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Abstract: Mineral dust particles suspended in the atmosphere span more than three orders of magnitude in
diameter, from less than 0.1 um to more than 100 um. This wide size range makes dust a unique aerosol
species with the ability to interact with many aspects of the Earth system, including radiation, clouds,
hydrology, atmospheric chemistry, and biogeochemistry. This review focuses on coarse and super-coarse
dust aerosols, which we respectively define as dust particles with a diameter of 2.5 - 10 um and 10 - 62.5
um. We review several lines of observational evidence indicating that coarse and super-coarse dust particles
are transported farther than previously expected and that the abundance of these particles is substantially
underestimated in current global models. We synthesize previous studies that used observations, theories,
and model simulations to highlight the impacts of coarse and super-coarse dust aerosols on the Earth system,
including their effects on dust-radiation interactions, dust-cloud interactions, atmospheric chemistry, and
biogeochemistry. Specifically, coarse and super-coarse dust aerosols produce a net positive direct radiative
effect (warming) at the top of the atmosphere and can modify temperature and water vapor profiles,
influencing the distribution of clouds and precipitation. In addition, coarse and super-coarse dust aerosols
contribute a substantial fraction of ice nucleating particles, especially at temperatures above -23°C. They
also contribute a substantial fraction to the available reactive surfaces for atmospheric processing and the
dust deposition flux that impacts land and ocean biogeochemistry by supplying important nutrients such as
iron and phosphorus. Furthermore, we examine several limitations in the representation of coarse and super-
coarse dust aerosols in current model simulations and remote-sensing retrievals. Because these limitations
substantially contribute to the uncertainties in simulating the abundance and impacts of coarse and super-
coarse dust aerosols, we offer some recommendations to facilitate future studies. Overall, we conclude that
an accurate representation of coarse and super-coarse properties is critical in understanding the impacts of
dust aerosols on the Earth system.
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1. Introduction

Mineral dust or desert dust aerosols are suspended soil particles in the atmosphere (Choobari et al., 2014;
Knippertz and Stuut, 2014). They account for more than two-thirds of the global aerosol mass and
approximately one-quarter of the solar radiation extinguished by all aerosol particles in the atmosphere
(e.g., Textor et al., 2006; Kinne et al., 2006). As a result, mineral dust aerosols produce key impacts on
several critical aspects of the Earth system (Jickells et al., 2005; Goudie and Middleton, 2006; Shao et al.,
2011; Knippertz and Todd, 2012; Kok et al., 2012; Knippertz and Stuut, 2014; Kok et al., 2022). One such
impact is that dust affects the climate system through the absorption and scattering of shortwave and
longwave radiation (Tegen et al., 1996; Miller et al., 2014). At the top of the atmosphere, this interaction
results in negative dust direct radiative effect (DRE; i.e., dust cools the climate system) in the shortwave
and positive dust DRE (i.e., dust warms the climate system) in the longwave spectrum (Claquin et al., 1998;
Satheesh and Ramanathan, 2000; Kok et al., 2017; Di Biagio et al., 2020; Adebiyi and Kok, 2020). Another
key impact is that dust affects the distribution and lifetime of clouds and precipitation because it can act as
a cloud- or ice-nucleating particle (DeMott et al., 2003; Atkinson et al., 2013; Cziczo et al., 2013;
Storelvmo, 2017; Hawker et al., 2021). Furthermore, dust can also alter atmospheric chemistry through its
interaction with trace gases that ultimately might influence the lifetime and concentration of atmospheric
greenhouse gases, such as methane and ozone (Dentener et al., 1996; Usher et al., 2003; Gaston, 2020), as
well as the concentration and radiative impacts of anthropogenic aerosols (Karydis et al., 2016; Klingmiiller
et al., 2020). Once deposited to the surface, dust particles can stimulate biogeochemical activity in marine
and terrestrial ecosystems (Jickells et al., 2005). Specifically, iron- and phosphorus-containing dust
minerals can increase primary productivity, which in turn can influence the uptake of carbon dioxide from
the atmosphere (Jickells et al., 2005; Mahowald et al., 2009; Jickells et al., 2014). In addition, dust particles
can speed up the ocean carbon cycle by ballasting organic material towards the seafloor, thus increasing
carbon export efficiency (Alldredge and Silver, 1988; Jagt et al., 2018).

All these various dust impacts on the Earth’s system depend critically on the size distribution of dust
particles in the atmosphere. Dust sizes span more than three orders of magnitude, from less than 0.1 pm to
more than 100 pum in diameter (Mahowald et al., 2014; van der Does et al., 2018a; Ryder et al., 2019).
Because the properties of these dust particles are size-dependent, most studies separate dust particles into
different classes — broadly defined as fine and coarse dust (Whitby, 1978; Seinfeld and Pandis, 2006) —
which could produce distinct impacts on the Earth system (Mahowald et al., 2014). For example (see Figure
1), coarse dust absorbs more shortwave radiation, which could cause more atmospheric heating than fine
dust (Otto et al., 2011; Ryder et al., 2018). Since coarse dust also has a substantial radiative impact in the
longwave spectrum, the overall ratio of the coarse-to-fine dust in the atmosphere could determine whether
dust exerts a net positive or negative direct radiative effect on the global climate system (Kok et al., 2017;
Di Biagio et al., 2020; Adebiyi and Kok, 2020). In addition, coarse dust dominates the deposited dust mass,
especially near dust sources, and the delivery of micro-nutrients into the marine and terrestrial ecosystems,
consequently influencing its biogeochemistry (Jickells et al., 2005; Yu et al., 2015). Despite the influence
of dust size distribution on dust impacts, there are inconsistencies in the terminology and the diameter range
currently attributed to different dust size classes across the literature (Whitby, 1978; WHO, 2006; Seinfeld
and Pandis, 2006; Mahowald et al., 2014; Maynard et al., 2017).

Furthermore, dust size influences the emission and transport processes in the global dust cycle (e.g., Drakaki
et al., 2022; Meng et al., 2022). The conventional pathway of dust emission primarily occurs when strong
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surface winds force sand particles with diameters of about or greater than ~75 pm into ballistic trajectories
in a process called saltation (Bagnold, 1941; Shao, 2001; Kok et al., 2012). The impact of these saltating
particles on the surface breaks soil aggregates into smaller dust aerosols that are ejected back into the
atmosphere (Marticorena and Bergametti, 1995; Shao, 2008; Kok, 2011a). These ejected dust aerosols
undergo short-term or long-term suspension and get transported between a few meters to thousands of
kilometers, depending on particle size and environmental conditions (Pye, 1987; Shao, 2008; Kok et al.,
2012). Since larger particles experience greater gravitational fall speeds than smaller particles (e.g., Seinfeld
and Pandis, 2006), the potential for the long-range transport of coarse dust particles likely depends on
favorable environmental conditions (van der Does et al., 2018a; Adebiyi and Kok, 2020). These
environmental conditions include strong prevailing winds in the free troposphere, strong convection,
atmospheric instability, and turbulence within the boundary layer or the elevated dust layer (Ansmann et
al., 2009; Knippertz and Todd, 2012; Rosenberg et al., 2014; Garcia-Carreras et al., 2015; Gasteiger et al.,
2017). In addition, the shape and potential orientation of dust particles and possibly the electrification of
the dust layer can also help reduce the gravitational settling speed, potentially aiding the long-range
transport of coarse dust (Nicoll et al., 2011; Renard et al., 2018; Huang et al., 2020; Mallios et al., 2020)

Regardless of the conditions responsible for its long-range transport, several observational studies have
indicated that there are more coarse dust aerosols in the atmosphere than represented in climate models
(Betzer et al., 1988; Kandler et al., 2009; Ryder et al., 2013b, 2013a; Jeong et al., 2014; Ansmann et al.,
2017; Gasteiger et al., 2017; van der Does et al., 2018a; Adebiyi and Kok, 2020). For example, dust particles
up to about 30 pm were measured by aircraft-based instruments during a field campaign in the Caribbean
after being transported for thousands of kilometers from the Sahara desert (Weinzierl et al., 2017). Other
observational evidence, such as that taken close to the surface of the ocean, also shows that dust particles
with a diameter greater than 75 um are deposited over the North Atlantic and Pacific Oceans (Betzer et al.,
1988; Jeong et al., 2014; van der Does et al., 2016, 2018a). Such long-range transport of coarse dust particles
cannot be accounted for using a simple Stokes settling theory in most current climate models (Ansmann et
al., 2017; Weinzierl et al., 2017; van der Does et al., 2018a). In addition, there are several reasons why
particles larger than 10 um in diameter are systematically excluded in the previous generation of climate
models (e.g., Zender et al., 2003). For example, these reasons included (1) an emphasis on shortwave
radiation and on aerosol-cloud interactions for which coarse dust has historically not been considered
important, (2) a lack of observations compared to the thousands of stations that measure PM10 (particulate
matter, PM < 10 pm aerodynamic diameter), and (3) a reduction in computational load since coarse
particles had previously been assumed to travel much less distance than fine mode aerosols (e.g.,
Woodward, 2001; Mahowald et al., 2011). Because most climate models poorly represent coarse dust
particles, a recent study estimated that more than three-quarters of particles larger than 5 pm in diameter
are likely missing in climate models (Adebiyi and Kok, 2020). This bias in the representation of simulated
dust aerosols suggests that coarse dust aerosols may have a substantially greater impact on the Earth system
than previously understood (e.g., Figure 1).

Therefore, we examine the current state of understanding of coarse dust aerosols and provide
comprehensive documentation of the impacts they have on the Earth system. In addition, we also document
the strengths of observing coarse dust particles and the limitations in modeling them. Although Mahowald
et al. (2014) were the first to provide a review of dust size distribution, and other reviews, such as Jickells
et al. (2005), Goudie and Middleton (2006), Shao et al. (2011), Kok et al. (2012), and Knippertz and Todd



(2012), focused on other aspects of the dust cycle, none have focused specifically on coarse aerosols in the
Earth system. We organize this review article as follows. In Section 2, we provide a comprehensive review
of how dust size classes have historically been represented in the literature. To allow for consistency in
future studies, we propose a uniform classification for coarse dust particles, making a justification for
diameters between 2.5um and 10pm. We extend this definition to include super-coarse and giant dust
particles as particles with diameters between 10 - 62.5 pm and above 62.5 um, respectively (Figure 2).
Except when otherwise noted, we, therefore, focus this review on the coarse and super-coarse dust aerosols.
Consequently, in Section 3, we review the multiple lines of evidence that indicate that coarse to giant dust
aerosols are more abundant in the atmosphere than accounted for in current models. Section 4 reviews the
impacts of coarse and super-coarse dust aerosols on dust-radiation interactions, dust-cloud interactions,
atmospheric chemistry, and biogeochemistry. Finally, Section 5 reviews the limitations in observations and
modeling of coarse and super-coarse dust aerosols. We provide a summary and recommendations with key
areas for future research in Section 6.
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Figure 1: Coarse dust (and super-coarse dust) impacts several aspects of the Earth system, including
radiation, clouds, precipitation, atmospheric chemistry, and biogeochemistry (see details in Section 4).

2. Representation of dust particle sizes

Although a dust particle size is characterized by its radius or diameter, a collection of dust particles is
described by a dust size distribution, which is the distribution of particle numbers, surface area, volume,
or mass over a particular diameter range (Seinfeld and Pandis, 2006). Because size distribution is an
important dust property, its representation is critical for dust processes, such as the effects of dust on
atmospheric chemistry depend primarily on the surface area distribution, and the biogeochemical effects
of dust depend on the mass (or volume) size distribution (Mahowald et al., 2014). Despite its importance,
there have also been inconsistencies in the diameter range and terminologies used to classify dust particle
sizes (Whitby, 1978; Seinfeld and Pandis, 2006; Mahowald et al., 2014). Part of the reason for this
inconsistency in terminologies is the different ways dust diameters can be defined and measured (Reid et
al., 2003a; Formenti et al., 2011b; Huang et al., 2021). In this section, we describe the representation of



dust diameter types and propose a new size classification for atmospheric dust particles. Specifically, we
propose new terminologies and diameter ranges to define fine, coarse, super-coarse, and giant dust in the
atmosphere.

2.1. Dust diameter types

Different types of diameters have been used to describe aerosol particles in the atmosphere, including dust
aerosols. This is, in part, because different measurement techniques and different disciplines describe
particles using an “equivalent” diameter that is based on the properties or behaviors of the particles in a
given system (Hinds, 1999; Kulkarni et al., 2011). For example, some aerosol measurement techniques
utilize the particle settling velocity or scattering properties to quantify the state of the aerosols and thus
define an equivalent diameter relative to these properties (Kulkarni et al., 2011). By definition, the
equivalent diameter is the diameter of a sphere that corresponds to the same size of a particle with a specific
property or behavior (Seinfeld and Pandis, 2006). Examples of equivalent diameters are aerodynamic
equivalent diameter, mobility equivalent diameter, optical diameter, projected-area equivalent diameter,
and volume-equivalent or geometric diameter.

Of these examples, four diameter types are commonly used for measurements and studies of atmospheric
dust, namely the aerodynamic equivalent, optical equivalent, area-equivalent, and volume-equivalent (or
geometric) diameters (Reid et al., 2003a; Formenti et al., 2011b; Mahowald et al., 2014; Huang et al., 2021).
First, the aerodynamic equivalent diameter describes the diameter of a sphere with a standard density (1000
kg m™) that has the same terminal velocity as an irregularly-shaped dust particle settling under the influence
of gravity (Hinds, 1999). Aerodynamic diameter is used to describe the behavior of particles in the
respiratory tract (Maynard et al., 2017). Consequently, the World Health Organization (WHO) and other
air-quality agencies around the world use aerodynamic diameter to define the air quality standards for
pollution, namely the PM2.5 and PM10, defined as particulate matter (PM) with an aerodynamic diameter
less than 2.5 and 10 um, respectively (Suess et al., 1976; EPA, 1987, 1997; WHO, 2006). Second, the
optical equivalent diameter is the diameter of a calibration sphere with given optical properties that scatter
the same amount of radiation into a particular direction as an irregularly-shaped dust particle (Formenti et
al., 2011b; Mahowald et al., 2014). The optical diameter is commonly used in optical particle counters — an
instrument that utilizes light-scattering techniques to measure the dust size distribution . Third, the area-
equivalent diameter is the diameter of a circle with the same area as an irregularly-shaped dust particle
projected on a two-dimensional (2-D) image (Hinds, 1999; Reid et al., 2003a; Kandler et al., 2007; Huang
et al., 2020). The area-equivalent is commonly measured using electron and light microscopy on particles
collected on filters (e.g., Reid et al., 2003a; Kandler et al., 2007; Chou et al., 2008). Finally, the volume-
equivalent or geometric diameter describes the diameter of a sphere with the same volume as an irregularly-
shaped dust particle (Hinds, 1999). Although difficult to obtain, previous studies have used shadowing
techniques to measure the third dimension and combined it with the area-equivalent information to obtain
the geometric (volume-equivalent) diameter (Anderson et al., 1996; Okada et al., 2001; Reid et al., 2003a).
Unlike the aerodynamic equivalent, optical equivalent, or projected-area equivalent diameter, the volume
equivalent or geometric diameter is the primary diameter type used in dust modeling (Mahowald et al.,
2014).



For the same dust particle, values of these diameter types could differ widely, and the conversion from one
diameter type to another is not straightforward (Reid et al., 2003a; Huang et al., 2021). This is, in part,
because dust particles are usually assumed to be spherical, whereas measurements have shown that dust is
highly aspherical, with typical particle length-to-width (aspect ratio) and height-to-width ratios often
deviating from unity (Okada et al., 2001; Kandler et al., 2007; Chou et al., 2008; Huang et al., 2020).
Furthermore, because irregularly-shaped dust particles have different aerodynamic, optical, and geometric
properties than spherical particles, accurate conversion between one diameter type to another is important
(Huang et al., 2021). For example, when a dust particle is represented as a triaxial ellipsoid, its drag force
is higher than when the same dust is represented as a volume-equivalent sphere (Huang et al., 2020; Mallios
et al., 2020). This difference in asphericity contributes to why a dust particle described by the aerodynamic
diameter is, on average, 45% larger than the same dust particle described by the geometric diameter (Huang
et al., 2021). In addition, the conversion between aerodynamic diameter and geometric diameter also
depends on the difference between the dust density and the density of water (Hinds, 1999). Furthermore,
knowledge of dust's index of refraction and dust shape is important for converting optical diameter to other
diameter types. Thus, uncertainties in dust asphericity, dust density, and index of refraction can lead to
errors in converting from one diameter type to another, particularly for coarse dust particles (e.g., Huang et
al., 2021).

Since most dust modeling studies define dust in terms of its geometric diameter, we similarly use geometric
diameter to represent dust particle size for the remainder of this article unless otherwise stated.

2.2. Classification of dust particle sizes

In addition to the differences in the diameter types used to describe dust particles, there are inconsistencies
in the terminologies used to describe the diameter range of different dust size classes. This inconsistent
terminology in the literature makes it more difficult to compare different studies of dust impacts that depend
on size. Thus, a new dust size classification is required to facilitate easy comparison in future studies.

The classification of dust sizes was introduced in the early 1900s and was mostly popularized in geology,
especially in sedimentology (Wentworth, 1922). Most studies of that era separated sand from dust particles
and further separated dust particles into silt and clay particles based on their grain sizes (Grabau, 1913;
Udden, 1914; Baker, 1920). For example, Baker (1920) defined sand particles as particles between 100 and
2000 pm and put the boundary between silt and clay particles at 10 pum. Wentworth (1922) presented the
collective state of knowledge prior to the early 1900s and provided a generalized classification that defined
sand particles between 62.5 and 2000 pm and the boundary between silt and clay dust particles at 3.9 pym
(Friedman and Sanders, 1978 later provided a modified version).

Although dust particles were classified by grain sizes in geology, in the atmospheric sciences, the term dust
referred to one of the aerosol species in the atmosphere. Because of this identification as an aerosol specie,
the dust size terminologies used in atmospheric sciences were related to the broad aerosol size modes
defined as fine and coarse aerosol modes (Seinfeld and Pandis, 2006; Whitby, 1978). The fine mode was
further subdivided into the Aitken (or nucleation) and accumulation modes. Earlier studies on aerosol size
distributions mostly attributed the origin of this classification to the differences in aerosol formation
processes and chemical composition (Willeke and Whitby, 1975; Whitby, 1978; Hering and Friedlander,

7



1982; Heintzenberg, 1989; John et al., 1990). These studies argued that condensation and coagulation
processes that can accumulate particles together produced fine-mode aerosols, while mechanical processes,
such as dust emission, produced coarse-mode aerosols (Whitby, 1978). As a result, dust particles were
initially associated with coarse modes, although subsequent studies clarified that they also exist in the fine
mode (Jaenicke, 1980, 1993).

There have been widespread inconsistencies in the definition of the boundary diameter that separated the
fine and coarse modes (e.g., Heintzenberg, 1989; John et al., 1990; Kulkarni et al., 2011). Before the late
1970s, most studies defined this boundary at 2 um (Danes, 1954; Heintzenberg, 1989; Spurny, 1998;
Walton, 1954; Whitby, 1978; Willeke and Whitby, 1975). Subsequent studies re-defined the boundary
diameter between fine and coarse modes to be at 1 um (Friedlander, 2000; Mahowald et al., 2014; Ansmann
etal., 2017), 2.5 um (Seinfeld and Pandis, 2006; Zhang et al., 2013; Pérez Garcia-Pando et al., 2016), 4 um
(e.g., Rajot et al., 2008), or at 5 pm (Kok et al., 2017; Adebiyi and Kok, 2020). In addition to differences
in the exact diameter between fine and coarse mode aerosols, additional discrepancies arise from differences
in how that diameter was measured. As part of setting air quality standards for atmospheric aerosols, the
WHO and the U.S. EPA defined fine aerosols as particles with a mean aerodynamic diameter less than or
equal to 2.5 um (also called PM2.5) (EPA, 1997; WHO, 2006; Maynard et al., 2017). This diameter thus
effectively separated the fine-mode from coarse-mode aerosol particles for studies involving air quality and
human health (e.g., Giannadaki et al., 2014). However, this dust classification in air quality studies was
adopted for aerodynamic diameter type, which is different from (and larger than) the geometric diameter
commonly used in studies involving dust modeling in the Earth system (Hinds, 1999; Reid et al., 2003a;
Huang et al., 2021). While potential conversion between the two diameter types is possible (e.g., Hinds,
1999; Huang et al., 2021), this inconsistency in the definition of dust diameter types further contributed to
the confusion in dust size classifications between different research areas.

Similar to the lack of consensus on the boundary diameter separating fine- and coarse-mode dust aerosols,
there was also no consensus on the upper limit of coarse-mode particles in atmospheric science. Most
definitions of coarse mode do not include an upper diameter limit. For example, Whitby (1978) and Seinfeld
and Pandis (2006) arbitrarily defined coarse mode as all particles with a diameter greater than 2 pm and 2.5
um, respectively, with no upper diameter limit. In contrast, one of the earliest definitions for the upper
diameter limit of coarse-mode particles arose from WHO and EPA's air quality standards (EPA, 1987;
WHO, 2006; Maynard et al., 2017). These organizations defined coarse-mode particles as particles with an
aerodynamic diameter between 2.5 and 10 um. The 10-um-diameter upper limit likely informed some
studies in the beginning era of dust modeling, leading to the limitation of dust size range to 10 um in some
climate and chemical transport models (Zender et al., 2003; Zhao et al., 2010; Albani et al., 2014). However,
10-um defined for the aerodynamic diameter differs from 10-pm defined for the geometric diameter. For
other studies that involve dust particles larger than 10 um, different terminologies have been used that
further introduce irregularities in the dust size classification. For example, studies have termed particles
larger than 10 pum as “large coarse-mode” (Weinzierl et al., 2011), “super-coarse” (Pérez Garcia-Pando et
al., 2016), “giant” particles (Jeong et al., 2014), or even “ultra-giant (Lasher-Trapp et al., 2001). In addition,
not all studies use the 10-um-diameter upper limit for coarse-mode particles, introducing further
inconsistencies in the dust size classification. For example, studies have defined the upper limit for coarse-
mode particles as 20 pm (Ryder et al., 2019), 37.5 pm (Ryder et al., 2013b), 62.5 pm (Goudie and
Middleton, 2001), and 75 pm (Betzer et al., 1988; van der Does et al., 2018a).



Due to these widespread inconsistencies in the definitions of dust size classes, a uniform classification is
needed that will allow for consistency in future literature. To this end, we propose the following terminology
for the classification of atmospheric dust particles (Figure 2), with the diameter range defined in terms of
geometric diameter (D).

Fine dust (D <2.5 pm) — For this classification, 2.5 um is the most common diameter range used to define
fine-mode aerosols in the atmosphere (e.g., Seinfeld and Pandis, 2006). Therefore, we propose fine dust
here as all airborne dust particles with a diameter less than the geometric diameter of 2.5 um. In addition,
the existing sub-class of fine mode aerosols also applies to fine dust — namely, Aitken (or nucleation) mode
dust particles are particles with a diameter less than 0.1 pm, and accumulation mode dust particles are
particles with a diameter between 0.1 and 2.5 pm (Seinfeld and Pandis, 2006). While this dust classification
is defined for geometric diameter, it should not be confused with the aerodynamic diameter used to define
PM2.5 adopted for air quality studies by the WHO and U.S. EPA (EPA, 1987, 1997; WHO, 2006; Maynard
et al., 2017), which is equivalent to approximately 1.7 um geometric diameter.

Coarse dust (2.5 <D < 10 pm) — We propose the geometric diameter of 10 um as the upper limit for coarse
dust for two reasons. First, many current climate and chemical transport models only account for dust with
a diameter of up to 10 um (Zender et al., 2003; Hurrell et al., 2013; Zhao et al., 2013). Therefore, this
classification will allow for comparisons between past and future studies. The second reason we propose a
10-um geometric diameter as the upper limit of coarse dust is that dust size distributions for particles
between ~ 2.5 and 10 pm are commonly scale-invariant — that is, they follow a power-law distribution
(Junge, 1963; Gillette et al., 1974; Whitby, 1978; Jaenicke, 1993; Seinfeld and Pandis, 2006; Kok, 2011a).
In addition, observational studies have also suggested that normalized distributions of dust particles with a
diameter of less than 10 pum remain largely unchanged even after days of transport in the atmosphere
(Maring et al., 2003; Reid et al., 2008). Similar to our classification of fine dust, we also note here that our
classification of coarse dust is based on geometric diameter and not the aerodynamic diameter used to define
PM10.

Super-coarse dust (10 <D < 62.5 pm) — Beyond the generic terminology of atmospheric aerosols (Whitby,
1978), we propose the term “super-coarse” dust for particles with a geometric diameter between 10 and
62.5 um. We do so for two reasons: first, there is now increasing evidence that dust particles with a diameter
greater than 10 um and up to about 60 pm consistently undergo long-range transport beyond what can be
explained by Stokes settling theory alone (Reid et al., 2003a; Clarke et al., 2004; McConnell et al., 2008;
Wagner et al., 2009; Johnson and Osborne, 2011; Weinzierl et al., 2011, 2017; Ryder et al., 2018). Second,
we propose the super-coarse dust classification and the upper diameter limit of 62.5 um to be consistent
with the grain-size classification of dust emission, which defines the diameter boundary between sand and
dust particles at 62.5 pm (Wentworth, 1922; Shao, 2008; Kok et al., 2012).

Giant dust (D > 62.5 pm) — Finally, we propose “giant” dust for all atmospheric sand-sized particles with
a diameter greater than 62.5 pum. Although giant dust particles have been observed mostly close to dust
sources and, in some cases, at distant locations (Betzer et al., 1988; Ryder et al., 2013b; Weinzierl et al.,
2017; van der Does et al., 2018a), they are unlikely to consistently undergo the type of long-range transport
that is possible for coarse (2.5 — 10 um) and super-coarse dust (10 — 62.5 pum).
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Figure 2: Classification of dust sizes used in different studies. The last column shows the dust size
classification and the geometric diameter range proposed by this review article. Note that the vertical scale
is linear up to 10 um but logarithmic afterward. Also, the WHO and U.S. EPA classifications use
aerodynamic diameter for fine (PM2.5) and coarse aerosols (PM10), which respectively correspond to
geometric diameters of ~ 1.7 and ~7 um (e.g., Huang et al., 2021).

3. Evidence of coarse and super-coarse dust aerosols in the Earth system

Despite the irregularities in the dust size classification and representation, several lines of evidence have
indicated that coarse and super-coarse dust aerosols are abundant in the Earth system. This realization has
been possible because of the recent progress in measuring the abundance and size distribution of coarse to
giant dust particles, at the surface, throughout the atmosphere, and in deposition measurements. Many
aspects of observing and measuring dust particles are underpinned by the basic foundations of aerosol
measurement science, descriptions of which can be found in ample sources such as Kulkarni et al. (2011)
and are not described here. However, several features of dust measurements require different instrumental
capabilities and assumptions when processing and interpreting measurement data, and some of these aspects
are summarized in this section. Section 3.1 summarizes recent lines of evidence for coarse to giant dust
particles from ground-based and deposition measurements, while Section 3.2 examines airborne
measurements higher up in the atmosphere. A summary of the studies discussed, including the measurement
platforms and size modes measured, is given in Table 1. Although measurements highlighted here are
limited in spatial and temporal coverages, with the majority over North Africa and North Atlantic Ocean,
they are direct measurements of dust particles and describe the presence of coarse to giant dust particles in
the atmosphere. In contrast, retrievals of dust sizes from remote-sensing platforms with continuous spatial
or temporal coverages, such as from ground-based AERONET or satellite platforms, are accompanied by
large biases and uncertainties (e.g., McConnell et al., 2008; Ryder et al., 2015), and they are not discussed
in this section (see Section 5.1).
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Table 1: Evidence of large particles observed since 2006 in the atmosphere and through deposition, in

order of measurement date. Only measurement campaigns which measured up to at least 20 um in

diameter are included, and those with measurements in a size mode are noted with the check mark (V).

“NM” indicates Not measured, “ATM " indicates atmospheric measurements, and “DEP” indicates

deposition measurements.

Measu Size Modes Detected
Measure rement
Field Measurement ment . Super- .
. . upper | Fine | Coarse Giant
References Campaign Location and Type . Coarse
size (<2.5 | (2.5-10 (>62.5
Name Date and limit (10-62.5
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2014 — Feb 250 v
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3.1. Ground-based in-situ and deposition measurements

!Largest size bin spanned super-coarse and giant modes (30-100 um).

In many ways, ground-based observations form the basis of the most accessible long-term measurement

approach for dust observations. Probably the best-known and longest continuous time series of desert-dust

monitoring are the observations and monitoring of Saharan dust on Barbados that were started in 1965
(Delany et al., 1967), and these observations taught us a lot about relationships between environmental
conditions in the dust source areas, dust emission, and atmospheric-transport processes. Dust observations
in east Asia date back much longer (e.g., Natsagdorj et al., 2003), with dust outbreaks in China and Korea
being recorded already in 57 BC (Chun et al., 2008). The collection of actual aeolian dust for the study of
its physical properties and mineralogical- and chemical composition in relation to atmospheric-transported
processes was probably described first in Barbados, and many dust-deposition stations have been set up
thereafter, such as in French Guyana (Prospero et al., 1981), Mali (Kaly et al., 2015), Senegal (Skonieczny
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et al., 2013), Tenerife (Prospero, 1996), Gran Canaria (Torres-Padron et al., 2002), Crete (Guerzoni and
Chester, 1996). In addition, larger programs were set up to monitor dust across regions in southeast
Australia (Leys et al., 2008), the central north Atlantic Ocean (Korte et al., 2017), and the Mediterranean
(XMed-Dry) (Rizza et al., 2021).

In the late 1970s, it was observed that large dust events transport huge amounts of material into the ocean
(Duce et al., 1980), and international efforts were undertaken to study these events. The first actual
observations of giant particles were done in the atmosphere and the Pacific Ocean water column during the
ADIOS — Asian Dust Input to the Oceanic System experiment in 1986 when during a dust outbreak in
eastern Asia, aeolian particles were collected at >10,000km from its source and measuring >75um (Betzer
et al., 1988). However, not much attention was paid to these exceptional so-called ‘giant particles’ until
recently when van der Does et al., (2018) and Ryder et al., (2019) showed the presence of such large
particles over the Atlantic Ocean across thousands of kilometers from their source as well as at several
kilometers altitude in the atmosphere. Similar to the observation of Asian dust in the Pacific Ocean (Betzer
et al., 1988), examples of large aeolian dust particles collected at 3 m above sea level, approximately 2400
and 3500 km from the West African coast, are shown in Figure 3 (van der Does et al., 2018a). Several
mechanisms have been proposed (van der Does et al., 2018a), such as repeated uplift in convective cells
and triboelectric charging of particles causing sustained suspension in the air of particularly quartz particles
(see Section 5.2.2).

Furthermore, other deposition observations of present-day sand-sized Saharan dust were made across the
Atlantic Ocean, over Central America, and in other places. For example, across the Atlantic Ocean, these
observations were made in sea-bed samples (Holz et al., 2004) as well as collected with dust collectors
above the ocean surface, such as on ships off Northwest Africa (e.g., Stuut et al., 2005) or mounted on
moored surface buoys (e.g., van der Does et al., 2018a). Time series of dust collected along a transect
across the Atlantic Ocean at 12°N showed seasonal changes in dust particle sizes with coarsest-grained
material deposited in summer and finest-grained dust in winter (van der Does et al., 2016). With the use of
radiogenic isotopes, the northwest African provenance of these aeolian particles was demonstrated (van der
Does et al., 2018b). In addition, North African super-coarse dust has recently been measured in French
Guiana (Barkley et al., 2021), where a substantial proportion of super-coarse particles were found to be
freshwater diatoms, notable for their low density and high asphericity. Moreover, large particles were also
observed in Saharan dust events in the Carpathian Basin in 2013 and 2014 (Varga et al., 2014). The most
recent findings of large aeolian particles were reported from Iceland, where in the period between 2008 and
2020, fifteen Saharan-dust events were recorded in satellite and lidar data (Varga et al., 2021). The Saharan
provenance of two of these dust events deposited in Iceland was confirmed by back-trajectory calculations,
granulometric (particle-size and -shape distributions) characteristics, and mineralogy and included the
occurrence of giant (>100um) particles (Varga et al., 2021). The several observations of these giant particles
suggest that they, but also smaller-sized particles such as coarse and super-coarse dust aerosols, are
abundant in the atmosphere and likely travel farther distances than explained by gravitational settling theory
(e.g., Seinfeld and Pandis, 2006).

13



100 pm
=y

Figure 3: Giant dust particles collected on an autonomous dust-collecting buoy in the central north
equatorial Atlantic Ocean at ~12°N/37°W, more than 2,000km from the nearest African coast (adapted with
permission from van der Does et al., 2018a).

3.2. Airborne measurements

Airborne observations have the benefit of being the only method allowing in-situ profiling of the vertical
distribution of dust particles, including the size distribution, which may be very different from that observed
at ground level. The vertical distribution of dust composition, loading, and particle sizes are of key
importance in defining the viability of long-range transport and certain impacts of dust, including air
quality, radiative effects, and cloud interactions. Therefore, the ability to measure the vertical profile of the
dust particle size distribution is of great importance.

3.2.1. Aircraft measurements

Historically, measurements of the full dust size distribution, including coarse and super-coarse dust
particles, have often not been made on aircraft. This has occurred due to various factors, including (1)
assumptions that coarse mode dust particles simply were not lifted to high altitudes or transported far from
dust sources and therefore not even necessary to measure, (2) due to instrumental challenges of measuring
coarse particles, and (3) that observations behind inlets and pipework restricting coarse particle
concentrations led to incorrect assumptions that substantial coarse dust particles were not present, or were
present in low-to-insignificant quantities.

In the last 20 years, there has been significant progress in aircraft observations measuring further into the
coarse, super-coarse, and even giant mode dust size range. Ryder et al. (2018) summarize airborne
observations from the major dust field campaigns since 2006, highlighting different instrumental upper size
limits and restrictions due to inlet size cut-offs. Aircraft inlets are of great value in allowing aerosols to be
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drawn into the aircraft cabin via pipework, where various measurements of interest can be made. However,
it is imperative that attention is paid to the characteristics of the inlet and length of pipework, which impact
sampling and transmission efficiency so that any limitations of the measurements made downstream are
characterized and accounted for (e.g., Krdmer et al., 2013; Sanchez-Marroquin et al., 2019). For example,
inlets are typically characterized by the diameter at which passing efficiency is reduced to 50%, which may
vary between 1 to 20 um (e.g., McConnell et al., 2008; Formenti et al., 2011a; Denjean et al., 2016).
However, lengthy pipework inside an aircraft cabin further reduces coarse aerosol transmission, and
pipework bends of 90 degrees can prevent the sampling of particles larger than around 1 pm (e.g., Krédmer
et al., 2013), even if the inlet is able to sample larger particles. For aerosol types where coarse particles are
present, such as dust, these processes can severely alter the measured size distribution (e.g., Ryder et al.,
2013; their figure 3).

To quantify the size distribution of the full-size ranges of dust particles, here we present only airborne dust
observations extending up to at least 20 um diameter and only present observations taken on wing-mounted
probes, which do not suffer from inlet and transmission size restrictions (e.g., Ryder et al., 2013b).
Observations are taken mostly from optical particle counters, measuring optical diameter from scattering
cross sections, which are then converted to geometric diameter by accounting for the likely (or measured,
where possible) refractive index of the dust sampled (e.g., see Section 2.1). In many cases, the authors have
applied detailed procedures to account for and propagate uncertainties stemming from the non-linear, non-
monotonic Mie scattering theory relating scattering cross-section to particle diameter (Rosenberg et al.,
2012; Walser et al., 2017). In some cases, optical array probes, which utilize light shadowing techniques
and provide a geometric diameter, have also been used in combination with optical particle counters,
particularly for the super-coarse and giant modes. This is particularly valuable since optical array probes
do not require assumptions about the refractive index or rely on non-linear responses.

We show the dust size distributions from a selection of fieldwork campaigns satisfying the above criteria
in Figure 4. Observations close to desert sources are colored orange, and other observations are as shown
in the legend. Size distributions are given as the number, surface area, and volume distributions since each
may impact different components of the climate system. Size distributions are shown as combinations of
lognormal modes since this provides a straightforward way to summarize the measurements and renders
them easily replicable. From Figure 4, the number concentration decreases as dust particle size increases.
However, in terms of surface area and volume distribution, concentrations of dust in the coarse and super-
coarse size ranges are high and dominate the dust volume (and, therefore, mass). In terms of surface area,
the fine and coarse modes contribute fairly equally, demonstrated by the flat surface area distribution, and
there is a drop-off in surface area, which occurs at various diameters through the super-coarse mode.
Volume distributions reach a maximum in the super-coarse mode over the desert (orange lines in Figure 4),
and for transported dust, the volume distribution peaks around the lower bound of the super-coarse mode
or throughout the coarse mode. Contributions from the giant mode become most significant in terms of
volume distribution (as opposed to number or surface area) and contribute most strongly for the desert
cases, where the giant mode volume distribution can sometimes exceed that of the other size ranges.

Much variation is seen between different field campaigns (Figure 4). Observations closest to dust sources
over the desert (Fennec and SAMUM1) show the strongest contributions from the super-coarse size range
(with volume median diameters, VMD, of 21 and 5-14 um, respectively) and the size of the peak volume
concentration drops with transport away from the sources, with VMDs between 3 to 12 microns for the
other campaigns. Variability in dust size over the desert with dust age following uplift also occurs; for
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example, during Fennec, the effective diameter was found to decrease rapidly with dust age, from 13 to 8
um for dust within the first 12 hours of uplift, down to 6 um for dust transported for 2 days in the atmosphere
(Ryder et al., 2019).

In addition to different transport distances, some variation between different campaign-averaged size
distributions can be attributed to sampling dust in different locations (though all sampled North African
dust), seasons, and dust originating from different sources. For example, the SAMUM? size distributions
represent wintertime Saharan dust, which remains at low altitudes in the atmosphere and may be impacted
by different vertical mixing and deposition to summertime dust, which can be mixed upwards to altitudes
of 5-6 km under intense deep boundary layer heating (McConnell et al., 2008; Johnson and Osborne, 2011;
Ryder et al., 2013b; Garcia-Carreras et al., 2015). The GERBILS size distributions, although measured over
the desert, most likely represented a mixture of aged regional dust and fresher samples (Johnson and
Osborne, 2011; Ryder et al., 2019). The ADRIMED data were observed over the Mediterranean and
originated from somewhat different sources to the other campaigns shown in Figure 4 (Denjean et al., 2016).

We show in Figure 5 how summertime Saharan dust mass concentrations vary vertically from three field
campaigns for different size ranges over the Sahara desert compared to the Sahara Air Layer (SAL). In the
fine and coarse modes, the structure of the elevated SAL peaking at 2.5 to 3.5 km is strongly evident in
AER-D due to the different nature of the size distribution compared to Fennec-Sahara and Fennec-SAL.
Super-coarse dust concentrations are higher over the desert (around 200 ug m™ up to 3.5 km) compared to
transported dust (around 50 ugm™ up to 5 km). Under average conditions, very few giant particles were
measured, with the median mass of all the campaigns being zero (panel d). However, when the variability
encountered is considered, observations up to the 75" percentile over the desert (orange shading) does
identify up to 70 ug m™ of giant dust at altitudes of around 1km. When considering variability up to the 90®
percentile (dashed orange line), significant mass concentrations of giant dust, up to nearly 300 ugm, are
encountered. Notably, the 90" percentile Fennec profile even shows giant dust concentrations of 10 ug m™
just beneath 5 km altitudes. Therefore, this data shows that the giant particles are not consistently present,
but under the larger dust loadings, they are present in high mass concentrations and up to high altitudes.
The 90™ percentiles in the SAL (blue and black dashed lines) demonstrate few giant dust particles in the
SAL, other than beneath 1 km — possibly a result of deposition from the overlying SAL.
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Figure 4: Lognormal size distributions for recent airborne campaigns measuring Saharan dust extending
to sizes larger than 20 um diameter, shown in number distribution (top), surface area distribution (center),
and volume distribution (bottom). Observations close to dust sources are colored orange. Shading
represents variability within certain fieldwork campaigns. Lognormal curves are not shown at sizes above
which measurements were made. Data are taken shown for Fennec-Sahara (Ryder et al., 2019), SAMUM1
(Weinzierl et al., 2009), AER-D (Ryder et al., 2018), Fennec-SAL (Ryder et al., 2019), SAMUM?2 (Weinzierl
etal., 2011), GERBILS (Johnson and Osborne, 2011), ADRIMED (ADRIMED a and b represent dust above
3 km and beneath 3 km, respectively) (Denjean et al., 2016), SALTRACE (SALTRACE E and W represent
observations over the eastern vs. western Atlantic) (Weinzierl et al., 2017).
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Figure 5: Vertical distribution of dust mass concentrations in different dust size ranges: (a) fine dust; (b)
coarse dust; (c) super-coarse dust; (d) giant dust. Dust density is assumed at 2.65gcm™. Data is shown
from three airborne field campaigns: Fennec-Sahara over the desert, Fennec-SAL, and AER-D-SAL in the
Saharan Air Layer over the Canary Islands and Cape Verde Islands, respectively. Solid lines represent
medians, and shading bounded by dashed lines represents the 25" to 75" percentiles. Panel d shows the
90" percentile in dashed lines. Note the different x-axis scales for each panel.

3.2.2.Observations from unmanned aerial vehicles, radiosondes, and floating balloons

In the past 15 years, technical developments have permitted smaller-sized, lightweight aerosol sensors,
which have permitted dust measurements to be carried out on meteorological radiosondes, floating balloons,
and unmanned aerial vehicles (UAVs) at a much lower cost than manned research aircraft. Similar to aircraft
measurements, this suite of observations also can provide in-situ vertical sampling and, to some extent,
horizontal sampling of a limited domain. However, they are generally limited to sampling the meteorology
and dust events that overpass a field site location, rather than being able to target specific events and sample
larger areas, as is possible with research aircraft.

Renard et al. (2016a, 2016b, 2018) describe the light optical aerosol counter (LOAC), measuring size-
resolved dust concentrations between 0.2 to 100 pm with an optical particle counter (OPC). The LOAC was
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mounted on radiosondes or drifting balloons during the Chemistry-Aerosol Mediterranean Experiment
(ChArMEXx) campaign over the Mediterranean Sea during the summer of 2013, sampling the passage of
Saharan dust events. When mounted on radiosondes, LOAC measures the vertical profile of dust as it
ascends, while the drifting balloons follow a near-Lagrangian trajectory within the same air mass, enabling
it to sample dust size distributions during transport. Renard et al. (2018) frequently observed particles sized
larger than 40 pum at concentrations above 10 cm™ at a distance from source regions. Other instruments,
such as the Universal Cloud and Aerosol Sounding System (UCASS, Smith et al., 2019), a lightweight OPC
which can be deployed on radiosondes, dropsondes, or UAVs to measure size distributions between optical

diameters between 0.4 to 17 um have also been developed and show promising results (Kezoudi et al., 2021a,
2021Db).

4. Impacts of coarse and super-coarse dust aerosols on the Earth system

With several pieces of evidence indicating the persistence of coarse to giant dust aerosols in the atmosphere,
it follows that their impacts on the Earth’s climate system are stronger than previously estimated. Globally,
coarse and super-coarse dust aerosols account for a substantial fraction (about 85%) of the overall dust mass
in the atmosphere (Figure 6). Data from the Dust Constraints from joint Observational-Modeling-
experiMental analysis (DustCOMM) (Adebiyi and Kok, 2020; Kok et al., 2021a), which is based on a suite
of observational constraints combined with an ensemble of model simulations, indicated that the coarse
dust mass load (2.5-10 pm in diameter) is approximately 14 Tg (95% confidence interval: 10 - 18 Tg). This
is more than three times the global fine dust mass load (about 4 Tg, 3 - 6 Tg) in the atmosphere (Figure 6a).
In comparison, the global mass loads of super-coarse and giant dust are less certain because of the limited
availability of airborne measurement constraints. We nonetheless extended the DustCOMM constraints to
a particle diameter of 100 pm with Community Earth System Model (CESM) simulations of the ratio of
super-coarse and giant dust to dust particles with D <20 um from Meng et al. (2022). The authors used an
improved parameterization of the size distribution of emitted dust that accounts for the emission of super-
coarse dust. In addition, they used a dust density reduced by a factor of 10 (250 kg m-3) as a proxy for as-
of-yet unclear processes missing from models that likely cause coarse dust to deposit less quickly than
observed in nature (Section 5.2). As a result, these simulations were able to match in situ measurements of
super-coarse dust both close to and far from dust source regions (Meng et al., 2022). The estimated super-
coarse and giant dust mass loads are approximately 10 Tg and 0.3 Tg, respectively (Figure 6a).
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Figure 6: Dust mass loading resolved by dust diameter. (a) The size-resolved global dust load (Tg, left
axis), including the percentage contribution of each size range to global dust loading (%, right). The
spatial distribution for (b) the annually-averaged bulk dust (0.2-100 um) column loading in mg m-2 and
the fraction of bulk dust loading that is (c) fine dust (0.2-2.5 um diameter), (d) coarse dust (2.5-10 um),
and (e) super-coarse dust (10-62.5 um). These results use data from the DustCOMM (Adebiyi and Kok,
2020; Kok et al., 2021a) for dust up to 20 um diameter, supplemented with Community Earth System
Model simulations for dust up to 100 um. The results for D > 20 um diameter do not have quantified
errors and are uncertain.

Although in these model simulations, coarse and super-coarse dust aerosols dominate the global dust mass
(Figure 4 and Figure 6), their transport and deposition pathways determine their spatial distribution and,
eventually, the spatial extent of their impacts on the Earth system. Because coarse dust is transported much
farther than super-coarse dust, it can have stronger impacts on the Earth’s system. For example, a substantial
amount of coarse dust can reach the western parts of the North Atlantic and Pacific Oceans from the Sahara
and Asia deserts. In contrast, the amount of super-coarse dust aerosols reaching those locations is very small
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(Figure 6¢ & d). Therefore, the spatial distribution and the eventual spatial extent of dust impacts on the
Earth system remain a strong function of dust particle size.

Summarized by the schematics in Figure 1, here we describe the impacts of coarse and super-coarse dust
aerosols on radiation, including the adjustments to dust-radiation interactions (Sections 4.1 and 4.2), the
role of coarse and super-coarse dust aerosols as cloud condensation and ice-nucleating particles (Section
4.3), and the impacts on atmospheric chemistry (Section 4.4), and biogeochemistry (Section 4.5).

4.1. Interactions of coarse and super-coarse dust aerosols with radiation

Because of their abundance and wide range of sizes, dust aerosols produce important radiative interactions
over a wide spectral range. Indeed, dust aerosols account for about a quarter of aerosol extinction in the
shortwave (SW) spectrum (Glif et al., 2021; Ridley et al., 2016), and dust is the main aerosol species
producing extinction and radiative effects in the (LW) spectrum (Dufresne et al., 2002; Heald et al., 2014).

4.1.1.Interactions of coarse and super-coarse dust aerosols with SW radiation

Dust interactions with SW radiation are strongly sensitive to particle size (Figure 7). Dust with a diameter
smaller than the wavelength of visible light (D < ~0.5 pm) is relatively inefficient at producing SW
extinction (Figure 7a) and thus accounts for only a few percent of the dust aerosol optical depth (DAOD)
(Figure 7d). As the diameter increases, its extinction efficiency (the extinction cross-section unit surface
area) increases, peaking at approximately double the wavelength of light (D ~ 1 pm for mid-visible light).
As dust size increases further, the extinction efficiency declines somewhat. However, because the surface
area per unit mass decreases with particle size, the extinction produced per unit dust mass (the mass
extinction efficiency) decreases strongly with particle size beyond D ~ 1 um (Figure 7b). Nevertheless, if
the total dust mass in this size range is large, the total extinction can be much greater and impact the overall
DAOD. Consequently, even though coarse and super-coarse dust aerosols account for ~85% of the
atmospheric dust mass loading (Figure 6), they account for only ~50% of DAOD (Figure 7d).

Dust size also partially determines the fraction of extinguished radiation that is absorbed. The single-
scattering albedo (SSA) - the ratio of the scattering to the extinction cross sections - decreases strongly with
particle size (Figure 7¢). Fine dust has an SSA close to 1, but as the particle diameter increases relative to
the wavelength of light, so does the fraction of extinction that is due to absorption (dust aerosols are a
mixture of different minerals whose relative abundances, particle size distribution, shape, surface
topography and mixing state influence their effect upon climate; Figure 7c¢). This decrease in SSA with
sizes is partially offset by the decreasing content of light-absorbing iron oxides with dust aerosol size
(Kandler et al., 2009; Caponi et al., 2017; Ryder et al., 2018). Overall, of the order of 5% of dust extinction
of SW radiation is due to absorption (Figure 7b, d), and coarse and super-coarse dust aerosols account for
approximately three-quarters of this absorption (Figure 7e).

In addition to size, the dust SSA is determined by the imaginary part of the index of refraction (Figure 7c),
which in turn depends on dust mineralogy (Sokolik and Toon, 1999; Perlwitz et al., 2015; Scanza et al.,
2015; Di Biagio et al., 2019). Unfortunately, both dust mineralogy itself and the optical properties of the
main SW absorbing minerals (iron oxides in the form of goethite and hematite) remain highly uncertain
(Gillespie and Lindberg, 1992; Bedidi and Cervelle, 1993; Claquin et al., 1999; Journet et al., 2014;
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Schuster et al., 2016a). Consequently, the dust absorption aerosol optical depth (DAAOD), which quantifies
the globally averaged extinction produced by dust absorption, remains highly uncertain (Figure 7d).
Nevertheless, existing estimates suggest that dust absorption accounts for ~25% of global aerosol
absorption optical depth (AAOD) (Buchard et al., 2015; Samset et al., 2018; Sand et al., 2021). This
absorption of SW radiation by dust and other aerosol species (black carbon and brown carbon) has important
consequences for the Earth system, which include offsetting dust cooling due to SW scattering, reducing
the intensity of the hydrological cycle, and stabilizing the atmosphere (Balkanski et al., 2007; Solmon et
al., 2008; Samset et al., 2016).

The interactions of dust with SW radiation are enhanced by the substantial asphericity of dust, with the
particle length-to-width (the aspect ratio) and height-to-width ratios substantially larger than unity (Okada
et al., 2001; Kandler et al., 2007; Chou et al., 2008; Huang et al., 2020). This asphericity increases the
surface area for a given volume (or mass) of dust aerosol, which results in enhanced extinction, especially
for particle radii in excess of the wavelength of light. Measurements of dust shapes combined with
calculations of single-particle scattering properties indicate that asphericity enhances dust mass extinction
by ~40% (Kalashnikova and Sokolik, 2004; Kok et al., 2017). Accounting for this enhancement in dust
extinction efficiency appears to be important for models to simultaneously match observations of DAOD
and surface concentration (Kok et al., 2021a).

The relative contributions of the different dust size range to DAOD change substantially as a function of
distance from the major source regions (Figure 8). This occurs because the lifetime of dust decreases
strongly with particle size (Miller et al., 2006; Kok et al., 2017), largely due to increasing gravitational
settling speed. As such, coarse and super-coarse dust aerosols are concentrated close to the major source
regions (Figure 6), where they account for the majority of DAOD. But the fractional contribution of coarse
and super-coarse dust aerosols to DAOD decreases rapidly with distance from source regions (Figure 8c,
d), such that the contribution of fine dust to DAOD dominates further from source regions (Figure 8).
Because coarse and super-coarse dust aerosols account for around three-quarters of dust absorption of SW
radiation, these results also further confirm that semi-direct effects of dust on clouds, as well as effects of
dust absorption on precipitation, have the strongest influence around the major source regions (Solmon et
al., 2008; Amiri-Farahani et al., 2017) (see also Section 4.2).
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Figure 7: Size dependence of dust interactions with shortwave (SW) radiation. The size-resolved (a) dust
extinction efficiency and (b) mass extinction efficiency for spherical and ellipsoidal dust, (c) the single-
scattering albedo for different values of the imaginary index of refraction, (d) the globally averaged SW
dust aerosol optical depth (DAOD) wavelength per particle size bin (the median total global SW DAOD is
0.028), and (e) the globally averaged dust absorption aerosol optical depth (DAAOD) per particle size bin
(the median total global SW DAAOD is 0.0019). Results for ellipsoidal dust in panels (a), (b), and (c) are
after Huang et al. (2022), who combined a database of single-scattering properties (Meng et al., 2010) with
constraints on the probability distributions of dust aspect ratio and height-to-width ratio (Huang et al.,

2020). These results use a real index of refraction of 1.53 + 0.03 and an imaginary index of refraction of
log(k) = -2.75 £ 0.25 for panels (a) and (b), which are both based on data compilations in Di Biagio et al.

(2019); results for spherical dust were calculated using Mie theory (Mdtzler, 2002). Results in panels (d)

and (e) used these optical properties of ellipsoidal dust and were obtained from constraints on global size-

resolved mass loading for dust aerosols up to 20 um diameter from the DustCOMM data set (Kok et al.,

2021a), extended up to a diameter of 100 um using Community Earth System Model simulations by Meng
et al. (2022)(also see description at the beginning of Section 4). As such, results beyond 20 um diameter
do not have quantified errors and are especially uncertain. The extinction efficiency is defined here as the
extinction normalized by the projected area of a sphere with diameter D (Kok et al., 2017). All results are
for a wavelength of 550 nm, error bars and shading denote one standard error.
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Figure 8: The contribution of different dust particle size ranges to shortwave (SW) dust aerosol optical
depth (DAOD) at 550 nm. Shown are the SW DAOD due to dust of all sizes (a) and the fraction of that
DAOD produced by (b) fine (D <2.5 um), (c) coarse (2.5 < D <10 um), and (d) super-coarse (10 < D <
62.5 um) dust. Results were obtained by extending DustCOMM constraints on DAOD for dust with D <20
um with Community Earth System Model simulations of dust out to 100 um, as described at the beginning
of Section 4 and Figure 7. The contribution of giant dust (D > 62.5 um) was ~0.01% of global SW DAOD
and is not shown.

4.1.2.Interactions of coarse and super-coarse dust aerosols with LW radiation

Dust is unique among aerosol species in producing interactions with LW radiation that are important to the
Earth’s radiation budget. Indeed, other aerosol species besides sea salt are too fine to interact substantially
with LW radiation, and sea salt is usually confined to the atmospheric boundary layer, such that its small
temperature contrast with the surface causes its longwave interactions to produce only a small perturbation
of the top-of-atmosphere (TOA) energy balance (Dufresne et al., 2002; Heald et al., 2014). The effects of
absorption and scattering of LW radiation by dust are mostly relevant in the infrared atmospheric window
(~8-13 um) as the atmosphere is opaque at other infrared wavelengths (Liou, 2002).

As was the case for interactions with SW radiation (Section 4.1), interactions of dust with LW radiation
depend strongly on size. Dust with diameters substantially smaller than the wavelength of infrared radiation
is inefficient at producing extinction (Figure 9a), such that dust with D <1 um produces only a few percent
of the total DAOD of ~0.015 (Kok et al., 2021b) in the LW spectrum (Figure 9d). As dust size increases,
its extinction efficiency increases rapidly, peaking around the ~10 um wavelength of infrared radiation in
the atmospheric window (Figure 9a). Because the ratio of surface area to particle mass decreases with
increasing particle size, the mass extinction efficiency peaks at a smaller diameter of ~5 pm (Figure 9b).
Consequently, coarse dust (2.5 <D < 10 pm) is the dominant contributor to LW DAOD); super-coarse dust
provides another ~30%. As such, coarse and super-coarse dust aerosols account for the bulk of dust
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extinction of LW radiation, making it critical that global models adequately account for these particles
(Figure 9d).

Both scattering and absorption contribute substantially to the dust extinction of LW radiation, with a single-
scattering albedo of around 0.5 (Figure 9). However, LW scattering interactions are generally not accounted
for in global models, which likely causes models to underestimate the radiative effects of dust interactions
with LW radiation (Dufresne et al., 2002; Miller et al., 2006; Kok et al., 2017; Di Biagio et al., 2020).

Dust optical properties in the LW spectrum are uncertain because of a dearth of measurements and the
substantial spread in measured optical properties between the few published experimental studies (Volz,
1972, 1973; Di Biagio et al., 2014, 2017). Although the real index of refraction in the LW spectrum appears
to be relatively constant across dust samples, the imaginary index of refraction appears to vary substantially
with dust mineralogy and also varies rapidly with wavelength (Di Biagio et al., 2017). As with SW
radiation, dust asphericity enhances the extinction of LW radiation by ~50% (Figure 9a).

The pattern of LW DAOD is remarkably similar to that of SW DAOD (Figure 8 & Figure 10) because the
1-10 pm size range dominates both, accounting for ~80% of SW DAOD and ~65% of LW DAQOD (Figure
7d, Figure 9d). Nonetheless, fine dust makes only a minor contribution to LW DAOD, except in remote
regions like the polar caps, where little coarse dust remains (Figure 10b). On the other hand, coarse dust
accounts for over half of LW DAQOD in most of the world (Figure 10c), and super-coarse dust also
contributes approximately a quarter of LW DAOD close to source regions (Figure 10d), thereby
underscoring the need for global aerosol models to account for dust with diameters in excess of 10 um
(Ryder et al., 2019; Adebiyi and Kok, 2020).
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Figure 9: Size dependence of dust interactions with longwave (LW) radiation. Shown are the size-
resolved (a) dust extinction efficiency, (b) mass extinction efficiency, and (c) single-scattering albedo for
both spherical and aspherical (ellipsoidal) dust. Also shown is (d) the globally averaged dust aerosol optical
depth (DAOD) at 10 um wavelength per size bin (the median total global LW DAOD is 0.015). The
calculations for these figures follow the similar panels in Figure 7 for dust interactions with shortwave
radiation, except that we used a real index of refraction of 1.70 &+ 0.20 and an imaginary index of refraction
of log(k) = 0.41 + 0.11, both based on data compilations of dust optical properties in the LW spectrum
reported in Di Biagio et al. (2017).
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Figure 10: The contribution of different dust particle size range to longwave (LW) dust aerosol optical
depth (DAOD) at 10 pm. Shown are the LW DAOD due to dust of all sizes (a) and the fraction of that
DAOD produced by (b) fine (D < 2.5 um), (¢) coarse (2.5 <D < 10 um), and (d) super-coarse (10 <D <
62.5 pm) dust. Results were obtained by extending DustCOMM constraints on DAOD due to dust with D
<20 pm with Community Earth System Model simulations of dust out to 100 um (Meng et al., 2022), using
parameters as described in the captions of Figure 7 and Figure 9. The contribution of giant dust (D > 62.5
um) was ~0.02% of global LW DAOD and is not shown.

4.1.3.Global direct radiative effect of coarse and super-coarse dust aerosols

Dust size largely determines the relative importance of cooling due to scattering SW radiation versus
warming due to absorbing SW and scattering and absorbing LW radiation (Figure 7 and Figure 9). Indeed,
fine dust produces substantial extinction in the SW spectrum (Figure 7a-c), of which only a few percent is
due to absorption (Figure 7¢), such that fine dust produces a substantial cooling effect at both the surface
and TOA (Figure 11). Conversely, coarse dust absorbs a larger fraction of extinguished SW radiation and
also scatters and absorbs substantially in the LW spectrum, thereby, on balance producing net warming at
TOA. Super-coarse dust absorbs an even higher fraction of extinguished SW radiation (Figure 7¢) and also
produces substantial extinction in the LW spectrum (Figure 9d). Super-coarse dust, therefore, also warms
at TOA, though its net direct radiative effect is smaller than for coarse dust (Figure 11) because of lower
mass extinction efficiencies in both the SW (Figure 7b) and LW spectra (Figure 9b), combined with a
smaller mass loading (Figure 6a). Giant dust has relatively low mass loading and mass extinction
efficiencies and does not produce a substantial impact on Earth’s global radiation budget.

Because dust direct radiative effects are thus in large part determined by dust size, the global dust direct

radiative effect (DRE) is partially determined by the globally averaged dust size distribution (Figure 11)
(Kok et al., 2017; Adebiyi and Kok, 2020; Di Biagio et al., 2020). Other important factors that determine
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the net global dust DRE at TOA include dust mineralogy, the presence of underlying clouds, the surface
albedo and emissivity, and the dust plume height (Liao and Seinfeld, 1998; Li et al., 2021). For example,
uncertainties in dust minerology are important for dust SW DRE (e.g., Li et al., 2021), however model
results suggested that, after accounting for coarse and super-coarse dust aerosols, agreement with
observation over the North Atlantic requires a less absorptive SW dust refractive index than currently used
in models (e.g., Ito et al., 2021) . Because of uncertainties in all these factors (e.g., Kim et al., 2014; Di
Biagio et al., 2019; Ryder et al., 2019; Adebiyi and Kok, 2020; O’Sullivan et al., 2020), it is still not clear
whether the dust DRE net warms or cools the planet (Figure 11) (Kok et al., 2017; Adebiyi and Kok, 2020;
Di Biagio et al., 2020; Li et al., 2020). However, it is clear that fine dust tends to cool on a global scale,
whereas coarse and super-coarse dust aerosols warm, thereby counteracting this cooling. The exact
proportions of fine and coarse dust in our atmosphere are thus critical determinants of the sign and
magnitude of the global dust DRE. Furthermore, because atmospheric dust loading has increased
substantially over the past century (Mahowald et al., 2010; Hooper and Marx, 2018; Kok et al., 2022) and
might change substantially in the future (Stanelle et al., 2014; Kok et al., 2018), narrowing the uncertainty
on the global dust size distribution and dust optical properties is critical for improving projections of future
climate changes.
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Figure 11: Global dust direct radiative effect (DRE) resolved by particle size. Shown are the DRE in
the shortwave (SW) and longwave (LW) spectra and their sum (NET) for fine, coarse, and super-coarse
dust (left three columns) and for all dust from results obtained here and in Di Biagio et al. (2020). Results
for dust with D <20 um are from Adebiyi and Kok (2020), and results for D > 20 um were obtained by
combining our results on SW DAOD (Figure 7d) with an estimated global DRE per unit SW DAOD of 20
+ 8 Wm™ for both SW and LW radiation (Kok et al., 2017). Results from Di Biagio et al. (2020) used dust
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size distribution that accounts for coarse and super-coarse dust particles by fitting the data from Kok et al.
(2017) and the FENNEC campaign over North Africa (Ryder et al., 2013b, 2013a).

4.2. Impacts of coarse and super-coarse dust absorption on clouds and precipitation

Dust aerosols not only affect the global climate system through their direct interactions with shortwave and
longwave radiation but also through the modification of temperature and water vapor profiles, wind
circulation, and cloud properties (Boucher et al., 2013; Knippertz and Stuut, 2014). Because mineral dust
absorbs shortwave and longwave radiation, it can trigger uneven radiative heating or cooling within the
atmosphere, which can locally alter clouds and precipitation distributions (Wong et al., 2009; DeFlorio et
al., 2014; Doherty and Evan, 2014; Huang et al., 2014; Amiri-Farahani et al., 2017). Additionally, spatial
variability in dust loading and absorption can drive mesoscale or synoptic-scale circulation, further
influencing the cloud and precipitation distributions (Chen et al., 2010; Perlwitz and Miller, 2010). These
changes in thermodynamical states, clouds, and precipitation due to the presence of absorbing aerosols,
such as mineral dust, effectively result in adjustments to the dust radiative effect (Boucher et al., 2013;
Forster et al., 2021). Consequently, because coarse and super-coarse dust aerosols have substantial impacts
on shortwave and longwave radiation (Section 4.1), they can have a significant influence on the adjustments
to the dust-radiation interactions. This section describes the adjustment to dust-radiation interaction through
the impacts of coarse dust absorption on clouds and precipitation.

4.2.1.Impacts of coarse and super-coarse dust absorption on clouds

The adjustment to aerosol-radiation interactions through changes in cloud cover was originally referred to
as a semi-direct effect (Boucher et al., 2013; Forster et al., 2021). An aerosol semi-direct effect was first
postulated by Grassl (1975) and later described by Hansen et al. (1997) and Ackerman et al. (2000) using
both observation and model simulations. As one of the absorbing aerosols in the atmosphere (Samset et al.,
2018), dust semi-direct effects occur when the dust absorption alters the heating rates and changes the
atmospheric stability leading to changes in cloud cover and its distribution (Doherty and Evan, 2014; Huang
etal., 2014; Amiri-Farahani et al., 2017). The magnitude of the dust semi-direct effect and whether it results
in a positive (warming) or a negative (cooling) radiative perturbation depends primarily on two factors: the
relative positions of the dust and cloud layers within the atmospheric column and the amount of radiation
absorbed by the dust layers (Meloni et al., 2005; Perlwitz and Miller, 2010; Amiri-Farahani et al., 2017).
Consequently, because fine and coarse dust absorbs radiation differently in shortwave and longwave (see
Section 4.1), the dust semi-direct effect also depends on the vertical distribution of the ratio between fine
and coarse dust.

In addition, the sign of dust semi-direct effect, whether it has a positive or negative effect, depends on the
relative positions of the dust and cloud layers within the atmospheric column (Huang et al., 2014; Amiri-
Farahani et al., 2017). For low-altitude clouds, the current understanding in literature is that dust semi-direct
effect is negative (cooling) when the dust layer lies above the cloud and positive (warming) when the dust
layer lies within or below the cloud (Huang et al., 2014; Amiri-Farahani et al., 2017). When the aerosol is
within or below the low-altitude cloud, the localized shortwave warming could reduce the relative humidity
and the liquid water paths, resulting in destabilization of the layer and dissipation of the cloud cover and,
consequently, a positive semi-direct effect (Huang et al., 2006; Amiri-Farahani et al., 2017). In contrast,
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when the absorbing aerosol is above the low-level cloud, the localized shortwave warming increases the
buoyancy of the layer above the clouds and contributes to the enhancement of the lower tropospheric
stability, resulting in increases in cloud cover and, therefore, a negative aerosol semi-direct effect (Doherty
and Evan, 2014; Amiri-Farahani et al., 2017), though this may vary with aerosol, cloud, and boundary layer
properties (Herbert et al., 2020). Over the North Atlantic Ocean, these mechanisms are used to explain the
negative semi-direct effect during summer when more than 60 % of the Saharan dust resides above the low-
level clouds, and the positive semi-direct effect during winter when about 88 % of the Saharan dust resides
within or below the low-level clouds (Amiri-Farahani et al., 2017). For high-altitude clouds, changes in
cloud cover and, therefore, dust semi-direct effect depend on dust-induced changes in available water vapor
in the atmospheric column. For example, Perlwitz and Miller (2010) showed that, though increased
moisture convergence (which tends to increase cloud cover) can overwhelm the warming effect produced
by dust absorption (which tends to decrease cloud cover) during the summer, the dust absorption results in
an overall annual-mean decrease in high cloud cover (see also Amiri-Farahani et al., 2019).

Regardless of the height of dust and cloud layers, the magnitude of dust semi-direct effect depends on dust
absorption properties, where the ratio between fine and coarse dust is important. For example, Perlwitz and
Miller (2010) showed that for sufficiently large dust aerosol optical depth, more dust absorption directly
results in more low-level cloud cover over dust-dominating regions. In contrast, there are weak increases
and sometimes reductions (especially over land) in low-level cloud cover for conditions of low dust aerosol
optical depth and weak dust absorption (Perlwitz and Miller, 2010). For the same dust aerosol optical depth,
the abundance of coarse and super-coarse dust aerosols relative to the fine dust will result in more
absorption of both shortwave and longwave radiation (see also Figure 4 and Section 4) (Otto et al., 2007,
2011; Adebiyi and Kok, 2020). Therefore, the influence of coarse and super-coarse dust aerosols on dust
absorption suggests that their abundance in the atmosphere would enhance semi-direct effects, especially
over dust-dominating regions.

In addition, the impact of coarse and super-coarse dust aerosols on semi-direct effects also depends on their
vertical distribution (Otto et al., 2007; Ryder et al., 2019). Processes such as convective mixing may act
against the gravitational removal of coarse dust, allowing for an increased presence of coarse dust in the
vertical distribution, even after a long-range transport (e.g., van der Does et al., 2018a). For example, Yang
et al. (2013) and Gasteiger et al. (2017) showed uniform vertical distributions of lidar-based depolarization
ratio between approximately 2 and 5 km over the North Atlantic Ocean, suggesting a consistent observation
of coarse dust in the upper part of the Saharan dust layer. Such vertical distribution of coarse and super-
coarse dust aerosols could impact the overall distribution of dust absorption. Specifically, the vertical
distribution of coarse and super-coarse dust aerosols could determine where dust warms the dust layer in
the shortwave and cools it in the longwave (Carlson and Benjamin, 1980; Otto et al., 2007). Unlike the
shortwave warming that may occur over the entire dust layer, the longwave cooling maximizes at the top
of the dust layer and may result in longwave warming at the bottom of the layer or close to the surface
(Chen et al., 2010; Ryder, 2021). For the case of dust aerosols above the low-level cloud, this additional
dust longwave warming may complement the shortwave warming and lower-tropospheric stability at the
top of the underlying low-level clouds and thus increasing the low-level cloud cover, consequently
enhancing the dust semi-direct effects (e.g., Choobari et al., 2014). The full impact of longwave radiation
on dust semi-direct effects is still an open question and may further depend on the separating distance
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between the dust-cloud layers, the underlying spectral surface albedo, and surface temperature (e.g., Otto
et al., 2007).

Other than the uncertainties associated with the coarse dust abundance or its vertical distribution, the
uncertainties in the estimates of dust semi-direct effects may also depend on the uncertainties in the cloud
and thermodynamical processes (e.g., Stier et al., 2013). For example, Hill and Dobbie (2008) suggested
that it is difficult to isolate the microphysical effects of aerosols, such as changes in the concentration of
cloud condensation nuclei, from the estimates of aerosol semi-direct effects, especially in the case where
the aerosols are within or near the low-level clouds. In addition, changes in atmospheric variables, such as
specific humidity or temperature unrelated to the aerosol effects, can also influence the low-level clouds,
therefore confounding the estimates of semi-direct effects (Perlwitz and Miller, 2010; Wong et al., 2009).

4.2.2.Impacts of coarse and super-coarse dust absorption on precipitation

Dust is a dominating source of aerosol-induced atmospheric energy absorption (Samset et al., 2018; Sand
et al., 2021). As such, it is expected to affect precipitation - globally and regionally - through adjustments
to dust-radiation interaction (Myhre et al., 2018; Richardson et al., 2018). While the underlying processes
and energetic constraints that connect absorption to precipitation formation are well established, no
constraint yet exists on the global mean impact of dust on precipitation, whether fine, coarse or super-
coarse. Here, we discuss some of the key literature linking aerosol absorption and precipitation in general
and use these known relations to provide a first-order estimate of the overall potential influence of dust
absorption on precipitation in the present atmosphere. Because the abundance of coarse dust directly
influences the overall dust absorption (Section 4.1), this inference suggests the impact of coarse and super-
coarse dust absorption on precipitation.

Using a single climate model, Andrews et al. (2010) found indications of a linear correlation between the
atmospheric absorption added to the climate system by a change in a climate driver, such as a doubling of
CO; concentration or a large increase in aerosol amounts, and a reduction in global mean precipitation.
Subsequent single and multi-model studies have confirmed this relationship (Kvalevag et al., 2013; Samset
et al., 2016) and found that it holds for the global mean and is independent of the details of the forcing
mechanism. This includes greenhouse gases, changes in irradiation, and aerosol concentrations.
Consequently, the relation can be expected to apply equally to dust-induced absorption, even though dust
aerosols (fine or coarse) have not so far been explicitly included. And while the absolute change in
precipitation per unit of atmospheric absorption change (in Wm™) varies between models, their correlation
is virtually model-independent (Samset et al., 2016; Smith et al., 2018). The underlying mechanism, as
discussed in a range of studies (Myhre et al., 2018; Richardson et al., 2018; Smith et al., 2018), is the
influence of absorption on the energy balance at precipitation formation where latent heat is released due
to condensation. Essentially, absorption of radiation warms the air aloft, providing extra energy and
therefore inhibiting condensation. Further, the influence of this additional heating on cloud formation and
lapse rate (see Section 4.2) also affects the dynamical conditions underlying precipitation formation.

Because of the increase in the ratio of coarse-to-fine dust per unit volume, dust absorption can therefore be
expected to have an inhibiting influence on global mean precipitation. The magnitude of this influence will
depend on the absolute amount of dust-induced absorption, which, in turn, depends on the optical properties
and atmospheric vertical profile of dust (Samset et al., 2018). It further depends on the geographical
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distribution of dust, as the efficiency of the absorption-precipitation interaction has been shown to be
regionally dependent (Allen et al., 2019; Samset and Myhre, 2015; Sand et al., 2021).

Based on the above and following the method recently introduced in Samset (2022), a first estimate of the
overall influence of dust absorption on precipitation (£) can be derived using the following relationship:

AP AR
x Abs

AP =
ARpps — ATY,

X ATgbs (1)

AR .
455 is the
ATabs

Here, Argbs is the change in global mean absorbing aerosol optical depth due to dust (Tgbs),

AP

relationship between atmospheric absorption (in Wm™) and Tgbs, and is the relationship between

AR aps
precipitation change and atmospheric absorption. The two latter relations can be estimated from the multi-

model studies of PDRMIP (Precipitation Driver Response Model Intercomparison Project) (Samset et al.,
2016) and AeroCom Phase II (Myhre et al., 2013), respectively, to arrive at the relation shown in Figure

12. We have used AAP =-9.33 mm y'/W m™ and % =525 + 165 Wm, respectively. The uncertainty
Abs abs

on the first relation is suppressed, as it is estimated to be an order of magnitude smaller than the latter.

Next, we combine the general relation of Equation (1) with the coarse dust shortwave td, ¢ estimate of
0.0019 from DustCOMM (Figure 7) (Kok et al., 2021a). The result is an estimated precipitation inhibition
due to rapid adjustments in dust-radiation interaction of P = —10 mm y~1. We consider this estimate to
be a lower bound. Firstly, because it only includes the shortwave 19, . Secondly, an underestimate of the
volume of effectively absorbing coarse and super-coarse dust aerosols would also imply an underestimate
in total dust-induced 19, ;. Any surface temperature change resulting from dust absorption would add a
positive contribution to the precipitation change; however, this effect is expected to be minor (Samset et
al., 2016). We also note that since coarse and super-coarse dust particles have not been explicitly modeled,
there may yet be a different coefficient, or even non-linear relationships, between absorption and
precipitation relative to other, more commonly studied drivers of climate change.

Regionally, the impacts of coarse and super-coarse dust absorption on precipitation can be expected to be
complex and heterogeneous. The specific physical mechanisms are, however, poorly studied. Several
studies have reported dust impacts on parts of Asian and African precipitation and on monsoon
characteristics (Huang et al., 2014; Jordan et al., 2018). No clear picture of the details of dust-absorption-
precipitation interactions can be drawn from these studies, but there is a clear consensus emerging that dust
may be of marked regional importance and that the topic is, therefore, in need of further research.

Overall, existing literature describes physical mechanisms that link dust-induced absorption to inhibition
of global mean precipitation as part of the atmospheric rapid adjustments to the presence of absorbing
aerosol. The absolute magnitude and regional details of this potentially very important process are,
however, poorly constrained and therefore represent a clear knowledge gap when assessing the regional
climate implications of atmospheric aerosols.
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Figure 12: A lower bound on the inhibition of global mean precipitation by dust-induced absorption. The
black lines show the overall relationship between AAOD and precipitation reduction from rapid
adjustments derived from multi-model studies, and the black dashed lines show the range of uncertainty.
The red line shows the estimate of total dust SW AAOD shown in Figure 9 based on (Kok et al., 2021a) and
the resulting constraint (yellow shading).

4.3. The role of coarse and super-coarse dust aerosols as cloud condensation nuclei and ice
nucleating particles

In addition to the impact of dust absorption on cloud amount and distribution, dust can act as cloud
condensation nuclei (CCN) and ice nucleating particles (INPs), influencing cloud microphysical
properties. The ability of a dust particle to act as CCN and INPs depends not only on its mineral
composition but also on the dust size and surface area distribution (Mahowald et al., 2014). In turn, the
dust mineralogical composition can also vary as a function of particle size (e.g., Kandler et al., 2009;
Atkinson et al., 2013), further separating the role of fine dust from that of coarse and super-coarse dust
aerosols in acting as CCN or INP. Subsequently, the abundance of coarse and super-coarse dust aerosols
can have substantial impacts on the properties and evolution of clouds, as well as the intensity and
distribution of precipitation. We discuss here the role of coarse and super-coarse dust aerosols as CCN
(Section 4.3.1) and INPs (section 4.3.2) on the properties of clouds and precipitation.

4.3.1.The role of coarse and super-coarse dust aerosols as cloud condensation nuclei
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The majority of CCN around the globe are submicron aerosol particles composed, at least in part, of soluble
inorganic and organic materials. It is well known that increasing the concentration of this class of CCN
leads to increased cloud droplet number concentration (CDNC) and that these clouds have a greater albedo
and lifetime (Lohmann and Feichter, 2005). Mineral dust can also interact with warm (liquid) clouds, but
due to its inherently different composition (being insoluble) and the fact that the size of dust particles
extends to much greater sizes than typical CCN, dust particles have a distinct and complex effect on warm
cloud microphysics. While freshly emitted dust can be largely devoid of soluble materials, it has been
shown to have modest hygroscopic properties, and uptake of soluble material can enhance its CCN activity
(Kumar et al., 2009; Nenes et al., 2014). Under the right conditions, the addition of desert dust to the
atmosphere can therefore lead to an increase in the CDNC (Karydis et al., 2017). However, the uptake of
condensable material, such as sulphuric acid or organics, onto the surface of mineral dust can also deplete
the reservoir of material required to create other CCN, and therefore the presence of mineral dust can reduce
the CCN concentration (Manktelow et al., 2010; Karydis et al., 2017; Zamora and Kahn, 2020). Karydis
etal. (2017) suggest that, over the African and Asian deserts, dust enhances the CDNC, whereas, in polluted
regions such as Europe, desert dust can deplete the CDNC. In addition to these effects, larger dust particles
can activate at relatively low supersaturation, thus potentially inhibiting the activation of smaller CCN
(Karydis et al., 2011). Larger aerosol can also produce cloud droplets that can be much larger than the bulk
of cloud droplets initiating a collision coalescence process (Feingold et al., 1999). Since the main topic of
this review is on coarse and super-coarse dust aerosols, we will focus on the specific role these particles
play in clouds composed of liquid water (we discuss the role dust particles play in ice nucleation below).

Feingold et al. (1999) presented a case that relatively large soluble aerosol particles can create haze or cloud
droplets that are substantially larger than droplets produced by standard CCN. These larger droplets fall
faster than smaller droplets, thus creating conditions conducive to collision coalescence, where a falling
droplet grows rapidly to drizzle sizes. This process is therefore thought to initiate precipitation sooner than
it would otherwise occur (Blyth et al., 2003). These larger CCN are commonly (although not always) termed
giant CCN (the term giant CCN in this context should not be confused with the term giant dust defined in
Figure 2). The effect of giant CCN on collision coalescence is largest for clouds forming in regions of high
concentrations of standard CCN, such as polluted regions, whereas the effect is much smaller in clouds
with low CDNC. There is considerable divergence in the literature over the size limit above which particles
are considered to serve as giant CCNs. Indeed the size limit will be different when considering the giant
CCN effect of suppressing the activation of smaller CCN or enhancing the coalescence process. Feingold
et al. (1999) suggest that sea salt particles larger than ~10 pm in diameter can initiate the collision
coalescence processes if their concentration is larger than about 0.1 to 10 L™, In contrast, Yin et al. (2000)
consider particles larger than 2 pm diameter as giant CCN, and Mechem and Kogan (2008) place this limit
at | pm diameter. It is thought that an important class of giant CCN is sea salt; however, dust is often found
internally mixed with soluble material, and it has been suggested that it serves as a giant CCN (Levin and
Ganor, 1996; Levin et al., 2005). In fact, Levin et al. (2005) found that the inclusion of efficient giant dust
CCN enhanced collision coalescence and the resulting precipitation by as much as 37%. Clearly, large dust
particles have the potential to initiate precipitation and alter cloud properties and lifetime.

To assess where in the world dust might serve as giant-CCN, we have plotted in Figure 13 the global number

concentration for four dust size ranges at 600 hPa from the DUstCOMM dataset (see Section 4 and Kok et
al., 2021 for details). As mentioned above, Feingold et al. (1999) found that at least 0.1 L™ particles larger

34



than 10 pm in diameter are needed to initiate precipitation. Thus, based on this, the regions with the greatest
potential for dust to serve as giant CCN and influence cloud microphysical processes are close to the source
regions since these larger aerosol particles have a greater fall speed. Hence, these regions include the
African and Asian dust belt, but also, to a lesser extent, North America, South America, and Australia
(Figure 13d). We can also derive a concentration of particles larger than 10 um from aircraft size
distribution measurements. Integrating under the relevant portion of the size distributions reported by Ryder
et al. (2018) from above the eastern tropical Atlantic, we find that the concentration of potential giant CCN
was ~1 L™, which is consistent with the model result (Figure 13). The region where giant CCN is likely to
be important is expanded to much of the globe if we consider all coarse mode particles as having the
potential to serve as giant CCN (Figure 13).

However, there are some important uncertainties and caveats in the simple analysis outlined above, and we
should treat these numbers as an upper limit to the giant dust CCN concentration. Firstly, to serve as an
efficient giant CCN, mineral dust particles need to become internally mixed with soluble material such as
sulphate, organics, or sea salt. Indeed, it has also been argued that the uptake of sulphate onto dust is
important for giant CCN (Levin et al., 1996). Hence, the ability of large dust particles to serve as giant CCN
may be limited by the availability of soluble material. In addition, one would expect the largest dust particles
to be associated with intense dust activity. However, at times of high dust loading in locations such as the
tropical Atlantic, convection is often suppressed because elevated dust is associated with hot-dry air
(Prospero and Carlson, 1972; Carlson and Prospero, 1972). For this reason, regions with giant CCN may
not be prone to convection, and the presence of the largest dust particles may not coincide with deep
convective clouds. Nevertheless, there will be regions where dust interacts with clouds of varying depths
(Levin et al., 2005; Stevens et al., 2016).

In summary, while there is a clear conceptual case for dust serving as a giant CCN and altering cloud
properties and precipitation, there remain significant uncertainties. In particular, more work is needed to
define the size range that we should consider as ‘giant’ in terms of CCN activity. The dependence on the
mixing state with soluble material (through aging) and how this interacts with particle size should be
explored. Also, the concentration of large dust particles that might serve as giant CCN is highly variable,
challenging to measure, and carries substantial model uncertainty.
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Figure 13: The global dust number concentration for four dust size ranges — (a) submicron-fine dust (0.2 <
D <1 um); (b) super-micron-fine dust (1 <D < 2.5 um); (c) coarse dust (2.5 <D < 20 um); (d) super-
coarse dust (10 <D <20 um) — at 600 hPa from the DustCOMM dataset (see beginning parts of section 4
for details).

4.3.2.The role of coarse and super-coarse dust aerosols in cloud glaciation

Many clouds around the globe are sensitive to the formation of ice and are therefore affected by the aerosol
particle types that catalyze ice formation (Cziczo et al., 2013; Storelvmo, 2017; Ansmann et al., 2019a;
Murray et al., 2021). There are a variety of aerosol types that can serve as ice nucleating particles (INPs),
and mineral dust from the world’s arid regions is thought to be one of the most important (Hoose and
Mohler, 2012; Murray et al., 2012). The fact that desert dust is emitted in large quantities, transported
globally, and that it has a relatively high ice-nucleating ability means it is an important INP type in cold
clouds all around the planet from the surface to the top of the troposphere (Vergara-Temprado et al., 2017;
Froyd et al., 2022).

Coarse, super-coarse, and giant dust particles may play an important role in cloud glaciation close to desert
sources. In contrast, in regions remote from deserts, fine mode dust (0.05 to 2.5 pm) is thought to be most
important for INP populations since it has a lifetime of weeks in the free troposphere, whereas the coarser
mode has a much shorter lifetime. The tropical Atlantic is a location that is both rich in coarse mode dust
and is influenced by deep convective clouds in which mixed-phase processes, including heterogeneous ice
production on INP, play an important role in defining cloud properties. While the air masses with the
highest dust loadings are also the locations with the least convective activity, air in the eastern tropical
Atlantic is generally dusty (Carlson and Prospero, 1972); hence dust is thought to play an important role in
convective cloud systems in this region.

The impact of INPs and heterogeneous freezing (a process in which ice formation is mediated by insoluble
particles) on convective clouds is complex and has been the topic of several modeling studies (Fan et al.,
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2010; Gibbons et al., 2018; Takeishi and Storelvmo, 2018; Hawker et al., 2021). It has been shown that
heterogeneous ice nucleation occurring in the mixed-phase cloud regime can reduce the amount of water
available for homogeneous freezing, resulting in fewer and larger ice crystals in the high-altitude cirrus
anvil. This is significant because the properties and lifetime of the anvil are important for a convective
system’s cloud radiative effect since anvils cover a much larger area than the convective core and persist
long after the convective core has dissipated (Hawker et al., 2021). The release of latent heat when liquid
water is converted to ice can also invigorate convective clouds, resulting in the convective cores reaching
higher altitudes (Gibbons et al., 2018). These studies show that it is not only the concentration of INP active
at some temperatures that is important but also the temperature dependence of the INP activation (Takeishi
and Storelvmo, 2018; Hawker et al., 2021). At low supercooling (around -5°C), nucleation by INPs drives
the Hallett-Mossop ice multiplication process (Crawford et al., 2012), whereas, at lower temperatures,
heterogeneous nucleation can compete directly with homogeneous freezing (Hawker et al., 2021). Hence,
it is important to understand the concentration of INPs that become active right through the full mixed-
phase temperature range from just below 0 to around -38°C.

Heterogeneous ice nucleation on desert dust has been described using a number of approaches, each with
its own advantages and disadvantages (Murray et al., 2012). Nucleation is fundamentally a time-dependent,
probabilistic process, and to represent this time dependence, classical nucleation theory has been applied
(Hoose et al., 2010; Zhao et al., 2021). This approach requires us to treat each unit’s surface area of dust as
having an identical ice-nucleating ability. However, natural dust aerosols are made up of multiple minerals
(Kandler et al., 2009), and even within each mineral class, nucleation probability across a surface is not
uniform, instead occurring at specific active sites (Holden et al., 2019, 2021). This has led to stochastic
models where classical nucleation theory is used, but the distribution of nucleating abilities is described
using a probability distribution (Niedermeier et al., 2011; Broadley et al., 2012; Herbert et al., 2014).
However, a simpler approach is to assume the time dependence of nucleation is second order compared to
the site-to-site variability of nucleation probability across the surface. The evidence for nucleation occurring
at specific sites on mineral surfaces is very strong (Holden et al., 2019), and the simplicity of neglecting
the time dependence of nucleation is attractive; hence this so-called ‘singular’ approach has been widely
used.

The singular ice-active site density approach has been used to describe both desert dust (Niemand et al.,
2012; Ullrich et al., 2017; Reicher et al., 2018; Harrison et al., 2022) and the individual minerals in desert
dust (Atkinson et al., 2013; Peckhaus et al., 2016; Harrison et al., 2019). Work over the last decade has
demonstrated that the potassium-rich feldspars (K-feldspars) are the most active component of desert dust
(Niedermeier et al., 2015; Harrison et al., 2019), a finding which contrasts with older reports where it was
thought that the clay minerals dominated immersion mode freezing (Pruppacher and Klett, 2010). The
advantage of linking INP concentration to K-feldspar surface area is that mineralogy is size dependent, and
there is thought to be less feldspar and quartz in the fine fraction compared to the coarse fraction (Atkinson
et al., 2013). The smaller fraction of ice-active minerals in the fine mode than in the coarse mode is
consistent with measurements indicating the activity of dust decreases with particle size (Reicher et al.,
2018). Hence, applying the same ice active site density to all sizes may overestimate the contribution of the
fine-mode dust to the INP population.

In the eastern tropical Atlantic, it is thought that desert dust from Africa dominates the INP population
(Price et al., 2018), and the emergence of detailed size distributions covering the full range of dust sizes
allows us to assess the importance of the coarse, super-coarse, and giant dust to the INP population in this
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region. This calculation is based on the size distribution from the Saharan Air Layer (SAL) layer
measurements in the AER-D (Ryder et al., 2018) (shown in black in Figure 4) in combination with the
temperature (7) dependent active site density (ns) parameterization for K-feldspar from Harrison et al.
(2019). For each size bin, i, the fraction activated at 7 was derived for particles of diameter, D, that had a
surface area per particle, s, assuming they were spherical and using Eqn. 2

f(T,i,D) =1 — ens(MsD) -

The concentration of dust particles that activate to ice at 7, N{(T), was then f(7, i, D) multiplied by the total
dust concentration in that size bin, »;. This analysis allows us to plot Np(7) size distributions
(dNwe(7)/dlogD), plots that reveal which size ranges contribute most to the INP population for different
temperatures. By summing Np(7,7) over the size bins, we can produce the total Nmwe(7) over the whole
mixed-phase temperature regime.

Mineral dust contains a variable quantity of K-feldspar, with desert dust particles typically containing
between a few and a few tens of percent of feldspar (Atkinson et al., 2013; Perlwitz et al., 2015; Kandler et
al., 2018; Harrison et al., 2022). In our calculations, we assume that the feldspar is externally mixed and
that the surface area fraction is in proportion to the mass fraction of feldspar. The external mixing
assumption will lead to an underestimate in the INP concentration contribution for the larger particles. The
amount of K-feldspar also increases with size so that there is around a factor of 10 more feldspars in the
particles bigger than 10 um than the particles in the fine mode (Nickovic et al., 2012; Perlwitz et al., 2015).
To approximate this size dependence of the mineralogy, we assume that all particles bigger than 10 um
contain 20% (2%) K-feldspar and particles smaller than 2.5 pm contain 1% (0.1%) K-feldspar and assume
a logarithmic decrease of this proportion between 10 and 2.5 um (referred to as the 20, 1% (2, 0.1%) K-
feldspar assumption; the values in brackets were used to test the sensitivity to these proportions).

The resulting plots are shown in Figure 14 and Figure 15. The INP size distributions in Figure 14a show
that the peak in the INP size distribution above temperatures of about -23°C is in the coarse mode, whereas
as temperature decreases, the peak shifts to smaller sizes. This shift is a result of the activated fraction
(Figure 14b) equaling unity — where all particles are activated — for the larger sizes in the distribution. The
temperature dependence of the contribution of the different modes is reinforced in Figure 15a, where we
have plotted the fraction of INP, which are from the fine, coarse, super-coarse, and giant modes. Across the
full mixed-phase temperature range, the giant mode particles are too few to make a major contribution to
the INP population. In contrast, the super-coarse, coarse and fine mode particles all make a substantial
contribution. The relative contribution of the super-coarse and coarse mode decreases below about -23°C
and the fine mode becomes more important.

The relative contribution of the different modes is a function of the size distribution and the assumptions
made in this set of calculations, but they do illustrate that the coarse and super-coarse mode particles are
critically important for defining the INP population in a region relatively close to the source. This should
inform the sampling strategy employed in field campaigns. For example, employing a 2.5 pum size cut in
the sampling system would lead to a substantial undercounting of the INP concentration, particularly for
those INP active at temperatures above about -23°C.

We also compare our predicted total INP (integrating under the INP size distribution curve) with the
available measurements in the eastern Tropical Atlantic. The AER-D measurements were made in the same
set of flights on the same aircraft as the INP measurements reported by Price et al. (2018). Hence, we can

38



make a direct comparison between these results with the ‘20, 1%’ K-feldspar assumption. The agreement
in both magnitude and slope is good. Also, Ryder et al. (2018) report dust variability in their measurements
of about a factor of 15, which is comparable to the variability in the measurements of Price et al. (2018).
We also plot the data of Welti et al. (2018), measured at the surface in Cape Verde and over a different
period. These measurements indicate a lower INP concentration. There are multiple reasons why the INP
concentration reported by Welti et al. (2018) was lower, not least that it was a different location and time
(and at the surface) to the aircraft data reported by Price et al. (2018) and Ryder et al. (2018). The
measurements of Welti et al. (2018) are consistent with the Ryder et al. (2018) average size distribution and
a factor of 10 lower feldspar concentration (‘2, 0.1%’ K-feldspar assumption).

Overall, this analysis indicates that coarse and super-coarse mode dust aerosols are very important for the
INP concentration in the eastern tropical Atlantic. Dust in this location is within a few days of transport
from the dust source regions in north Africa and we would anticipate the coarse and super-coarse modes to
become less important on further transport as the largest particles in the size distribution are deposited.
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Figure 14: Analysis of the size dependence of dust INPs. a) shows the INP size distribution for desert dust
in the eastern tropical Atlantic based on the AER-D size distributions reported by Ryder et al. (2018). b)
shows the fraction of K-feldspar-containing dust particles that can become active as a function of diameter
and temperature. This is for the 20, 1%’ K-feldspar assumption. See section 4.3.2 for details.
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Figure 15: The temperature dependence of the INP dust population and the contribution of the various size
categories. a) the fractional contribution of the fine (accumulation) mode (0.05 to 2.5 um), the coarse mode
(2.5 to 10 um), the super-coarse mode (10 to 62.5 um), and the giant mode (62.5 to 100 um). This is _for the
case where the particles bigger than 10 um have 20% K-feldspar and particles smaller than 2.5 um have
1% K-feldspar (see section 4.3.2 for details). b) shows a comparison of the predicted total INP
concentrations (Nyyp) to the limited number of measurements in the eastern tropical Atlantic. Price et al.

(2018) made airborne measurements in the SAL and boundary layer using a filter technique, whereas Welti
et al. (2018) made measurements at the surface in Cape Verde using a filter technique and a continuous
Sflow diffusion chamber (CFDC). The data from Price et al. (2018) were adjusted downwards by a factor of
2.5 to take into account sub-isokinetic inlet effects that have since been characterized (Sanchez-Marroquin

etal., 2019). The solid blue line is for the case where particles bigger than 10 um have 20% K-feldspar and
particles smaller than 2.5 um have 1% K-feldspar, whereas the dashed blue line is for a feldspar
concentration 10 times smaller.

4.4. Impacts of coarse and super-coarse dust aerosols on atmospheric chemistry

Mineralogy varies according to the parent soil from which dust originates. In addition, the size fraction of
the aerosol considered exhibits very large mineralogical variations. Therefore, while airborne in the
atmosphere, one important aspect of mineral dust is that it undergoes chemical aging by the uptake of
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reactive compounds in the gas phase, by photochemistry, and by in-cloud and off-cloud processing. These
aspects, and the role of the coarse fraction size and mineralogy, are discussed in this section.

Many fields and laboratory studies (de Reus et al., 2000; Grassian, 2001; Usher et al., 2003; Bonasoni et
al., 2004; Chan et al., 2005; Crowley et al., 2010; Shen et al., 2016; George et al., 2015; Tang et al., 2016,
2017; Zhou et al., 2015; Zein et al., 2014; Ponczek et al., 2019) show that dust acrosols provide with a
reactive surface that removes and transforms various inorganic and organic trace gases and radicals,
including nitrogen-containing compounds (NOx, HNO3, N>Os, HONO), sulphur dioxide (SO,), and ozone
(O3). It is also a sink for volatile organic compounds (VOCs) such as formaldehyde (HCHO), acetone
(CH3COCH3), glyoxal (H2C»0.), and organic acids, H>O,, and various radicals (OH, HO, and NOs) (Y.
Bedjanian et al., 2013; Yuri Bedjanian et al., 2013; Karagulian and J. Rossi, 2005; Lasne et al., 2018; Li et
al., 2001; Liggio et al., 2005; Matthews et al., 2014; Ponczek and George, 2018; Romanias et al., 2016;
Romanias et al., 2016; Wang et al., 2018; X. Wang et al., 2020; Y. Wang et al., 2020; Zein et al., 2014;
Zeineddine et al., 2018, 2017). Additionally, mineral dust aerosols containing titanium and iron oxides are
photo-chemically active substrates that can uptake of NO; and form the NO;- anion in the presence of light
(Ndour et al., 2008, 2009), while also acting as a source of OH radical in wet conditions (Dupart et al.,
2012). Chemical box models, global and regional climate models, all including the coarse and super-coarse
fraction, show that those processes are capable of affecting the composition and the oxidative capacity of
the atmosphere (Dentener et al., 1996; Zhang et al., 1994; Zhang and Carmichael, 1999; Bauer et al., 2004).

Heterogeneous processing and photochemistry involving mineral dust can also contribute to new particle
formation in the atmosphere. Photo-catalysis can induce the desorption of gaseous OH radicals from the
surface of mineral dust containing metal oxides, which then promotes the formation of new H,SOy4 particles
in the vicinity of the dust particles when SO- is present at atmospherically relevant humidity conditions
(Dupart et al., 2012). This kind of mechanism is also proposed to explain the unexpected formation of
secondary organic aerosol (SOA) in the presence of VOCs, as observed for dust episodes mixed with
pollution in the remote atmosphere (Nie et al., 2014).

On the other hand, the condensation of reactive gaseous species on coarse mineral dust particles is a
mechanism for transferring the mass of secondary aerosols from the fine to coarse fraction. Coarse mineral
dust particles can accumulate coatings that contain sulphates, nitrates or organic compounds that would
preferentially be found in the accumulation particle mode (Carlos-Cuellar et al., 2003; Falkovich et al.,
2004, 2001, p. 200; Fan et al., 1996; Kogak et al., 2007; Li-Jones and Prospero, 1998; Okada and Kai, 1995;
Russell et al., 2002; Sobanska et al., 2003; Sullivan et al., 2007; Trochkine et al., 2003; Zhou et al., 1996).
In addition, many studies based on single-particle analysis show that mineral dust can be internally mixed
with sea salt (Andreae et al., 1986; Deboudt et al., 2010; Denjean et al., 2015; Kaaden et al., 2009; Niemi
et al., 2005; Niimura et al., 1998; Okada et al., 1990; Reid et al., 2003b; Zhang et al., 2003a, 2003b), soot
and organic carbonaceous particles (Arimoto et al., 2006; Deboudt et al., 2010; Falkovich et al., 2004, 2001;
Formenti et al., 2011b; Hand et al., 2010; Kandler et al., 2009; Matsuki et al., 2010; Parungo et al., 1994,
1992; Russell et al., 2002).

Ultimately, atmospheric processing has an impact on the properties of mineral dust. Chemical aging can

modify the dust hygroscopicity (e.g., Li-Jones et al., 1998; Laskin et al., 2005; Tobo et al., 2010), henceforth
its capability of acting as cloud or ice condensation nuclei (e.g., Levin and Ganor, 1996; Kulkarni et al.,
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2015; Kumar et al., 2011; Sullivan et al., 2009; Tang et al., 2016; Krueger et al., 2003) as well as its
solubility in water, altering its fertilization capabilities for the oceans (e.g., Meskhidze et al., 2005; Paris et
al., 2011; Shi et al., 2012; Kandler et al., 2020).

The size of mineral dust particles conditions, directly and indirectly, its chemical aging, and the impacts on
atmospheric chemistry that result from it. The removal of atmospheric gases by solid-phase particles
requires an initial collision of a gas molecule X with the condensed phase. The pseudo-first-order removal

[X1g
dt

d
rate can be expressed as:

d[X] yE(X)S,[X]
Tl Fa— (3)

where [X]g is the concentration of X in the gas phase (molecules cm™), ¢(X) the average molecular speed

of the gas molecules (cm s™), y is the uptake coefficient of the compound X, representing the probability of
non-reactive and reactive uptake between the chemical species X and the surface of the condensed phase
and S, is the surface area of condensed phase per volume of the gas phase, cm™).

We illustrate the annual mean of the geographical distribution of the surface area of mineral dust in Figure
16 (Di Biagio et al., 2020). The figure shows the distribution of the surface area of coarse and super-coarse
particles in the atmosphere, and the extent to which they are available for heterogeneous processing. In
particular, it shows the predominance of the available surface of coarse and super-coarse particles in those
areas of the world (e.g., Arabian Peninsula, East Asia) where mixing with intense anthropogenic emissions
is expected (e.g., Posfai et al., 2013; Semeniuk et al., 2015; Pan et al., 2017; Xia et al., 2022). The surface
area of the coarse and super-coarse mode is also large in the Mediterranean sea and in western Africa,
towards the Gulf of Guinea, where additional mixing with seasonal biomass burning may also occur (e.g.,
Bonasoni et al., 2004; Johnson et al., 2008; Osborne et al., 2008; Prasad et al., 2010; Abdelkader et al.,
2015). Furthermore, because of the known difficulties of models in transporting particles larger than 20 pm
at distances (see Section 5.2.2), the features discussed above should be regarded as lower limits and
concentrations could be significantly higher.

Mineralogical composition varies strongly with the surface area as well as the aerodynamic diameter of the
dust particle (c.f. Section 2.1). Mineral dust consists of a complex mixture of minerals whose proportions
vary according to the nature of the parent soil, as well as the particle size (Claquin et al., 1999; Kandler et
al., 2009; Nickovic et al., 2012; Journet et al., 2014). At emission, the size-dependence of the dust
composition is determined by the size-fractionation that occurs by the saltation and sandblasting of the
grains erodible soils by wind (e.g., Journet et al., 2014; Perlwitz et al., 2015). The relative abundance of
clays (majority of illite and kaolinite) is higher in the fine fraction, while quartz (SiO,) and calcium
carbonate (CaCOs3) are more abundant in the coarse, super-coarse, and giant fractions (e.g., Lafon et al.,
2006; Kandler et al., 2007; Chou et al., 2008; Kandler et al., 2009; Formenti et al., 2011b, 2014; Kandler et
al., 2020). Ti — and Fe-oxides are ubiquitous in fine and coarse fractions (Lafon et al., 2006; Kandler et al.,
2007). During transport, as discussed above, the composition of each modal class changes by chemical
aging and gravimetric deposition of larger particles, enhancing the relative importance of clay minerals
compared to carbonates and quartz (e.e., Weinzierl et al., 2017)
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Those different minerals react differently toward trace gases. We summarize the values taken by the uptake
coefficients for minerals other than Al- and Fe- oxides, calcium carbonates and natural and model soils
(Saharan dust and Arizona test dust) in Figure 17. Details of these values and those not shown in Figure 17
can be found in the supplementary document, based on reviews, including by Usher et al. (2003), Crowley
etal. (2010), and Tang et al. (2017). Analyses of these values (Figure 17 and supplementary document) are
not straightforward because of the many variables that might influence the resulting value of the uptake
coefficient. These are the environmental conditions of the experiments (relative humidity, temperature, gas
phase concentration or surface pre-treatment i.e. thermal pre-treatment, pre-exposure to oxidants, etc.), the
state of the mineral dust (sieved soil, synthetic or natural mineral or soil), and the evaluation of its available
surface for uptake/reaction, either the geometric area or the total sample surface area (e.g., the Brunauer—
Emmett-Teller (BET) surface area), representing the maximum available surface area, including internal
pore volume and bulk surface area of granular material (Chen et al., 2020).

As summarized in Figure 17 , the uptake on quartz (Si0O-), the major constituent of mineral dust at emission
is understudied. At the steady state, the uptake capacity of quartz is very low with respect to HCHO (0.003
x 10°), and low for Os. On the contrary, SiO; is relevant to the uptake of N»Os. The other major mineral in
the coarse and super-coarse fraction, calcium carbonate (CaCOs), is extremely relevant for the uptake of
N»Os and moderately or little to that of SO, and O3;. While HNOs reactivity is not discussed here, these facts
are consistent with the fact that nitrate formation occurs preferentially on calcium carbonate particles (e.g.,
Sullivan et al., 2007; Fairlie et al., 2010). No data of the uptake of CaCO; with formaldehyde are reported
in the above-cited reviews, which, on the contrary, document that the uptake on aluminum oxide (Al,Os)
should not be neglected. A few values of the uptake coefficients of ozone on Al,Os are obtained for different
size fractions, but a trend on its size dependence cannot be established. Considering the geometric surface
distribution, the reported initial uptake coefficient for SO, ranges from 16 to 400 x 10, of the same order
of magnitude as for ozone, HCHO, and N,Os. These tendencies are also observed with respect to authentic
dust samples (Saharan dust, Arizona dust and Chinese dust or loess), but the actual values can differ by
order of magnitudes (and no data for the uptake of HCHO are available).

To improve on our understanding of how uptake coefficients evolve during dust atmospheric cycle, and to
specifically constrain these coefficients for the coarse and super-coarse fractions which account for most
of the available reactive surface, we adopt here Tang et al. (2017)’s recommendation, and we further extend
it. Tang et al. (2017) and Urupina et al. (2021) suggested the investigation of the reactivity of the authentic
dust sources (or mineralogical equivalent soils), instead of those of individual minerals, to account for the
right proportions and competitive effects of the different mineral phases. Indeed, as an example, Abou-
Ghanem et al. (2020) showed that natural TiO2 minerals do not behave like the commercially available
TiO, that was extensively used by Ndour et al. (2009, 2008). Additionally, and to the best of our knowledge,
there is no systematic measurement of the uptake coefficient per size class to date (e.g., Usher et al., 2003;
Tang et al., 2017). Therefore, we recommend that to investigate more atmospheric relevant dust surfaces,
the uptake capability or reactivity of dust should be investigated on size-segregated fractions, and whenever
possible, on airborne mineral dust rather than on deposited soils.

This recommendation is supported by the differences that exist between the mineralogical composition in

the airborne aerosol particles, including the coarse fraction, in the atmosphere, and that of the corresponding
soil fractions. Figure 18 shows this difference for soil mineralogy of soil fraction sieved up to 63 pm and
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1000 um, and for the mineralogy obtained for airborne atmospheric dust particles. We recommend that
future studies of reactive and non-reactive uptake of coarse mineral dust evolve towards the analysis of the
aerosol fractions of airborne particles more than soil. In addition, new studies should take advantage of the
synergy of recent developments, such as the use of large atmospheric simulation chambers where the
airborne dust aerosol can be generated in a realistic manner, including at atmospheric relevant sizes and at
transport time scales (e.g., Di Biagio et al., 2014). First results from recent experiments indicate that
atmospheric chamber experiments are efficient in probing the changes in the mineral dust aerosol properties
due to interactions with the gas phase, while the determination of uptake coefficients remains challenging
as the aerosol surface versus surface of the chamber is relatively low (P. Formenti and M. Romanias, pers.
comm.). Additionally, hyperspectral measurements from space, both in the UV/visible and the infrared
ranges, such as the incoming NASA EMIT (Earth Surface Mineral Dust Source Investigation) mission
(https://earth.jpl.nasa.gov/emit/) (Green et al., 2020) and the AEROIASI method of Cuesta et al. (2015),
respectively, provide with novel capabilities of probing the composition of dust sources and airborne
mineral dust at the global scale and better constrain their mineralogy worldwide.

We recommend that future laboratory investigations with soils use sieved fractions only. Indeed, the
comparison of the mineralogy of the 63-um soil fraction reported in Figure 18 and that of the aerosols in
dust storms reported by Kandler et al. (2008) suggests that the 63 um-sieved soil fraction could represent
the composition of super-coarse particles. While sieving soils at 10 um could be challenging for laboratory
uptake studies, as the dust mass would be low, we recommend at least sieving the soils at 20 pm to capture
the uptake of the coarse particle fraction. In addition, Figure 18 suggests that the individual minerals
investigated to date are insufficient to understand the reactivity of the soil samples. For example, no study
has been done, to our knowledge, on feldspars which make up for a significant fraction of soils.
Furthermore, no large-scale targeted projects have addressed the reality and the significance of the impact
of mineral dust and its coarse fraction to atmospheric chemistry since the MINeral dust And TROpospheric
Chemistry (MINATROC; e.g., de Reus et al., 2005). These are needed in various mixed environments,
urban and remote, as opportunistic observations might fail in providing the full set of observational
parameters needed to characterize the air masses and initiate chemical box models. Finally, size segregated
dust measurements are a requirement to evaluate the relative significance of the dust coarse fractions.
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Figure 16: Global maps of the annual mean of the total surface area per unit column of air of mineral dust
calculated by the LMDZOR-INCA model in four modes represented by the following mean modal
diameters: 1 um, 2.5 um, 7 um, and 22 um. Units are cm® m™. These modes correspond rather well to the
fine mode (1 um), coarse (2.5-10 um), and super-coarse (10-62.5 um) classes of the classification proposed
earlier (Figure 2). The giant dust particle fraction (> 62.5 um) is not represented, as models still struggle
to account for the transport of these very large particles. We use LMDZOR-INCA here because it has
previously been used to investigate the uptake of reactive or non-reactive species on mineral dust (e.g.,
George et al., 2007; Ndour et al., 2008) and has recently been upgraded to represent the size distribution
of mineral dust, including coarse particles (Checa-Garcia et al., 2021).
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Figure 17: Values of the initial uptake coefficients y,, in red) and of the steady-state uptake coefficients
(Vss,» in blue) for four relevant reactive gas species and for a number of synthetic minerals or authentic dust
samples. Values of vy and yss can either represent the uptake on the particle geometric area or the BET
surface area, without distinction. SD stands for “Saharan dust”, CD for “Chinese dust”, K/I for “Kaolinite
and Illite”. While values are reported in the supplementary document, the ones here have been multiplied

for 10°° for clarity.
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Figure 18: Mineralogical composition of the suspended aerosol particles of size smaller than 10 um in
aerodynamic diameter (top panel) compared to that of the parent soils sieved at 63 and 1000 um,
respectively (mid- and low-panel). The aerosol was generated by mechanical shaking from the parent soil
sieved at 1000 um, suspended in a large simulation chamber, and extracted on polycarbonate filters. Both
the aerosol and the soil fractions were analyzed by X-ray diffraction. Data represent the percent surface
diffracted by each identified mineral. All details about the methodology and evaluation of size ranges are
found in Di Biagio et al. (2019, 2017).

4.5. Impacts of coarse and super-coarse dust aerosols on biogeochemistry

Desert dust aerosols can supply important nutrients, especially iron and phosphorus, for land and ocean
biogeochemistry (Duce and Tindale, 1991; Jickells and Moore, 2015; Jickells et al., 2005; Maring and
Duce, 1990; Martin et al., 1991; Okin et al., 2004; Swap et al., 1992).

Some ocean systems have high nutrient, and low chlorophyll (HNLC; low chlorophyll or low productivity)
conditions, which are postulated to be caused by iron limitation (Martin et al., 1991). In situ fertilization
experiments have shown that the Equatorial Eastern Pacific, parts of the Southern Ocean, and during some
seasons, the North Pacific are subject to iron limitation (de Baar et al., 2005; Boyd et al., 2007). While there
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are sedimentary and hot-spot sources in the ocean as well as effects from upwelling that are important for
surface iron ocean budgets (Blain et al., 2001; Boyd et al., 2007; Moore and Braucher, 2008), observational
analyses (Cassar et al., 2007; Lam and Bishop, 2008) and ocean biogeochemical modeling studies suggest
that atmospheric inputs of iron are important in some regions (Krishnamurthy et al., 2009; Tagliabue et al.,
2014; Mahowald et al., 2018). Nitrogen fixing organisms have higher iron requirements, thus linking the
nitrogen and iron cycles in the ocean, and increasing the importance of the atmospheric inputs of iron
(Capone et al., 1997; Moore et al., 2006, 2013). However, because the particles sediment through the
surface ocean layers, not all iron is available, and most studies focus on the soluble iron fraction as more
bioavailable (Baker et al., 2013). Desert dust particles tend to be less soluble than combustion iron (Ito et
al., 2021), although this varies with the mineralogy and source of the particles (Chuang et al., 2005; Guieu
et al., 2005; Journet et al., 2008; Schroth et al., 2009), and desert dust particles can be made more soluble
by atmospheric processing by acids (Meskhidze et al., 2005; Johnson and Meskhidze, 2013; Longo et al.,
2016; Mahowald et al., 2018).

Sensitivity studies conducted using the model simulations described at the beginning of Section 4 and in
Meng et al. (2022), suggest that the super-coarse fraction may represent an important contribution (>30%)
to the desert dust deposition over some ocean regions, especially close to the coasts of the major dust
sources (Figure 19). Interestingly, the super-coarse mode appears to be a relatively more important part of
the dust deposition in the southern hemisphere than over the North Atlantic (Figure 19), where much of the
data has been collected (Ryder et al., 2019, 2013a, 2013b). The importance of this size fraction in these
less-studied regions should be measured directly.

Dust deposition can serve as an important ballast for organic materials in the ocean mixed layer, causing
organic particles to coagulate with the mineral particles, become heavier, and to move more quickly out of
the ocean mixed layer, thus by itself this dust input to the ocean may modify the removal rate of carbon or
nutrients from the mixed layer (Armstrong et al., 2001). Thus, missing this source of deposition may miss
some of these interactions in models, although much of the deposition greater than 10 um diameter occurs
close to coastal regions, where riverine sources of sediment or nutrients make the budgets more difficult to
understand (e.g., Seitzinger et al., 2005). Notice that including dust particles with a diameter up to 20 um
in models reduces this missing deposition (Figure 19a vs. Figure 19b).

For the ocean iron problem, the soluble fraction is most important, so we combine this study with soluble
iron modeling studies for the size fraction of particles less than 10 um (Hamilton et al., 2019), and the
assumptions that super-coarse mode dust aerosols have an iron amount of 3.5% and iron solubility of 0.45%
-- which is likely to be on the high side of observations (Luo et al., 2008; Sholkovitz et al., 2012; Longo et
al., 2016). Using these assumptions, we obtain the result that for soluble iron, the super-coarse fraction is
less important, and usually only important in coastal regions, where there may be other sources of iron,
such as riverine or sedimentary (Tagliabue et al., 2014). But notice that in some important parts of the
southern Hemisphere, the soluble iron inputs from the greater than 10pum dust fraction could be up to 80%
close to South America and South Africa. Indeed, one can also speculate, that for specific dust events during
dust storms, super-coarse dust particles may be important near North Africa and the Arabian Sea. Notice
that including both particles up to and larger than 20 pum may be required for these regions (Figure 19c vs.
Figure 19d).
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Atmospheric deposition of phosphorus from North African dust has been speculated to be important for the
long-term productivity of the Amazon (Swap et al., 1992). Some studies have suggested some sensitivity
of ocean biota, especially nitrogen fixation to atmospheric deposition of phosphorus close to dust source
areas (Mahaffrey et al., 2003), and on the longer term, large fluxes of phosphorus in dust may help fertilize
the ocean (Falkowski et al., 1998). Modeling and stoichiometric analyses do not suggest most ocean basins
are sensitive to phosphorus deposition from the atmosphere (Krishnamurthy et al., 2010; Okin et al., 2011),
suggesting this super-coarse mode may not be important for phosphorus, however, this analysis leaves open
the option that the super-coarse mode could be important during specific dust storm events.
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90N 90N .
30N 30N
305 30S
90S 90S
180W 60W 60E 180E 180W 60W 60E 180E
Soluble Fe Deposmon (1OSD< 20um) Soluble Fe Deposition (D>20um)
90N — 90N =
30N A 30N~
30S 30S |
90S —_—— 90S
180W 60W 60E 180E 180W 60W 60E 180E

10 20 30 40 50 60 70 80

Figure 19: Fraction of the dust (a and b) and soluble iron (c and d) deposition estimated in a sensitivity
study that is between 10 and 20 um in diameter (a and c) and greater than 20 um in diameter (b and d).
The solubility of iron in dust less than 10 um comes from the intermediate solubility mechanisms of
Hamilton et al. (2019), while the solubility of iron in dust >10um is assumed to be 0.45% (Luo et al., 2008;
Longo et al., 2016).

5. Limitations in observation and modeling of coarse and super-coarse dust aerosols

Despite the impacts of coarse and super-coarse dust aerosols on the Earth’s system, their long-term
observations in the atmosphere and their representation in numerical models remain challenging. First, we
discuss in Section 5.1 the strengths and limitations in the remote-sensing observation of coarse and super-
coarse dust aerosols in the atmosphere. Specifically, we focus here on retrievals of dust size distribution
from remote-sensing observations, such as those of the AErosol RObotic NETwork (AERONET), lidar and
space-based satellites. For instruments that directly measure dust sizes in the ocean, above the ground, and
in the atmosphere, see Section 3 above. Second, we discuss in Section 5.2 the limitation in simulating the
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emission, transport, and deposition of coarse and super-coarse dust acrosols in climate models. A summary
of the discussion points is given in Table 2. Although the table and subsequent discussion broadly focus on
coarse dust, most of the highlighted limitations in observation and modeling also apply to other dust sizes,
including fine dust.

Table 2: Summary of the limitations in observational retrievals and modeling of coarse dust particles.

Observation of coarse dust particles

Passive e Very limited spatial coverage; misses most smoke and dust plumes
ground- o Relatively high AOD is required to distinguish particle type
based e Derived properties are column-effective — can be diluted if multiple modes of
remote- different types are present or properties such as size distribution vary vertically
sensing e Enhanced optical models for different dust types are needed; ellipsoids are
retrievals usually assumed

e Cloud contamination can prevent or compromise retrievals
Passive o Relatively high AOD required to distinguish particle type, especially over land
satellite e Retrievals require near-IR channels for coarse dust sensitivity
retrievals e Multi-angle and/or polarization offers some dust discrimination capability;

alternatively, particle size is used as a dust proxy, especially over water

e UV absorption used to identify coarse dust is sensitive to aerosol layer height

e Thermal-IR retrievals are sensitive to temperature profile, aerosol elevation,
moisture, surface emissivity

e Derived properties are column-effective — can be diluted if multiple modes of
different types are present

e Enhanced optical models for different dust types are needed; assumptions vary

by algorithm
e Cloud contamination can compromise retrievals
Lidar e Enhanced optical model (inversion model) for irregularly shaped particles is
retrievals lacking

e Size-dependent separation by means of the depolarization lidar technique is
restricted (or fixed) to particles with diameters < 1 pm and > 1 um.

e Possible interference by other depolarizing aerosol types (pollen, fresh smoke,
dry marine particles)

Modeling of coarse dust particles

Emission e Measurements of super-coarse and giant dust are difficult to make because their
substantial inertia causes large fractional losses in inlets to particle samplers

e Substantial terminal velocity of super-coarse and giant dust makes it difficult to
determine flux emitted by eroding soil

e Complex and poorly understood processes might determine the emission of
super-coarse and giant dust

e Numerical diffusion can affect deposition schemes in models
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e Limited understanding of how the fractional contributions of super-coarse and
giant dust to the emission flux changes with wind speed, atmospheric stability,
and soil conditions.

Transport e Numerical models tend to be too diffusive, creating leakage of dust particles, for
example, through inversion layers

e Processes associated with vertical mixing through subgrid-scale, parameterized
processes (e.g., shallow and moist convection) are not well represented

e Many transport processes depend on particle size, such that errors in the emitted

size distribution can propagate into transport processes.

Deposition o Insufficient knowledge of size distribution and shapes, and thus aerodynamic
behavior of particles

e Insufficient knowledge of electrical effects

e Insufficient knowledge of microphysical detail in wet removal processes

e No explicit representation of individual convective storms

5.1. The strengths and limitations in the retrieval of coarse and super-coarse dust aerosols from
remote-sensing observation.

Remote-sensing platforms provide long-term observations of aerosol amounts, along with some constraints
on particle microphysical properties. Satellites offer frequent, extensive coverage from stable platforms,
whereas ground-based instruments can capture varying conditions on very short timescales at certain
locations. However, deriving detailed, size-resolved aerosol properties from these observational platforms
remains challenging, as retrievals rely on inversion algorithms that are generally underdetermined,
requiring underlying assumptions, and are subject to uncertainties in input parameters as well as in the
measurements themselves. Further, most remote-sensing instruments are not optimized for coarse-dust
observation, and as such, there are added limitations associated with the retrievals of these aerosol particles,
even for techniques that offer some sensitivity (Dubovik et al., 2000; Mamouri and Ansmann, 2014; Kahn
and Gaitley, 2015). In the sections below, we discuss some of the strengths and limitations of observing
airborne coarse dust properties with remote-sensing instruments.

5.1.1. Ground-based remote-sensing retrievals of coarse dust and super-coarse dust aerosols

Most ground-based remote-sensing platforms exist as part of an observational network that uses similar
instrumentation and retrieval algorithm, allowing for regionally and globally representative datasets that
is useful for validation studies and climate research. These remote-sensing platforms include AERONET
(AErosol RObotic NETwork; Holben et al., 1998), SKYNET (Sky Radiometer Network; Nakajima et al.,
2020), SONET (Sun—sky Radiometer Observation Network; Li et al., 2018), and CARSNET (China
Aerosol Remote Sensing Network; Che et al., 2019). Because the datasets from these different platforms
use a retrieval algorithm similar to that of AERONET, they exhibit similar strengths and limitations (e.g.,
Nakajima et al., 2020). We focus our attention here on discussing the strengths and limitations of
AERONET, because it has the most extensive network and produces the most widely-used datasets
among those listed above.

The ground-based AErosol RObotic NETwork (AERONET) instruments measure two classes of variables:
the spectrally resolved direct solar intensity at 340, 380, 440, 500, 675, 870, 940, and 1020 nm wavelengths,
and the directional sky radiance distribution at 440, 675, 870 and 1020 nm (Holben et al., 1998). The
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spectrally resolved direct solar intensity is used to compute the column aerosol optical depth (AOD) at each
wavelength except 940 nm. Due to their high accuracy, these AOD measurements have been widely used
as the ground truth for evaluating spaceborne remote-sensing retrieval results (Kahn et al., 2010; Levy et
al., 2013; Tesche et al., 2013; Sogacheva et al., 2020) and global aerosol models (Huneeus et al., 2011; Glif3
et al.,, 2021). In addition, the spectral sky radiance intensities and AODs are used to retrieve column-
effective aerosol size distributions and complex refractive indices (Dubovik and King, 2000; Sinyuk et al.,
2020).

Although the ground-based AERONET direct-sun AOD retrievals are among the highest quality
atmospheric aerosol measurements made with remote sensing, identifying dust components, and retrieving
their microphysical properties from AERONET data is more challenging. The AERONET level 2.0 aerosol
single-scattering albedo and refractive index results are viewed as confident only for AOD greater than 0.4
at 440 nm wavelength (Holben et al., 2006). Given that such high AOD is common only for aerosol plumes,
this requirement tends to skew the retrieved optical properties toward conditions of high aerosol loading
(Andrews et al., 2017). The extinction Angstrom exponent generally decreases with decreasing volume
fraction of coarse aerosol in the column (Schuster et al., 2006). Kim et al. (2011) found that for North
African dust, the extinction Angstrdm exponent between 440 to 870 nm in AERONET data had a value
below 0.2. So, to further help distinguish coarse-mode events, especially those that are dust-dominated,
some studies suggest applying an upper bound on the Angstrom exponent well below unity (Holben et al.,
2001; Dubovik et al., 2006). Yet, when multiple aerosol types reside in the atmospheric column, interpreting
the Angstrdm exponent in terms of particle size is ambiguous. For example, dust and fine-mode
carbonaceous particles (such as black carbon and brown carbon) tend to mix, either externally or internally,
in dusty polluted regions such as northern India and eastern China (Eck et al., 2010). Additional filtering
criteria have been suggested to help distinguish dust and other aerosol types in AERONET data. Russell et
al. (2010) showed that due to greater light absorption in the near-ultraviolet than the mid-visible wavelength
range, the absorption Angstrdm exponent (AAE) between 440 to 870 nm for coarse-mode mineral dust in
AERONET retrievals generally exceeds 1.5 and uniquely exceeds about 2 among common aerosol types;
Schuster et al. (2016) demonstrated that relatively large particle size also contributes to the dust AAE
values. Schuster et al. (2016) also distinguish mineral dust from carbonaceous particles by requiring a
retrieved imaginary refractive index < 0.0042 within the wavelength range from 675 to 1020 nm.

The presence and identification of clouds can also be a challenge for AERONET retrievals, particularly so
for dust aerosol. AERONET processing algorithms include automatic cloud screening in producing Level
1.5 data in near-real-time (Giles et al., 2019). Recently, Evan et al. (2022) found that for a site close to a
dust source in North America the AERONET algorithm regularly misclassified dust as clouds in 85% of
dusty cases and 95% of cases when AOD was greater than 0.1, principally due to the high AOD variability.
Besides reducing dust-storm AOD by a factor of 2 in these cases, such findings have implications for the
coarse dust size distribution retrieved at AERONET sites close to dust sources, where AOD is likely to
have high temporal variability. In these cases, a large proportion of retrievals may be removed from the
record due to misclassification of dust as clouds, further hampering the effort to constrain coarse dust size
distribution close to emission.

A lack of realistic dust optical models has been a persistent issue for all aerosol remote-sensing techniques.
The look-up table for the Version 1 AERONET retrieval algorithm assumed spherical dust particles
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(Dubovik and King, 2000). This assumption creates an artificial fine mode component in the retrieved dust
size distribution as well as an unrealistic spectral change in the real part of the retrieved dust refractive
index (Dubovik et al., 2002). The Version 2 AERONET algorithm adopts a mixture of spheroids to model
dust optics, which resolves the main issues with the Version 1 algorithm and helps distinguish non-spherical
dust from the preponderance of spherical particles in the atmosphere (Dubovik et al., 2006). However, to
reach agreement at all wavelengths, different shape distributions are retrieved at different wavelengths
(Dubovik et al., 2006), indicating that the spheroid shape distribution does not adequately represent actual
atmospheric dust particles (Nousiainen and Kandler, 2015; Huang et al., 2020). In addition, the maximum
possible diameter in AERONET size distribution retrievals is 30 um (Figure 20) and the tails of the size
distributions are constrained to very small magnitudes (Hashimoto et al., 2012), with large errors (Dubovik
et al., 2000). For comparisons between aircraft and AERONET retrievals, it is important that the aircraft
data are sampled and averaged vertically, as AERONET retrievals aggregate aerosol over the entire
atmospheric column. Comparisons are further complicated logistically by potential flight limitations very
close to AERONET sites, as well as the occurrence of good atmospheric conditions for comparisons, which
must include (1) cloud-free skies, (2) homogeneously distributed aerosol in both the horizontal and the
vertical, as aircraft sample more space than the single column above the AERONET site, and preferably
(3) reasonable dust loadings. Future work on precise one-to-one comparisons is also needed in addition to
more realistic dust optical models.
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Figure 20: AERONET-retrieved dust size distributions are substantially finer than near-coincident aircraft
measurements. (a) The dust volume size distribution (dV /dlogD) as a function of particle diameter (D)
acquired during the Fennec campaign close to the Zouerate AERONET site (Ryder et al., 2015), where
aircraft data show the median size distribution measurements across altitudes from 80 m to 5.5 km. (b) The
dust size volume distribution (dV /dInR) as a function particle radius (R) during the SAMUM campaign
above the Ouarzazate-airport AERONET site (Miiller et al., 2010). The second figure (b) includes the
AERONET values (black squares), in-situ measurements taken on the ground (back circles), which exclude
particles larger than 3.8 um radius, and in-situ aircraft measurements at 3247 m (green circles) and 4853
m (green boxes) altitude. Images are adapted, with permission, from Ryder et al. (2015) and Miiller et al.
(2010).

5.1.2. Passive satellite instrument retrievals of coarse and super-coarse dust aerosols

Broad-swath, single-view, multi-spectral imagers such as the MODerate resolution Imaging
Spectroradiometer (MODIS) are most effective at distinguishing fine-mode-dominated from coarse-mode-
dominated aerosol over dark water. This sensitivity has been used to separate coarse-mode “dust” aerosol
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air masses from fine-mode smoke, pollution, and other aerosol air mass types over the Atlantic Ocean
(Kaufman et al., 2005). An empirical partitioning of aerosol types, for example, to account for the
contributions of dust to fine mode and of sea salt to coarse mode, helps improve the identification of dust
components with this approach (Kaufman et al., 2005; Yu et al., 2009).

Multi-angle, multi-spectral imaging allows for better surface-atmosphere separation, and also helps
distinguish the scattering-angle dependence of spherical particle reflectance from that of non-spherical
particles, of which dust is the primary atmospheric component (Kalashnikova and Kahn, 2006; Kahn and
Gaitley, 2015). As the Multi-angle Imaging SpectroRadiometer (MISR) instrument flies aboard NASA’s
Terra satellite together with MODIS, the more sensitive MISR multi-angle dust retrievals have been used
to refine the interpretation of the MODIS fine mode versus coarse dust particle distinctions, to then take
advantage of the much greater MODIS spatial-temporal coverage over the northeast Atlantic region (Guo
etal., 2013). MISR multi-angle imagery is also used to derive plume heights and the associated wind vectors
geometrically, and such observations can help locate dust sources over the Middle East and North Africa
(Yuetal., 2018).

UV imagers such as the Total Ozone Mapping Spectrometers (TOMS), the Global Ozone Monitoring
Experiment (GOME), the Ozone Mapping Instrument (OMI), and Ozone Mapping and Profiler Suite
(OMPS) are sensitive to the shortwave light-absorption properties of many mineral dust types. They have
the advantage of low sensitivity to surface reflectance in most cases, and so can offer good retrievals over
land, but the estimates of aerosol column amount are qualitative and also depend on the aerosol layer height
(Herman et al., 1997; Prospero et al., 2002; Torres et al., 2007). Imaging from MODIS using the “Deep
Blue” technique has also mapped dust plumes in North Africa (Ginoux et al., 2010). Distinguishing dust
from other UV-absorbing aerosol species requires observations at longer wavelengths, input from aerosol
transport modeling, or context-related constraints from other sources.

Although satellite aerosol retrieval algorithms detect the total column AOD for all particle sizes at whatever

. iy . . . 2
wavelength is measured, they are most sensitive to those particles for which the variable x (= %r) ~1,

where r is the particle radius and A is the wavelength of observation. MODIS, VIIRS, and other visible and
near-infrared (VNIR) imagers use wavelengths no longer than about 1.6 pm (and only 876 nm for MISR)
to characterize aerosols (e.g., Levy et al., 2013), so they are most sensitive to particles no larger than about
2.5 pm in diameter. (Note that the MODIS dark target algorithm uses a 2.3 pm channel to help characterize
the surface for their aerosol retrievals). In practice, the exceptions are passive sounding instruments that
sample the thermal infrared (TIR) spectrum between about 3.7 and 15.5 um, such as NASA’s Atmospheric
InfraRed Sounder (AIRS) and EUMETSTSAT’s Infrared Atmospheric Sounding Interferometer (IASI),
along with infrared imagers such as the European Space Agency’s Spinning and Enhanced Visible and
InfraRed Imager (SEVIRI). Particle extinction cross-sections diminish greatly as x << 1, so measurements
at these longer wavelengths are preferentially sensitive to particles > 2.5 um in diameter, compared to the
smaller particles that are generally more abundant in the atmospheric column. Such large particles dominate
mainly in dust plumes.

Accordingly, both AIRS and IASI have been used to track large-scale transports of particles from major
dust source regions across the ocean during both day and night (DeSouza-Machado et al., 2006; Cuesta et
al., 2015, 2020). Dust sources have been mapped over the North African deserts with SEVIRI, which
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observes the region every 15 minutes from its geostationary vantage, allowing nascent sources to be
pinpointed before the ensuing plume obscures the surface over larger areas (Schepanski et al., 2007). The
TIR retrievals require having the atmospheric temperature profile, which can introduce uncertainties (e.g.,
Brindley et al., 2012), but also allows the aerosol layer height to be estimated. Near-source retrievals face
additional challenges, in part because the temperature and emissivity of dusty land surfaces are often poorly
constrained, making it difficult to account for the surface contribution to the top-of-atmosphere signal, and
in part, because multiple scattering due to relatively high particle concentrations, combined with the
challenge of modeling non-spherical particle scattering properties, further increase retrieval uncertainty. A
comparison of VNIR AOD retrievals from MISR and MODIS and TIR retrievals from IASI and SEVERI
over North Africa shows that MODIS and IASI tend to perform best at lower AOD, whereas the SEVIRI
TIR method performs best at higher AOD, and SEVIRI along with MISR perform best over bright surfaces,
when compared to AERONET. In addition, sensitivity to surface emissivity, elevation, and moisture also
affect the performance of different techniques (Banks et al., 2013).

In general, passive aerosol remote sensing can be affected by cloud contamination, which is especially
problematic for instruments with coarse pixel resolution, such as most space-based UV imagers to date.
Surface characterization can introduce substantial uncertainty for VNIR aerosol retrievals, especially over
bright land surfaces, such as deserts. For dust, in particular, passive remote sensing is also limited by a lack
of good optical models for mineral dust. This is due to the difficulty in modeling light-scattering by non-
spherical particles, the complexity of dust particle shapes, a lack of information about particle indices of
refraction at all wavelengths, and the diversity of mineral dust types from major sources. Collecting
adequate samples of airborne dust for laboratory measurements is also challenging, due to the low
efficiency of aircraft particle collection inlets. Modeling non-spherical dust optical properties is an area of
current research (Legrand et al., 2014; Granados-Muiioz et al., 2016; Lee et al., 2017; Saito et al., 2021).

5.1.3.Lidar retrievals of coarse and super-coarse dust aerosols

One of the difficulties of ground-based AERONET and satellite passive-remote-sensing instruments is the
inability to characterize the vertical distribution of aerosol properties. The combination of vertical dust
profiling with lidar and spectrally resolved observations with sun and sky photometers, preferably in
networks such as AERONET (Holben et al., 1998), MPLNET (Micro-Pulse Lidar NETwork) (Welton et
al., 2001), and EARLINET (European Aerosol Research Lidar Network) (Pappalardo et al., 2014), seems
to be an ideal addition to space-borne monitoring of dust outbreaks and (intercontinental) long-range dust
transport. Retrieval techniques such as LiRIC (Lidar and Radiometer Inversion Code)(Chaikovsky et al.,
2016) and GARRLIC (Generalized Aerosol Retrieval from Radiometer and Lidar Combination) (Lopatin
et al., 2013) have been developed and are summarized in a recent article of Lopatin et al. (2021). The
GARRLIC algorithm is integrated into the GRASP (Generalized Retrieval of Atmosphere and Surface
Properties) approach (Dubovik et al., 2011, 2014) and inverts both photometric and lidar observations.

An important limitation of all these combined techniques results from the use of the spheroidal shape model
to describe the irregular shape of natural dust particles in forward modeling approaches in the framework
of the GARRLiC/GRASP data analysis. The simulated spectra (355-1064 nm) of dust backscatter, lidar
ratio and depolarization ratio disagree with the lidar observations of dust optical properties at exactly 180.0
degrees (Miiller et al., 2010, 2012; Shin et al., 2018; Saito et al., 2021; Haarig et al., 2022). Sophisticated
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modeling studies comparing the impact of very different shape models on the lidar observations corroborate
the results from laboratory and field studies (Gasteiger et al., 2011; Lindqvist et al., 2014; Kemppinen et
al., 2015; Jarvinen et al., 2016; Saito et al., 2021). This is a source of uncertainty that must be overcome by
introducing more realistic dust shape models into the GARRLIcC/GRASP computations. The use of the
spheroidal model can be regarded as a first (but important) step only on the way toward an adequate, more
realistic consideration of the complex dust shape characteristics in dust optical property forward modeling.
Further limitations of these combined lidar-photometer methods arise from the fact that clear skies during
the sun photometer observations are required; even a thin cirrus deck prohibits any trustworthy dust
retrieval. Furthermore, complex vertical aerosol layering and complex mixtures of aerosols varying with
height (i.e., different mixtures in the boundary layer and in lofted layers above) cannot be resolved.
Examples are discussed by Tsekeri et al. (2017).

The traditional polarization lidar technique (presented in an easy-to-follow way by Tesche et al. (2009)
combined with the recently introduced POLIPHON (Polarization Lidar Photometer Networking) extension
(Mamouri and Ansmann, 2016, 2017) provides an alternative approach to precisely monitor dust layers, to
retrieve height profiles of dust mass, volume, and surface area concentration, and to estimate cloud-relevant
properties such as cloud condensation nucleus and ice-nucleating particle concentrations. Active remote
sensing allows height-resolved dust observations even under cloudy conditions, so that field studies of
aerosol-cloud interactions that focus on the role of dust in cloud evolution and precipitation processes, an
important contribution to weather and future climate predictions, become possible (e.g., Ansmann et al.,
2019a). The POLIPHON method is fully based on measured dust input parameters (dust depolarization
ratio, dust lidar ratio). No dust shape model is required.

In the promising polarization lidar technique, a laser transmits linearly polarized laser pulses and collects
the co- and cross-polarized lidar return signal components. The ratio of cross-to-co-polarized particle
backscattering is denoted as the particle linear depolarization ratio (PDR). Ensembles of non-spherical
desert dust particles cause a large depolarization ratio of about 0.3 at 532 nm and can easily be detected and
separated from non-dust particles such as spherical marine, haze, and biomass-burning smoke aerosols that
produce low depolarization ratios (PDR < 0.05). The latest dust-related applications, using the spaceborne
CALIPSO polarization lidar, are presented by Marinou et al. (2017) and Proestakis et al. (2018). In the
separation of dust and non-dust aerosol (Tesche et al., 2009), a PDR of 0.31 for dust and 0.03 for non-dust
is assumed. The CALIPSO aerosol typing approach (Kim et al., 2018), which distinguishes dust layers
(showing PDR > 0.2), dusty marine aerosol over the Oceans (PDR from 0.075-0.2), and polluted dust
(mainly over land, PDR from 0.075-0.2), can produce only a rough identification of dust-containing aerosol
layers.

Recently, the application spectrum of the polarization lidar technique was broadened by introducing a
method for estimating the dust mass concentration profiles for particles that are finer than 1um and those
that are coarser than 1 um (Mamouri and Ansmann, 2014, 2017). The method makes use of the laboratory
studies of Sakai et al. (2010) and Jérvinen et al. (2016) which were corroborated by modeling studies
(Gasteiger et al., 2011; Saito et al., 2021). In the laboratory studies it was found that fine-dust-dominated
particle ensembles cause particle depolarization ratios of about 0.14-0.18 at 532 nm (Sakai et al., 2010;
Jarvinen et al., 2016) and dust dominated by coarse mode leads to dust depolarization ratios close to 0.39-
0.4 (Sakai et al., 2010). Near-dust-source lidar observations also point to a high coarse-mode-related
depolarization ratio close to 0.4 at ~532 nm (Burton et al., 2015; Veselovskii et al., 2016; Hofer et al., 2020;
Hu et al., 2020). Similar contrasting features hold for the other important laser wavelengths of 355 and 1064
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nm. Note again that the measured overall (fine + coarse) 532 nm dust PDRs are typically around 0.3
(Freudenthaler et al., 2009; GroB et al., 2011; Tesche et al., 2011; GroB et al., 2015; Haarig et al., 2017,
Hofer et al., 2020). All this information can now be used to estimate fine and coarse dust fractions. A first
example was shown by Ansmann et al. (2017). It was found that the removal of dust from the atmosphere
was too strong for large transport paths in the simulations and the modeled fine-to-coarse dust ratio (in
terms of mass concentration and light extinction) was much too high in the models compared to the
observations.

After separating dust and non-dust aerosol components based on optical properties, conversion into mass,
volume, and surface area concentrations remain to be carried out, by using conversion factors derived from
long-term AERONET climatologies collected at desert stations (Ansmann et al., 2019b). The POLIPHON
methodology can be applied at all three aerosol lidar wavelengths (355, 532, and 1064 nm). The
POLIPHON methodology has been fully tested and applied in several field campaigns (Ansmann et al.,
2017; Mamouri and Ansmann, 2017; Mamali et al., 2018; Marinou et al., 2019). Extensive comparisons
with in situ aircraft observations of dust size distributions, fine and coarse dust volume concentrations, and
dust and non-dust fractions as they are available from several field campaigns in Morocco (2006), Cabo
Verde (2008), Barbados (2013) and Cyprus (2017) are required as a next step. Furthermore, additional
laboratory and modeling studies (for all three laser wavelengths) regarding the fine-mode and coarse-mode
depolarization and lidar ratios are desirable.

Uncertainties in dust monitoring arise from the fact that several non-dust aerosol components can depolarize
linearly polarized laser light. These aerosol types are dry marine particles (in the upper part of the marine
boundary layer) (Haarig et al., 2017), wildfire smoke in the upper troposphere and lower stratosphere
(Burton et al., 2015; Haarig et al., 2018; Hu et al., 2020), pollen aerosol in the boundary layer (Shang et al.,
2020; Bohlmann et al., 2021), and volcanic ash. This additional contribution to the particle depolarization
ratio can be erroneously interpreted as a dust contribution. An additional aerosol fluorescence channel may
help to overcome such biases, because in contrast to dust particles, pollen and wildfire smoke produce a
significant aerosol fluorescence backscatter signal (Veselovskii et al., 2021, 2020).

5.2. The limitations in modeling coarse and super-coarse dust aerosols

Because of the limitations in the in-situ and remote-sensing observation of coarse and super-coarse dust
aerosols in the atmosphere (sections 3 and 5.1), constraining dust processes in models that account for
accurate representation of coarse dust properties have been a difficult task. Several recent studies that
compared global model simulations against measurements showed that most models underestimate the
abundance of coarse and super-coarse dust aerosols in the atmosphere (Ansmann et al., 2017; Adebiyi and
Kok, 2020; Meng et al., 2022; Drakaki et al., 2022). This underestimation is largely attributed to inadequate
representation of the emission, transport, and deposition of coarse and super-coarse dust aerosols. In this
section, we discuss the issues and limitations in modeling coarse and super-coarse dust emission, transport
and deposition processes (Sections 5.2.1 and 5.2.2).

5.2.1. Limitations in modeling emission of coarse and super-coarse dust aerosols.

Dust of all sizes is emitted predominantly through the process of saltation, in which strong winds pick up
sand-sized particles (~75-500 um) that undergo ballistic trajectories (Gillette, 1979; Shao et al., 1993; Kok
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et al., 2012). The energetic impacts of these particles on the soil bed rupture the interparticle bonds that
glue most dust-sized particles in soils to surrounding particles, resulting in the emission of fine, coarse and
super-coarse dust aerosols. The resulting vertical flux of dust thus depends on the properties of the soil bed,
the turbulent wind, and the presence of obstacles that shelter the soil bed from the full force of the wind by
absorbing a portion of the wind momentum (Raupach et al., 1993; Marticorena and Bergametti, 1995; Shao,
2001; Menut et al., 2013; Kok et al., 2014; Comola et al., 2019).

The size distribution of the emitted dust flux depends in large part on the patterns in which interparticle
forces between particles rupture due to the impacts of saltating particles. For fine and coarse dust (D < 10
um), theory and measurements indicate that the emitted size distribution is consistent with what would be
expected if most dust is emitted through the fragmentation of brittle soil aggregates (Kok, 2011a; Huang et
al., 2021; Meng et al., 2022). Moreover, measurements from around the world indicate relatively small
variability in the emitted dust size distribution due to differences in wind speed (Gillette et al., 1974; Kok,
2011b; Shao et al., 2020; Wang et al., 2021), atmospheric stability (Khalfallah et al., 2020), fetch length
(Dupont et al., 2015; Fernandes et al., 2019), and soil properties (Alfaro and Gomes, 2001; Shao, 2001;
Kok, 2011a; Wang et al., 2021). Indeed, these variations are largely within the systematic error between
different experimental data sets (Kok et al., 2017), which considerably simplifies the parameterization of
the emitted dust size distribution in global models. However, more measurements are needed to better
understand and parameterize the emitted size distribution of fine and coarse dust. The emission of super-
coarse and giant dust (D > 10 pum) is considerably more uncertain than that of fine and coarse dust (D < 10
pum). This is because of both difficulties in obtaining accurate measurements and because the emission
process is more complex. Super-coarse and giant dust particles are difficult to measure because their
substantial inertia causes large fractional losses in inlets and during subsequent transmission to particle
samplers (Hinds, 1999; von der Weiden et al., 2009; Ryder et al., 2013b). Consequently, there are fewer
measurements of emitted dust size distributions for super-coarse and giant dust than for finer dust. However,
over the past decade or so, substantially more measurements of super-coarse and even giant dust have been
made (Table 2 and Section 3), especially by research aircraft using wing probes, which are not affected by
inlet losses (Ryder et al., 2013b; Rosenberg et al., 2014; Ryder et al., 2019; Sanchez-Marroquin et al., 2019)
although they may be affected to a lesser extent by airflow and shattering (Spanu et al., 2020).

In addition to the difficulties in measuring super-coarse and giant dust, the physics of their emission is also
more complex. As mentioned above, theory and measurements suggest that the emission of finer dust is
dominated by brittle fragmentation processes for soils with sufficient fine particle content to form brittle
soil aggregates (excluding, for instance, emissions from sand dunes; Huang et al. 2019; Swet et al. 2020) .
However, for super-coarse and giant dust, the contribution of other processes could become more important,
which could also cause the emitted dust size distribution to depend more strongly on soil properties and
wind speed than it does for finer dust. These additional processes include aerodynamic lifting (Klose and
Shao, 2012; Klose et al., 2014) and ejection (without fragmentation) of discrete soil particles by saltating
particles (Kok, 2011a). Furthermore, super-coarse, and giant dust have substantial terminal fall speeds of
the order of 0.5-50 cm/s, which complicates the calculation of the emitted dust size distribution from
measurements of the gradient in the size-resolved dust concentration near the surface (Gillette et al., 1972;
Shao, 2008; Dupont et al., 2015; Fernandes et al., 2019). Additionally, the large gravitational settling
velocity of coarse dust impedes its vertical transport out of the near-surface layer. Consequently, aircraft
measurements indicate that topography can strongly enhance the vertical transport of super-coarse and
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(especially) giant dust particles (Rosenberg et al., 2014). Large Eddy Simulations confirm this finding and
indicate that the enhanced vertical transport of super-coarse and giant dust occurs because of a number of
factors, including upward flow on the uphill slope driving vertical transport and increased vertical
dispersion in the wake of crests (Heisel et al., 2021). Most of these processes affecting the emission and
vertical transport of super-coarse and giant dust are not represented in current model parameterizations of
dust emission, which likely underestimate the emission of super-coarse dust (Huang et al., 2021; Kok et al.,
2021a), although an updated parameterization of the emitted dust size distribution using brittle material
fragmentation seems to at least partially resolve this problem (Meng et al., 2022). Nonetheless, more studies
are required to understand, parameterize, and model the emission of super-coarse and giant dust.

Q T

c

§ 2

3 10° 1

=- fffff

S - T l

)

=

2

-

® .

5 10

] " .

N i < Gillette et al. (1972)

(7] < Gillette et al. (1974)

8 <4 Gillette (1974) - Soil 1

= < Gillette (1974) - Soil 2

E < Gillette (1974) - Soil 3

g 102 A Fratini et al. (2007)

- ® Sow et al. (2009)

[ ¢ Shao et al. (2011)

E‘ N = Rosenberg et al. (2014)

© v Khalfallah et al. (2020)

E — BFT-original (Kok, 2011)

=] K ---BFT-supercoarse (Meng et al., 2022)

210-3 P | . n S ———— T — |
0.2 1 10 20 40

Dust geometric diameter D (um)

Figure 21: Compilation of measurements of the size distribution of emitted dust aerosols. Different
markers denote observations of the emitted dust size distribution from different studies, which were
processed and corrected to geometric diameter as detailed in Huang et al. (2021). Vertical error bars
denote the standard error of measurements under various wind events at a given soil (see Kok et al., 2017).
Shown for comparison are the parameterization of the size distribution of emitted dust aerosols obtained
using brittle fragmentation theory (BFT-original; Kok, 2011) and the updated brittle fragmentation theory
parameterization that accounts for emission of super-coarse dust (BFT-super-coarse; Meng et al. 2022).
The updated parameterization reproduces measurements of the large contribution to the emission flux by
super-coarse dust; however, very few measurements are available. Blue shading denotes the 68%
confidence interval. All curves are normalized to yield unity when integrated over the 0.1-20 um diameter
range. After Meng et al. (2022).

5.2.2. Limitations in modeling transport and deposition of coarse and super-coarse dust aerosols

Model underestimation of coarse and super-coarse dust particles is relatively larger after long range
transport than when close to dust sources (e.g., Adebiyi and Kok, 2020; Drakaki et al., 2022; Meng et al.,
2022), evidencing that models predict coarse dust to fall out of the atmosphere more quickly than observed
(e.g., Maring et al., 2003; Ansmann et al., 2017; Weinzierl et al., 2017; Drakaki et al., 2022; Meng et al.,
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2022). Traditionally, dust particles in the coarse to giant size range are expected to sediment quickly (e.g.,
Seinfeld and Pandis, 2006). Therefore, these particles can only stay in the atmosphere for longer periods
and be subject to long-range transport, if some mechanisms counteract the gravitational force on them (e.g.,
Figure 22).

Such mechanisms, that result in ascending motions and counteracting the gravitational force on dust
particles, can occur at various spatial scales. For example, radiation-induced or shear-induced turbulence
and vertical mixing can occur at the scale between ~10-100 m both in the boundary layer or in the elevated
dust layer (e.g., Gutleben et al., 2020; Ryder, 2021). In addition, other mechanisms from dust shape,
electrical forces in regions of substantial dust loading, moist convective activities (~10 km), frontal
circulations (~100 km) to large overturning circulations such as the Hadley, Walker and monsoon cells
(~1000 km) can influence dust long-range transport. For mechanisms of larger spatial scales (order of km),
their impacts on long-range transport may strongly depend on the dust source and season. For example,
higher-latitude sources such as the Taklimakan and Gobi deserts are often affected by springtime cold fronts
associated with extratropical cyclones, allowing a relatively fast transport into upper-tropospheric levels
(e.g., Wiacek et al., 2010). In contrast, for lower-latitude sources, such as the southern Sahara and Sahel,
dust emission is more commonly caused by the strong winds associated with the pressure gradients at the
equatorward edge of subtropical highs, particularly in the winter half of the year (e.g., Knippertz, 2014).
For this case, lifting of dust particles to upper-tropospheric levels mostly occurs in connection with
summertime deep convection (e.g., Wiacek et al., 2010) and with deep dry convection over large deserts
such as the Sahara.

In the following subsection, we focus on the processes that currently have the largest knowledge gaps and
associated model limitations, simplifications, or omissions. We initially review uncertainties related to
particle settling (Section 5.2.2.1). Subsequently, we discuss the potential role of turbulence (Section
5.2.2.2), moist convection (Section 5.2.2.3), and electrical forces (Section 5.2.2.4) to sustain large dust
particles in the atmosphere and their current representation in models. In contrast, we do not discuss the
frontal motions and large overturning circulations such as the Walker and monsoon cells in this article,
because they are reasonably resolved by the meteorological components of most dust models and are
therefore unlikely to contribute to the disagreements between models and observations on long-range
transport of large dust particles.
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Figure 22: Schematic summarizing some conditions that contribute to long-range transport of coarse and
super-coarse dust aerosols from North African dust sources. These conditions could also apply to long-
range transport from other major dust sources. While not included in the figure, frontal motions, and large
overturning circulations such as the Walker and monsoon cells can also influence long-range dust
transport, but they are reasonably well-resolved in most regional and climate models. Note that the arrow
suggests only the transport of North Afvican dust over the Atlantic Ocean and not the succession of
processes or conditions highlighted in the image.

5.2.2.1. Sedimentation and settling velocity

Sedimentation is a decisive process for the atmospheric lifetime of dust. The settling velocity, equilibrium
fall velocity or terminal fall velocity w;, of airborne particles is defined as the particle-to-fluid relative
velocity under steady-state conditions — that is, when fluid drag forces balance the gravitational forces and
the particle experiences no acceleration (Shao, 2008; Dey et al., 2019). It can be derived from the equation
of motion of spherical particles in a fluid and is given by

1
40,9D\2
_ p
We = ( 3C, ) )

where g, = ppp—_pa is the particle-to-fluid relative density with particle density, p,,, and fluid (air) density,
a
Pa, g 1s gravitational acceleration, D particle diameter, and Cp is the drag coefficient. The latter depends on

the particle Reynolds number, Re, = WT':D, where v is the fluid kinematic viscosity. For small Re,, Cp
decreases as Cp (Rep < 1) = % (Stokesian regime), a relationship that is applicable to small dust
1

particles (D < 10 um). For larger Re,,, the relationship with Cp, changes (transitional regime) until Cp, is
approximately constant for Re,, > 103 (Newtonian regime). The exact dependency between Cp and Re, in
the transitional regime has not been determined yet and experimental data show a considerable spread (e.g.
(e.g., Dey et al., 2019; their fig. 4), in particular considering different particle types (e.g. spheres versus
non-spherical natural particles). As a consequence, w; for coarse, super-coarse, and giant particles with
varying particle properties is also subject to considerable uncertainty.
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Figure 23: : (top) Particle terminal velocity w, [m s™'] as a function of particle diameter D [um] based on
experimental data (diamonds; Farrell and Sherman, 2015 and references therein) and on the theoretical or
empirical relationships (lines) from Stokes (1851), Cheng (1997), Jiménez and Madsen (2003), Ahrens
(2000), and Farrell and Sherman, (2015) using (where applicable) p, = 1.2 kg m™, pPp= 2650 kg m> v =
1.45 X 10™°m*s™, and g = 9.81 m s™'; (bottom) Impact of particle shape on w obtained using the empirical
expression from Wu and Wang (2006) with Corey shape factors S, =1, 0.5, and 0.1.

Most experiments on particle settling have been conducted in water. Farrell and Sherman (2015) compiled
and quality-controlled the results from the few experiments that have been conducted in air using natural
particles (sand; Figure 23, top). While for D < 100 pm the experimental data give consistent results,
scatter starts to increase for larger diameters. For D = 450 pm, the approximate size of the largest particles
found after long-range atmospheric transport (Betzer et al., 1988; van der Does et al., 2018a), the observed
w, ranges between about 1.5 and 3.5 m s™, which is also reflected in the empirical relationships from Cheng
(1997), Jiménez and Madsen (2003), and Ahrens (2000), reviewed by Dey et al. (2019), and Farrell and
Sherman (2015). The latter predicts w; based on D alone and compares to the observed data relatively well.
This simple form can, however, also be disadvantageous, as it prevents the expression from being applied
to other fluid conditions, e.g., for other planetary atmospheres. The theoretical Stokes-relationship is only
applicable for small particles (D < 10 um), but is shown here for larger particles also for illustrative
purposes.

Most dust models do not currently include particles larger than 20 pm (Kok et al., 2021a) and therefore the

large majority make use of the Stokes approximation. Only a few apply a correction for large particles. For

L : . . 24
example, Zender et al. (2003) use a time-invariant correction factor Cg; = % with w g¢ = we(Cp = E)’

which is computed for each particle-size class at model start for characteristic atmospheric temperature and
pressure values. Miller et al. (2006) apply a correction to particle diameter and in addition, introduce a
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dependency of w, on turbulence intensity (the effects of turbulence on settling are explained below; section
5.2.2.2). Klose et al. (2021) deploy empirical correction factors that reduce w; for large particles to
compensate for deviations from the Stokes approximation, as well as for numerical diffusion and other
unaccounted factors. Tanaka and Chiba (2005) use a different approach and parameterize Cp in Equation
(4) using the empirical expression from Morsi and Alexander (1972). For small particles, models typically
apply the Cunningham slip correction (Cunningham, 1910), which accounts for reduced resistance of
viscosity if the particle size is of similar magnitude as the mean free path of air molecules (Zender et al.,
2003; Tanaka and Chiba, 2005; Pérez et al., 2011).

The relationships shown in Figure 23 (top) were derived for natural particles (mainly quartz sand grains),
which makes them representative for particles that do not deviate far from spherical shape. Nonspherical
and/or irregular particle shape leads to increased drag forces impacting on the particle and hence to a change

in w.. A common representation of particle shape is the Corey shape factor, S, = where as, ai,

as

and a; denote the shortest, intermediate, and longest axes of a particle respectively (Corey and others, 1949;
Dietrich, 1982; Dey et al., 2019) . Dietrich (1982) suggested that a typical coarse sand particle corresponds
to S, =~ 0.7. Wu and Wang (2006) related the empirical coefficients in the expression from Cheng (1997)
to S, (Figure 23, bottom panel). The results suggest that shape can have a considerable effect on w;, in
particular for particles larger than 100 um. Expressions that take into account other measures of roundness
are also available (e.g., Camenen, 2007). Indeed, some of the giant particles analyzed after long-range
atmospheric transport exhibit considerable non-sphericity (Betzer et al., 1988; van der Does et al., 2018a).
Ginoux (2003) calculates small reductions in settling velocities for coarse dust when assuming prolate
spheroids with aspect ratios of ~2, and only finds significant differences when aspect ratios are greater than
~5, in comparison to spheres. Mallios et al. (2020) also show that the decrease in settling velocities scales
with aspect ratio, and that vertically-oriented prolate spheroids have lower settling velocities than
horizontally-oriented ones (by ~23% for particles of ~10 pm).

The description of settling for coarse to giant dust aerosols in models can also be limited by the performance
of the numerical schemes used to resolve sedimentation across the vertically discretized grid. Models
typically use upwind sedimentation schemes (Ginoux, 2003; Pérez et al., 2011; Rémy et al., 2019), which
are conservative, positive definite, and computationally efficient but numerically diffusive. Indeed, (zero
order) upwind schemes assume that both the terminal velocity and the concentration of particles are constant
within the grid cell, which creates severe numerical diffusion because particles transported downward from
a grid cell to the underlying one are available for transport further down during the same time step. This
makes the result not only diffusive but also dependent on the time step and vertical resolution. Higher-order
methods that consider subgrid-scale vertical gradients as moments (e.g., Prather, 1986) are accurate and
non-diffusive but are not used because their implementation in models is technically complex (Benduhn
and Lawrence, 2013) and computationally expensive. Ginoux (2003) compared a simple explicit upwind
scheme and a non-diffusive scheme that conserves the second-order moments of the spatial distribution in
a dust model and showed that considering non-sphericity for dust particles is of second order compared to
the impact of numerical diffusion. The diffusive treatment of sedimentation caused an underestimation of
the dust mass loading by a factor 2 and of the mass of particles above ~6 um by up to two orders of
magnitude in some locations. Therefore, the numerical treatment of sedimentation is critical and may be
among the first aspects to address in most models to properly represent the long-range transport of coarse
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to giant dust aerosols. Some less diffusive, yet computationally efficient schemes have been proposed in
the literature and may be considered (e.g., Kerkweg et al., 2006).

Inaccuracies in the sedimentation of coarse and super-coarse dust particles due to numerical diffusion can
be further exacerbated by the common model simplifications in the representation of the dust particle size
distribution (Mann et al., 2012). The dust size distribution in models is usually represented according to
either a set of discrete size sections or bins (sectional approach) (Gelbard et al., 1980) or overlapping
lognormal modes covering different parts of the particle size spectrum (modal approach) (Whitby, 1981),
and less commonly through the method of moments (McGraw, 1997). High-resolution sectional approaches
remain the most accurate but are computationally expensive because models must deal with many other
types of aerosols in addition to dust, along with an increasing amount of microphysical processes
determining aerosol properties that need to trace both mass and number. Using coarse-resolution sectional
approaches leads to numerical diffusion in size space (Weisenstein et al., 2007) and is therefore undesirable.
To reduce the computational burden, the modal approach is the most popular, but the usual simplifications
apply, for example fixing the standard deviation of the modes, which causes biases in the sedimentation
rates. This is particularly important for coarse to giant dust which is usually poorly represented with one
single mode only (e.g., Vignati et al., 2004; Jones et al., 2022; Mann et al., 2010)

5.2.2.2. Turbulence

Turbulence in the atmosphere is most prevalent in the boundary layer. It can be triggered either
thermodynamically by buoyancy, most commonly by the daytime solar heating of the surface, or
mechanically by wind shear, most commonly in the vertical direction. As dust emission requires strong
winds near the surface, this process is almost always accompanied by high levels of turbulence. Boundary
layer turbulence is not a fully irregular process but — depending on stability and wind — coherent structures
such as roles or eddies can form. Similar to the re-circulation in convective storms discussed below (Section
5.2.2.3), these could, in principle, lead to multiple uplifts of large particles keeping them suspended for
much longer than in a statistical average. However, the lifetimes of eddies are short (few hours at best) and
the depth of the layer shallow (few km at best), leading to quickly decreasing probabilities for “lucky” large
particles to survive. Despite all this, the fact that even giant particles are occasionally found over the open
tropical Atlantic during winter, when convection and frontal uplift are absent and the dust layer is usually
restricted to the lowest 2km, suggests that a highly turbulent layer during a strong wind period alone can
keep those large particles lofted for at least two days (van der Does et al., 2018a). Turbulence occasionally
also occurs away from the surface, i.e., in areas of strong shear in the vicinity of jet streams or in layers of
vertical instability in the free troposphere. An example for such a phenomenon was recently discussed in
Gutleben et al. (2020) and Ryder (2021), where studies find evidence that longwave radiative effects of
water vapor in the mid-level Saharan air layer (SAL) over the Atlantic Ocean can cause destabilization and
vertical mixing, which could contribute to keeping at least a small number of particles aloft for longer than
expected from simple arguments.

Turbulence can affect the vertical movement of dust particles in multiple ways. Models most generally
represent vertical diffusion of dust assuming that, as other scalars, it follows fluid particles in the same
turbulent field and should therefore be influenced by the same eddy diffusivity. However, turbulence can
also directly affect settling velocity, i.e., the particle-to-fluid relative velocity, due to gravity and inertia.
These effects, which are generally not considered in models, depend on relative turbulence intensity, o/w;,
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with o being the velocity scale of the fluid (Nielsen, 1993; Stout et al., 1995; Kawanisi and Shiozaki, 2008;
Dey et al., 2019). For o/w; >> 1 (i.e., small particles and relatively strong fluid motions), particles tend to
follow vortex trajectories (“vortex trapping”), which reduces their effective settling velocity. For o/w; = 1,
particles are swept from vortex to vortex, leading to an increased downward motion (“fast tracking”). In
the case of o/w; << 1, particles cross the turbulent eddies during their fall, experiencing repeated upward
fluid motion for which they need longer to pass than for the downward motion (“loitering”) (Nielsen, 1993;
Good et al., 2014). In addition, the increasing nonlinear behavior of the drag coefficient with the slip
velocity can lead to an additional reduction in w; in the upward flow (nonlinear drag) (Good et al., 2014).
The latter effects may be most relevant for giant dust particles. More recently, the phenomenon of turbulent
thermal diffusion (TTD) has been proposed based on theory (Elperin et al., 1996) and laboratory
experiments (Elperin et al., 2006), although it has not been implemented in any widely used model yet. It
is argued that due to inertia, particles within the eddies drift out and accumulate in regions between the
eddies, which is where the pressure of the turbulent fluid is maximized. This results in a non-diffusive flux
of particles in the direction of the heat flux in turbulent stratified flows. TTD scales with the temperature
gradient and the eddy diffusivity coefficient as well as the particle size and density. One regional modeling
study over Europe has evaluated the influence of TTD upon the fate of tropospheric aerosols (Sofiev et al.,
2009), showing an increase of 5—15 % in the transport of coarse particles outside of the modeled domain,
depending on the season. The relative effect of TTD on coarse particles is much stronger than that on fine
aerosols because its contribution scales with the square of particle size.

When it comes to vertical diffusion, models typically follow two approaches: 1) local closure schemes that
consider only adjacent vertical model levels and 2) non-local closure schemes that consider multiple levels
to represent the effects of vertical mixing in the PBL. In local schemes, the turbulent dust flux is
proportional to the local dust gradient and the eddy diffusivity. This is typically well suited for the free
atmosphere and the PBL for neutral and stable conditions as the length scale of the eddies is typically
smaller than the domain over which turbulence extends. The majority of models additionally consider non-
local closure schemes for the PBL, which have been shown to better represent unstable and convective
conditions, i.e., when the largest eddies can be of similar size to the depth of the PBL itself, and can transport
heat upward despite localized stability maxima (Deardorff, 1972). In these schemes the non-local eddy
diffusivity represents turbulent properties characteristic of the PBL. Models may underestimate the altitude
of coarse particles in the PBL, i.e., before they are subject to long-range transport, due to limitations in PBL
mixing schemes and/or the omission of phenomena such as the effect of subgrid-scale topography upon
their vertical mixing (e.g., Rosenberg et al., 2014; Heisel et al., 2021). This could be the case, e.g., for the
very deep mixing layer over the Sahara in summer (Garcia-Carreras et al., 2015). Likewise, for example,
as the SAL progresses from the mixing layer to the elevated mixed layer above the marine boundary layer
over the Atlantic Ocean, models may have issues representing vertical mixing. While free tropospheric
local schemes may capture the shear-induced mixing in the SAL, buoyancy-induced mixing, referred to as
self-lofting (e.g., Das et al., 2021), may be underrepresented due to underestimated dust absorption and
underestimation of water vapor (Gutleben et al., 2020; Ryder, 2021). The former could be the result of dust
size underestimation (Adebiyi and Kok, 2020) and widespread omission of LW scattering in models’
radiation schemes. Another possibility is that models may not be accounting for potential non-local mixing
or, if they do, might produce large errors because the structure of thermal turbulence is quite different from
that in the PBL for which the non-local schemes are typically developed.

65



5.2.2.3. Moist convection

Strong winds associated with moist convection are a powerful mechanism to lift dust particles from the
surface and transport them to great heights (Knippertz, 2014). The most prominent example is West African
haboobs (Marsham and Ryder, 2021), which occur over the summertime Sahel and southern Sahara. Due
to the specific atmospheric conditions in this region (thermodynamic profiles, wind shear), moist
convection can organize into several hundreds of kilometers long, fast westward propagating squall-line
systems (e.g., Fink and Reiner, 2003). Evaporation at the rearward, stratiform side of the storms leads to
cooling, downward acceleration, and finally, a potent cold pool that undercuts the leading convection to run
ahead of the system, where new convective cells can be triggered if stability is conducive. The arrival of
such a cold pool is typically characterized by an abrupt jump in wind speed, temperature, moisture and
visibility, creating an impressive moving wall of dust (e.g., Lafore et al., 2017). Idealized, high-resolution
simulations by Takemi (2005) show that particles of 10 um can be transported to the tropopause in such
storms, both ahead and behind the leading edge but mostly towards the rear. It is conceivable that large
particles could then subside and re-enter the main updraft with the rearward inflow jet, which would allow
for multiple uplift cycles, as these systems have typical lifetimes of 12h and far more than a day in extreme
cases (e.g., Fink and Reiner, 2003). Once over the ocean, dust particles also experience deep uplift in
tropical cyclones (Sauter and L’Ecuyer, 2017). If particles are not rained or washed out by the intense
rainfall, a re-circulation — e.g., up in the eyewall, out in an outflow jet, and back in by the low-level
convergent flow —would be possible, particularly as typical system lifetimes are much longer than for squall
lines (van der Does et al., 2018a), however, estimate that, even under optimal conditions, at least four
convective updrafts would be required for a 100 pm particle to reach the open tropical Atlantic, where such
particles have been observed.

Some studies have shown the importance of convective parameterization and the subsequent scavenging
for the vertical dust structure in models (Tost et al., 2010) and also for the accurate representation of dust-
generating winds (Garcia-Carreras et al., 2021), which might impact the emitted size distribution. Most
current dust models are too coarse to allow the explicit representation of deep convection. Most models use
the traditional mass-flux schemes (Arakawa and Shubert, 1974), which are afflicted by substantial
structural, parameter and process uncertainties. It has been shown that this leads to a serious
misrepresentation of haboobs and thus an underestimation of the associated dust emission (Heinold et al.,
2013; Pantillon et al., 2016). Due to a lack of convective organization in models, convection also tends to
be more short-lived and of lower intensity, greatly reducing the potential for re-circulation of particles in a
system. Tropical cyclones are represented at least in some dust models but are usually much weaker if the
resolution is not fine enough.

5.2.24. Electrical forces

Atmospheric charging affects the dynamics of dust particles, with a vertical electrical force being able to
potentially compensate for a particle’s weight (Ulanowski et al., 2007). Laboratory experiments indicate
that strong electric fields can keep particles suspended at higher elevations and increase the concentration
of larger particles (Toth III et al., 2020). Using balloon measurements, Renard et al. (2018) found large
particles (>40 um) persisting over long distances over the Mediterranean region and speculated that this
was due to particle charge counteracting gravitational settling. Whether an electric field prolongs a
particle’s lifetime in the atmosphere depends on its polarity and the atmospheric electric field. The fair
weather electric field (order ~10° V m™') is downward-directed and thus drives negatively charged particles
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upward, but its direction can reverse in disturbed weather (dust storm, thunderstorms), when electrical fields
can increase by 2-3 orders of magnitude (Harrison et al., 2016; Nicoll et al., 2020; Daskalopoulou et al.,
2021). The initial charge generated at dust emission is lost within hours (Nicoll et al., 2011), but
triboelectrification, i.e. particle charging through collision in a turbulent layer with high dust concentrations,
can lead to significant charge far from dust sources (Harrison et al., 2018). van der Does et al. (2018)
estimate the effect of charging on particle fall speed using typical numbers from the literature. In fair
weather conditions the effect on particles of >10 um is small but may become significant for larger
background electrical fields. By accounting for the two distinct charging mechanisms, i.e. ion attachment
and contact electrification, and assuming stagnant conditions, Mallios et al. (2022) estimate that the
electrical force is more than one order of magnitude less than gravity in a 1D model, with no impact on the
particles settling process. The uncertainty in these estimates, however, are large, as there are no published
in-situ measurements of individual particle charges away from the surface (e.g., Nicoll et al., 2011). Another
largely unexplored factor of uncertainty is the impact of particle composition with some evidence that
quartz particles may charge more easily than clay minerals (Harrison et al., 2016 and references therein).
A final complicating factor is that electrical fields are often enhanced in the vicinity of thunderstorms,
where charge promotes the removal of dust by cloud droplets (Nicoll et al. 2011), such that convection and
charging could work against each other. Given the many fundamental gaps in our knowledge in this area,
electrical forces are so far not represented in any widely used dust model and therefore remain one of the
great unknowns in our attempts to realistically represent the transport of coarse, super-coarse, and giant
dust particles in numerical models.

6. Summary and Recommendations

This review focuses on the role and impacts of large dust particles in the Earth system. While dust particle
sizes span more than three orders of magnitude in diameter (Mahowald et al., 2014), the definitions and
classifications of the diameter range representing coarse dust particles are not consistent across the literature
(section 2). Specifically, different studies used different dust size ranges to define coarse-mode dust
aerosols (e.g., Wentworth, 1922; Whitby, 1978; Seinfeld and Pandis, 2006; Mahowald et al., 2014), which
often depend on the diameter type used (e.g., Reid et al., 2003; see also section 2). To allow for consistency
in future studies and across different disciplines, this review proposes a uniform classification for coarse
dust particles using geometric diameters between 2.5um and 10um (Figure 2). Furthermore, we also
propose the term “super-coarse dust” and “giant” for particles with a geometric diameter between 10-62.5
um, and above 62.5 um, respectively (Figure 2). This is because there are now several lines of observational
evidence that dust particles with a diameter greater than 10 pum consistently undergo long-range transport
beyond what can be explained by gravitational settling theory (e.g., Betzer et al., 1988; Jeong et al., 2014;
Weinzierl et al., 2017).

These lines of observational evidence that show long-range transport of coarse to giant dust aerosols in the
atmosphere include evidence from ground-based, deposition, and airborne measurements (section 3 and
Table 1). For example, coarse to giant dust particles have been measured across the Atlantic Ocean and
over North America, South America, Europe, and Iceland at several ground-based in-situ and dust-
deposition stations (e.g., van der Does et al., 2018; Kramer et al., 2020; Barkley et al., 2021; Varga et al.,
2021). In addition, measurements have also documented coarse to giant dust aerosols across the Pacific
Ocean and over Asia (e.g., Betzer et al., 1988; Jeong et al., 2014). Because these observations have shown
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that giant dust particles can travel for thousands of kilometers (Figure 3; e.g., van der Does et al., 2018),
similar transport processes can facilitate coarse and super-coarse dust particles to travel even farther in the
atmosphere. Indeed, observations now suggest the abundance of coarse and super-coarse dust particles
(Figure 4) (e.g., Ryder et al., 2019) that accounts for a substantially higher fraction of the global dust mass
load than simulated in climate models (Figure 6).

Because coarse and super-coarse dust aerosols dominate the global dust mass, they can have substantial
impacts on several aspects of the Earth system (see Figure 1). This review highlights how important coarse
and super-coarse dust aerosols are to radiation, clouds, precipitation, atmospheric chemistry, and
biogeochemistry. Specifically, when compared to fine dust particles (diameter, D < 2.5 pm) that produce a
net negative direct radiative effect (cooling effect) at the top of the atmosphere (TOA), coarse and super-
coarse dust aerosols produce a net positive direct radiative effect (warming effect) at TOA (section 4.1 and
Figure 11). This is because coarse and super-coarse dust aerosols warm the climate by absorbing shortwave
(SW) radiation and extinguishing longwave (LW) radiation, which dominate its scattering of SW radiation
that tend to cool the climate. Furthermore, because coarse and super-coarse dust aerosols absorb SW and
LW radiation, coarse dust interactions with clouds and precipitation also influence the effective dust-
radiation interactions (see section 4.2). In particular, adjustments to dust-radiation interaction occur because
absorption by coarse and super-coarse dust aerosols can modify temperature and water vapor profiles which
influence the distribution of clouds and precipitation and subsequently the overall radiative effect (Boucher
et al., 2013; Knippertz and Stuut, 2014). Since coarse and super-coarse dust aerosols absorb more SW and
LW radiation than fine dust, their abundance, and spatial distribution, therefore, determine whether the
overall dust direct radiative effect is to warm or cool the global climate system.

In addition to the radiative impacts, coarse and super-coarse dust aerosols also significantly influence
clouds, atmospheric chemistry, and biogeochemistry. Specifically, when coarse and super-coarse dust
particles are chemically aged, they can get activated as cloud condensation nuclei at relatively low
supersaturation, and therefore they can initiate precipitation sooner than it would otherwise occur (Section
4.3.1) (e.g., Feingold et al., 1999; Levin et al., 2005). At higher altitudes, coarse and super-coarse dust
particles are also easily activated when compared to fine dust, and therefore they contribute a substantial
fraction of the activated ice nucleating particles (INPs), especially at temperatures above -23°C (section
4.3.2; see also Figure 14 and Figure 15). Furthermore, the ability of given mineral dust to undergo chemical
aging by the uptake of reactive compounds in the gas phase, by photochemistry, and by in-cloud and off-
cloud processing depend on the surface area. As a result, coarse and super-coarse dust aerosols account for
most of the available reactive surfaces for atmospheric processing (section 4.3.2). For land and ocean
biogeochemistry, coarse and super-coarse dust aerosols represent a critical contribution to the deposited
dust particles since it supplies important nutrients such as iron and phosphorus (section 4.4). Although
coarse and super-coarse dust particles have strong impacts closer to major dust-source regions where they
dominate the dust mass loading, the evidence of their long-range transport and abundance in the atmosphere
suggests that their impacts likely extend beyond previously estimated (e.g., Figure 1).

There are major challenges in observing coarse and super-coarse dust particles in the atmosphere and
considerable limitations in simulating them in climate models (Table 2). Specifically, in-situ measurements
are limited in the spatiotemporal coverages, and the remote-sensing instruments on the ground- or space-
based platforms that can have continuous observations of atmospheric aerosols area are associated with
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uncertainties in their retrieval of size-resolved dust properties (Section 5.1). Because of the limitations in
observing systems, constraining coarse to giant dust processes in climate models has been a major
challenge. Specifically, most climate models underestimate coarse and super-coarse dust load in the
atmosphere, and this underestimation can be associated with poorly-resolved or poorly-understood
processes that result in too-little emission or too-fast deposition of these particles in climate models
(Sections 5.1 and 5.2).

Because coarse and super-coarse dust aerosols are an essential component of the Earth system, there is still
a need for many additional studies in characterizing their impacts on several aspects of the Earth system.
To facilitate these future studies, we offer some recommendations which are highlighted in Table 3. Overall,
we conclude that an accurate representation of coarse and super-coarse properties is critical to understand
the overall impacts of dust aerosols on the Earth system.

Table 3: Despite our understanding of the importance of coarse and super-coarse dust aerosols, there
remain significant uncertainties and unresolved questions. We provide some recommendations here
which, in our view, are critical to further understand the role of coarse and super-coarse dust aerosols in
the Earth’s climate system. The table describes ‘What’ is needed and ‘How’ it can be achieved.

What How

Need to use consistent terminology of dust size Adhere to the dust size classification proposed in

classification in examining dust impacts on the this review article (see Section 2.2).

Earth system.

Need improvements of existing instruments and Such improvements in instrumentation may

development of new ones to accurately measure include better sampling and transmission

coarse dust particles in the atmosphere efficiency through an improved inlet and
reduced pipework.

Need to obtain extensive airborne and ground- Conduct consistent airborne field campaign

based measurements of dust size distribution to measurements of dust and establish a network of

constrain dust properties in remote-sensing permanent ground stations with state-of-the-art

retrieval algorithms and model simulations. instruments in different dust-dominated regions,
influenced by various dust sources, and where
collocation with ground- and space-based remote-
sensing observations are possible.

Improve limitations of dust observation in multi- | Develop next-generation satellite passive remote-

angle visible, infrared (IR), and UV-absorption sensing instruments for aerosol monitoring with

passive remote-sensing aerosol retrieval multi-angle observations spanning the UV to IR,

techniques. with polarization sensitivity, allowing better
aerosol-type discrimination under a broader range
of observing conditions.

Need accurate global-scale characterization of Develop the next generation of aerosol lidar and

size-resolved dust vertical distribution and ceilometers with polarization-sensitive channels

occurrence with high vertical and temporal so that a very sensitive detection and monitoring

resolution to complement satellite remote sensing | of dust outbreaks can be possible.

of aerosols.

Identify the physical processes acting in the Perform targeted observations of dust size

atmosphere which allow coarse, super-coarse, and = distributions at emission and during transport and

giant dust particles to undergo long-range combine them with different models to

transport. investigate, identify, and quantify the most
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Constrain size-dependent mineralogy of mineral
dust in the soil and the atmosphere

Constrain direct radiative effects in the shortwave
and longwave spectra, accounting for the realistic
range of dust particle sizes in the atmosphere.

Investigate the broader climate responses to
coarse dust, notably rapid adjustments to
absorption and its effects on regional precipitation

Quantify the cloud condensation and ice
nucleating abilities of mineral dust as a function
of particle size

Quantify vertical transport of coarse to giant dust
particles through deep convective clouds and
tropical cyclones.

Compare the chemical, elemental, or
mineralogical composition of natural dust with
uptake efficiency for different dust size classes.

Improve measurements of size-resolved dust
deposition, including the iron and soluble iron
content in deposited coarse and super-coarse dust
particles.

Implement and evaluate coarse dust emissions,
transport, and physical interactions in Earth
System Models

important physical processes influencing size-
resolved dust transport.

Obtain spatiotemporal observations of soil
minerology and improve dust emission theories to
estimate the emitted distribution of coarse and
super coarse minerals and mineral aggregates.
Use in-situ, laboratory, and remote-sensing
measurements to constrain size-resolved dust
optical properties in shortwave and longwave
spectrum, and account for realistic dust’s
longwave scattering.

Build on validated Earth System Model
implementations of coarse dust, perform idealized
perturbation simulations to isolate Effective
Radiative Forcing, influences on radiative fluxes
and clouds, and precipitation processes.

Obtain observational constraints on size-segregate
dust aerosols, and model realistic scenarios to
understand the role of dust as cloud condensation
and ice nucleating particles as a function of size.
Measure these particles consistently in in- and
outflow regions using adequate aircraft sensors.

Perform kinetic measurements to screen the
uptake of atmospheric relevant probe gas
molecules (organics, or inorganic species) with an
exhaustive list of natural samples originating from
different arid regions and with variable chemical
compositions.

Establish a network of stations along major dust
transport pathways to measure dust deposition and
include studies of size-speciated iron and soluble
iron in regions likely impacted by super-coarse
mode, especially in the Southern Ocean.

Build on implementations in dedicated aerosol
models, evaluate as part of multi-model
intercomparison projects such as AeroCom, and
include coarse dust physics goals in research
projects, such as CMIP (Coupled Model
Intercomparison Project)
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