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We develop the theory of fractional gradient flows: an evolution aimed at the minimiza-
tion of a convex, lower semicontinuous energy, with memory effects. This memory is
characterized by the fact that the negative of the (sub)gradient of the energy equals the
so-called Caputo derivative of the state. We introduce the notion of energy solutions, for
which we provide existence, uniqueness and certain regularizing effects. We also consider
Lipschitz perturbations of this energy. For these problems we provide an a posteriori
error estimate and show its reliability. This estimate depends only on the problem data,
and imposes no constraints between consecutive time-steps. On the basis of this estimate
we provide an a priori error analysis that makes no assumptions on the smoothness of
the solution.
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1. Introduction

In recent times problems involving fractional derivatives have garnered considerable
attention, as it is claimed that they better describe certain fundamental relations
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between the processes of interest; see, for instance Refs. 44, 19 and 75. In this, and
many other references the models considered are linear. However, it is well known
that real world phenomena are not linear, not even smooth. It is only natural then
to consider nonlinear /nonsmooth models with fractional derivatives.

The purpose of this work is to develop the theory and numerical analysis of so-
called time-fractional gradient flows: an evolution equation aimed at the minimiza-
tion of a convex and lower semicontinuous (l.s.c.) energy, but where the evolution
has memory effects. This memory is characterized by the fact that the negative of
the (sub)gradient of the energy equals the so-called Caputo derivative of the state.

The Caputo derivative, introduced in Ref. 14, is one of the existing models of
fractional derivatives. It is defined, for a € (0,1), by

Dw(t) = r(117a)/0 (tw(?;))adr, (1.1)

where I' denotes the Gamma function. This definition, from the onset, seems unnat-
ural. To define a derivative of a fractional order, it seems necessary for the function
to be at least differentiable. Below we briefly describe several attempts at circum-
venting this issue. We focus, in particular, on the results developed in a series of
papers by Li and Liu, see Refs. 36, 39, 37 and 38, where they developed a distribu-
tional theory for this derivative; see also Ref. 23. The authors of these works also
constructed, in Ref. 37, so-called deconvolution schemes that aim at discretizing this
derivative. With the help of this definition and the schemes that they develop the
authors were able to study several classes of equations, in particular time fractional
gradient flows.

Let us be precise in what we mean by this term. Let 7" > 0 be a final time, H
be a separable Hilbert space, ® : H — RU {+o0} be a convex and l.s.c. functional,
which we will call energy. Given ug € H, and f : (0,T] — H we seek for a function
w: [0,T] — H that satisfies

{Dgu(t) + 00 (u(t)) > f(t), te(0,T],

o0) — (1.2)

where by 0® we denote the subdifferential of ®. Our objectives in this work can be
stated as follows: We will introduce the notion of “energy solutions” of (1.2), and
we will refine the results regarding existence, uniqueness, and regularizing effects
provided in Ref. 39. This will be done by generalizing, to non-uniform time steps
the “deconvolution” schemes of Refs. 37 and 39, and developing a sort of “fractional
minimizing movements” scheme. We will also provide an a prior: error estimate
that seems optimal in light of the regularizing effects proved above. We also develop
an a posteriori error estimate, in the spirit of Ref. 51 and show its reliability.

We comment, in passing, that nonlinear evolution problems with fractional time
derivative have been considered in other works. From a modeling point of view, their
advantages have been observed in Refs. 19 and 15. Some other types of nonlinear
problems have been studied in Refs. 9, 67, 2, 34, 33, 65, 74, 53 and 62, where
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for a particular type of nonlinear problem, other “energy dissipation inequalities”
than those we obtain are derived. Regularity properties for nonlinear problems with
fractional time derivatives have been obtained in Refs. 32, 18, 31, 1, 73, 72, 71 and
69. Of particular interest to us are Ref. 39 which we described above and Ref. 3
which also considers time fractional gradient flows. The assumptions on the data,
however, are slightly different than ours. As such, some of the results in Ref. 3 are
stronger, and some weaker than ours; in particular, we conduct a numerical analysis
of this problem. Nevertheless, we refer to this reference for a nice historical account
and particular applications to PDEs.

Before proceeding any further, let us detail here what we believe are the major
advancements that this contribution aims to put forward:

e Theory: energy solutions. We develop the theory of energy solutions for prob-
lems of the form (1.2). All that is needed in this context, is for the energy &
to be convex, l.s.c., and bounded from below. No other assumptions regarding
smoothness or structure of the energy are made. Nevertheless, we prove existence,
uniqueness, and certain regularizing effects within this solution class.

e Theory: Lipschitz perturbations. The theory of energy solutions is extended
to the case of a Lipschitz perturbation to our convex energy. In this case we also
develop an existence and uniqueness theory.

e Numerics: unconditionally stable scheme. Our extension to arbitrary time
steps of existing deconvolution schemes is, one of the few discretizations of the
Caputo derivative that is unconditionally stable over arbitrary meshes. Most
works consider either uniform, or suitable graded temporal meshes. We com-
ment that, while this work was under review, another discretization with similar
properties appeared in Ref. 43, where the authors consider the time fractional
Allen—Cahn equation. Under some restrictions on the time step and the spa-
tial discretization parameter, the scheme of Ref. 43 is also maximum principle
preserving.

e Numerics: a posteriori error estimator. We construct a reliable a posteriori
error estimator for our numerical scheme. This is the first of its kind for time-
fractional problems.

e Numerics: error estimates. We prove optimal error estimates for our numer-
ical scheme. These do not assume any regularity beyond what the notion of
energy solutions accommodates. For some special cases, where there is additional
regularity, these are improved.

Our presentation will be organized as follows. We will establish notation and
the framework we will adopt in Sec. 2. Here, in particular, we will study several
properties of a particular space, which we denote by L2 (0,7T;H), and that will be
used to characterize the requirements on the right-hand side f of (1.2). In addition,
we also review the various proposed generalizations of the classical definition of
Caputo derivatives, with particular attention to that of Refs. 36, 39 and 38; since
this is the one we shall adopt. In Sec. 3, we generalize the deconvolution schemes
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of Refs. 37 and 39 and their properties, to the case of non-uniform time stepping.
Many of the simple properties of these schemes are lost in this case, but we retain
enough of them for our purposes. Section 4 introduces the notion of energy solu-
tions for (1.2) and shows existence and uniqueness of these. This is accomplished
by introducing, on the basis of our generalized deconvolution formulas, a fractional
minimizing movements scheme; and showing that the discrete solutions have enough
compactness to pass to the limit in the size of the partition. In Sec. 5, we provide
an error analysis of the fractional minimizing movements scheme. First, we show
how an error estimate follows as a side result from the existence proof. Then, in the
spirit of Ref. 51, we provide an a posteriori error estimator for our scheme and show
its reliability. This estimator is then used to independently show rates of conver-
gence. This section is concluded with some particular instances in which the rate of
convergence can be improved. Section 6 is dedicated to the case in which we allow a
Lipschitz perturbation of the subdifferential. We extend the existence, uniqueness,
a priori, and a posteriori approximation results of the fractional gradient flow. To
show the extent of applicability of our developments, in Sec. 7, we present a series
of example problems to which our setting applies. Finally, Sec. 8 presents some
simple numerical experiments that illustrate, explore, and expand our theory.

2. Notation and Preliminaries

Let us begin by presenting the main notation and assumptions we shall operate
under. We will denote by T € (0, c0) our final (positive) time. By H we will always
denote a separable Hilbert space with scalar product (-,-) and norm || - ||. As it is
by now customary, by C' we will denote a nonessential constant whose value may
change at each occurrence.

2.1. Convex energies

The energy will be a convex, Ls.c., functional ® : H — R U {+o00} with nonempty
effective domain of definition, that is,

D(®) ={weH: P(w) < +oo} #0.
We will always assume that our energy is bounded from below, that is,
O = inf O(u) > —oo.
u€H
As we are not assuming smoothness in our energy beyond convexity, a useful sub-
stitute for its derivative is the subdifferential, that is,
00(w) ={{eH: (&v—w) <P(v) — P(w) Vv e H}.
The effective domain of the subdifferential is D(0®) = {w € H : dP(w) # 0} .

Recall that, in our setting, we always have that D(0®) = D(®). We refer the reader
to Refs. 16 and 56 for basic facts on convex analysis.
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In applications, it is sometimes useful to obtain error estimates on (semi)norms
stronger than those of the ambient space, and that are dictated by the structure of
the energy. For this reason, we introduce the following coercivity modulus of ®, see
Definition 2.3 in Ref. 51.

Definition 2.1. (Coercivity modulus) For every w; € D(®) and wy € D(0®), let
o(wy;wy) > 0 be

o(wr;we) = P(wy) — P(wy) — sup (£, we — wy).
£€0P(wy)

Then for every wy,ws € D(0P) we define
p(wi, wa) = o(wi;w2) + o (wa; wr)

= inf — &, w1 — wa).
€1€8<I>(w1)’§2€8<1>(w2)<§1 Sz, 2)

We comment that, by the definition, p(:,-) is symmetric, whereas o(+;+) might
not be. Furthermore, the separability of H guarantees that o and p are both Borel
measurable; see Remark 2.4 in Ref. 51. One may also refer to Sec. 2.3 of Ref. 51 for
discussions and properties of o and p for certain choices of ®. Definition 2.1 enables
us to write

£ €0P(w) & (&, v—w) +o(w;v) <Pw) —P(w), VveH. (2.1)

2.2. Vector-valued time dependent functions

We will follow standard notation regarding Bochner spaces of vector-valued func-
tions, see Sec. 1.5 in Ref. 54. For any w € L'(0,T;H) and E C [0,T] that is
measurable, we define the average by

]éw(t)dt: %/Ew(t)dt,

where |E| denotes the Lebesgue measure of E.

Since eventually we will have to deal with time discretization, we also introduce
notation for time-discrete vector-valued functions. Let P be a partition of the time
interval [0, T]

P:{O=t0<t1<'~'<t1\1_1<tN:T}, (2.2)

with variable steps 7, = t,, — t,—1 and 7 = max{r, : n € {1,...,N}}. We will
always denote by N the size of a partition. For ¢ € [0, 7] we define

[t]p =max{re P:r<t}, [tlp=min{reP: :t<r},

and n(t) to be the index of [t]p, so that t € ([t]p, [t]p] = (tnt)—1,tn)]- Given a
partition P, for W = {W;}}, C HY we define its piecewise constant interpolant
with respect to P to be the function Wp € L>(0,T;H) defined by

Wp(t) = Wa).- (2.3)
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2.2.1. The space L2(0,T;H)

To quantify the assumptions we need on the right-hand side f of (1.2) we introduce
the following space.

Definition 2.2. (Space L2 (0,T;H)) Let p € [1,00) and o € (0,1). We say that
the function w : [0,7] — H belongs to the space LE(0,T;H) if and only if

t 1/p

lwllLz 030 = sup (/ (t— S)Q1W(S)Ilpd8> < 0. (2.4)
t€[0,T] 0

Let us show some basic embedding results about this space.

Proposition 2.3. (Embedding) Let p € [1,00), a € (0,1), and ¢ > p/a. Then we
have that

LY90,T;H) — LP(0,T; H) — LP(0,T; H).
Proof. The second embedding is immediate. For any ¢ € (0,7
t t
[ lwlrds < sup (¢ =57 [ 92 ulo)Pds < Tl g 0y
0 s€[0,t] 0 e
where we used that 1 —a > 0.

The proof of the first embedding is a simple application of Holder inequality.
Indeed, we have

t 1/p g—p (¢—p)/a
(/ (t = 3)a1||W(8)||pds> < ( ) P wl| a0 ),
0

qa —1p
and hence

q—p (¢—p)/a
elizomn < (Z22) " P g (29

as we intended to show. ]

When dealing with discretization we will approximate the right-hand side f of
(1.2) by its local averages over a partition P. Thus, we must provide a bound on
this operation that is independent of the partition.

Lemma 2.4. (Continuity of averaging) Let p € [1,00), a € (0,1), f € L2(0,T;H),
and P be a partition of [0,T] as in (2.2). Define F = {ftn"_l f@&)AtIN_ c HY and
let Fp be defined as in (2.3). Then, there exists a constant C > 0 only depending
on p and « such that

IFpllz om0 < CUFllLz om0

Proof. Let p € (1,00). We first, for n € {1,..., N}, bound the integral

tn -
/ (tn — ) [Fp(s)|Pds.
0
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To achieve this, we decompose this integral as

n

/0 (tn — 92 [Fp(s)|Pds = 3 / " (tn— 5V [Fp(s)|Pds

k=1"tk-1

n te
S IFP / (t — 5)°1ds. (2.6)
-1 te—1

We use Holder inequality in the definition of Fj to obtain that

]g: foys|

tr tr . p=1
</ <tns>a1||f<s>|pds<]f <tns>wds> e

Since, for every p € (1,00) the function s + s*~! belongs to the Muckenhoupt
class A,(Ry), see Example 7.1.7 in Ref. 29, there exists a constant C), ,, that only
depends on p and « such that

b b p—l
1—a
f s 1ds <][ svlds> <Cpa, Y0<a<bd.

Therefore, for any k, we have

tr tr —a p—l
][ (t, — 8)* ds ][ (tn, —s)»1ds
trp_1 te—1

tn—ti N L
= ][ s*lds f sP-1ds < Cpa- (2.8)
t L*tk—l tnftkfl

m

Substituting (2.7) and (2.8) into (2.6) we get

tn
/O (£ — 5)2~1|[Fp(s |pds<ZCpa / (ta — )™ M|/ (s)[Pds

th—1

[ E%[” =

—Cpa/ =) f ()P ds < Coall FlIT2 0020

Now consider ¢ € [0,T]. Taking advantage of the estimate we obtained above,
we write

t o [t]» .
[ =9 Fplras = [ - 9 Frl)ras
0 0

+ /L (t - $)* [ Fp(s)|Pds

tlp

[t]p L=
- / (t — )~} [Fp(s)|Pds
0
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t

+ I (1Rl / (t — 5)*1ds

[t]»

Ll
= / (Lt — )* [Fr(s)|Pds
_ [t]p
+IER (1R / ([t — 5)*1ds

Lt]»

S vaa”-fniﬁ(O,T;H)

[t]P
+ / ([£1p — )*1|[F(s)7ds

< 2Cp,a

‘f”]zg(og“;y)'
(2.9)

Therefore by taking supremum over ¢ € [0,7] and C = (20, ,)'/?, we finish the
proof of this lemma.

For p = 1, the proof proceeds almost the same way as before. The only difference
worth noting is that, instead of (2.7), we have

£

Next, we observe that, since « —1 € (—1,0), then the function s > s*~1 belongs
to the Muckenhoupt class A;(R; ). Thus,

|Full = < ][ (b — 9)*If(s) s sup !

the1 SE€[th_1,tx) (tn —s)a—t

b
][ s lds<C,, V0<a<b.
a
With this information, the proof proceeds without change. O

It turns out that averaging is not only continuous, but possesses suitable approx-
imation properties in this space. Namely, we have a control on the difference between
fractional integrals of f € L2(0,T;#) and its averages.

Lemma 2.5. (Approximation) Let p € [1,00), « € (0,1), f € L2(0,T;H), and
P be a partition of [0,T] as in (2.2). Let p’ be the Hélder conjugate of p, F =
{f;ﬂl f@)ALIN_ < HN, and let Fp be defined as in (2.3). Then we have

sup < ore/r 1f = Fpllrr 01w

te[0,T]

[ =9 (166) = Fre) as

< C/Ta/pl”f”Lﬁ(O,T;’H)v (2.10)
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where the constants C,C" depend only on p and «. In addition, for any 8 € (0,1)
we also have

sup / (r—t)>1
rel0,T] J0

<O f - F7>||Lp

P

/O (t — 8 (f(s) — Fp(s))ds| at

<N fIIg, (2.11)

0,T:H) (0,TsH)”

where the constants Cy,Cy depend on p, o, and 3. As usual, when p = 1, we have
p' =00 and 1/p’ is treated as 0.

Proof. We first notice that the second inequalities in both (2.10) and (2.11) follow
directly from Theorem 2.4 and the triangle inequality.

To show the first inequality in (2.10), given P we consider ¢ € [0, T]. Using that
f — Fp has zero mean on each subinterval of the partition, we can write

[ = (706 = Fots)) ds

- /L (t - $)* 1 (f(s) — Fp(s))ds

tlp

n(t)—1

3 / “(f(s) - Fp(s))ds

- /L =IO = Foods+ 3 [
(= ) ()~ Fpls))ds = L (1) + L (1) (2.12)

¢ 1/p t 1/p'
Imo)l < ( /, (t—S)“‘lHf(s)—Fp(8>de8> ( /, <t_s>a—1ds)

1/p
1 « % 4 T
<|f- Fanp(om( <t—mp>) < O |f — Pl o,

where C7 only depends on p and «. For the second term, noticing that t —t;x_1 +7 >
t — s for s € (tp—1,tr) we have

[t]» .
IL| < / ((t— )" = (t— s+ 1) V) [|f(5) - Fp(s)]|ds
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/ 1/p
[t]p _ a-11?
X {/ (t—s)” [1 t SJH—} ] ds]
0 t—s

Ltl» %4
<|If = Frllzzomm / (t=s)*"' = (t—s+7)*""ds :

0

Since

Lt]Pp
/0 (=) — (t— s+ 1) ds = 2 (£ — (t — [t]p)® — (£ + 1)
(t—[tlp+71)%)

[t]p +7)% = (t = [t]p)?) <

T
[0}

IN
Sl + ol

—~
—
~+

I

)

we obtain

Ta(8)]| < Cor/?’

a(0,T5H)»

and (2.10) follows after combining the bounds for I;(¢) and I»(¢) that we have

obtained.
To prove (2.11) we apply the Holder inequality to (2.12) with « replaced by

to get
t n(t)—1

Hl(t):/LtJ (t—sﬁ 1d$—‘,— Z / t—S (t_tk_l)ﬁ—l] dS,

’ < IL ()P (Ha(2) + 1T5(t)),

Fp(s))ds

[ 6 -

where

10 = [ (¢ ) - P ds

Lt]»
n(t)=1 4y o
I;(t) = Z / ((t —s)P Tl —(t— tk_l)B_l) Hf(s) — F”p(S)deS.
k=1 Jtr-1
Arguing as in the bound for I5(t)
Lt]»
I, (t) = ;(t — [t]p)? /0 [(t—8)ft —(t—s+7)ds < %Tﬁ.

Thus, to obtain (2.11) it suffices to show that, for every r € [0, 7],

/0 (r = 1)* " (a(t) + W3 () dt < Cor?|f = Fpls 0100
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with some constant Cy only depending on p, «, and . To estimate the fractional

integral of Il by Fubini’s theorem we have

T?"— a-l = ' s) — Fp(s)||P
/O< 0L (1)t /OHf() F(s)]

[s1pAT
X / (r —t)>7 Yt — s)P~1dtds,

(2.13)

where we set a Ab = min{a, b}. We claim that there exists a constant C3 depending

on « and ( such that
[s]pAr
/ (r—t)* 1t — s)P71dt < C3(r — 5)> 177,
On the one hand, for r — s < 27, we simply have

[s1p AT r
/ (r—1)°=1(t — 5)P1dt < / (r—1)2=1(t — 5)7Ldt

— (’I" S)a+ﬂ71
T(a+ B)
L(a)L'(B) a1
LA

On the other hand, if r — s > 27, then

[s]pAr s+T
/ (r— )% 1(t — 5)P~1dt < / (r— )21t — 5)P~1dt

s+T _ a—1
(ORI

21704
= (r — s)2 178,

B
Therefore (2.14) is proved, and thus (2.14) implies that

[ o=ormma < o [ -9 1) - Tl as
0 0

< C3T/8Hf - FP”IL)};(Q’T;H)'

For 113(t), we again apply Fubini’s theorem to obtain

/ (- 0 T (dl = / "17s) — Frs)|”
0 0

(2.14)

X /T(T — 1) (=)t = (t—s+ 7)) dtds.

To conclude, we claim that

A= /r(r )N (t—s)P = (t— s+ 7)Yt < CyrP(r — 5)27 L,

(2.15)
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for a constant Cy depending on « and (. Indeed, if this is the case, we have

r

/r(r — 1) I ()dt < Cyr? / (r—s)""||f(s) = Fp(s)||" ds
0 0

< C’47_ﬁ ”.f - FP H]Z{;(O,T;H)’

and we combine the estimates for II5(¢) and II5(¢) together and conclude the proof
of (2.11).

Let us now turn to the proof of (2.15). First, if » — s < 7 then it suffices to
observe that

" _ ot L1y, D(@T(8) wig1 _ D(@T(B) -
AS/S(T*t) (t—s)’ ldt*m(rfs) +h SmTﬁ(rfs) .

Now, if r — s > 7, we estimate as
T T
A= (r—t)a—l(t—s)ﬁ-ldt—/ (r— )"t — 5+ 7)P~1dt

_F(a)l“(ﬁ)r_sa g1 [T AB=1(p _ 4 _ a1
o [ (47 r —t — s)ldt

,
+/ (r—s—t+7)* P dt
0

_ D(@)I'(B)

—L 2 ((r = 5) P (p — g4 )AL

+ /T(r —s—t+T7)* Pt
0
The first term can be bounded using that r — s > 7 as follows
(r—s)2TP~1 — (r — s + 7)1 <max{a + - 1,0}7(r — 5)*HF2
< 7P(r—s) L

On the other hand, since for ¢t € (0, 7) we have that r —s+7—1¢ > r — s, the second
term can be estimated as

T T 1
/ (r—s—t+7)* 17t < (r —s)* 7t / Pt = = (r — s)* 10,
0 0 «Q

This concludes the proof. O

We refer the reader to Sec. 4 of Ref. 38 for further results concerning the space
L0, T5H).

2.3. The Caputo derivative

As we mentioned in the Introduction, the definition of the Caputo derivative, given
in (1.1) seems unnatural. Smoothness of higher order is needed to define a fractional
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derivative. Several attempts at resolving this discrepancy have been proposed in
the literature and we here quickly describe a few of them.

First, one of the main reasons that motivate practitioners to use, among the
many possible definitions, the Caputo derivative (1.1) is, first, that D¥1 = 0 and
second that this derivative allows one to pose initial value problems like (1.2).
However, it is by now known that even in the linear case solutions of problems
involving the Caputo derivative possess a weak singularity in time Refs. 61, 60
and 59. This singular behavior of the solution forces one to wonder: If fractional
derivatives describe processes with memory, why is it sufficient to know the state at
one particular point (initial condition) to uniquely describe the state at all future
times? Is it possible that the singularity is precisely caused by the fact that we are
ignoring the past states of the system? This motivates the following: Set w(t) = wy
for ¢t < 0. Therefore,

ap oy L) 1 () —w(t)
Dewlt) = 5 —a) /_oo - T T -0 / v

— 00

_ /t wlr) = wit) 1 po ), (2.16)

T(=a) oo =myr &7 O

where, in the last step, we integrated by parts. The expression D% w(t) is known
as the Marchaud derivative of order « of the function w. This is the way that the
Caputo derivative has been understood, for instance, in Refs. 6, 5, 7 and 4. We
comment, in passing, that owing to Ref. 10 this fractional derivative satisfies an
extension problem similar to the (by now) classical Caffarelli-Silvestre extension in
Refs. 13 and 58 for the fractional Laplacian.

Another approach, and the one we shall adopt here, is to notice that (1.1) can
be converted, for sufficiently smooth functions, into a Volterra type equation

1 ! a—1 2n(s)ds
)/O(t—s) Dew(s)ds, Vte[o,T]. (2.17)

w(t) = w(O) + m

This identity is the beginning of the theory developed in Ref. 36 to extend the notion
of Caputo derivative. To be more specific, Ref. 36 considers the set of distributions

T ={we Z'(R;H) : IM,, € (—00,T),supp(w) C [~M,,T)}.

for a fixed time T" > 0. Then the modified Riemann—Liouville derivative for any
distribution w € &7 is defined, following classical references, like Sec. 1.5.5 of
Ref. 26, as

[e%

’r‘lw = w*g*a € é()T7

where g_,(t) = ﬁD(&(t)t’o‘), with 6 being the Heaviside function, is
a distribution supported in [0,00) and the convolution is understood as the
generalized definition between distributions. Here D denotes the distributional
derivative. Reference 36 then uses this to define the generalized Caputo derivative
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of we L ([0,T); H) associated with wq by
D¢w = D2 (w — wyp).

If there exists w(0) € H such that lim; o fot llw(s) — w(0)||ds = 0, then we always
impose wy = w(0) in this definition. It is shown in Theorem 3.7 of Ref. 36 that
for such a function w, (2.17) holds for Lebesgue a.e. t € (0,T") provided that the
generalized Caputo derivative D2w € Li ([0, T); H).

We also comment that Proposition 3.11(ii) of Ref. [36] implies that for every
function w € L?(0,T;H) with DYw € L%(0,T;H) we have

1 [e3 «
3 Dellwl*(®) < (DZw(t), w(t)). (2.18)
Finally, we recall that the Mittag—Leffler function of order o € (0,1) is defined
via

oo
kZ:oF ak+1)

We refer the reader to Ref. 28 for an extensive treatise on this function. Here we
just mention that this function satisfies, for any A € R, the identity

DOEL(MY) = AE,(M®), Eo(0) = 1. (2.19)

2.3.1. An auziliary estimate

Having defined the Caputo derivative of a function, we present an auxiliary result.
Namely, an estimate on functions that have piecewise constant, over some partition
P, Caputo derivative.

Lemma 2.6. (Continuity) Let p € [1,00); P be a partition, as in (2.2), of
[0,T); and w € L*(0,T;H) be such that its generalized Caputo derivative DSw €
LP(0,T;H), and it is piecewise constant over P. Then we have

Sfépﬂ/o (r =) Hw([t]p) —w®)|Pdt < CTP|Dgwl}y o 1gyy:  (2:20)
rel0,

where the constant C' depends only on «.

Proof. The representation (2.17) allows us to write

w([t]p) — w(t)
%) [/0 Diw(s) (([tlp —)*7! = (t—5)*7") ds

[tl»
+/t D%w(s)([t]p — s)* *ds]|.
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Therefore by Holder inequality, we have

P 1 ! —s a—1 _ —s a—1 s
fu(lele) ~ wl? < s ([ 1m0 = 0= 5
[t]Pp p-l
+/ ([t]p — s)o‘lds>

s </0 IDZw(s)||P|([t]p — )" — (t —5)*"|ds

[t]p
+ / 1D w(s) ([t — s)a-lds)
< Crotv-D < | Ipzel (el = 5 (= )7 ds
4 e 01 ||D3w<t>||ﬁ>

t
= @ [ D) [([tlp - ) = (¢ - ) ds
0

+ G [ DEw®)[P = Tu () + T2 (t),

where the constants C, C, and C depend only on p and «.
For I5(t), we simply have

/0 (r =) L (t)dt < O Dgwll}y o 1y)-

Now to bound the integral for I;(¢), we use Fubini’s theorem to get

/(r—t)"‘_lh(t)dt:Clr(p‘l)a/ 1D w(s)||?
0 0

X /T(r — ) H([t]p — 5)* ' — (t — 5)*7!|dtds.
We claim that é
/T(r L[l — )% — (F— $)°Udt < Ca(r — 5)°~17%,  (2.21)
where Cs (jnly depends «. If this is true, then we have
/OT(T — )2y (t)dt < CrPe /OT |DSw(s)||P(r — s)* ds

< CTpaHD?w||ig(o7T;H)'

The proof of (2.21) proceeds as the one for (2.15). For brevity we shall skip the
details. a
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2.4. Some comparison estimates

As a final preparatory step we present some auxiliary results that shall be repeatedly
used and are related to differential inequalities involving the Caputo derivative, and
a Gronwall-like lemma.

First, we present a comparison principle which is similar to Proposition 4.2 of
Ref. 24. The proof can be done easily by contradiction, and therefore it is omitted
here.

Lemma 2.7. (Comparison) Let ¢g1,¢2 : [0,7] Xx R = R be both non-decreasing in
their second argument and go be measurable. Assume that v,w € C([0,T];R) satisfy
v(0) < w(0), and there is some o € (0,1), for which

ol0) € an(t.0(0) + 5 [ (=9 s, ()
w(t) > g1(t,w(t)) + ﬁ/g (t — 5)* " Lgo(s,w(s))ds,

for every t € [0,T]. Then we have v < w on [0,T].

We now present a result that can be interpreted as an extension of Lemma 3.7
in Ref. 51 to the fractional case. However, unlike the classical case, here we have the
restriction that A > 0 because we have to argue from a fractional integral inequality.
Nevertheless, this is sufficient for our purposes.

Lemma 2.8. (Fractional Grénwall) Let a € C([0,T];R) with D%a® €
L}, ([0,T);R), b,c,d : [0,T] — [0,+00] be measurable functions, and X > 0. If the
following differential inequality is satisfied

D%a?(t) + b(t) < 2Xa*(t) + c(t) +2d(t)a(t), a.e. t € (0,T), (2.22)
then we have
) 1/2
sup a?(t) + =10l 0, 7:R) < 2D(T)E,(20T7)
t€[0,T F(a)
+1/a2(0) + C(T)\/Eqo (2AT),

where

1 ~ 1

Ct) = @HCHL}X(OJ;R% D(t) = @Hd\

L1(0,6R)- (2.23)
Proof. From (2.22) we obtain that

1 t—sa_lss a?
)/Oos ) b(s)ds < a(0)

aQ(t) + W

1 t — ) e(s s)a(s a’(s)] ds
gy L =97 ) + 2d(s)as) + 200%()]
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2\

< a®(0) + C(t) 4 2a(t)D(t) + o)

X /Ot(t —5)°71a2(s) ds, (2.24)

where a(t) = maxg<s<¢a(s) and the functions C,D are defined in (2.23). This

immediately implies that

a2(t) < a®(0) + C(t) + 2a(t)D(t) + 1_‘2(2) /0 (t —s)*'a*(s)ds.

In order to bound @, we construct a barrier function e(t) = K+/FE,(2At®) where
the constant K is chosen so that

2 2 ~ ~ 20 ! )12 () ds
(1) > a*(0) + (1) + 2e(0)D(0) + 7 /0 (t— )" 1e2(s)ds, Vte (0,T).

Indeed, owing to (2.19) we see that

2\ t - § B . ) o
@/0 (t — 8)* " Eq(2A8%) ds = E,(2AtY) — E,(0) = E,(2M%) — 1

and hence

2 ~ A 2) ! — )% 12(5) ds
a*(0) 4+ C(t) + e(t)D(t) + o) /0 (t—1s) (s) d

= a%(0) + C(t) + 2K \/Eo(2Xt*)D(t)
+ K2 (Bo(2M%) — 1) < K?E, (2\t%) = (1),

for every t € (0,T) provided that

K > D(T)\/E.(2AT®) + \/ a2(0) + C(T) + D2(t) Eo (2AT). (2.25)
Applying Theorem 2.7 we obtain that
a(t) <e(t) = K/ Eo(2At%).

Plugging this back into (2.24) and noticing that this holds for any K satisfying
(2.25) we obtain that

1 t
su a2t—|—7/ t—$)*1b(s)ds
te[OPT] (t) o) 0( )*7b(s)

< (f)(T) Eo(2\T*) + \/ a2(0) + C(T) + 52(t)Ea(2>\Ta))2 Eo(2)\T%)

<(21~)(T)Ea(2)\T“)+ a2(0) + C(T) Ea(2)\TQ))2

which is the desired result. d
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3. Deconvolutional Discretization of the Caputo Derivative

To discretize the Caputo fractional derivative, Refs. 37 and 39 consider a so-called
deconvolutional scheme on uniform time grids and prove some properties of this
discretization. In this section, we generalize this deconvolutional scheme to the
variable time step setting, and prove properties that will be useful in deriving a
posteriori error estimates later, in Sec. 5.2.

3.1. The discrete Caputo derivative

Let P be a partition as in (2.2). To motivate this discretization, let us assume that
w : [0,T] — H is such that DSw(t) is piecewise constant on the partition P, with

Dgw(t) = Vi

Then formally by (2.17), we have, for n € {1,..., N},

w(tn) = w(0) + ﬁ /0 " (tn — )2 D2 w(s)ds
1 . « «
=)+ iy 2o~ )~ (=) Vi (8)

1=1

Let Kp € RY*N be the matrix induced by the partition P, which is defined as

1
()~ (fa 1)), 1<i<n<N,
Kp,; =4 L@+l (3.2)

0, 1<n<i<N.
Then we can rewrite (3.1) in matrix form as
W =W, +KpV,

where V, W, W, € HV with V,, = V,,, W,, = w(t,), and (Wy),, = w(0). Notice
that Kp is lower triangular and all the elements on and below the main diagonal are
positive. Therefore Kp is invertible and its inverse is also lower triangular. Thus,
the previous identity is equivalent to

V=K;' (W - W),
in other words
Vo= Kz (Wi —Wo) =Kz! (Wo+ Y Kzl Wi,
=1 =1

where we set K7_>,1no =—->7 K;ln ;- This motivates the following approximation
of the Caputo derivative provided W € HY and Wy € H are given. For n €
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{1,..., N} we set

(DEW) = > Kpl (Wi = Wo) = > Kzl Wi
i=1 =0
Z P (Wi = Wh). (3-3)

3.2. Properties of K,,_,1

We note that, when the partition is uniform, both K» and its inverse will be Toeplitz
matrices, and hence the product KV can be interpreted as the convolution of
sequences. Consequently, multiplication by K;l is equivalent to taking a sequence
deconvolution. This motivates the name of this scheme and enables Ref. 39 to apply
techniques for the deconvolution of a completely monotone sequence and prove
properties of K;l.

We were not successful in extending, to a general partition P, all the properties
of K;l presented in Ref. 39 for the case when the partition is uniform. This is mainly
because their techniques are based on ideas that rely on completely monotone
sequences, which do not easily extend to a general P. Nevertheless we have obtained
sufficient, for our purposes, properties. The following result is the counterpart to
Proposition 3.2(1) in Ref. 39.

Proposition 3.1. (Properties of K5') Let P be a partition as in (2.2), and Kp
be defined in (3.2). The matriz Kp is invertible, and its inverse satisfies:
n
Kplo=—> Kzl <0, ne{l,... N}, (3.4)
j=1

Kz, >0 ie{l,...,N}, Kzl , <0 1<i<n<N. (3.5)

Proof. We already showed that Kp is nonsingular. We prove (3.4) and (3.5) sep-
arately.

First, to prove that K73 o < 0. For this, it suffices to show that for a vector
W € RY such that W; = 1 for any i > 1, then the vector F = K;lw satisfies

F,>0 Vn>1.

We prove this by induction on n. For n = 1, clearly

W: 1
Fl=— = > 0.
Kpi1 Kpi
Suppose that F; > 0 for all 1 < j < k, now we want to show that Fj; > 0 as well.

Notice that

k k+1
1=W;= ZKP,MF@ 1=Wip = ZKP,HLJ‘FJ‘,
j=1 j=1
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then taking the difference we have

k+1 k
0= ZKPMl,ij —Y Kpi,iF;
j=1 j=1
k
= Kpprih1 Fipr + ) (Kp sy — Kpp ) Fy. (3.6)
j=1

We claim that Kp 41, — Kpr,; < 0 for any j. In fact, this can be seen through
the definition of the entries of Kp

Kppt1,j —Kpp; <0

& (tepr — 1) = (tepr — )% < (b —tj-1)" — (tx — )
4 / (tk+1 — tj + S)a_lds < / (tk — tj + S)a_lds.
0 0

Using Kp 11, —Kpr; <0and F; >0 for all j € {1,...,k} in (3.6), we see that
Kp pt1,k+1Fk+1 > 0 and thus Fji; > 0. Therefore by induction we proved that
K7_3,1n0 < 0forn>1.

Next, we prove that K;lu > 0 and K;lm < 0. Consider a vector W € RY that
is such that W; = 1 and W; = 0 for j # ¢. It suffices to prove that for, F = K7§1VV7

we have F; > 0 and if n > i
F, <0. (3.7)

Since K5 is lower triangular, we know Fj = 0 for j € {1,...,i — 1}. From KpF =
W, we see that

1=W; = (KpF); = > Kp,;F; =Kz F;
j=1
and thus F; = 1/Kp; > 0. Now we prove by induction that (3.7) holds. First,
when n =1+ 1, we have

0=Wit1=KpF)it1 =Kpit1:Fi + Kpir1ir1Fi

and hence
Kp i1, F;

— < 0.
Kpit1,i+1

Fig =
This shows that (3.7) is true for n = i+ 1. Now suppose that we have already shown
that F,, < 0 for n satisfying n € {i+1,...,k}, we want to prove Fi 1 < 0. To this
aim, notice that

k
0=Wip1 = (KpF)pq1 = ZKP,k+1,ij +Kp 1,541 Frt1,

i=i
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therefore we only need to show Ef:z Kp pt1,;F; > 0. Recall that

k
0=Wy=(KpF)p =Y Kp,Fj,
j=i
and thus, since Kp ; > 0, we can get
k k
B Kp it
> Kpii1iFj =Y Kppii,Fj— Kry Z Kp i, F,
P J=i i
k
K k 7
= > (K”P,k-i-l,j - %ka )F
j=it1 ki

Since by the induction hypothesis F; < 0 for j € {i +1,...,k}, it only remains to
show that

Kp Kpri1,i - Kpri1,i . Kpri1,j

kel — T j .

! Kp ki Kp kg

Applying Cauchy’s mean value theorem, there exists n € (¢t — t;,tx, — t;—1) such
that

Kp i1 (terr —tio1)® — (tegrr — )

Kpi; (te —tic1)® — (tpy — ;)™
_ —1
_ o+ Tri1)” ! _ (Tt Thn “
OéT]ail 7

Similarly there exists & € (tx — t;, ¢, — tj—1) such that

Kp’kJrl,j _ <f+Tk+1>a1
Kp kj 3

Due to j > i, we have £ < n and hence
-1 -1
Kpiy1,5 _ <§ + Tk+1>a - (77 + Tk+1>a _ Kp it

Kp k. § U Kp ki
Therefore from the arguments above we see that Fji41 < 0, and by induction
K7;.1m < 0 for n > i. u

Remark 3.2. (Generalization) The discretization of the Caputo derivative,
described in (3.3), and its properties presented in Proposition 3.1 can be extended
to more general kernels. Indeed, for a general convolutional kernel g € L'(0, T;R)
the entries of the matrix Kp will be

tn—t;
Kpi — / g(#)dt.
t

n—ti—1
The proof of (3.4) follows verbatim provided ¢'(t) < 0, as the reader can readily
verify. The proof of (3.5) only requires that the function G(t) = In(g(t)), satisfies
G'(t)>0
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For a uniform time grid P, Theorem 2.3 of Ref. 37 proves that, for every 4, the
sequence {—K;}n +i,i}"21 is completely monotone. The following result holds for
a general partition P, and is a direct consequence of Theorem 2.3 in Ref. 37 for
uniform time stepping.

Proposition 3.3. (Monotonicity) Let P be a partition of [0,T] as in (2.2), and
Kp be defined as in (3.2). Then, its inverse satisfies

(1) Forne{l,...,N —1},
n n+1

—1 _ —1 —1 _ —1
=D Ky =Ko <Kp 10 =— Z Ko i, (3.8)
i=1 =1

(2) For1<i<mn<N,
K7_>,1m' < K7_3.,1n+1,i' (3.9)
Proof. To prove (3.8) it suffices to show that for a vector W € RY such that
W; =1 for any ¢ > 1, then the vector F = K7_,1W satisfies
F,>Fuy VYn>1.

We prove this by induction on n. For n =1,

1 =W = (KpF); = Kp 11 F1,

1 =Wy = (KpF); = Kp a1 Fi

+Kp22Fs = (Kp o1 + Kp 22)F1 + Kp o2 (Fy — F1).
Clearly,
Fi1 >0, Kpii=(t1—t)" <(t2 —ty)* =Kpa +Kp .
Hence we have
Kpo(Fo —F1)=1—(Kpo1 +Kpa2)Fi <1—-Kp11F1 =0,

which, since Kp 22 > 0, implies that F; — F; < 0, i.e. F1 > F5. So the claim holds
for n = 1.

Suppose Fj1 < Fj for all 1 < j < k, now we want to show that Fj 1 < F}, as
well. Notice that

k k=1 [ &
1=Wi = ZKP,kiFi = Z Z Kp ki | (Fig1 — F)
i=1 =0 \j=i+1

E
—

(te — t:)* (Fig1 — F3),

S
Il
o

k+1 k
1=Wip1 = Z Kop ki1, = Z(thrl —t)*(Fiy1 — Fy),
i=1 i=0
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where we set Fy = 0 in the equations above. Therefore to show Fy11 < F), we only
need to prove that

0<Ztk+1 1+1 F)*l
k-1 k-1
= (tht1 —t)*(Figr — Z tk — t)*(Fig1 — F3)
1=0 =0
k-1
= > (k1 — )" = (tx — t)*)(Fig1 — Fi). (3.10)
i—0

Since we also have

1 =W 1—ZKPk L = Ztk 1= t)*(Fip1 — F)

>
|
—

(th—1 — ) (Fig1 — Fy),

I
o

i
Taking the difference between the equation above and the one for W, we obtain
that

k—1 k—1
O:Wk_Wk—IZZ(tk_ti) Fiy1— Ztk 1 —t)*(Fip1 — F3)

=0 1=0

k-1

((tr =) = (te—1 — 1)) (Fip1 — F5).

-
I
o

In light of this identity, we claim that to obtain (3.10) it suffices to show that, for
1e{l,....,k—1},
fi =t _ (ber = t0)" = (e = t)®  (hn = ta)" = (e = 0)° g4
th—th (e —to)* — (k-1 —to)* = (tk — i)™ — (t—1 — t:)*
If this is true, letting ¢ = (t&,, — t) / (t¢ —t2_,) we have

k-1

D (g1 — 1) = (b — t)*)(Figr — Fy)

=0

el
I
—

((Fegr = )" = (t — 1:)%) — c((te — 1) — (-1 — £:)%)) (Fig1 — F3)

I
g

el
|
—

(g1 — )" = (b — 1)) —c((tr — )™ — (k-1 — 1)) (Fip1 — Fi)

s
I
—

>
|
—

di (Fig1 — F),

s
Il
-
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where d; = ((tg41 —t:)* — (b — 1)) —c((tr — ) — (t—1 —1:)®) < 0 due to (3.11).
By the inductive hypothesis, F; 11 — F; < 0 for 1 <i < k—1, so the equation above
implies (3.10), and hence Fj11 < F}, is proved.

To finish the proof, we focus on (3.11), fix i and define ¢; = t_1—1;, co =t —1;,

c3 = tg+1 — t; and function
(x+c3)® — (z+ c2)®

W) = (x4 )= (x4c1)®

Then (3.11) is equivalent to h(t; —tg) > h(0), and it remains to show that h(x)
is strictly increasing for = > 0. We observe that

d (r4e3)* P —(r4e)* ! (r+e)* = (v 4e) 7t
(In(h(z))) = - . P a

dx (x4 c3)* — (z + c2) (4 c2)® — (z+ 1)
Applying Cauchy’s mean-value theorem to the two fractions above, we know there
exists 1 € (z + ¢, @ + ¢3) and € € (x + ¢1,2 + ¢2) such that

d (@ —Dn*? (a—1)¢*"2 e

i) =a [ O -6 >0,
where the last inequality holds because a < 1 and £ < x + co < 1. This shows the
monotonicity of function h and confirms (3.11). This concludes the inductive step

and proves (3.8).
The proof of (3.9) is obtained similarly. For convenience we only write the proof

for ¢ = 1, but the extension to general ¢ is straightforward. Consider a vector
W € RY such that W; = 1if j = 1 and W, = 0 if j # 1, then it suffices to prove
that vector F = K;IW satisfies

F, < Fn+1 (312)
for n € {2,..., N —1}. We prove (3.12) by induction on n. For n = 2, observe that
k k—1
Wi = (tr = t)*(Fyn = Fj) = > (te — ;) (Fj1 — F)
3=0 7=0
from the proof of (3.8) with Fy = 0, we have
1=Wi=(t —t)*(F1 — Fo),
0 =Wy = (ta —to)*(Fy — Fo) + (t2 — t1)* (F2 — F1),
0=W;= (t3—t0)a( )+(t3—t1) (FQ_F1)+(t3—t2)a(F3—F2).

From the first and second equation above, we see that F; > 0 and Fy — F; < 0.
Combining the second and the third equation we deduce that

te te
0=Ws— t%WQ = |(ts —t1)® — (to — tl)atf; (Fy — Fy) + (t3 — to)*(F3 — F).
2
Since (t3 — tl)a — (tQ — tl)a(t3/t2)a = (t3 — tl) — (tg — (t1t3/t2))a > 0, we obtain
that F3 — F > 0 which is (3.12) for n = 2.
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It also remains to prove that when (3.12) holds for n € {2,...,k — 1}, then it
also holds for n = k, i.e. Fj, < Fjt1, provided that k < N. To this aim, we first see
that

k

£ £

0=Wiy1 — ’;j;l Wi =) ((tk+1 — )% — (tp — ;) ’;j;l> (Fjr1 — Fy). (3.13)
k i=1 k

Therefore in order to prove Fj, < Fj+1, we only need to show that
k—1

ta
> ((tk+1 — )% = (te — t5)° 1;1) (Fj41 — Fj) <0. (3.14)
=1 k
Similar to (3.13) we also have
ta k—1 ta
0= Wy — =W = > <(tk —tj)* = (th—1 — tj)”ﬁ) (Fj+1 — ).
k—1 j=1 k—1

Thanks to the inductive hypothesis, we know that F; 1 — F; < 0 for j = 2 and
Fiy1—F; > 0for j € {3,...,k—1}, Therefore using a similar argument used in the
proof for (3.8), to prove (3.14) we only need to show that, for j € {2,...,k — 1},

(trr — ) — (b — t1)* (tpgr /tr)”
(tp —t1)® — (tp—1 — t1)*(t/te—1)"
(trgr — ) — (b — )™ (b1 /te)®
(tk — )™ — (th—1 — t5)® (t/tp—1)®’
which is similar to (3.11). We rewrite the inequality above as
(1=t /tes)™ — (1 =t /tg)”
(L =ta/tr)> = (1 = ta/te—1)*
(L=t /thyn)® = (1 =t /tx)”
(L=t5/te) = (1 =t /te—1)™’
and define the function

(3.15)

je{2,...,k—1},

(I —a/tpp)* = (1 —x/t)*
(1—z/tp)*— (1 —z/tp_1)*’
then it suffices to show that h}(z) < 0 for 0 < = < tx_1. Observing that

d ¢ 1—a/tper)* = (/t) (1 — /ty)*

A ey — [ @) = 2/tn)* ™ = /)1 = o/t

dx x (1 —x/tgr1)® — (1 — x/tp)™
(z/te) (1 — x/tr)* ™ — (@/te—1) (1 — I/tk—l)o‘l}

(I—2/tp)>— (1 —a/tp_1)™ '

Letting ho(z) = (1 — z)z® 1, hy(x) = %, by Cauchy’s mean-value theorem, there
exists n € (1 —x/tk, 1 —x/tyy1) and € € (1 — x/tp_1,1 — x/t)) such that

o i) = -2 (G200 - 228 ) =2 (2= o) - (22 1))

<0

hl (l‘) =
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because 0 < ¢ < 7. This implies that hj(x) < 0 for 0 < = < tx_1 and finishes
inductive step of the induction. Hence (3.9) is proved. O

Remark 3.4. (Alternative definition of D%) Let us define, for k < n,

bp nk _ZKPW

Then, the discrete Caputo derivative (3.3) can also be written as

(DSW),, ZKPMW prmw Wi 1),

i=1

which is a discrete version of the definition given in (1.1). As an immediate conse-
quence of Theorems 3.1 and 3.3, we have

bpnk >0, bpak > bp (ni1)k-

Remark 3.5. (Generalization) Notice that, for a general kernel g, property (3.8)
remains valid provided G(t) = In(g(t)) satisfies G”'(t) > 0.

3.3. A continuous interpolant

Given a partition P, a sequence W € HY, and W, € H, we defined the discrete
Caputo derivative (D3W),_ via (3.3). Motivated by the Volterra type equation
(2.17) between a continuous function w and its Caputo derivative DQw, it is possi-
ble, following Ref. 39, to define, over P, a natural continuous interpolant of W,, by

Wp(t) = Wo + ﬁ /O (t — 5)°"Vp(s)ds, (3.16)

where Vp is defined by
V() = (DEW), ¢ (3.17)

By definition, we have that Wp(t,) = W,. Moreover,

Wolt) = Wo + = —— i (= )N (DEW), + (1 — ) (DEW),
= ZWi<PP,i(t)v (3.18)
where we defined, for i € {1,..., N},
n(t)—1
‘p”PO()—l'i_F(a%Z — )" = (=) KR,

+ (tn — 1) K50
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n(t)—1
1 «@ o —1
(1) — )Y — (=) )KL
@P,l(t) F(O&+1) ; ((t t] 1) (t t]) ) P,ji
+ (tn — 1) Kp ;- (3.19)

The functions {pp ;}¥, play the role, in this context, of the standard “hat”
basis functions used for piecewise linear interpolation over a partition P. Indeed,
they are such that any function with piecewise constant (Caputo) derivative can be
written as a linear combination of them. Figure 1 illustrates the behavior of these
functions. As expected, and in contrast to the hat basis functions, these functions
are nonlocal, in the sense that they have global support. Something worth noticing
is also that the figure seems to indicate that, as « | 0, the functions resemble
piecewise constants and, in contrast, when « 1 1 they tend to the classical hat basis
functions.

An important feature of the hat basis functions is that they form a partition of
unity. It is easy to check that, for any ¢ € [0,T] we have Z?:(to) pp.i(t) = 1. The
following result shows that ¢p ;(¢) > 0. Thus, for any ¢ € [0, 7], Wp (t) is a convex
combination of its nodal values {W; }9’:0. This observation will be crucial to derive
an a posteriori error estimate in Sec. 5.2.

Proposition 3.6. (Positivity) Let P be a partition defined as in (2.2). Let the
functions {pp i}, be defined as in (3.19). Then, for any i € {0,...,N} and
t € [0,T], we have pp ;(t) > 0. In addition, fort ¢ P and i € {0,...,n(t)} we have
©P.,i (t) > 0.

Proof. By definition, for ¢t = t,, we have ¢p ,(t,) = 1 and pp ;(t,) = 0 for any
i # n. Also, for i > n(t), we see that ¢p ;(t) = 0, and hence it only remains to show
that ¢p ;(t) > 0 for i < n(t). To show this, consider W; =1 and W; = 0 for j # i, a
piecewise constant Vp and its interpolation Wp defined in (3.16) and (3.17). Then
our goal is to show that Wp(t) > 0.

a=0.1 a=0.5 a=20.9

() (t) —orolt

() (t) o1
epa(t) wpa(t) @p2

(®) ()

() ()

—ra

epalt
] P P 6 n t I [ 0 6t &

Fig. 1. Given a partition P, the figure shows the nonlocal basis functions {SOP,i}ﬁio for different
values of a. Every function whose Caputo derivative is piecewise constant can be written as a linear
combination of these functions. Notice that, for any partition point @p ;(t;) = ;5. In addition,
Proposition 3.6 shows that these functions form a partition of unity.
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If i = n(t) > 0, then it is easy to check by definition that (DEW), > 0 and
(DpW),; =0 for j € {1,...,i— 1}. Therefore we obtain
—~ 1 ¢ — (t, —t)*
Wp(t)= —— [ (t—2s)*"'V(s)ds = -——< (DEW), > 0.
If + < n(t), the proof is not that straightforward. The trick is to insert the time
t, which is not on the partition P, to get a new partition P’ = P U {¢t} and then
apply Propositions 3.1 and 3.3 in an appropriate way. Let us now work out the
details. Let P’ = {tﬁc}gjol and notice that t’n(t) =1t, t;(t)—i-l = tp@). On the basis of
this partition we define the vector W’ € HNV+1 via Wi = Wp(t;), then since Vp is

constant on (t;(t)_l,t;(t)ﬂ] = (tn(#)—1,tn(r)], We have

(D%'W/)n(t) = (D%’Wl)n(t)Jrl :
Since the only possible nonzero components of W' are W/ = W; = 1 and W), 0 =

W’p(t), therefore we deduce from the equality above that

1 -1 a o
K’P',n(t)iWi/ + Kp/yn(t)n(t)wgl(t) = (Dp,wf)n(t) = (Dp,wl)n(t)Jr1
-1 -1
=Ko i1+ Kp 1100 Wa:
which can be rearranged as
-1 -1 _ T -1 -1
KP’,n(t)Jrl,i - KP’,n(t)i - Wp(t)(KP’,n(t)n(t) - K’P’,n(t)+1,n(t))'
From Theorem 3.3 we see that K’I_D’l,n(t)+1,i — K7_3’1,n(t)i > 0 and from Theorem 3.1
-1 -1 -1
we see that KP/,n(t)n(t) — KP',n(t)-s-l,n(t) > (0 as a confﬁquence of KP/,n(t)n(t) >0
and K;,lm(t)ﬂm(t) < 0. This leads to the fact that Wp(t) > 0 and finishes our
proof. O

3.4. Comparison and monotonicity

Once we have obtained Theorems 3.1 and 3.3, it is easy to see that the properties
stated in Theorem 3.3 of Ref. 39 for uniform grids also hold for general partitions.
We state these below but we omit the proof.

Proposition 3.7. (Further properties of D%) Let P be a time partition. The dis-
crete Caputo derivative defined in (3.3) satisfies:

(1) (Convex functional) If U = {Uy,}pn>0 C H, and ¥ : H — RU {+o0} is convex,
then for any £ € 0¥ (U, ), we have

(Dp¥(U))n < (DpU)n; ) - (3.20)

(2) (Discrete comparison) Let f: Ry U{0} x R — R be such that there is L > 0
for which for all s > 0 the mapping

z f(s,z) — Lz
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is non-increasing. Assume that u = {up}n>0,V = {Un}n>0, W = {wp}n>0 CR
satisfy ug < vg < wq, and

(Dpw)y < ftnsun),  (DpV)n = f(tn,vn), (DpW)n > f(tn, wn).
Then, if K;lu > L for every i, we have u, < v, < w, for alln > 0. For our
scheme, K;,lii > L holds provided that 7 < T'(a+1)/L and thus the statement
is true for any partition P if one can take L = 0.

(3) (Discrete comparison in integral form) Let f: Ry U{0} x R — R be such that,
for all s > 0, the mapping

2 f(s,2)

18 mon-decreasing and Lipschitz, with Lipschitz constant L. Assume that the
sequences

{un}nZO» {Un}HZOa {wn}nZO CR
satisfy
U, <ug + (Jpfu)n, Un =00+ (Jpfo)n,  wWn > wo+ (Jpfuw)n,
where J3 f., is defined by

n

0, =3 ) [T, et

k=1 the—1
B Y e S
- /; T(a+1) Fltr, ).

Then if 7% < T'(a+ 1)/L, we have u, < v, < w,.

We comment that the first two properties also hold for other schemes satisfying
Theorem 3.1. In addition, we also notice that Theorem 4.1 in Ref. 41, which is
stated for uniform grids, also holds for general partitions.

Proposition 3.8. (Discrete monotonicity) Let P be a time partition, and g : R —
R be such that there is L > 0 for which

zg(z) — Lz
is non-increasing. Assume that {Up}n>0 C R satisfies
(D%U)n = g(Un)a (321)

where the discrete Caputo derivative D% is defined in (3.3). If K7§1“ > L for any 1,
then the sequence {Uy, }n>0 is monotone. For our scheme this, in particular, requires

that 7¢ < T'(aw+ 1) /L and thus the statement is true for any partition P if one can
take L = 0.

Proof. We first note that, if g(Up) = 0, then {Up, },>0 is constant and the statement
is trivial. We will prove by induction that if g(Up) > 0, then {U,},>0 is strictly
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increasing. The proof that {U, },>0 is strictly decreasing when g(Up) < 0 proceeds
in a similar way.
We first notice that from (3.21)

hi(Uh) = Kz}, (U = Up) — g(Uy) = 0.

From the assumptions, we know that the function h; is strictly increasing. Therefore
we have U; > Uy because

hl(U()) =0- g(Uo) < 0.

Suppose now that we have already proved that Uy < U; < --- < U, and we
want to show U, < U,4;. From (3.21), it holds that

hn+1 n+1 Z Kp (n+1)k - Un+1) - g(Un+1) =0.

Since h, 41 is also strictly increasing, it suffices to show that

hna( Z KP (n+1)l~c —Up) = g(Un)

W‘
O

n—1

= K;%nJrl)k(Uk - Un) - g(Un) <0.

k=0
Recall that
9(Un) = (DpU)y Z Kol Un),
we thus have
hns1(Up) = S(K; nt1ke — Kp! LUk =Uy,) <0
k=0

because K7_>,1n+1,k K_ k>0, and Uy — U,, < 0. This shows that the sequence
{Un}n>0 is strictly increasing as claimed. O

We remark that the previous result also holds for other schemes satisfying Theo-
rem 3.3. This proposition leads to the following fact, which will be useful in Sec. 4.3.

Proposition 3.9. (Monotonicity under refinement) Consider a non-increasing
function g : R — R and two different time partitions P and P, where P is a
refinement of P. Assume that the sequences {Up}n>0, {Un}n>0 C R satisfy

(DEU), = g(Uy), (DU), = g(Un),

and Uy = Up. If g(Uy) < 0, then we have that

~

Us(t) > Up(t), t>0,
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where we recall that these interpolants were defined in (3.16). Similarly, if g(Uy) >
0, then Us(t) < Up(t).

Proof. It suffices to prove the result for the case g(Up) < 0 and P is a refinement
obtained by inserting one node into P. Let P = {t;}, and assume that t;, ¢ P.

Define the sequence {W;};>¢ using the values of 175 at P, lLe.
ﬁi i < k,
Wi =Up(t:) = Us(ty), =k,
Ui_1, i>k
Since the Caputo derivative of (/j 5 is piecewise constant over ’ﬁ, this implies

that

g(Wi)v i 7é ka

(DEW); = {Q(WiJrl)v i=k.

Notice that, by Theorem 3.8, the sequence {W;},>¢ is decreasing. Hence the equa-
tion above leads to

(DPW),, > g(Wh).
Therefore by the discrete comparison principle of Theorem 3.7, we have
W, > U,.

Theorem 3.6 then implies that (775 (t) > Up(2). a

4. Time Fractional Gradient Flows: Theory

We have now set the stage for the study of time fractional gradient flows, which
were formally described in (1.2). Throughout the remaining of our discussion we
shall assume that the initial condition satisfies ug € D(®) and that f € L2(0,T;H).
We begin by commenting that the case f = 0 was already studied in Sec. 5 of 39
where they studied so-called strong solutions, see Definition 5.4 in Ref. 39. Here we
trivially extend their definition to the case f # 0.

Definition 4.1. (Strong solution) A function u € L}, ([0,T);H) is a strong solu-
tion to (1.2) if
(i) (Initial condition)
t
li — =0.
i - u(s) — wods = 0

(ii) (Regularity) D%u(t) € L}, .([0,T); H).

loc

(iii) (Evolution) For almost every ¢ € [0,T), we have f(t) — D%u(t) € 0P (u(t)).



408 W. Li & A. J. Salgado

4.1. Energy solutions

Since H is a Hilbert space, we will mimic the theory for classical gradient flows and
introduce the notion of energy solutions for (1.2). To motivate it, suppose that at
some t € (0,7)
f(t) = Dgu(t) € 0 (u(t)),
then, by definition of the subdifferential, this is equivalent to the evolution varia-
tional inequality (EVI)
(Du(t),u(t) —w) + S(u(t)) — ®(w) < (f(t),u(t) —w), YweH. (41)

Definition 4.2. (Energy solution) The function u € L?(0,7T;#H) is an energy solu-
tion to (1.2) if

(i) (Initial condition)

t
. . 2 _
1tlJf(rJl]€ lu(s) — upl|*ds = 0.
(ii) (Regularity) D2u € L*(0,T;H).

(iii) (EVI) For any w € L?(0,T;H)

T T
/O [(Dgu(t), u(t) — w(t)) + (u(t)) — @(w(t))] dt < /O (f(t),u(t) —w(t))dt.
(4.2)

Notice that, provided ug € D(®) we can set w(t) = wup in (4.2) and obtain
that fOT ®(u(t))dt < oo, which motivates the name for this notion of solution. In
addition, as the following result shows, any energy solution is a strong solution.

Proposition 4.3. (Energy versus strong) An energy solution of (1.2) is also a
strong solution.

Proof. Evidently, it suffices to prove that f(t) — D2u(t) € 0®(u(t)) for almost
every t € (0,T). Let wg € H, tg € (0,7, and choose h > 0 sufficiently small so
that (to — h,to + h) C (0,T). Define

w(t) = u(t) — X(tofh,toJrh)(U(t) —wp) € L2(O,T§H)’
where by xs we denote the characteristic function of the set S. This choice of test

function on (4.2) gives
to+h

to+h
]f (D2ut) — F(£), ult) — wo)dt +][ (®(u(t)) — B(wo))dt < 0.

o—h to—h
The assumptions of an energy solution guarantee that all terms inside the integrals
belong to L(0,T;R) so that for almost every ¢, we have, as h | 0, that

(Dgu(to) — f(to), wo) + ®(u(to)) — ®(wo) <0,

which is (4.1) and, as we intended to show, is equivalent to the claim. O
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Remark 4.4. (Coercivity) By introducing the coercivity modulus of Definition 2.1
one realizes that an energy solution wu satisfies, instead of (4.1) and (4.2), the
stronger inequalities

(Du(t), u(t) —w) + @(u(t)) — ®(w)

+o(u(t);w) < {(f(t),u(t) —w), VweH, (4.3)

and, for any w € L?(0,T;H),
T
/O [(Dgu(t), u(t) —w(t)) + D(u(t)) — D(w(t)) + o (u(t); w(t))]dt

< [ttt - wio)ar (44)

4.2. FExistence and uniqueness

In this section, we will prove the following theorem on the existence and uniqueness
of energy solutions to (1.2) in the sense of Theorem 4.2. The main result that we
will prove reads as follows.

Theorem 4.5. (Well posedness) Assume that the energy ® is convez, Ls.c., and
with nonempty effective domain. Let ug € D(®) and f € L2(0,T;H). In this setting,
the fractional gradient flow problem (1.2) has a unique energy solution w, in the
sense of Theorem 4.2. For almost every t € (0,T), the solution u satisfies that
f(t) — D2u(t) € 0P(u(t)) and for any t € [0,T] we have

1 ! a—1na
u(t) = uo + (o) /0 (t —$)* " D2u(s)ds. (4.5)

In addition, u € C%/2([0,T); 1) with modulus of continuity

Hu(t2) - u(tl)ll < C‘tQ - t1|a/2(||f|‘%§(07T;H) + (I)(uo) - q)inf)l/Q’ Vi1, tg, € [OvT]v
(4.6)

where the constant C' depends only on a.

We point out that our assumptions are weaker than those in Theorem 5.10
of Ref. 39. First, we allow for a nonzero right-hand side. In addition, we do not
require Assumption 5.9 of Ref. 39, which is a sort of weak—strong continuity of
subdifferentials.

The remainder of this section will be dedicated to the proof of Theorem 4.5. To
accomplish this, we follow a similar approach to Sec. 5 in Ref. 39. To show existence
of solutions, we consider a sort of fractional minimizing movements scheme. We
introduce a partition P with maximal time step 7 and compute the sequence U =
{U.}N_, € H as follows. Assume Uy € D(®) is given, the nth iterate, for n €
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{1,..., N}, is defined recursively via

where

tn

Fo=+4 f(t)dt. (4.8)

tnfl

We will usually choose Uy = ug, but other choices of Uy € D(®) are also allowed.
From the approximation scheme (4.7) and the expression of the discrete Caputo
derivative (D3U), given in (3.3), it is clear that

weH

Unargmin<f1>() (F,,w) — ZKpm|wU¢||2>, (4.9)

Thanks to Theorem 3.1, for ¢ = 0,...,n — 1, we have that K 1n4 < 0 and as a

Y2

consequence the functional on the rlght hand side of (4.9) is uniformly convex.
Combining with the fact that ® is Ls.c., the functional on the right-hand side has
a unique minimizer, and hence U, is well defined.

Now, in order to define a continuous in time function from U, we use the inter-
polation introduced in (3.16). Let Vp(t) = (DSU),, ). Then we have

Up(t) = Uy + ﬁ /0 (t — $)* Wp(s)ds. (4.10)

Recall that Fp can be defined from {F,}» ; using (2.3) and that Theorem 2.4
showed that Fp € L2(0,T;H) with a norm bounded independently of P. We now
obtain some suitable bounds for Up and Vp.

Lemma 4.6. (A priori bounds) Let P be any partition. The functions fjp and Vp
satisfy

~ 1 _
sup ®(Up(t)) < ®(Upy) + —— || Fpl? .
te[O,F;F] (Up(t)) (Uo) () IEPIZ2 0,75m0)

(Vo) + C||fH2Lg(0,T;H)a

t
Vol = swp [ (6= 92 [Va(s) s
t€[0,T]J0

< C(”fH%i(O,T;H) + ®(Uo) — Pinf), (4.11)
where the constant C' only depends on c.
Proof. Since F,, — (D3U), € 0®(U,), one has

(I)(Un) - (I)(Uz) < <Fn - (D%U)nv Un - UZ>
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Therefore noticing that KP i < 0forie{0,...,n—1}, we get (see also (3.20))

(D3(U)), — — S Kzl (B(U,) - B(T,)
1=0
<- Z BBy — (DU, U, ~ Uy
=0
— (F, — (D3U), . (DRU),), (4.12)

where we denoted ®(U) = {®(U,,)}_,.
We can now proceed to obtain the claimed estimates. To prove the first one, we

use that
« o (e} 1
(Dp@(U)),, < (Fn — (DpU)n, (DpU),) < ZIIFnII2

to obtain that for any n,

O(Un) = 2(Up) + Y Kp ni(DER(U));

=1
1 o 2
+ 1 ZKPnz”Fz”
=1
BU0) + 1 | "ty — ) [ Fp ()]s
T J ?
< ®(Up) + C||f||%§(0,T;7—l)7

where the constant C' depends only on «. Now, since Theorem 3.6 has shown that
Up is a convex combination of the values U,, we have

N N
®(Up(t)) = @ (Z @Pﬂ‘(t)Ui) < epa(t)® (U,
i=0 i=0

< max &(U,) < (Vo) + Cllf 172 0.7:30):

n

which finishes the proof of the first claim.
We now proceed to prove the second claim. Using (4.12) we get

Bipe < B(Up(t)) < B(Up) + e

x / (t — )21 Fp(s) — Vi(s), Vp(s))ds
0

#(Un) + e ( . ) Fr(s) s -
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x ( / . s)a—1||vp<s>||2ds)1/2

1 ¢ a—11177 2
‘r<a>/0 (t— )21V (s)|Pds,

for any ¢ € [0, T]. This implies that

t
/O (t =) Vp(s)lPds < [Fplliz 0.1 + 20(a)(@(Uo) — Ping),
which, using Theorem 2.4, implies the result. DO

Remark 4.7. (The function :I;) Notice that, during the course of the proof of the
first estimate in (4.11) we also showed that, if we define dp(t) = Ef\io ep,i(H)D(T;),
then 6(25) is the interpolation of ®p(U) with piecewise constant Caputo derivative.
Moreover,

Dedp(t) < i Fr@)|.

These estimates immediately yield a modulus of continuity estimate on the

interpolant ﬁp which is independent of the partition P.

Lemma 4.8. (Holder continuity) Let P be any partition and U € HYN be the
solution to (4.7) associated to this partition. For t1,ty € [0,T] the interpolant Up,
defined in (3.16), satisfies

U (t2) = Ut)ll < Clta = ta|* (| Fll72 (0.734) + P(Uo) — Ping) /2,

where the constant C' depends only on c.

Proof. As proved in Lemma 5.8 of Ref. 39, D%w € L2(0,T;H) guarantees w €
C%/2([0,T]; H). Therefore using DSU =V, € L2(0,T;H) and the estimate from
Theorem 4.6, we obtain the result. DO

Next we control the difference between discrete solutions corresponding to dif-
ferent partitions.

Lemma 4.9. (Equicontinuity) Let, for i = 1,2, P; be partitions of [0,T] with
mazimal step size T;, respectively, and denote by U the associated solutions to
(4.7). Let U; be their interpolations, defined by (4.10), and U; be their piecewise
constant interpolations as in (2.3). Assuming that Uy"” = Uy we have

7y Iy a/2 a/2

101 = Dol om0 < Clrt” + 75N £ 132 0,00 + ®(To) — Din]M/?, (4.13)
and

s [ =9 o0, Do)

< O + )22 0,190 + 2(Wo) — Ping), (4.14)

where the constant C' only depends on .
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Proof. For almost every t € [0, 7], we have that
(D2(Uy — Us), Uy — Up) =1+ I +1II, (4.15)
where
1= ((Fo— D2Us) — (Fy — D2TH), Uy — Us) < —p(U1, Ua),
11 = ((F — D2U,) — (Fy — DY), (Uy — U) — (U2 — Ua)),
I = (Fy — Fy, Uy — Uy),

where to bound I we used that F;(t) — D2U;(t) € d®(U,(t)) and Theorem 2.1.
Define now

Gt) = ﬁ / (t - )° 1 (Fa(s) — Fals))ds

1 k a—1/717 _
:@/0 (t—s)* " (F1(s) — f(s))ds

1 K a—=1/17 _
_m/o(t—s) (Fa(s) — f(s))ds,

so that D2G(t) = F1(t) — Fa(t) and by (2.10) of Theorem 2.5 one further has
1Gllz~ 1) < CE"” + 75z 0.0, (4.16)

where C' is a constant that depends only on «. Using these estimates, from (4.15)
we deduce that

<D?((71 - (72 - @), (71 - ﬁ2 —G)+p(U1,Usz)
<II— (DU, — Uy — G),G). (4.17)
Set w = Uy — U — G. By (2.18) we have that
1 —
§Dg|‘w(t)”2 + p(Uh U2) <H- <D3w7 G> ’
and, using (2.17) and (4.16), we then conclude
1

170 = Do + s [ (= 9" p((s). V(o))

2 t —8)* Y (II(s) — (D%w(s s)))ds 7o/
< w7 [ (=9 00 — (D2 (). G)as + Ol

75 f 1l 22 0,790)-

It remains then to estimate the fractional integral on the right-hand side. We esti-
mate each term separately.
First, owing to Theorems 2.4 and 4.6 we have, for ¢+ = 1, 2, that

IF; — DEUill 2 0.7:90) < CUF 32 0120) + (Vo) — Ping) /2.
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Therefore using the Cauchy—Schwarz inequality, for any ¢ € [0,T], we have

/ (t — $)*=1|TI(s)|ds
0

2
< C(HfHQLg(o,T;H) + ®(Up) — Bing) '/ Z HUi ~Ui L2(0,TH)
i=1 ar

Recalling that U, (t) = l:J\Z([ﬂl) we can invoke Theorem 2.6 and, again, Theorem 4.6
to arrive at

t
/0 (t — )7 1(s)|ds < O + 75/ (1132 (0.190) + ®(Uo) — Pi)-

Finally, for the remaining term, we use the Cauchy—Schwarz inequality and get

/0 (t = )71 |(D%w, G) (s)| s

<(/ (1= 5 Dw(s) ds)m (f (-5 1601 s )

< 1Dgwl 2 0,720 |Gl L2 (0,770 -

1/2

To estimate the norm of G we apply (2.11) from Theorem 2.5 with 5 = « to obtain

|Gz 0,71) < C(ri" + 7)1 fll L2 0,753)-

Furthermore, Theorems 2.4 and 4.6 guarantee that

IDgwl| 2 0.0:70) < CUFII72 (0,720) + ©(Uo) — Ding) /2.

Combining all estimates proves the desired result. D

We are finally able to prove Theorem 4.5. We will follow the same approach as
in Theorem 5.10 of Ref. 39; we will pass to the limit 7; | 0 and study the limit of
discrete solutions Uj;.

Proof of Theorem 4.5. Let us first prove uniqueness of energy solutions. Suppose
that we have two energy solutions u1,us to (1.2). Let ¢ € (0,T) be arbitrary and
h > 0 be sufficiently small so that (¢ — h,t+ h) C [0,T]. Setting as test function, in
the EVI that characterizes uq, the function w = u; — X(t,h7t+h)(u1 — ug) and vice
versa, and adding the ensuing inequalities we obtain

t+h
/tih (D&u(s) — DSua(s),ui(s) —ua(s))ds <0,

meaning that (D%uq(t) — D%us(t), ui(t) — ua(t)) < 0 for almost every ¢ € [0,77].
Define d(t) = |luq(t) — uz2(t)||?. Since uy,us € L*(0,T;H) we clearly have d €
L'(0,T;R). Furthermore,

f d(s)|ds < 2 f (11 (s) — o) 2 + | (uals) — wo)||?)ds — 0,
0 0
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as t } 0, from Theorem 4.2. Using (2.18) we then have
Dgd(t) < 2(Dgui(t) — Dua(t), ur(t) — uz(t)) <0

in the distributional sense. Combining with the facts that d > 0 and fot |d(s)|ds — 0
we obtain, by Corollary 3.8 of Ref. 36, d(¢) = 0. This proves the uniqueness.

We now turn our attention to existence. Let {Py}72, be a sequence of partitions
such that 75, | 0 as k — oo. We denote by U®) the discrete solution, on partition
Pr, given by (4.7) with Uék) = wug. The symbols ﬁk7 Vi and F} carry analogous
meaning. Owing to Theorem 4.9 there exists u € C([0, T]; H) such that Uy, converges
to u in C([0,T]; H).

The embedding of Theorem 2.3 and an application of Theorem 4.6 shows that
there is a subsequence for which V, — v in L?(0,T;H) as j — oo. Moreover, we
can again appeal to Theorem 4.6 to see that, for every ¢ € [0, 7], the sequence

a—1—

(t—) %' Vi, ()

is uniformly bounded in L?(0,t;H) so that by passing to a further, not retagged,
subsequence

(t—)F Vi, () = (t—)"T v() in L*0,t;H) (4.18)

for any t € [0, T]. This, in addition, shows that v € L2(0,T;H) so that if we define
I L

u(t) =u —|——/ t—s)* "u(s)ds 4.19

(t) =uo @) /s (t—s5)"""v(s) (4.19)

then D = v.
Recall that for any j € N and any ¢ € [0, T] we have that

O, () = uo + ﬁ/o (t — 5)* T, (s)ds.

Since, for an arbitrary w € H we have that (¢ — -)anlw is in L2(0,¢;H), we can use
(4.18) to obtain that

i (0, 0. ) = i (o + 1 [ (- 5T, (s, )

_ <u0 + ﬁ /Ot(t - s)alv(s)ds,w> = (u(t), w).

The statement above holds for any w € H and all ¢ € [0,T]. Thus,
O, (1) — (1), (4.20)

in H. However, this implies that & = wu, as ﬁkj converges to u in C([0,T]; H).
Therefore DYu = v € L%(0,T;H) and, by Theorem 4.6, we have the estimate

vl 22 (0,75m) < C(||f||2Lg(0,T;H) +@(Uo) — Ping) /2,
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for some constant C' depending on a. As in the proof of Theorem 4.8 this implies
that (4.6) holds. From this, we also see that the initial condition is attained in the
required sense.

It remains to show that the EVI (4.2) holds for u. From the construction of
discrete solutions, one derives that for any w € L?(0,T;H)

— —_ ~

T T
/0 (®(Ty, (1)) — D(w(t)))dt < /0 (Fr, (t) — Vi, (£), O, (t) — w(t))dt.  (4.21)

We will pass to the limit in this inequality. For the right-hand side, it suffices to
observe that Uy, — u in C([0,T);H), Vi, — v in L*(0,T;H) and Fj, — f in
L?(0,T;H). Thus,

| 0= V0.0, 0 —w®)at > [0 = o(0).ult) = wle)r

For the left-hand side, the uniform convergence of U k; and the lower semicontinuity
of @, give
®(u(t)) < lim inf & (Ukj (t)) :
j—o0
and hence
T

T
/ D(u(t)) — D(w(t))dt < / (f(t) = v(t), u(t) — w(t))dt.
0 0
It remains to recall that DYu = v € L?(0,T;H) to conclude that, according to
Theorem 4.2, u is an energy solution. O

Remark 4.10. (Other notion of solution) The choice of u € L?(0,T;H) and
D%y € L?(0,T;H) in Theorem 4.2 is to guarantee that (4.2) makes sense. It is
also necessary in the proof of uniqueness. However, other choices of spaces are
also possible. For example, one could consider the following definition instead of
Theorem 4.2: w € L>(0,T;#) is a solution to (1.2) if:

(1) limego fy [lu(s) — uollds = 0;

(i) DYu € LY (0,T;H); and
(iii) for any w € L>(0,T;H),

/0 [(Dult), ut) — w(t)) + @(u(t)) — P(w(t))]dt

< [ 1o - wi)a (4.22)
0

Theorem 4.5 also holds for this new definition. However, at least with our tech-
niques, the requirements on the data ug € D(®) and f € L% (0,T;H) do not change.
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4.3. Asymptotic behavior

One important, and well-studied, property of the solution to a classical, integer
order, gradient flow is its convergence, as time goes to infinity, to a state of equi-
librium, i.e. of minimal energy. We refer the interested reader to Chap. IIL5 in
Ref. 12, Sec. 3.4 of Ref. 8, and Proposition 11.9 in Ref. 54. In addition we com-
ment that, while this paper was under review, Ref. 25 appeared. Here the authors
show that, whenever the energy is differentiable, a time fractional gradient flow can
be rewritten as a classical gradient flow for a modified energy, one that takes into
account the history of the solution. The results of that work could be extended to
the case considered here, where the energy is convex but may not be differentiable.
Since our solution u satisfies —0®(u) > DYu € L2(0,T;H), the modified energy
could be constructed in the same way as in Theorem 2 of Ref. 25. The decay of the
energy can, in principle, be related to the decay of this modified energy. However,
this observation is irrelevant to our investigation in this section.

Let us here study, for the case f = 0, the asymptotic behavior of solutions
to time fractional gradient flows. We first recall that Proposition 5.11 in Ref. 39
proves the following convergence result under the assumption that the energy & is
uniformly convex.

Theorem 4.11. (Convergence to equilibrium I) Assume that the energy ® is l.s.c,
with nonempty effective domain and there is p > 0 for which

I
w e ®(w) ~ & ull,
is convex. Let u* € H be the global minimizer of ®. Then, the energy solution to
(1.2) with f =0, satisfies, fort > 0,
(u(t)) = Ping < (P(u0) = Pine) Ea(—2ut),  [lu(t) — v’ < [Juo — u™[| Ea(—put®).
Let us extend this result by removing the uniform convexity assumption.

Theorem 4.12. (Convergence to equilibrium II) Let f = 0 and assume that the
energy ® is conver, l.s.c., and with nonempty effective domain. Choose u* € ‘H such
that

(I)inf = (I) (u* ) .

Note that u* may not be unique. Let u be the energy solution to (1.2), P be an
arbitrary time partition, and {Uy,}n>0 be the solution to (4.7). We have, for all
t>0andn >0,

[Un = w™|| < |0 = u™[|,  Jlu(t) — || < [luo — w7
Furthermore, there exists a constant C independent of u, ®, a such that
D(u(t)) — Pint
< min{®(ug) — Pint, (P(ug) — @inf)% lug — w*||T(1 — a)_% t7%}. (4.23)
This guarantees that limg_ oo ®(u(t)) = Pjnt.
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Proof. We split the proof in several steps.
First we note that, since — (D3U), € 0®(U,), we use (3.20) and the definition
of subdifferential set to obtain

SDRIU — '), < (U — ', (DRU),) < B(u') — @(U,) <0, (4.24)

Hence, from Theorem 3.7, we get
U —w*[|* < | Uo — w1
Take Uy = up and let 7 | 0, we immediately get |Ju(t) — u*|| < ||ug — u*|| as well.
Let E,, = ®(U,,) — ®ins. From (4.12) we have
(DFE), = (Dp®(U))n < 02 (Uy)|*,
where by 0®(U,,) we denote any element in this subdifferential. Since
O(Un) = Pint < (9Q(Un), Un = u") < [[0D(Un)|[[|[Un — u||
< [|0@(Un)[[[|Uo — u"|l;

we have
E, E?

(D3E), < — " = —vEy,

oo(U,)| >
0w (U, e

~ U0 =’
for v = ||Uy — u*||~2. Consider the following discrete system with W,, > 0
(DSW),, = —vW2, W(0) = Ej. (4.25)

It is easy to show that there exists a unique solution satisfying 0 < W,, < Fy. By
the discrete comparison in Theorem 3.7, we have F,, < W,,. Let the time step 7 | 0,
we see that {W,,} converges to the solution of the fractional ODE

D%w = —vw?, w(0) = Ey. (4.26)

This can be checked easily because the right-hand side w — —vw? is Lipschitz
for w € [0, Ep], or one could also view it as a time fractional gradient flow for

d(w) = M and refer to the proof of Theorem 4.5.
When lettlng 7 1 0, owing to Theorem 4.9 we showed in the proof of Theorem 4.5
that Up uniformly converges to u. Hence,

B(u(t)) — Bins < 1iigltinft<1>(U,<j’>) — B¢ < liminf W) < w(t).
T st —

710,t, —t
Now recall that, owing to Theorem 7.1 of Ref. 66, we have
1 1 1 a
w(t) <min{Ey, CEv T (1—a) 2t 2},
which implies the desired result (4.23). O
Remark 4.13. (Rate of decay) The rate of decay for the energy obtained in (4.23)

may not be optimal. Although Theorem 7.1 of Ref. 66 shows that the solution
o (4.26) decays like 2, we know that the energy cannot behave exactly like
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®(u(t)) — Ping ~ t 2 . To see this, we take the fractional integral of order « in (4.24)
and obtain

tn
||U —wP < %HUO C |2 - ﬁ/o (tn — )21 (B(Tp(s)) — Bing) ds.
This implies that
1 /t" (tn — )2 @(Tp(s)) — Binr)ds < ~[| Vo — u*|> < +o0.
I'(a) Jo 2
By passing to the limit, this also holds for the continuous solution. If ®(u(t))— P ~
t7= for large ¢, then

t
/ (t—8)* (D (u(t)) — Pinr) ds — +o00,
0
as t — 400, which cannot be true.

Using Theorem 3.9 we also have convergence of the energy for our discrete
solution.

Theorem 4.14. (Convergence to equilibrium IIT) Under the same assumptions of
Theorem 4.12, we have for any partition P that

q)(Un) — (binf S min{(I)(Uo) — (binf, ((I)(U()) — q)inf>%1—‘(0é )2 ||U0 — U ||tTa},

which implies that limy, oo ®(Uy,) = Pint.

Proof. From the proof of Theorem 4.12, we see that for E,, = ®(U,,) — ®i,r we have
E, <W,, where W,, > 0 was defined in (4.25). To get an upper bound for W,,, we

consider a new partition P with only two points tg = 0,¢; = t,. By Theorem 3.9,
we have
En S Wl7
where Wl > () satisfies
—~ Na+1 —~
(DIW); = %(W1 Wo) = —vW?2,

and v = ||Uy—u*||~2. Since Wy = Ey > 0, the equation for W, immediately implies
that

—~ —~ r 1
Wy < W, wW?< %WO.
n
Combining these inequalities with F,, < Wl finishes the proof. O

We comment that, both in Theorems 4.12 and 4.14, without uniform convexity,
the equilibrium «* point may not be unique. Hence, we cannot state convergence
of solutions to a particular equilibrium point. The best, and immediate, result that
one can obtain is the weak convergence, up to subsequences, to an equilibrium
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point. For this reason, instead, let us show that the solution cannot oscillate too
much for large times. This is obtained in several steps.

We begin with an enhanced stability result, whose proof is inspired by the
techniques of Ref. 62.

Lemma 4.15. (Enhanced stability) Assume that f = 0, and that ® is conver,
l.s.c., and with nonempty effective domain. Then, u the energy solution to (1.2)
satisfies

1

sin( %)

D% u||L2(0 TiH) S (®(uo) — Ping)- (4.27)

Proof. The proof proceeds by obtaining estimates for discrete solutions defined
via (4.7). Let P be a time partition. Using the convexity of ® and the definition of
subdifferential we have, for ¢t € (t,—1,ts],

(p(U") 7®(Un 1) <(DPU)n7Un7Un 1> <DQUP() U *Un_1>.

The inequality above can be rewritten as
tn ~
®(Uy) — 2(Un-1) g/ —(DUp(t), Up(t)) dt,
tn—1

which leads, after summation from n=1ton =N, to

B(UN) = 900 <~ [ (D2Tp(0).Tp(0)

The inequality (see, for example, Lemma 2.1 in Ref. 62, or Lemma 3.1 in Ref. 48
for a proof)
1 T t
—/ / (t — 5)P~Y(h(s), h(t))dsdt
B) Jo Jo
1

> cos (B;) /OT W/Ot(t—s)5/2_1h(s)ds

can be used with 8 =1 — a and h(t) = ﬁ7’, to obtain that

a+1A
an () o2

T
SA<D%hU 4(1)) dt < B(Up) — B(Uy) < B(Uo) — Bint.

2
dt

2

L2(0,T;H)

Indeed, since [77; is absolutely continuous, all definitions of the Caputo derivative,
in particular (1.1) are valid.

It is now easy to see that if we use this stability and pass to the limit in the
proof of Theorem 4.5, then we obtain (4.27), as we intended to show. O

With this at hand we can bound the oscillation of the solution for large times.
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Theorem 4.16. (Oscillation estimate) In the setting of Theorem 4.15, let u be the
solution to (1.2). For any € > 0, there exists Ty > 0 such that

U] car2(1y 00im) < E-
In other words, for anyt > Ty and s > 0, we have

[lu(®) — u(t+ s)|| < £s/2.

1ta
Proof. Since Theorem 4.15 has shown that D.? u € L?(0,00;H), the solution to
(1.2) exists for all times ¢ > 0. Moreover, there is T; > 0 such that

1
r(55ar?

Wl m

atl
1D ullp2(ry 00m) <

Notice now that there is a constant C' > 0 such that, for every ¢ > T}, and all s > 0
we have

(=T P —(t =Ty 4 s)* P <Ot —Ty) 2152,

Since § — 1 < 0 we can choose now Ty > T3 for which
C o i atl €
—C (m-m)Et [ D ) < £
sy (M- T8 ! [ I e < 3

Let t > Ty. We have the representation

u(t) = u(0) + 1“(12“)/0 (t—r)= D.? u(r)dr.

We decompose u(t + s) — u(t) into three parts

t+s 1 lto
u(t+s) —u(t) = I‘(ll_“)/t (t4+s—7r)"7 D.? u(r)dr

_1—\(11;(1)/t ((t—r)QT_l — (t—|—s—7‘)aT_1> Dcl#u(r)dr

T1
1 E a—1 a—1 lto
fﬁ/ ((tfr)Tf(t+sfr)T) D.? u(r)dr
I'(=%%) Jo
L4 Ltm)
= F~i—ay {1 2 3)-
L(52)
Clearly, by the Cauchy—Schwarz inequality, we have
1/2

t+s t+s 1ta
||11||<(/t (t+s—r)*dr / ||D02u<r>||2dr>

52/2 lta
< mHDc >l g2t ttsim)
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L] < (/Tj ((t—r)”T_l_(t+s_r ;1 dr/ D5 dr>1/2
(

Sa/2
a1/2”D u||L2 (T, t5H) -

and

1

t [e] +
/‘a—rWP—a+s—er%v) 1D ull o e
T

IN

The choice of T} guarantees that

1 2
(M + | I2]]) < Zes/?,
F(lz ) 3

For I3, notice that

T a4
HMB«R—EV*—@wﬂ+$W§/waumwr
0

o g a [T _an
< CO(Ty—T1)5 ! f/ DS u(r)||dr.
0

Thus, the choice of Ty implies

1 €
— I < 2522
L(+5%) 3
Combining the estimates for I, I, I3 proves the result. O

5. Time Fractional Gradient Flows: Numerics

Since the existence of an energy solution was proved by a rather constructive
approach, namely a fractional minimizing movements scheme, it makes sense to
provide error analyses for this scheme. We will provide an a priori error estimate
which, in light of the smoothness u € C%/2([0, T]; 1) proved in Theorem 4.5, is
optimal. In addition, in the spirit of Ref. 51 we will provide an a posteriori error
analysis.

5.1. A priori error analysis

The a priori error estimate reads as follows. We comment that this result gives us
a better rate compared to Theorem 5.10 of Ref. 39.

Theorem 5.1. (A priori I) Let u be the energy solution of (1.2). Given a par-
tition P, of maximal step size T, let U € HY be the discrete solution defined by
(4.7) starting from Uy € D(®). Let Up and Up be defined as in (4.10) and (2.3),
respectively. Then we have,

lu = UpllL=(o.r20) < lluo = Uoll + CT2 (1172 (0.7:20) + ®o — Bine) /%, (5.1)
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and

s / (t — ) p(u(s), Tp(s))ds

te[0,T
< luo = Uol” + CT(I f12 0,7:7) + Po — Pint), (5.2)

where ®g = max{®(Uy), P(ug)}, and the constant C depends only on «.

Proof. The proof can be obtained by following the same procedure employed in
the proof of Theorem 4.9. In the current situation, however, instead of comparing
two discrete solutions we compare the exact and discrete ones. The only difference
is that we allow Uy # wug here, but this presents no essential difficulty. For brevity,
we skip the details. O

5.2. A posteriori error analysis

Let us now provide an a posteriori error estimate between the discretization in
(4.7) and the solution of (1.2). We will also show how, from this a posteriori error
estimator, an a priori error estimate can be derived. Let us first introduce the a
posteriori error estimator.

Definition 5.2. (Error estimator) Let P be a partition of [0,7] as in (2.2), and
U € #¥ denote the discrete solution given by (4.7). We define the error estimator
function as

Ep(t) =Epa(t) +Epa(t), (5.3)
where
Ep (1) = (D20p(t) — Fp(t), Up(t) ~ Up(t)),  Epalt) = (Tp(t) — S(Tp(t)).

Notice that the quantity €p(t) is nonnegative because Fp(t) — D*Up(t) =
Fow) — (D%U)n(t) € 00(Upw)) = 0®(Up(t)). It is also, in principle, computable
since it only depends on data, and the discrete solution U. It is then a suitable
candidate for an a posteriori error estimator.

The derivation of an a posteriori error estimate begins with the observation
that, for any w € H, we have

(DeUp(t) = (1), Up(t) — w) + o(Up(t) — D(w)
= &p(t) + (Fp(t) — D2Up(t),w — Up(t)) + D(Tp(t) — B(w)
+(f(t) = Fp(t),w - Up(t))
< Ep(t)+ (f(t) = Fp(t),w = Up(t)) — o(Up(t); w). (5.4)

In other words, the function Up solves an EVI similar to (4.3) but with additional
terms on the right-hand side. We can then compare the EVIs by a now standard
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approach, that is, set w = u(¢) in (5.4) and w = Up(t) in (4.3), respectively, to see
that

~ ~

(D2 (Tp = u) (1), Tp(t) = u(®)) + o (Tp(t); u(t)) + o(u(t); Up (1))

< Ep(t) + (f(t) — Fp(t), u(t) — Up(t)) (5.5)

for almost every ¢ € [0, T]. Consider the following notions of error:

1/2
E= (tESE(l)pT]{E%(t) + Eg(t)}) . En(t) = |lut) — ﬁp(t)Ha

. R B 1/2
Ea(0) = (1 [ (0= 9" o(ule):Dn(e)) +op(sxutelas) - 6.0

(o

We have the following error estimate for E.

Theorem 5.3. (A posteriori) Let u be the energy solution of (1.2). Let P be a
partition of [0,T] defined as in (2.2) and let U € HY be the discrete solution given
by (4.7) starting from Uy € D(®). Let E and Ep be defined in (5.6) and (5.3),
respectively, The following a posteriori error estimate holds

1/2
2 2 _
E< (||U0 — Ul + F(Oé)SPHLg(o,T;H)) + m\\f —Fpliiorm.  (5.7)

Proof. From (2.18) we infer
1 ~ ~ ~
S DeNUP — ul*(t) < (DE(Up = u)(®), Up(t) - u(t))

< Ep(t) + (F(t) — Fp(t), u(t) — Up(t))
—o(Tp () u(t) — o(u(t); Up(t)).

The claimed a posteriori error estimate (5.7) follows from Theorem 2.8 by setting

~

A=0, at) =I(Tp =)D, b(t) = 2(0(Tp(1); u(t)) + o (u(t): Up(1))),
c(t) = 28p(t), d(t) = |I(f = Fp)®) D

5.3. Rate of convergence

Although we have already established an optimal a priori rate of convergence for
our scheme in Theorem 5.1, in this section we study the sharpness of the a posteriori
error estimator Ep by obtaining the same convergence rates through it. We comment
that neither in Theorem 5.1 nor in our discussion here, we require any relation
between time steps. We will also consider some cases when the rate of convergence
can be improved.
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5.3.1. Rate of convergence for energy solutions

Let us now use the estimator £p to derive a convergence rate or order O(7/2) for
the error E, defined in (5.6), when f € L2(0,7T;H). Notice that such regularity a
priori does not give any order of convergence for || f —Fp L1 (0,753) in (5.7). Observe
also that the rate that we obtain is consistent with classical gradient flow theories,
where an order O(71/?) is proved provided that uy € D(®) and f € L*(0,T;H);
see Sec. 3.2 in Ref. 51.

We first bound ||Ep||L1 (0,75%)-

Theorem 5.4. (Bound on [|€p| 1 (0,7:2)) Under the assumption that Uy € D(®),
the estimator Ep, defined in (5.3), satisfies

1€ L1 (0.757) < OTQ(”fH%g(O,T;H) + ®(Uo) — Pinf), (5.8)

where the constant C' depends only on a.

Proof. We bound the contributions £p ; and £p s separately. The bound of £p ;
follows without change that of the term II of (4.15) in Theorem 4.9. Thus,

1€P ALy 0y < CT(1f 1172 0.7:20) + P(Uo) — Ping)- (5.9)

To bound &p o, we recall the function (/1\)7:, defined in Theorem 4.7, and its
properties. Define also ®p(t) = ®(Up(t)). We have

Epa(t) = ®(Up(t)) — ®(Up(t)) < p(t) — Bp(t)

) (/Ot(t — 5)* 1D®p(s)ds

[t]p

H
‘H

=3
e

|
>~

([t]p — s)a_lD;X(/I\)p(s)ds>

I
‘H

—
Q

( [ 1= = (10 — o 12 Be(s1as

(a)
[t]p R
- ([tl» — s)“ng@p(s)ds>

-

< 1 [ 169 = ([ - ) F (o) 20
w1/ " (e - "1 D2Bp(s)ds

= it [ =9 = (7 - F s
- s (1 = 0D Be()

= 1y() - Lo(1).
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On the one hand, proceeding as in the proof of Theorem 2.6 we obtain

sup [ (=07 T (0)d < Cor® [Pl 00y
rel0,7] J0

On the other hand, using

“1a(0) < oy (1l = 07 (D2n(0) - PR
< e (5 P01 - D280 00)

we have for any r € [0,T] that

_ /T(r ey ()t

0

T T o1 1 _ ) -
= m/ (r=1) (4HF<t>H —Dc%u)) dt
ENCES)) /0 (r = )" H[Fp()[*dt = —(Dp(r) — B(U))
= mﬁpuia(omm + %(@(Uo) — ing).

Therefore combining the estimates for I; and I we have proved that

s[up ]/ (’f’ _ t)a715p72(t)dt < C4Ta(”f||%i(0,T;’H) + (I)(UO) - (I)inf)v
rel0, 7] J0

which together with (5.9) proves (5.8) because Ep is nonnegative.

O

We next take advantage of Theorem 2.5, and derive a rate for E without addi-

tional smoothness assumptions on the right-hand side f.

Theorem 5.5. (A priori II) Let u be the energy solution of (1.2). Let P be a
partition of [0, T] defined as in (2.2) and U € HN be the discrete solution given by

(4.7) starting from Uy € D(®). Let E be defined in (5.6). Then we have
E < [luo = Ull + CT* (1 /172 (0,730 + ®(Un) — Bint) /%,

where the constant C' depends only on .

Proof. We follow closely the approach and notation in Theorem 4.9. Define

G(t) = ﬁ / (t— )1 (f(s) — Fp(s)) ds

0
and note that, by Theorem 2.5, G satisfies

7'Q/Q||G||Lc><>(o7:r;711) + Gz 0,1m) < C17%[| f]

L2(0,T;H)>

(5.10)
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where the constant depends only on a. Set e = u — Up and note that (5.5) can be
rewritten as

~

(DZ(e = G)(t), (e = G) (1)) + o (Up(t);u(t)) + o (ult); Up(t))
< &p(t) — (D¢ (e = G)(1), G(1)).

Notice the resemblance with (4.17). We can thus proceed as in Theorem 4.9, and
use Theorem 5.4, to deduce that, for some constant C, depending only on «

lu = Up = GIP(8) + Eo (t) < Juo = Uoll* + Co7(1f 172 (07:30) + (o) — Pin)-

Estimate (5.10) then implies the result. a

5.3.2. Rate of convergence for smooth energies

Let us show that, at least for smoother energies, it is possible to obtain a better
rate of convergence. We will, essentially, assume that the energy is locally C'*#
for 8 € (0,1]. More specifically in this section we consider energies that satisfy the
following. There exists 8 € (0,1] such that for every R > 0, there is a constant
Cs,r > 0 for which, whenever wy,ws € Bg and & € 0®(w),

D(wz) — P(wr) — (€1, w2 — w1) < Cp gllws — w7, (5.11)

where Bp denotes the ball of radius R in H. Notice that, by Theorem 4.8, all
the discrete solutions Up are uniformly bounded in C([0,T];H). Thus, we can fix
R > 0 depending only on the data such that, for any partition P and all ¢ € [0, T},
ﬁp(t) € Bpg. Therefore, (5.11) implies that

®(w) — D(wy) — (&1, we —wy) < Cpllwg — wy]|* 7, (5.12)

for some constant Cs = Cj i and all wy,ws € Up([0,T)), & € 0B (wy).

A particular example to which this situation applies is the following. Let H = R¢
and ®(w) = %|w|p with p > 1. In this case, (5.12) holds with 8 =1 for p > 2 and
B=p—1forpe(1,2). For p < 2, to reach = 1, we must assume that u and ﬁp
stay uniformly away from zero. This example can, of course, be generalized.

In this setting, we have the following improved estimate for ||Ep |11 (0,7:2)-

Theorem 5.6. (Improved bound) Assume that the energy ® satisfies (5.12). Let
u be the energy solution to (1.2), and denote by P a partition of [0,T] defined as in
(2.2). Denote by Up the solution of (4.7) starting from Uy € D(®). In this setting,
the estimator Ep defined in (5.3) satisfies

||5P||L;(0,T;H) < CT*(1=8)/2 La(p+1)
X (1F1I72 (0,:20) + ®(Uo) — Bing) PHH72, (5.13)

for some constant C' that depends on «, B, and the problem data.
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Proof. Owing to (5.12), the estimator £p can be bounded from above by
Ep(t) = (D2Up(t) = Fp(t), Up(t) — Up(t)) + (Up(t)) — (Tp(t))
< CollTp (1) - Tp(||™+*.
Applying Theorem 2.6 with p =1+ 8 we have

r
Iplliyoran < sup Ca [ (=" |Tp(t) ~ Tr(t)Pa
ref0,7] 0

S CTa(1+ﬁ) ||D?(7H2-£fﬁ (O,T;H),

for some constant C' that depends on «, 8 and the problem data. Since 145 € (1, 2],
Theorem 4.6 and the embedding

oy (1=8)/(2(1+8))
||w||L}j5(0,T;H) < ”wHLg(O,T;”H) (Oz)

imply that

HDSUPHILZEB(O,T;H) < C’QTO‘(P’BW(Hf”%g(o,T;H) + ®(Up) — Dyyg) 1 HP)/2,

and this implies the claim. O

Now, in order to obtain a convergence rate using (5.7), we still need to control
If = FpllLy 0,r:1)- To do so, we invoke inequality (2.5) and see that
qg—1
qao — 1

- (a=1)/q -
If = Fplloyorm < ( ) T4 f — Fp|lao,rs0)

for ¢ > 1/a. Thus, if f € W*(1+5)/2:4(0, T; H), then we have

If = Fpllpaora < OO flyaais zao.rm
and hence
If = Fpllrsora < CT* MmO flaain e, rm (5.14)
for some constant C' that depends on « and ¢. Combining this with Theorem 5.6,

the following convergence rate is a direct consequence of Theorem 5.3.

Theorem 5.7. (Improved rate: smooth energies) Assume that the energy ® satis-
fies (5.12). Let u be the energy solution to (1.2), and denote by P a partition of [0, T
defined as in (2.2). Denote by Up the solution of (4.7) starting from Uy € D(®). In
this setting, if there is ¢ > 1/a for which f € W*B+1D/2:4(0 T, H) then the error
E, defined in (5.6), satisfies

E < |lug — Uoll + CT*CV (1 1172 0 r30) + ©(Uo) — Bin) P+

+ ‘f|Wa(B+1>/2,q(o,T;7-[)]7

where the constant C' depends on «, 3, q, T, and the problem data.
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5.3.3. Rate of convergence for linear problems

Let us now show how for certain classes of linear problems an improved rate of
convergence can be obtained. We first assume that we have a Gelfand triple,

Vs H—V
and that
1
—a(w,w), weV,
D(w) = { 2 (5.15)
+00, wé¢V,

where a : V x V — R is a nonnegative, symmetric, bounded, and semicoercive
bilinear form. In this setting, (4.1) becomes

(D&u,w) + a(u,w) = (f,w), Ywe.
Notice that the bilinear form induces an operator 24 : V — V' given by
Rlv, w)y yr = a(v,w), VYo,weV,
which implies that, for almost every ¢ € (0,7'), we have a problem in V' which reads
D&u(t) + Au(t) = f(2).

So that, ug € D(0®) is equivalent to Aug € H. The bilinear form a also induces a
semi-norm on V
[w]V = a(waw)l/Q'

We further assume that f € L2(0,7;[-]y). More essentially we also require ug €
D(09).

The motivation for an improved rate of convergence is then the following, at
this stage formal, calculation. From (2.18) we have

%D‘S‘IIQW(t)II2 < (D2 Au(t), Au(t)) = (Au(t), ADu(t))
= (f(t) = DZu(t), ADZ u(t))
= a(f(t), Du(t)) — [DZu(®)]3,
< [FOWIDZu®)]y — [Deu(t)],
which then shows via (2.17) that

@) oty + [ =iz as

2
, 1/2
< T o 2 (/0 =9 Ol ds)

<(/ (¢ - 5 (DU 1s) "
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This implies that

t
Dzl 0min = b | =t (s s < Tl
€10,

FIF172 0701

which says that D%u is uniformly bounded in L2 (0, T;[]y).
To make these considerations rigorous, we consider the discrete problem (4.7),
which in this case reduces to

(DSU),, + AU, = F,.

Then the computations can be followed verbatim to obtain that

Ko 17+ [ (¢ (D2 Op(s) s
< I'(a) v

< 2 jouw? + (/Ot(t - s)a—l[Dgﬁp(sﬂ?ds)
“(/ (- " Fa(s)s) "

t
DEORs gy = s [ (= 5" DT (s
te[0,7]J0

and

< T(a)||2T|1* + [[FP 172 (073130 (5.16)

Similar to Theorem 2.4, we know that

IFP N2 0.75000) < ClFllLz 0.7300)

and hence D2Up is uniformly bounded L2 (0,T; []y).

With this additional regularity, we can obtain an improved rate of convergence.
To see this, we will use that ® is, essentially, quadratic to observe that in this case
the error estimator, defined in (5.3) reduces to

1~ = ~ = 1.~  —
&p = 5a(Up —Up,Up —Up) = 5[Up — Uply. (5.17)
These ingredients together give us the following improved estimate.

Theorem 5.8. (Improved rate: linear problems) Assume that the energy ® is given
by (5.15), that the initial data satisfies QAug € H, and that f € L2(0,T;[-]y). Let u
be the energy solution to (1.2), and denote by P a partition of [0,T] defined as in
(2.2). Denote by Up the solution to (4.7) starting from Uy € H, such that AU, € H.
In this setting, we have that

1€p 1L (0,70 < CT2*(|| AT |1* + Hf||2Lg(o,T;[~]v))7 (5.18)
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where the constant C' depends only on a. This, immediately, implies that
E <|lug — Uoll + CT*(12Uo || + I/l .2 0, 7:03)) + IIf = FllLs 20,
so that if, in addition, we further have f € W*49(0,T;H) for some q > 1/, then
E <|luo — Ul + CT([I&Uol| + I f L2 0, 7301) + [ flweaoimy)s  (5.19)
where the constant C depends only on o, q and T.
Proof. Owing to Theorem 5.3 and Eq. (5.14), the convergence rate (5.19) follows

directly from (5.18) in the same way as Theorem 5.7. We only need to prove (5.18)
and bound ||Ep||L1 (0,7;3)- Using (5.17), for every r € (0,7] we have

Q/OT(T el (t)dt = /Or(r ) T — Tpl(t)dt.
Now, we invoke Theorem 2.6 with p = 2 and the semi-norm [-]y to obtain that
/(:(T — ) Up — Uplp(t)dt < CTQQ[D?UP]QLg(o,T;[-]V)-
By (5.16), we have that D*Up € L2(0,T; []y) uniformly in P and thus arrive at

/0 (r = )2 [Tp — Upl3(£)dt < CT (Ao |12 + 1 £122 (0 121
This implies the desired bound
1€P L1 0.m90) < CT** (1T + 11172 (0,7501))

for [|Ep||L1 (0,7;2) and finishes the proof. a

6. Lipschitz Perturbations

In this section, inspired by the results of Ref. 3, we consider the analysis and

approximation of a fractional gradient flow with a Lipschitz perturbation. Namely,

we consider the following problem:

Dgu(t) + 0% (u(t)) + ¥(t, u(t)) > f(2), t€(0,T], 6.1)
u(0) = up. .

We assume that the perturbation function ¥ : (0,7] x H — H satisfies

(1) (Carathéodory) For every w € H the mapping ¢t — (¢, w) is strongly mea-
surable on (0,T) with values in H. Moreover, there exists £ > 0 such that for
almost every t € (0,7) and every wy,ws € H we have

||\Ij(t7w1) - \Il(t7w2)|| S »Q”UH - U}QH
(2) (Integrability) There is wo € L2(0,T;H) for which
t— U(t,wo(t)) € L2(0,T;H).
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We immediately comment that our assumptions can fit the case where ® is
merely A—convex. Moreover, these assumptions also guarantee the existence of i €
L2(0,T;R) for which

Wt w)| <¢t) + Llwl, VweH.

Consequently w +— W(-,w(+)) is Lipschitz continuous in L2 (0,T;H).
We introduce the notion of energy solution of (6.1).

Definition 6.1. (Energy solution) A function u € L?(0, T’; H) is an energy solution
o (6.1) if

(i) (Initial condition)

¢
. . 2 _
ltlﬁ)l]{) lu(s) — upl|*ds = 0.
(ii) (Regularity) D%u € L*(0,T;H).
(iii) (Evolution) For almost every ¢ € (0,T") we have

DZu(t) + 0®(u(t)) + (¢, u(t)) > f(1)-

Evidently, an energy solution to (6.1) satisfies, for almost every ¢t € (0,7) and
all w € H, the EVI

(Du(t), u(t) —w) + (U(t, u(t)), u(t) — w) + (u(t)) — P(w)
< (1), u(t) — w). (6.2)

6.1. FExistence, uniqueness, and stability

Our main result in this direction is the following.

Theorem 6.2. (Well posedness) Assume that the energy ® is convez, ls.c., and
with nonempty effective domain. Assume the mapping ¥ satisfies conditions (1)
and (2) stated above. Let ug € D(®) and f € L%(0,T;H), then there is a unique
energy solution to (6.1) in the sense of Theorem 6.1. Moreover, we have that this
solution satisfies

I DgullLz 0,7:1) < C,
where the constant depends only on the problem data o, T, ug, f, ®, and V.
Proof. We begin by proving existence. We essentially follow the idea used for the
classical ODEs. A similar argument was also used in the proof of Theorem 4.4 in

Ref. 36.
For w € L2(0,T;H) we denote by &(w) € L2(0,T;H) the energy solution to

D¢u(t) +0®(u(t)) 3 f(t) — U(t,w(t)), ae. te(0,T], u(0)=uo.

Our assumptions and the results of Theorem 4.5 guarantee that this mapping is
well defined, and moreover, &(w) € L*°(0,T;H). We want to show that there exists
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a fixed point w such that &(w) = w. If u; = &(w;) for ¢ = 1,2, then for almost
every t we have

S D2 (1) — a0 < ({6, wn (8)) = Wt wa(e)), wn (6) — o).

This readily implies that

s (8) — us(8)] < % / (¢ = )7 s (5) — wa(s) s (5) — wals)]ds

Lllur — usal| Loo (0,43) /t
< = (t =) Hwi(s) — wa(s)|lds
I(a) 0
which as a consequence yields that, for every ¢ € [0,T],

£
lur — uzll oo o,6m) < mﬂwl — wal|L1 (0,6:7) -

We claim that by induction, we can further obtain the following stability result

16" (w1) — &7 ()] < =y — (6.3)
1 2)IIL>(0,t;H) = F(chr 1) 1 2(|L>°(0,t;H) .

for any ¢ € [0,T] and positive integer n. In fact, for n = 1, we simply have

£
llur — |l oo 0,6m) < mﬂwl — wal| L1 (0,6:7)

£

< — — oo ET
= F(a—i-l) ||w1 U/QHL (0,t;H)
Furthermore, if (6.3) holds for n = k, then for n =k +1
£
165+ (w1) — & (wa)|| oo (0,0520) < mHGk(wl) — &"(wa)l L1 (0.6:30)
£ " .
< —— su r—8)%
~ o) 0<rgt/o ( )
£k sak
-, . < - oo . d
X ok 1y w1~ welle= o0 ds
£k+1ta(k+1)

= Tak+n+p vt~ vl

which proves (6.3). Now consider wy € L2(0,T;H) and the sequence of func-
tions defined via w, = G"(wp). It is easy to see that, for n > 1, we have
wy, € L0, T;H), and Y7 | [[wn — Wpi]| Lo (0,753) converges because

o0

277/ tan o
2 Tan 1) ~ Pl

This shows that w, — win L>(0,T;H) for some u. Since wy, 1 = &S(wy,), it follows
immediately that « = &(u). This proves the existence of solutions.
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As for uniqueness, assume that we have two solutions u; and wuo, for almost
every t, we have

%D?Hul(t) —up(®)]* < (Ut ur(t)) — U(t,ua(t)), ur (t) — ua(t)

< £ [lua () — ua(8)]%

Combining with the fact that u;(0) = u3(0) = wg, one obtains that |uy(t) —
ua(t)||* = 0 for almost every ¢, which proves uniqueness.

Finally, the estimate on the Caputo derivative trivially follows from the iteration
scheme. We skip the details. O

For diversity in our arguments, we present an alternative proof. The arguments
here are inspired by those of Theorem 5.1 in Ref. 3.

Proof. (alternative proof of Theorem 6.2) Let us, for u > £/ define

t
fully = sup e [ (=5 (o)
te[0,7) 0

which by the obvious inequalities e #7 < e™#t < 1, defines an equivalent norm in
L2(0,T; H).

Let & : L2(0,T;H) — L2(0,T;H) be as before. As shown, if u; = &(w;) for
1 =1,2, then for every ¢t we have

e [ o
lur () — ua(8)]|* < Fi/ (t = )" Hwi(s) — wa(s)[[llur(s) — uz(s)llds,
(@) Jo
which as a consequence yields that, for every r € [0, T,
r —ur
e [ =0 ) = wato) P < Tt

where

I(r) = / e / (t = )% s () — wals) s (s) — wals) | dsdl.

Obvious manipulations then yield
T
1) < flur = uallllws = wall, [ (= )" terat,
0

which implies

T £ T
e‘*””/ r— ) Huy(r) — us(r)||?dr < —/ r— ) lemnlr—t gt
=0 ) —wPar < 555 [0

£
S o < 17
1
so that & is a contraction with respect to the norm || - [[,. We conclude then by
invoking the contraction mapping principle. This unique fixed point, evidently, is
an energy solution in the sense of Theorem 6.1.

Uniqueness and stability follow as before. |
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6.2. Discretization

Let us now present the numerical scheme for problem (6.1). We follow the previ-
ous notations and conventions regarding discretization so that, for any partition
P of [0,T] defined as in (2.2), we can also consider the discrete solution defined
recursively via

F, — (D3U),, — ¥, (U,) € 09(Uy), (6.4)
where F,, is defined in (4.8) and ¥,, : H — H is defined by

U, (w) = ][t" (¢, w)dt.

tn—1

Clearly, for every n, ¥, is Lipschitz continuous with Lipschitz constant £. Using the
definition of D% in (3.3) and K;lnn = (Kp.nn) ! = T(a + 1)7,%, we can rewrite
(6.4) as

n—1
(o +1)7, U, + U, (U,,) + 09(U,) 3 F, — Z K3, Ui
1=0

Hence the discrete scheme can be recursively well defined provided £7* < T'(a+1).
For this reason, moving forward, we will implicitly operate under this assumption.
It is possible to show that the discrete solutions in (6.4) satisfy

I1DEUp|

rzorn < C, (6.5)

with a constant that depends on problem data but is independent of the partition
P. To see this, we follow the arguments of either proof of Theorem 6.2, and realize
that while the operator & may depend on P, the estimates that we obtain do not.

6.3. Error estimates

Let us now show how to derive error estimates for the problem with Lipschitz
perturbation (6.1). We recall that the energy solution u to this problem satisfies
(6.2). In addition, for simplicity, we will operate under the assumption that the
perturbation does not depend explicitly on time, i.e. U(¢, w) = ¥(w) for all w € H.
The general case only lengthens the discussion but brings nothing substantive to
it, as the additional terms that appear can be controlled via arguments used to
control terms of the form

16 = Fr().

Similar to the discussion before, we define the error estimator

~ —

Ep,e(t) = Ep(t) + (U (Up(1), Up(t) = Up(t)), (6.6)
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which, as before, is nonnegative. In addition, for any w € H we have
(D2Up () + U (Up(1)) - f(1), Up(t) — w) + &(Up(t) — ®(w)
= &po(t) + (Fp(t) = W(Tp(t) — DEUp(t),w — Up(t) + ®(Tp(t) — B(w)
+(U(Tp(t) — W(Up(t) + f(t) = Fp(t),w — Up(t))
< Ep o)+ (U(Tp(t) = W(Up(t) + f(t) = Fpt),w - Up(t)
—o(Up(t);w).
Setting w = u(t) in the inequality above and setting w = U(t) in (6.2) lead to
(D2(Up —u)(t), Up(t) — u(t)) + o(TUp(t);u(t)) + o (u(t); Up(t))
< Ep,e(t) + (T(Tp (1) — W(Tp(1) + f(t) = Fp(t), u(t) — Up(t)
+(U(Up(t)) = W(ult)), ult) — Up(t)) (6.7)
for almost every ¢ € (0,T). This implies the following error estimates.

Theorem 6.3. (A posteriori: Lipschitz perturbations) Let u be the unique energy
solution of (6.1). Let P be a partition of [0,T) defined as in (2.2) and let U € HN
be the discrete solution given by (6.4) starting from Uy € D(®). Let E and Ep ¢
be defined in (5.6) and (6.6), respectively, The following a posteriori error estimate
holds

9 1/2
E< (Huo — Ul + w&,z”%(oy;y)) (Eo(28T*))Y/?

2 T — A~
+ () (||f — Fplleyorm + £lUp — Up||Lé(O,T;H)) EL(28T%).  (6.8)

Proof. We argue as in the proof of (5.3). To make formulas shorter we omit the
coercivity terms. From (2.18) and (6.7) we infer

S D205 —ulP(6) < {D2(Tp —u) (1), Tp(t) — u(t)

< Ep.o(t) + (U(t, Up(t)) — U(t,Up(t))
+f(t) = Fp(t),ult) - Up(t) + £|Up(t) — u(®)|*(¢)
< Epo(t) + (LITp(t) — Up(®)l| + [ £(t) = Fp (1))
< |Up(t) = u(®)]| + L|Tp(t) — u®)||. (6.9)
Then the error estimate (6.8) follows from Theorem 2.8 with
A=g, a(t)=|(Up—u)®)|, b=0, c=2Epc(t)
and

d(t) = L|Up(t) = Tp(t)|l + I(f = Fp)(®)]- D
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We also comment here that by Theorem 2.6
/2

1Up = Uplly 00 < CT|DEUP| L (0.7:7) < |DgUp|

WTQ| L2(0,T;H)>

where the constant C only depends on «. In addition, the norm on the right-hand
side is bounded independently of the partition P; see (6.5). Hence the convergence
rates proved in Theorems 5.5 and 5.7 also hold for problems with a Lipschitz per-
turbation. Since the proofs are almost identical, we only state the theorems below

without proofs.

Theorem 6.4. (Convergence rate: Lipschitz perturbations) Let u be the energy
solution of (6.1). Let P be a partition of [0,T] defined as in (2.2) and U € HY be
the discrete solution given by (6.4) starting from Uy € D(®). Let E be defined in
(5.6). Then we have

E < [lug — Uol|(Ba(28T*)'/? + Cr/2(| £l 2 0.7:2) + DU |12 0752
where the constant C' depends only on o, £ and T, but not on P.
Theorem 6.5. (Improved rate: smooth energies and Lipschitz perturbations)
Assume that the energy ® satisfies (5.12). Let u be the energy solution to (6.1),
and denote by P a partition of [0,T] defined as in (2.2). Denote by Up the solution

of (6.4) starting from Uy € D(®). In this setting, if there is ¢ > 1/« for which
f e WelB+1/2.4(0 T, H) then the error E, defined in (5.6), satisfies

E < |lug — Up|[(Ba(2ET%)/? + C1 7% D2Up || 12 (0.7:20)
+ Cor® V2| £ 12 0,00) + 1DETR| 22 (0,720 ) P/

+ | flwas+n /2,400,753 (6.10)

where the constants C1 and Cy depend only on o, 8,q, L, T, and the problem data,
but are independent of P.

Finally we consider the setting of Sec. 5.3.3 with a Lipschitz perturbation. Simi-
lar to (6.5), we can show that || D% (77; 22 (0,71, is bounded uniformly with respect
to the partition P. For this reason, an improved error estimate analogous to The-
orem 5.8 can be proved in this case.

Theorem 6.6. (Improved rate: quadratic energies and Lipschitz perturbations)
Assume that the energy ® is given by (5.15), that the initial data satisfies Aug € H,
and that f € L2(0,T;[]y). Let u be the energy solution to (6.1), and denote by P
a partition of [0,T) defined as in (2.2). Denote by Up the solution to (6.4) starting
from Uy € H, such that AUy € H. In this setting, we have that

E < |jug — Uo||(Ea(2£T*))? + C||f = Fll11 0,7:30)
+ O (|| + I fl 22 0,1301v) + 1P UP Lz (0,7;10v)

+D2UpllL2 0.170))+ (6.11)
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where the constant C' depends only on o, £ and T'.

7. Applications

Here we present a, far from exhaustive, list of example problems to which all
our developments can be applied. As a rule, we will present the problem, how
to cast it into our framework, provide some references where such a problem
has been studied before, and briefly describe how our results contribute to this
problem.

As we mentioned above, the list that we present here is by no means exhaustive.
In the case of PDEs, we only consider second-order equations on domains. Thus,
for instance, the space-time fractional parabolic problem studied in Refs. 50 and 11
can be cast in our framework but we do not discuss it here. We refer the reader to,
for instance, Ref. 40 for applications of this problem. Another omission is the case
of equations on graphs; see, for instance, Ref. 46.

7.1. Fractional differential equations with discontinuous
right hand side

Given some mapping A : S C R — R and ug € R, we consider the fractional
differential equation: Find w : [0,T] — R such that

D&u(t) + Au(t) = f(t), t€][0,T], u(0)=up. (7.1)

Most of the theory regarding existence and uniqueness of solutions to fractional
differential equations of this form requires, see Chaps. 6 and 7 of Ref. 20, that the

mapping
R? 5 (t,u) = F(t,u) = f(t) —Au e R (7.2)

is at least continuous. Consequently a discontinuous mapping A is not admitted by
the theory. Here we show under which conditions we can cover this scenario.

Set H = R. Assume that S is nonempty, convex, and closed; Assume also that
A is non-decreasing. Therefore, after possible modification on a Lebesgue null set,
this mapping is l.s.c. According to Theorem 1.1 of Ref. 35, the function

/Avdv, u €S,

O(u) we S

400, ué¢ S,

is absolutely continuous and convex. Moreover, 9®(v) = Av, where A denotes the
maximal monotone extension of A. It is in this sense then that (7.1) can be cast
into the setting of (1.2).

Integer order ODEs with discontinuous F, see (7.2), have been studied in Refs. 8
and 57. For instance, in Sec. 4.4 of Ref. 57, classical applications of ODEs to systems
with friction and others have been presented. Thus, our theory and numerics cover,
for instance, the case of fractional order systems with friction.
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7.2. The subdiffusion equation

The subdiffusion, or fractional heat, equation reads: Let d > 1, Q C R? be a
bounded domain, ug : @ — R, and f : Qx (0,7] — R. We seek for u : Qx[0,T] — R
that solves

Déu(z,t) — Au(x,t) = f(z,t), (z,t) € Qx(0,T),
u(z,t) =0, (z,t) € 99 x (0,T), (7.3)
u(z,0) = ugp(x), x €,

where A is the Laplace operator. This problem has been studied in many instances,
and we refer the reader to Refs. 47 and 30 for applications.
Let us show how this problem fits our framework. We set H = L?(2), so that

B(0) = 5 [ [Vo@)lds,  D(®) = H(®)

and
00(v) = —Av, D(0®) ={ve D(®): Av e L*(Q)}.
We point out that this problem also fits the framework of Sec. 5.3.3 by setting
V = H}(Q) and
a(v,w) = / Vo(z) - Vw(z)dz, 2Av=—Av.
Q

A variation using a more general, but symmetric, linear elliptic differential operator
is immediate.

For this type of problems, we have developed an unconditionally stable time-
stepping scheme over arbitrary time partitions. We developed a reliable a posteriori
error estimator for such a scheme.

7.3. Time fractional quasilinear parabolic problems

We can generalize the subdiffusion equation to a nonlinear problem. Assume that
F:R?xR? — R is a convex, Carathéodory function, that is continuously differen-
tiable with respect to its second argument, and such that together with A = Dy F
(its derivative with respect to the second variable), satisfy so-called p-coercivity,
and p-growth conditions. In other words, there is p > 1 for which,

F(2,6) > aol€]’ — a1, |A(z,€)] < azx(1+[€[71), Vo e geR?
Here a; > 0 for i =0,...,2. The time fractional PDE
Déu(x,t) — V- Az, Vu(z,t)) = f(z,t), (z,t) € Qx(0,T),
supplemented with suitable initial and boundary conditions can be cast as in (1.2)

by setting H = L*(Q)

@(v):/QF(x,VU(x))dx, D(®) = L2(Q) N WP (Q),
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Problems of this kind have been studied in Refs. 49, 27 and 63, see also Refs. 70,
71, 73 and 45. Notice that besides convexity and the p-growth conditions, no addi-
tional structure is assumed on F' or A. Nevertheless, we have provided a theory
for solutions of this problem. In addition, as in the linear case, we have developed
an unconditionally stable time-stepping scheme over arbitrary time partitions. We
developed a reliable a posteriori error estimator for such a problem.

7.4. Time fractional parabolic obstacle problem

The subdiffusion equation, and its nonlinear variants, can be generalized to the
nonsmooth case. Here we present but one possibility: a time fractional parabolic
obstacle problem. With the same notation as before choose g € W1?(£2) such that
g < 0 on 01, and define

R={veWyP Q) :v(z) > g(z) ae x € Q).

Then, we set H = L?(Q) and
d(v) = /QF(:E, Vo(z))dz + Ig(v), D(®)=RNL*Q),

where

Is(0) 0, v E R,
V) =
" +o0, v ¢ R,

is the indicator function of the admissible set K. Time fractional obstacle problems
have appeared, for instance, in Refs. 49, 27 and 63.

To our knowledge, our work is the first to tackle time fractional obstacle prob-
lems, and their theory, in a variational and energy setting. The aforementioned
references are concerned with viscosity solutions. In addition, all the numerical
developments that we have presented here are new for this problem.

7.5. The time fractional porous medium equation

The porous medium equation, see Ref. [64], is a prototypical example of a degenerate
parabolic equation. Time fractional versions of it have appeared, for instance, in
Refs. 7, 68, 17 and 22. In its simplest version this problem reads

Du(z,t) — Af(u(z, 1)) = f(,1),

supplemented by suitable initial and boundary conditions. Usually §(t) = t™ with
m > 1, but a general monotone function is also admissible.

To fit this problem into our framework we consider H = H~*({2) endowed with
the inner product

(v, w) = (v, (—A)_1w>H_1)Hé, Yo,we H Q).
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Let now

o) = [ sloyas
and
P(v) = /ch(v(x))d% D(®) = {v e L*(Q) : ¢(v) € L' (D)},
so that, since the ambient space is H = H (),
0B (v) = —AB(v).

To our knowledge, the only reference that numerically treats this problem is
Ref. 52, where the developments are confined to one spatial dimension. Once again,
our time-stepping scheme is unconditionally stable, and we have provided a reliable
a posteriori error estimator for it.

7.6. Time fractional diffusion reaction equations

Variants of the subdiffusion equation, like the diffusion reaction equations studied
in Ref. 21, can be studied by allowing Lipschitz perturbations. For instance, the
semilinear problem

Du(z,t) — Au(x, t) + g(u(z, b)) = f(z,t)

fits into our framework under the assumption that the function ¢ is Lipschitz, or
that it can be split into the sum of a convex function and a Lipschitz perturbation.

7.7. Time fractional Allen—Cahn equations

Finally, if ¢ = G’, where G is of double well type, that is,

(r—1)2%, r>1,
]. 2 2

Giry={70=r)" <1, (7.4)
(r+1)2% r< —1,

then we obtain the time fractional Allen—Cahn equation, which has been studied
in Refs. 62, 53, 43 and 42. Notice that we can also consider this equation with
constraints by considering

a(0) = / V(@) + Ia(v),

R={vel*Q):v(zx) €[-1,1] ae. z €Q},

G(r) = —%7"2.
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8. Numerical Illustrations

In this section, we present some simple numerical examples aimed at illustrating,
and extending, our theory. All the computations were done with an in-house code
that was written in MATLAB®.

8.1. Practical a posteriori estimators

We begin by commenting that, unlike the a posteriori estimators for the classical
gradient flow proposed in Ref. 51, our a posterior: estimator £p is not constant on
each subinterval of our partition P; see (5.3). Here we mention more computation-
ally friendly alternatives, and their properties.

First, we define an estimator that is piecewise constant in time via

Dp(t) = se[ﬁfﬁﬂp]{<l)gﬁp(s) —F(s),Up(s) = Up(s)) + ®(Up(s)) — 2(Tp(s))}-

This is clearly an upper bound for Ep(t).
One may also consider the simpler indicator

Epm = ((DHU), — Fo,Up_1 — Up) + ®U,_1) —®(U,), n=1,...,N. (81)

Although it is not always true that Ep(t) < g’pyn(t), this indicator is convenient
to use in practice and gives reasonable results. In fact, this is the one that we
implemented in the numerical examples of Sec. 8.3.

8.2. A linear example

As a first simple example we consider the fractional heat equation (7.3) with =
(0, 7). Since, in this domain, the operator —A has eigenvalues and eigenfunctions

Me = k%, op(z) =sin(kz), keN,

the fractional heat equation (7.3) has the solution
oo
u(z,t) = ugpBal(—Met*)or (@)
k=1
provided that the initial condition ug has the representation
oo
up(z) = Zuo,kwk(m).
k=1

Since our main focus here is on time discretization, we simply consider a spectral
discretization for space and use m = 100 modes in our experiments. We set T' = 1.
To quantify the error, we measure both

€end = |u(T) = Un|lz2(0)s  €inf = max lu(ts) = Usll 2,

where the latter is a proxy for the error ||u — (77;||LOQ(O7T;H).
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Table 1. Convergence rate for the approxima-
tion of (7.3) using scheme (4.7) over a uniform
partition of size 7. As predicted by Theorem 5.5,
the rate is O(T%) for ejnf.

a=0.3

T €inf rate €end rate

5.00e-02  1.09e-02 — 1.71e-03 —

2.50e-02  9.74e-03 0.166 9.03e-04 0.921
1.25e-02  8.72e-03  0.159  4.70e-04  0.940
6.25e-03  7.84e-03 0.153 2.43e-04 0.954
3.13e-03  7.07e-03  0.150  1.25e-04 0.964
1.56e-03  6.37e-03  0.149 6.35e-05 0.971
7.81e-04  5.75e-03  0.149  3.23e-05 0.977
3.91e-04  5.18e-03 0.150 1.63e-05 0.982
1.95e-04 4.67e-03 0.150 8.25e-06  0.985
9.77e-05  4.21e-03  0.150 4.16e-06  0.988

a=0.7

T €inf rate €end rate

5.00e-02  2.72e-02 — 5.97e-03 —

2.50e-02  2.13e-02  0.350 3.03e-03  0.979
1.25e-02  1.67e-02 0.350 1.53e-03  0.988
6.25e-03  1.31e-02  0.350  7.68e-04  0.993
3.13e-03  1.03e-02 0.350 3.85e-04 0.996
1.56e-03  8.08e-03 0.350 1.93e-04 0.997
7.81e-04  6.34e-03  0.350 9.65e-05  0.998
3.91e-04 4.98e-03 0.350 4.83e-05 0.999
1.95e-04  3.90e-03 0.350 2.41e-05 0.999
9.77e-05  3.06e-03 0.351 1.21e-05 1.000

We first consider the case where the initial condition is such that ug € Hg(Q) =
D(®), but ug ¢ HL(Q) N H?(Q) = D(A). An example of this is,

u07k; — k—1.5+5’ (8.2)

with 0 < § < 1. For computations we set § = 10™%. The results are summarized in
Table 1.

From Table 1, we observe that ej,r = O(72) and eqng = O(7). The conver-
gence rate for ej,r is consistent with that proved in Theorem 5.5. It seems that the
convergence rate for eenq is better. This warrants further investigation.

We next consider an initial value ug € H(Q) N H?(£2). Namely,

Uo sy = fm2540,
with 0 < § < 1. In this case, both the assumptions in Theorem 5.7 (for 8 = 1) and
Theorem 5.8 are satisfied, so the convergence rate for ej,s must be O(7). This is
consistent with the experiments in Table 2, where e;r = O(7%) and ecnqa = O(7),
where we chose § = 1074,
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Table 2. Convergence rate for the approxima-
tion of (7.3) using scheme (4.7) over a uniform
partition of size 7. As predicted by Sec. 5.3.2,
the rate is O(7%) for ejns.

a=0.3

T €inf rate €end rate

5.00e-02  8.44e-03 — 1.64e-03 —

2.50e-02  6.88e-03  0.296  8.66e-04 0.919
1.25e-02  5.57e-03  0.305 4.52e-04 0.939
6.25e-03  4.50e-03  0.308  2.33e-04 0.953
3.13e-03  3.63e-03  0.307 1.20e-04 0.963
1.56e-03  2.94e-03 0.305 6.11e-05 0.971
7.81le-04  2.38e-03 0.303 3.10e-05 0.977
3.91e-04 1.93e-03 0.302 1.57e-05 0.981
1.95e-04 1.57e-03 0.301 7.94e-06 0.985
9.77e-05  1.27e-03  0.301  4.00e-06  0.988

a=0.7

T €inf rate €end rate

5.00e-02  1.05e-02 — 5.81e-03 —

2.50e-02  6.48e-03 0.702  2.95e-03 0.977
1.25e-02  3.99e-03 0.701  1.49e-03  0.987
6.25e-03  2.45e-03  0.700  7.49e-04  0.992
3.13e-03  1.51e-03 0.700 3.76e-04  0.995
1.56e-03  9.30e-04 0.700 1.88e-04 0.997
7.8le-04  5.73e-04 0.700  9.42e-05 0.998
3.91e-04 3.52e-04 0.700 4.71e-05 0.999
1.95e-04 2.17e-04 0.700 2.36e-05  0.999
9.77e-05 1.34e-04 0.700 1.18e-05 1.000

8.3. Adaptive time stepping

We now illustrate the use of the a posteriori error estimator Ep, given in (5.3) to
drive the selection of the size of the time step. For a given tolerance e we, at every
step, choose the local time step 7,, to guarantee that

27

———Epn <&
Tlat1)Pn=°

where g'p)n is given in (8.1). Then, by Theorem 5.3, we expect that

lu—UpllL=@rm) <€

provided the approximation error ||f — Fpl|L1 0,73 is negligible. Notice that to
drive the process we are using the simpler estimator 57;-; see the discussion in
Sec. 8.1.

We consider the linear problem (7.3) with a@ = 3, uo given by (8.2) and set
e = 1072. Figure 2 shows the local time step 7(t) for t € [0,T]. As expected, due
to the weak singularity of u at ¢ = 0, the time step must be rather small for small
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Fig. 2. Adaptive time stepping for problem (7.3) with T =1, = % is used to achieve a tolerance

of ¢ = 1072, The adaptive solver uses 455 time intervals with minimum time step 2.328 x 10712
and max time step 6.339 x 10~2.

times. For larger times, however, the solution is smoother and larger local time
steps can be taken. With this process we obtain that

lu — Up|| g (0,7:3) ~ 1.89 x 1072,

and this requires N = 455 time subintervals. For comparison, choosing a uniform
time step of 7 /2 2.44 x 1075 we require N = 40, 960 time intervals. This achieves an
error of eins ~ 3.0 x 1073, which is slightly higher than that obtained with our adap-
tive procedure. This clearly shows the advantages and possibilities for this strategy.

8.4. The time fractional Allen—Cahn equation

We now, depart from the linear theory and present several nonlinear examples with
more complexity. We first examine a space-fractional variant of the time fractional
Allen—Cahn equation mentioned in Sec. 7.7. To be specific, we consider the following
equation:

D&u(z,t) + M (—A)°u(x,t) + Aeg(u(z,t)) =0 (8.3)

for v € Q= (0,1)? C R% and t € (0,T), where g = G’ with G defined in (7.4) and
coefficients A1, Ay > 0. This is obtained by replacing the time and space derivatives
in the classical model by their nonlocal counterparts. We impose periodic boundary
conditions and consider H = L?(Q),

HY(Q) = {w € L2(Q) : [w]ge () < oo}, (8.4)

where
1/2

woy = | S @k L @ = /e%mw(z)dx.
kezad Q

|w
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Then this problem fits our framework with

B(0) = Sy W) = g(v), D) =H(Q).

To solve this problem numerically, we discretize in space by a collocation method.
Let M € N be the number of points in one spatial direction, h = 1/M and introduce
the grid domain and the space of grid functions

QMZ{.’L'E[0,1)d|$i€hR,1§i§d}, HM:{’UMQM%R}

Notice that Hj; is a discretization of H. To approximate the fractional Laplacian,
we introduce the discrete Fourier transform. Let

Zyy ={r € ZI (M —1)/2] <r < [(M —1)/2]},

1uhatt—1f0ra—013—01 1u,,att=10fora=0.1,s=0.1 1uy,att-lOOfmroz—Ols—Ol

1 1
0.8 0.8 0.8
05 05 05
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04 0.4 0.4
02 -05 02 -0.5 02 -0.5
-1 0 -1

-1 0
0 0.2 04 0 0.2 0 0.2 04

: up at t =1 for a=0.9,s=0.1 1ul, at t = 10 for a = 0.9, = 0.1

o
IS

0.6 0.8 1
1u7,att—100fora—09$—01

1 1

0.8 0.8 0.8
05 05

0.6 0.6 0.6
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0.4 0.4 0.4
-0.5 -0.5

0.2 0.2

05
0.2 i
0 -1 0 -1 0 -
0 0.2 0.4 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6
1u;.attflforaz 0.1,s=0.9 1ul,att:loforo¢:0Al,$:0.9 1u;,att—lOOforoz—Ol5709
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0 0.2 0.4 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4
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Fig. 3. Snapshots of discrete solutions of the time fractional Allen—Cahn equation (8.3)
for « =0.1,0.9,s = 0.1,0.9.
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and for r € Z4,, define

W (r) = he Z wyy (z)e 2,

z€Q N

Then the discrete fractional Laplacian (—Aps)® is defined as

[(—An) wp](z) = Z (27 |r]) 25 War (r)e*™ ",z € Q.

rez?,
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To explore the behavior of the solutions, we consider an example similar to the

one in Sec. 5.1 of Ref. 62. Let d = 2 and define the initial data

1 5  cos(h)
= h 2r — — —
ug = tan <\/§Eo < T 16 16 )),

where €9 > 0 and r, 0 are polar coordinates centered at (zq — 0.5,z2 — 0.5), i.e.

x1 =rcos(f), xzg=rsin(f), r >0, §¢€]0,2n),

Table 3. Convergence rate for the time frac-
tional Allen—Cahn equation (8.3) over a uniform
partition of size 7 with s = 0.999. The rates for
eint are close to O(To‘/2) predicted in Sec. 5.3.2.

a=0.3

T €inf rate €end rate

2.50e-03  9.11e-04 — 3.11e-04 —

1.25e-03  7.29e-04 0.321 1.72e-04 0.859
6.25e-04  5.81e-04 0.328 9.23e-05 0.894
3.13e-04  4.60e-04 0.336 4.88e-05 0.919
1.56e-04  3.65e-04 0.336  2.55e-05  0.938
7.81e-05  2.92e-04 0.320 1.32e-05 0.951
3.91e-05 2.39e-04 0.287 6.77e-06 0.961
1.95e-05 2.02e-04 0.244  3.46e-06  0.969
9.77e-06  1.76e-04 0.203 1.76e-06  0.975

a=0.7

T €inf rate €end rate

2.50e-03  7.24e-04 — 3.84e-04 —

1.25e-03  5.42e-04 0.416 1.97e-04 0.961
6.25e-04  4.04e-04 0.426 1.00e-04 0.977
3.13e-04  3.04e-04 0.411 5.06e-05 0.987
1.56e-04  2.33e-04 0.386  2.54e-05 0.992
7.81e-05 1.82e-04 0.355 1.28e-05 0.995
3.91e-05 1.45e-04 0.326 6.39e-06  0.997
1.95e-05 1.16e-04 0.322  3.20e-06  0.998
9.77e-06  9.01e-05 0.365 1.60e-06  0.999
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for z € Q. For this initial data, we have ug ¢ H'(Q) and ug € H* () for any
6 > 0. For ¢g = 0.2, we run experiments with M = 64 and uniform time step
7 = 279 for different & and s. The parameters A1, Ao are set to

ye2sTl s e (1/2,1),
A=< ylloge|™t, s=1/2, Ay =N\ %, (8.5)
v, s€(0,1/2),

with € = 0.2, = 0.01. The scalings in (8.5) are informed in Ref. 55. Figure 3 shows
snapshots of the phase field function at times 7' = 1,10, 100 for different choices
of a and s. We observe that a bigger « indicates faster convergence to the stable
solution and larger s implies more smoothing in the phase field function wu.

We also investigate the convergence rates with respect to the time step 7. We let
N®) = 2-F %10 and compute the discrete solutions U*) on the uniform partitions
of (0, T) with N*) intervals with step size 7(*). Since the exact solution is unknown,
to obtain an approximation of the convergence rates, we define

k—1 k k—1 k
( (k*i) - UI(\/'()k)||L2(Q)7 €inf,k =  1ax HUi( ) - UQ(i)||L2(Q)

€end,k = ||U .
OSZSN(k—l)

N

Table 4. Convergence rate for the time frac-
tional Allen—Cahn equation (8.3) over a uni-
form partition of size 7 with s = 0.499. The
rates for ej,¢ are better than O(7%) predicted in
Sec. 5.3.2.

a=0.3

T €inf rate €end rate

2.50e-03  4.78e-04 — 3.94e-04 —

1.25e-03  2.98e-04 0.680 2.17e-04 0.861
6.25e-04 1.88e-04 0.668 1.17e-04 0.895
3.13e-04  1.20e-04 0.651 6.17e-05 0.919
1.56e-04  7.72e-05 0.631  3.22e-05  0.938
7.81e-05 5.11e-05 0.596 1.67e-05 0.951
3.91e-05  3.46e-05 0.562 8.55e-06  0.961
1.95e-05 2.40e-05 0.529 4.37e-06  0.969
9.77e-06  1.70e-05  0.498  2.22e-06 0.976

a=0."7

T €inf rate €end rate

2.50e-03  1.05e-04 — 1.05e-04 —

1.25e-03  5.39e-05 0.967 5.39e-05 0.967
6.25e-04  2.74e-05 0.978 2.74e-05 0.978
3.13e-04  1.38e-05 0.986 1.38e-05 0.986
1.56e-04 6.95e-06 0.991 6.95e-06  0.991
7.81e-05 3.49e-06 0.995 3.49e-06 0.995
3.91e-05 1.75e-06 0.996 1.75e-06  0.996
1.95e-05 8.76e-07 0.998 8.76e-07  0.998
9.77e-06  4.38e-07  0.999  4.38e-07  0.999
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and measure

log(eend,k—1) — log(€end, k) log(€int,k—1) — log(einf k)

log(7(k=1)) — log(7(k) ~ log(7(k=1)) — log (7))
Weset T =0.1,\; =0.1,\a = 1,69 = 1, M = 64 and display the convergence rates
for « = 0.3,0.7 and s = 0.999,0.499 in Tables 3 and 4, respectively. For s = 0.999,
we have ug € D(®), but ug ¢ D(0P). From Table 3, we observe that egnq = O(7)
and ej,¢ converges slightly better than the convergence rate O(r%/?) proved in
Theorem 6.4. For s = 0.499, the initial data up € D(®), and the assumptions in
Theorem 6.5 (for f = 1) and Theorem 6.6 are satisfied. We observe in Table 4
better rates for ei,s than the theoretical rates O(7%).

rateend k. =

rateinfwk =

8.5. A time fractional parabolic obstacle problem

As a final example, we consider the space-fractional version of the parabolic obstacle
problem presented in Sec. 7.4. We set Q = (0,1)%, 1 = L?(Q2) and

1
®(v) = §|” fe ) + Lav),

up(t) for a =0.1,s = 0.1 up(t) for « =0.9,s =0.1

1 1
—t=1 —t=1
—t=10 —t=10
0.8} t = 100|1 0.8t t =100|1
0.6 1 0.6
047 1 0.4 .
0.2} 1 0.2 / \
0 . . . . 0 : . . :
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
up(t) for a =0.1,s =0.9 up(t) for « =0.9,5s =0.9
1 T T T T 1 T T T T
—t=1 —t=1
—t=10
0.98
t =100
0.95 1
0.96 1
0.9+t 0.94
092
0.85F
0.9r
0.8 - - - - 0.88 - - - -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 4. Snapshots of discrete solutions of the space-time fractional parabolic obstacle problem
for « =0.1,0.9,s = 0.1,0.9.
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where H?(2) is defined in (8.4) and

R={veH(Q):v(z) > g(x) ae. z €N}

Consider d = 1 and an obstacle g, initial data ug and function f(z,t) given by

g(x) = max{1 — 4|z — 0.5|,0}, wuo(z) =sin(rz), f(z,t)=—-0.5.

We use a collocation method as in Sec. 8.4, set M = 64, and a uniform time

step 7 = 275. The computed solutions uy, for different o, s at different times are
presented in Fig. 4. As expected, we see that a bigger « indicates faster convergence
to the stable solution and smaller s allows u to have sharp transitions and makes
u closer to the obstacle.
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