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ABSTRACT

COVID-19 is a respiratory disease caused by a recently discovered, novel

coronavirus, SARS-COV-2. The disease has led to over 81 million confirmed cases of

COVID-19, with close to two million deaths. In the current social climate, the risk of

COVID-19 infection is driven by individual and public perception of risk and

sentiments. A number of factors influences public perception, including an

individual’s belief system, prior knowledge about a disease and information about a

disease. In this article, we develop a model for COVID-19 using a system of ordinary

differential equations following the natural history of the infection. The model

uniquely incorporates social behavioral aspects such as quarantine and quarantine

violation. The model is further driven by people’s sentiments (positive and negative)

which accounts for the influence of disinformation. People’s sentiments were

obtained by parsing through and analyzing COVID-19 related tweets from Twitter, a

social media platform across six countries. Our results show that our model

incorporating public sentiments is able to capture the trend in the trajectory of the

epidemic curve of the reported cases. Furthermore, our results show that positive

public sentiments reduce disease burden in the community. Our results also show

that quarantine violation and early discharge of the infected population amplifies the

disease burden on the community. Hence, it is important to account for public

sentiment and individual social behavior in epidemic models developed to study

diseases like COVID-19.
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INTRODUCTION
COVID-19 is caused by a coronavirus called the severe acute respiratory syndrome

coronavirus-2 (SARS-CoV-2). Coronaviruses are a large family of viruses that are common

in humans and many different species of animals, including camels, cattle, cats, and bats

(Centers for Disease Control and Prevention, 2020a; WHO, 2020d). This virus was

discovered in Wuhan China, in 2019, and has since been declared a pandemic by the

World Health Organization (WHO). As of December 31, 2020, there were over 81 million
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confirmed cases of COVID-19, with close to two million deaths globally (Dong, Du &

Gardner, 2020; WHO, 2020e). According to COVID-19 data obtained from the Johns

Hopkins University Center for Systems Science and Engineering COVID-19 Dashboard

(Dong, Du & Gardner, 2020), the United States had the highest cumulative number of cases

with nearly 20 million confirmed cases and over 340,000 reported deaths. Brazil has the

next highest deaths with with over 190,000 deaths and over seven million cases. Cases are

also rising across Africa; South Africa has the highest number of confirmed cases: over one

million cases with over 28,000 deaths. These statistics clearly show that humans were not

efficient in curtailing the spread of the novel virus.

The virus can be transmitted from person-to-person via direct contact with respiratory

droplets or by touching contaminated surfaces and objects containing the virus; the virus

can live on contaminated surfaces and objects (Centers for Disease Prevention and Control,

2020f; Petersen et al., 2020; Yung et al., 2020). The incubation period for those exposed to

COVID-19 varies from 2 to 14 days after exposure to the virus (Centers for Disease Control

and Prevention, 2020a, 2020c, 2020e). However, onset of symptoms is often seen earlier in

people with pre-existing health conditions and compromised immune systems. Reports

indicate that patients with mild symptoms take a week or more to recover, while cases that

are severe may gradually progress to respiratory failure, which may lead to death. More

serious complications from COVID-19 illness leading to death are more common in

middle-aged and elderly patients who have severe underlying medical conditions like heart

or lung disease, diabetes, or cirrhosis (Adeniyi et al., 2020). There is a wide range of

symptoms observed in patients with COVID-19, including fever, shortness of breath, dry

cough, headaches, nausea, sore throat, chest pain, loss of taste or smell, diarrhea, and

severe fatigue (Centers for Disease Prevention and Control, 2020e).

Recently, therapeutics such as Remdesivir have been approved for treatment of

hospitalized individuals; vaccines are being approved but are not yet wildly available and

only essential workers and the elderly are currently being vaccinated (US Food and Drug

Administration, 2020a, 2020b, 2020c, 2020d). As such, non-pharmaceutical interventions

such as social distancing, school and event closings, travel bans, community lockdowns,

contact tracing, quarantine of confirmed cases, and the use of face masks in public are

continually being used as mitigation efforts against the virus transmission. Social

distancing guidelines as suggested by the Centers for Disease Control and Prevention

(CDC) (Centers for Disease Prevention and Control, 2020d) and the World Health

Organization (WHO, 2020f) state that individuals outside their homes should be six feet

apart from other people and must wear a face-mask at all times. The use of face masks in

public by members of the general population has historically been a common practice to

combat the spread of respiratory diseases, dating back to at least the 1918 H1N1 pandemic

of influenza (Bootsma & Ferguson, 2007). The guidelines further recommend that people

frequently wash their hands for at least 20 s, even in their homes, as research has shown

that soap kills the virus and reduces one’s chance of getting infected (Centers for Disease

Prevention and Control, 2020d). Infected individuals and suspected cases are quarantined

or advised to self-isolate. However, little is known about best management strategies for

limiting further transmission and spread. Furthermore, the success of these preventive
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measures depends on voluntary compliance by the population (Agusto et al., 2022), and

may depend in part to perceptions and interpretations of risk.

The response of individuals in the community to the threat of an infectious disease is

dependent on their perception of risk, which can be swayed by public and private

information disseminated through diverse media. Many individuals use social media

platforms like Twitter, Facebook, and the internet more generally to share social and health

information, and many have used these platforms to also spread misinformation and

conspiracy theories. Many health-related organizations also use these platforms to send

information to mitigate the spread of contagious diseases (like the flu) by educating users

on the effectiveness of regular hand-washing, use of face masks, social distancing, and

raising awareness about vaccines (Philipose, 2020). For instance, in the past decade, the

Centers for Disease Control made use of Twitter in disseminating information on the

prevention of flu to help curb the spread of H1N1 influenza in 2009 (Philipose, 2020).

Media reporting is important in the perception, management and even creation of crises

(Marino et al., 2009; Tchuenche et al., 2011). Information provided to the public through

the media changes human behavior and the population adopts the precautionary measures

like the use of face masks for influenza (Jenco, 2020), vaccination (Aminiel, Kajunguri &

Mpolya, 2015; Buonomo, d’Onofrio & Lacitignola, 2008), and voluntary quarantine

(Hethcote, Ma & Shengbing, 2002). Thus, the role of media coverage and social media

responses on disease outbreaks is crucial and should be given prominence in the study of

disease dynamics.

Numerous mathematical models have been used to gain insight into the effect of media

and behavioural change on COVID-19 transmission dynamics. A SEIQR-type

compartmental model was developed in (Feng et al., 2020) to assess the impact of media

coverage and quarantine on the COVID-19 infections in the UK. The study showed that

stringent containment strategies should be adopted in the UK in order to effectively curtail

the spread of the disease. Aleta et al. (2020) used a stochastic model to understand the

impact of testing, contact tracing and household quarantine on second waves of

COVID-19 in the Boston metropolitan area. Their result showed that a response system

based on enhanced testing and contact tracing can have a major role in relaxing

social-distancing interventions in the absence of herd immunity against COVID-19.

Eikenberry et al. (2020) developed a compartmental model to assess the community-wide

impact of mask use by the general asymptomatic public. The study showed that broad

adoption of even relatively ineffective face masks could reduce community transmission of

COVID-19 and decrease peak hospitalizations and deaths. A mathematical model was

developed in Iboi et al. (2021) to assess the impact of a public health education program on

the coronavirus outbreak in the United States. Their result suggests the need to obey public

health measures as loss of willingness would increase the cumulative and daily mortality in

the United States.

Our objective in this study is to gain insight into the contribution of human behavior

and public sentiment to the disease spread and not to make explicit epidemiological

predictions and forecasting about the disease outbreak. Here, we use tweets as a source of

public sentiment data and analyze their average parity (i.e., negativeness and positiveness)
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across six countries experiencing variations in disease response and spread (Australia,

Brazil, Italy, South Africa, United Kingdom, and United States) during January to May,

2020 time period. Tweets are short messages limited to 240 characters that are posted in

real time by users of the Twitter social media platform.

The remainder of the work in this article is organized as follows. In Section 2, we

formulate our baseline COVID-19 model with human behavior, compute the basic

reproduction number of the model, fit COVID-19 data to the model, and estimate

parameters of the model. In Section 3, we carry out sensitivity analysis of the basic

reproduction number with respect to each parameter, and sentiment analysis is carried out

in Section 4. In Section 5, we incorporate sentiment effects in our basic model, and present

results in Section 6. Our discussion and conclusions are presented in Section 7.

BASELINE COVID-19 MODEL
To formulate the COVID-19 model with human behavior where some individuals violate

quarantine rules, we followed the natural history of the infection (Picheta, 2020;Wilson &

Kluger, 2020) and segment the population according to their disease status as susceptible

(SðtÞ), exposed (EðtÞ), asymptomatic (AðtÞ), symptomatic (IðtÞ), quarantined (QðtÞ),

hospitalized (HðtÞ), and removed (RðtÞ). The equations of the mathematical model are

given in Eq. (1). A flow diagram depicting the transition from one state to the other as the

disease progresses through the population is shown in Fig. 1, and the associated state

variables and parameters are described in Table 1.

The population of susceptible (SðtÞ) is decreased by infection at the rate
b½IðtÞþgAAðtÞþgQQðtÞþgHHðtÞ�SðtÞ

NðtÞ , where b is the infection rate; we assume that gA; gQ; gH , 1,

meaning that the asymptomatic, quarantined, and hospitalized are not as infectious as the

symptomatic individuals. Once infected, the susceptible move into the exposed class (EðtÞ)

and a portion of the exposed population develops clinical symptoms of the disease at the

rate ð1� qÞr and move into the infectious class (IðtÞ), while the remaining proportion

shows no symptoms and moves into the asymptomatic class (AðtÞ) at the rate qr.

The symptomatic individuals either are quarantined at the rate xQ or are hospitalized at

Figure 1 Flow diagram of the COVID-19 model (1), where � ¼
b½IðtÞþgAAðtÞþgQQðtÞþgHHðtÞ�SðtÞ

NðtÞ .

Full-size DOI: 10.7717/peerj.14736/fig-1
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the ratexH . There have been several reports of people flouting mandatory quarantine rules

(Choi, 2020; Crane, 2020; Frias, 2020; Neuman, 2020), so we assume that individuals in

quarantine violate the quarantine rules/laws at the rate mQ. The alarming rate at which the

disease spreads and people require hospitalization, hospitals may become overwhelmed

and could run out of beds, respirators, ventilators, and ICUs (Starleaf Riker & Chasnoff,

2020). Furthermore, some hospitals are reserving beds for critically ill COVID-19 patients

and discharging to nursing homes those with less severe illness (Baker & Fink, 2020;

Graham, 2020). Thus, we assume that, due to limitations in hospital beds, respirators,

ventilators, and ICUs, some hospitalized leave the hospitals at the rate mH . We also assume

that once an individual is infected they remain immune to the virus. The removed class

(RðtÞ) tracks either the recovered at the rates cI ; cA; cQ; cH or those that have died due to

COVID-19 at the rates dI ; dA; dQ; dH , from the symptomatic, asymptomatic, quarantined,

and hospitalized classes, respectively. The equations of the mathematical model are given

in Eq. (1).

Table 1 Description of the variables and parameters of the COVID-19 model (1).

Variable Description

SðtÞ Number of susceptible individuals

EðtÞ Number of exposed individuals

AðtÞ Number of asymptomatic infectious individuals

IðtÞ Number of symptomatic infectious individuals

QðtÞ Number of quarantined individuals

HðtÞ Number of hospitalized individuals

RðtÞ Number of removed individuals

Parameter Description

b Infection rate

gA Infection modification parameter for the asymptomatic infection rate

gQ Infection modification parameter for the quarantined infection rate

q Proportion of exposed developing asymtomatic infections

r Disease progression rate from the exposed to either asymptomatic or infectious

cI Recovery rate of infectious

cA Recovery rate of asymptomatic

cQ Recovery rate of quarantined

cH Recovery rate of those hospitalized

xQ Quarantine rate

xH Hospitalization rate

mQ Quarantine violation rate

mH Hospital discharge rate

dQ Death rate of quarantined

dH Death rate of hospitalized

dI Death rate of infectious

dA Death rate of asymptomatic
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dS

dt
¼ �

b½IðtÞ þ gAAðtÞ þ gQQðtÞ þ gHHðtÞ�SðtÞ

NðtÞ

dE

dt
¼

b½IðtÞ þ gAAðtÞ þ gQQðtÞ þ gHHðtÞ�SðtÞ

NðtÞ
� rEðtÞ

dA

dt
¼ qrEðtÞ � cAAðtÞ � dAAðtÞ

dI

dt
¼ ð1� qÞrEðtÞ þ mQQðtÞ þ mHHðtÞ � xQIðtÞ � xHIðtÞ � cIIðtÞ � dIIðtÞ

dQ

dt
¼ xQIðtÞ � cQQðtÞ � mQQðtÞ � dQQðtÞ

dH

dt
¼ xHIðtÞ � cHHðtÞ � mHHðtÞ � dHHðtÞ

dR

dt
¼ ðcI þ dIÞIðtÞ þ ðcA þ dAÞAðtÞ þ ðcQ þ dQÞQðtÞ þ ðcH þ dHÞHðtÞ

(1)

where NðtÞ ¼ SðtÞ þ EðtÞ þ IðtÞ þ AðtÞ þ QðtÞ þ HðtÞ þ RðtÞ.

The associated reproduction number (Diekmann, Heesterbeek & Metz, 1990; van den

Driessche & Watmough, 2002) of the COVID-19 model (1), denoted by R0, is given by

R0 ¼ R0I þR0A;

¼
ð1� qÞbðk3k4 þ gQxQk4 þ gHxHk3Þ

ðk1k3k4 � xQmQk4 � xHmHk3Þ
þ
qbgA
k2

: (2)

where, k1 ¼ cI þ xQ þ xH þ dI ; k2 ¼ cA þ dA; k3 ¼ mQ þ cQ þ dQ; k4 ¼ mH þ cH þ dH:

The expression R0I represents the contribution of the symptomatic infectious

individuals to the reproduction, and the expression R0A represents the contribution to

reproduction number due to the asymptomatic individual. The reproduction number,R0,

is the average number of secondary infectious produced when a single infected individual

is introduced into a completely susceptible population (Diekmann, Heesterbeek & Metz,

1990; van den Driessche & Watmough, 2002). Hence, COVID-19 can be effectively

controlled in the population if the reproduction number can be reduced to (and

maintained at) a value less than unity (i.e., R0 , 1).

Data fitting and parameter estimation

Some of the parameters of the model (1) were obtained from literature, while others were

obtained by fitting the model to the observed cumulative case data for each of the six

countries (Australia, Brazil, Italy, South Africa, United Kingdom, and United States)

during January–June, 2020 (see Tables A1 and A2 for initial conditions and estimated

parameters). The cumulative case data from the respective first index case of each of the

countries to June 19, 2020 were obtained from the John Hopkins’ center for systems

science and engineering COVID-19 Dashboard (Dong, Du & Gardner, 2020). During this

time period, these countries instituted lockdowns in March 2020 as a means to control and

contain the disease. Italy instituted a lockdown onMarch 9, Brazil March 17, USMarch 19,

Australia March 23, UK March 23, and South Africa March 26 (WHO, 2020a). Thus, the

model was fitted to the two different time periods, the first period is the time before each of
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the countries instituted lockdown measures to curtail the virus and the second period is

after lockdown was in place. We obtained two different sets of parameters for some

parameters in each of the time periods; others remained the same, for instance the death

rate, the disease progression rate, the proportion of asymptomatic did not change over this

time period.

We estimate the remaining five parameters, b;xQ;xH ; mQ and mH , of the model using

the MultiStart algorithm with the fmincon function in MATLAB’s optimization toolbox

(Burton et al., 2021; Che, Kang & Yakubu, 2020; Che et al., 2021; Edholm et al., 2019;

Edholm et al., 2022; Loria, 2018). The fitting was implemented by formulating a

least-squares optimization problem with the aim of minimizing the difference between the

cumulative cases in each of the six countries and our model’s output. The objective

function minimized is given as

J ¼
kYC � YC�k2

kYC�k2
; (3)

where the vector YC contains the cumulative number of infections obtained from the

model and the vector YC� contains the corresponding values from the data.

Our parameter estimation simulations begin on dates cases were reported in each of the

six countries and take daily time steps until the date our data ends, which is June 19, 2020.

The values of the initial conditions used for the fitting are given in Table A1. Given a

starting point for our objective function J, the fmincon algorithm outputs a local minimum

on the surface of J. To help find the global minimum, MultiStart allows us to exhaustively

test different starting values throughout our bounded range. We used different starting

points, each of which converged to a unique local minimum on the surface of J.

Considering the United Kingdom, the smallest objective function value obtained before

and after the lockdown are J0 ¼ 0:17 and J1 ¼ 0:02, respectively.

Figure 2A shows the fitting of the observed cumulative cases for the United Kingdom

before lockdown was put in place. The estimated values of the fitted parameters are

tabulated in Table 2. The fitting for after lockdown for UK is depicted in Fig. 2B and the

estimated parameter values used as well as parameters for the other countries are given in

Table A2.

The numerical value of the reproduction number R0 for United Kingdom before the

country’s lockdown was put in place is estimated using the parameter values tabulated in

Table 2. Consequently, using these parameter estimates, we obtain the value of R0 for the

COVID-19 outbreak in United Kingdom before lockdown as R0 � 2:95. After lockdown,

this value declined to �0.68, with a difference of �2.30.

SENSITIVITY ANALYSIS
In order to assess the relationship between our model parameters, we use the Latin

hypercube sampling (LHS) technique, which is a scheme for simulating random parameter

sets that adequately cover the parameter space (Blower & Dowlatabadi, 1994; McGreal,

2020; Wang et al., 2013). Uncertainty in model parameters can be identified through the

Latin hypercube sampling technique, coupled with partial Rank correlation coefficients
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(PRCCs). We assume that each uncertain parameter is uniformly distributed within a

specified range, which is within �30% of the respective baseline parameter values, and

performed a Latin hypercube sampling analysis by generating 1,000 random samples from

the chosen parameter distributions. PRCCs were then calculated for each of the following

parameters, cA; cI ; cQ; cH; dA; dI ; dQ; dH ;r; q;b; gA; gQ; gH ;xQ;xH; mQ; mH , and the

Figure 2 Time series plots showing the fitted model to COVID-19 related infectious cases for United

Kingdom. (A) Fitting before lockdown; (B) fitting after lockdown.

Full-size DOI: 10.7717/peerj.14736/fig-2

Table 2 Parameters values of the COVID-19 model (1) fitted to United Kingdom cumulative number of cases before lock down. The data are

obtained from Johns Hopkins website (Dong, Du & Gardner, 2020).

Parameter Description Value References

b Infection rate 0.7566 Fitted

gA Asymptomatic infection rate modification parameter 0.4352 Assumed

gQ Quarantined infection rate modification parameter 0.135 Assumed

gH Hospitalized infection rate modification parameter 0.3725 Fitted

q Proportion developing asymptomatic infections 0.6 Centers for Disease Prevention and Control (2020b)

r Disease progression rate 0.60 Centers for Disease Prevention and Control (2020b)

cI Recovery rates of symptomatic 0.10 Agusto et al. (2022)

cA Recovery rates of asymptomatic 0.13978 Agusto et al. (2022)

cQ Recovery rates of quarantined 0.1 Agusto et al. (2022)

cH Recovery rates of hospitalized 0.0526 Centers for Disease Prevention and Control (2020b)

xQ Quarantine rate 0.5679 Fitted

xH Hospitalization rate 0.5180 Fitted

mQ Quarantine violation rate 0.4638 Fitted

mH Hospital discharge rate 0.1282 Fitted

dI Death rate of symptomatic 0.0009 UK Health Security Agency (2022)

dA Death rate of asymptomatic 0.00054 UK Health Security Agency (2022)

dQ Death rate of quarantined 0.0009 UK Health Security Agency (2022)

dH Death rate of hospitalized 0.0018 UK Health Security Agency (2022)
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outcome variable (the basic reproduction number, R0). The sign of the PRCCs indicates

whether or not changes in the input parameter has a positive or negative effect on the

corresponding output variable (Wang, Liu & Heffernan, 2018; Wang, Liu & Liu, 2016).

The most influential parameters of the model are those that have PRCC values that satisfy

jPRCCj. 0:4, where a negative sign indicates an inverse relationship. The correlation

between the output variable and the input parameters is moderate if 0:2, jPRCCj, 0:4,

and is weak otherwise (Cariboni et al., 2007).

Figure 3 indicate that the parameters b; gA; q; cI ; and cA have the greatest impact

on the outcome function (the reproduction number). On one hand, the parameters

r; gQ; cQ; dA; dQ; dI ;xQ and mQ have a moderate impact on the reproduction number (the

outcome function). The dominant parameters in increasing the outcome function (R0) are

the transmission (b), and the infection modification parameter for the asymptomatic

infectious (gA). On the other hand, the dominant parameters in decreasing R0 are the

proportion of exposed individuals developing infections (q), recovery rate of infectious

(cI), mortality rate of infectious (dI), the isolation rate of hospitalized and quarantined

individuals (xH and xQ, respectively).

SENTIMENT ANALYSIS
In order to carry our the sentiment analysis, tweets from Twitter were downloaded from

January 2, 2020 to May 29, 2020 for six countries, namely Australia, Brazil, Italy, South-

Africa, United Kingdom, and United States of America, representing different

geographical contexts. These countries and their population composition and political

views are diverse, as are their sentiments about the virus. Different factors drive their

PRCCs

A I Q H A I Q H
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A Q H Q H Q H

Parameters
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Figure 3 Sensitivity analysis indicating PRCC results illustrating the dependence of R0 on the

parameters of the model. Full-size DOI: 10.7717/peerj.14736/fig-3
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sentiments about the pandemic. For instance, in the United States, a common sentiment is

that the virus is a hoax directed at the ruling party (Oliver, 2020; Waldrop & Gallman,

2020). Media reports about the outbreak are another factor driving the public sentiment

but is being construed as fake news by some people. In Brazil, the president accused the

press of spreading panic and paranoia (BBC News Services, 2020), and called the virus “a

small flu” and urged the people to go to the streets and “face the disease like men” (BBC

News Services, 2020; Gray & Shapiro, 2020; Traumann, 2020). Furthermore, the overall

sentiment in Brazil is anti-science in nature where the president had once promoted the

use of the antimalarial drug, hydroxycholoroquine, as coronavirus treatment drug despite

lack of evidence that it was effective against the virus while rejecting social-distancing

measures (Fraser, 2020; Gray & Shapiro, 2020).

In our work, we used the following procedure to generate sentiment scores for each

country using COVID-19 tweets. Each tweet contains information including a unique

tweet identification number (i.e., tweetID) and text up to 240 characters as well as

meta-information about the tweet such as user details, geographic origin, user-defined

hashtags to categorize the tweet topic, language, and time of creation. In order to maintain

consistency of extracting COVID-19 specific content with similar COVID-19 studies using

twitter data, the tweetIDs were extracted from a public repository (Chen, Lerman &

Ferrara, 2020). These tweetIDs contain validated tweets that include 76 hashtags related to

COVID-19 including #COVID-19, #coronavirus, #Corona, #sars-cov-2, #Covid19,

#SocialDistancing, #quarantinelife, #covididiot, etc. Figure 4 shows sample tweets

downloaded over this time period. As evidenced, negative sentiment may be specific to the

disease, expected behaviors, or the behaviors of other people. In part, this may reflect a

form of polarization on disease responses.

The process of extracting tweets corresponding to the tweetIDs from the Twitter server

is known as hydration, and was carried out by a verified Twitter developer with a valid

application programming interface (API). The Twarc hydrator package in python was

used to retrieve the tweets with a sleep time of one second between tweets to avoid the

Figure 4 Sample positive and negative tweets downloaded (A) sample positive tweet; (B) sample

negative tweet. Full-size DOI: 10.7717/peerj.14736/fig-4
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100,000 tweets/day extraction limit set by Twitter. A total of 125.2 million tweets were

collected during January 22 to May 29, 2020 time period and stored in a google cloud

platform (GCP) server with 8 GB RAM and 2 TB storage. However, less than 1% (983,481

tweets) of the total tweets downloaded was used, as most tweets do not have country

indicator because very often users do not associate their account to a country and therefore

remain anonymous in the geographic identities, see Table 3 for the country-by-country

break down of downloaded tweets.

Post data collection, all tweets were translated to English using the googletrans package.

Regular expressions were used for performing data cleaning operations on the tweet texts

including removal of special symbols and filtering out URLs. Sentiment scores for all

tweets were computed using the textblob package (Ma, 2005). The textblob python package

used to compute the sentiment score for tweets in our study adopts a rule-based approach

for sentiment quantification based on key indicator words present in them. A tweet is

represented as a bag of words. The positive and negative sentiments of a sentences are

based on the weighted average of annotated sentiments to each word in a large corpus.

The sentiment/polarity score varies from �1 to þ1, and if it it is ,0, we classify the tweet

as a negative sentiment tweet, and .0 as a positive sentiment tweet. The tweet scores are

then averaged for a country per day. Finally, for each of the above listed countries, the

average positive sentiment per day was reported. Figure 5 shows the positive and negative

sentiments for the respective countries.

To quantify the overall sentiment in each of the countries, we fitted straight lines (yp and

yn for positive and negative sentiments) through these sentiments; and we took the

difference of the lines yp and yn to determine if the overall sentiment from a country is

positive or negative during the time period the tweets were collected. We see in Fig. 6 that

Australia and the United Kingdom are the two most positive countries, their positive

sentiment levels were really high. This is followed by Italy and South Africa which had

moderately positive sentiment. Brazil and the United States of America have more negative

sentiments overall, since they have the least positive sentiment. The European countries,

although they were the first to experience a massive wave of the infection, remained

relatively positive.

Table 3 Number of downloaded tweets from Twitter server by country from January 22 to May 29,

2020.

Country Tweet count

Australia 18,104

Brazil 27,684

Italy 55,816

South Africa 16,778

UK 99,080

US 661,567

Total 983,481
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COVID-19 MODEL WITH SENTIMENT EFFECTS
In this section, we incorporated the public sentiments (positive and negative) into the

COVID-19 model (1) using the fitted straight lines (yp and yn for positive and negative

sentiments). First, we used the results obtained from the sensitivity analysis in “Sensitivity

analysis” to determine the form of the sentiment driven functions.

Each of these six countries instituted lockdown measures as a way to control the spread

of the virus. We expect that as public awareness increases due to increased media coverage

of the infection and the lockdown mitigation efforts that public perception and sentiments

will be positive, therefore leading to a decrease in disease transmission. We therefore

expect the infection rate b to be a decreasing function of public sentiment. However, we see

from the sensitivity analysis that the infection rate b would increase the reproduction

Figure 5 Positive and negative sentiment of the COVID-19 tweets. Two straight lines yp ¼ apt þ bp, and yn ¼ ant þ bn are fitted through the

positive and negative tweets. The straight lines for each country are given as (A) the lines yp ¼ 0:0012461� t þ 0:32225, and

yn ¼ �0:00016767� t þ 0:21212 for Australia; (B) the lines yp ¼ 0:00032631� t þ 0:18091, and yn ¼ 0:00022551� t þ 0:11779 for Brazil;

(C) the lines yp ¼ 0:00054929� t þ 0:24898, and yn ¼ �0:00030907� t þ 0:16079 for Italy; (D) the lines yp ¼ 0:0005727� t

þ 0:26629; yn ¼ �0:00026964� t þ 0:18524 for South-Africa; (E) the lines yp ¼ 0:0012266� t þ 0:34568, and yn ¼ �0:0002375� t þ 0:22246
for United Kingdom (F) the lines yp ¼ 0:00029309� t þ 0:10708; yn ¼ 5:5321e� 06� t þ 0:067976 for United States.

Full-size DOI: 10.7717/peerj.14736/fig-5
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numberR0. Hence, we define a decreasing sentiment function for this parameter. We also

define a decreasing sentiment-related function for mQ and mH since these parameters

increaseR0. However, the parametersxQ and xH are defined as increasing function of the

perception-related functions. We have chosen these parameters because these parameters

can be influenced by people’s behavior, perceptions, and sentiments, unlike the recovery

rates, cA; cI ; cQ; cH , death rates, dA; dI ; dQ; dH , disease progression rate, and the proportion

asymptomatic, q. We discuss below how these functions are obtained for each of these

parameters.

These countries instituted lockdown measures in March 2020 as a means to contain the

virus. For instance Italy, Brazil, US, Australia, UK, and South Africa instituted lockdowns

on March 9, March 17, March 19, March 23, March 23, and March 26, respectively.

Therefore, we define functions that incorporate the values of these parameters before and

after lockdown. Starting with the infection rate b, we define the sentiment-related function

bM as

bM ¼ b1 þ ðb0 � b1Þe
�mCIðtÞ; (4)

where b0, b1 are the before and after lockdown infection rates. The variable CI is the

cumulative number of symptomatic infectious individuals in the community; these are

determined from the following equation.

CIðtÞ ¼ ð1� qÞr

Z t

0

EðsÞds:

Note that CI is not an epidemiological variable. Furthermore,m induces the effect of public

sentiment on reported cumulative number of infected cases in the community. Ifm ¼ 0 or

relatively small, the infection rates and b are equal or close to the constant b0. On the other

Figure 6 Simulation of the difference between the straight line approximating positive and negative

sentiments. Full-size DOI: 10.7717/peerj.14736/fig-6
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hand, if m. 0, there is increase awareness about the disease in the community and the

infection rate could decrease to b1ð,b0Þ as the number of accumulated infected cases

increases as shown in Fig. 7.

Thus the public sentiment-related functions for quarantine (x1M), hospitalization

(x2M), quarantine violation (m1M), and early hospital discharge rate (m2M) are represented

by the following functions:

mQM ¼ mQ1 þ ðmQ0 � mQ1Þe
�mCIðtÞ

mHM ¼ mH1 þ ðmH0 � mH1Þe
�mCIðtÞ

xQM ¼ xQ1 þ ðxQ0 � xQ1Þe
�mCIðtÞ

xHM ¼ xH1 þ ðxH0 � xH1Þe
�mCIðtÞ:

(5)

Note that mQM; mHM;xQM;xHM . 0 for CI . 0. We assume that mQ1, mQ0; mH1, mH0,

and xQ1.xQ0;xH1.xH0. Furthermore, for arbitrarily small number of symptomatic

infectious individuals CI , the sentiment-related transition function mQM converges to

mQ0. 0 for small values of CI the maximum quarantine violation rate out of the quarantine

class before the community lockdown. Also, as the cumulative number of infectious

individuals CI grows, the quarantine violation function mQM converges to mQ1, that is,

lim
CI!1

mQM ¼ mQ1. 0;

the minimum quarantine violation rate out of the quarantine class as public perceptions

and sentiments effects of the infection manifest in the community.

Similarly, the sentiment-related early hospital discharge rate, mHM , from the hospitalized

class, converges to mH0 . 0, the maximum early discharge rate for small cumulative

number of infectious individuals CI before the onset of public perceptions and sentiments

about the disease, and

lim
CI!1

mHM ¼ mH1 . 0;

Figure 7 Simulation of the functions showing media effect for the infection rate bM , with media

effect. Full-size DOI: 10.7717/peerj.14736/fig-7
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the minimum early discharge rate for large cumulative number of infectious individuals CI

as public perceptions and sentiments effects manifest. The dynamic behavior of functions

mQM and mHM are shown in Figs. 8A and 8B.

Consequently, for an arbitrarily small cumulative number of infectious individuals CI ,

the public sentiment-related quarantine and hospitalized functions xQM and xHM

converge to xQ0. 0, and xH0 . 0, the minimum quarantine rates before the onset of

public awareness. Also, as the cumulative number of infectious individuals CI gets larger,

xQM converges to xQ1 and xHM converges to xH1. That is,

lim
CI!1

xQM ¼ xQ1 . 0; and lim
CI!1

xHM ¼ xH1 . 0

the maximum number of individuals that are self-isolated or hospitalized, respectively, as a

result of media coverage. See Figs. 9A and 9B for the dynamic behavior of functions xQM

and xHM .

The sentiment parameter m is expressed as m ¼ 1
e
ðyp þ ynÞ, where yp is positive

sentiments, yn is negative sentiments, and e is a scaling factor that scales the sentiments per

100,000 of the population density. As described above, we fitted two straight lines through

the positive and negative sentiments for each of the countries (see Fig. 5) to obtain the

sentiment variable yp and yn given as

yp ¼ apt þ bp

yn ¼ ant þ bn;
(6)

where ap and an are the slope of the straight lines and bp and bn are the intercept.

Now, incorporating the sentiment-related functions (4), (5), and twitter sentiments (6)

into the COVID-19 model (1), we have the following system of differential equations

Figure 8 Simulation of the quarantine violation, mQM , and early hospital discharge, mHM functions

which incorporate public sentiments. Since mQ and mH increase R0, we used decreasing functions

with sentiment that will reduceR0. (A and B) Quarantine violation and early hospital discharge rate mQM
and mHM , with the effect of public sentiments. Full-size DOI: 10.7717/peerj.14736/fig-8
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dS

dt
¼

�bM½IðtÞ þ gAAðtÞ þ gQQðtÞ þ gHHðtÞ�SðtÞ

NðtÞ

dE

dt
¼

bM½IðtÞ þ gAAðtÞ þ gQQðtÞ þ gHHðtÞ�SðtÞ

NðtÞ
� rEðtÞ

dA

dt
¼ rrEðtÞ � cAAðtÞ

dI

dt
¼ ð1� rÞrEðtÞ þ mQMðtÞQðtÞ þ mHMðtÞHðtÞ � xQMðtÞIðtÞ � xHMðtÞIðtÞ � dIIðtÞ

dQ

dt
¼ xQMðtÞIðtÞ � cQQðtÞ � mQMðtÞQðtÞ � cQQðtÞ

dH

dt
¼ xHMðtÞIðtÞ � cHHðtÞ � mHMðtÞHðtÞ � cHHðtÞ

dR

dt
¼ ðcI þ dIÞIðtÞ þ ðcA þ dAÞAðtÞ þ ðcQ þ dQÞQðtÞ þ ðcH þ dHÞHðtÞ

yp ¼ apt þ bp

yn ¼ ant þ bn:

(7)

The reproduction number related to model (7) with Twitter sentiment is given as

R0T ¼
ð1� qÞb0ðK3gHxH0

þ K4gQxQ0 þ K3K4Þ

ðK2K3K4 � K3mH0xH0 � K4mQ0xQ0Þ
þ
qb0gA
k1

; (8)

where, K2 ¼ l2 þ xH0
þ xQ0

;K3 ¼ l3 þ mQ0
;K4 ¼ l4 þ mH0

; l1 ¼ cA þ dA; l2 ¼

cI þ dI ; l3 ¼ cQ þ dQ; l4 ¼ cH þ dH :

Figure 9 Simulation of the public sentiment-related quarantine and hospitalization functions. Since

xQ and xH decreases R0, we used increasing functions incorporating sentiments that will reduce R0.

(A and B) Quaratine, xQM , and hospitalization, xHM functions with public sentiments.

Full-size DOI: 10.7717/peerj.14736/fig-9
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The reproduction number, R0T , is the average number of secondary infectious

produced when a single infected individual is introduced into a completely susceptible

population.

Next, we simulated the sentiment-related model (7) using the estimated parameters for

each country and plotted in Fig. 10A the cumulative new cases for each of the countries

and compare the results to the trajectory of the actual cumulative reported cases in

Fig. 10B. We see that the sentiment-related model (7) accurately captures the trajectory of

the actual cumulative reported cases; therefore indicating that incorporating public

sentiment into an epidemic model is able to capture the trend in the trajectory of the

infection in the population. Although the model-simulated cumulative number of cases

saturates much earlier than the actual cumulative number of cases; at this point, we are not

sure why. Nevertheless, we are able to realize our goal of understanding the role of public

sentiment in disease spread since we are not using the sentiment-related model (7) to make

prediction about the number of cases.

RESULTS
We begin by analyzing the COVID-19 transmission model with quarantine and

hospitalization coupled with public sentiment (described in “COVID-19 model with

sentiment effects”). Then we analyze the effect of public sentiment and human behavior on

the spread and prevalence of COVID-19 in the community.

Impact of public sentiments on disease transmission

In this section, we explore the impact of public sentiments (positive or negative) on disease

transmission in the population. Using sentiment-related functions parameterized with

Figure 10 Simulation of the cumulative cases from COVID-19 model (7) with public sentiment and

the cumulative reported cases from January–May 2020. (A) Simulated cumulative cases obtained from

the COVID-19 model (7) with public sentiments; (B) cumulative number of reported cases.

Full-size DOI: 10.7717/peerj.14736/fig-10
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data fromUnited Kingdom, Fig. 11 shows the impact of incorporating public sentiments in

the model against a model without sentiments. We see from Fig. 11A that the number of

symptomatic infectious individuals in the population is lower when we incorporate

positive sentiment into the COVID-19 model. On the other hand, we see a higher number

of symptomatic infectious individuals in the population when public sentiments are not

included in the model. However, in Fig. 11B, we see that the number of hospitalized

individuals in the population is higher with positive sentiment. And a lower number of

hospitalized individuals in the population when public sentiments are not included in the

model. Furthermore, we see in Fig. 11C that negative public sentiments will yield even

more symptomatic infectious individuals in the population, but fewer hospitalized

individuals in the population (see Fig. 11D). The result involving the hospitalized, show a

counter intuitive result, as one would expect to see more hospitalization with cases.

However, with negative sentiment comes mistrust in establishments. Thus, it makes sense

if we are seeing fewer infectious individuals seeking hospitalized treatment. During the

outbreak in 2020 many individuals in the United States relied on chloroquine and

hydroxychloroquine, two drug treatment for malaria as treatment for COVID-19 and

would only go to the hospital when they are critically ill (Joseph et al., 2005; Mahmood,

2020; US Food and Drug Administration, 2020e).

Figure 11 Simulation of the sentiment-related COVID-19 model (7). (A and C) Symptomatic

infectious individuals without/with sentiments; (B and D) hospitalized sub-population with sentiments

(positive and negative) against no sentiments. Full-size DOI: 10.7717/peerj.14736/fig-11
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Thus, the results shown in Fig. 11 suggests that it is important to incorporate public

sentiments into epidemic models. Having a clear understanding of the public perception of

the risk of the infection and their sentiments regarding a disease outbreak and its

transmission is vital for control and mitigation efforts.

Impact of human behavior on quarantine and hospitalization

Next, we explore the impact of quarantine and hospitalization on the number of

hospitalized individuals in the population while using the sentiment-related functions

parameterized with data from United Kingdom. First, we double the quarantine and

hospitalization rates (xQ and xH). We notice in Fig. 12A that the epidemic curve for the

hospitalized individuals increases and the peak of the curve shifts from left to right (as do

the time the infection peaks); similarly, the symptomatic infectious individuals shrink

(“flatten the curve”) while the quarantined population increases and their curves shifts to

the right since the rates have been increased. However, when we double the quarantine

violation and early hospital discharge rates (mQ and mH), we see in Fig. 12B the curve of the

hospitalized individuals shifts from right to left and the number of hospitalized individuals

increases. We see similar shifts in dynamics of the symptomatic infectious and quarantined

individuals; however, there are fewer symptomatic infectious and quarantined individuals

in the respective classes. It is thus vital to ensure public compliance and adherence with

quarantine rules and to promote positive sentiment among the populace, as this will go a

long way in flattening the epidemic curve.

Figure 12 Simulation of the sentiment-related COVID-19 model (7) for the proportions of

symptomatically infected (I), quarantined (Q), and hospitalized (H) individuals. Solid lines corre-

spond to base values of the model parameters from Table 2. (A) Dashed lines correspond to double

quarantine (xQ) and hospitalization (xH) rates (B) dashed lines correspond to double quarantine vio-

lation (mQ) and hospital discharge (mH) rates. Full-size DOI: 10.7717/peerj.14736/fig-12
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DISCUSSIONS AND CONCLUSIONS

Discussions

In this study, we developed a novel compartmental mathematical model to study the

ongoing COVID-19 pandemic. The model uniquely incorporated human behavior and

early discharge from hospital. The model is further coupled with public sentiments about

the disease, thereby capturing the effect of disinformation. In particular, the model

includes violation of quarantine rules and their positive and negative sentiments regarding

the disease. The model also includes discharge of the infected due to overwhelmed hospital

facilities. For instance, at the onset of pandemic in England, seniors in hospitals were

moved back to care homes (Pawelek, Oeldolf-Hirsch & Rong, 2014; Servick, 2020).

Similarly, at the height of the outbreak in Michigan and New York, hospitals were

discharging the non-critically ill either to nursing homes or simply letting them go home

because the hospital facilities were overwhelmed (Boucher, 2020; NBC 25 News, 2020;

Schnirring, 2020), prompting legislation in Michigan to protect the seniors and vulnerable

members of the community and prevent nursing homes from admitting patients with

COVID-19 (Newport, 2020). In other places like Arizona, some nursing homes took in

COVID-19 patients with mild symptoms (Crenshaw, 2020).

Public awareness and information is one of the factors driving public perception of risk

and sentiment about the disease (Harvard Mental Health Lettert, 2020; Ong et al., 2020).

At the onset of the pandemic, many people believed (unfortunately, many still believe) that

the virus was a hoax, along with wide range of other conspiracy theories about the disease

(Andersen, 2020; Cahn, 2020; Galbraith, 2020; Imhoff & Lamberty, 2020; Miller, 2020;

Specia, 2020). Many of these misconceptions and disinformation about the disease were

spread on social media platforms like Twitter, Facebook, etc., which in turn drives public

views, opinions and sentiments about the disease (Alamoodi et al., 2021; Jarynowski,

Wojta-Kempa & Belik, 2020). For instance, Jarynowski, Wojta-Kempa & Belik (2020) using

Twitter was able to capture in Poland the structural division of the Polish political sphere,

identifying the mainstream opposition and protestant groups, and the possible orgin of

disinformation in the country. In Brazil, the prevalence of misinformation surrounding the

pandemic is deeply concerning and many people blame the messaging from the President

Bolsonaro (Gray & Shapiro, 2020).

To measure public sentiments across six countries across different geographical regions,

we downloaded tweets from the Twitter platform from January to May 2020. We then

carried out sentiment analysis that enabled us to separate the public sentiment into either

positive or negative sentiment. While our data set is a multilingual data set across multiple

countries, the filter keywords (i.e., hashtags) are mostly in English. Even though 76

hashtags have been considered to extract tweets, there exists a possibility of excluding

tweets that pertain to COVID-19 but do not contain any of these hashtags. Even though we

have carried out basic data cleaning and processing tasks, we may have overlooked the

small proportion of tweets that contain regional phrases expressing irony that may not all

have been discovered by the sentiment analysis software program that explores the English

translated text. However, a visual inspection of the texts and the sentiment scores for each
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tweet across the different countries showed that the sentiment scores were representative

of the tweet sentiment in most cases, thus ruling out systematic biases in inferences

made in this study. The collection, aggregation, and analysis of more than 100 million

COVID-19 related tweets generated during the time period ensures representation of the

general public sentiment across all sub-populations of each country and not just one region

or demographic segment.

Misinformation, disinformation, and conspiracy theories can be really problematic with

tremendous impact on public health efforts to contain the disease in the community.

However, the use of Twitter tweets to measure public sentiment may be limiting and not

present the full picture of public sentiment since public information campaigns might have

less impact on society than expected due to filter “bubbles” observed on Twitter

(Jarynowski, Wojta-Kempa & Belik, 2020). Hence, it will be beneficial to diversify the

sources of public awareness and information in other to reach many people as possible

(Jarynowski, Wojta-Kempa & Belik, 2020) and possibly reduce the spread of

disinformation.

After obtaining the positive and negative sentiments, we fitted straight lines through the

sentiments in order to determine the magnitude of the sentiments in each of the countries,

see Fig. 6. We see that United States and Brazil had the least positive sentiment. The level of

public sentiments in the United States may be due in part to how polarized the country was

in the last 4 years particularly in the months leading to the 2020 presidential elections.

United Kingdom and Australia had very positive sentiment overall; in the early days of the

pandemic in the UK, the entire country including the royal family applauded the selfless

efforts of the health workers and other frontline workers (BBC News, 2020a), sharing clips

on social media under the #ClapForCarers hashtag (Aljazeera, 2020; Saini, 2020).

On March 11, 2020 the World Health Organization (WHO) declared the novel

coronavirus a global pandemic (WHO, 2020c) and shortly thereafter many countries

imposed travel bans from many hotspots regions, and instituted lock-down measures in a

bid to curtail and contain the spread of the virus. To incorporate public sentiment into our

COVID-19 model (1), we segmented the time period into before and after lockdown.

We used results obtained from the sensitivity analysis (see Fig. 3) to informed the nature of

the different parameters (see Figs. 7–9) that can be influence by public sentiment. These

parameters were then defined as increasing and decreasing functions of pubic sentiment

which were incorporated into COVID-19 model (1). These parameters consist of before

and after lockdown related parameters which we estimated using data are obtained from

Johns Hopkins website (Dong, Du & Gardner, 2020) and some parameter values from

literature (see Table 2).

The reproduction numbers for before and after lockdown (R0
0 and R0

1) for the

respective countries are shown in Table A2. All the countries had reproduction number

above one before lockdowns were put in place, and the values were below one after

lockdown except for South Africa with estimated value ofR0
1 ¼ 1:52. This value aligns

with the estimated value by the South African National Institute for Communicable

Diseases (South African National Institute for Communicable Diseases, 2020).

The reproduction number estimated for South Africa by the National Institute for
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Communicable Diseases at the onset of the outbreak was between 1.7 and 2.5; these

numbers reduced substantially but was still above one following measures such as flight

restrictions into the country, school closures, and national level 5 lockdown in mid-March

2020. Some provinces like Western Cape Province had estimated reproduction number of

1.5–1.7 by mid-late April 2020, while other provinces like Gauteng, KwaZulu Natal, and

Eastern Cape Province had estimated reproduction number of 1.0–1.5 by mid-late April

2020 indicating an ongoing transmission or steady disease progression (South African

National Institute for Communicable Diseases, 2020).

Our results showed that preventing the spread of disinformation and negative sentiment

about the disease in the community is important (see Fig. 11). Thus, it is essential to

prevent disinformation, and to promote positive sentiment in the community. It is equally

vital to ensure public compliance and adherence with quarantine rules and all mitigation

efforts (see Fig. 12). Doing so will go a long way in flattening the epidemic curve, and will

lead to the kind of success story observed in New Zealand (Shepherd, 2020; Wikipedia,

2020).

Our study demonstrated that the countries with positive sentiment, and quarantine

compliance have been more successful at curtailing the spread of the disease. In addition,

we have been able to demonstrate the impact on disease burden of early discharge of

symptomatic infectious individuals from hospital to make room for incoming sever

COVID-19 patients. Overall, our model is able to demonstrate the role of people’s

behavior and public sentiment on disease transmission. Although, the trajectory of model

simulation in Fig. 10A is able to capture the trend of the actual trajectory of the

cumulative number of cases in Fig. 10B, our simulation results saturate much earlier. A

number of factors may be responsible for this, for instance, non ascertainment of all

infected cases. According to CDC (Centers for Disease Prevention and Control, 2020b),

asymptomatic individuals can account for between 15% to 70% of cases which in reality

are not tracked nor documented. Note that our model in Fig. 1 incorporate the

asymptomatic individuals this may be the reason for the difference between the simulated

outcome on the case data.

Since we started this study, the number of cases in these countries has exploded, with

some experiencing multiple waves of infections (WHO, 2020b) put in another lock-down

(France, Germany, Italy, and the United Kingdom (BBC News, 2020b, 2020c; Levy et al.,

2017; Meloni & Hutchinson, 2020; Savage, 2020)). Although we did not evaluate the

sentiment after the lock-down was lifted, we observed a wave of protests against other

mitigation efforts like the use of face-mask and vaccines in many of these countries such as

US, UK, Australia, Italy, and Canada (Drury, 2020; McGee, Reynolds & Cullen, 2020;

Reuters, 2020; Rinke & Kar-Gupta, 2020). We believe these protests are driven by negative

sentiments in the society against the use of face-masks which subsequently increases the

number of infection as we observed in Fig. 11.

CONCLUSION
To conclude, this study develops a novel model for COVID-19 that uniquely incorporates

human behavior driven by their perception of risk and sentiments about the disease.
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The goal of this study was not to make explicit epidemiological predictions about the

disease; rather we hope to provide insight into effects of human behavior on

non-pharmaceutical intervention strategies (such as self-isolation and quarantine) aimed

at containing the disease and public sentiments about the disease. The key findings from

this study are summarized below.

The simulations of the COVID-19 model (7) with human behavior and public

sentiment about the disease show that:

i) Incorporating public sentiment into an epidemic model is able to project the

trajectory of the disease incidence in the community.

ii) Positive sentiments among individuals in the population reduces the number of

infected and disease burden in the community.

iii) Negative sentiments among individuals in the community amplify the disease burden

in the community.

iv) Increasing quarantine, and hospitalization rates decreases the disease burden and

reduces epidemic peak.

v) Increased quarantine violation rate and early discharged of those still infectious due

to overwhelmed hospital resources increases disease burden leading to early epidemic

peak.

This study has shown that incorporating human behavior and public sentiment into

epidemic models is pertinent in order to accurately capture the dynamics and burden of

the disease in the community. We have seen the role quarantine violation plays in disease

spread; in a future study, we will incorporate other kinds of mitigation efforts such as

vaccination and public reactions about them. Aside for incorporating mitigation efforts, in

our future model we will consider the hospital capacity in terms of the number of bed.

At the height of the outbreak a number of hospitals both in urban and rural areas exceeded

their capacity to accommodate infected individuals.

A PARAMETER ESTIMATION FOR THE SELECTED
COUNTRIES
Initial values for our simulations are given in Table A1, it include the population of the

countries N(0) and the exact cumulative value C(0) from the data. The initial values of E0,

A0, I0, H(0), and R(0) to ensure the fit of the trajectory of each country. The initial values

are summarized below:

Table A1 Values of the initial conditions used for the fitting and the objective function J given in (3).

Countries N(0) Eð0Þ Að0Þ Ið0Þ Qð0Þ Hð0Þ Rð0Þ C(0) J0 J1

Australia 25,499,884 0 3 0 0 0 0 3 0.52 0.029

Brazil 212,559,417 100 100 1 0 0 110 1 0.10 0.06

Italy 60,461,826 1 10 2 1 0 0 2 0.13 0.04

S. Africa 59,355,826 1 1 218 1 100 0 927 0.09 0.92

UK 67,988,148 9,860 48,000 967 9,860 9,560 9,760 6,654 0.17 0.02

US 331,002,651 5 10 1 0 0 5 1 0.16 0.05
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The initial susceptible is given as S(0) =N(0) − E(0) − A(0) − I(0) −Q(0) −H(0) − R(0) −

C(0).
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Table A2 Fitted parameters values before and after lock down for Australia, Brazil, Italy, South

Africa, United Kingdom, and United States. The constant parameters used for the model fitting are

q ¼ 0:6, r ¼ 0:6, gQ ¼ 0:135, gA ¼ 0:4352, cA ¼ 0:13978, cI ¼ 1=10, cQ ¼ 1=10, cH ¼ 1=19.
The parameters b0 ¼ 0:5713�; 0:4656�� was used for Brazil, and South Africa in Fig. 10.

Parameters Australia Brazil Italy S. Africa UK US

b0 0.5682 0:4713� 0:7027 0:7360�� 0.7738 0.7430

gH0 0.3725 0.5869 0.5948 0.3660 0.2131 0.4785

mQ0 0.3522 0.4363 0.5831 0.2771 0.4638 0.4700

mH0 0.3101 0.2649 0.3455 0.1781 0.1282 0.2799

xQ0 0.4467 0.4751 0.3548 0.0568 0.5679 0.2520

xH0 0.4980 0.2380 0.5237 0.0618 0.5180 0.1301

dA 0.00039 0.00056 0.00081 0.00056 0.00054 0.00045

dI 0.0006 0.00093 0.00135 0.00093 0.0009 0.00075

dQ 0.00065 0.00093 0.00135 0.00093 0.0009 0.00075

dH 0.0013 0.00185 0.0027 0.00185 0.0018 0.0015

b1 0.1916 0.6534 0.3017 0.4061 0.3490 0.2319

gH1 0.1206; 0.2348 0.2461 0.5475 0.2988 0.8418

mQ1 0.1345 0.2347 0.1258 0.1100 0.2178 0.1305

mH1 0.3011 0.2202 0.3155 0.1576 0.1252 0.1110

xQ1 0.6941 0.4820 0.6792 0.2411 0.5776 0.5350

xH1 0.5242 0.5979 0.5372 0.1098 0.5281 0.1610

R0
0 2.4211 2.1292 3.5972 3.7801 2.946 3.6126

R0
1 0.5930 0.8806 0.6450 1.5173 0.6843 0.8477
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