥∥p ds

≤ C4τ
β‖f − FP‖pLp

α(0,T ;H)
,

and we combine the estimates for II2(t) and II3(t) together and conclude the proof

of (2.11).

Let us now turn to the proof of (2.15). First, if r − s ≤ τ then it suffices to

observe that

A ≤
ˆ r

s

(r − t)α−1(t− s)β−1dt =
Γ(α)Γ(β)

Γ(α+ β)
(r − s)α+β−1 ≤ Γ(α)Γ(β)

Γ(α+ β)
τβ(r − s)α−1.

Now, if r − s > τ , we estimate as

A =

ˆ r

s

(r − t)α−1(t− s)β−1dt−
ˆ r

s

(r − t)α−1(t− s+ τ)β−1dt

=
Γ(α)Γ(β)

Γ(α+ β)
(r − s)α+β−1 −

ˆ r−s

−τ

(t+ τ)β−1(r − t− s)α−1dt

+

ˆ τ

0

(r − s− t+ τ)α−1tβ−1dt

=
Γ(α)Γ(β)

Γ(α+ β)
((r − s)α+β−1 − (r − s+ τ)α+β−1)

+

ˆ τ

0

(r − s− t+ τ)α−1tβ−1dt.

The first term can be bounded using that r − s > τ as follows

(r − s)α+β−1 − (r − s+ τ)α+β−1 ≤ max{α+ β − 1, 0}τ(r − s)α+β−2

≤ τβ(r − s)α−1.

On the other hand, since for t ∈ (0, τ) we have that r− s+ τ − t ≥ r− s, the second
term can be estimated as

ˆ τ

0

(r − s− t+ τ)α−1tβ−1dt ≤ (r − s)α−1

ˆ τ

0

tβ−1dt =
1

α
(r − s)α−1τβ .

This concludes the proof.

We refer the reader to Sec. 4 of Ref. 38 for further results concerning the space

Lp
α(0, T ;H).

2.3. The Caputo derivative

As we mentioned in the Introduction, the definition of the Caputo derivative, given

in (1.1) seems unnatural. Smoothness of higher order is needed to define a fractional
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derivative. Several attempts at resolving this discrepancy have been proposed in

the literature and we here quickly describe a few of them.

First, one of the main reasons that motivate practitioners to use, among the

many possible definitions, the Caputo derivative (1.1) is, first, that Dα
c 1 = 0 and

second that this derivative allows one to pose initial value problems like (1.2).

However, it is by now known that even in the linear case solutions of problems

involving the Caputo derivative possess a weak singularity in time Refs. 61, 60

and 59. This singular behavior of the solution forces one to wonder: If fractional

derivatives describe processes with memory, why is it sufficient to know the state at

one particular point (initial condition) to uniquely describe the state at all future

times? Is it possible that the singularity is precisely caused by the fact that we are

ignoring the past states of the system? This motivates the following: Set w(t) = w0

for t ≤ 0. Therefore,

Dα
c w(t) =

1

Γ(1− α)

ˆ t

−∞

ẇ(r)

(t− r)α
dr =

1

Γ(1− α)

ˆ t

−∞

(w(r)− w(t))̇

(t− r)α
dr

=
1

Γ(−α)

ˆ t

−∞

w(r)− w(t)

(t− r)α+1
dr = Dα

mw(t), (2.16)

where, in the last step, we integrated by parts. The expression Dα
mw(t) is known

as the Marchaud derivative of order α of the function w. This is the way that the

Caputo derivative has been understood, for instance, in Refs. 6, 5, 7 and 4. We

comment, in passing, that owing to Ref. 10 this fractional derivative satisfies an

extension problem similar to the (by now) classical Caffarelli–Silvestre extension in

Refs. 13 and 58 for the fractional Laplacian.

Another approach, and the one we shall adopt here, is to notice that (1.1) can

be converted, for sufficiently smooth functions, into a Volterra type equation

w(t) = w(0) +
1

Γ(α)

ˆ t

0

(t− s)α−1Dα
c w(s)ds, ∀ t ∈ [0, T ]. (2.17)

This identity is the beginning of the theory developed in Ref. 36 to extend the notion

of Caputo derivative. To be more specific, Ref. 36 considers the set of distributions

E
T = {w ∈ D

′(R;H) : ∃Mw ∈ (−∞, T ), supp(w) ⊂ [−Mw, T )}.

for a fixed time T > 0. Then the modified Riemann–Liouville derivative for any

distribution w ∈ E T is defined, following classical references, like Sec. 1.5.5 of

Ref. 26, as

Dα
rlw = w ∗ g−α ∈ E

T ,

where g−α(t) = 1
Γ(1−α)D(θ(t)t−α), with θ being the Heaviside function, is

a distribution supported in [0,∞) and the convolution is understood as the

generalized definition between distributions. Here D denotes the distributional

derivative. Reference 36 then uses this to define the generalized Caputo derivative
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of w∈L1
loc([0, T );H) associated with w0 by

Dα
c w = Dα

rl(w − w0).

If there exists w(0) ∈ H such that limt↓0

ffl t

0
‖w(s) − w(0)‖ds = 0, then we always

impose w0 = w(0) in this definition. It is shown in Theorem 3.7 of Ref. 36 that

for such a function w, (2.17) holds for Lebesgue a.e. t ∈ (0, T ) provided that the

generalized Caputo derivative Dα
c w ∈ L1

loc([0, T );H).

We also comment that Proposition 3.11(ii) of Ref. [36] implies that for every

function w ∈ L2(0, T ;H) with Dα
c w ∈ L2(0, T ;H) we have

1

2
Dα

c ‖w‖2(t) ≤ 〈Dα
c w(t), w(t)〉. (2.18)

Finally, we recall that the Mittag–Leffler function of order α ∈ (0, 1) is defined

via

Eα(z) =

∞∑

k=0

zk

Γ(αk + 1)
.

We refer the reader to Ref. 28 for an extensive treatise on this function. Here we

just mention that this function satisfies, for any λ ∈ R, the identity

Dα
c Eα(λt

α) = λEα(λt
α), Eα(0) = 1. (2.19)

2.3.1. An auxiliary estimate

Having defined the Caputo derivative of a function, we present an auxiliary result.

Namely, an estimate on functions that have piecewise constant, over some partition

P, Caputo derivative.

Lemma 2.6. (Continuity) Let p ∈ [1,∞); P be a partition, as in (2.2), of

[0, T ]; and w ∈ L1(0, T ;H) be such that its generalized Caputo derivative Dα
c w ∈

Lp
α(0, T ;H), and it is piecewise constant over P. Then we have

sup
r∈[0,T ]

ˆ r

0

(r − t)α−1‖w(⌈t⌉P)− w(t)‖pdt ≤ Cτpα‖Dα
c w‖pLp

α(0,T ;H)
, (2.20)

where the constant C depends only on α.

Proof. The representation (2.17) allows us to write

w(⌈t⌉P)− w(t)

=
1

Γ(α)

[
ˆ t

0

Dα
c w(s)

(
(⌈t⌉P − s)α−1 − (t− s)α−1

)
ds

+

ˆ ⌈t⌉P

t

Dα
c w(s)(⌈t⌉P − s)α−1ds

]
.
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Therefore by Hölder inequality, we have

‖w(⌈t⌉P)− w(t)‖p ≤ 1

Γp(α)

(
ˆ t

0

|(⌈t⌉P − s)α−1 − (t− s)α−1|ds

+

ˆ ⌈t⌉P

t

(⌈t⌉P − s)α−1ds

)p−1

×
(
ˆ t

0

‖Dα
c w(s)‖p

∣∣(⌈t⌉P − s)α−1 − (t− s)α−1
∣∣ ds

+

ˆ ⌈t⌉P

t

‖Dα
c w(s)‖p(⌈t⌉P − s)α−1ds

)

≤ Cτα(p−1)

(
ˆ t

0

‖Dα
c w(s)‖p

∣∣(⌈t⌉P − s)α−1 − (t− s)α−1
∣∣ ds

+
(⌈t⌉P − t)α

α
‖Dα

c w(t)‖p
)

= C1τ
α(p−1)

ˆ t

0

‖Dα
c w(s)‖p

∣∣(⌈t⌉P − s)α−1 − (t− s)α−1
∣∣ ds

+C2τ
pα‖Dα

c w(t)‖p = I1(t) + I2(t),

where the constants C, C1, and C2 depend only on p and α.

For I2(t), we simply have
ˆ r

0

(r − t)α−1I2(t)dt ≤ Cτpα‖Dα
c w‖pLp

α(0,T ;H)
.

Now to bound the integral for I1(t), we use Fubini’s theorem to get
ˆ r

0

(r − t)α−1I1(t)dt = C1τ
(p−1)α

ˆ r

0

‖Dα
c w(s)‖p

×
ˆ r

s

(r − t)α−1|(⌈t⌉P − s)α−1 − (t− s)α−1|dtds.

We claim that
ˆ r

s

(r − t)α−1|(⌈t⌉P − s)α−1 − (t− s)α−1|dt ≤ C3(r − s)α−1τα, (2.21)

where C3 only depends α. If this is true, then we have
ˆ r

0

(r − t)α−1I1(t)dt ≤ Cτpα
ˆ r

0

‖Dα
c w(s)‖p(r − s)α−1ds

≤ Cτpα‖Dα
c w‖pLp

α(0,T ;H)
.

The proof of (2.21) proceeds as the one for (2.15). For brevity we shall skip the

details.
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2.4. Some comparison estimates

As a final preparatory step we present some auxiliary results that shall be repeatedly

used and are related to differential inequalities involving the Caputo derivative, and

a Grönwall-like lemma.

First, we present a comparison principle which is similar to Proposition 4.2 of

Ref. 24. The proof can be done easily by contradiction, and therefore it is omitted

here.

Lemma 2.7. (Comparison) Let g1, g2 : [0, T ] × R → R be both non-decreasing in

their second argument and g2 be measurable. Assume that v, w ∈ C([0, T ];R) satisfy

v(0) < w(0), and there is some α ∈ (0, 1), for which

v(t) ≤ g1(t, v(t)) +
1

Γ(α)

ˆ t

0

(t− s)α−1g2(s, v(s))ds,

w(t) > g1(t, w(t)) +
1

Γ(α)

ˆ t

0

(t− s)α−1g2(s, w(s))ds,

for every t ∈ [0, T ]. Then we have v < w on [0, T ].

We now present a result that can be interpreted as an extension of Lemma 3.7

in Ref. 51 to the fractional case. However, unlike the classical case, here we have the

restriction that λ ≥ 0 because we have to argue from a fractional integral inequality.

Nevertheless, this is sufficient for our purposes.

Lemma 2.8. (Fractional Grönwall) Let a ∈ C([0, T ];R) with Dα
c a

2 ∈
L1
loc

([0, T );R), b, c, d : [0, T ] → [0,+∞] be measurable functions, and λ ≥ 0. If the

following differential inequality is satisfied

Dα
c a

2(t) + b(t) ≤ 2λa2(t) + c(t) + 2d(t)a(t), a.e. t ∈ (0, T ), (2.22)

then we have
(

sup
t∈[0,T ]

a2(t) +
1

Γ(α)
‖b‖L1

α(0,T ;R)

)1/2

≤ 2D̃(T )Eα(2λT
α)

+

√
a2(0) + C̃(T )

√
Eα(2λTα),

where

C̃(t) =
1

Γ(α)
‖c‖L1

α(0,t;R), D̃(t) =
1

Γ(α)
‖d‖L1

α(0,t;R). (2.23)

Proof. From (2.22) we obtain that

a2(t) +
1

Γ(α)

ˆ t

0

(t− s)α−1b(s)ds ≤ a2(0)

+
1

Γ(α)

ˆ t

0

(t− s)α−1
[
c(s) + 2d(s)a(s) + 2λa2(s)

]
ds
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≤ a2(0) + C̃(t) + 2ã(t)D̃(t) +
2λ

Γ(α)

×
ˆ t

0

(t− s)α−1ã2(s) ds, (2.24)

where ã(t) = max0≤s≤t a(s) and the functions C̃, D̃ are defined in (2.23). This

immediately implies that

ã2(t) ≤ a2(0) + C̃(t) + 2ã(t)D̃(t) +
2λ

Γ(α)

ˆ t

0

(t− s)α−1ã2(s)ds.

In order to bound ã, we construct a barrier function e(t) = K
√
Eα(2λtα) where

the constant K is chosen so that

e2(t) > a2(0) + C̃(t) + 2e(t)D̃(t) +
2λ

Γ(α)

ˆ t

0

(t− s)α−1e2(s)ds, ∀ t ∈ (0, T ).

Indeed, owing to (2.19) we see that

2λ

Γ(α)

ˆ t

0

(t− s)α−1Eα(2λs
α) ds = Eα(2λt

α)− Eα(0) = Eα(2λt
α)− 1

and hence

a2(0) + C̃(t) + e(t)D̃(t) +
2λ

Γ(α)

ˆ t

0

(t− s)α−1e2(s) ds

= a2(0) + C̃(t) + 2K
√
Eα(2λtα)D̃(t)

+K2 (Eα(2λt
α)− 1) < K2Eα(2λt

α) = e2(t),

for every t ∈ (0, T ) provided that

K > D̃(T )
√
Eα(2λTα) +

√
a2(0) + C̃(T ) + D̃2(t)Eα(2λTα). (2.25)

Applying Theorem 2.7 we obtain that

ã(t) ≤ e(t) = K
√
Eα(2λtα).

Plugging this back into (2.24) and noticing that this holds for any K satisfying

(2.25) we obtain that

sup
t∈[0,T ]

a2(t) +
1

Γ(α)

ˆ t

0

(t− s)α−1b(s)ds

≤
(
D̃(T )

√
Eα(2λTα) +

√
a2(0) + C̃(T ) + D̃2(t)Eα(2λTα)

)2

Eα(2λT
α)

≤
(
2D̃(T )Eα(2λT

α) +

√
a2(0) + C̃(T )

√
Eα(2λTα)

)2

which is the desired result.
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3. Deconvolutional Discretization of the Caputo Derivative

To discretize the Caputo fractional derivative, Refs. 37 and 39 consider a so-called

deconvolutional scheme on uniform time grids and prove some properties of this

discretization. In this section, we generalize this deconvolutional scheme to the

variable time step setting, and prove properties that will be useful in deriving a

posteriori error estimates later, in Sec. 5.2.

3.1. The discrete Caputo derivative

Let P be a partition as in (2.2). To motivate this discretization, let us assume that

w : [0, T ] → H is such that Dα
c w(t) is piecewise constant on the partition P, with

Dα
c w(t) = Vn(t).

Then formally by (2.17), we have, for n ∈ {1, . . . , N},

w(tn) = w(0) +
1

Γ(α)

ˆ tn

0

(tn − s)α−1Dα
c w(s)ds

= w(0) +
1

Γ(α+ 1)

n∑

i=1

((tn − ti−1)
α − (tn − ti)

α)Vi, . (3.1)

Let KP ∈ R
N×N be the matrix induced by the partition P, which is defined as

KP,ni =





1

Γ(α+ 1)
((tn − ti−1)

α − (tn − ti)
α), 1 ≤ i ≤ n ≤ N,

0, 1 ≤ n < i ≤ N.

(3.2)

Then we can rewrite (3.1) in matrix form as

W = W0 +KPV,

where V,W,W0 ∈ HN with Vn = Vn, Wn = w(tn), and (W0)n = w(0). Notice

that KP is lower triangular and all the elements on and below the main diagonal are

positive. Therefore KP is invertible and its inverse is also lower triangular. Thus,

the previous identity is equivalent to

V = K−1
P (W −W0),

in other words

Vn =

n∑

i=1

K−1
P,ni(Wi −W0) = K−1

P,n0W0 +

n∑

i=1

K−1
P,niWi,

where we set K−1
P,n0 = −∑n

j=1 K
−1
P,nj . This motivates the following approximation

of the Caputo derivative provided W ∈ HN and W0 ∈ H are given. For n ∈
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{1, . . . , N} we set

(Dα
PW)n =

n∑

i=1

K−1
P,ni(Wi −W0) =

n∑

i=0

K−1
P,niWi

=
n−1∑

i=0

K−1
P,ni(Wi −Wn). (3.3)

3.2. Properties of K
−1

P

We note that, when the partition is uniform, bothKP and its inverse will be Toeplitz

matrices, and hence the product KPV can be interpreted as the convolution of

sequences. Consequently, multiplication by K−1
P is equivalent to taking a sequence

deconvolution. This motivates the name of this scheme and enables Ref. 39 to apply

techniques for the deconvolution of a completely monotone sequence and prove

properties of K−1
P .

We were not successful in extending, to a general partition P, all the properties

ofK−1
P presented in Ref. 39 for the case when the partition is uniform. This is mainly

because their techniques are based on ideas that rely on completely monotone

sequences, which do not easily extend to a general P. Nevertheless we have obtained

sufficient, for our purposes, properties. The following result is the counterpart to

Proposition 3.2(1) in Ref. 39.

Proposition 3.1. (Properties of K−1
P ) Let P be a partition as in (2.2), and KP

be defined in (3.2). The matrix KP is invertible, and its inverse satisfies:

K−1
P,n0 = −

n∑

j=1

K−1
P,nj < 0, n ∈ {1, . . . , N}, (3.4)

K−1
P,ii > 0 i ∈ {1, . . . , N}, K−1

P,ni < 0 1 ≤ i < n ≤ N. (3.5)

Proof. We already showed that KP is nonsingular. We prove (3.4) and (3.5) sep-

arately.

First, to prove that K−1
P,n0 < 0. For this, it suffices to show that for a vector

W ∈ R
N such that Wi = 1 for any i ≥ 1, then the vector F = K−1

P W satisfies

Fn > 0 ∀n ≥ 1.

We prove this by induction on n. For n = 1, clearly

F1 =
W1

KP,1,1
=

1

KP,1,1
> 0.

Suppose that Fj > 0 for all 1 ≤ j ≤ k, now we want to show that Fk+1 > 0 as well.

Notice that

1 =Wk =

k∑

j=1

KP,k,jFj , 1 =Wk+1 =

k+1∑

j=1

KP,k+1,jFj ,
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then taking the difference we have

0 =

k+1∑

j=1

KP,k+1,jFj −
k∑

j=1

KP,k,jFj

= KP,k+1,k+1Fk+1 +
k∑

j=1

(KP,k+1,j −KP,k,j)Fj . (3.6)

We claim that KP,k+1,j −KP,k,j < 0 for any j. In fact, this can be seen through

the definition of the entries of KP

KP,k+1,j −KP,k,j < 0

⇔ (tk+1 − tj−1)
α − (tk+1 − tj)

α < (tk − tj−1)
α − (tk − tj)

α

⇔
ˆ tj−tj−1

0

(tk+1 − tj + s)α−1ds <

ˆ tj−tj−1

0

(tk − tj + s)α−1ds.

Using KP,k+1,j −KP,k,j < 0 and Fj > 0 for all j ∈ {1, . . . , k} in (3.6), we see that

KP,k+1,k+1Fk+1 > 0 and thus Fk+1 > 0. Therefore by induction we proved that

K−1
P,n0 < 0 for n ≥ 1.

Next, we prove that K−1
P,ii > 0 and K−1

P,ni < 0. Consider a vector W ∈ R
N that

is such that Wi = 1 and Wj = 0 for j 6= i. It suffices to prove that for, F = K−1
P W,

we have Fi > 0 and if n > i

Fn < 0. (3.7)

Since K−1
P is lower triangular, we know Fj = 0 for j ∈ {1, . . . , i− 1}. From KPF =

W, we see that

1 =Wi = (KPF)i =

i∑

j=1

KP,ijFj = K−1
P,iiFi

and thus Fi = 1/KP,ii > 0. Now we prove by induction that (3.7) holds. First,

when n = i+ 1, we have

0 =Wi+1 = (KPF)i+1 = KP,i+1,iFi +KP,i+1,i+1Fi+1

and hence

Fi+1 = −KP,i+1,iFi

KP,i+1,i+1
< 0.

This shows that (3.7) is true for n = i+1. Now suppose that we have already shown

that Fn < 0 for n satisfying n ∈ {i+ 1, . . . , k}, we want to prove Fk+1 < 0. To this

aim, notice that

0 =Wk+1 = (KPF)k+1 =

k∑

j=i

KP,k+1,jFj +KP,k+1,k+1Fk+1,
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therefore we only need to show
∑k

j=i KP,k+1,jFj > 0. Recall that

0 =Wk = (KPF)k =

k∑

j=i

KP,k,jFj ,

and thus, since KP,k,i > 0, we can get

k∑

j=i

KP,k+1,jFj =
k∑

j=i

KP,k+1,jFj −
KP,k+1,i

KP,k,i

k∑

j=i

KP,k,jFj

=
k∑

j=i+1

(
KP,k+1,j −

KP,k+1,i

KP,k,i
KP,k,j

)
Fj .

Since by the induction hypothesis Fj < 0 for j ∈ {i+ 1, . . . , k}, it only remains to

show that

KP,k+1,j −
KP,k+1,i

KP,k,i
KP,k,j < 0 ⇔ KP,k+1,i

KP,k,i
>

KP,k+1,j

KP,k,j
.

Applying Cauchy’s mean value theorem, there exists η ∈ (tk − ti, tk − ti−1) such

that

KP,k+1,i

KP,k,i
=

(tk+1 − ti−1)
α − (tk+1 − ti)

α

(tk − ti−1)α − (tk − ti)α

=
α(η + τk+1)

α−1

αηα−1
=

(
η + τk+1

η

)α−1

.

Similarly there exists ξ ∈ (tk − tj , tk − tj−1) such that

KP,k+1,j

KP,k,j
=

(
ξ + τk+1

ξ

)α−1

.

Due to j > i, we have ξ < η and hence

KP,k+1,j

KP,k,j
=

(
ξ + τk+1

ξ

)α−1

<

(
η + τk+1

η

)α−1

=
KP,k+1,i

KP,k,i
.

Therefore from the arguments above we see that Fk+1 < 0, and by induction

K−1
P,ni < 0 for n > i.

Remark 3.2. (Generalization) The discretization of the Caputo derivative,

described in (3.3), and its properties presented in Proposition 3.1 can be extended

to more general kernels. Indeed, for a general convolutional kernel g ∈ L1(0, T ;R)

the entries of the matrix KP will be

KP,ni =

ˆ tn−ti

tn−ti−1

g(t)dt.

The proof of (3.4) follows verbatim provided g′(t) < 0, as the reader can readily

verify. The proof of (3.5) only requires that the function G(t) = ln(g(t)), satisfies

G′′(t) > 0.
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For a uniform time grid P, Theorem 2.3 of Ref. 37 proves that, for every i, the

sequence {−K−1
P,n+i,i}n≥1 is completely monotone. The following result holds for

a general partition P, and is a direct consequence of Theorem 2.3 in Ref. 37 for

uniform time stepping.

Proposition 3.3. (Monotonicity) Let P be a partition of [0, T ] as in (2.2), and

KP be defined as in (3.2). Then, its inverse satisfies

(1) For n ∈ {1, . . . , N − 1},

−
n∑

j=1

K−1
P,nj = K−1

P,n0 < K−1
P,n+1,0 = −

n+1∑

j=1

K−1
P,n+1,j . (3.8)

(2) For 1 ≤ i < n < N,

K−1
P,ni < K−1

P,n+1,i. (3.9)

Proof. To prove (3.8) it suffices to show that for a vector W ∈ R
N such that

Wi = 1 for any i ≥ 1, then the vector F = K−1
P W satisfies

Fn > Fn+1 ∀n ≥ 1.

We prove this by induction on n. For n = 1,

1 = W1 = (KPF)1 = KP,11F1,

1 = W2 = (KPF)2 = KP,21F1

+KP,22F2 = (KP,21 +KP,22)F1 +KP,22(F2 − F1).

Clearly,

F1 > 0, KP,11 = (t1 − t0)
α < (t2 − t0)

α = KP,21 +KP,22.

Hence we have

KP,22(F2 − F1) = 1− (KP,21 +KP,22)F1 < 1−KP,11F1 = 0,

which, since KP,22 > 0, implies that F2 − F1 < 0, i.e. F1 > F2. So the claim holds

for n = 1.

Suppose Fj+1 < Fj for all 1 ≤ j < k, now we want to show that Fk+1 < Fk as

well. Notice that

1 = Wk =

k∑

i=1

KP,kiFi =

k−1∑

i=0




k∑

j=i+1

KP,kj


 (Fi+1 − Fi)

=
k−1∑

i=0

(tk − ti)
α(Fi+1 − Fi),

1 = Wk+1 =

k+1∑

i=1

KP,k+1,iFi =

k∑

i=0

(tk+1 − ti)
α(Fi+1 − Fi),
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where we set F0 = 0 in the equations above. Therefore to show Fk+1 < Fk, we only

need to prove that

0 <
k−1∑

i=0

(tk+1 − ti)
α(Fi+1 − Fi)− 1

=
k−1∑

i=0

(tk+1 − ti)
α(Fi+1 − Fi)−

k−1∑

i=0

(tk − ti)
α(Fi+1 − Fi)

=
k−1∑

i=0

((tk+1 − ti)
α − (tk − ti)

α)(Fi+1 − Fi). (3.10)

Since we also have

1 = Wk−1 =
k−1∑

i=1

KP,k−1,iFi =
k−2∑

i=0

(tk−1 − ti)
α(Fi+1 − Fi)

=

k−1∑

i=0

(tk−1 − ti)
α(Fi+1 − Fi),

Taking the difference between the equation above and the one for Wk, we obtain

that

0 =Wk −Wk−1 =
k−1∑

i=0

(tk − ti)
α(Fi+1 − Fi)−

k−1∑

i=0

(tk−1 − ti)
α(Fi+1 − Fi)

=

k−1∑

i=0

((tk − ti)
α − (tk−1 − ti)

α)(Fi+1 − Fi).

In light of this identity, we claim that to obtain (3.10) it suffices to show that, for

i ∈ {1, . . . , k − 1},
tαk+1 − tαk
tαk − tαk−1

=
(tk+1 − t0)

α − (tk − t0)
α

(tk − t0)α − (tk−1 − t0)α
>

(tk+1 − ti)
α − (tk − ti)

α

(tk − ti)α − (tk−1 − ti)α
. (3.11)

If this is true, letting c =
(
tαk+1 − tαk

)
/
(
tαk − tαk−1

)
we have

k−1∑

i=0

((tk+1 − ti)
α − (tk − ti)

α)(Fi+1 − Fi)

=
k−1∑

i=0

(((tk+1 − ti)
α − (tk − ti)

α)− c((tk − ti)
α − (tk−1 − ti)

α))(Fi+1 − Fi)

=
k−1∑

i=1

(((tk+1 − ti)
α − (tk − ti)

α)− c((tk − ti)
α − (tk−1 − ti)

α))(Fi+1 − Fi)

=
k−1∑

i=1

di (Fi+1 − Fi),



400 W. Li & A. J. Salgado

where di = ((tk+1− ti)α− (tk− ti)α)− c((tk− ti)α− (tk−1− ti)α) < 0 due to (3.11).

By the inductive hypothesis, Fi+1−Fi < 0 for 1 ≤ i ≤ k− 1, so the equation above

implies (3.10), and hence Fk+1 < Fk is proved.

To finish the proof, we focus on (3.11), fix i and define c1 = tk−1−ti, c2 = tk−ti,
c3 = tk+1 − ti and function

h(x) =
(x+ c3)

α − (x+ c2)
α

(x+ c2)α − (x+ c1)α
.

Then (3.11) is equivalent to h(ti − t0) > h(0), and it remains to show that h(x)

is strictly increasing for x > 0. We observe that

d

dx
(ln(h(x))) = α

[
(x+ c3)

α−1 − (x+ c2)
α−1

(x+ c3)α − (x+ c2)α
− (x+ c2)

α−1 − (x+ c1)
α−1

(x+ c2)α − (x+ c1)α

]
.

Applying Cauchy’s mean-value theorem to the two fractions above, we know there

exists η ∈ (x+ c2, x+ c3) and ξ ∈ (x+ c1, x+ c2) such that

d

dx
(ln(h(x))) = α

[
(α− 1)ηα−2

αηα−1
− (α− 1)ξα−2

αξα−1

]
= (α− 1)

(
η−1 − ξ−1

)
> 0,

where the last inequality holds because α < 1 and ξ < x+ c2 < η. This shows the

monotonicity of function h and confirms (3.11). This concludes the inductive step

and proves (3.8).

The proof of (3.9) is obtained similarly. For convenience we only write the proof

for i = 1, but the extension to general i is straightforward. Consider a vector

W ∈ R
N such that Wj = 1 if j = 1 and Wj = 0 if j 6= 1, then it suffices to prove

that vector F = K−1
P W satisfies

Fn < Fn+1 (3.12)

for n ∈ {2, . . . , N − 1}. We prove (3.12) by induction on n. For n = 2, observe that

Wk =

k∑

j=0

(tk − tj)
α(Fj+1 − Fj) =

k−1∑

j=0

(tk − tj)
α(Fj+1 − Fj)

from the proof of (3.8) with F0 = 0, we have

1 = W1 = (t1 − t0)
α(F1 − F0),

0 = W2 = (t2 − t0)
α(F1 − F0) + (t2 − t1)

α(F2 − F1),

0 = W3 = (t3 − t0)
α(F1 − F0) + (t3 − t1)

α(F2 − F1) + (t3 − t2)
α(F3 − F2).

From the first and second equation above, we see that F1 > 0 and F2 − F1 < 0.

Combining the second and the third equation we deduce that

0 =W3 −
tα3
tα2
W2 =

[
(t3 − t1)

α − (t2 − t1)
α t

α
3

tα2

]
(F2 − F1) + (t3 − t2)

α(F3 − F2).

Since (t3 − t1)
α − (t2 − t1)

α(t3/t2)
α = (t3 − t1)

α − (t3 − (t1t3/t2))
α > 0, we obtain

that F3 − F2 > 0 which is (3.12) for n = 2.
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It also remains to prove that when (3.12) holds for n ∈ {2, . . . , k − 1}, then it

also holds for n = k, i.e. Fk < Fk+1, provided that k < N . To this aim, we first see

that

0 =Wk+1 −
tαk+1

tαk
Wk =

k∑

j=1

(
(tk+1 − tj)

α − (tk − tj)
α t

α
k+1

tαk

)
(Fj+1 − Fj). (3.13)

Therefore in order to prove Fk < Fk+1, we only need to show that

k−1∑

j=1

(
(tk+1 − tj)

α − (tk − tj)
α t

α
k+1

tαk

)
(Fj+1 − Fj) < 0. (3.14)

Similar to (3.13) we also have

0 =Wk − tαk
tαk−1

Wk−1 =

k−1∑

j=1

(
(tk − tj)

α − (tk−1 − tj)
α tαk
tαk−1

)
(Fj+1 − Fj).

Thanks to the inductive hypothesis, we know that Fj+1 − Fj < 0 for j = 2 and

Fj+1−Fj > 0 for j ∈ {3, . . . , k−1}, Therefore using a similar argument used in the

proof for (3.8), to prove (3.14) we only need to show that, for j ∈ {2, . . . , k − 1},
(tk+1 − t1)

α − (tk − t1)
α(tk+1/tk)

α

(tk − t1)α − (tk−1 − t1)α(tk/tk−1)α

>
(tk+1 − tj)

α − (tk − tj)
α(tk+1/tk)

α

(tk − tj)α − (tk−1 − tj)α(tk/tk−1)α
, (3.15)

which is similar to (3.11). We rewrite the inequality above as

(1− t1/tk+1)
α − (1− t1/tk)

α

(1− t1/tk)α − (1− t1/tk−1)α

>
(1− tj/tk+1)

α − (1− tj/tk)
α

(1− tj/tk)α − (1− tj/tk−1)α
, j ∈ {2, . . . , k − 1},

and define the function

h1(x) =
(1− x/tk+1)

α − (1− x/tk)
α

(1− x/tk)α − (1− x/tk−1)α
,

then it suffices to show that h′1(x) < 0 for 0 < x < tk−1. Observing that

d

dx
ln(h1(x)) = −α

x

[
(x/tk+1)(1− x/tk+1)

α−1 − (x/tk)(1− x/tk)
α−1

(1− x/tk+1)α − (1− x/tk)α

− (x/tk)(1− x/tk)
α−1 − (x/tk−1)(1− x/tk−1)

α−1

(1− x/tk)α − (1− x/tk−1)α

]
.

Letting h2(x) = (1 − x)xα−1, h3(x) = xα, by Cauchy’s mean-value theorem, there

exists η ∈ (1− x/tk, 1− x/tk+1) and ξ ∈ (1− x/tk−1, 1− x/tk) such that

d

dx
(ln(h1(x))) = −α

x

(
h′2(η)

h′3(η)
− h′2(ξ)

h′3(ξ)

)
= −α

x

((
α− 1

αη
− 1

)
−
(
α− 1

αξ
− 1

))

< 0
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because 0 < ξ < η. This implies that h′1(x) < 0 for 0 < x < tk−1 and finishes

inductive step of the induction. Hence (3.9) is proved.

Remark 3.4. (Alternative definition of Dα
P) Let us define, for k ≤ n,

bP,nk =

n∑

j=k

K−1
P,nj .

Then, the discrete Caputo derivative (3.3) can also be written as

(Dα
PW)n =

n∑

i=0

K−1
P,niWi =

n∑

i=1

bP,ni (Wi −Wi−1) ,

which is a discrete version of the definition given in (1.1). As an immediate conse-

quence of Theorems 3.1 and 3.3, we have

bP,nk > 0, bP,nk > bP,(n+1)k.

Remark 3.5. (Generalization) Notice that, for a general kernel g, property (3.8)

remains valid provided G(t) = ln(g(t)) satisfies G′′(t) > 0.

3.3. A continuous interpolant

Given a partition P, a sequence W ∈ HN , and W0 ∈ H, we defined the discrete

Caputo derivative (Dα
PW)n via (3.3). Motivated by the Volterra type equation

(2.17) between a continuous function w and its Caputo derivative Dα
c w, it is possi-

ble, following Ref. 39, to define, over P, a natural continuous interpolant of Wn by

ŴP(t) =W0 +
1

Γ(α)

ˆ t

0

(t− s)α−1V P(s)ds, (3.16)

where V P is defined by

V P(t) = (Dα
PW)n(t) . (3.17)

By definition, we have that ŴP(tn) =Wn. Moreover,

ŴP(t) = W0 +
1

Γ(α+ 1)

n−1∑

j=1

((t− tj−1)
α − (t− tj)

α)(Dα
PW)j + (tn − t)α (Dα

PW)n

=

n(t)∑

i=0

WiϕP,i(t), (3.18)

where we defined, for i ∈ {1, . . . , N},

ϕP,0(t) = 1 +
1

Γ(α+ 1)

n(t)−1∑

j=1

((t− tj−1)
α − (t− tj)

α)K−1
P,j0

+(tn − t)αK−1
P,n0,
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ϕP,i(t) =
1

Γ(α+ 1)

n(t)−1∑

j=i

((t− tj−1)
α − (t− tj)

α)K−1
P,ji

+(tn − t)αK−1
P,ni. (3.19)

The functions {ϕP,i}Ni=0 play the role, in this context, of the standard “hat”

basis functions used for piecewise linear interpolation over a partition P. Indeed,

they are such that any function with piecewise constant (Caputo) derivative can be

written as a linear combination of them. Figure 1 illustrates the behavior of these

functions. As expected, and in contrast to the hat basis functions, these functions

are nonlocal, in the sense that they have global support. Something worth noticing

is also that the figure seems to indicate that, as α ↓ 0, the functions resemble

piecewise constants and, in contrast, when α ↑ 1 they tend to the classical hat basis

functions.

An important feature of the hat basis functions is that they form a partition of

unity. It is easy to check that, for any t ∈ [0, T ] we have
∑n(t)

i=0 ϕP,i(t) = 1. The

following result shows that ϕP,i(t) ≥ 0. Thus, for any t ∈ [0, T ], ŴP(t) is a convex

combination of its nodal values {Wj}Nj=0. This observation will be crucial to derive

an a posteriori error estimate in Sec. 5.2.

Proposition 3.6. (Positivity) Let P be a partition defined as in (2.2). Let the

functions {ϕP,i}Ni=0 be defined as in (3.19). Then, for any i ∈ {0, . . . , N} and

t ∈ [0, T ], we have ϕP,i(t) ≥ 0. In addition, for t /∈ P and i ∈ {0, . . . , n(t)} we have

ϕP,i(t) > 0.

Proof. By definition, for t = tn, we have ϕP,n(tn) = 1 and ϕP,i(tn) = 0 for any

i 6= n. Also, for i > n(t), we see that ϕP,i(t) = 0, and hence it only remains to show

that ϕP,i(t) > 0 for i ≤ n(t). To show this, considerWi = 1 andWj = 0 for j 6= i, a

piecewise constant V P and its interpolation ŴP defined in (3.16) and (3.17). Then

our goal is to show that ŴP(t) > 0.

Fig. 1. Given a partition P, the figure shows the nonlocal basis functions {ϕP,i}
N
i=0

for different

values of α. Every function whose Caputo derivative is piecewise constant can be written as a linear
combination of these functions. Notice that, for any partition point ϕP,i(tj) = δij . In addition,

Proposition 3.6 shows that these functions form a partition of unity.
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If i = n(t) > 0, then it is easy to check by definition that (Dα
PW)n > 0 and

(Dα
PW)j = 0 for j ∈ {1, . . . , i− 1}. Therefore we obtain

ŴP(t) =
1

Γ(α)

ˆ t

0

(t− s)α−1V (s)ds =
(tn − t)α

Γ(α+ 1)
(Dα

PW)n > 0.

If i < n(t), the proof is not that straightforward. The trick is to insert the time

t, which is not on the partition P, to get a new partition P ′ = P ∪ {t} and then

apply Propositions 3.1 and 3.3 in an appropriate way. Let us now work out the

details. Let P ′ = {t′k}N+1
k=0 and notice that t′n(t) = t, t′n(t)+1 = tn(t). On the basis of

this partition we define the vector W′ ∈ HN+1 via W ′
j = ŴP(t

′
j), then since V P is

constant on (t′n(t)−1, t
′
n(t)+1] = (tn(t)−1, tn(t)], we have

(Dα
P′W

′)n(t) = (Dα
P′W

′)n(t)+1 .

Since the only possible nonzero components of W′ are W ′
i = Wi = 1 and W ′

n(t) =

ŴP(t), therefore we deduce from the equality above that

K−1
P′,n(t)iW

′
i +K−1

P′,n(t)n(t)W
′
n(t) = (Dα

P′W
′)n(t) = (Dα

P′W
′)n(t)+1

= K−1
P′,n(t)+1,iW

′
i +K−1

P′,n(t)+1,n(t)W
′
n(t),

which can be rearranged as

K−1
P′,n(t)+1,i −K−1

P′,n(t)i = ŴP(t)(K
−1
P′,n(t)n(t) −K−1

P′,n(t)+1,n(t)).

From Theorem 3.3 we see that K−1
P′,n(t)+1,i −K−1

P′,n(t)i > 0 and from Theorem 3.1

we see that K−1
P′,n(t)n(t) −K−1

P′,n(t)+1,n(t) > 0 as a consequence of K−1
P′,n(t)n(t) > 0

and K−1
P′,n(t)+1,n(t) < 0. This leads to the fact that ŴP(t) > 0 and finishes our

proof.

3.4. Comparison and monotonicity

Once we have obtained Theorems 3.1 and 3.3, it is easy to see that the properties

stated in Theorem 3.3 of Ref. 39 for uniform grids also hold for general partitions.

We state these below but we omit the proof.

Proposition 3.7. (Further properties of Dα
P) Let P be a time partition. The dis-

crete Caputo derivative defined in (3.3) satisfies:

(1) (Convex functional) If U = {Un}n≥0 ⊂ H, and Ψ : H → R ∪ {+∞} is convex,

then for any ξ ∈ ∂Ψ(Un), we have

(Dα
PΨ(U))n ≤ 〈(Dα

PU)n, ξ〉 . (3.20)

(2) (Discrete comparison) Let f : R+ ∪ {0} × R → R be such that there is L ≥ 0

for which for all s ≥ 0 the mapping

z 7→ f(s, z)− Lz
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is non-increasing. Assume that u = {un}n≥0,v = {vn}n≥0,w = {wn}n≥0 ⊂ R

satisfy u0 ≤ v0 ≤ w0, and

(Dα
Pu)n ≤ f(tn, un), (Dα

Pv)n = f(tn, vn), (Dα
Pw)n ≥ f(tn, wn).

Then, if K−1
P,ii > L for every i, we have un ≤ vn ≤ wn for all n ≥ 0. For our

scheme, K−1
P,ii > L holds provided that τα < Γ(α+1)/L and thus the statement

is true for any partition P if one can take L = 0.

(3) (Discrete comparison in integral form) Let f : R+ ∪ {0} ×R → R be such that,

for all s ≥ 0, the mapping

z 7→ f(s, z)

is non-decreasing and Lipschitz, with Lipschitz constant L. Assume that the

sequences

{un}n≥0, {vn}n≥0, {wn}n≥0 ⊂ R

satisfy

un ≤ u0 + (Jα
Pfu)n, vn = v0 + (Jα

Pfv)n, wn ≥ w0 + (Jα
Pfw)n,

where Jα
Pfu is defined by

(Jα
Pfu)n =

n∑

k=1

f(tk, uk)

Γ(α)

ˆ tk

tk−1

(tn − s)α−1ds

=
n∑

k=1

(tn − tk−1)
α − (tn − tk)

α

Γ(α+ 1)
f(tk, uk).

Then if τα < Γ(α+ 1)/L, we have un ≤ vn ≤ wn.

We comment that the first two properties also hold for other schemes satisfying

Theorem 3.1. In addition, we also notice that Theorem 4.1 in Ref. 41, which is

stated for uniform grids, also holds for general partitions.

Proposition 3.8. (Discrete monotonicity) Let P be a time partition, and g : R →
R be such that there is L ≥ 0 for which

z 7→ g(z)− Lz

is non-increasing. Assume that {Un}n≥0 ⊂ R satisfies

(Dα
PU)n = g(Un), (3.21)

where the discrete Caputo derivative Dα
P is defined in (3.3). If K−1

P,ii > L for any i,

then the sequence {Un}n≥0 is monotone. For our scheme this, in particular, requires

that τα < Γ(α+1)/L and thus the statement is true for any partition P if one can

take L = 0.

Proof. We first note that, if g(U0) = 0, then {Un}n≥0 is constant and the statement

is trivial. We will prove by induction that if g(U0) > 0, then {Un}n≥0 is strictly
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increasing. The proof that {Un}n≥0 is strictly decreasing when g(U0) < 0 proceeds

in a similar way.

We first notice that from (3.21)

h1(U1) = K−1
P,11(U1 − U0)− g(U1) = 0.

From the assumptions, we know that the function h1 is strictly increasing. Therefore

we have U1 > U0 because

h1(U0) = 0− g(U0) < 0.

Suppose now that we have already proved that U0 < U1 < · · · < Un, and we

want to show Un < Un+1. From (3.21), it holds that

hn+1(Un+1) =

n∑

k=0

K−1
P,(n+1)k(Uk − Un+1)− g(Un+1) = 0.

Since hn+1 is also strictly increasing, it suffices to show that

hn+1(Un) =
n∑

k=0

K−1
P,(n+1)k(Uk − Un)− g(Un)

=
n−1∑

k=0

K−1
P(n+1)k(Uk − Un)− g(Un) < 0.

Recall that

g(Un) = (Dα
PU)n =

n−1∑

k=0

K−1
P,nk(Uk − Un),

we thus have

hn+1(Un) =

n−1∑

k=0

(K−1
P,n+1,k −K−1

P,nk)(Uk − Un) < 0

because K−1
P,n+1,k − K−1

P,nk > 0, and Uk − Un < 0. This shows that the sequence

{Un}n≥0 is strictly increasing as claimed.

We remark that the previous result also holds for other schemes satisfying Theo-

rem 3.3. This proposition leads to the following fact, which will be useful in Sec. 4.3.

Proposition 3.9. (Monotonicity under refinement) Consider a non-increasing

function g : R → R and two different time partitions P and P̃, where P is a

refinement of P̃. Assume that the sequences {Ũn}n≥0, {Un}n≥0 ⊂ R satisfy

(Dα
P̃
Ũ)n = g(Ũn), (Dα

PU)n = g(Un),

and Ũ0 = U0. If g(U0) < 0, then we have that

̂̃
U P̃(t) ≥ ÛP(t), t ≥ 0,
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where we recall that these interpolants were defined in (3.16). Similarly, if g(U0) >

0, then
̂̃
U P̃(t) ≤ ÛP(t).

Proof. It suffices to prove the result for the case g(U0) < 0 and P is a refinement

obtained by inserting one node into P̃. Let P = {ti}, and assume that tk /∈ P̃.

Define the sequence {Wi}i≥0 using the values of
̂̃
U P̃ at P, i.e.

Wi =
̂̃
U P̃(ti) =





Ũi, i < k,

̂̃
U P̃(tk), i = k,

Ũi−1, i > k.

Since the Caputo derivative of
̂̃
U P̃ is piecewise constant over P̃, this implies

that

(Dα
PW)i =

{
g(Wi), i 6= k,

g(Wi+1), i = k.

Notice that, by Theorem 3.8, the sequence {Wi}n≥0 is decreasing. Hence the equa-

tion above leads to

(Dα
PW)n ≥ g(Wn).

Therefore by the discrete comparison principle of Theorem 3.7, we have

Wn ≥ Un.

Theorem 3.6 then implies that
̂̃
U P̃(t) ≥ ÛP(t).

4. Time Fractional Gradient Flows: Theory

We have now set the stage for the study of time fractional gradient flows, which

were formally described in (1.2). Throughout the remaining of our discussion we

shall assume that the initial condition satisfies u0 ∈ D(Φ) and that f ∈ L2
α(0, T ;H).

We begin by commenting that the case f = 0 was already studied in Sec. 5 of 39

where they studied so-called strong solutions, see Definition 5.4 in Ref. 39. Here we

trivially extend their definition to the case f 6= 0.

Definition 4.1. (Strong solution) A function u ∈ L1
loc([0, T );H) is a strong solu-

tion to (1.2) if

(i) (Initial condition)

lim
t↓0

 t

0

‖u(s)− u0‖ds = 0.

(ii) (Regularity) Dα
c u(t) ∈ L1

loc([0, T );H).

(iii) (Evolution) For almost every t ∈ [0, T ), we have f(t)−Dα
c u(t) ∈ ∂Φ(u(t)).
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4.1. Energy solutions

Since H is a Hilbert space, we will mimic the theory for classical gradient flows and

introduce the notion of energy solutions for (1.2). To motivate it, suppose that at

some t ∈ (0, T )

f(t)−Dα
c u(t) ∈ ∂Φ(u(t)),

then, by definition of the subdifferential, this is equivalent to the evolution varia-

tional inequality (EVI)

〈Dα
c u(t), u(t)− w〉+Φ(u(t))− Φ(w) ≤ 〈f(t), u(t)− w〉, ∀w ∈ H. (4.1)

Definition 4.2. (Energy solution) The function u ∈ L2(0, T ;H) is an energy solu-

tion to (1.2) if

(i) (Initial condition)

lim
t↓0

 t

0

‖u(s)− u0‖2ds = 0.

(ii) (Regularity) Dα
c u ∈ L2(0, T ;H).

(iii) (EVI) For any w ∈ L2(0, T ;H)
ˆ T

0

[〈Dα
c u(t), u(t)− w(t)〉+Φ(u(t))− Φ(w(t))] dt ≤

ˆ T

0

〈f(t), u(t)− w(t)〉dt.

(4.2)

Notice that, provided u0 ∈ D(Φ) we can set w(t) = u0 in (4.2) and obtain

that
´ T

0
Φ(u(t))dt < ∞, which motivates the name for this notion of solution. In

addition, as the following result shows, any energy solution is a strong solution.

Proposition 4.3. (Energy versus strong) An energy solution of (1.2) is also a

strong solution.

Proof. Evidently, it suffices to prove that f(t) − Dα
c u(t) ∈ ∂Φ(u(t)) for almost

every t ∈ (0, T ). Let w0 ∈ H, t0 ∈ (0, T ), and choose h > 0 sufficiently small so

that (t0 − h, t0 + h) ⊂ (0, T ). Define

w(t) = u(t)− χ(t0−h,t0+h)(u(t)− w0) ∈ L2(0, T ;H),

where by χS we denote the characteristic function of the set S. This choice of test

function on (4.2) gives
 t0+h

t0−h

〈Dα
c u(t)− f(t), u(t)− w0〉dt+

 t0+h

t0−h

(Φ(u(t))− Φ(w0))dt ≤ 0.

The assumptions of an energy solution guarantee that all terms inside the integrals

belong to L1(0, T ;R) so that for almost every t0 we have, as h ↓ 0, that

〈Dα
c u(t0)− f(t0), w0〉+Φ(u(t0))− Φ(w0) ≤ 0,

which is (4.1) and, as we intended to show, is equivalent to the claim.
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Remark 4.4. (Coercivity) By introducing the coercivity modulus of Definition 2.1

one realizes that an energy solution u satisfies, instead of (4.1) and (4.2), the

stronger inequalities

〈Dα
c u(t), u(t)− w〉+Φ(u(t))− Φ(w)

+σ(u(t);w) ≤ 〈f(t), u(t)− w〉, ∀w ∈ H, (4.3)

and, for any w ∈ L2(0, T ;H),

ˆ T

0

[〈Dα
c u(t), u(t)− w(t)〉+Φ(u(t))− Φ(w(t)) + σ(u(t);w(t))]dt

≤
ˆ T

0

〈f(t), u(t)− w(t)〉dt. (4.4)

4.2. Existence and uniqueness

In this section, we will prove the following theorem on the existence and uniqueness

of energy solutions to (1.2) in the sense of Theorem 4.2. The main result that we

will prove reads as follows.

Theorem 4.5. (Well posedness) Assume that the energy Φ is convex, l.s.c., and

with nonempty effective domain. Let u0 ∈ D(Φ) and f ∈ L2
α(0, T ;H). In this setting,

the fractional gradient flow problem (1.2) has a unique energy solution u, in the

sense of Theorem 4.2. For almost every t ∈ (0, T ), the solution u satisfies that

f(t)−Dα
c u(t) ∈ ∂Φ(u(t)) and for any t ∈ [0, T ] we have

u(t) = u0 +
1

Γ(α)

ˆ t

0

(t− s)α−1Dα
c u(s)ds. (4.5)

In addition, u ∈ C0,α/2([0, T ];H) with modulus of continuity

‖u(t2)− u(t1)‖ ≤ C|t2 − t1|α/2(‖f‖2L2
α(0,T ;H) +Φ(u0)− Φinf)

1/2, ∀ t1, t2,∈ [0, T ],

(4.6)

where the constant C depends only on α.

We point out that our assumptions are weaker than those in Theorem 5.10

of Ref. 39. First, we allow for a nonzero right-hand side. In addition, we do not

require Assumption 5.9 of Ref. 39, which is a sort of weak–strong continuity of

subdifferentials.

The remainder of this section will be dedicated to the proof of Theorem 4.5. To

accomplish this, we follow a similar approach to Sec. 5 in Ref. 39. To show existence

of solutions, we consider a sort of fractional minimizing movements scheme. We

introduce a partition P with maximal time step τ and compute the sequence U =

{Un}Nn=0 ⊂ H as follows. Assume U0 ∈ D(Φ) is given, the nth iterate, for n ∈



410 W. Li & A. J. Salgado

{1, . . . , N}, is defined recursively via

Fn − (Dα
PU)n ∈ ∂Φ(Un), (4.7)

where

Fn =

 tn

tn−1

f(t)dt. (4.8)

We will usually choose U0 = u0, but other choices of U0 ∈ D(Φ) are also allowed.

From the approximation scheme (4.7) and the expression of the discrete Caputo

derivative (Dα
PU)n given in (3.3), it is clear that

Un = argmin
w∈H

(
Φ(w)− 〈Fn, w〉 −

1

2

n−1∑

i=0

K−1
P,ni‖w − Ui‖2

)
. (4.9)

Thanks to Theorem 3.1, for i = 0, . . . , n − 1, we have that K−1
P,ni < 0 and as a

consequence the functional on the right-hand side of (4.9) is uniformly convex.

Combining with the fact that Φ is l.s.c., the functional on the right-hand side has

a unique minimizer, and hence Un is well defined.

Now, in order to define a continuous in time function from U, we use the inter-

polation introduced in (3.16). Let V P(t) = (Dα
PU)n(t). Then we have

ÛP(t) = U0 +
1

Γ(α)

ˆ t

0

(t− s)α−1V P(s)ds. (4.10)

Recall that FP can be defined from {Fn}Nn=1 using (2.3) and that Theorem 2.4

showed that FP ∈ L2
α(0, T ;H) with a norm bounded independently of P. We now

obtain some suitable bounds for ÛP and V P .

Lemma 4.6. (A priori bounds) Let P be any partition. The functions ÛP and V P

satisfy

sup
t∈[0,T ]

Φ(ÛP(t)) ≤ Φ(U0) +
1

4Γ(α)
‖FP‖2L2

α(0,T ;H)

≤ Φ(U0) + C‖f‖2L2
α(0,T ;H),

‖V P‖2L2
α(0,T ;H) = sup

t∈[0,T ]

ˆ t

0

(t− s)α−1‖V P(s)‖2ds

≤ C(‖f‖2L2
α(0,T ;H) +Φ(U0)− Φinf), (4.11)

where the constant C only depends on α.

Proof. Since Fn − (Dα
PU)n ∈ ∂Φ(Un), one has

Φ(Un)− Φ(Ui) ≤ 〈Fn − (Dα
PU)n, Un − Ui〉.
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Therefore noticing that K−1
P,ni < 0 for i ∈ {0, . . . , n− 1}, we get (see also (3.20))

(Dα
PΦ(U))n = −

n−1∑

i=0

K−1
P,ni(Φ(Un)− Φ(Ui))

≤ −
n−1∑

i=0

K−1
P,ni〈Fn − (Dα

PU)n , Un − Ui〉

= 〈Fn − (Dα
PU)n , (D

α
PU)n〉, (4.12)

where we denoted Φ(U) = {Φ(Un)}Nn=0.

We can now proceed to obtain the claimed estimates. To prove the first one, we

use that

(Dα
PΦ(U))n ≤ 〈Fn − (Dα

PU)n, (D
α
PU)n〉 ≤

1

4
‖Fn‖2

to obtain that for any n,

Φ(Un) = Φ(U0) +
n∑

i=1

KP,ni(D
α
PΦ(U))i

≤ Φ(U0) +
1

4

n∑

i=1

KP,ni‖Fi‖2

= Φ(U0) +
1

4Γ(α)

ˆ tn

0

(tn − s)α−1‖FP(s)‖2ds

≤ Φ(U0) + C‖f‖2L2
α(0,T ;H),

where the constant C depends only on α. Now, since Theorem 3.6 has shown that

ÛP is a convex combination of the values Un, we have

Φ(ÛP(t)) = Φ

(
N∑

i=0

ϕP,i(t)Ui

)
≤

N∑

i=0

ϕP,i(t)Φ (Ui)

≤ max
n

Φ(Un) ≤ Φ(U0) + C‖f‖2L2
α(0,T ;H),

which finishes the proof of the first claim.

We now proceed to prove the second claim. Using (4.12) we get

Φinf ≤ Φ(ÛP(t)) ≤ Φ(U0) +
1

Γ(α)

×
ˆ t

0

(t− s)α−1〈FP(s)− V P(s), V P(s)〉ds

≤ Φ(U0) +
1

Γ(α)

(
ˆ t

0

(t− s)α−1‖FP(s)‖2ds
)1/2
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×
(
ˆ t

0

(t− s)α−1‖V P(s)‖2ds
)1/2

− 1

Γ(α)

ˆ t

0

(t− s)α−1‖V P(s)‖2ds,

for any t ∈ [0, T ]. This implies that
ˆ t

0

(t− s)α−1‖V P(s)‖2ds ≤ ‖FP‖2L2
α(0,T ;H) + 2Γ(α)(Φ(U0)− Φinf),

which, using Theorem 2.4, implies the result.

Remark 4.7. (The function Φ̂) Notice that, during the course of the proof of the

first estimate in (4.11) we also showed that, if we define Φ̂P(t) =
∑N

i=0 ϕP,i(t)Φ(Ui),

then Φ̂(t) is the interpolation of ΦP(U) with piecewise constant Caputo derivative.

Moreover,

Dα
c Φ̂P(t) ≤

1

4

∥∥FP(t)
∥∥2 .

These estimates immediately yield a modulus of continuity estimate on the

interpolant ÛP which is independent of the partition P.

Lemma 4.8. (Hölder continuity) Let P be any partition and U ∈ HN be the

solution to (4.7) associated to this partition. For t1, t2 ∈ [0, T ] the interpolant ÛP ,

defined in (3.16), satisfies

‖Û(t2)− Û(t1)‖ ≤ C|t2 − t1|α/2(‖f‖2L2
α(0,T ;H) +Φ(U0)− Φinf)

1/2,

where the constant C depends only on α.

Proof. As proved in Lemma 5.8 of Ref. 39, Dα
c w ∈ L2

α(0, T ;H) guarantees w ∈
C0,α/2([0, T ];H). Therefore using Dα

c Û = V α ∈ L2
α(0, T ;H) and the estimate from

Theorem 4.6, we obtain the result.

Next we control the difference between discrete solutions corresponding to dif-

ferent partitions.

Lemma 4.9. (Equicontinuity) Let, for i = 1, 2, Pi be partitions of [0, T ] with

maximal step size τi, respectively, and denote by U(i) the associated solutions to

(4.7). Let Ûi be their interpolations, defined by (4.10), and U i be their piecewise

constant interpolations as in (2.3). Assuming that U
(i)
0 = U0 we have

‖Û1 − Û2‖L∞(0,T ;H) ≤ C[τ
α/2
1 + τ

α/2
2 ][‖f‖2L2

α(0,T ;H) +Φ(U0)− Φinf ]
1/2, (4.13)

and

sup
t∈[0,T ]

ˆ t

0

(t− s)α−1ρ(U1(s), U2(s))ds

≤ C(τα1 + τα2 )(‖f‖2L2
α(0,T ;H) +Φ(U0)− Φinf), (4.14)

where the constant C only depends on α.
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Proof. For almost every t ∈ [0, T ], we have that

〈Dα
c (Û1 − Û2), Û1 − Û2〉 = I + II + III, (4.15)

where

I = 〈(F 2 −Dα
c Û2)− (F 1 −Dα

c Û1), U1 − U2〉 ≤ −ρ(U1, U2),

II = 〈(F 2 −Dα
c Û2)− (F 1 −Dα

c Û1), (Û1 − U1)− (Û2 − U2)〉,

III = 〈F 1 − F 2, Û1 − Û2〉,
where to bound I we used that F i(t) − Dα

c Ûi(t) ∈ ∂Φ(U i(t)) and Theorem 2.1.

Define now

G(t) =
1

Γ(α)

ˆ t

0

(t− s)α−1(F 1(s)− F 2(s))ds

=
1

Γ(α)

ˆ t

0

(t− s)α−1(F 1(s)− f(s))ds

− 1

Γ(α)

ˆ t

0

(t− s)α−1(F 2(s)− f(s))ds,

so that Dα
c G(t) = F 1(t)− F 2(t) and by (2.10) of Theorem 2.5 one further has

‖G‖L∞(0,T ;H) ≤ C(τ
α/2
1 + τ

α/2
2 )‖f‖L2

α(0,T ;H), (4.16)

where C is a constant that depends only on α. Using these estimates, from (4.15)

we deduce that

〈Dα
c (Û1 − Û2 −G), Û1 − Û2 −G〉+ ρ(U1, U2)

≤ II− 〈Dα
c (Û1 − Û2 −G), G〉. (4.17)

Set w = Û1 − Û2 −G. By (2.18) we have that

1

2
Dα

c ‖w(t)‖2 + ρ(U1, U2) ≤ II− 〈Dα
c w,G〉 ,

and, using (2.17) and (4.16), we then conclude

1

2
‖Û1(t)− Û2(t)‖2 +

1

Γ(α)

ˆ t

0

(t− s)α−1ρ(U2(s), U2(s))ds

≤ 2

Γ(α)

ˆ t

0

(t− s)α−1(II(s)− 〈Dα
c w(s), G(s)〉)ds+ C(τ

α/2
1

+ τ
α/2
2 )‖f‖L2

α(0,T ;H).

It remains then to estimate the fractional integral on the right-hand side. We esti-

mate each term separately.

First, owing to Theorems 2.4 and 4.6 we have, for i = 1, 2, that

‖F i −Dα
c Ûi‖L2

α(0,T ;H) ≤ C(‖f‖2L2
α(0,T ;H) +Φ(U0)− Φinf)

1/2.
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Therefore using the Cauchy–Schwarz inequality, for any t ∈ [0, T ], we have
ˆ t

0

(t− s)α−1|II(s)|ds

≤ C(‖f‖2L2
α(0,T ;H) +Φ(U0)− Φinf)

1/2
2∑

i=1

∥∥∥Ûi − U i

∥∥∥
L2

α(0,T ;H)
.

Recalling that U i(t) = Ûi(⌈t⌉i) we can invoke Theorem 2.6 and, again, Theorem 4.6

to arrive at
ˆ t

0

(t− s)α−1|II(s)|ds ≤ C(τ
α/2
1 + τ

α/2
2 )(‖f‖2L2

α(0,T ;H) +Φ(U0)− Φinf).

Finally, for the remaining term, we use the Cauchy–Schwarz inequality and get
ˆ t

0

(t− s)α−1 |〈Dα
c w,G〉 (s)| ds

≤
(
ˆ t

0

(t− s)α−1 ‖Dα
c w(s)‖2 ds

)1/2(ˆ t

0

(t− s)α−1 ‖G(s)‖2 ds
)1/2

≤ ‖Dα
c w‖L2

α(0,T ;H)‖G‖L2
α(0,T ;H).

To estimate the norm of G we apply (2.11) from Theorem 2.5 with β = α to obtain

‖G‖L2
α(0,T ;H) ≤ C(τα1 + τα1 )‖f‖L2

α(0,T ;H).

Furthermore, Theorems 2.4 and 4.6 guarantee that

‖Dα
c w‖L2

α(0,T ;H) ≤ C(‖f‖2L2
α(0,T ;H) +Φ(U0)− Φinf)

1/2.

Combining all estimates proves the desired result.

We are finally able to prove Theorem 4.5. We will follow the same approach as

in Theorem 5.10 of Ref. 39; we will pass to the limit τi ↓ 0 and study the limit of

discrete solutions Ûi.

Proof of Theorem 4.5. Let us first prove uniqueness of energy solutions. Suppose

that we have two energy solutions u1, u2 to (1.2). Let t ∈ (0, T ) be arbitrary and

h > 0 be sufficiently small so that (t−h, t+h) ⊂ [0, T ]. Setting as test function, in

the EVI that characterizes u1, the function w = u1 − χ(t−h,t+h)(u1 − u2) and vice

versa, and adding the ensuing inequalities we obtain
ˆ t+h

t−h

〈Dα
c u1(s)−Dα

c u2(s), u1(s)− u2(s)〉ds ≤ 0,

meaning that 〈Dα
c u1(t)−Dα

c u2(t), u1(t)− u2(t)〉 ≤ 0 for almost every t ∈ [0, T ].

Define d(t) = ‖u1(t) − u2(t)‖2. Since u1, u2 ∈ L2(0, T ;H) we clearly have d ∈
L1(0, T ;R). Furthermore,

 t

0

|d(s)|ds ≤ 2

 t

0

(‖(u1(s)− u0)‖2 + ‖(u2(s)− u0)‖2)ds→ 0,
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as t ↓ 0, from Theorem 4.2. Using (2.18) we then have

Dα
c d(t) ≤ 2〈Dα

c u1(t)−Dα
c u2(t), u1(t)− u2(t)〉 ≤ 0

in the distributional sense. Combining with the facts that d ≥ 0 and
ffl t

0
|d(s)|ds→ 0

we obtain, by Corollary 3.8 of Ref. 36, d(t) = 0. This proves the uniqueness.

We now turn our attention to existence. Let {Pk}∞k=1 be a sequence of partitions

such that τk ↓ 0 as k → ∞. We denote by U(k) the discrete solution, on partition

Pk, given by (4.7) with U
(k)
0 = u0. The symbols Ûk, V k and F k carry analogous

meaning. Owing to Theorem 4.9 there exists u ∈ C([0, T ];H) such that Ûk converges

to u in C([0, T ];H).

The embedding of Theorem 2.3 and an application of Theorem 4.6 shows that

there is a subsequence for which V kj
⇀ v in L2(0, T ;H) as j → ∞. Moreover, we

can again appeal to Theorem 4.6 to see that, for every t ∈ [0, T ], the sequence

(t− ·)α−1
2 V kj

(·)

is uniformly bounded in L2(0, t;H) so that by passing to a further, not retagged,

subsequence

(t− ·)α−1
2 V kj (·)⇀ (t− ·)α−1

2 v(·) in L2(0, t;H) (4.18)

for any t ∈ [0, T ]. This, in addition, shows that v ∈ L2
α(0, T ;H) so that if we define

ũ(t) = u0 +
1

Γ(α)

ˆ t

0

(t− s)α−1v(s)ds (4.19)

then Dα
c ũ = v.

Recall that for any j ∈ N and any t ∈ [0, T ] we have that

Ûkj (t) = u0 +
1

Γ(α)

ˆ t

0

(t− s)α−1V kj (s)ds.

Since, for an arbitrary w ∈ H we have that (t− ·)α−1
2 w is in L2(0, t;H), we can use

(4.18) to obtain that

lim
j→∞

〈Ûkj (t), w〉 = lim
j→∞

〈
u0 +

1

Γ(α)

ˆ t

0

(t− s)α−1V kj (s)ds, w

〉

=

〈
u0 +

1

Γ(α)

ˆ t

0

(t− s)α−1v(s)ds, w

〉
= 〈ũ(t), w〉.

The statement above holds for any w ∈ H and all t ∈ [0, T ]. Thus,

Ûkj (t)⇀ ũ(t), (4.20)

in H. However, this implies that ũ = u, as Ûkj
converges to u in C([0, T ];H).

Therefore Dα
c u = v ∈ L2

α(0, T ;H) and, by Theorem 4.6, we have the estimate

‖v‖L2
α(0,T ;H) ≤ C(‖f‖2L2

α(0,T ;H) +Φ(U0)− Φinf)
1/2,
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for some constant C depending on α. As in the proof of Theorem 4.8 this implies

that (4.6) holds. From this, we also see that the initial condition is attained in the

required sense.

It remains to show that the EVI (4.2) holds for u. From the construction of

discrete solutions, one derives that for any w ∈ L2(0, T ;H)

ˆ T

0

(Φ(Ûkj (t))− Φ(w(t)))dt ≤
ˆ T

0

〈F kj (t)− V kj (t), Ûkj (t)− w(t)〉dt. (4.21)

We will pass to the limit in this inequality. For the right-hand side, it suffices to

observe that Ûkj
→ u in C([0, T ];H), V kj

⇀ v in L2(0, T ;H) and F kj
→ f in

L2(0, T ;H). Thus,

ˆ T

0

〈F kj
(t)− V kj

(t), Ûkj
(t)− w(t)〉dt→

ˆ T

0

〈f(t)− v(t), u(t)− w(t)〉dt.

For the left-hand side, the uniform convergence of Ûkj
and the lower semicontinuity

of Φ, give

Φ(u(t)) ≤ lim inf
j→∞

Φ
(
Ûkj

(t)
)
,

and hence
ˆ T

0

Φ(u(t))− Φ(w(t))dt ≤
ˆ T

0

〈f(t)− v(t), u(t)− w(t)〉dt.

It remains to recall that Dα
c u = v ∈ L2(0, T ;H) to conclude that, according to

Theorem 4.2, u is an energy solution.

Remark 4.10. (Other notion of solution) The choice of u ∈ L2(0, T ;H) and

Dα
c u ∈ L2(0, T ;H) in Theorem 4.2 is to guarantee that (4.2) makes sense. It is

also necessary in the proof of uniqueness. However, other choices of spaces are

also possible. For example, one could consider the following definition instead of

Theorem 4.2: u ∈ L∞(0, T ;H) is a solution to (1.2) if:

(i) limt↓0

ffl t

0
‖u(s)− u0‖ds = 0;

(ii) Dα
c u ∈ L1(0, T ;H); and

(iii) for any w ∈ L∞(0, T ;H),

ˆ T

0

[〈Dα
c u(t), u(t)− w(t)〉+Φ(u(t))− Φ(w(t))]dt

≤
ˆ T

0

〈f(t), u(t)− w(t)〉dt. (4.22)

Theorem 4.5 also holds for this new definition. However, at least with our tech-

niques, the requirements on the data u0 ∈ D(Φ) and f ∈ L2
α(0, T ;H) do not change.
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4.3. Asymptotic behavior

One important, and well-studied, property of the solution to a classical, integer

order, gradient flow is its convergence, as time goes to infinity, to a state of equi-

librium, i.e. of minimal energy. We refer the interested reader to Chap. III.5 in

Ref. 12, Sec. 3.4 of Ref. 8, and Proposition 11.9 in Ref. 54. In addition we com-

ment that, while this paper was under review, Ref. 25 appeared. Here the authors

show that, whenever the energy is differentiable, a time fractional gradient flow can

be rewritten as a classical gradient flow for a modified energy, one that takes into

account the history of the solution. The results of that work could be extended to

the case considered here, where the energy is convex but may not be differentiable.

Since our solution u satisfies −∂Φ(u) ∋ Dα
c u ∈ L2

α(0, T ;H), the modified energy

could be constructed in the same way as in Theorem 2 of Ref. 25. The decay of the

energy can, in principle, be related to the decay of this modified energy. However,

this observation is irrelevant to our investigation in this section.

Let us here study, for the case f ≡ 0, the asymptotic behavior of solutions

to time fractional gradient flows. We first recall that Proposition 5.11 in Ref. 39

proves the following convergence result under the assumption that the energy Φ is

uniformly convex.

Theorem 4.11. (Convergence to equilibrium I) Assume that the energy Φ is l.s.c,

with nonempty effective domain and there is µ > 0 for which

w 7→ Φ(w)− µ

2
‖w‖2,

is convex. Let u∗ ∈ H be the global minimizer of Φ. Then, the energy solution to

(1.2) with f ≡ 0, satisfies, for t > 0,

Φ(u(t))− Φinf ≤ (Φ(u0)− Φinf)Eα(−2µtα), ‖u(t)− u∗‖ ≤ ‖u0 − u∗‖Eα(−µtα).
Let us extend this result by removing the uniform convexity assumption.

Theorem 4.12. (Convergence to equilibrium II) Let f ≡ 0 and assume that the

energy Φ is convex, l.s.c., and with nonempty effective domain. Choose u∗ ∈ H such

that

Φinf = Φ(u∗).

Note that u∗ may not be unique. Let u be the energy solution to (1.2), P be an

arbitrary time partition, and {Un}n≥0 be the solution to (4.7). We have, for all

t ≥ 0 and n ≥ 0,

‖Un − u∗‖ ≤ ‖U0 − u∗‖, ‖u(t)− u∗‖ ≤ ‖u0 − u∗‖.
Furthermore, there exists a constant C independent of u,Φ, α such that

Φ(u(t))− Φinf

≤ min{Φ(u0)− Φinf , (Φ(u0)− Φinf)
1
2 ‖u0 − u∗‖Γ(1− α)−

1
2 t−

α
2 }. (4.23)

This guarantees that limt→∞ Φ(u(t)) = Φinf .
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Proof. We split the proof in several steps.

First we note that, since − (Dα
PU)n ∈ ∂Φ(Un), we use (3.20) and the definition

of subdifferential set to obtain

1

2
(Dα

P‖U− u∗‖2)n ≤ 〈Un − u∗, (Dα
PU)n〉 ≤ Φ(u∗)− Φ(Un) ≤ 0. (4.24)

Hence, from Theorem 3.7, we get

‖Un − u∗‖2 ≤ ‖U0 − u∗‖2.
Take U0 = u0 and let τ ↓ 0, we immediately get ‖u(t)− u∗‖ ≤ ‖u0 − u∗‖ as well.

Let En = Φ(Un)− Φinf . From (4.12) we have

(Dα
PE)n = (Dα

PΦ(U))n ≤ −‖∂Φ(Un)‖2,
where by ∂Φ(Un) we denote any element in this subdifferential. Since

Φ(Un)− Φinf ≤ 〈∂Φ(Un), Un − u∗〉 ≤ ‖∂Φ(Un)‖‖Un − u∗‖

≤ ‖∂Φ(Un)‖‖U0 − u∗‖,
we have

‖∂Φ(Un)‖ ≥ En

‖U0 − u∗‖ , (Dα
PE)n ≤ − E2

n

‖U0 − u∗‖2 = −νE2
n,

for ν = ‖U0 − u∗‖−2. Consider the following discrete system with Wn ≥ 0

(Dα
PW)n = −νW 2

n , W (0) = E0. (4.25)

It is easy to show that there exists a unique solution satisfying 0 ≤ Wn ≤ E0. By

the discrete comparison in Theorem 3.7, we have En ≤Wn. Let the time step τ ↓ 0,

we see that {Wn} converges to the solution of the fractional ODE

Dα
c w = −νw2, w(0) = E0. (4.26)

This can be checked easily because the right-hand side w 7→ −νw2 is Lipschitz

for w ∈ [0, E0], or one could also view it as a time fractional gradient flow for

Φ(w) = ν|w|3

3 and refer to the proof of Theorem 4.5.

When letting τ ↓ 0, owing to Theorem 4.9 we showed in the proof of Theorem 4.5

that UP uniformly converges to u. Hence,

Φ(u(t))− Φinf ≤ lim inf
τ↓0,tn→t

Φ(U (P)
n )− Φinf ≤ lim inf

τ↓0,tn→t
W (P)

n ≤ w(t).

Now recall that, owing to Theorem 7.1 of Ref. 66, we have

w(t) ≤ min{E0, CE
1
2
0 ν

− 1
2Γ(1− α)−

1
2 t−

α
2 },

which implies the desired result (4.23).

Remark 4.13. (Rate of decay) The rate of decay for the energy obtained in (4.23)

may not be optimal. Although Theorem 7.1 of Ref. 66 shows that the solution

to (4.26) decays like t
−α
2 , we know that the energy cannot behave exactly like
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Φ(u(t))−Φinf ≈ t
−α
2 . To see this, we take the fractional integral of order α in (4.24)

and obtain

1

2
‖Un − u∗‖2 ≤ 1

2
‖U0 − u∗‖2 − 1

Γ(α)

ˆ tn

0

(tn − s)α−1
(
Φ(UP(s))− Φinf

)
ds.

This implies that

1

Γ(α)

ˆ tn

0

(tn − s)α−1(Φ(UP(s))− Φinf)ds ≤
1

2
‖U0 − u∗‖2 < +∞.

By passing to the limit, this also holds for the continuous solution. If Φ(u(t))−Φinf ≈
t
−α
2 for large t, then

ˆ t

0

(t− s)α−1 (Φ(u(t))− Φinf) ds→ +∞,

as t→ +∞, which cannot be true.

Using Theorem 3.9 we also have convergence of the energy for our discrete

solution.

Theorem 4.14. (Convergence to equilibrium III) Under the same assumptions of

Theorem 4.12, we have for any partition P that

Φ(Un)− Φinf ≤ min{Φ(U0)− Φinf , (Φ(U0)− Φinf)
1
2Γ(α+ 1)

1
2 ‖U0 − u∗‖t

−α
2

n },
which implies that limtn→∞ Φ(Un) = Φinf .

Proof. From the proof of Theorem 4.12, we see that for En = Φ(Un)−Φinf we have

En ≤Wn, where Wn ≥ 0 was defined in (4.25). To get an upper bound for Wn, we

consider a new partition P̃ with only two points t̃0 = 0, t̃1 = tn. By Theorem 3.9,

we have

En ≤ W̃1,

where W̃1 ≥ 0 satisfies

(Dα
P̃
W̃)1 =

Γ(α+ 1)

tαn
(W̃1 −W0) = −νW̃ 2

1 ,

and ν = ‖U0−u∗‖−2. SinceW0 = E0 ≥ 0, the equation for W̃1 immediately implies

that

W̃1 ≤W0, νW̃ 2
1 ≤ Γ(α+ 1)

tαn
W0.

Combining these inequalities with En ≤ W̃1 finishes the proof.

We comment that, both in Theorems 4.12 and 4.14, without uniform convexity,

the equilibrium u∗ point may not be unique. Hence, we cannot state convergence

of solutions to a particular equilibrium point. The best, and immediate, result that

one can obtain is the weak convergence, up to subsequences, to an equilibrium
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point. For this reason, instead, let us show that the solution cannot oscillate too

much for large times. This is obtained in several steps.

We begin with an enhanced stability result, whose proof is inspired by the

techniques of Ref. 62.

Lemma 4.15. (Enhanced stability) Assume that f ≡ 0, and that Φ is convex,

l.s.c., and with nonempty effective domain. Then, u the energy solution to (1.2)

satisfies

‖D
α+1
2

c u‖2L2(0,T ;H) ≤
1

sin(απ2 )
(Φ(u0)− Φinf). (4.27)

Proof. The proof proceeds by obtaining estimates for discrete solutions defined

via (4.7). Let P be a time partition. Using the convexity of Φ and the definition of

subdifferential we have, for t ∈ (tn−1, tn],

Φ(Un)− Φ(Un−1) ≤ −〈(Dα
PU)n, Un − Un−1〉 = −〈Dα

c ÛP(t), Un − Un−1〉.
The inequality above can be rewritten as

Φ(Un)− Φ(Un−1) ≤
ˆ tn

tn−1

−〈Dα
c ÛP(t), Û

′
P(t)〉 dt,

which leads, after summation from n = 1 to n = N , to

Φ(UN )− Φ(U0) ≤ −
ˆ T

0

〈Dα
c ÛP(t), Û

′
P(t)〉 dt.

The inequality (see, for example, Lemma 2.1 in Ref. 62, or Lemma 3.1 in Ref. 48

for a proof)

1

Γ(β)

ˆ T

0

ˆ t

0

(t− s)β−1〈h(s), h(t)〉dsdt

≥ cos

(
βπ

2

)
ˆ T

0

∥∥∥∥
1

Γ(β/2)

ˆ t

0

(t− s)β/2−1h(s)ds

∥∥∥∥
2

dt

can be used with β = 1− α and h(t) = Û ′
P to obtain that

sin
(απ

2

)∥∥∥D
α+1
2

c ÛP

∥∥∥
2

L2(0,T ;H)

≤
ˆ T

0

〈Dα
c ÛP(t), Û

′
P(t)〉 dt ≤ Φ(U0)− Φ(UN ) ≤ Φ(U0)− Φinf .

Indeed, since ÛP is absolutely continuous, all definitions of the Caputo derivative,

in particular (1.1) are valid.

It is now easy to see that if we use this stability and pass to the limit in the

proof of Theorem 4.5, then we obtain (4.27), as we intended to show.

With this at hand we can bound the oscillation of the solution for large times.
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Theorem 4.16. (Oscillation estimate) In the setting of Theorem 4.15, let u be the

solution to (1.2). For any ε > 0, there exists T0 > 0 such that

|u|Cα/2(T0,∞;H) ≤ ε.

In other words, for any t > T0 and s > 0, we have

‖u(t)− u(t+ s)‖ ≤ εsα/2.

Proof. Since Theorem 4.15 has shown that D
1+α
2

c u ∈ L2(0,∞;H), the solution to

(1.2) exists for all times t > 0. Moreover, there is T1 > 0 such that

1

Γ( 1−α
2 )α1/2

‖D
α+1
2

c u‖L2(T1,∞;H) ≤
ε

3
.

Notice now that there is a constant C > 0 such that, for every t > T1, and all s > 0

we have

(t− T1)
α−1 − (t− T1 + s)α−1 ≤ C(t− T1)

α
2 −1sα/2.

Since α
2 − 1 < 0 we can choose now T0 > T1 for which

C

Γ( 1−α
2 )

(T0 − T1)
α
2 −1

ˆ T1

0

‖D
α+1
2

c u(r)‖dr ≤ ε

3
.

Let t > T0. We have the representation

u(t) = u(0) +
1

Γ( 1−α
2 )

ˆ t

0

(t− r)
α−1
2 D

1+α
2

c u(r)dr.

We decompose u(t+ s)− u(t) into three parts

u(t+ s)− u(t) =
1

Γ( 1−α
2 )

ˆ t+s

t

(t+ s− r)
α−1
2 D

1+α
2

c u(r)dr

− 1

Γ( 1−α
2 )

ˆ t

T1

(
(t− r)

α−1
2 − (t+ s− r)

α−1
2

)
D

1+α
2

c u(r)dr

− 1

Γ( 1−α
2 )

ˆ T1

0

(
(t− r)

α−1
2 − (t+ s− r)

α−1
2

)
D

1+α
2

c u(r)dr

=
1

Γ( 1−α
2 )

(I1 + I2 + I3) .

Clearly, by the Cauchy–Schwarz inequality, we have

‖I1‖ ≤
(
ˆ t+s

t

(t+ s− r)α−1dr

ˆ t+s

t

‖D
1+α
2

c u(r)‖2dr
)1/2

≤ sα/2

α1/2
‖D

1+α
2

c u‖L2(t,t+s;H)
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and

‖I2‖ ≤
(
ˆ t

T1

(
(t− r)

α−1
2 − (t+ s− r)

α−1
2

)2
dr

ˆ t

T1

‖D
1+α
2

c u(r)‖2dr
)1/2

≤
(
ˆ t

T1

(t− r)α−1 − (t+ s− r)α−1dr

)1/2

‖D
α+1
2

c u‖L2(T1,t;H)

≤ sα/2

α1/2
‖D

α+1
2

c u‖L2(T1,t;H).

The choice of T1 guarantees that

1

Γ( 1−α
2 )

(‖I1‖+ ‖I2‖) ≤
2

3
εsα/2.

For I3, notice that

‖I3‖ ≤
(
(T0 − T1)

α−1 − (T0 − T1 + s)α−1
) ˆ T1

0

‖D
α+1
2

c u(r)‖dr

≤ C(T0 − T1)
α
2 −1s

α
2

ˆ T1

0

‖D
α+1
2

c u(r)‖dr.

Thus, the choice of T0 implies

1

Γ( 1−α
2 )

‖I3‖ ≤ ε

3
sα/2.

Combining the estimates for I1, I2, I3 proves the result.

5. Time Fractional Gradient Flows: Numerics

Since the existence of an energy solution was proved by a rather constructive

approach, namely a fractional minimizing movements scheme, it makes sense to

provide error analyses for this scheme. We will provide an a priori error estimate

which, in light of the smoothness u ∈ C0,α/2([0, T ];H) proved in Theorem 4.5, is

optimal. In addition, in the spirit of Ref. 51 we will provide an a posteriori error

analysis.

5.1. A priori error analysis

The a priori error estimate reads as follows. We comment that this result gives us

a better rate compared to Theorem 5.10 of Ref. 39.

Theorem 5.1. (A priori I) Let u be the energy solution of (1.2). Given a par-

tition P, of maximal step size τ, let U ∈ HN be the discrete solution defined by

(4.7) starting from U0 ∈ D(Φ). Let ÛP and UP be defined as in (4.10) and (2.3),

respectively. Then we have,

‖u− ÛP‖L∞(0,T ;H) ≤ ‖u0 − U0‖+ Cτα/2(‖f‖2L2
α(0,T ;H) +Φ0 − Φinf)

1/2, (5.1)
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and

sup
t∈[0,T ]

ˆ t

0

(t− s)α−1ρ(u(s), UP(s))ds

≤ ‖u0 − U0‖2 + Cτα(‖f‖2L2
α(0,T ;H) +Φ0 − Φinf), (5.2)

where Φ0 = max{Φ(U0),Φ(u0)}, and the constant C depends only on α.

Proof. The proof can be obtained by following the same procedure employed in

the proof of Theorem 4.9. In the current situation, however, instead of comparing

two discrete solutions we compare the exact and discrete ones. The only difference

is that we allow U0 6= u0 here, but this presents no essential difficulty. For brevity,

we skip the details.

5.2. A posteriori error analysis

Let us now provide an a posteriori error estimate between the discretization in

(4.7) and the solution of (1.2). We will also show how, from this a posteriori error

estimator, an a priori error estimate can be derived. Let us first introduce the a

posteriori error estimator.

Definition 5.2. (Error estimator) Let P be a partition of [0, T ] as in (2.2), and

U ∈ HN denote the discrete solution given by (4.7). We define the error estimator

function as

EP(t) = EP,1(t) + EP,2(t), (5.3)

where

EP,1(t) = 〈Dα
c ÛP(t)− FP(t), ÛP(t)− UP(t)〉, EP,2(t) = Φ(ÛP(t))− Φ(UP(t)).

Notice that the quantity EP(t) is nonnegative because FP(t) − Dα
c ÛP(t) =

Fn(t) − (Dα
PU)n(t) ∈ ∂Φ(Un(t)) = ∂Φ(UP(t)). It is also, in principle, computable

since it only depends on data, and the discrete solution U. It is then a suitable

candidate for an a posteriori error estimator.

The derivation of an a posteriori error estimate begins with the observation

that, for any w ∈ H, we have

〈Dα
c ÛP(t)− f(t), ÛP(t)− w〉+Φ(ÛP(t))− Φ(w)

= EP(t) + 〈FP(t)−Dα
c ÛP(t), w − UP(t)〉+Φ(UP(t))− Φ(w)

+ 〈f(t)− FP(t), w − ÛP(t)〉

≤ EP(t) + 〈f(t)− FP(t), w − ÛP(t)〉 − σ(UP(t);w). (5.4)

In other words, the function ÛP solves an EVI similar to (4.3) but with additional

terms on the right-hand side. We can then compare the EVIs by a now standard
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approach, that is, set w = u(t) in (5.4) and w = ÛP(t) in (4.3), respectively, to see

that

〈Dα
c

(
ÛP − u

)
(t), ÛP(t)− u(t)〉+ σ(UP(t);u(t)) + σ(u(t); ÛP(t))

≤ EP(t) + 〈f(t)− FP(t), u(t)− ÛP(t)〉 (5.5)

for almost every t ∈ [0, T ]. Consider the following notions of error:

E =

(
sup

t∈[0,T ]

{E2
H(t) + E2

σ(t)}
)1/2

, EH(t) = ‖u(t)− ÛP(t)‖,

Eσ(t) =

(
2

Γ(α)

ˆ t

0

(t− s)α−1[σ(u(s); ÛP(s)) + σ(UP(s);u(s))]ds

)1/2

. (5.6)

We have the following error estimate for E.

Theorem 5.3. (A posteriori) Let u be the energy solution of (1.2). Let P be a

partition of [0, T ] defined as in (2.2) and let U ∈ HN be the discrete solution given

by (4.7) starting from U0 ∈ D(Φ). Let E and EP be defined in (5.6) and (5.3),

respectively, The following a posteriori error estimate holds

E ≤
(
‖u0 − U0‖2 +

2

Γ(α)
‖EP‖L1

α(0,T ;H)

)1/2

+
2

Γ(α)
‖f − FP‖L1

α(0,T ;H). (5.7)

Proof. From (2.18) we infer

1

2
Dα

c ‖ÛP − u‖2(t) ≤ 〈Dα
c (ÛP − u)(t), ÛP(t)− u(t)〉

≤ EP(t) + 〈f(t)− FP(t), u(t)− ÛP(t)〉

−σ(UP(t);u(t))− σ(u(t); ÛP(t)).

The claimed a posteriori error estimate (5.7) follows from Theorem 2.8 by setting

λ = 0, a(t) = ‖(ÛP − u)(t)‖, b(t) = 2(σ(UP(t);u(t)) + σ(u(t); ÛP(t))),

c(t) = 2EP(t), d(t) = ‖(f − FP)(t)‖.

5.3. Rate of convergence

Although we have already established an optimal a priori rate of convergence for

our scheme in Theorem 5.1, in this section we study the sharpness of the a posteriori

error estimator EP by obtaining the same convergence rates through it. We comment

that neither in Theorem 5.1 nor in our discussion here, we require any relation

between time steps. We will also consider some cases when the rate of convergence

can be improved.
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5.3.1. Rate of convergence for energy solutions

Let us now use the estimator EP to derive a convergence rate or order O(τα/2) for

the error E, defined in (5.6), when f ∈ L2
α(0, T ;H). Notice that such regularity a

priori does not give any order of convergence for ‖f−FP‖L1
α(0,T ;H) in (5.7). Observe

also that the rate that we obtain is consistent with classical gradient flow theories,

where an order O(τ1/2) is proved provided that u0 ∈ D(Φ) and f ∈ L2(0, T ;H);

see Sec. 3.2 in Ref. 51.

We first bound ‖EP‖L1
α(0,T ;H).

Theorem 5.4. (Bound on ‖EP‖L1
α(0,T ;H)) Under the assumption that U0 ∈ D(Φ),

the estimator EP , defined in (5.3), satisfies

‖EP‖L1
α(0,T ;H) ≤ Cτα(‖f‖2L2

α(0,T ;H) +Φ(U0)− Φinf), (5.8)

where the constant C depends only on α.

Proof. We bound the contributions EP,1 and EP,2 separately. The bound of EP,1

follows without change that of the term II of (4.15) in Theorem 4.9. Thus,

‖EP,1‖L1
α(0,T ;H) ≤ Cτα(‖f‖2L2

α(0,T ;H) +Φ(U0)− Φinf). (5.9)

To bound EP,2, we recall the function Φ̂P , defined in Theorem 4.7, and its

properties. Define also ΦP(t) = Φ(UP(t)). We have

EP,2(t) = Φ(ÛP(t))− Φ(UP(t)) ≤ Φ̂P(t)− ΦP(t)

=
1

Γ(α)

(
ˆ t

0

(t− s)α−1Dα
c Φ̂P(s)ds

−
ˆ ⌈t⌉P

0

(⌈t⌉P − s)α−1Dα
c Φ̂P(s)ds

)

=
1

Γ(α)

(
ˆ t

0

[(t− s)α−1 − (⌈t⌉P − s)α−1]Dα
c Φ̂P(s)ds

−
ˆ ⌈t⌉P

t

(⌈t⌉P − s)α−1Dα
c Φ̂P(s)ds

)

≤ 1

4Γ(α)

ˆ t

0

[(t− s)α−1 − (⌈t⌉P − s)α−1]‖FP(s)‖2ds

− 1

Γ(α)

ˆ ⌈t⌉P

t

(⌈t⌉P − s)α−1Dα
c Φ̂P(s)ds

=
1

4Γ(α)

ˆ t

0

[(t− s)α−1 − (⌈t⌉P − s)α−1]‖FP(s)‖2ds

− 1

Γ(α+ 1)
(⌈t⌉P − t)αDα

c Φ̂P(t)

= I1(t)− I2(t).
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On the one hand, proceeding as in the proof of Theorem 2.6 we obtain

sup
r∈[0,T ]

ˆ r

0

(r − t)α−1I1(t)dt ≤ C3τ
α‖FP‖2L2

α(0,T ;H).

On the other hand, using

−I2(t) ≤
−1

Γ(α+ 1)
(⌈t⌉P − t)α

(
Dα

c Φ̂P(t)−
1

4

∥∥FP(t)
∥∥2
)

≤ τα

Γ(α+ 1)

(
1

4

∥∥FP(t)
∥∥2 −Dα

c Φ̂P(t)

)

we have for any r ∈ [0, T ] that

−
ˆ r

0

(r − t)α−1I2(t)dt

≤ τα

Γ(α+ 1)

ˆ r

0

(r − t)α−1

(
1

4

∥∥F (t)
∥∥2 −Dα

c Φ̂P(t)

)
dt

=
τα

4Γ(α+ 1)

ˆ r

0

(r − t)α−1‖FP(t)‖2dt−
τα

α
(Φ̂P(r)− Φ(U0))

≤ τα

4Γ(α+ 1)
‖FP‖2L2

α(0,T ;H) +
τα

α
(Φ(U0)− Φinf).

Therefore combining the estimates for I1 and I2 we have proved that

sup
r∈[0,T ]

ˆ r

0

(r − t)α−1EP,2(t)dt ≤ C4τ
α(‖f‖2L2

α(0,T ;H) +Φ(U0)− Φinf),

which together with (5.9) proves (5.8) because EP is nonnegative.

We next take advantage of Theorem 2.5, and derive a rate for E without addi-

tional smoothness assumptions on the right-hand side f .

Theorem 5.5. (A priori II) Let u be the energy solution of (1.2). Let P be a

partition of [0, T ] defined as in (2.2) and U ∈ HN be the discrete solution given by

(4.7) starting from U0 ∈ D(Φ). Let E be defined in (5.6). Then we have

E ≤ ‖u0 − U0‖+ Cτα/2(‖f‖2L2
α(0,T ;H) +Φ(U0)− Φinf)

1/2,

where the constant C depends only on α.

Proof. We follow closely the approach and notation in Theorem 4.9. Define

G(t) =
1

Γ(α)

ˆ t

0

(t− s)α−1
(
f(s)− FP(s)

)
ds

and note that, by Theorem 2.5, G satisfies

τα/2‖G‖L∞(0,T ;H) + ‖G‖L2
α(0,T ;H) ≤ C1τ

α‖f‖L2
α(0,T ;H), (5.10)
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where the constant depends only on α. Set e = u− ÛP and note that (5.5) can be

rewritten as

〈Dα
c (e−G)(t), (e−G)(t)〉+ σ(UP(t);u(t)) + σ(u(t); ÛP(t))

≤ EP(t)− 〈Dα
c (e−G)(t), G(t)〉.

Notice the resemblance with (4.17). We can thus proceed as in Theorem 4.9, and

use Theorem 5.4, to deduce that, for some constant C, depending only on α

‖u− ÛP −G‖2(t) + Eσ(t) ≤ ‖u0 − U0‖2 + C3τ
α(‖f‖2L2

α(0,T ;H) +Φ(U0)− Φinf).

Estimate (5.10) then implies the result.

5.3.2. Rate of convergence for smooth energies

Let us show that, at least for smoother energies, it is possible to obtain a better

rate of convergence. We will, essentially, assume that the energy is locally C1+β

for β ∈ (0, 1]. More specifically in this section we consider energies that satisfy the

following. There exists β ∈ (0, 1] such that for every R > 0, there is a constant

Cβ,R > 0 for which, whenever w1, w2 ∈ BR and ξ1 ∈ ∂Φ(w1),

Φ(w2)− Φ(w1)− 〈ξ1, w2 − w1〉 ≤ Cβ,R‖w2 − w1‖1+β , (5.11)

where BR denotes the ball of radius R in H. Notice that, by Theorem 4.8, all

the discrete solutions ÛP are uniformly bounded in C([0, T ];H). Thus, we can fix

R̄ > 0 depending only on the data such that, for any partition P and all t ∈ [0, T ],

ÛP(t) ∈ BR̄. Therefore, (5.11) implies that

Φ(w2)− Φ(w1)− 〈ξ1, w2 − w1〉 ≤ Cβ‖w2 − w1‖1+β , (5.12)

for some constant Cβ = Cβ,R̄ and all w1, w2 ∈ ÛP([0, T ]), ξ1 ∈ ∂Φ(w1).

A particular example to which this situation applies is the following. LetH = R
d

and Φ(w) = 1
p |w|p with p > 1. In this case, (5.12) holds with β = 1 for p ≥ 2 and

β = p− 1 for p ∈ (1, 2). For p < 2, to reach β = 1, we must assume that u and ÛP

stay uniformly away from zero. This example can, of course, be generalized.

In this setting, we have the following improved estimate for ‖EP‖L1
α(0,T ;H).

Theorem 5.6. (Improved bound) Assume that the energy Φ satisfies (5.12). Let

u be the energy solution to (1.2), and denote by P a partition of [0, T ] defined as in

(2.2). Denote by ÛP the solution of (4.7) starting from U0 ∈ D(Φ). In this setting,

the estimator EP defined in (5.3) satisfies

‖EP‖L1
α(0,T ;H) ≤ CTα(1−β)/2τα(β+1)

× (‖f‖2L2
α(0,T ;H) +Φ(U0)− Φinf)

(β+1)/2, (5.13)

for some constant C that depends on α, β, and the problem data.
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Proof. Owing to (5.12), the estimator EP can be bounded from above by

EP(t) = 〈Dα
c ÛP(t)− FP(t), ÛP(t)− UP(t)〉+Φ(ÛP(t))− Φ(UP(t))

≤ Cβ‖ÛP(t)− UP(t)‖1+β .

Applying Theorem 2.6 with p = 1 + β we have

‖EP‖L1
α(0,T ;H) ≤ sup

r∈[0,T ]

Cβ

ˆ r

0

(r − t)α−1‖ÛP(t)− UP(t)‖1+βdt

≤ Cτα(1+β)‖Dα
c Û‖1+β

L1+β
α (0,T ;H)

,

for some constant C that depends on α, β and the problem data. Since 1+β ∈ (1, 2],

Theorem 4.6 and the embedding

‖w‖L1+β
α (0,T ;H) ≤ ‖w‖L2

α(0,T ;H)

(
Tα

α

)(1−β)/(2(1+β))

,

imply that

‖Dα
c ÛP‖1+β

L1+β
α (0,T ;H)

≤ C2T
α(1−β)/2(‖f‖2L2

α(0,T ;H) +Φ(U0)− Φinf)
(1+β)/2,

and this implies the claim.

Now, in order to obtain a convergence rate using (5.7), we still need to control

‖f − FP‖L1
α(0,T ;H). To do so, we invoke inequality (2.5) and see that

‖f − FP‖L1
α(0,T ;H) ≤

(
q − 1

qα− 1

)(q−1)/q

Tα−1/q‖f − FP‖Lq(0,T ;H)

for q > 1/α. Thus, if f ∈Wα(1+β)/2,q(0, T ;H), then we have

‖f − FP‖Lq(0,T ;H) ≤ Cτα(1+β)/2|f |Wα(1+β)/2,q(0,T ;H)

and hence

‖f − FP‖L1
α(0,T ;H) ≤ CTα−1/qτα(1+β)/2|f |Wα(1+β)/2,q(0,T ;H) (5.14)

for some constant C that depends on α and q. Combining this with Theorem 5.6,

the following convergence rate is a direct consequence of Theorem 5.3.

Theorem 5.7. (Improved rate: smooth energies) Assume that the energy Φ satis-

fies (5.12). Let u be the energy solution to (1.2), and denote by P a partition of [0, T ]

defined as in (2.2). Denote by ÛP the solution of (4.7) starting from U0 ∈ D(Φ). In

this setting, if there is q > 1/α for which f ∈ Wα(β+1)/2,q(0, T ;H) then the error

E, defined in (5.6), satisfies

E ≤ ‖u0 − U0‖+ Cτα(β+1)/2[(‖f‖2L2
α(0,T ;H) +Φ(U0)− Φinf)

(β+1)/4

+ |f |Wα(β+1)/2,q(0,T ;H)],

where the constant C depends on α, β, q, T, and the problem data.
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5.3.3. Rate of convergence for linear problems

Let us now show how for certain classes of linear problems an improved rate of

convergence can be obtained. We first assume that we have a Gelfand triple,

V →֒ H →֒ V ′

and that

Φ(w) =





1

2
a(w,w), w ∈ V,

+∞, w /∈ V,
(5.15)

where a : V × V → R is a nonnegative, symmetric, bounded, and semicoercive

bilinear form. In this setting, (4.1) becomes

〈Dα
c u,w〉+ a(u,w) = 〈f, w〉, ∀w ∈ V.

Notice that the bilinear form induces an operator A : V → V ′ given by

〈Av, w〉V,V′ = a(v, w), ∀ v, w ∈ V,
which implies that, for almost every t ∈ (0, T ), we have a problem in V ′ which reads

Dα
c u(t) + Au(t) = f(t).

So that, u0 ∈ D(∂Φ) is equivalent to Au0 ∈ H. The bilinear form a also induces a

semi-norm on V
[w]V = a(w,w)1/2.

We further assume that f ∈ L2
α(0, T ; [·]V). More essentially we also require u0 ∈

D(∂Φ).

The motivation for an improved rate of convergence is then the following, at

this stage formal, calculation. From (2.18) we have

1

2
Dα

c ‖Au(t)‖2 ≤ 〈Dα
c Au(t),Au(t)〉 = 〈Au(t),ADα

c u(t)〉

= 〈f(t)−Dα
c u(t),AD

α
c u(t)〉

= a(f(t), Dα
c u(t))− [Dα

c u(t)]
2
V

≤ [f(t)]V [D
α
c u(t)]V − [Dα

c u(t)]
2
V ,

which then shows via (2.17) that

Γ(α)

2
‖Au(t)‖2 +

ˆ t

0

(t− s)α−1[Dα
c u(s)]

2
V ds

≤ Γ(α)

2
‖Au0‖2 +

(
ˆ t

0

(t− s)α−1[f(s)]2V ds

)1/2

×
(
ˆ t

0

(t− s)α−1[Dα
c u(s)]

2
V ds

)1/2

.
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This implies that

[Dα
c u]

2
L2

α(0,T ;[·]V) = sup
t∈[0,T ]

ˆ t

0

(t− s)α−1 [Dα
c u(s)]

2
V ds ≤ Γ(α)‖Au0‖2

+ ‖f‖2L2
α(0,T ;[·]V),

which says that Dα
c u is uniformly bounded in L2

α(0, T ; [·]V).
To make these considerations rigorous, we consider the discrete problem (4.7),

which in this case reduces to

(Dα
PU)n + AUn = Fn.

Then the computations can be followed verbatim to obtain that

Γ(α)

2
‖AÛP(t)‖2 +

ˆ t

0

(t− s)α−1[Dα
c ÛP(s)]

2ds

≤ Γ(α)

2
‖AU0‖2 +

(
ˆ t

0

(t− s)α−1[Dα
c ÛP(s)]

2ds

)1/2

×
(
ˆ t

0

(t− s)α−1[FP(s)]
2ds

)1/2

and

[Dα
c ÛP ]

2
L2

α(0,T ;[·]V) = sup
t∈[0,T ]

ˆ t

0

(t− s)α−1[Dα
c ÛP(s)]

2
Vds

≤ Γ(α)‖AU0‖2 + ‖FP‖2L2
α(0,T ;[·]V). (5.16)

Similar to Theorem 2.4, we know that

‖FP‖L2
α(0,T ;[·]V) ≤ C‖f‖L2

α(0,T ;[·]V)

and hence Dα
c ÛP is uniformly bounded L2

α(0, T ; [·]V).
With this additional regularity, we can obtain an improved rate of convergence.

To see this, we will use that Φ is, essentially, quadratic to observe that in this case

the error estimator, defined in (5.3) reduces to

EP =
1

2
a(ÛP − UP , ÛP − UP) =

1

2
[ÛP − UP ]

2
V . (5.17)

These ingredients together give us the following improved estimate.

Theorem 5.8. (Improved rate: linear problems) Assume that the energy Φ is given

by (5.15), that the initial data satisfies Au0 ∈ H, and that f ∈ L2
α(0, T ; [·]V). Let u

be the energy solution to (1.2), and denote by P a partition of [0, T ] defined as in

(2.2). Denote by ÛP the solution to (4.7) starting from U0 ∈ H, such that AU0 ∈ H.

In this setting, we have that

‖EP‖L1
α(0,T ;H) ≤ Cτ2α(‖AU0‖2 + ‖f‖2L2

α(0,T ;[·]V)), (5.18)
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where the constant C depends only on α. This, immediately, implies that

E ≤ ‖u0 − U0‖+ Cτα(‖AU0‖+ ‖f‖L2
α(0,T ;[·]V)) + ‖f − FP‖L1

α,H),

so that if, in addition, we further have f ∈Wα,q(0, T ;H) for some q > 1/α, then

E ≤ ‖u0 − U0‖+ Cτα(‖AU0‖+ ‖f‖L2
α(0,T ;[·]V) + |f |Wα,q(0,T ;H)), (5.19)

where the constant C depends only on α, q and T .

Proof. Owing to Theorem 5.3 and Eq. (5.14), the convergence rate (5.19) follows

directly from (5.18) in the same way as Theorem 5.7. We only need to prove (5.18)

and bound ‖EP‖L1
α(0,T ;H). Using (5.17), for every r ∈ (0, T ] we have

2

ˆ r

0

(r − t)α−1EP(t)dt =
ˆ r

0

(r − t)α−1[ÛP − UP ]
2
V(t)dt.

Now, we invoke Theorem 2.6 with p = 2 and the semi-norm [·]V to obtain that
ˆ r

0

(r − t)α−1[ÛP − UP ]
2
V(t)dt ≤ Cτ2α[Dα

c ÛP ]
2
L2

α(0,T ;[·]V).

By (5.16), we have that Dα
c ÛP ∈ L2

α(0, T ; [·]V) uniformly in P and thus arrive at
ˆ r

0

(r − t)α−1[ÛP − UP ]
2
V(t)dt ≤ Cτ2α(‖AU0‖2 + ‖f‖2L2

α(0,T ;[·]V)).

This implies the desired bound

‖EP‖L1
α(0,T ;H) ≤ Cτ2α(‖AU0‖2 + ‖f‖2L2

α(0,T ;[·]V))

for ‖EP‖L1
α(0,T ;H) and finishes the proof.

6. Lipschitz Perturbations

In this section, inspired by the results of Ref. 3, we consider the analysis and

approximation of a fractional gradient flow with a Lipschitz perturbation. Namely,

we consider the following problem:
{
Dα

c u(t) + ∂Φ(u(t)) + Ψ(t, u(t)) ∋ f(t), t ∈ (0, T ],

u(0) = u0.
(6.1)

We assume that the perturbation function Ψ : (0, T ]×H → H satisfies

(1) (Carathéodory) For every w ∈ H the mapping t 7→ Ψ(t, w) is strongly mea-

surable on (0, T ) with values in H. Moreover, there exists L > 0 such that for

almost every t ∈ (0, T ) and every w1, w2 ∈ H we have

‖Ψ(t, w1)−Ψ(t, w2)‖ ≤ L‖w1 − w2‖.
(2) (Integrability) There is w0 ∈ L2

α(0, T ;H) for which

t 7→ Ψ(t, w0(t)) ∈ L2
α(0, T ;H).
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We immediately comment that our assumptions can fit the case where Φ is

merely λ–convex. Moreover, these assumptions also guarantee the existence of ψ ∈
L2
α(0, T ;R) for which

‖Ψ(t, w)‖ ≤ ψ(t) + L‖w‖, ∀w ∈ H.
Consequently w 7→ Ψ(·, w(·)) is Lipschitz continuous in L2

α(0, T ;H).

We introduce the notion of energy solution of (6.1).

Definition 6.1. (Energy solution) A function u ∈ L2(0, T ;H) is an energy solution

to (6.1) if

(i) (Initial condition)

lim
t↓0

 t

0

‖u(s)− u0‖2ds = 0.

(ii) (Regularity) Dα
c u ∈ L2(0, T ;H).

(iii) (Evolution) For almost every t ∈ (0, T ) we have

Dα
c u(t) + ∂Φ(u(t)) + Ψ(t, u(t)) ∋ f(t).

Evidently, an energy solution to (6.1) satisfies, for almost every t ∈ (0, T ) and

all w ∈ H, the EVI

〈Dα
c u(t), u(t)− w〉+ 〈Ψ(t, u(t)), u(t)− w〉+Φ(u(t))− Φ(w)

≤ 〈f(t), u(t)− w〉. (6.2)

6.1. Existence, uniqueness, and stability

Our main result in this direction is the following.

Theorem 6.2. (Well posedness) Assume that the energy Φ is convex, l.s.c., and

with nonempty effective domain. Assume the mapping Ψ satisfies conditions (1)

and (2) stated above. Let u0 ∈ D(Φ) and f ∈ L2
α(0, T ;H), then there is a unique

energy solution to (6.1) in the sense of Theorem 6.1. Moreover, we have that this

solution satisfies

‖Dα
c u‖L2

α(0,T ;H) ≤ C,

where the constant depends only on the problem data α, T, u0, f, Φ, and Ψ.

Proof. We begin by proving existence. We essentially follow the idea used for the

classical ODEs. A similar argument was also used in the proof of Theorem 4.4 in

Ref. 36.

For w ∈ L2
α(0, T ;H) we denote by S(w) ∈ L2

α(0, T ;H) the energy solution to

Dα
c u(t) + ∂Φ(u(t)) ∋ f(t)−Ψ(t, w(t)), a.e. t ∈ (0, T ], u(0) = u0.

Our assumptions and the results of Theorem 4.5 guarantee that this mapping is

well defined, and moreover, S(w) ∈ L∞(0, T ;H). We want to show that there exists
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a fixed point w such that S(w) = w. If ui = S(wi) for i = 1, 2, then for almost

every t we have

1

2
Dα

c ‖u1(t)− u2(t)‖2 ≤ −〈Ψ(t, w1(t))−Ψ(t, w2(t)), u1(t)− u2(t)〉.

This readily implies that

‖u1(t)− u2(t)‖2 ≤ L

Γ(α)

ˆ t

0

(t− s)α−1‖w1(s)− w2(s)‖‖u1(s)− u2(s)‖ds

≤ L‖u1 − u2‖L∞(0,t;H)

Γ(α)

ˆ t

0

(t− s)α−1‖w1(s)− w2(s)‖ds

which as a consequence yields that, for every t ∈ [0, T ],

‖u1 − u2‖L∞(0,t;H) ≤
L

Γ(α)
‖w1 − w2‖L1

α(0,t;H).

We claim that by induction, we can further obtain the following stability result

‖Sn(w1)−S
n(w2)‖L∞(0,t;H) ≤

Ln tαn

Γ(αn+ 1)
‖w1 − w2‖L∞(0,t;H) (6.3)

for any t ∈ [0, T ] and positive integer n. In fact, for n = 1, we simply have

‖u1 − u2‖L∞(0,t;H) ≤
L

Γ(α)
‖w1 − w2‖L1

α(0,t;H)

≤ L tα

Γ(α+ 1)
‖w1 − w2‖L∞(0,t;H).

Furthermore, if (6.3) holds for n = k, then for n = k + 1

‖Sk+1(w1)−S
k+1(w2)‖L∞(0,t;H) ≤

L

Γ(α)
‖Sk(w1)−S

k(w2)‖L1
α(0,t;H)

≤ L

Γ(α)
sup

0≤r≤t

ˆ r

0

(r − s)α−1

× Lk sαk

Γ(αk + 1)
‖w1 − w2‖L∞(0,t;H)ds

=
Lk+1tα(k+1)

Γ(α(k + 1) + 1)
‖w1 − w2‖L∞(0,t;H),

which proves (6.3). Now consider w0 ∈ L2
α(0, T ;H) and the sequence of func-

tions defined via wn = Sn(w0). It is easy to see that, for n ≥ 1, we have

wn ∈ L∞(0, T ;H), and
∑∞

n=1 ‖wn − wn+1‖L∞(0,T ;H) converges because

∞∑

n=0

Ln tαn

Γ(αn+ 1)
= Eα(Lt

α).

This shows that wn → u in L∞(0, T ;H) for some u. Since wn+1 = S(wn), it follows

immediately that u = S(u). This proves the existence of solutions.
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As for uniqueness, assume that we have two solutions u1 and u2, for almost

every t, we have

1

2
Dα

c ‖u1(t)− u2(t)‖2 ≤ −〈Ψ(t, u1(t))−Ψ(t, u2(t)), u1(t)− u2(t)〉

≤ L ‖u1(t)− u2(t)‖2.
Combining with the fact that u1(0) = u2(0) = u0, one obtains that ‖u1(t) −
u2(t)‖2 = 0 for almost every t, which proves uniqueness.

Finally, the estimate on the Caputo derivative trivially follows from the iteration

scheme. We skip the details.

For diversity in our arguments, we present an alternative proof. The arguments

here are inspired by those of Theorem 5.1 in Ref. 3.

Proof. (alternative proof of Theorem 6.2) Let us, for µ > L1/α, define

‖w‖2µ = sup
t∈[0,T ]

e−µt

ˆ t

0

(t− s)α−1‖w(s)‖2ds,

which by the obvious inequalities e−µT ≤ e−µt ≤ 1, defines an equivalent norm in

L2
α(0, T ;H).

Let S : L2
α(0, T ;H) → L2

α(0, T ;H) be as before. As shown, if ui = S(wi) for

i = 1, 2, then for every t we have

‖u1(t)− u2(t)‖2 ≤ L

Γ(α)

ˆ t

0

(t− s)α−1‖w1(s)− w2(s)‖‖u1(s)− u2(s)‖ds,

which as a consequence yields that, for every r ∈ [0, T ],

e−µr

ˆ r

0

(r − t)α−1‖u1(r)− u2(r)‖2dr ≤
Le−µr

Γ(α)
I(r),

where

I(r) =

ˆ r

0

(r − t)α−1

ˆ t

0

(t− s)α−1‖w1(s)− w2(s)‖‖u1(s)− u2(s)‖dsdt.

Obvious manipulations then yield

I(r) ≤ ‖u1 − u2‖µ‖w1 − w2‖µ
ˆ r

0

(r − t)α−1eµtdt,

which implies

e−µr

ˆ r

0

(r − t)α−1‖u1(r)− u2(r)‖2dr ≤
L

Γ(α)

ˆ r

0

(r − t)α−1e−µ(r−t)dt

≤ L

µα
< 1,

so that S is a contraction with respect to the norm ‖ · ‖µ. We conclude then by

invoking the contraction mapping principle. This unique fixed point, evidently, is

an energy solution in the sense of Theorem 6.1.

Uniqueness and stability follow as before.
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6.2. Discretization

Let us now present the numerical scheme for problem (6.1). We follow the previ-

ous notations and conventions regarding discretization so that, for any partition

P of [0, T ] defined as in (2.2), we can also consider the discrete solution defined

recursively via

Fn − (Dα
PU)n −Ψn(Un) ∈ ∂Φ(Un), (6.4)

where Fn is defined in (4.8) and Ψn : H → H is defined by

Ψn(w) =

 tn

tn−1

Ψ(t, w)dt.

Clearly, for every n, Ψn is Lipschitz continuous with Lipschitz constant L. Using the

definition of Dα
P in (3.3) and K−1

P,nn = (KP,nn)
−1 = Γ(α + 1)τ−α

n , we can rewrite

(6.4) as

Γ(α+ 1)τ−α
n Un +Ψn(Un) + ∂Φ(Un) ∋ Fn −

n−1∑

i=0

K−1
P,niUi.

Hence the discrete scheme can be recursively well defined provided Lτα < Γ(α+1).

For this reason, moving forward, we will implicitly operate under this assumption.

It is possible to show that the discrete solutions in (6.4) satisfy

‖Dα
c ÛP‖L2

α(0,T ;H) ≤ C, (6.5)

with a constant that depends on problem data but is independent of the partition

P. To see this, we follow the arguments of either proof of Theorem 6.2, and realize

that while the operator S may depend on P, the estimates that we obtain do not.

6.3. Error estimates

Let us now show how to derive error estimates for the problem with Lipschitz

perturbation (6.1). We recall that the energy solution u to this problem satisfies

(6.2). In addition, for simplicity, we will operate under the assumption that the

perturbation does not depend explicitly on time, i.e. Ψ(t, w) = Ψ(w) for all w ∈ H.

The general case only lengthens the discussion but brings nothing substantive to

it, as the additional terms that appear can be controlled via arguments used to

control terms of the form

f(t)− FP(t).

Similar to the discussion before, we define the error estimator

EP,L(t) = EP(t) + 〈Ψ(UP(t)), ÛP(t)− UP(t)〉, (6.6)
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which, as before, is nonnegative. In addition, for any w ∈ H we have

〈Dα
c ÛP(t) + Ψ(ÛP(t))− f(t), ÛP(t)− w〉+Φ(ÛP(t))− Φ(w)

= EP,L(t) + 〈FP(t)−Ψ(UP(t))−Dα
c ÛP(t), w − UP(t)〉+Φ(UP(t))− Φ(w)

+ 〈Ψ(UP(t))−Ψ(ÛP(t)) + f(t)− FP(t), w − ÛP(t)〉

≤ EP,L(t) + 〈Ψ(UP(t))−Ψ(ÛP(t)) + f(t)− FP(t), w − ÛP(t)〉

−σ(UP(t);w).

Setting w = u(t) in the inequality above and setting w = Û(t) in (6.2) lead to

〈Dα
c (ÛP − u)(t), ÛP(t)− u(t)〉+ σ(UP(t);u(t)) + σ(u(t); ÛP(t))

≤ EP,L(t) + 〈Ψ(UP(t))−Ψ(ÛP(t)) + f(t)− FP(t), u(t)− ÛP(t)〉

+ 〈Ψ(ÛP(t))−Ψ(u(t)), u(t)− ÛP(t)〉 (6.7)

for almost every t ∈ (0, T ). This implies the following error estimates.

Theorem 6.3. (A posteriori: Lipschitz perturbations) Let u be the unique energy

solution of (6.1). Let P be a partition of [0, T ] defined as in (2.2) and let U ∈ HN

be the discrete solution given by (6.4) starting from U0 ∈ D(Φ). Let E and EP,L

be defined in (5.6) and (6.6), respectively, The following a posteriori error estimate

holds

E ≤
(
‖u0 − U0‖2 +

2

Γ(α)
‖EP,L‖L1

α(0,T ;H)

)1/2

(Eα(2LT
α))1/2

+
2

Γ(α)

(
‖f − FP‖L1

α(0,T ;H) + L‖UP − ÛP‖L1
α(0,T ;H)

)
Eα(2LT

α). (6.8)

Proof. We argue as in the proof of (5.3). To make formulas shorter we omit the

coercivity terms. From (2.18) and (6.7) we infer

1

2
Dα

c ‖ÛP − u‖2(t) ≤
〈
Dα

c (ÛP − u
)
(t), ÛP(t)− u(t)〉

≤ EP,L(t) + 〈Ψ(t, UP(t))−Ψ(t, ÛP(t))

+ f(t)− FP(t), u(t)− ÛP(t)〉+ L‖ÛP(t)− u(t)‖2(t)

≤ EP,L(t) + (L‖UP(t)− ÛP(t)‖+ ‖f(t)− FP(t)‖)

×‖ÛP(t)− u(t)‖+ L‖ÛP(t)− u(t)‖2. (6.9)

Then the error estimate (6.8) follows from Theorem 2.8 with

λ = L, a(t) = ‖(ÛP − u)(t)‖, b = 0, c = 2EP,L(t)

and

d(t) = L‖UP(t)− ÛP(t)‖+ ‖(f − FP)(t)‖.
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We also comment here that by Theorem 2.6

‖UP − ÛP‖L1
α(0,T ;H) ≤ Cτα‖Dα

c ÛP‖L1
α(0,T ;H) ≤

CTα/2

α1/2
τα‖Dα

c ÛP‖L2
α(0,T ;H),

where the constant C only depends on α. In addition, the norm on the right-hand

side is bounded independently of the partition P; see (6.5). Hence the convergence

rates proved in Theorems 5.5 and 5.7 also hold for problems with a Lipschitz per-

turbation. Since the proofs are almost identical, we only state the theorems below

without proofs.

Theorem 6.4. (Convergence rate: Lipschitz perturbations) Let u be the energy

solution of (6.1). Let P be a partition of [0, T ] defined as in (2.2) and U ∈ HN be

the discrete solution given by (6.4) starting from U0 ∈ D(Φ). Let E be defined in

(5.6). Then we have

E ≤ ‖u0 − U0‖(Eα(2LT
α))1/2 + Cτα/2(‖f‖L2

α(0,T ;H) + ‖Dα
c ÛP‖L2

α(0,T ;H)),

where the constant C depends only on α,L and T, but not on P.

Theorem 6.5. (Improved rate: smooth energies and Lipschitz perturbations)

Assume that the energy Φ satisfies (5.12). Let u be the energy solution to (6.1),

and denote by P a partition of [0, T ] defined as in (2.2). Denote by ÛP the solution

of (6.4) starting from U0 ∈ D(Φ). In this setting, if there is q > 1/α for which

f ∈Wα(β+1)/2,q(0, T ;H) then the error E, defined in (5.6), satisfies

E ≤ ‖u0 − U0‖(Eα(2LT
α))1/2 + C1τ

α‖Dα
c ÛP‖L2

α(0,T ;H)

+C2τ
α(β+1)/2[(‖f‖L2

α(0,T ;H) + ‖Dα
c ÛP‖L2

α(0,T ;H))
(β+1)/2

+ |f |Wα(β+1)/2,q(0,T ;H)], (6.10)

where the constants C1 and C2 depend only on α, β, q,L, T, and the problem data,

but are independent of P.

Finally we consider the setting of Sec. 5.3.3 with a Lipschitz perturbation. Simi-

lar to (6.5), we can show that ‖Dα
c ÛP‖L2

α(0,T ;[·]V) is bounded uniformly with respect

to the partition P. For this reason, an improved error estimate analogous to The-

orem 5.8 can be proved in this case.

Theorem 6.6. (Improved rate: quadratic energies and Lipschitz perturbations)

Assume that the energy Φ is given by (5.15), that the initial data satisfies Au0 ∈ H,
and that f ∈ L2

α(0, T ; [·]V). Let u be the energy solution to (6.1), and denote by P
a partition of [0, T ] defined as in (2.2). Denote by ÛP the solution to (6.4) starting

from U0 ∈ H, such that AU0 ∈ H. In this setting, we have that

E ≤ ‖u0 − U0‖(Eα(2LT
α))1/2 + C‖f − F‖L1

α(0,T ;H)

+Cτα(‖AU0‖+ ‖f‖L2
α(0,T ;[·]V) + ‖Dα

c ÛP‖L2
α(0,T ;[·]V)

+ ‖Dα
c ÛP‖L2

α(0,T ;H)), (6.11)
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where the constant C depends only on α,L and T .

7. Applications

Here we present a, far from exhaustive, list of example problems to which all

our developments can be applied. As a rule, we will present the problem, how

to cast it into our framework, provide some references where such a problem

has been studied before, and briefly describe how our results contribute to this

problem.

As we mentioned above, the list that we present here is by no means exhaustive.

In the case of PDEs, we only consider second-order equations on domains. Thus,

for instance, the space-time fractional parabolic problem studied in Refs. 50 and 11

can be cast in our framework but we do not discuss it here. We refer the reader to,

for instance, Ref. 40 for applications of this problem. Another omission is the case

of equations on graphs; see, for instance, Ref. 46.

7.1. Fractional differential equations with discontinuous

right hand side

Given some mapping A : S ⊂ R → R and u0 ∈ R, we consider the fractional

differential equation: Find u : [0, T ] → R such that

Dα
c u(t) +Au(t) = f(t), t ∈ [0, T ], u(0) = u0. (7.1)

Most of the theory regarding existence and uniqueness of solutions to fractional

differential equations of this form requires, see Chaps. 6 and 7 of Ref. 20, that the

mapping

R
2 ∋ (t, u) 7→ F (t, u) = f(t)−Au ∈ R (7.2)

is at least continuous. Consequently a discontinuous mapping A is not admitted by

the theory. Here we show under which conditions we can cover this scenario.

Set H = R. Assume that S is nonempty, convex, and closed; Assume also that

A is non-decreasing. Therefore, after possible modification on a Lebesgue null set,

this mapping is l.s.c. According to Theorem 1.1 of Ref. 35, the function

Φ(u) =





ˆ u

w

Avdv, u ∈ S,

+∞, u /∈ S,

w ∈ S

is absolutely continuous and convex. Moreover, ∂Φ(v) = Av, where A denotes the

maximal monotone extension of A. It is in this sense then that (7.1) can be cast

into the setting of (1.2).

Integer order ODEs with discontinuous F , see (7.2), have been studied in Refs. 8

and 57. For instance, in Sec. 4.4 of Ref. 57, classical applications of ODEs to systems

with friction and others have been presented. Thus, our theory and numerics cover,

for instance, the case of fractional order systems with friction.
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7.2. The subdiffusion equation

The subdiffusion, or fractional heat, equation reads: Let d ≥ 1, Ω ⊂ R
d be a

bounded domain, u0 : Ω → R, and f : Ω×(0, T ] → R. We seek for u : Ω̄×[0, T ] → R

that solves 



Dα
c u(x, t)−∆u(x, t) = f(x, t), (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(7.3)

where ∆ is the Laplace operator. This problem has been studied in many instances,

and we refer the reader to Refs. 47 and 30 for applications.

Let us show how this problem fits our framework. We set H = L2(Ω), so that

Φ(v) =
1

2

ˆ

Ω

|∇v(x)|2dx, D(Φ) = H1
0 (Ω),

and

∂Φ(v) = −∆v, D(∂Φ) = {v ∈ D(Φ) : ∆v ∈ L2(Ω)}.
We point out that this problem also fits the framework of Sec. 5.3.3 by setting

V = H1
0 (Ω) and

a(v, w) =

ˆ

Ω

∇v(x) · ∇w(x)dx, Av = −∆v.

A variation using a more general, but symmetric, linear elliptic differential operator

is immediate.

For this type of problems, we have developed an unconditionally stable time-

stepping scheme over arbitrary time partitions. We developed a reliable a posteriori

error estimator for such a scheme.

7.3. Time fractional quasilinear parabolic problems

We can generalize the subdiffusion equation to a nonlinear problem. Assume that

F : Rd ×R
d → R is a convex, Carathéodory function, that is continuously differen-

tiable with respect to its second argument, and such that together with A = D2F

(its derivative with respect to the second variable), satisfy so-called p-coercivity,

and p-growth conditions. In other words, there is p > 1 for which,

F (x, ξ) ≥ α0|ξ|p − α1, |A(x, ξ)| ≤ α2(1 + |ξ|p−1), ∀x ∈ Ω, ξ ∈ R
d.

Here αi > 0 for i = 0, . . . , 2. The time fractional PDE

Dα
c u(x, t)−∇ ·A(x,∇u(x, t)) = f(x, t), (x, t) ∈ Ω× (0, T ),

supplemented with suitable initial and boundary conditions can be cast as in (1.2)

by setting H = L2(Ω)

Φ(v) =

ˆ

Ω

F (x,∇v(x))dx, D(Φ) = L2(Ω) ∩W 1,p
0 (Ω).



440 W. Li & A. J. Salgado

Problems of this kind have been studied in Refs. 49, 27 and 63, see also Refs. 70,

71, 73 and 45. Notice that besides convexity and the p-growth conditions, no addi-

tional structure is assumed on F or A. Nevertheless, we have provided a theory

for solutions of this problem. In addition, as in the linear case, we have developed

an unconditionally stable time-stepping scheme over arbitrary time partitions. We

developed a reliable a posteriori error estimator for such a problem.

7.4. Time fractional parabolic obstacle problem

The subdiffusion equation, and its nonlinear variants, can be generalized to the

nonsmooth case. Here we present but one possibility: a time fractional parabolic

obstacle problem. With the same notation as before choose g ∈W 1,p(Ω) such that

g ≤ 0 on ∂Ω, and define

K = {v ∈W 1,p
0 (Ω) : v(x) ≥ g(x) a.e. x ∈ Ω}.

Then, we set H = L2(Ω) and

Φ(v) =

ˆ

Ω

F (x,∇v(x))dx+ IK(v), D(Φ) = K ∩ L2(Ω),

where

IK(v) =

{
0, v ∈ K,

+∞, v /∈ K,

is the indicator function of the admissible set K. Time fractional obstacle problems

have appeared, for instance, in Refs. 49, 27 and 63.

To our knowledge, our work is the first to tackle time fractional obstacle prob-

lems, and their theory, in a variational and energy setting. The aforementioned

references are concerned with viscosity solutions. In addition, all the numerical

developments that we have presented here are new for this problem.

7.5. The time fractional porous medium equation

The porous medium equation, see Ref. [64], is a prototypical example of a degenerate

parabolic equation. Time fractional versions of it have appeared, for instance, in

Refs. 7, 68, 17 and 22. In its simplest version this problem reads

Dα
c u(x, t)−∆β(u(x, t)) = f(x, t),

supplemented by suitable initial and boundary conditions. Usually β(t) = tm with

m > 1, but a general monotone function is also admissible.

To fit this problem into our framework we consider H = H−1(Ω) endowed with

the inner product

〈v, w〉 = 〈v, (−∆)−1w〉H−1,H1
0
, ∀ v, w ∈ H−1(Ω).
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Let now

φ(t) =

ˆ t

0

β(s)ds,

and

Φ(v) =

ˆ

Ω

φ(v(x))dx, D(Φ) = {v ∈ L2(Ω) : φ(v) ∈ L1(Ω)},

so that, since the ambient space is H = H−1(Ω),

∂Φ(v) = −∆β(v).

To our knowledge, the only reference that numerically treats this problem is

Ref. 52, where the developments are confined to one spatial dimension. Once again,

our time-stepping scheme is unconditionally stable, and we have provided a reliable

a posteriori error estimator for it.

7.6. Time fractional diffusion reaction equations

Variants of the subdiffusion equation, like the diffusion reaction equations studied

in Ref. 21, can be studied by allowing Lipschitz perturbations. For instance, the

semilinear problem

Dα
c u(x, t)−∆u(x, t) + g(u(x, t)) = f(x, t)

fits into our framework under the assumption that the function g is Lipschitz, or

that it can be split into the sum of a convex function and a Lipschitz perturbation.

7.7. Time fractional Allen–Cahn equations

Finally, if g = G′, where G is of double well type, that is,

G(r) =





(r − 1)2, r > 1,

1

4

(
1− r2

)2
, |r| ≤ 1,

(r + 1)2, r < −1,

(7.4)

then we obtain the time fractional Allen–Cahn equation, which has been studied

in Refs. 62, 53, 43 and 42. Notice that we can also consider this equation with

constraints by considering

Φ(v) =
1

2

ˆ

Ω

|∇v(x)|2dx+ IK(v),

K =
{
v ∈ L2(Ω) : v(x) ∈ [−1, 1] a.e. x ∈ Ω

}
,

G(r) = −1

2
r2.
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8. Numerical Illustrations

In this section, we present some simple numerical examples aimed at illustrating,

and extending, our theory. All the computations were done with an in-house code

that was written in MATLAB©.

8.1. Practical a posteriori estimators

We begin by commenting that, unlike the a posteriori estimators for the classical

gradient flow proposed in Ref. 51, our a posteriori estimator EP is not constant on

each subinterval of our partition P; see (5.3). Here we mention more computation-

ally friendly alternatives, and their properties.

First, we define an estimator that is piecewise constant in time via

DP(t) = max
s∈[⌊t⌋P ,⌈t⌉P ]

{〈Dα
c ÛP(s)− F (s), ÛP(s)− UP(s)〉+Φ(ÛP(s))− Φ(UP(s))}.

This is clearly an upper bound for EP(t).
One may also consider the simpler indicator

ẼP,n = 〈(Dα
PU)n − Fn, Un−1 − Un〉+Φ(Un−1)− Φ(Un), n = 1, . . . , N. (8.1)

Although it is not always true that EP(t) ≤ ẼP,n(t), this indicator is convenient

to use in practice and gives reasonable results. In fact, this is the one that we

implemented in the numerical examples of Sec. 8.3.

8.2. A linear example

As a first simple example we consider the fractional heat equation (7.3) with Ω =

(0, π). Since, in this domain, the operator −∆ has eigenvalues and eigenfunctions

λk = k2, ϕk(x) = sin(kx), k ∈ N,

the fractional heat equation (7.3) has the solution

u(x, t) =
∞∑

k=1

u0,kEα(−λktα)ϕk(x)

provided that the initial condition u0 has the representation

u0(x) =

∞∑

k=1

u0,kϕk(x).

Since our main focus here is on time discretization, we simply consider a spectral

discretization for space and use m = 100 modes in our experiments. We set T = 1.

To quantify the error, we measure both

eend = ‖u(T )− UN‖L2(Ω), einf = max
i

‖u(ti)− Ui‖L2(Ω),

where the latter is a proxy for the error ‖u− ÛP‖L∞(0,T ;H).
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Table 1. Convergence rate for the approxima-

tion of (7.3) using scheme (4.7) over a uniform
partition of size τ . As predicted by Theorem 5.5,

the rate is O(τ
α
2 ) for einf .

α = 0.3

τ einf rate eend rate

5.00e-02 1.09e-02 — 1.71e-03 —

2.50e-02 9.74e-03 0.166 9.03e-04 0.921

1.25e-02 8.72e-03 0.159 4.70e-04 0.940
6.25e-03 7.84e-03 0.153 2.43e-04 0.954

3.13e-03 7.07e-03 0.150 1.25e-04 0.964

1.56e-03 6.37e-03 0.149 6.35e-05 0.971

7.81e-04 5.75e-03 0.149 3.23e-05 0.977

3.91e-04 5.18e-03 0.150 1.63e-05 0.982

1.95e-04 4.67e-03 0.150 8.25e-06 0.985
9.77e-05 4.21e-03 0.150 4.16e-06 0.988

α = 0.7

τ einf rate eend rate

5.00e-02 2.72e-02 — 5.97e-03 —
2.50e-02 2.13e-02 0.350 3.03e-03 0.979

1.25e-02 1.67e-02 0.350 1.53e-03 0.988

6.25e-03 1.31e-02 0.350 7.68e-04 0.993
3.13e-03 1.03e-02 0.350 3.85e-04 0.996

1.56e-03 8.08e-03 0.350 1.93e-04 0.997

7.81e-04 6.34e-03 0.350 9.65e-05 0.998
3.91e-04 4.98e-03 0.350 4.83e-05 0.999

1.95e-04 3.90e-03 0.350 2.41e-05 0.999

9.77e-05 3.06e-03 0.351 1.21e-05 1.000

We first consider the case where the initial condition is such that u0 ∈ H1
0 (Ω) =

D(Φ), but u0 /∈ H1
0 (Ω) ∩H2(Ω) = D(∆). An example of this is,

u0,k = k−1.5+δ, (8.2)

with 0 < δ ≪ 1. For computations we set δ = 10−4. The results are summarized in

Table 1.

From Table 1, we observe that einf = O(τ
α
2 ) and eend = O(τ). The conver-

gence rate for einf is consistent with that proved in Theorem 5.5. It seems that the

convergence rate for eend is better. This warrants further investigation.

We next consider an initial value u0 ∈ H1
0 (Ω) ∩H2(Ω). Namely,

u0,k = k−2.5+δ,

with 0 < δ ≪ 1. In this case, both the assumptions in Theorem 5.7 (for β = 1) and

Theorem 5.8 are satisfied, so the convergence rate for einf must be O(τα). This is

consistent with the experiments in Table 2, where einf = O(τα) and eend = O(τ),

where we chose δ = 10−4.
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Table 2. Convergence rate for the approxima-
tion of (7.3) using scheme (4.7) over a uniform
partition of size τ . As predicted by Sec. 5.3.2,
the rate is O(τα) for einf .

α = 0.3

τ einf rate eend rate

5.00e-02 8.44e-03 — 1.64e-03 —
2.50e-02 6.88e-03 0.296 8.66e-04 0.919
1.25e-02 5.57e-03 0.305 4.52e-04 0.939
6.25e-03 4.50e-03 0.308 2.33e-04 0.953
3.13e-03 3.63e-03 0.307 1.20e-04 0.963
1.56e-03 2.94e-03 0.305 6.11e-05 0.971
7.81e-04 2.38e-03 0.303 3.10e-05 0.977
3.91e-04 1.93e-03 0.302 1.57e-05 0.981
1.95e-04 1.57e-03 0.301 7.94e-06 0.985
9.77e-05 1.27e-03 0.301 4.00e-06 0.988

α = 0.7

τ einf rate eend rate

5.00e-02 1.05e-02 — 5.81e-03 —
2.50e-02 6.48e-03 0.702 2.95e-03 0.977

1.25e-02 3.99e-03 0.701 1.49e-03 0.987

6.25e-03 2.45e-03 0.700 7.49e-04 0.992
3.13e-03 1.51e-03 0.700 3.76e-04 0.995
1.56e-03 9.30e-04 0.700 1.88e-04 0.997
7.81e-04 5.73e-04 0.700 9.42e-05 0.998
3.91e-04 3.52e-04 0.700 4.71e-05 0.999
1.95e-04 2.17e-04 0.700 2.36e-05 0.999
9.77e-05 1.34e-04 0.700 1.18e-05 1.000

8.3. Adaptive time stepping

We now illustrate the use of the a posteriori error estimator EP , given in (5.3) to

drive the selection of the size of the time step. For a given tolerance ε we, at every

step, choose the local time step τn to guarantee that

2Tα

Γ(α+ 1)
ẼP,n ≤ ε2,

where ẼP,n is given in (8.1). Then, by Theorem 5.3, we expect that

‖u− ÛP‖L∞(0,T ;H) ≤ ε,

provided the approximation error ‖f − FP‖L1
α(0,T ;H) is negligible. Notice that to

drive the process we are using the simpler estimator ẼP ; see the discussion in

Sec. 8.1.

We consider the linear problem (7.3) with α = 1
2 , u0 given by (8.2) and set

ε = 10−2. Figure 2 shows the local time step τ(t) for t ∈ [0, T ]. As expected, due

to the weak singularity of u at t = 0, the time step must be rather small for small
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Fig. 2. Adaptive time stepping for problem (7.3) with T = 1, α = 1

2
is used to achieve a tolerance

of ε = 10−2. The adaptive solver uses 455 time intervals with minimum time step 2.328× 10−12

and max time step 6.339× 10−2.

times. For larger times, however, the solution is smoother and larger local time

steps can be taken. With this process we obtain that

‖u− ÛP‖L∞(0,T ;H) ≈ 1.89× 10−3,

and this requires N = 455 time subintervals. For comparison, choosing a uniform

time step of τ ≈ 2.44×10−5 we require N = 40, 960 time intervals. This achieves an

error of einf ≈ 3.0×10−3, which is slightly higher than that obtained with our adap-

tive procedure. This clearly shows the advantages and possibilities for this strategy.

8.4. The time fractional Allen–Cahn equation

We now, depart from the linear theory and present several nonlinear examples with

more complexity. We first examine a space-fractional variant of the time fractional

Allen–Cahn equation mentioned in Sec. 7.7. To be specific, we consider the following

equation:

Dα
c u(x, t) + λ1(−∆)su(x, t) + λ2g(u(x, t)) = 0 (8.3)

for x ∈ Ω = (0, 1)d ⊂ R
d and t ∈ (0, T ), where g = G′ with G defined in (7.4) and

coefficients λ1, λ2 > 0. This is obtained by replacing the time and space derivatives

in the classical model by their nonlocal counterparts. We impose periodic boundary

conditions and consider H = L2(Ω),

H
s(Ω) = {w ∈ L2(Ω) : |w|Hs(Ω) <∞}, (8.4)

where

|w|Hs(Ω) =


∑

k∈Zd

|ŵk|2(2π|k|)2s



1/2

, ŵk =

ˆ

Ω

e−2πik·xw(x)dx.
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Then this problem fits our framework with

Φ(v) =
λ

2
|v|2

Hs(Ω), Ψ(t, v) = g(v), D(Φ) = H
s(Ω).

To solve this problem numerically, we discretize in space by a collocation method.

LetM ∈ N be the number of points in one spatial direction, h = 1/M and introduce

the grid domain and the space of grid functions

ΩM = {x ∈ [0, 1)d |xi ∈ hR, 1 ≤ i ≤ d}, HM = {vM : ΩM → R}.

Notice that HM is a discretization of H. To approximate the fractional Laplacian,

we introduce the discrete Fourier transform. Let

ZM = {r ∈ Z | ⌊(M − 1)/2⌋ ≤ r ≤ ⌈(M − 1)/2⌉},

Fig. 3. Snapshots of discrete solutions of the time fractional Allen–Cahn equation (8.3)
for α = 0.1, 0.9, s = 0.1, 0.9.
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and for r ∈ Z
d
M , define

ŵM (r) = hd
∑

x∈ΩM

wM (x)e−2πir·x.

Then the discrete fractional Laplacian (−∆M )s is defined as

[(−∆M )swM ](x) =
∑

r∈Z
2
M

(2π|r|)2sŵM (r)e2πir·x, x ∈ ΩM .

To explore the behavior of the solutions, we consider an example similar to the

one in Sec. 5.1 of Ref. 62. Let d = 2 and define the initial data

u0 = tanh

(
1√
2ε0

(
2r − 5

16
− cos(θ)

16

))
,

where ε0 > 0 and r, θ are polar coordinates centered at (x1 − 0.5, x2 − 0.5), i.e.

x1 = r cos(θ), x2 = r sin(θ), r ≥ 0, θ ∈ [0, 2π),

Table 3. Convergence rate for the time frac-

tional Allen–Cahn equation (8.3) over a uniform

partition of size τ with s = 0.999. The rates for
einf are close to O(τα/2) predicted in Sec. 5.3.2.

α = 0.3

τ einf rate eend rate

2.50e-03 9.11e-04 — 3.11e-04 —
1.25e-03 7.29e-04 0.321 1.72e-04 0.859

6.25e-04 5.81e-04 0.328 9.23e-05 0.894

3.13e-04 4.60e-04 0.336 4.88e-05 0.919
1.56e-04 3.65e-04 0.336 2.55e-05 0.938

7.81e-05 2.92e-04 0.320 1.32e-05 0.951

3.91e-05 2.39e-04 0.287 6.77e-06 0.961
1.95e-05 2.02e-04 0.244 3.46e-06 0.969

9.77e-06 1.76e-04 0.203 1.76e-06 0.975

α = 0.7

τ einf rate eend rate

2.50e-03 7.24e-04 — 3.84e-04 —

1.25e-03 5.42e-04 0.416 1.97e-04 0.961

6.25e-04 4.04e-04 0.426 1.00e-04 0.977
3.13e-04 3.04e-04 0.411 5.06e-05 0.987

1.56e-04 2.33e-04 0.386 2.54e-05 0.992

7.81e-05 1.82e-04 0.355 1.28e-05 0.995
3.91e-05 1.45e-04 0.326 6.39e-06 0.997

1.95e-05 1.16e-04 0.322 3.20e-06 0.998

9.77e-06 9.01e-05 0.365 1.60e-06 0.999
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for x ∈ Ω. For this initial data, we have u0 /∈ H1(Ω) and u0 ∈ H1−δ(Ω) for any

δ > 0. For ε0 = 0.2, we run experiments with M = 64 and uniform time step

τ = 2−6 for different α and s. The parameters λ1, λ2 are set to

λ1 =





γε2s−1, s ∈ (1/2, 1),

γ|log ε|−1, s = 1/2,

γ, s ∈ (0, 1/2),

λ2 = λ1ε
−2s, (8.5)

with ε = 0.2, γ = 0.01. The scalings in (8.5) are informed in Ref. 55. Figure 3 shows

snapshots of the phase field function at times T = 1, 10, 100 for different choices

of α and s. We observe that a bigger α indicates faster convergence to the stable

solution and larger s implies more smoothing in the phase field function u.

We also investigate the convergence rates with respect to the time step τ . We let

N (k) = 2−k × 10 and compute the discrete solutions U (k) on the uniform partitions

of (0, T ) with N (k) intervals with step size τ (k). Since the exact solution is unknown,

to obtain an approximation of the convergence rates, we define

eend,k = ‖U (k−1)

N(k−1) − U
(k)

N(k)‖L2(Ω), einf,k = max
0≤i≤N(k−1)

‖U (k−1)
i − U

(k)
2i ‖L2(Ω)

Table 4. Convergence rate for the time frac-

tional Allen–Cahn equation (8.3) over a uni-

form partition of size τ with s = 0.499. The
rates for einf are better than O(τα) predicted in

Sec. 5.3.2.

α = 0.3

τ einf rate eend rate

2.50e-03 4.78e-04 — 3.94e-04 —
1.25e-03 2.98e-04 0.680 2.17e-04 0.861

6.25e-04 1.88e-04 0.668 1.17e-04 0.895

3.13e-04 1.20e-04 0.651 6.17e-05 0.919
1.56e-04 7.72e-05 0.631 3.22e-05 0.938
7.81e-05 5.11e-05 0.596 1.67e-05 0.951
3.91e-05 3.46e-05 0.562 8.55e-06 0.961
1.95e-05 2.40e-05 0.529 4.37e-06 0.969
9.77e-06 1.70e-05 0.498 2.22e-06 0.976

α = 0.7

τ einf rate eend rate

2.50e-03 1.05e-04 — 1.05e-04 —
1.25e-03 5.39e-05 0.967 5.39e-05 0.967
6.25e-04 2.74e-05 0.978 2.74e-05 0.978
3.13e-04 1.38e-05 0.986 1.38e-05 0.986

1.56e-04 6.95e-06 0.991 6.95e-06 0.991

7.81e-05 3.49e-06 0.995 3.49e-06 0.995
3.91e-05 1.75e-06 0.996 1.75e-06 0.996
1.95e-05 8.76e-07 0.998 8.76e-07 0.998
9.77e-06 4.38e-07 0.999 4.38e-07 0.999
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and measure

rateend,k =
log(eend,k−1)− log(eend,k)

log(τ (k−1))− log(τ (k))
, rateinf,k =

log(einf,k−1)− log(einf,k)

log(τ (k−1))− log(τ (k))
.

We set T = 0.1, λ1 = 0.1, λ2 = 1, ε0 = 1,M = 64 and display the convergence rates

for α = 0.3, 0.7 and s = 0.999, 0.499 in Tables 3 and 4, respectively. For s = 0.999,

we have u0 ∈ D(Φ), but u0 /∈ D(∂Φ). From Table 3, we observe that eend ≈ O(τ)

and einf converges slightly better than the convergence rate O(τα/2) proved in

Theorem 6.4. For s = 0.499, the initial data u0 ∈ D(Φ), and the assumptions in

Theorem 6.5 (for β = 1) and Theorem 6.6 are satisfied. We observe in Table 4

better rates for einf than the theoretical rates O(τα).

8.5. A time fractional parabolic obstacle problem

As a final example, we consider the space-fractional version of the parabolic obstacle

problem presented in Sec. 7.4. We set Ω = (0, 1)d,H = L2(Ω) and

Φ(v) =
1

2
|v|2

Hs(Ω) + IK(v),

Fig. 4. Snapshots of discrete solutions of the space-time fractional parabolic obstacle problem

for α = 0.1, 0.9, s = 0.1, 0.9.
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where H
s(Ω) is defined in (8.4) and

K = {v ∈ H
s(Ω) : v(x) ≥ g(x) a.e. x ∈ Ω}.

Consider d = 1 and an obstacle g, initial data u0 and function f(x, t) given by

g(x) = max{1− 4|x− 0.5|, 0}, u0(x) = sin(πx), f(x, t) = −0.5.

We use a collocation method as in Sec. 8.4, set M = 64, and a uniform time

step τ = 2−6. The computed solutions uh for different α, s at different times are

presented in Fig. 4. As expected, we see that a bigger α indicates faster convergence

to the stable solution and smaller s allows u to have sharp transitions and makes

u closer to the obstacle.
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