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ABSTRACT

COVID-19 is a respiratory disease caused by a recently discovered, novel
coronavirus, SARS-COV-2. The disease has led to over 81 million confirmed cases of
COVID-19, with close to two million deaths. In the current social climate, the risk of
COVID-19 infection is driven by individual and public perception of risk and
sentiments. A number of factors influences public perception, including an
individual’s belief system, prior knowledge about a disease and information about a
disease. In this article, we develop a model for COVID-19 using a system of ordinary
differential equations following the natural history of the infection. The model
uniquely incorporates social behavioral aspects such as quarantine and quarantine
violation. The model is further driven by people’s sentiments (positive and negative)
which accounts for the influence of disinformation. People’s sentiments were
obtained by parsing through and analyzing COVID-19 related tweets from Twitter, a
social media platform across six countries. Our results show that our model
incorporating public sentiments is able to capture the trend in the trajectory of the
epidemic curve of the reported cases. Furthermore, our results show that positive
public sentiments reduce disease burden in the community. Our results also show
that quarantine violation and early discharge of the infected population amplifies the
disease burden on the community. Hence, it is important to account for public
sentiment and individual social behavior in epidemic models developed to study
diseases like COVID-19.

Subjects Mathematical Biology, Epidemiology, Infectious Diseases
Keywords COVID-19, Sensitivity analysis, Sentiment analysis, Human behavior, Twitter tweets

INTRODUCTION

COVID-19 is caused by a coronavirus called the severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2). Coronaviruses are a large family of viruses that are common
in humans and many different species of animals, including camels, cattle, cats, and bats
(Centers for Disease Control and Prevention, 2020a; WHO, 2020d). This virus was
discovered in Wuhan China, in 2019, and has since been declared a pandemic by the
World Health Organization (WHO). As of December 31, 2020, there were over 81 million
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confirmed cases of COVID-19, with close to two million deaths globally (Dong, Du ¢
Gardner, 2020; WHO, 2020e). According to COVID-19 data obtained from the Johns
Hopkins University Center for Systems Science and Engineering COVID-19 Dashboard
(Dong, Du ¢ Gardner, 2020), the United States had the highest cumulative number of cases
with nearly 20 million confirmed cases and over 340,000 reported deaths. Brazil has the
next highest deaths with with over 190,000 deaths and over seven million cases. Cases are
also rising across Africa; South Africa has the highest number of confirmed cases: over one
million cases with over 28,000 deaths. These statistics clearly show that humans were not
efficient in curtailing the spread of the novel virus.

The virus can be transmitted from person-to-person via direct contact with respiratory
droplets or by touching contaminated surfaces and objects containing the virus; the virus
can live on contaminated surfaces and objects (Centers for Disease Prevention and Control,
2020f; Petersen et al., 2020; Yung et al., 2020). The incubation period for those exposed to
COVID-19 varies from 2 to 14 days after exposure to the virus (Centers for Disease Control
and Prevention, 2020a, 2020c, 2020e). However, onset of symptoms is often seen earlier in
people with pre-existing health conditions and compromised immune systems. Reports
indicate that patients with mild symptoms take a week or more to recover, while cases that
are severe may gradually progress to respiratory failure, which may lead to death. More
serious complications from COVID-19 illness leading to death are more common in
middle-aged and elderly patients who have severe underlying medical conditions like heart
or lung disease, diabetes, or cirrhosis (Adeniyi et al., 2020). There is a wide range of
symptoms observed in patients with COVID-19, including fever, shortness of breath, dry
cough, headaches, nausea, sore throat, chest pain, loss of taste or smell, diarrhea, and
severe fatigue (Centers for Disease Prevention and Control, 2020e).

Recently, therapeutics such as Remdesivir have been approved for treatment of
hospitalized individuals; vaccines are being approved but are not yet wildly available and
only essential workers and the elderly are currently being vaccinated (US Food and Drug
Administration, 2020a, 2020b, 2020c, 2020d). As such, non-pharmaceutical interventions
such as social distancing, school and event closings, travel bans, community lockdowns,
contact tracing, quarantine of confirmed cases, and the use of face masks in public are
continually being used as mitigation efforts against the virus transmission. Social
distancing guidelines as suggested by the Centers for Disease Control and Prevention
(CDC) (Centers for Disease Prevention and Control, 2020d) and the World Health
Organization (WHO, 2020f) state that individuals outside their homes should be six feet
apart from other people and must wear a face-mask at all times. The use of face masks in
public by members of the general population has historically been a common practice to
combat the spread of respiratory diseases, dating back to at least the 1918 HIN1 pandemic
of influenza (Bootsma ¢ Ferguson, 2007). The guidelines further recommend that people
frequently wash their hands for at least 20 s, even in their homes, as research has shown
that soap kills the virus and reduces one’s chance of getting infected (Centers for Disease
Prevention and Control, 2020d). Infected individuals and suspected cases are quarantined
or advised to self-isolate. However, little is known about best management strategies for
limiting further transmission and spread. Furthermore, the success of these preventive
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measures depends on voluntary compliance by the population (Agusto et al., 2022), and
may depend in part to perceptions and interpretations of risk.

The response of individuals in the community to the threat of an infectious disease is
dependent on their perception of risk, which can be swayed by public and private
information disseminated through diverse media. Many individuals use social media
platforms like Twitter, Facebook, and the internet more generally to share social and health
information, and many have used these platforms to also spread misinformation and
conspiracy theories. Many health-related organizations also use these platforms to send
information to mitigate the spread of contagious diseases (like the flu) by educating users
on the effectiveness of regular hand-washing, use of face masks, social distancing, and
raising awareness about vaccines (Philipose, 2020). For instance, in the past decade, the
Centers for Disease Control made use of Twitter in disseminating information on the
prevention of flu to help curb the spread of HIN1 influenza in 2009 (Philipose, 2020).
Media reporting is important in the perception, management and even creation of crises
(Marino et al., 2009; Tchuenche et al., 2011). Information provided to the public through
the media changes human behavior and the population adopts the precautionary measures
like the use of face masks for influenza (Jernco, 2020), vaccination (Aminiel, Kajunguri ¢
Mpolya, 2015; Buonomo, d’Onofrio ¢ Lacitignola, 2008), and voluntary quarantine
(Hethcote, Ma ¢ Shengbing, 2002). Thus, the role of media coverage and social media
responses on disease outbreaks is crucial and should be given prominence in the study of
disease dynamics.

Numerous mathematical models have been used to gain insight into the effect of media
and behavioural change on COVID-19 transmission dynamics. A SEIQR-type
compartmental model was developed in (Feng et al., 2020) to assess the impact of media
coverage and quarantine on the COVID-19 infections in the UK. The study showed that
stringent containment strategies should be adopted in the UK in order to effectively curtail
the spread of the disease. Aleta et al. (2020) used a stochastic model to understand the
impact of testing, contact tracing and household quarantine on second waves of
COVID-19 in the Boston metropolitan area. Their result showed that a response system
based on enhanced testing and contact tracing can have a major role in relaxing
social-distancing interventions in the absence of herd immunity against COVID-19.
Eikenberry et al. (2020) developed a compartmental model to assess the community-wide
impact of mask use by the general asymptomatic public. The study showed that broad
adoption of even relatively ineffective face masks could reduce community transmission of
COVID-19 and decrease peak hospitalizations and deaths. A mathematical model was
developed in Iboi et al. (2021) to assess the impact of a public health education program on
the coronavirus outbreak in the United States. Their result suggests the need to obey public
health measures as loss of willingness would increase the cumulative and daily mortality in
the United States.

Our objective in this study is to gain insight into the contribution of human behavior
and public sentiment to the disease spread and not to make explicit epidemiological
predictions and forecasting about the disease outbreak. Here, we use tweets as a source of
public sentiment data and analyze their average parity (i.e., negativeness and positiveness)
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Figure 1 Flow diagram of the COVID-19 model (1), where A\ = B [I(tH"AA(tHZ;)(g(tH"“H(t”s(t).

Full-size Kl DOT: 10.7717/peerj.14736/fig-1

across six countries experiencing variations in disease response and spread (Australia,
Brazil, Italy, South Africa, United Kingdom, and United States) during January to May,
2020 time period. Tweets are short messages limited to 240 characters that are posted in
real time by users of the Twitter social media platform.

The remainder of the work in this article is organized as follows. In Section 2, we
formulate our baseline COVID-19 model with human behavior, compute the basic
reproduction number of the model, fit COVID-19 data to the model, and estimate
parameters of the model. In Section 3, we carry out sensitivity analysis of the basic
reproduction number with respect to each parameter, and sentiment analysis is carried out
in Section 4. In Section 5, we incorporate sentiment effects in our basic model, and present
results in Section 6. Our discussion and conclusions are presented in Section 7.

BASELINE COVID-19 MODEL

To formulate the COVID-19 model with human behavior where some individuals violate
quarantine rules, we followed the natural history of the infection (Picheta, 2020; Wilson ¢
Kluger, 2020) and segment the population according to their disease status as susceptible
(S(t)), exposed (E(t)), asymptomatic (A(t)), symptomatic (I(¢)), quarantined (Q(¢)),
hospitalized (H(t)), and removed (R(t)). The equations of the mathematical model are
given in Eq. (1). A flow diagram depicting the transition from one state to the other as the
disease progresses through the population is shown in Fig. 1, and the associated state
variables and parameters are described in Table 1.

The population of susceptible (S(¢)) is decreased by infection at the rate

BUI() 414 A8 +1oQE) +ni H(£)IS()
N()

meaning that the asymptomatic, quarantined, and hospitalized are not as infectious as the

, where f is the infection rate; we assume that 1,714,715 <1,

symptomatic individuals. Once infected, the susceptible move into the exposed class (E(t))
and a portion of the exposed population develops clinical symptoms of the disease at the
rate (1 — g)o and move into the infectious class (I(¢)), while the remaining proportion
shows no symptoms and moves into the asymptomatic class (A(t)) at the rate go.

The symptomatic individuals either are quarantined at the rate w or are hospitalized at
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Table 1 Description of the variables and parameters of the COVID-19 model (1).

Variable Description

S(t) Number of susceptible individuals

E(t) Number of exposed individuals

A(1) Number of asymptomatic infectious individuals

I(t) Number of symptomatic infectious individuals

Q(#) Number of quarantined individuals

H(t) Number of hospitalized individuals

R(1) Number of removed individuals

Parameter Description

p Infection rate

N Infection modification parameter for the asymptomatic infection rate
Mg Infection modification parameter for the quarantined infection rate
q Proportion of exposed developing asymtomatic infections

Disease progression rate from the exposed to either asymptomatic or infectious

V1 Recovery rate of infectious

N Recovery rate of asymptomatic
Yq Recovery rate of quarantined
VH Recovery rate of those hospitalized
wq Quarantine rate

oy Hospitalization rate

vQ Quarantine violation rate

VH Hospital discharge rate

0q Death rate of quarantined

On Death rate of hospitalized

o1 Death rate of infectious

04 Death rate of asymptomatic

the rate wy. There have been several reports of people flouting mandatory quarantine rules
(Choi, 2020; Crane, 2020; Frias, 2020; Neuman, 2020), so we assume that individuals in
quarantine violate the quarantine rules/laws at the rate v,. The alarming rate at which the
disease spreads and people require hospitalization, hospitals may become overwhelmed
and could run out of beds, respirators, ventilators, and ICUs (Starleaf Riker ¢» Chasnoff,
2020). Furthermore, some hospitals are reserving beds for critically ill COVID-19 patients
and discharging to nursing homes those with less severe illness (Baker ¢ Fink, 2020;
Graham, 2020). Thus, we assume that, due to limitations in hospital beds, respirators,
ventilators, and ICUs, some hospitalized leave the hospitals at the rate vy. We also assume
that once an individual is infected they remain immune to the virus. The removed class
(R(t)) tracks either the recovered at the rates y;,7,4,7q, Vg or those that have died due to
COVID-19 at the rates 1,04, 0q, Oy, from the symptomatic, asymptomatic, quarantined,
and hospitalized classes, respectively. The equations of the mathematical model are given
in Eq. (1).
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ds _ BU(E) + naA(t) + noQUE) + npH (#)1S(2)

dr N(t)

dE BII(£) + naA(r) + ngQ(t) + nH(0)]S(1) cE(t)

dr N(t)

”;_ft‘ — qE(t) — 1,4A(t) — 5,4A(1)

% = (1= q)aE(t) +voQ(t) + vuH(t) — wql(t) — wnl(t) — yI(t) — o1I(t) g
C;—? = wql(t) — VQQ(t) —vQQ(t) — 6Q(1)

CZL;I = wyl(t) — yyH(t) — vgH(t) — oy H(t)

% = (1 +DI(t) + (14 + 04)A(t) + (7 + 0)Q(t) + (v + 0m)H(2)

where N(t) = S(t) + E(t) + I(t) + A(t) + Q(¢) + H(t) + R(¢t).
The associated reproduction number (Diekmann, Heesterbeek ¢ Metz, 1990; van den
Driessche & Watmough, 2002) of the COVID-19 model (1), denoted by Ry, is given by

Ro = Ror + Roa,
(k1k3k4 — COQVQk4 — Q)HVHk3) k2 '

where, ky = y; + wq + wn + 01, ks = y4 + 04, ks = vq +7q + 0, ks = Vi + Yy + On.

The expression Ry, represents the contribution of the symptomatic infectious
individuals to the reproduction, and the expression R4 represents the contribution to
reproduction number due to the asymptomatic individual. The reproduction number, Ry,
is the average number of secondary infectious produced when a single infected individual
is introduced into a completely susceptible population (Diekmann, Heesterbeek ¢ Metz,
1990; van den Driessche & Watmough, 2002). Hence, COVID-19 can be effectively
controlled in the population if the reproduction number can be reduced to (and
maintained at) a value less than unity (i.e., Ry <1).

Data fitting and parameter estimation

Some of the parameters of the model (1) were obtained from literature, while others were
obtained by fitting the model to the observed cumulative case data for each of the six
countries (Australia, Brazil, Italy, South Africa, United Kingdom, and United States)
during January-June, 2020 (see Tables A1 and A2 for initial conditions and estimated
parameters). The cumulative case data from the respective first index case of each of the
countries to June 19, 2020 were obtained from the John Hopkins’ center for systems
science and engineering COVID-19 Dashboard (Dong, Du ¢ Gardner, 2020). During this
time period, these countries instituted lockdowns in March 2020 as a means to control and
contain the disease. Italy instituted a lockdown on March 9, Brazil March 17, US March 19,
Australia March 23, UK March 23, and South Africa March 26 (WHO, 2020a). Thus, the
model was fitted to the two different time periods, the first period is the time before each of
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the countries instituted lockdown measures to curtail the virus and the second period is
after lockdown was in place. We obtained two different sets of parameters for some
parameters in each of the time periods; others remained the same, for instance the death
rate, the disease progression rate, the proportion of asymptomatic did not change over this
time period.

We estimate the remaining five parameters, f5, wq, W, Vg and vy, of the model using
the MultiStart algorithm with the fmincon function in MATLAB’s optimization toolbox
(Burton et al., 2021; Che, Kang ¢ Yakubu, 2020; Che et al., 2021; Edholm et al., 2019;
Edholm et al., 2022; Loria, 2018). The fitting was implemented by formulating a
least-squares optimization problem with the aim of minimizing the difference between the
cumulative cases in each of the six countries and our model’s output. The objective
function minimized is given as

[YC - YC,

T="ver, ®

where the vector YC contains the cumulative number of infections obtained from the
model and the vector YC* contains the corresponding values from the data.

Our parameter estimation simulations begin on dates cases were reported in each of the
six countries and take daily time steps until the date our data ends, which is June 19, 2020.
The values of the initial conditions used for the fitting are given in Table Al. Given a
starting point for our objective function J, the fmincon algorithm outputs a local minimum
on the surface of J. To help find the global minimum, MultiStart allows us to exhaustively
test different starting values throughout our bounded range. We used different starting
points, each of which converged to a unique local minimum on the surface of J.
Considering the United Kingdom, the smallest objective function value obtained before
and after the lockdown are J, = 0.17 and J; = 0.02, respectively.

Figure 2A shows the fitting of the observed cumulative cases for the United Kingdom
before lockdown was put in place. The estimated values of the fitted parameters are
tabulated in Table 2. The fitting for after lockdown for UK is depicted in Fig. 2B and the
estimated parameter values used as well as parameters for the other countries are given in
Table A2.

The numerical value of the reproduction number R, for United Kingdom before the
country’s lockdown was put in place is estimated using the parameter values tabulated in
Table 2. Consequently, using these parameter estimates, we obtain the value of R for the
COVID-19 outbreak in United Kingdom before lockdown as R ~ 2.95. After lockdown,
this value declined to ~0.68, with a difference of ~2.30.

SENSITIVITY ANALYSIS

In order to assess the relationship between our model parameters, we use the Latin
hypercube sampling (LHS) technique, which is a scheme for simulating random parameter
sets that adequately cover the parameter space (Blower ¢» Dowlatabadi, 1994; McGreal,
2020; Wang et al., 2013). Uncertainty in model parameters can be identified through the
Latin hypercube sampling technique, coupled with partial Rank correlation coefficients
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Figure 2 Time series plots showing the fitted model to COVID-19 related infectious cases for United
Kingdom. (A) Fitting before lockdown; (B) fitting after lockdown.
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Table 2 Parameters values of the COVID-19 model (1) fitted to United Kingdom cumulative number of cases before lock down. The data are
obtained from Johns Hopkins website (Dong, Du & Gardner, 2020).

Parameter Description Value References

p Infection rate 0.7566 Fitted

in Asymptomatic infection rate modification parameter 0.4352 Assumed

Mg Quarantined infection rate modification parameter 0.135 Assumed

Ny Hospitalized infection rate modification parameter 0.3725 Fitted

q Proportion developing asymptomatic infections 0.6 Centers for Disease Prevention and Control (2020b)
a Disease progression rate 0.60 Centers for Disease Prevention and Control (2020b)
V1 Recovery rates of symptomatic 0.10 Agusto et al. (2022)

Va Recovery rates of asymptomatic 0.13978 Agusto et al. (2022)

Yq Recovery rates of quarantined 0.1 Agusto et al. (2022)

YH Recovery rates of hospitalized 0.0526 Centers for Disease Prevention and Control (2020b)
wq Quarantine rate 0.5679 Fitted

OH Hospitalization rate 0.5180 Fitted

Vo Quarantine violation rate 0.4638 Fitted

VH Hospital discharge rate 0.1282 Fitted

o1 Death rate of symptomatic 0.0009 UK Health Security Agency (2022)

oa Death rate of asymptomatic 0.00054 UK Health Security Agency (2022)

0q Death rate of quarantined 0.0009 UK Health Security Agency (2022)

On Death rate of hospitalized 0.0018 UK Health Security Agency (2022)

(PRCCs). We assume that each uncertain parameter is uniformly distributed within a
specified range, which is within £30% of the respective baseline parameter values, and
performed a Latin hypercube sampling analysis by generating 1,000 random samples from
the chosen parameter distributions. PRCCs were then calculated for each of the following

parameters, y,, Yz, YQ) VH» 5Aa 517 5Qa 5H7 0,4, ﬁ? NasNqQ) NH> WQ, WH, VQ, VH> and the
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outcome variable (the basic reproduction number, R,). The sign of the PRCCs indicates
whether or not changes in the input parameter has a positive or negative effect on the
corresponding output variable (Wang, Liu ¢ Heffernan, 2018; Wang, Liu ¢ Liu, 2016).
The most influential parameters of the model are those that have PRCC values that satisfy
|PRCC| > 0.4, where a negative sign indicates an inverse relationship. The correlation
between the output variable and the input parameters is moderate if 0.2 <|PRCC| < 0.4,
and is weak otherwise (Cariboni et al., 2007).

Figure 3 indicate that the parameters f5,7,,q, 7;, and 7, have the greatest impact
on the outcome function (the reproduction number). On one hand, the parameters
0,1, 7qs 04, 0Q, 01, wq and vq have a moderate impact on the reproduction number (the
outcome function). The dominant parameters in increasing the outcome function (R,) are
the transmission (f3), and the infection modification parameter for the asymptomatic
infectious (174). On the other hand, the dominant parameters in decreasing R, are the
proportion of exposed individuals developing infections (g), recovery rate of infectious
(y;), mortality rate of infectious (J;), the isolation rate of hospitalized and quarantined
individuals (wy and wq, respectively).

SENTIMENT ANALYSIS

In order to carry our the sentiment analysis, tweets from Twitter were downloaded from
January 2, 2020 to May 29, 2020 for six countries, namely Australia, Brazil, Italy, South-
Africa, United Kingdom, and United States of America, representing different
geographical contexts. These countries and their population composition and political
views are diverse, as are their sentiments about the virus. Different factors drive their
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sentiments about the pandemic. For instance, in the United States, a common sentiment is
that the virus is a hoax directed at the ruling party (Oliver, 2020; Waldrop ¢ Gallman,
2020). Media reports about the outbreak are another factor driving the public sentiment
but is being construed as fake news by some people. In Brazil, the president accused the
press of spreading panic and paranoia (BBC News Services, 2020), and called the virus “a
small flu” and urged the people to go to the streets and “face the disease like men” (BBC
News Services, 2020; Gray & Shapiro, 2020; Traumann, 2020). Furthermore, the overall
sentiment in Brazil is anti-science in nature where the president had once promoted the
use of the antimalarial drug, hydroxycholoroquine, as coronavirus treatment drug despite
lack of evidence that it was effective against the virus while rejecting social-distancing
measures (Fraser, 2020; Gray & Shapiro, 2020).

In our work, we used the following procedure to generate sentiment scores for each
country using COVID-19 tweets. Each tweet contains information including a unique
tweet identification number (i.e., tweetID) and text up to 240 characters as well as
meta-information about the tweet such as user details, geographic origin, user-defined
hashtags to categorize the tweet topic, language, and time of creation. In order to maintain
consistency of extracting COVID-19 specific content with similar COVID-19 studies using
twitter data, the tweetIDs were extracted from a public repository (Chen, Lerman ¢
Ferrara, 2020). These tweetIDs contain validated tweets that include 76 hashtags related to
COVID-19 including #COVID-19, #coronavirus, #Corona, #sars-cov-2, #Covid19,
#SocialDistancing, #quarantinelife, #covididiot, etc. Figure 4 shows sample tweets
downloaded over this time period. As evidenced, negative sentiment may be specific to the
disease, expected behaviors, or the behaviors of other people. In part, this may reflect a
form of polarization on disease responses.

The process of extracting tweets corresponding to the tweetIDs from the Twitter server
is known as hydration, and was carried out by a verified Twitter developer with a valid
application programming interface (API). The Twarc hydrator package in python was
used to retrieve the tweets with a sleep time of one second between tweets to avoid the
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Table 3 Number of downloaded tweets from Twitter server by country from January 22 to May 29,

2020.

Country Tweet count
Australia 18,104

Brazil 27,684

Ttaly 55,816
South Africa 16,778

UK 99,080

US 661,567
Total 983,481

100,000 tweets/day extraction limit set by Twitter. A total of 125.2 million tweets were
collected during January 22 to May 29, 2020 time period and stored in a google cloud
platform (GCP) server with 8 GB RAM and 2 TB storage. However, less than 1% (983,481
tweets) of the total tweets downloaded was used, as most tweets do not have country
indicator because very often users do not associate their account to a country and therefore
remain anonymous in the geographic identities, see Table 3 for the country-by-country
break down of downloaded tweets.

Post data collection, all tweets were translated to English using the googletrans package.
Regular expressions were used for performing data cleaning operations on the tweet texts
including removal of special symbols and filtering out URLs. Sentiment scores for all
tweets were computed using the textblob package (Ma, 2005). The textblob python package
used to compute the sentiment score for tweets in our study adopts a rule-based approach
for sentiment quantification based on key indicator words present in them. A tweet is
represented as a bag of words. The positive and negative sentiments of a sentences are
based on the weighted average of annotated sentiments to each word in a large corpus.
The sentiment/polarity score varies from —1 to +1, and if it it is <0, we classify the tweet
as a negative sentiment tweet, and >0 as a positive sentiment tweet. The tweet scores are
then averaged for a country per day. Finally, for each of the above listed countries, the
average positive sentiment per day was reported. Figure 5 shows the positive and negative
sentiments for the respective countries.

To quantify the overall sentiment in each of the countries, we fitted straight lines (y, and
¥n for positive and negative sentiments) through these sentiments; and we took the
difference of the lines y, and y, to determine if the overall sentiment from a country is
positive or negative during the time period the tweets were collected. We see in Fig. 6 that
Australia and the United Kingdom are the two most positive countries, their positive
sentiment levels were really high. This is followed by Italy and South Africa which had
moderately positive sentiment. Brazil and the United States of America have more negative
sentiments overall, since they have the least positive sentiment. The European countries,
although they were the first to experience a massive wave of the infection, remained
relatively positive.
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Figure 5 Positive and negative sentiment of the COVID-19 tweets. Two straight lines y, = a,t + by, and y, = a,t + b, are fitted through the
positive and negative tweets. The straight lines for each country are given as (A) the lines y, = 0.0012461 x ¢+ 0.32225, and
Yn = —0.00016767 x t + 0.21212 for Australia; (B) the lines y, = 0.00032631 x t + 0.18091, and y, = 0.00022551 x t + 0.11779 for Brazil;
(C) the lines y, = 0.00054929 x t+0.24898, and y, = —0.00030907 x t + 0.16079 for Italy; (D) the lines y, =0.0005727 x t
+ 0.26629, y, = —0.00026964 x t + 0.18524 for South-Africa; (E) the lines y, = 0.0012266 x t 4 0.34568, and y, = —0.0002375 x t + 0.22246

for United Kingdom (F) the lines y, = 0.00029309 x ¢ + 0.10708, y,, = 5.5321e — 06 x t + 0.067976 for United States.
Full-size &) DOT: 10.7717/peerj.14736/fig-5

COVID-19 MODEL WITH SENTIMENT EFFECTS

In this section, we incorporated the public sentiments (positive and negative) into the
COVID-19 model (1) using the fitted straight lines (y, and y, for positive and negative
sentiments). First, we used the results obtained from the sensitivity analysis in “Sensitivity
analysis” to determine the form of the sentiment driven functions.
Each of these six countries instituted lockdown measures as a way to control the spread
of the virus. We expect that as public awareness increases due to increased media coverage
of the infection and the lockdown mitigation efforts that public perception and sentiments
will be positive, therefore leading to a decrease in disease transmission. We therefore
expect the infection rate f§ to be a decreasing function of public sentiment. However, we see
from the sensitivity analysis that the infection rate § would increase the reproduction
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Figure 6 Simulation of the difference between the straight line approximating positive and negative
sentiments. Full-size k4] DOT: 10.7717/peerj.14736/fig-6

number R. Hence, we define a decreasing sentiment function for this parameter. We also
define a decreasing sentiment-related function for v and vy since these parameters
increase Ry. However, the parameters g and wy are defined as increasing function of the
perception-related functions. We have chosen these parameters because these parameters
can be influenced by people’s behavior, perceptions, and sentiments, unlike the recovery
rates, Y4, V1, Vo, Yu» death rates, 9, 91, dq, O, disease progression rate, and the proportion
asymptomatic, g. We discuss below how these functions are obtained for each of these
parameters.

These countries instituted lockdown measures in March 2020 as a means to contain the
virus. For instance Italy, Brazil, US, Australia, UK, and South Africa instituted lockdowns
on March 9, March 17, March 19, March 23, March 23, and March 26, respectively.
Therefore, we define functions that incorporate the values of these parameters before and
after lockdown. Starting with the infection rate 5, we define the sentiment-related function

P as

Bu= B+ (Bo— ﬂ1>e—mc,(t)’ (4)

where f3,, f5; are the before and after lockdown infection rates. The variable C; is the
cumulative number of symptomatic infectious individuals in the community; these are
determined from the following equation.

Ci(t) = (1 — q)(i/o E(t)dr.

Note that C; is not an epidemiological variable. Furthermore, m induces the effect of public
sentiment on reported cumulative number of infected cases in the community. If m = 0 or
relatively small, the infection rates and f are equal or close to the constant f3;. On the other
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Figure 7 Simulation of the functions showing media effect for the infection rate f5,;, with media
effect. Full-size £a] DOL 10.7717/peerj.14736/fig-7

hand, if m >0, there is increase awareness about the disease in the community and the
infection rate could decrease to ff,( < f§,) as the number of accumulated infected cases
increases as shown in Fig. 7.

Thus the public sentiment-related functions for quarantine (w;,), hospitalization
(wam), quarantine violation (vyy), and early hospital discharge rate (v,y) are represented
by the following functions:

) efmCI(t)

—mCy(1)

—mCy(t) (5)
7mC,(t).

vau = Va1 + (Voo — var
Vam = Va1 + (Vao — Va1)e
WM = WQ1 + (G)Qo — le)e
opm = om + (0o — ®mH e
Note that voum, Vim, Wom, @uam > 0 for C; > 0. We assume that v, < vgo, Vi1 < Vhos
and wq; > Wqo, WH1 > Wpo. Furthermore, for arbitrarily small number of symptomatic
infectious individuals Cj, the sentiment-related transition function vy converges to
vqo > 0 for small values of C; the maximum quarantine violation rate out of the quarantine
class before the community lockdown. Also, as the cumulative number of infectious
individuals C; grows, the quarantine violation function vy converges to v, that is,
lim voum = vq1 >0,

C[HOO

the minimum quarantine violation rate out of the quarantine class as public perceptions
and sentiments effects of the infection manifest in the community.

Similarly, the sentiment-related early hospital discharge rate, vy, from the hospitalized
class, converges to vy > 0, the maximum early discharge rate for small cumulative
number of infectious individuals C; before the onset of public perceptions and sentiments
about the disease, and

lim vy = v >0,
C[—>OC
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Figure 8 Simulation of the quarantine violation, vy, and early hospital discharge, vy functions
which incorporate public sentiments. Since vy and vy increase Ry, we used decreasing functions
with sentiment that will reduce R. (A and B) Quarantine violation and early hospital discharge rate vgu
and vy, with the effect of public sentiments. Full-size Kal DOI: 10.7717/peerj.14736/fig-8

the minimum early discharge rate for large cumulative number of infectious individuals C;
as public perceptions and sentiments effects manifest. The dynamic behavior of functions
voum and vy are shown in Figs. 8A and 8B.

Consequently, for an arbitrarily small cumulative number of infectious individuals Cj,
the public sentiment-related quarantine and hospitalized functions wqy and @y
converge to wg > 0, and wpo > 0, the minimum quarantine rates before the onset of
public awareness. Also, as the cumulative number of infectious individuals C; gets larger,
wqm converges to wq; and wpy converges to wyy. That is,

lim woy = w1 >0, and lim wpy = oy >0
C1—>OO C1—>OO

the maximum number of individuals that are self-isolated or hospitalized, respectively, as a
result of media coverage. See Figs. 9A and 9B for the dynamic behavior of functions wqu
and WHM-

The sentiment parameter m is expressed as m = % (¥p + yn)> where y, is positive
sentiments, y, is negative sentiments, and¢isa scaling factor that scales the sentiments per
100,000 of the population density. As described above, we fitted two straight lines through
the positive and negative sentiments for each of the countries (see Fig. 5) to obtain the
sentiment variable y, and y, given as
Yp =apt + by (6)
Yn = ant + bna
where a, and a, are the slope of the straight lines and b, and b, are the intercept.

Now, incorporating the sentiment-related functions (4), (5), and twitter sentiments (6)
into the COVID-19 model (1), we have the following system of differential equations
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dS _ —BulI(t) + naA(r) +noQ(r) + nyH(1)]S(1)

dt N(t)

dE _ Pull(6) + 14AW) + 10Q(0) + g HWISW
dt N(t)

B roB(1) — 700

d

— = (1 —=1r)oE(t) + vom(t)Q(t) + vum (£)H(t) — wom (£)I(t) — wmm(t)I(t) — S/I(t)
dt 7)

‘jl_f = wau(DI(t) — 70Q(t) — vou()Qt) — 7Q¢)

”;_i[ = oa(OI(t) = pH(t) — v (H(E) — 7, H(2)

% — (31 + O0)I(E) + (74 + S4)A() + (70 + 3Q)Q(E) + (g + ) H(£)
Yp = dpt + by

Yn = ant + by,.

The reproduction number related to model (7) with Twitter sentiment is given as

(1 — q)Bo(Ksnyww, + Kangwaqo + KsKy) N qPona ®)

R T — )
0 (KaK3Ky — Kavgowmo — Kavgo®ao) ky

where, K2 = 12 +COH0 —|—CI)Q0,K3 = l3 + VQO,K4 = l4 + VHoall =%a +5A;12 =
11+ 01 = 7q+ 0, la = vy + Om
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Figure 10 Simulation of the cumulative cases from COVID-19 model (7) with public sentiment and
the cumulative reported cases from January-May 2020. (A) Simulated cumulative cases obtained from
the COVID-19 model (7) with public sentiments; (B) cumulative number of reported cases.

Full-size k4] DOT: 10.7717/peerj.14736/fig-10

The reproduction number, Ryr, is the average number of secondary infectious
produced when a single infected individual is introduced into a completely susceptible
population.

Next, we simulated the sentiment-related model (7) using the estimated parameters for
each country and plotted in Fig. 10A the cumulative new cases for each of the countries
and compare the results to the trajectory of the actual cumulative reported cases in
Fig. 10B. We see that the sentiment-related model (7) accurately captures the trajectory of
the actual cumulative reported cases; therefore indicating that incorporating public
sentiment into an epidemic model is able to capture the trend in the trajectory of the
infection in the population. Although the model-simulated cumulative number of cases
saturates much earlier than the actual cumulative number of cases; at this point, we are not
sure why. Nevertheless, we are able to realize our goal of understanding the role of public
sentiment in disease spread since we are not using the sentiment-related model (7) to make
prediction about the number of cases.

RESULTS

We begin by analyzing the COVID-19 transmission model with quarantine and
hospitalization coupled with public sentiment (described in “COVID-19 model with
sentiment effects”). Then we analyze the effect of public sentiment and human behavior on
the spread and prevalence of COVID-19 in the community.

Impact of public sentiments on disease transmission
In this section, we explore the impact of public sentiments (positive or negative) on disease
transmission in the population. Using sentiment-related functions parameterized with
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Figure 11 Simulation of the sentiment-related COVID-19 model (7). (A and C) Symptomatic
infectious individuals without/with sentiments; (B and D) hospitalized sub-population with sentiments
(positive and negative) against no sentiments. Full-size k&) DOT: 10.7717/peerj.14736/fig-11

data from United Kingdom, Fig. 11 shows the impact of incorporating public sentiments in
the model against a model without sentiments. We see from Fig. 11A that the number of
symptomatic infectious individuals in the population is lower when we incorporate
positive sentiment into the COVID-19 model. On the other hand, we see a higher number
of symptomatic infectious individuals in the population when public sentiments are not
included in the model. However, in Fig. 11B, we see that the number of hospitalized
individuals in the population is higher with positive sentiment. And a lower number of
hospitalized individuals in the population when public sentiments are not included in the
model. Furthermore, we see in Fig. 11C that negative public sentiments will yield even
more symptomatic infectious individuals in the population, but fewer hospitalized
individuals in the population (see Fig. 11D). The result involving the hospitalized, show a
counter intuitive result, as one would expect to see more hospitalization with cases.
However, with negative sentiment comes mistrust in establishments. Thus, it makes sense
if we are seeing fewer infectious individuals seeking hospitalized treatment. During the
outbreak in 2020 many individuals in the United States relied on chloroquine and
hydroxychloroquine, two drug treatment for malaria as treatment for COVID-19 and
would only go to the hospital when they are critically ill (Joseph et al., 2005; Mahmood,
2020; US Food and Drug Administration, 2020e).
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Figure 12 Simulation of the sentiment-related COVID-19 model (7) for the proportions of
symptomatically infected (I), quarantined (Q), and hospitalized (H) individuals. Solid lines corre-
spond to base values of the model parameters from Table 2. (A) Dashed lines correspond to double
quarantine (wq) and hospitalization (wy) rates (B) dashed lines correspond to double quarantine vio-
lation (vq) and hospital discharge (vy) rates. Full-size K&l DOT: 10.7717/peer;j.14736/fig-12

Thus, the results shown in Fig. 11 suggests that it is important to incorporate public
sentiments into epidemic models. Having a clear understanding of the public perception of
the risk of the infection and their sentiments regarding a disease outbreak and its
transmission is vital for control and mitigation efforts.

Impact of human behavior on quarantine and hospitalization

Next, we explore the impact of quarantine and hospitalization on the number of
hospitalized individuals in the population while using the sentiment-related functions
parameterized with data from United Kingdom. First, we double the quarantine and
hospitalization rates (wq and wy). We notice in Fig. 12A that the epidemic curve for the
hospitalized individuals increases and the peak of the curve shifts from left to right (as do
the time the infection peaks); similarly, the symptomatic infectious individuals shrink
(“flatten the curve”) while the quarantined population increases and their curves shifts to
the right since the rates have been increased. However, when we double the quarantine
violation and early hospital discharge rates (vq and vy), we see in Fig. 12B the curve of the
hospitalized individuals shifts from right to left and the number of hospitalized individuals
increases. We see similar shifts in dynamics of the symptomatic infectious and quarantined
individuals; however, there are fewer symptomatic infectious and quarantined individuals
in the respective classes. It is thus vital to ensure public compliance and adherence with
quarantine rules and to promote positive sentiment among the populace, as this will go a
long way in flattening the epidemic curve.
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DISCUSSIONS AND CONCLUSIONS

Discussions

In this study, we developed a novel compartmental mathematical model to study the
ongoing COVID-19 pandemic. The model uniquely incorporated human behavior and
early discharge from hospital. The model is further coupled with public sentiments about
the disease, thereby capturing the effect of disinformation. In particular, the model
includes violation of quarantine rules and their positive and negative sentiments regarding
the disease. The model also includes discharge of the infected due to overwhelmed hospital
facilities. For instance, at the onset of pandemic in England, seniors in hospitals were
moved back to care homes (Pawelek, Oeldolf-Hirsch e Rong, 2014; Servick, 2020).
Similarly, at the height of the outbreak in Michigan and New York, hospitals were
discharging the non-critically ill either to nursing homes or simply letting them go home
because the hospital facilities were overwhelmed (Boucher, 2020; NBC 25 News, 2020,
Schnirring, 2020), prompting legislation in Michigan to protect the seniors and vulnerable
members of the community and prevent nursing homes from admitting patients with
COVID-19 (Newport, 2020). In other places like Arizona, some nursing homes took in
COVID-19 patients with mild symptoms (Crenshaw, 2020).

Public awareness and information is one of the factors driving public perception of risk
and sentiment about the disease (Harvard Mental Health Lettert, 2020; Ong et al., 2020).
At the onset of the pandemic, many people believed (unfortunately, many still believe) that
the virus was a hoax, along with wide range of other conspiracy theories about the disease
(Andersen, 2020; Cahn, 2020; Galbraith, 2020; Imhoff ¢ Lamberty, 2020; Miller, 2020;
Specia, 2020). Many of these misconceptions and disinformation about the disease were
spread on social media platforms like Twitter, Facebook, etc., which in turn drives public
views, opinions and sentiments about the disease (Alamoodi et al., 2021; Jarynowski,
Wojta-Kempa & Belik, 2020). For instance, Jarynowski, Wojta-Kempa ¢ Belik (2020) using
Twitter was able to capture in Poland the structural division of the Polish political sphere,
identifying the mainstream opposition and protestant groups, and the possible orgin of
disinformation in the country. In Brazil, the prevalence of misinformation surrounding the
pandemic is deeply concerning and many people blame the messaging from the President
Bolsonaro (Gray ¢ Shapiro, 2020).

To measure public sentiments across six countries across different geographical regions,
we downloaded tweets from the Twitter platform from January to May 2020. We then
carried out sentiment analysis that enabled us to separate the public sentiment into either
positive or negative sentiment. While our data set is a multilingual data set across multiple
countries, the filter keywords (i.e., hashtags) are mostly in English. Even though 76
hashtags have been considered to extract tweets, there exists a possibility of excluding
tweets that pertain to COVID-19 but do not contain any of these hashtags. Even though we
have carried out basic data cleaning and processing tasks, we may have overlooked the
small proportion of tweets that contain regional phrases expressing irony that may not all
have been discovered by the sentiment analysis software program that explores the English
translated text. However, a visual inspection of the texts and the sentiment scores for each
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tweet across the different countries showed that the sentiment scores were representative
of the tweet sentiment in most cases, thus ruling out systematic biases in inferences
made in this study. The collection, aggregation, and analysis of more than 100 million
COVID-19 related tweets generated during the time period ensures representation of the
general public sentiment across all sub-populations of each country and not just one region
or demographic segment.

Misinformation, disinformation, and conspiracy theories can be really problematic with
tremendous impact on public health efforts to contain the disease in the community.
However, the use of Twitter tweets to measure public sentiment may be limiting and not
present the full picture of public sentiment since public information campaigns might have
less impact on society than expected due to filter “bubbles” observed on Twitter
(Jarynowski, Wojta-Kempa ¢ Belik, 2020). Hence, it will be beneficial to diversify the
sources of public awareness and information in other to reach many people as possible
(Jarynowski, Wojta-Kempa ¢ Belik, 2020) and possibly reduce the spread of
disinformation.

After obtaining the positive and negative sentiments, we fitted straight lines through the
sentiments in order to determine the magnitude of the sentiments in each of the countries,
see Fig. 6. We see that United States and Brazil had the least positive sentiment. The level of
public sentiments in the United States may be due in part to how polarized the country was
in the last 4 years particularly in the months leading to the 2020 presidential elections.
United Kingdom and Australia had very positive sentiment overall; in the early days of the
pandemic in the UK, the entire country including the royal family applauded the selfless
efforts of the health workers and other frontline workers (BBC News, 2020a), sharing clips
on social media under the #ClapForCarers hashtag (Aljazeera, 2020; Saini, 2020).

On March 11, 2020 the World Health Organization (WHO) declared the novel
coronavirus a global pandemic (WHO, 2020c) and shortly thereafter many countries
imposed travel bans from many hotspots regions, and instituted lock-down measures in a
bid to curtail and contain the spread of the virus. To incorporate public sentiment into our
COVID-19 model (1), we segmented the time period into before and after lockdown.
We used results obtained from the sensitivity analysis (see Fig. 3) to informed the nature of
the different parameters (see Figs. 7-9) that can be influence by public sentiment. These
parameters were then defined as increasing and decreasing functions of pubic sentiment
which were incorporated into COVID-19 model (1). These parameters consist of before
and after lockdown related parameters which we estimated using data are obtained from
Johns Hopkins website (Dong, Du ¢ Gardner, 2020) and some parameter values from
literature (see Table 2).

The reproduction numbers for before and after lockdown (R and R.) for the
respective countries are shown in Table A2. All the countries had reproduction number
above one before lockdowns were put in place, and the values were below one after
lockdown except for South Africa with estimated value of R)_ = co.57€. This value aligns
with the estimated value by the South African National Institute for Communicable
Diseases (South African National Institute for Communicable Diseases, 2020).

The reproduction number estimated for South Africa by the National Institute for
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Communicable Diseases at the onset of the outbreak was between 1.7 and 2.5; these
numbers reduced substantially but was still above one following measures such as flight
restrictions into the country, school closures, and national level 5 lockdown in mid-March
2020. Some provinces like Western Cape Province had estimated reproduction number of
1.5-1.7 by mid-late April 2020, while other provinces like Gauteng, KwaZulu Natal, and
Eastern Cape Province had estimated reproduction number of 1.0-1.5 by mid-late April
2020 indicating an ongoing transmission or steady disease progression (South African
National Institute for Communicable Diseases, 2020).

Our results showed that preventing the spread of disinformation and negative sentiment
about the disease in the community is important (see Fig. 11). Thus, it is essential to
prevent disinformation, and to promote positive sentiment in the community. It is equally
vital to ensure public compliance and adherence with quarantine rules and all mitigation
efforts (see Fig. 12). Doing so will go a long way in flattening the epidemic curve, and will
lead to the kind of success story observed in New Zealand (Shepherd, 2020; Wikipedia,
2020).

Our study demonstrated that the countries with positive sentiment, and quarantine
compliance have been more successful at curtailing the spread of the disease. In addition,
we have been able to demonstrate the impact on disease burden of early discharge of
symptomatic infectious individuals from hospital to make room for incoming sever
COVID-19 patients. Overall, our model is able to demonstrate the role of people’s
behavior and public sentiment on disease transmission. Although, the trajectory of model
simulation in Fig. 10A is able to capture the trend of the actual trajectory of the
cumulative number of cases in Fig. 10B, our simulation results saturate much earlier. A
number of factors may be responsible for this, for instance, non ascertainment of all
infected cases. According to CDC (Centers for Disease Prevention and Control, 2020b),
asymptomatic individuals can account for between 15% to 70% of cases which in reality
are not tracked nor documented. Note that our model in Fig. 1 incorporate the
asymptomatic individuals this may be the reason for the difference between the simulated
outcome on the case data.

Since we started this study, the number of cases in these countries has exploded, with
some experiencing multiple waves of infections (WHO, 2020b) put in another lock-down
(France, Germany, Italy, and the United Kingdom (BBC News, 2020b, 2020c; Levy et al.,
2017; Meloni & Hutchinson, 2020; Savage, 2020)). Although we did not evaluate the
sentiment after the lock-down was lifted, we observed a wave of protests against other
mitigation efforts like the use of face-mask and vaccines in many of these countries such as
US, UK, Australia, Italy, and Canada (Drury, 2020; McGee, Reynolds & Cullen, 2020,
Reuters, 2020; Rinke ¢ Kar-Gupta, 2020). We believe these protests are driven by negative
sentiments in the society against the use of face-masks which subsequently increases the
number of infection as we observed in Fig. 11.

CONCLUSION

To conclude, this study develops a novel model for COVID-19 that uniquely incorporates
human behavior driven by their perception of risk and sentiments about the disease.
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The goal of this study was not to make explicit epidemiological predictions about the
disease; rather we hope to provide insight into effects of human behavior on
non-pharmaceutical intervention strategies (such as self-isolation and quarantine) aimed
at containing the disease and public sentiments about the disease. The key findings from
this study are summarized below.

The simulations of the COVID-19 model (7) with human behavior and public
sentiment about the disease show that:

i) Incorporating public sentiment into an epidemic model is able to project the
trajectory of the disease incidence in the community.
ii) Positive sentiments among individuals in the population reduces the number of
infected and disease burden in the community.
iii) Negative sentiments among individuals in the community amplify the disease burden
in the community.

iv) Increasing quarantine, and hospitalization rates decreases the disease burden and
reduces epidemic peak.

v) Increased quarantine violation rate and early discharged of those still infectious due
to overwhelmed hospital resources increases disease burden leading to early epidemic
peak.

This study has shown that incorporating human behavior and public sentiment into
epidemic models is pertinent in order to accurately capture the dynamics and burden of
the disease in the community. We have seen the role quarantine violation plays in disease
spread; in a future study, we will incorporate other kinds of mitigation efforts such as
vaccination and public reactions about them. Aside for incorporating mitigation efforts, in
our future model we will consider the hospital capacity in terms of the number of bed.
At the height of the outbreak a number of hospitals both in urban and rural areas exceeded
their capacity to accommodate infected individuals.

A PARAMETER ESTIMATION FOR THE SELECTED
COUNTRIES

Initial values for our simulations are given in Table A1, it include the population of the
countries N(0) and the exact cumulative value C(0) from the data. The initial values of E,,
Ay, I, H(0), and R(0) to ensure the fit of the trajectory of each country. The initial values
are summarized below:

Table A1 Values of the initial conditions used for the fitting and the objective function J given in (3).

Countries  N(0) E(0) A(0)  I(0) Q(0) H() R(0O) C0) J ]
Australia 25,499,884 0 3 0 0 0 0 3 052 0.029
Brazil 212,559,417 100 100 1 0 0 110 1 0.10  0.06
Ttaly 60,461,826 1 10 2 1 0 0 2 013 0.04
S. Africa 59,355,826 1 1 218 1 100 0 927 009 092
UK 67,988,148 9,860 48,000 967 9,860 9,560 9,760 6,654 0.7  0.02
US 331,002,651 5 10 1 0 0 5 1 0.16 0.5
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Table A2 Fitted parameters values before and after lock down for Australia, Brazil, Italy, South
Africa, United Kingdom, and United States. The constant parameters used for the model fitting are
q=06, 6=06 1o=0.135 n,=04352, 7, =0.13978, 7, =1/10, y,=1/10, yy=1/19.
The parameters ff, = 0.5713%,0.4656™" was used for Brazil, and South Africa in Fig. 10.

Parameters Australia Brazil Italy S. Africa UK UsS

bo 0.5682 0.4713* 0.7027 0.7360" 0.7738 0.7430
NHo 0.3725 0.5869 0.5948 0.3660 0.2131 0.4785
VQo 0.3522 0.4363 0.5831 0.2771 0.4638 0.4700
VHoO 0.3101 0.2649 0.3455 0.1781 0.1282 0.2799
Qo 0.4467 0.4751 0.3548 0.0568 0.5679 0.2520
WHo 0.4980 0.2380 0.5237 0.0618 0.5180 0.1301
N 0.00039 0.00056 0.00081 0.00056 0.00054 0.00045
(¢ 0.0006 0.00093 0.00135 0.00093 0.0009 0.00075
0q 0.00065 0.00093 0.00135 0.00093 0.0009 0.00075
on 0.0013 0.00185 0.0027 0.00185 0.0018 0.0015
A 0.1916 0.6534 0.3017 0.4061 0.3490 0.2319
N 0.1206; 0.2348 0.2461 0.5475 0.2988 0.8418
Va1 0.1345 0.2347 0.1258 0.1100 0.2178 0.1305
VH1 0.3011 0.2202 0.3155 0.1576 0.1252 0.1110
wQ1 0.6941 0.4820 0.6792 0.2411 0.5776 0.5350
wmH 0.5242 0.5979 0.5372 0.1098 0.5281 0.1610
'Rg 2.4211 2.1292 3.5972 3.7801 2.946 3.6126
'R(l) 0.5930 0.8806 0.6450 1.5173 0.6843 0.8477

The initial susceptible is given as S(0) = N(0) — E(0) — A(0) — I1(0) — Q(0) — H(0) — R(0) —

C(0).
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