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1 Introduction

The detection of gravitations waves from compact binary mergers with the LIGO/Virgo
interferometer has opened up a new era of gravitational wave astronomy [1]. One of the
goals of this newly emerged science is to probe the internal dynamics of individual compact
objects in the binary. This can be achieved by measuring effects of tidal deformations on the
emitted gravitational waveforms. In the low frequency limit these effects are parametrized
by (static) tidal Love numbers [2, 3]. For neutron stars these measurements serve as a
powerful probe of the nuclear matter equation of state under extreme conditions [2, 4, 5].
The neutron star-neutron star merger GW170817 has already provided first bounds on the
neutron star Love numbers and on the corresponding equation of state [6].

For black holes the role of Love numbers is somewhat different — they provide us with
a null test and a possibility to search for exotic signatures. This is because Love numbers
of black holes vanish in four dimensional general relativity [3, 7]. A detection of a compact
object with a mass greater than the Oppenheimer-Volkoff limit ∼ 3 M� [8] and a non-zero
Love number would be a clear signature of physics beyond general relativity [9].
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Gravitational wave data analysis requires efficient tools to produce waveform templates.
One of such tools is the worldline effective field theory (EFT), which provides a systematic
framework to compute dynamics of inspiraling binaries in the post-Newtonian regime [10–16].
In this framework each compact member of a binary is approximated as a point particle
and all finite-size effects are captured by a set of higher-derivative operators coupled to the
particle’s worldline. This way the EFT describes dynamics of a generic compact body on
distances greater than its size. In this picture the full general relativity plays a role of the UV
theory, which is valid for scales shorter than the compact object radius. Determination of
the EFT coupling constants (also called Wilson coefficients) proceeds via matching between
the EFT and full general relativity calculations in the overlapping distance domain. This
matching provides also a manifestly gauge invariant definition of Love numbers. Namely,
these are identified with the leading EFT finite size operators [17–20].

Following ‘t Hooft [21], in the absence of a symmetry in the UV theory, one expects
the Wilson coefficients to be order-one numbers times an appropriate power of the EFT
cutoff scale. Hence, the vanishing of black hole Love numbers in four dimensions gives rise
to an intriguing naturalness puzzle [9].

In four dimensions, static Love numbers are zero for Schwarzschild and Kerr black
holes alike [18, 19, 22–27]. However, the vanishing of black hole tidal Love numbers in four
dimensions is not the only peculiar property that needs to be explained. One can generalize
the notion of black hole tidal Love numbers to scalar and electromagnetic fields and show
that the static responses to their perturbations vanish as well [17–19].

The situation is more intricate for higher dimensional black holes. In the case of higher
dimensional Schwarzschild solutions, Love numbers’ behavior is parametrized by

ˆ̀≡ `/(d− 3) ,

where ` is the multipolar order and d is the number of spacetime dimensions. If ˆ̀ is an
integer, Love numbers vanish for all static perturbing fields [17, 18]. If ˆ̀ is a half-integer,
Love numbers exhibit a classical logarithmic Renormalization Group (RG) running. In all
other cases Love numbers do not vanish and do not run.

These results suggest the presence of a new symmetry of black holes, whose selection
rules force Love numbers to vanish. This symmetry, which we call “Love symmetry”, has
been recently presented in ref. [28]. In this paper we study this symmetry in more detail.
In particular, we relate it to the enhanced near horizon isometries of extremal black holes,
which play a crucial role in the holographic correspondence. We will see that the vanishing
of Love numbers always comes about as a result of a special algebraic property of the
corresponding representations of the Love symmetry algebra. Namely, Love numbers vanish
whenever the corresponding representation exhibits the highest weight property.

The rest of the paper is organized in the following way. In section 2 we define Love
numbers and introduce some basics of black hole perturbation theory, such as the Teukolsky
equation and the near zone approximation. All important facts about Love numbers are
presented in section 3. This section also contains Love number calculations in higher
derivative gravity, illustrating that the logarithmic running is indeed a generic property.
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In section 4 we give a detailed description of the Love symmetry. Love symmetry is
an approximate SL (2,R) symmetry that acts on black hole perturbations in a properly
defined near zone. The Love symmetry is globally well defined and hence regular solutions
of the linearized near zone black hole perturbation equation (the so called Teukolsky
equation [29, 30]) form SL (2,R) representations. This is a powerful statement as now many
properties of black hole perturbations can be extracted from the group theory without
having to solve any differential equations explicitly. In particular, in four dimensions
the static solutions of the near zone Teukolsky equation form highest weight SL (2,R)
representations, which dictates their polynomial form and hence the vanishing of the Love
numbers. Static perturbations of higher dimensional black holes also belong to highest
weight representations for integer ˆ̀, hence the Love numbers vanish in this case.

There are indications that the actual symmetry structure of the black hole perturbations
is greater than the Love symmetry. In section 5 we unveil a part of the full symmetry
structure. Namely, we explicitly construct an extension of the Love symmetry into an
SL (2,R) n Û (1)V algebra, which captures two additional physically relevant regimes: the
Starobinsky near zone approximation [31, 32], and the extremal near horizon black hole
geometry [33, 34]. The Starobinsky near horizon algebra addresses properties of black
hole responses around the locking frequency. Another subalgebra of this SL (2,R) n Û (1)V
reduces to the isometry of the near horizon black hole AdS2 throat in the extremal limit.
We also present a generalization that allows for a group theory description of the frequency-
dependent response solutions in the Starobinsky near zone approximation.

We give further details of the relationship between the near horizon symmetries and the
Love symmetry in section 6. We show that the Love symmetry and the extremal near horizon
isometries appear to be closely related. In particular, in the spherically symmetric charged
black hole case, the Love symmetry exactly reduces to the SL (2,R) isometry of the AdS2
near horizon black hole geometry. This gives a clear geometrical interpretation of the Love
symmetry in the Reissner-Nordström black hole case as an approximate spacetime isometry.

In the case of rotating Kerr-Newman black holes the situation is more intricate. As we
discussed before, the Love symmetry is a part of the larger symmetry group SL (2,R)nÛ (1)V .
One particular subalgebra of this group reduces to the Kerr-Newman near horizon SL (2,R)
isometry [34] in the properly defined extremal limit.

All in all, the relationship to the extremal near horizon SL (2,R) isometries suggests a
proper interpretation of the Love symmetry generators as approximate Killing vectors of
the Kerr-Newman black hole geometry. This can be made more precise in the context of
subtracted geometries [35, 36]. Subtracted geometries are effective geometries characterized
by their property of approximating the environment of the black hole while preserving its
internal structure. In this language, the near zone symmetries are realized as isometries of
particular subtracted geometries which have the extra feature of preserving properties that
extend beyond the vicinity of the event horizon, namely, the location of the ergosphere of
the black hole.

This interpretation can be extended to Newman-Penrose spin weighted fields that
encode electromagnetic and gravitational perturbations. In section 7 we show that the
generators of the Love symmetry for spin weighted fields have a meaning of the approximate
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Geroch-Held-Penrose (GHP) Lie derivatives [37–39] along the (approximate) Killing vectors
of the Love symmetry.

In section 8 we present further possible generalizations of the Love symmetry: a
new “middle zone” symmetry that appears in the extremal black hole case and a continuous
family of approximate SL (2,R) symmetries generalizing the Love symmetry. Finally, we
discuss requirements for the Love symmetry to exist in modified gravity theories.

We draw conclusions in section 9 and sketch future research directions in section 10.
Some additional material is collected in several appendices.

Conventions: we will be working in geometrical units with the speed of light in the
vacuum and Newton’s gravitational constant set to unity, c = 1 and G = 1, except in the
beginning of the next section where G will be kept explicit for clarity, and we will adopt
the mostly positive Lorentzian metric signature. Small Greek letters will denote spacetime
indices running from 0 up to d − 1 with x0 indicating the time coordinate, while small
Latin indices will denote spatial indices running from 1 up to d − 1 for a d-dimensional
spacetime. In addition, we will be using the multi-index notation µ1µ2 . . . µ` ≡ L with
xµ1xµ2 . . . xµ` ≡ xL and ∂µ1∂µ2 . . . ∂µ` ≡ ∂L. The brackets 〈. . .〉 denote the operation of
symmetrization and removal of the traces. Hence, any tensor with the multi-index 〈L〉 is a
symmetric trace-free (STF) tensor of rank `.

2 Preliminaries

In this section we review some material required for the understanding of the Love symmetry.
We discuss the definition of Love numbers in the Newtonian approximation and EFT,
and introduce the Teukolsky master equation, which allows one to extract black hole
Love numbers from perturbative calculations. We will briefly discuss the holographic
interpretation of the Love numbers. We will also introduce the near zone approximation. In
addition, we will carry out a calculation of the scalar Love numbers in the Riemann-cubed
gravity and show that they exhibit a classical RG running in the multipolar sectors with
` > 2. Finally, we will discuss the role of black hole no-hair theorems.

2.1 Newtonian definition of Love numbers

Tidal Love numbers were originally defined more than a century ago [40] as response
coefficients of a spherically symmetric body under external tidal forces [41]. Consider a
spherically symmetric body of mass M placed at the origin of a Cartesian coordinate system.
An arbitrary external Newtonian potential perturbing this body can be written in terms of
its STF tidal moments EL,

Uext (t,x) = −
∞∑
`=2

(`− 2)!
`! EL (t)xL , EL (t) ≡ − 1

(`− 2)!∂〈L〉Uext(t,x)
∣∣∣
x=0

. (2.1)

The sum over ` starts from ` = 2 because the linear ` = 1 term affects only the overall
center of mass motion of the body. The tidal force perturbs the body and induces mass
multipole moments,

IL (t) =
∫
d3x δρ(t,x)x〈L〉 , (2.2)
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where δρ is the body’s mass density perturbation. Then the total potential takes the
following form (ni ≡ xi/|x|),

Utot (t,x) = GM

r
−
∞∑
`=2

(`− 2)!
`!

[
EL (t)xL − (2`− 1)!!

(`− 2)!
GIL (t)nL
r2`+1

]
. (2.3)

It is convenient to switch to spherical coordinates and work in the harmonic basis,

E`m ≡ EL
∫
S2
d2x nLY ∗`m , I`m ≡ IL

∫
S2
d2x nLY ∗`m , (2.4)

where d2x ≡ sin θdθdφ and Y`m are spherical harmonics on the 2-sphere. Assuming that an
external perturbation is weak, one can use the linear response theory to write down the
following relationship between the induced mass multipole moment and the applied tidal
moment in the frequency space,1

GI`m (ω) = − (`− 2)!
(2`− 1)!!k`m(ω)R2`+1E`m (ω) , (2.5)

where R is a characteristic length scale of the body’s size, e.g. the unperturbed body’s
radius, and k`m is the dimensionless response coefficient. Analyticity in the frequency space
allows us to write the following Taylor expansion valid for small frequencies ω′ in the body’s
rest frame,

k`m = κ`m + iν`mω
′ + · · · = κ`m + iν`m (ω −mΩ) + . . . , (2.6)

where ω is the perturbation’s frequency in the external inertial frame, m is the azimuthal
harmonic number and Ω is the body’s angular velocity. The appearance of the “superradiant
factor” (ω −mΩ) is merely a consequence of frame dragging; it is a purely kinematic
effect [19, 22]. The real contribution in eq. (2.6) captures the conservative response and the
corresponding response coefficient κ`m is called the Love number. As far as applications to
binary inspirals go, the resulting gravitational waveform is sensitive to the Love numbers
starting at the 5PN order in the Post-Newtonian expansion (for ` = 2).

The imaginary contribution iν`m is purely dissipative, as can be seen from the fact that
it is odd under the time reversal. For binary inspirals this dissipative response coefficient
captures the tidal heating and the spin exchange between a binary’s components; it starts
contributing at the 2.5PN order for ` = 2.

The distinction between κ`m and ν`m has a simple physical analogy in electromagnetism.
There, the imaginary part of the electric susceptibility gives rise to dissipation/amplification
of the intensity of propagating plane waves inside the material, while the real part captures
conservative effects such as refraction.

1For a spherically symmetric body, the response coefficients do not depend on the azimuthal number m.
However, we are including here the case of an axisymmetric body with background symmetries that do not
allow mixing between different `-modes either. This is relevant, for instance, for the Kerr-Newman black
holes due to their separability.
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2.2 General relativity and EFT definitions

In the full general relativity the Love numbers can be defined through the Weyl curvature
scalar ψ0 [29, 42],

ψ0 = Cµνλρl
µmν lλmρ , (2.7)

where Cµνλρ is the Weyl tensor and lµ, mν are Newman-Penrose null tetrades [42, 43]. The
advantage of working with the Weyl scalar will become clear shortly, when we discuss the
Teukolsky master equation. To define the Love numbers of an isolated gravitating object,
one considers equations for linear perturbations around the object and looks for solutions
which are regular everywhere, but are allowed to grow at the spatial infinity. Expanding
the resulting ψ0 at large distances one finds [25],

ψ0
∣∣∣
r→∞

=
∑
`=2

∑̀
m=−`

√
(`+ 2) (`+ 1)
` (`− 1) r`−2

(
E`m

(
ψs,`m + kE`mψr,`m

)
+ . . .

)
2Y`m(θ, φ) ,

(2.8)
where E`m are asymptotic spherical harmonic coefficients of the electric tidal tensor, de-
fined as

EL = 1
(`− 2)!∇〈i3...i`C0|i1|0|i2〉 . (2.9)

Dots in (2.8) stand for an analogous (imaginary) contribution associated with the magnetic
tidal tensor, which we do not write down explicitly for brevity. Functions ψs,`m (r) and
ψr,`m (r) describe growing and decaying solutions of the equations for metric perturbations,

ψs,`m (r) = 1 +O
(1
r

)
, (2.10)

ψr,`m (r) =
(
R

r

)2`+1 (
1 +O

(1
r

))
. (2.11)

The former is interpreted as the contribution of a tidal source located at the spatial infinity,
and the latter as the tidal response. This way coefficients kE , and their magnetic analogues
kB, provide a relativistic generalization of Love numbers. In the Newtonian gauge, the
electric Love numbers defined this way match the Newtonian definition.

However, one may wonder whether this definition is unambiguous under the change
of coordinates (such as the switch between the advanced and the Boyer-Lindquist frames
for the Kerr metric). Also, given that the source function ψs,`m (r) is in general an infinite
series in the powers of 1/r, it is unclear whether the source/response separation in (2.8) is
well-defined.

These questions are nicely resolved by defining Love numbers in the framework of the
gravitational point-particle effective field theory (EFT) [10, 13, 15, 16]. One constructs
the EFT by integrating out the body’s short scale degrees of freedom and parameterizing
their impact on the long distance dynamics through effective operators for long wavelength
degrees of freedom. The latter include the long distance metric perturbation hµν defined
w.r.t. the Minkowski background

gµν = ηµν + hµν

and the center of mass position xµcm.2
2If the body is spinning, one also needs to include rotating degrees of freedom parametrized by a local

tetrad on a worldline [13, 15, 16, 44].
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This description is valid on length scales longer than the size of the object R. For black
holes, which is the main object of interest in this paper, R is set by the gravitational radius

R ∼ rs = 2GM .

The point-particle effective action is obtained by expanding the bulk action for gravity and
writing down all possible effective worldline operators consistent with the symmetries of the
problem [10],

SEFT [hµν , xµcm] = SEH [ηµν + hµν ] + Spp [hµν , xcm] + Sfinite-size [hµν , xµcm] (2.12)

where SEH is the Einstein-Hilbert action and Spp is the usual point-particle action,

Spp = −M
∫
dτ

(
gµν

dxµcm
dτ

dxνcm
dτ

)1/2
. (2.13)

The action Sfinite-size contains higher-derivative corrections on the worldline. In the simplest
case of a spherically symmetric and non-rotating body at the leading order in metric
perturbations and for static configurations, we find

Sfinite-size =∑
`

λ`
2`!

∫
dτ

∫
d4xδ(4) (x−xcm (τ))∇〈µ3 . . .∇µ`

(
Cµ1|ν|µ2〉ρv

νvρ
)
∇〈µ3 . . .∇µ`

(
Cµ1|α|µ2〉βvαvβ

)
+magnetic ,

(2.14)

where vµ is the body’s 4-velocity, and, as before, we suppressed an analogous series of
magnetic operators.

Using eq. (2.14) we can compute the long distance metric of a body in the presence of
an external source. Neglecting gravitational non-linearities, the only non-trivial contribution
is associated with local worldline operators, which can be represented diagrammatically as

hµν = λ`

×

, (2.15)

where the double line depicts the worldline of the body, wiggly lines stand for the (retarded)
graviton propagator, and “×” indicates that the corresponding propagator is replaced by a
linearized solution growing at infinity, corresponding to the background tidal field.

– 7 –
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Non-linearity of the Einstein theory implies that additional contributions are present,
which may be diagrammatically represented by the following infinite series,

hµν =

×

+

×

+

×

+ . . . (2.16)

By requiring that the EFT result for the asymptotic field agrees with the full solution,
one may determine an infinite series of coupling constants (“Wilson coefficients”) λ`. In
Newtonian gravity, only the contributions (2.15) are present, so that the Wilson coefficient
λ` is equal (up to an overall multiplicative factor) to the corresponding (Newtonian) Love
number k`. Hence, also in full general relativity, it is natural to identify Love numbers
with the corresponding Wilson coefficients λ`. Contributions of the type (2.15) correspond
then to the response part of the solution ψr, and contributions of the type (2.16) to the
source ψs. We see that the EFT definition resolves the source/response ambiguity and is
manifestly reparametrization invariant.

However, the EFT definition also makes it clear that an additional irreducible ambiguity
is present in the definition of Love numbers, which may be thought of as a remnant of the
source/response separation problem. Namely, by the naive power counting one expects
many of the diagrams in (2.16) to exhibit UV divergences. Hence, as is always the case, to
perform the EFT matching one needs to introduce the UV cutoff scale (or, equivalently, the
renormalization scale µ if one is using dimensional regularization) at which one performs
the matching between the UV theory and the EFT. As a result, generically one expects
Love numbers to depend on the matching scale µ, i.e. to exhibit the classical RG running.

Somewhat surprisingly, one finds that the RG running of black hole Love numbers is
an exceptional rather than a generic phenomenon in the Einstein gravity. It never takes
place in four dimensions [20], whilst for higher-dimensional Schwarzschild black holes it
occurs only for very special values of the multipole number ` (such that ˆ̀ = `/(d− 3) is
integer) [17].

Note that depending on the choice of coordinates, the source/response mixing may
be present even in the absence of the classical RG running [20, 28]. If this is the case,
the two contributions can be disentangled bypassing the full EFT calculation via a formal
trick of “analytic continuation,” i.e. promoting the multipolar index ` to an arbitrary real
number during the matching procedure [19, 31, 32, 45]. The equivalence between the
analytic continuation of the multipolar index and the full EFT calculation has recently been
demonstrated explicitly for the example of a Schwarzschild black hole in [20] via the EFT
computation of the relativistic corrections to the “source” profile of the 1-point function to
all PN orders.

Several further comments are in order. First, it is possible to account for the black hole
spin within the EFT along the lines of refs. [19, 46] and references therein. In the body’s
rest frame and using the proper time worldline parametrization it amounts to promoting
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the Love numbers to tensors, i.e.

Sfinite-size =
∑
`

1
2`!

∫
dτ Λj1...j`i1...i`

Ei1...i`Ej1...j` . (2.17)

The local Love tensors responsible for conservative effects are even w.r.t. the exchange of
upper and lower indices, ia ↔ jb for any a, b = 1, . . . , `.

Second, we note that it is straightforward to generalize the definition of Love numbers
to scalar and electromagnetic fields [17–20]. In full general relativity, one can compute
the corresponding Newman-Penrose scalars, expand them at large distances, and read off
coefficients in front of the relevant decaying power of r. Equivalently, one can also include
long-wavelength scalar and electromagnetic perturbations in the point-particle EFT and fix
the relevant Wilson coefficients through matching.

Third, it is worth noting that matching to the full GR calculations can also be done at
the level of the S-matrix elements for the graviton-black hole scattering [20, 47–50]. This
matching is performed on-shell and allows to explicitly avoid ambiguities related to an
apparent coordinate-dependence of the matching procedure.

2.3 Love numbers and holography

Note that so far we have ignored dissipative effects in our description of the EFT. These
are not of the direct interest for the purposes of this paper. On the other hand, black holes
are our main object of study. Black holes are perfect absorbers so that dissipation plays
a very important role in their dynamics. So, for completeness, let us briefly describe how
dissipative effects are incorporated in the EFT. This also gives us an ample opportunity
to discuss the interpretation of Love numbers in the context of holography and in the
Kerr/CFT program.

Local worldline EFT operators introduced so far can only reproduce conservative tidal
effects. In order to account for the dissipation, one needs to introduce internal degrees of
freedom X on the black hole horizon and to couple them to the tidal tensors Ei1...i` through
the dissipative multipole moments Q(E)

i1...i`
[11, 20, 23, 46, 51]. In the spherically symmetric

case, in the body’s rest frame, and with the worldline affine parameter equal to the proper
time we have

Sdissipative =
∑
`

∫
dτ Q

(E)
i1...i`

(X)Ei1...i` + magnetic . (2.18)

Q here is a composite operator whose exact dependence on X is unknown. A black hole
describes a highly excited state of the X-system, which can be accounted by using the in-in
formalism. As a result, the black hole response is a sum of two contributions. First, there
is a local conservative response given by the diagrams shown in (2.15). In addition there is
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a dynamical internal response which can be represented as

hµν =
Q

Q

×

, (2.19)

where the dotted lined denotes an insertion of the 〈QQ〉 two-point function.3 This way
correlation functions of Q can be extracted through matching to various observables such
as low-energy graviton absorption cross-sections. The latter determine the imaginary part
of QQ correlators. The real part can be reconstructed by making use of dispersion relations
following from analyticity of the correlators. This reconstruction leaves undetermined a real
polynomial piece of the QQ correlators, which corresponds to the Love numbers. For more
details on how dissipation is treated in the worldline EFT, see the recent work [20], with
explicit matching calculations for the Schwarzschild black holes, and also references therein.

Our discussion implies that generically the physical Love numbers is a sum of the
Wilson coefficient λ’s and of the polynomial part of the QQ correlators. However, by making
use of the field redefinitions which shift Q’s by functions of the bulk metric evaluated at
the origin, one may work in the operator basis where Love numbers are entirely associated
with λ’s.

This description of the black hole EFT is holographic in its nature [11]. Namely, the
idea of holography is essentially the statement that X’s are more than an EFT bookkeeping
device, but represent an actual quantum mechanical system describing the black hole
dynamics. Remarkably, the AdS/CFT correspondence [52] tells us exactly what this system
is for certain classes of black holes in string theory. For instance, black 3-branes in type IIB
string theory are described in this way by the maximally supersymmetric Yang-Mills theory.
The discovery of this correspondence [53] was guided by the matching calculations [54, 55]
of the type we just described.

A promise of the Kerr/CFT correspondence [56, 57] is that one day a similar success
may be achieved for the actual real world black holes. It is natural to ask what is the role
of the Love numbers in this story. The discussion above implies that they do not have
an intrinsic CFT interpretation. Rather, they describe how the CFT (describing a near
horizon throat emerging in the extremal limit) is glued to the rest of the spacetime. It will
be interesting to calculate Love numbers for classes of black holes with known holographic
duals and contrast them with what one finds in four-dimensional general relativity.

Note that from the holographic viewpoint it is natural to think about black holes
with different values of a mass as excitations of a single quantum mechanical system
rather than representing genuinely different systems. Namely, an extremal black hole of a
minimal possible mass at the fixed values of gauge charges (and zero Hawking temperature)
corresponds to the ground state. Non-extremal black holes correspond instead to excited

3We assume that the operators are chosen in such a way that their vev’s are zero 〈Q〉 = 0.
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finite temperature states. As a result, symmetries of the system become more manifest
as one approaches the extremal limit. Geometrically, a near extremal charged black hole
develops a near horizon anti de Sitter throat. Isometries of this region correspond to the
conformal symmetry present in the holographic description. This makes it natural to study
the fate of the Love symmetry in the near extremal limit, which is one of the main tasks of
this paper.

2.4 Teukolsky master equation

In order to extract black hole Love numbers in a systematic and gauge-independent fashion,
one can match results of EFT calculations to solutions of black hole perturbation theory.
In four spacetime dimensions, it is convenient to study these perturbations within the
Newman-Penrose (NP) spin-coefficient formalism [42, 43]. In this approach all independent
components of the Maxwell and Weyl tensors are captured by the so-called Newman-Penrose
scalars that are defined as projections of these tensors onto complex null tetrads. The NP
scalars have fixed weights under local Lorentz rotations which define their spin weights
s, and they are also referred to as spin s scalars. Spin-0 (s = 0) and spin-1 (s = ±1)
perturbations correspond to test scalar and Maxwell fields in the black hole background
respectively, while spin-2 (s = ±2) tidal perturbations correspond to perturbations of the
black hole geometry itself.

The advantage of working with the spin weighted scalars is that for some of them the
relevant dynamical equations fully factorize in the generic Kerr-Newman black hole metric.
The corresponding separable master equation was obtained by Teukolsky in ref. [29]. In the
Boyer-Lindquist coordinates the Kerr-Newman black hole metric reads

ds2 = −dt2 +
rsr − r2

Q

Σ
(
dt− a sin2 θ dφ

)2
+ Σ

∆ dr2

+
(
r2 + a2

)
sin2 θ dφ2 + Σ dθ2

∆ = r2 − rsr + a2 + r2
Q = (r − r+) (r − r−) , Σ = r2 + a2 cos2 θ ,

r± = 1
2

[
rs ±

√
r2
s − 4

(
a2 + r2

Q

)]
= M ±

√
M2 − (a2 +Q2) .

(2.20)

This metric is characterized by three parameters: massM , angular momentum J and electric
charge Q, encoded in the Schwarzschild radius, spin parameter and charge parameter as

rs = 2GM , a = J

M
, and rQ =

√
GQ

respectively. In what follows we mostly work in the G = 1 units. A spin-s NP scalar Ψs

can be factorized as follows

Ψs = Φs (t, r, φ)S (θ) = e−iωteimφR (r)S (θ) . (2.21)

It satisfies the Teukolsky master equation [30, 58] which takes the following form in the
Kinnersley tetrad [59]

O(s)Ψs = `(`+ 1)Ψs , P(s)Ψs = `(`+ 1)Ψs , (2.22)
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where `(`+ 1) is a separation constant identified with the angular problem eigenvalue. The
orbital number ` is not an integer in general.

The explicit form of the radial and angular differential operators is,

O(s) = ∆−s∂r∆s+1∂r −
a2

∆ ∂2
φ −

(
r2 + a2)2

∆ ∂2
t − 2a

(
2Mr −Q2)

∆ ∂t∂φ

+ s (s+ 1) + s
a∆′
∆ ∂φ + s

[
2M

(
r2 − a2)− 2Q2r

∆ − 2r
]
∂t ,

P(s) = −
[
∆(s)

S2 − s (s+ 1) + a2 sin2 θ∂2
t − 2isa cos θ∂t

]
,

(2.23)

with ∆(s)
S2 the spin weighted Laplacian on the sphere,

∆(s)
S2 = 1

sin θ∂θ sin θ∂θ + (∂φ + is cos θ)2

sin2 θ
+ s . (2.24)

For s = 0 the spacetime scalar function Ψs is just the massless scalar field, for s = +1
(s = −1) this is the transverse ingoing (outgoing) radiation Maxwell-NP scalar and for
s = +2 (s = −2) this is the transverse ingoing (outgoing) radiation Weyl scalar [30]. The
Weyl scalar ψ0 discussed in section 2.2 corresponds to Ψ2 in this nomenclature.

2.5 Near zone approximation(s)

Let us now introduce the near zone approximation [22, 28, 31, 32, 57, 60]. Its general
purpose is to come up with an exactly solvable truncation of the full Teukolsky equation
that would be accurate in a certain vicinity of the black hole, which is large enough to
overlap also with the asymptotically flat region. Let us write the full Teukolsky operators
in the following form,

O(s) ≡ O(s)
NZ + εO(s)

ε = ∆−s∂r∆s+1∂r + V0 + εV1 + s (s+ 1) ,

P(s) ≡ P(s)
NZ + εP(s)

ε = −
[
∆(s)

S2 − s (s+ 1) + ε
(
a2 sin2 θ∂2

t − 2isa cos θ∂t
)]

,
(2.25)

where we split the potential into the so-called near and far contributions V0 and V1,

V0 = −
(
r2

+ + a2)2
∆

[
(∂t + Ω ∂φ)2 + 4Ω r − r+

r+ − r−
∂t∂φ − 2s β−1∂t

]
+ s

a∆′
∆ ∂φ ,

V1 = −(r + r+)
(
r2 + r2

+ + 2a2)
r − r−

∂2
t + 2r

2
+ + a2

r − r−
(β − 2M) Ω ∂t∂φ

+ 2s
[
M (r + r+)−Q2

r − r−
− r

]
∂t ,

(2.26)

and we have introduced the (inverse of the) Hawking temperature,

β ≡ 1
2πTH

= 2 r
2
+ + a2

r+ − r−
, (2.27)

and the black hole’s angular velocity,

Ω ≡ a

r2
+ + a2 . (2.28)
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The split (2.25) is accomplished by means of a formal parameter ε which is equal to unity
for the full physical Teukolsky equation, while ε = 0 corresponds to the leading near zone
approximation. The latter is accurate as long as the following conditions are satisfied,

ωr � 1 , Mω � 1 . (2.29)

This regime covers the region around the black hole r & r+ and also has an overlap with
the asymptotically far region r � r+.

Importantly, the near zone expansion is not equivalent to the low frequency expansion
because V0 and V1 contain terms with equal powers of frequency. Nevertheless, it does
provide an accurate approximation at low frequencies in the near zone region (2.29) because
the V1 corrections are suppressed there. In particular, the near zone approximation is exact
for ω = 0 modes, which are relevant for static tidal response calculations.

Related to this, there is an ambiguity in the definition of a near zone expansion
associated with a freedom to move ω-dependent terms between V0 and V1 as long as V1 stays
finite at the horizon. Other choices of the near zone split can be found in, e.g. [31, 57, 60].
For future reference, let us explicitly present the Starobinsky choice,

V Star
0 = −

(
r2

+ + a2)2
∆ (∂t + Ω ∂φ)2 + s

(
r2

+ + a2)∆′
∆ (∂t + Ω ∂φ) , (2.30)

V Star
1 = −(r + r+)

(
r2 + r2

+ + 2a2)
r − r−

∂2
t − 4 Ma

r − r−
∂t∂φ + 2s

[
M
r − r+
r − r−

− r
]
∂t . (2.31)

As will be explained later, we chose a particular near zone split (2.25) because in this
approximation black hole pertubations exhibit the enhanced Love symmetry.

As far as the angular problem is concerned, the leading near zone approximation is chosen
to coincide with the static approximation. The leading angular eigenfunctions are then
given by the standard spin weighted spherical harmonics (see ref. [28] for our conventions),

S (θ) = e−imφsY`m (θ, φ) . (2.32)

The orbital number ` ≥ |s| is always an integer in the leading near zone approximation.

3 Love numbers in general relativity and beyond

In this section we summarize a number of facts about black hole Love numbers. First, we
present a master formula for Kerr-Newman black hole response coefficients to perturbing
fields of spin s in the near zone approximation. This formula embodies the facts that in four
dimensional general relativity black hole Love numbers are zero but dissipative numbers
are not. Then we turn to higher dimensional Schwarzschild black holes, which exhibit a
more complex Love number phenomenology. After that, we present an explicit example
of non-vanishing and running Love numbers. Namely, we will show that black hole Love
numbers are not zero and exhibit a logarithmic running in the Riemann-cubed gravity.
Finally we will comment on the relation between Love numbers and black hole (no) hair.
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3.1 Master formula for black hole Love numbers in four dimensions

In order to calculate static black hole Love numbers describing response to a perturbing
fields of spin s, one needs to solve the static (ω = 0) radial Teukolsky equation

O(s)R = `(`+ 1)R ,

where O(s) is the operator obtained from O(s) after expanding into monochromatic and
harmonic modes, that is, after replacing ∂t → −iω and ∂φ → im. At this point it is
instructive to consider an extension of the static Teukolsky equation to finite frequencies,
by using the Starobinsky near zone approximation for O(s). This will allow us to capture a
part of the full finite frequency response associated with frame dragging. Then we need to
find a solution to

O(s) Star
NZ R = `(`+ 1)R , (3.1)

which is regular at the black hole horizon. It is given by

R = ∆−s
(
r − r+
r − r−

)iZ
2F1

(
−`− s, `+ 1− s; 1 + 2iZ − s; r+ − r

r+ − r−

)
, (3.2)

where 2F1(a, b; c;x) is the Gauss hypergeometric function and we have defined

Z ≡
r2

+ + a2

r+ − r−
(mΩ− ω) . (3.3)

It is most straightforward to interpret this result for a static scalar response in the
Schwarzschild case. This corresponds to setting

s = 0 , Z = 0 ,

so that the resulting radial function reduces to a hypergeometric function, which is purely
polynomial in r in this case. This indicates that the static scalar response completely
vanishes in the Schwarzschild example.

This conclusion is not immediately obvious at s 6= 0 and/or Z 6= 0 due to the presence
of a non-polynomial factor ∆−s

(
r−r+
r−r−

)iZ
in (3.2). However, this factor does not affect

the extraction of the Love numbers, which follows from the fact that it multiplies the full
solution,4 and hence appears both in front of the source and of the response. Another
way to see that this factor cannot affect coordinate independent response coefficients is
to note that its presence or absence depends on the choice of coordinates and of the null
tetrad (the Boyer-Lindquist frame and the Kinnersley tetrad correspondingly in our case).
For instance, the form factor

(
r−r+
r−r−

)iZ
can be completely removed by a transition to

the advanced coordinates [19]. Similarly, the ∆−s can be stripped off by an appropriate
null boost [29, 30].

All in all, the reponse coefficients are completely determined by the hypergeometric
function in eq. (3.2). In the near zone approximation `+ s is a non-negative integer and

4By this we mean that if we were to write down the most general solution, without imposing the regularity
condition at the horizon, this overall multiplicative factor would still be present.
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hence this hypergeometric function is a polynomial of order `+ s. This implies that the
static Love numbers are zero also in the Kerr-Newman case for general spin s perturbations
and Ω.

Note, that in principle one should be careful to draw the latter conclusion just based
on the polynomial form of the solution (up to an overall multiplicative factor). Indeed,
as discussed in section 2 to extract the response coefficients one needs to disentangle the
source and response contributions into the full solution. In the case at hand this is achieved
most easily by a formal analytic continuation to non-integer values of `. As a result, one
obtains that the black hole still exhibits a non-vanishing dissipative response in spite of the
(quasi)polynomial form of (3.2). It can be summarized by the following master formula for
the black hole response coefficients to a perturbing field of integer spin weight |s| ≤ 2 [19],5

k
(s)
`m = i sinh 2πZ

2π |Γ (`− 2iZ + 1)|2 (−1)s+1 (`+ s)! (`− s)!
(2`)! (2`+ 1)!

(
r+ − r−
rs

)2`+1
. (3.4)

These harmonic response coefficients are purely imaginary and also odd w.r.t. time-reversal
transformations. Thus, they correspond to dissipative effects. As a consequence of using the
leading Starobinsky near zone approximation they depend on the frequency only through
the frame-dragging factor ω −mΩ. The conservative static responses of black holes, i.e.
Love numbers, are exactly zero for all spins.

We observe that, in addition to vanishing of the Love numbers, the black hole response
exhibits an additional surprising feature. Namely, at non-integer ` the hypergeometric
function in (3.2) splits into a sum of non-overlapping source and response contributions of
the form

2F1 ∼ r` (1 + . . . ) + kr−`−1 (1 + . . . ) ,

where dots stand for two infinite series of power law corrections ∑ an/r
n with positive

integer n’s. At the (physical) integer values of ` the two series overlap and conspire to
produce a polynomial answer for the full solution, even though both source and response are
still given by non-trivial infinite series as reflected by the presence of non-trivial response
coefficients (3.4). Hence, the actual puzzle to explain is the (quasi)polynomial form of (3.2).
We will see that it arises as a consequence of the highest weight property of the corresponding
representation of the Love symmetry.

From eq. (3.4) we also see a technical advantage of the Starobinsky near zone approxima-
tion. It provides a simple frequency-dependent extension which allows to capture co-rotating
modes while keeping the complexity of the solution the same as in the static case. It is
important to remember though that the result (3.4) is exact only for static perturbations
(ω = 0). Its frequency-dependent part is approximate and does not capture the full black
hole response at non-zero ω. A systematic calculation shows that Love numbers receive

5In [19], the master formula was derived only for neutral Kerr black holes. However, the inclusion of an
electric charge [61] is straightforward because it does not alter the form of the perturbation equations.

– 15 –



J
H
E
P
1
0
(
2
0
2
2
)
1
7
5

corrections already at linear order in ω [19],

δk
(s)
`m = −2(ωrs)mγ ln

(
r − r+
r+ − r−

)

×
(
r+ − r−
rs

)2`+1
(−1)s (`+ s)!(`− s)!

(2`)!(2`+ 1)!
∏̀
n=1

(
n2 + 4(mγ)2

)
,

(3.5)

where
γ ≡ a

r+ − r−
,

and we retained only the scheme-independent logarithmic part. This result indicates that
non-static (“dynamical”) black hole Love numbers are in general non-zero and exhibit
logarithmic running, in agreement with expectations of Wilsonian naturalness.

Let us also note that the above analysis does not apply for extremal black holes with
a2 +Q2 = M2. This happens because the correction to the potential V Star

1 , given by (2.31)
and neglected in the Starobinsky near zone approximation, develops a singularity at the
horizon in the extremal limit. Nevertheless, there exists a consistent near zone truncation of
the Teukolsky equation even in the extremal limit, see appendix A. In this approximation,
the conservative response coefficients do not vanish for finite frequencies, but the static
Love numbers are still zero,

k
(s)
`m = 0 , a2 +Q2 = M2 . (3.6)

In section 8, we will provide a somewhat complementary explanation for this fact by
presenting a symmetry that is valid in the so-called “middle zone”, interpolating between
the near horizon region (but not the horizon itself) and the asymptotically flat region.

3.2 Higher dimensions

Love numbers have also been computed for higher d-dimensional spherically symmetric
asymptotically flat black hole geometries,

ds2 = −f (r) dt2 + dr2

f (r) + r2dΩ2
d−2 , f (r) = 1−

(
rs
r

)d−3
, (3.7)

where dΩ2
d−2 is the line element on the unit Sd−2. The responses to scalar and electric-type

spin-1 and spin-2 perturbations take the following general form [17, 18],

k
(s)
el,` = A

(s)
ˆ̀ tan π ˆ̀, (3.8)

where A(s)
ˆ̀ are certain non-zero and real constants and

ˆ̀≡ `

d− 3 .

These Love numbers are in general not zero, but they still vanish in particular situations
when ˆ̀∈ N. The apparent divergences at ˆ̀∈ N + 1

2 signal the classical renormalization
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group (RG) running with a finite scheme-independent coefficient in front of the logarith-
mic corrections [17].

The magnetic-type Love numbers have a very different behavior. Their main features
are captured by the following expressions for spin-1 and spin-2 perturbations [18],

k
(s)
mag,` = B

(s)
ˆ̀

sin π
(

ˆ̀+ 1
d−3

)
sin π

(
ˆ̀− 1

d−3

)
sin 2π ˆ̀ , (3.9)

with B(s)
ˆ̀ certain non-zero and real constants. Magnetic-type Love numbers are never zero

for d > 4, not even when ˆ̀∈ N, but they still exhibit a classical RG flow whenever ˆ̀∈ N+ 1
2 .

The magnetic- and electric-type Love numbers coincide only in d = 4 as a result of the
electric-magnetic duality that takes place only in this spacetime dimensionality [18, 62].

3.3 Running scalar Love numbers in R3 gravity

A simple important example of non-vanishing and running Love numbers is given by the
black hole scalar response in the Riemann cubed R3 gravity in four dimensions.

General effective field theory arguments suggest the presence of higher order curvature
corrections in the gravity action [63]. In the pure gravity case the R2 corrections to the
Einstein-Hilbert action can be eliminated by means of the leading (GR) equations of motion
in the vacuum and the Gauss-Bonnet identity. Hence the first non-trivial contribution
appears at the cubic order in curvature. In perturbation theory this contribution becomes
important at the two-loop order [64]. The action of the R3 gravity is given by,

Sgr [g] = − 1
16πG

∫
d4x
√
−g

(
R+ αRµν ρσR

ρσ
κλR

κλ
µν

)
. (3.10)

This modified gravitational action leads to the field equations of the form

Gµν + αKµν = 0 , (3.11)

where
Gµν = Rµν −

1
2Rgµν ,

is the Einstein tensor and

Kµν ≡ −
1
2gµνR

αβ
ρσR

ρσ
κλR

κλ
αβ + 3RµακλRκλρσR α

ν ρσ − 6∇σ∇ρ
(
R σκλ

(µ| R ρ
κλ |ν)

)
.

The first step in calculating the black hole Love numbers is to find the background
geometry. We focus on the modified Schwarzschild solution describing an asymptotically
flat and spherically symmetric black hole in the vacuum of this theory of gravity. As such,
the general background metric can be written as,

ds2 = −ft (r) dt2 + dr2

fr (r) + r2dΩ2
2 . (3.12)

We perturbatively expand the problem around the Schwarzschild results at α = 0. To
keep track of the boundary conditions at the horizon, it is convenient to introduce the
dimensionless variable

x = rh
r
,
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where r = rh is the radial position of the event horizon. We keep rh fixed at all values of α.
Note that in this parameterization the ADM mass of the resulting solutions is a non-trivial
function of α. Up to linear order in α, we then find

ft = (1− x)
(

1 + α

r4
h

(
−5x1− x5

1− x − 5x6
)

+O
(
α2
))

,

fr = (1− x)
(

1 + α

r4
h

(
−5x1− x5

1− x + 49x6
)

+O
(
α2
))

.

(3.13)

Let us calculate now the black hole response at the leading order in α. For simplicity,
we restrict to the scalar field response, so that we need to compute the static scalar field
profile by solving the Klein-Gordon equation,

frφ
′′
`m + (ftfr)′

2ft
φ′`m = ` (`+ 1)

x2 φ`m , (3.14)

where an expansion into spherical harmonics has been used. We look for a perturbative
solution of (3.14) as a series in α,

φ`m (x) = φ
(0)
` + α

r4
h

φ
(1)
` (x) +O

(
α2
)
, (3.15)

where at zeroth order in α one gets the conventional GR solution,

φ
(0)
` = (`!)2

(2`)!P`
(2− x

x

)
, (3.16)

corresponding to vanishing Love numbers. Higher order terms φ(n)
` are all regular at the

horizon at x = 1 and grow at infinity slower than the leading order solution,

φ
(n)
` x` → 0 as x→ 0 ,

for n > 0.
The leading corrections φ(1)

` are then extracted by solving the resulting linear inhomo-
geneous ODE. For ` = 1, 2 we find,

φ
(1)
1 = 7

2 + 2
5x

2 + 2
5x

3 + 9
25x

4 + 83
25x

5 ,

φ
(1)
2 = −5

x
+ 5

3 + 236
75 x

3 + 118
25 x

4 − 83
25x

5 .
(3.17)

We see that these corrections are no longer polynomial in r and, in particular, terms
proportional to x`+1 ∝ r−`−1 are arising, but there is still no sign of logarithmic RG
running. This changes for higher mulitpole numbers ` ≥ 3. For example, for ` = 3, we find

φ
(1)
3 = 230385

2x2 − 143994
x

+ 154877
4 −480x+48x2−5x3− 1851x4

250 + 249x5

125

− 1920
(
11x2−60x+60

)
logx

x2 + 5760(x−2)(x2−10x+10)(logx log(1−x)+Li2 (x))
x3
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At face value, the coefficients in front of the x`+1 terms that correspond to the Love numbers
read, for ` = 1, 2, 3, 4,

κ1 = 2
5
α

r4
h

, κ2 = 236
75

α

r4
h

κ3 = α

r4
h

(450501
12250 + 288

7 log x
)
, κ4 = α

r4
h

(1540202
11025 + 736

7 log x
)
,

(3.18)

where we denoted them as κ` in order to emphasize that it would be premature to identify
these with the Love numbers at this stage.

Indeed, as we discussed before, in order to rigorously identify the Love numbers through
the matching procedure, we need to compute the graviton corrections to the source term
and subtract them from the full GR solution. An alternative to this procedure is to perform
an analytic continuation ` → R, which removes an overlap between the source and the
response. Unfortunately, the complexity of the equations of motion in R3 gravity does
not allow us to construct a solution for generic `. Therefore, a more accurate calculation
involving a systematic expansion of the bulk action into interaction vertices and calculations
of the corresponding loop corrections is required. However, as we will see now, for many
purposes, it is possible to bypass a complete calculation by making use of the straightforward
dimensional analysis alone.

In particular, the situation simplifies when the logs appear. Logarithmic corrections
are present both in the IR and UV theories. In the IR, the logarithms are associated with
divergences in the EFT loop integrals [17]. The finite logarithmic part is associated with
the RG running of the physical Love number. This is exactly the situation that we have in
R3 gravity with ` ≥ 3, and we conclude that the ` ≥ 3 Love numbers exhibit log running
there, and κ` are the corresponding leading log coefficients.

3.4 Power counting for Love numbers

Let us see now that the presence of this classical RG running for ` ≥ 3 scalar Love numbers
in R3 gravity can be understood based on a power counting argument. In fact, the argument
applies for a general theory of gravity with the action of the following schematic form

Sgr ∼
1

16πG

∫
ddx
√
−g

∞∑
k=1

αk (Rµνρσ)k , (3.19)

where the coupling constants αk have mass dimensions 2 (1− k). As we discussed, the
source/response ambiguity and associated running of Love numbers occurs when gravita-
tional non-linearities caused by the source contribute to the total field at the same order,
r−`−1, as the response. A typical EFT diagram representing these non-linearities has the
following schematic form

...

×

N ∼ E`mr`
(
GM

r

)N
×
××···×

(3.20)
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where E`mr`,MN and (G/r)N come from the asymptotic source insertion, graviton-worldline
vertices and graviton propagators attached to the worldline respectively. The remaining
blob diagram contributes a factor of(

G

r2

)L∏
k

(
αk

r2(k−1)

)nk
, (3.21)

where L is a number of loops in the blob and nk is the multiplicity of the αk vertex. The
classical contribution to the response, which is our focus here, corresponds to L = 0. In
these expressions we reconstructed the powers of r using the “naive dimensional analysis”
(NDA). NDA correctly reproduces powers of r (but misses the logarithms, which generically
arise whenever the EFT diagrams are divergent) provided one is using the mass independent
scheme such as the dimensional regularization to regulate the EFT infinities. To give rise
to a non-trivial contribution into the corresponding Love number, the diagram should scale
as r−`−1, which implies that

N = 2`+ 1− 2
∑
k

nk(k − 1) . (3.22)

A specific case considered in section 3.3—the leading order calculation in R3 gravity —
corresponds to n3 = 1 with n2 = 0 and nk>3 = 0. In this case one also finds N ≥ 2, given
that the α3 vertex has at least three graviton legs so that for tree level diagrams the number
of gravitons attached to the worldline can’t be smaller than two (this accounts for the fact
that one graviton connects to the bulk scalar field vertex). This leaves as with the condition

` ≥ 3

for the possibility of the source responce mixing, in agreement with the presence of log
running as observed in the microscopic calculation in section 3.3. As a byproduct, this
argument indicates also that there is no source-response mixing at ` = 1, 2, so that the
values of κ1,2 given by (3.18) are the actual Love numbers.6 It is worth mentioning that
the case of gravitational perturbations in Riemann-cubed gravity was studied in ref. [65],
which showed that the ` = 2 Love numbers are not zero without addressing an issue of the
source/response separation. A similar analysis and conclusions were made in the gravity
theory with the R4 corrections in ref. [66].

It is instructive to contrast our results in R3 gravity with properties of Love numbers
in the Einstein theory in d dimensions. There the analog of (3.22) is

N (d− 3) = 2`+ d− 3 , (3.23)

where we accounted for the fact that in d dimensions the Newton constant G has dimension
massd−2 and that the decaying solution of the Laplace equation scales as

φ` ∝ r−`−d+3 .

6Let us recall, however, that in applications of these expressions it may be necessary to account for the
non-trivial relation between rh and the black hole ADM mass in our conventions.
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Hence, based on the dimensional analysis presented above, one expects to find logarithmic
running of the Love numbers whenever (3.23) can be satisfied with integer N , i.e. for integer
and half-integer values of ˆ̀. The latter expectation indeed holds, while the former does not.
Love numbers exhibit running only for half-integer values of ˆ̀. At integer values of ˆ̀ one
finds vanishing Love numbers instead. In particular, at d = 4 one expects the Love numbers
to exhibit running at all values of `; instead they all vanish identically.

Technically, for spin-0 and spin-2 fields, the absence of logarithmic running for integer
values of ˆ̀ can be understood within EFT from the special structure of nonlinear vertices
in the Einstein action in the conveniently chosen ADM gauge [17, 20]. However, this still
leaves one wonder whether this fact itself is indicative of the additional symmetry structure
in the microscopic theory, which turns out to be the case as we will see.

3.5 Love numbers vs no-hair theorems

Vanishing of Love numbers is often linked to another famous property of black holes —
no-hair theorems. Let us briefly compare these phenomena, the main point being that
the two are in fact quite distinct and different, at least as far as the discussion of EFT
naturalness and fine-tuning go. To make a proper comparison it is important to be precise
about what black hole hair are. Note also that the no-hair property is often used to
distinguish black holes from conventional objects such as stars, rocky planets or scalar field
solutions. Again, we will see that to draw such a distinction it is important to be precise in
defining the notion of hair.

A simple observation showing that the vanishing of Love numbers is not a consequence
of no-hair theorems is based on the Bekenstein argument [67, 68]. The no-hair theorem in
the Bekenstein sense is the statement that one cannot “anchor” a regular and decaying at
infinity scalar field profile to the black hole geometry. This statement is true both in four
and in higher dimensions. However, we know that generically Love numbers do not vanish
in higher dimensions.

Let us now define hair more systematically. Possible black hole hair can be divided into
three broad categories. The first type of hair is a situation when a black hole is a member
of a family of solutions which have additional continuous parameters on top of mass, spin
and gauge charge(s). This type of hair is sometimes called “primary hair.” This primary
hair match the perturbative notion of Bekenstein, as its presence implies the presence of a
zero mode, i.e. the possibility to anchor an additional field to a black hole, see e.g. [69].

The primary hair have to be distinguished from “secondary hair”, which refer to a
situation when black holes support additional fields (typically, scalar fields), which are not
associated to any conserved gauge charges. An example of this situation is a theory with a
non-minimally coupled scalar field (e.g. [70, 71]), which give new black hole solutions that
are different from the ones existing in the absence of such couplings. Black holes do not
acquire any new continuous parameters in this case, so that the corresponding field profiles,
if they exist, are still uniquely fixed by the values of a black hole mass, spin and charge(s).

Finally, for a proper comparison of black holes to conventional objects, such as rocky
planets, it is important to consider also a possibility of “discrete hair”. This is a situation
when at fixed values of mass, spin and gauge charge(s) one finds a (potentially very large)
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“discretuum” of distinct black hole solutions. Similarly to the secondary hair no new
continuum parameter is present in this case. In the context of rocky planets, there are new
parameters characterizing the multipolar structure such as e.g. “mountain height”. Another
example is given by higher-dimensional black holes, which are characterized by a “discrete”
set of topologies [72].

Let us see now that these three scenarios have very different properties both from
the EFT viewpoint and in the microscopic theory, and also as far as the relation to Love
numbers is concerned. To check the absence (or presence) of primary hair at the level of the
microscopic theory one needs to perform a study which is very similar to the calculation of
the Love numbers. Indeed, primary hair correspond to time-independent solutions to the
Teukolsky equation, which are regular both at the horizon and at the spatial infinity.

Importantly, the presence of primary hair would be a fine-tuning and would require a
symmetry explanation, similarly to the vanishing of Love numbers. In the EFT description
primary hair give rise to additional gapless degrees of freedom on the worldline. Also in
this description their presence would be indicative of fine-tuning unless some additional
symmetry is present. This implies that the absence of black hole primary hair (contrary
to the vanishing of Love numbers) is not surprising, and is not that special to black holes.
Primary hair are generically absent also for conventional objects, such as rocky planets
and solitons. The only peculiar feature of black holes in this respect, is that, unlike for
conventional objects, their continuum parameters can only be gauge charges, i.e., black
holes are neutral w.r.t. global charges.

In spite of these differences, the absence of primary hair still has some relevance for the
properties of Love numbers. Namely, if primary hair were present in a certain sector, it
would be impossible to define the corresponding tidal response. Indeed, Love numbers are
defined by the decaying tail of the black hole perturbation, which is regular at the horizon.
The presence of primary hair would allow to change the decaying tail arbitrarily by adding
the corresponding solution. A physical realization of an object with primary hair would be
a planet made of something like plastic, which can be deformed continuously. An object
like this may exhibit a hysteresis property, preventing a definition of the tidal response.

One may be puzzled by this discussion given that the absence of hair is often used
to distinguish black holes from conventional objects. We already saw one sense in which
this is correct, namely, unlike black holes, conventional objects may carry primary hair
corresponding to global charges. In addition, it is the possibility of discrete hair which
distinguishes conventional objects from black holes in four-dimensional general relativity.
Thus, unlike a black hole, a piece of rock of fixed mass and angular momentum (and
other charges) may take many different shapes, which cannot be smoothly deformed into
each other without breaking the rock into smaller pieces and gluing them back together.
However, the absence or presence of such discrete hair is invisible from the viewpoint of the
worldline EFT describing each individual shape, and has no bearing on the properties of
Love numbers.

Finally, secondary hair are associated to tadpole couplings in the worldline EFT.
Similarly to the vanishing of Love numbers, their absence also appears as tuning in the
worldline EFT unless additional symmetries are present. However, secondary hair again
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has little to do with the properties of Love numbers. Secondary hair is a property of
the background solution, while the Love numbers are determined by the behavior of
small perturbations.

4 Love symmetry

In this section we present a hidden symmetry which governs dynamics of black hole
perturbations in the near zone approximation. We call it “Love symmetry” because it is
this symmetry that forces the black hole Love numbers to vanish. We will describe this
symmetry as follows. First, we start with a simple case of a massless scalar field equation in
the Schwarzschild black hole background, which is known to posses an enhanced SL (2,R)
symmetry in the near zone approximation [73]. We will explicitly show that static scalar
Schwarzschild black hole perturbations belong to highest weight representations of SL (2,R),
which implies the vanishing of scalar Love numbers. We will extend this argument to a
massless scalar field in the Kerr-Newman black hole background, which posses a similar
SL (2,R) structure. Then, we generalize our results to generic spin-s fields. We will present a
general SL (2,R) symmetry which addresses the vanishing of scalar (s = 0), electromagnetic
(s = ±1), and gravitational (s = ±2) Love numbers of Kerr-Newman black holes in four
dimensions. Finally, we will show how the Love symmetry of a scalar wave equation can be
generalized to higher dimensions.

4.1 Scalar perturbations of Schwarzschild black holes

Consider a massless scalar field in the Schwarzschild black hole background,

ϕ = Φ (t, r, φ)S (θ) = e−iωteimφR (r)S (θ) . (4.1)

The radial wavefunction Φ satisfies the following Klein-Gordon (equivalently, spin-0 Teukol-
sky) equation

(∂r∆∂r + V0 + εV1) Φ = `(`+ 1)Φ , (4.2)

where V0 and V1 are given by (2.26) with s = 0 and a = 0. Consider now the following
vector fields [28, 73],

L0 = −β ∂t , L±1 = e±t/β
[
∓
√

∆ ∂r + ∂r
(√

∆
)
β ∂t

]
, (4.3)

where β is the inverse Hawking temperature of the Schwarzschild black hole,

β = 1
2πTH

= 2rs . (4.4)

By transforming these vectors into advanced/retarded Eddington-Finkelstein coordinates,
one can check that they are regular both at the future and at the past event horizons (see
appendix B for more details). Also, they obey the SL (2,R) algebra commutation relations,

[Lm, Ln] = (m− n)Lm+n , m, n = −1, 0,+1 . (4.5)
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The quadratic Casimir of this algebra reproduces a differential operator of the Klein-Gordon
equation in the near zone (ε = 0),

C2 = L2
0 −

1
2 (L+1L−1 + L−1L+1) = ∂r∆∂r −

r4
s

∆ ∂2
t = O(s=0)

NZ . (4.6)

The solution of this equation Φ is an eigenvector of both L0 and C2 ,

L0Φ = hΦ = iωβΦ , C2Φ = `(`+ 1)Φ , (4.7)

where ` is an integer number by virtue of the static angular eigenvalue problem, namely,
` is the orbital number label of the spherical harmonics. Therefore, all solutions Φ form
representations of SL (2,R). Moreover, as a consequence of the regularity of the vector
fields L’s, solutions regular at the horizon are closed under the SL (2,R) action.

This is a powerful statement, because now we can derive many properties of black hole
perturbations from group theory arguments. In particular, let us demonstrate how the Love
symmetry implies the vanishing of static scalar Love numbers k(0)

` . These are independent
of the azimuthal number m due to spherical symmetry of the background, so in this section
we set m = 0 without loss of generality. They are extracted from the static solution, which
is a null-vector of L0 = −β ∂t. This solution belongs to a highest weight representation of
SL (2,R).7 To see this, let us explicitly construct this representation. It is generated by a
highest weight (primary) vector υ−`,0 with weight h = −`,

L+1υ−`,0 = 0 , L0υ−`,0 = −`υ−`,0 . (4.8)

Up to an overall normalization factor, this solution is given by

υ−`,0 = e`t/β∆`/2 . (4.9)

This function solves the near zone massless Klein-Gordon equation for multipolar order `
with an imaginary frequency ω−`,0 = i`/β and is regular both at the future and at the past
event horizons. Since the generators L±1 are regular on the horizon, all the descendants,

υ−`,n = (L−1)n υ−`,0 (4.10)

are also regular solutions of the massless Klein-Gordon equation, now with frequency
ω−`,n = i (`− n) /β. In particular, we immediately see that the physical static solution
with zero frequency is an element of this highest weight representation,

Φ (ω = 0) ∝ υ−`,` = (L−1)` υ−`,0 . (4.11)

As such, it must be annihilated by (L+1)`+1. From the explicit action of the vector
fields (4.3), we observe that, for any arbitrary radial function F (r),

(L+1)n F (r) =
(
−et/β

√
∆
)n dn

drn
F (r) . (4.12)

7See appendix C for a brief review of the indecomposable SL (2,R) representations.
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υ−`,2`

υ−`,`

υ−`,2

υ−`,1

υ−`,0

...

...

L+1

L+1 L−1

L−1

Figure 1. The finite-dimensional highest weight representation of SL (2,R) whose elements solve the
near zone equations of motion for a massless scalar field in the Schwarzschild black hole background
with multipolar index ` and contains the regular static solution.

For the static solution υ−`,` = F (r), the annihilation condition then reads,

(L+1)`+1 υ−`,` =
(
−et/β

√
∆
)`+1 d`+1

dr`+1υ−`,` = 0 , (4.13)

implying that the physical static solution must be a degree-` polynomial in r,

υ−`,` =
∑̀
n=0

cnr
n = c`r

` + · · ·+ c1r + c0 . (4.14)

Clearly, this solution does not have terms with decaying powers ∝ r−`−1, which is precisely
the condition for the vanishing of static Love numbers.

Note that in the case of a scalar field in the four-dimensional Schwarzschild black hole
background one can arrive at the same conclusion starting from a lowest weight vector.
Indeed, we can construct the lowest weight vector of weight h = +`,

L−1ῡ+`,0 = 0 , L0ῡ+`,0 = +`ῡ+`,0 ⇒ ῡ+`,0 = e−`t/β∆`/2 , (4.15)

which is also a solution of the massless Klein-Gordon equation with multipolar index ` that
is regular on both the future and past event horizons, but this time with the frequency
ω̄+`,0 = −i`/β. A regular static solution would then be identified as the particular ascendant
with zero L0-eigenvalue,

Φ (ω = 0) ∝ ῡ+`,−` = (L+1)` ῡ+`,0 (4.16)

By the uniqueness of the regular solution, this implies that the highest and lowest weight
representations are actually the same, i.e. this is a finite (2`+ 1)-dimensional representation
of SL (2,R), and consequently

ῡ+`,0 = υ−`,2` . (4.17)

Our construction of the highest weight representation of SL (2,R) in the near zone equations
of motion for the scalar perturbations of Schwarzschild black hole is summarized in figure 1.

The fact that the highest weight and lowest weight representations of SL (2,R) coincide
is unique to the Schwarzschild background and to spin-0 fields. We will see momentarily
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ῡ−`−1,2`+3

ῡ−`−1,2`+2

ῡ−`−1,2`+1

ῡ−`−1,2`

ῡ−`−1,`+1

ῡ−`−1,2

ῡ−`−1,1

ῡ−`−1,0

ῡ−`−1,−1

...

...

...

...

L+1 L−1

L−1

L+1 L−1

L+1 L−1

L+1

L+1 L−1

Figure 2. The infinite-dimensional representation of SL (2,R) whose elements solve the near zone
equations of motion for a massless scalar field in the Schwarzschild black hole background with
multipolar index ` and contain the singular static solution.

that for the Kerr black holes, and also for spin-s fields in the Schwarzschild metric, this
is not the case. In these more general cases the highest weight representation contains
solutions that are regular on the physical future event horizon, while the lowest weight
representation contains physically irrelevant solutions that are regular on the past event
horizon and singular on the future event horizon.

In the Schwarzschild s = 0 case, instead, a static solution that is singular on the event
horizon belongs to the representation shown in figure 2. This is spanned by vectors υ̃−`,m,
m ∈ Z. The upper part of the ladder is constructed by ascendants of the lowest weight
state υ̃−`−1,0 with weight h = −`− 1,

L−1υ̃−`−1,0 = 0 , L0υ̃−`−1,0 = − (`+ 1) υ̃−`−1,0 ⇒ υ̃−`−1,0 = e(`+1)t/β∆−
`+1

2 .

(4.18)
All the elements in this upper ladder are in fact singular (regular) at the future (past)
event horizon with frequencies ω̃−`−1,−n = i (`+ 1 + n) /β. Nevertheless, solutions singular
at both the future and the past event horizon exists in the middle part of the ladder,
constructed by requiring that υ̃−`−1,0 is itself an ascendant of υ̃−`−1,1, a condition that
gives an inhomogeneous first-order differential equation to solve,

υ̃−`−1,0 ∝ L+1υ̃−`−1,1 6= 0 ⇒ υ̃−`−1,1 ∝ e`t/β∆−`/2 ln r − rs
r

. (4.19)
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Clearly, υ̃−`−1,1 is singular at the horizon.8 The subsequent descendants will then also
be singular, up until υ̃−`−1,2`+2 beyond which we enter the lower part of the ladder. At
that step, υ̃−`−1,2`+2 becomes a highest weight vector of weight h = +` + 1. Then, all
the descendants υ̃−`−1,2`+2+n, with n ≥ 0, are regular (singular) at the future (past) event
horizon with frequencies ω̃−`−1,2`+2+n = −i (`+ 1 + n) /β. The region of interest of course
is the middle part of the ladder, spanned by the singular at the horizon vectors υ̃−`−1,n+1,
n = 0, . . . , 2` which have frequencies ω−`−1,n+1 = i (`− n) /β. The singular static solution
is then identified as the state υ̃−`−1,`+1 and the structure of the representation implies,

L−1 (L+1)`+1 υ̃−`−1,`+1 = 0⇒ d

dr

(
∆`+1 d

`+1

dr`+1 υ̃−`−1,`+1

)
= 0 . (4.20)

This is indeed the condition satisfied by the singular at the horizon static solution as can
be checked by its explicit expression in terms of Legendre polynomials of the second kind.

Finally, let us briefly comment on the massive wave equation with mass µ. In the
regime µ (r − rs)� 1, and µM � 1, it has the following form in the Schwarzschild black
hole near zone approximation [73],[

∂r∆∂r −
r4
s

∆ ∂2
t

]
Φ =

[
`(`+ 1) + µ2r2

s

]
Φ . (4.21)

The mass changes the eigenvalue of the Love symmetry Casimir such that the physical
static solution Φ (ω = 0) regular at the horizon does not belong to the highest weight
SL (2,R) representation anymore. A direct calculation shows that Love numbers are not
zero. At the leading order in µ2r2

s , they take constant values without any running. This
example illustrates that the presence of the Love symmetry alone is not enough to ensure
the vanishing of Love numbers. The crucial role is played by the highest weight property of
the corresponding representations.

4.2 Scalar perturbations of Kerr-Newman black holes

The generators of the Love symmetry in the Kerr-Newman black hole background have
the form

L0 = −β ∂t , L±1 = e±t/β
[
∓
√

∆ ∂r + ∂r
(√

∆
)
β ∂t + a√

∆
∂φ

]
, (4.22)

where the inverse Hawking temperature of the Kerr black hole is now given by

β = 1
2πTH

= 2 r
2
+ + a2

r+ − r−
. (4.23)

Note that these generators are singular in the extremal limit r− → r+, which also corresponds
to the vanishing Hawking temperature. This limit will be discussed separately. The new

8We are ignoring here an irrelevant additive piece which is regular at the past event horizon and is
annihilated by L+1. This freedom reflects the fact that, starting from one particular singular solution, we can
always construct another (linearly dependent) singular solution by adding to the profile a regular solution.
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generators also satisfy the SL (2,R) algebra (4.5) while the resulting Casimir operator again
coincides with a near zone Teukolsky differential operator

C2 = ∂r∆∂r −
(
r2

+ + a2)2
∆

[
(∂t + Ω ∂φ)2 + 4Ω r − r+

r+ − r−
∂t∂φ

]
= O(s=0)

NZ . (4.24)

As in the Schwarzschild case, the Love vector fields are regular on both future and past event
horizons as can be seen by transforming them to the advanced/retarded Kerr coordinates
(see appendix B for more details).

In what follows we assume that the scalar black hole perturbation Φ carries an arbitrary
azimuthal quantum number m, which is an eigenvalue of the U (1) axial rotation symmetry,

J0Φ = −i∂φΦ = mΦ . (4.25)

Note that the azimuthal U (1) commutes with the Love symmetry. Now we can show that
Kerr-Newman black hole Love numbers also vanish as a result of the Love symmetry. Most
of the argument can be straightforwardly borrowed from the Schwarzschild case. The
highest weight vector with h = −` is defined by,

L+1υ
(m)
−`,0 = 0 , L0υ

(m)
−`,0 = −`υ(m)

−`,0 . (4.26)

Solving eq. (4.26), we obtain (up to an arbitrary normalization constant)

υ
(m)
−`,0 =

(
r − r+
r − r−

)imγ
eimφe`t/β∆`/2 , γ ≡ a

r+ − r−
. (4.27)

This solves the (radial) near zone Teukolsky equation for multipolar order `, with imaginary
frequency ω−`,0 = i`/β. An important difference w.r.t. the Schwarzschild case is the
regularity condition. The solution υ(m)

−`,0 is still regular on the physical future event horizon,
but it is now singular on the past event horizon. As a result all its descendants,

υ
(m)
−`,n = (L−1)n υ(m)

−`,0 , (4.28)

are also solutions of equations of motion regular on the future event horizon. On the other
hand, for a lowest weight vector with h = +` we have

L−1ῡ
(m)
+`,0 = 0 , L0ῡ

(m)
+`,0 = +`ῡ(m)

+`,0 ,

⇒ ῡ
(m)
+`,0 =

(
r − r+
r − r−

)−imγ
eimφe−`t/β∆`/2 .

(4.29)

This solution is regular at the past event horizon, but singular at the future horizon. It
gives rise to an ascending tower of solutions that are regular on the past event horizon.

A physical black hole formed as a result of a collapse does not exhibit the past event
horizon. Hence, we are interested in the solutions which are regular at the future event
horizon, and their singularity at the past horizon does not pose a problem. This singles
out the highest-weight representation. As follows from the above discussion, it is now
infinite-dimensional, falling into the general category of Verma modules, see figure 3.
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υ−`,`

υ−`,2

υ−`,1

υ−`,0

...

...

L−1

L−1 L+1

L+1

(a) A highest weight SL (2,R) representation that
contains perturbations of Kerr-Newman black holes
that are regular on the future event horizon.

ῡ+`,`

ῡ+`,2

ῡ+`,1

ῡ+`,0

...

...

L+1

L+1 L−1

L−1

(b) A lowest weight SL (2,R) representation contain-
ing perturbations of Kerr-Newman black holes that
are regular on the past event horizon.

Figure 3. The infinite-dimensional highest and lowest weight representations of SL (2,R) whose
elements solve the near zone equations of motion for a massless scalar field in the Kerr-Newman
black hole background with multipolar index ` and contain the static solutions.

As before, the physical static solution is identified with the null L0-eigenstate in the
highest weight representation,

Φ (ω = 0) ∝ υ(m)
−`,` = (L−1)` υ(m)

−`,0 . (4.30)

Observing that,

(L+1)n
[(

r − r+
r − r−

)imγ
eimφF (r)

]
=
(
r − r+
r − r−

)imγ
eimφ

(
−et/β

√
∆
)n dn

drn
F (r) (4.31)

for arbitrary F (r) and n, the annihilation condition for the static case (n = `+ 1) implies
a polynomial form for F (r),

υ
(m)
−`,` =

(
r − r+
r − r−

)imγ
eimφF (r) ,

(L+1)`+1 υ
(m)
−`,` =

(
r − r+
r − r−

)imγ
eimφ

(
−et/β

√
∆
)`+1 d`+1

dr`+1F (r) = 0 ,

⇒ Φ (ω = 0) =
(
r − r+
r − r−

)imγ
eimφ

∑̀
n=0

cnr
n .

(4.32)

While this does not look like a pure polynomial solution due the overall r-dependent factor,
as discussed in section 3.1, this form-factor can be attributed to frame-dragging and does
not affect Love numbers. A polynomial form of the solution apart of this factor indicates
that the highest weight property ensures the vanishing of the Love numbers also in this case.

It is natural to ask whether other solutions which enter in the same multiplets with the
static ones have any physical interpretation. In the Schwarzschild case the corresponding
non-vanishing imaginary frequencies are given by

ωn = i 2πTHn .

– 29 –



J
H
E
P
1
0
(
2
0
2
2
)
1
7
5

Interestingly, the spacing between these modes matches the spacing of highly-damped
quasinormal modes (QNMs) given by [74]

ωk = i

4M (k + 1/2) = i 2πTH(k + 1/2) . (4.33)

However, while the spacing of states in the Kerr-Newman Love highest weight multiplet is
also 2πTH , the spacing of highly-damped QNMs actually does not match 2πTH [75, 76].9
On the other hand, the spacing of the so-called anomalous total transmission modes is
indeed equal to 2πTH for the Kerr black holes [79, 80]. It will be interesting to explore
whether this is more than a sheer coincidence.

4.3 General perturbations of Kerr-Newman black holes

Let us now present the most general case of the four-dimensional Kerr-Newman black hole
perturbations with an arbitrary integer spin weight s. The generators of the Love SL (2,R)
algebra are not spacetime vectors anymore: they acquire a scalar part proportional to the
spin weight of the perturbation [28],

L
(s)
0 = −β ∂t + s

L
(s)
±1 = e±t/β

[
∓
√

∆ ∂r + ∂r
(√

∆
)
β ∂t + a√

∆
∂φ − s (1± 1) ∂r

(√
∆
)]

.
(4.34)

The Casimir of the algebra spanned by the above generators is given in eq. (2.25)–(2.26).
These additional s-dependent parts are singular at the horizon. However, this singular
behavior is an artifact related to the use of the Kinnersley tetrads [59] that are singular at the
horizon themselves. The relevant spin-s scalars are regular at the horizon for the appropriate
well-behaved choice of coordinates and tetrads [29]. Another important difference w.r.t. the
spin-0 case is that the static solution now has a non-zero L0 eigenvalue,

L0Ψs (ω = 0) = sΨs (ω = 0) . (4.35)

Let us show now that this state belongs to a highest weight representation with weight −`
(recall that ` ≥ |s|). We start with a highest weight vector υ(m)

−`,0 of azimuthal number m
that satisfies

L+1υ
(m)
−`,0 = 0 , L0υ

(m)
−`,0 = −`υ(m)

−`,0 . (4.36)

It is straightforward to integrate these equations and to obtain

υ
(m)
−`,0 =

(
r − r+
r − r−

)imγ
eimφe(`+s)t/β∆(`−s)/2 . (4.37)

By transforming this vector into the advanced coordinates we see that it is regular on the
future horizon, but singular on the past one. Now it is instructive to rewrite L(s)

+1 as

L
(s)
+1 = L+1 − 2set/β∂r

(
∆1/2

)
, (4.38)

where L+1 is the vector in the scalar field case, which is manifestly regular at the horizon.
9In the Kerr case, early works suggested that the spacing of the imaginary part of the highly-damped

quasinormal modes matches 2πTH , but only for modes with the positive magnetic number m > 0 [77, 78].
Later studies refuted these results [75, 76].
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A Newman-Penrose scalar Ψs that is regular at the future event horizon must have the
form ∆−sf with f being a function that is regular on the future event horizon [29, 30]. For
any function f we have

L
(s)
+1∆−sf = ∆−sL+1f , L

(s)
−1∆−sf = ∆−s

[
L−1 − 2s e−t/β∂r

(√
∆
)]
f . (4.39)

As L±1f is regular for regular f , any vector of the form ∆s(L(s)
±1)n[∆−sf ] is regular too.

This way, acting on υ(m)
−`,0 with L(s)

±1, we will get new regular solutions thereby generating
a multiplet containing solutions to the Teukolsky equation that are regular at the future
event horizon. The descendant with L0-eigenvalue equal to s is then identified with the
regular static solution,

Ψs (ω = 0) ∝ υ(m)
−`,`+s =

(
L

(s)
−1

)`+s
υ

(m)
−`,0 . (4.40)

This state satisfies the annihilation condition (L(s)
+1)`+s+1υ−`,`+s = L

(s)
+1υ−`,0 = 0. Noting

that, for any n and F (r),

(
L

(s)
+1

)n [(r − r+
r − r−

)imγ
eimφ∆−sF (r)

]

=
(
r − r+
r − r−

)imγ
eimφ∆−s

(
−et/β

√
∆
)n dn

drn
F (r) ,

(4.41)

the physical static solution υ(m)
−`,`+s =

(
r−r+
r−r−

)imγ
eimφ∆−sF (r) satisfies

(L+1)`+s+1 υ
(m)
−`,`+s =

(
r − r+
r − r−

)imγ
eimφ∆−s

(
−et/β

√
∆
)`+s+1 d`+s+1

dr`+s+1F (r) = 0 ,
(4.42)

which implies that F (r) is polynomial of order `+ s. Consequently, the static solution is
given by

Ψs (ω = 0) =
(
r − r+
r − r−

)imγ
eimφ∆−s

`+s∑
n=0

cnr
n . (4.43)

From this expression we conclude that black hole Love numbers w.r.t. general spin-s
perturbations vanish.

4.4 Scalar perturbations of higher dimensional Schwarzschild black holes

The Love symmetry is also present in higher dimensions, which was first pointed out in
ref. [73]. The d-dimensional Schwarzschild black hole background geometry is given by,

ds2 = −f (r) dt2 + dr2

f (r) + r2dΩ2
d−2 , f (r) = 1−

(
rs
r

)d−3
, (4.44)

where dΩ2
d−2 is the line element on the hypersphere Sd−2 and the Schwarzschild radius is

related to the ADM mass M of the black hole as,

rd−3
s = 16πGM

(d− 2) Ωd−2
. (4.45)
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A massless scalar field propagating in this background geometry obeys the following Klein-
Gordon equation,

gµν∇µ∇νϕ =
[ 1
rd−2∂r

(
rd−2f∂r

)
− 1
f
∂2
t + 1

r2 ∆Sd−2

]
ϕ = 0 . (4.46)

We separate the variables as follows,

ϕ = Φ (t, r)S (Θ) = e−iωtR (r)S (Θ) , (4.47)

where Θ is a shorthand for the angular coordinates. Then, eq. (4.46) splits into the radial
and angular problems,[

∂ρ∆∂ρ −
r2(d−2)

(d− 3)2 ∆
∂2
t

]
Φ = ˆ̀

(
ˆ̀+ 1

)
Φ ,

[
− 1

(d− 3)2 ∆Sd−2

]
S = ˆ̀

(
ˆ̀+ 1

)
S , (4.48)

where we introduced the new radial variable ρ ≡ rd−3 and

∆ (ρ) ≡ ρ2f = ρ (ρ− ρs) , ρs ≡ rd−3
s . (4.49)

The solutions of the angular problem are the higher-dimensional spherical harmonics
Y`m (Ω) ≡ Y`,m1m2...mn−1 (θ1, θ2, . . . θn) [18].10 In order to solve the radial problem, one can
use the following near zone approximation,[

∂ρ∆∂ρ −
r2(d−2)

(d− 3)2 ∆
∂2
t

]
≈ ∂ρ∆∂ρ −

r
2(d−2)
s

(d− 3)2 ∆
∂2
t , (4.50)

which is indeed valid in the near zone region ω (r − rs)� 1. Similar to the 4-dimensional
case, there exists an SL (2,R) Love symmetry generated by the vector fields [28, 73],

L0 = −β ∂t , L±1 = e±t/β
[
∓
√

∆ ∂ρ + ∂ρ
(√

∆
)
β ∂t

]
, (4.51)

with β = (2πTH)−1 = 2rs/ (d− 3) standing for the inverse Hawking temperature of the
higher-dimensional Schwarzschild black hole.

Using the Love symmetry, one can explain now the properties of higher dimensional
black hole Love numbers. An important difference w.r.t. the four-dimensional case is that
the parameter ˆ̀ defining the Casimir is not generically an integer. Instead, the allowed
values of ˆ̀ are

ˆ̀= `

d− 3 ,

where ` is a non-negative integer. This produces a different representation structure. If ˆ̀
is an integer, the static solution belongs to a highest weight representation as before. In
this case one can run an argument completely identical to the four-dimensional case, which
proves that the static solution is a finite polynomial in ρ,

If ˆ̀∈ N⇒ Φ (ω = 0) ∝ υˆ̀,ˆ̀ =
ˆ̀∑

n=0
cnρ

n = cˆ̀r
` + · · ·+ c0 . (4.52)

10In n+ 1 spatial dimensions, the azimuthal index m becomes a multi-index m→ m1m2 . . .mn−1 with
|m1| ≤ m2 ≤ m3 . . .mn−1 ≤ `. In addition, there are n angular variables θA, A = 1, . . . , n.
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The absence of terms ∝ r−(`+d−3) implies that Love numbers are zero, which reproduces the
result based on the explicit regular solution of the static Klein-Gordon equation according to
which the series in the r.h.s. of the above equation corresponds to the Legendre polynomial
of degree ˆ̀.

Let us also briefly comment on the role of the SL (2,R) Love symmetry regarding the
running of Love numbers. In d = 4, for either Schwarzschild or Kerr-Newman black holes,
the static Love numbers vanish at all scales. In d > 4 on the other hand, the scalar Love
numbers for the Schwarzschild black hole have a more intricate structure ([17, 18]),

k
(0)
` =


α` for 2ˆ̀ /∈ N

α` − β` log r
L for ˆ̀∈ N + 1

2

0 for ˆ̀∈ N

, (4.53)

where α` are the renormalized static scalar Love numbers at length scale L and β` are the
associated β-functions, which turn out to be non-vanishing only in the case of half-integer
ˆ̀. As we have shown in this section, Love symmetry explains the vanishing of the Love
numbers whenever ˆ̀ is an integer. The absence of running in these cases is also evident from
the fact that regular and singular static solution belong to different, locally distinguishable,
representations; these are displayed in figure 1 and 2 for Schwarzschild and figure 3 for the
Kerr-Newman black hole. In the nomenclature of refs. [81, 82], figure 1 and figure 2 are the
representations D( 2ˆ̀) and D+−( 2ˆ̀) respectively, while, in the notation of ref. [83], these
are the type “[◦]” and “◦] ◦ [◦” representations U(−ˆ̀,−ˆ̀) and U(ˆ̀+ 1, ˆ̀+ 1) respectively.11
For the Kerr-Newman case, figure 3, solutions regular at the future and past event horizon
also belong to the locally distinguishable representations V−2ˆ̀ and V̄2ˆ̀ of types “[◦[◦” and
“◦]◦]” ([83]) respectively or, in the notation of refs. [81, 82], in the D−( 2ˆ̀) and D+( 2ˆ̀)
representations respectively. Except for the finite-dimensional highest weight representation
(figure 1), all other SL (2,R) representations written here (figures 2, 3) are reducible, but
not decomposable.

In all other cases with ˆ̀ /∈ N however, regular and singular static solutions belong
to the same standard SL (2,R) representations D(ˆ̀, 0) ([81, 82]) or W (4ˆ̀(ˆ̀+ 1), 0) ([83])
and the Love symmetry does not offer any local criteria from which to infer the absence
of running. While this is consistent with the case of half-integer ˆ̀, it fails to capture the
vanishing RG flow for the generic case 2ˆ̀ /∈ N. In other words, the Love symmetry SL (2,R)
representation theory implies a necessary, but not sufficient, condition that an RG flow is
expected whenever ˆ̀ is not an integer. In addition, one also needs the external input of
power counting arguments (see section 3.4) which independently implies that a necessary
condition for running Love numbers is that 2ˆ̀∈ N. These two necessary conditions together
reduce to the prediction of a non-vanishing RG flow only for half-integer ˆ̀which is indeed
what is found by explicit computations ([17, 18]). This is somewhat analogous to the
appearance of logarithmic running in conformal perturbation theory, which takes place
only if certain resonant conditions are satisfied, cf. [84, 85]. Curiously, the appearance of

11We refer to appendix C for more details on the SL (2,R) modules we write here and our notation.
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logarithms in the degenerate hypergeometric function case is also known as “resonance”,
see e.g. [86].

Finally, we would like to point out that so far we have only studied scalar perturbations
of higher dimensional Schwarzschild black holes. We believe that the Love symmetry can be
extended to higher spin perturbations as well, and that it can also be used for an algebraic
proof of peculiar features of Love numbers in the corresponding sectors [18]. We leave this
question for future work.

5 Generalizations

The Love symmetry admits a number of generalizations. In this section, we first present a
second SL (2,R) structure arising within the Starobinsky near zone approximation (2.30)–
(2.31). While this particular SL (2,R)Star fails to capture the vanishing of static Love
numbers for non-axisymmetric perturbations, the Starobinsky near zone approximation
has another peculiar property. Namely, the corresponding Love numbers vanish for all
frequencies ω. We show here that this behavior is appropriately captured by a “finite-
frequency” generalization of the Love symmetry with the highest weight property playing an
analogous role to the static case. Lastly, we construct an infinite dimensional extension of
the SL (2,R) Love symmetry into SL (2,R)n Û (1)V algebra and show that it contains both
the Love and the Starobinsky near zone SL (2,R) symmetries as two particular subalgebras.
This infinite extension will prove central in the connection of near zone SL (2,R) symmetries
with the enhanced isometries of near horizon geometries of extremal black holes, which will
be discussed in the next section.

5.1 Starobinsky near zone algebra

Consider now the following SL (2,R)Star generators,

LStar
0 = −β (∂t + Ω∂φ) ,

LStar
±1 = e±t/β

[
∓
√

∆∂r + ∂r
(√

∆
)
β (∂t + Ω∂φ)∓ sr − r∓√

∆

]
.

(5.1)

The Casimir of this algebra is given by the Teukolsky differential equation in the Starobinsky
near zone approximation eq. (2.30). The LStar

0 eigenvalue is given by

LStar
0 Ψs = iβ (ω −mΩ) Ψs , (5.2)

from which we see that in the Starobinsky near zone approximation black hole perturbations
at the locking frequency,

ω = mΩ ,

play a special role. Namely, these black hole perturbations form highest weight SL (2,R)Star
representations as can be shown completely analogously to the static case for the Love
SL (2,R) symmetry. As far as static Love numbers are concerned, the Starobinsky near zone
algebra allows us to make only one exact statement: Love numbers vanish for axisymmetric
static perturbations, m = 0, ω = 0.
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Another interesting property of the Starobinsky near zone regime is the emergence of a
modified rotational symmetry, produced by the following generators

J0 = −i ∂φ , J±1 = e±i(φ−Ωt)
[
∂θ ± i cot θ ∂φ ∓

s

sin θ

]
, (5.3)

such that the full near zone symmetry gets enhanced to SL (2,R)Star × SO (3). This can
be contrasted with the usual Love near zone SL (2,R) which does not commute with the
SO (3) of the angular equations of motion in the general Kerr-Newman background. The
emergence of the modified spherical symmetry is an intriguing fact hinting at a more general
symmetry structure of the near zone Teukolsky equation.

5.2 A finite frequency generalization

An intriguing feature of the Starobinsky near zone approximation (2.30) is that it leads to
vanishing Love numbers at all frequencies when we perform the microscopic computation.
We remind here that the explicit expression for the response coefficients in the Starobinsky
near zone approximation is given in (3.4). These coefficients are purely imaginary and
depend on the frequency only through the frame-dragging factor ω − mΩ, so that the
corresponding conservative part is exactly zero at all frequencies in this approximation.
This observation calls for a symmetry explanation analogous to the static case.

This is achieved by the following generators

L
(ω̃)
0 = −β (∂t + iω̃) ,

L
(ω̃)
±1 = e±t/β

[
∓
√

∆∂r + ∂r
(√

∆
)
β ∂t + a√

∆
∂φ + iβω̃

√
r − r+
r − r−

]
,

(5.4)

defined for some arbitrary parameter ω̃. These generators are regular in advanced Kerr
coordinates. The modified generators form an SL (2,R) algebra which we dub SL (2,R)ω̃.
Its quadratic Casimir is given by,

C(ω̃)
2 = ∂r∆∂r −

(
r2

+ + a2)2
∆

[
(∂t + Ω∂φ)2 + 4 r − r+

r+ − r−
(∂t + iω̃) (Ω∂φ − iω̃)

]
. (5.5)

A scalar black hole perturbation Φ of frequency ω is an eigenstate of L(ω̃)
0 with the eigenvalue

given by
L

(ω̃)
0 Φ = iβ(ω − ω̃)Φ (5.6)

so that the null L(ω̃)
0 eigenstate is a monochromatic black hole perturbation with frequency

ω = ω̃. By comparing (5.5) to (2.30), we observe that it satisfies the Teukolsky differential
equation in the Starobinsky near zone approximation. Hence, analogously to the earlier
arguments, one concludes that any regular black hole perturbation of finite frequency ω̃ in
the Starobinsky near zone approximation belongs to a highest weight representation of the
SL (2,R)ω̃ algebra (5.4). The corresponding highest weight vector, satisfying

L
(ω̃)
+1 v−`,0 = 0 , L(ω̃)

0 v−`,0 = −`v−`,0 ,
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has the following form

v−`,0 =
(
r − r+
r − r−

)iZ̃
eimφe(`/β−iω̃)t∆`/2 , where Z̃ ≡

r2
+ + a2

r+ − r−
(mΩ− ω̃) . (5.7)

It describes a regular at the future event horizon solution with frequency ω̃ + iβ`. The
L

(ω̃)
0 -null vector v−`,` is then a regular solution of the Teukolsky equation at frequency ω̃ in

the Starobinsky near zone approximation. It satisfies(
L

(ω̃)
+1

)`+1
v−`,` = 0 , (5.8)

which implies the quasipolynomial form of the solution,

Φ (ω = ω̃) =
(
r − r+
r − r−

)iZ̃
eimφe−iω̃t

∑̀
n=0

cnr
n . (5.9)

As before, the overall form-factor can be removed by a transition into the advanced
coordinates and plays no role in the EFT matching calculation of Love numbers. The
remaining polynomial does not contain negative powers in r and hence the frequency-
dependent Love numbers vanish identically.

The extension of the SL (2,R)ω̃ algebra to spin s fields is straightforward. One has to
start with the usual spin-s Love generators (4.34) and add the same ω̃-dependent pieces
as in eq. (5.4). One could check that for ω = ω̃ the corresponding Casimir reduces to the
spin-s Teukolsky equation in the Starobinsky near zone approximation.

This proves the very intriguing property of the Starobinsky near zone approximation
of vanishing linear conservative response at all frequencies. It is important to stress that,
unlike for static Love numbers, this property does not hold for the full response (i.e., beyond
the leading order near zone approximation). Indeed, using the full solution, one can see that
the conservative black hole response does not vanish already at the linear order in ω [19].

Also, it is unclear to us whether this algebraic argument is a qualitatively new piece
of information or simply a restatement of the result obtained by a direct solution of the
corresponding differential equation. The problem is the interpretation of the hyperparameter
ω̃ in the general case of non-monochromatic solutions, and the geometric meaning of the
scalar ω̃-dependent generators appearing in eq. (5.4). We leave a better understanding of
the SL (2,R)ω̃ symmetry for future work.

5.3 An infinite-dimensional extension

We just saw that, in addition to the near zone approximation leading to the Love symmetry,
the Starobinsky near zone approximation also has very special and interesting properties.
We will show now that these two near zone approximations can be naturally combined into
a single algebraic structure, which will also turn out to contain SL (2,R) enhancements of
effective geometries which preserve the internal structure of the black hole. The construction
is based on the observation that, for any regular at the horizon SL (2,R) representation
V, the Love algebra can be extended into a semidirect product SL (2,R) n U (1)V , where
U (1)V is generated by vector fields of the form υ βΩ ∂φ with υ ∈ V .
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υ0,−3

υ0,−2
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L+1

L−1

L−1

L−1

L−1

L−1

Figure 4. A representation V of SL (2,R) used to construct the SL (2,R) n U (1)V extension of the
Love algebra.

A representation V, which leads to a unified description of the Love symmetry and
the Starobinsky near zone SL (2,R), can be constructed as follows. We start with υ0,0 =
−1, which is a single element of the one-dimensional unitary SL (2,R) representation
(“singleton”) [87]. It has h = 0 and also satisfies L±1υ0,0 = 0. Then we solve for the h = ∓1
vectors υ0,±1 satisfying

L0υ0,±1 = ∓υ0,±1 , L∓1υ0,±1 = ∓υ0,0 . (5.10)

These give us

υ0,±1 = e±t/β
√
r − r+
r − r−

, υ0,0 = −1 . (5.11)

All these functions are regular at the future and past event horizons. By definition, starting
with υ0,±1 one can reach υ0,0 by acting on them with L±1. However, one cannot reach υ0,±1
starting from υ0,0. A (reducible) representation which contains all three vectors υ0,0, υ0,±1
is spanned by the following vectors υ0,n,

υ0,±n = (L±1)n−1 υ0,±1 = (±1)n−1 (n− 1)! e±nt/β
(
r − r+
r − r−

)n/2
, (5.12)

with n ∈ N. We present a graphical representation of this construction in figure 4.
This way, we obtain the general U (1)V representation that extends the Love symmetry

into SL (2,R) n Û (1)V ,

υ =
∞∑

n=−∞
αnv0,n βΩ ∂φ . (5.13)

A one-parameter family of the SL (2,R) subalgebras from this SL (2,R) n U (1)V is of
a particular interest,

Lm (α) = Lm + αυ0,m βΩ ∂φ , m = 0,±1 . (5.14)
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The Casimir of this algebra is given by

C2 (α) = ∂r∆∂r −
(
r2

+ + a2)2
∆ (∂t + Ω ∂φ)2 + 2r

2
+ + a2

r − r−
(∂t + αΩ ∂φ) (α− 1)βΩ ∂φ .

(5.15)

In general, this Casimir does not capture the physical near zone limit: its static part does
not match that of the Teukolsky equation unless α = 0 or α = 1. The first choice, α = 0,
corresponds to the Love symmetry. The second special choice α = 1 reduces this Casimir
to the one matching the Starobinsky near zone split.

Nevertheless, it does capture the near horizon characteristic exponents of the Teukolsky
equation. In fact, as we show explicitly in appendix D, this one-parameter family of
SL (2,R) subalgebras precisely contains all possible globally defined and time-reversal
symmetric12 approximations with an SL (2,R) enhancement that preserve these near horizon
characteristic exponents. This property will prove crucial in the next section where a
connection with enhanced isometries of near horizon geometries of extremal black holes will
be discussed.

6 Relation to extremal near horizon isometries

The Love vectors are formally singular in the extremal limit, as the Hawking temperature
approaches zero. In this section we show how to take an appropriate extremal limit of these
vectors, and demonstrate the relationship between them and the extremal near horizon
isometries. In what follows we focus on scalar perturbations. General spin-s perturbations
will be discussed in detail in the next section.

6.1 Review of near horizon geometries

The extremal black hole limit has many peculiarities. Let us start with the extremal
Reissner-Nordström spherically symmetric charged black holes. The near horizon geometry
is obtained by applying the scaling transformations13

r = M + λρ , t = τ

λ
, (6.1)

and taking the λ→ 0 limit. The resulting AdS2 × S2 near horizon metric

ds2M−2 = − ρ2

M4dτ
2 + dρ2

ρ2 + dΩ2
2 , (6.2)

acquires the following Killing vectors

ξ0 = τ ∂τ − ρ ∂ρ , ξ+1 = ∂τ , ξ−1 =
(
M4

ρ2 + τ2
)
∂τ − 2τρ ∂ρ , (6.3)

12Time-reversal here refers to the simultaneous time-reversal transformation t→ −t and the flip of the
angular momentum of the black hole, a→ −a.

13The near horizon radial coordinate ρ used here should not be confused with the radial coordinate
transformation ρ = rd−3 employed in the study of higher-dimensional Schwarzschild black holes in section 4.

– 38 –



J
H
E
P
1
0
(
2
0
2
2
)
1
7
5

which satisfy the SL (2,R) algebra. In the original Boyer-Lindquist coordinates they take
the following form,

ξ0 = t ∂t − (r −M) ∂r , ξ+1 = λ−1∂t ,

ξ−1 = λ

[(
M4

(r −M)2 + t2
)
∂t − 2t (r −M) ∂r

]
.

(6.4)

The Casimir of the SL (2,R) near horizon isometry is given by,

C2 = ∂r (r −M)2 ∂r −
M4

(r −M)2 ∂
2
t , (6.5)

and turns out to coincide with the Klein-Gordon differential operator in the near zone. The
Klein-Gordon equation in the near horizon scaling limit can then be written as

C2Φ = ` (`+ 1) Φ , (6.6)

with integer `. From the perspective of the full geometry, only static perturbations survive
in the throat and this enhanced SL (2,R) isometry fully constrains their wave dynamics.

The situation is more intricate in the extremal Kerr-Newman case [33, 34]. One obtains
the near horizon extremal geometry by taking the λ → 0 limit of the following rescaled
co-rotating coordinates,

r = M + λρ , t = τ

λ
, φ = φ̃+ a

M2 + a2
τ

λ
, (6.7)

which generates the metric

ds2 =
(

1− a2

ρ2
0

sin2 θ

)[
−ρ

2

ρ2
0
dτ2 + ρ2

0
ρ2dρ

2 + ρ2
0dθ

2
]

+ ρ2
0 sin2 θ

1− a2

ρ2
0

sin2 θ

(
dφ̃+ 2aMρ

ρ4
0

dτ

)2
,

(6.8)
with ρ2

0 ≡M2 + a2. This metric possesses the azimuthal symmetry U (1) generated by the
vector field J0 = −i ∂φ̃, as well as additional SL (2,R) Killing vectors of the AdS2 factor,

ξ0 = τ ∂τ − ρ ∂ρ , ξ+1 = ∂τ ,

ξ−1 =
((
M2 + a2)2

ρ2 + τ2
)
∂τ − 2τρ ∂ρ −

4Ma

ρ
∂φ̃ .

(6.9)

The full isometry group is SL (2,R)× U (1). The Casimir of the SL (2,R) factor expressed
in the original Boyer-Lindquist coordinates is given by

C2 = ∂r (r −M)2 ∂r −
(
M2 + a2

r −M

)2

(∂t + Ω ∂φ)2 + 4Ma

r −M
(∂t + Ω ∂φ) ∂φ , (6.10)

and the radial part of the near horizon s = 0 Teukolsky equation for an extremal Kerr-
Newman black hole reads,

C2Φ =
[
` (`+ 1)− 2

(
3M2 + a2

)
m2Ω2

]
Φ , (6.11)
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where the angular eigenvalues ` (`+ 1) are no longer integers, unless m = 0. The explicit
range of values of ` for non-zero azimuthal numbers is known only numerically and can be
found, for example, in [33]. Similarly to the Reissner-Nordström case, not all frequencies of
scalar perturbations propagating in the full geometry survive in the throat. In the rotating
case, solutions which can be extended to smooth perturbations of the full Kerr-Newman
geometry can only have the locking frequency ω = mΩ.

6.2 Reissner-Nordström case

Now let us take the extremal limit of the Love generators in the spherically symmetric
Reissner-Nordström case a = 0. We parameterize the near-extremal expansion via the
Hawking temperature TH of the black hole. Then,

Q2 = 1− 8πTHM
8π2T 2

H

[ 1− 4πTHM√
1− 8πTHM

− 1
]

= M2
(
1− 4π2T 2

HM
2
)

+O
(
T 3
H

)
. (6.12)

Taylor expanding the Love symmetry generators (4.22) up to O(T 2
H) we obtain

L0 = − 1
2πTH

∂t

L±1 = − (r −M) (±1 + t 2πTH) ∂r +
[

1
2πTH

± t+
(

M4

(r −M)2 + t2
)

2πTH
]
∂t .

(6.13)

These generators are singular at TH = 0, so that taking the extremal limit of the Love
symmetry is somewhat non-trivial. To achieve this we consider three linear combinations
of generators with TH -dependent coefficients which have a finite non-trivial TH = 0 limit.
These linear combinations are

ξ+1 = λ−1 lim
TH→0

(−2πTHL0) = λ−1∂t ,

ξ0 = lim
TH→0

L+1 − L−1
2 = t ∂t − (r −M) ∂r ,

ξ−1 = λ lim
TH→0

L1 + L−1 + 2L0
2πTH

= λ

[(
t2 + M4

(r −M)2

)
∂t − 2t (r −M) ∂r

]
.

(6.14)

They exactly reproduce the generators of the SL (2,R) near horizon isometry of extremal
charged black holes (6.4) after identifying the parameter λ with the scaling parameter
associated with the near horizon limit. This limiting procedure is somewhat similar to the
Wigner contraction. Unlike in the latter case though, here the limiting algebra of the near
horizon isometries is again SL (2,R), so it is isomorphic to the original Love symmetry
algebra. However, the limit itself is algebraically non-trivial. Namely, the resulting mapping
of the generators does not correspond to the algebra automorphism.

To see this it is instructive to investigate the algebraic structure of solutions of the
Klein-Gordon equation for extremal Reissner-Nordström black holes as dictated by this
SL (2,R) near horizon isometry. In particular, we are interested in the representation that
the static solution belongs to. By definition, the static solution is annihilated by ξ+1 and is,
therefore, a primary vector υ0 of the highest weight representation,

ξ+1v0 = 0 , ξ0v0 = −`v0 , ⇒ v0 = (r −M)` . (6.15)
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Other solutions in the highest-weight SL (2,R) multiplet are then obtained as descendants,

v1 = ξ−1v0 = −2λ` t (r −M)` ,

v2 = ξ−1v1 = −2λ2`

[
(1− 2`) t2 + M4

(r −M)2

]
(r −M)` ,

(6.16)

and so on. From all of these elements of the highest weight representation, υ0 and υ1 are
exact solutions of the full Klein-Gordon equation for an extremal Reissner-Nordström black
hole, while vn with n > 1 are only approximate solutions valid in the near horizon region.
A change of the algebraic structure manifests itself in the fact that the static solution is a
primary SL (2,R) vector now, which is not the case before taking the extremal limit. The
corresponding solution still has a polynomial dependence on r, indicative of the vanishing
Love numbers. However, in the extremal limit this polynomial form does not link directly
to the highest weight property of the corresponding representation.

6.3 Kerr-Newman case

Analogously to the Reissner-Nordström black hole, the extremal limit is realized as the
TH → 0 limit of vanishing Hawking temperature, in terms of which,

a2 +Q2 = M2
(
1− 4π2T 2

HM
2
)

+O
(
T 3
H

)
. (6.17)

However, an attempt to take linear combinations of the Love symmetry generators analo-
gously to the non-rotating case does not recover the near horizon SL (2,R) Killing vectors
in this case.

However, these Killing vector can still be recovered in the rotating case as well by
making use of the infinite extension SL (2,R) n U (1)V constructed in section 5.3. Namely,
consider a family of SL (2,R) subalgebras corresponding to the choice

α = 1 + 4πTHM +O
(
T 2
H

)
(6.18)

in eq. (5.14), for arbitrary subleading contributions in the extremal limit. The corresponding
generators are given by,

LNHE
0 = − 1

2πTH
[∂t + (1 + 4πTHM) Ω ∂φ] +O (TH) ,

LNHE
±1 = e±2πTH t

[
∓
√

∆ ∂r + ∂r
(√

∆
) 1

2πTH
(∂t + Ω ∂φ)

+ 2M
√
r − r+
r − r−

Ω ∂φ +O (TH)
]
,

(6.19)

and correspond to the following Casimir,

CNHE2 = ∂r∆∂r −
(
r2

+ + a2)2
∆ (∂t + Ω ∂φ)2 + 4Ma

r − r−
(∂t + Ω ∂φ) ∂φ +O (TH) , (6.20)

which indeed reduces to the appropriate near horizon Teukolsky differential operator (6.10)
in the extremal limit.
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Reshuffling the vector fields LNHE
m and taking the TH → 0 limit we arrive at the exact

near horizon extremal Kerr-Newman SL (2,R) Killing vectors (6.9),

ξ+1 = λ−1 lim
TH→0

(
−2πTHLNHE

0

)
= λ−1 (∂t + Ω ∂φ) ,

ξ0 = lim
TH→0

LNHE
+1 − LNHE

−1
2 = t (∂t + Ω ∂φ)− (r −M) ∂r ,

ξ−1 = λ lim
TH→0

LNHE
+1 + LNHE

−1 + 2LNHE
0

2πTH

= λ

[((
M2 + a2)2
(r −M)2 + t2

)
(∂t + Ω ∂φ)− 2t (r −M) ∂r −

4Ma

r −M
∂φ

]
,

(6.21)

after identifying λ with the near horizon scaling parameter as before.
A test field solution Φ must belong to a certain representation of SL (2,R), which

is characterized by eigenvalues of the Casimir (6.11) and the ξ0 operator. For the static
axisymmetric (m = 0) mode v0 we have an integer ` and

C2v0 = ` (`+ 1) , ξ+1v0 = 0 . (6.22)

This mode is clearly a primary state of a highest weight representation with weight −`.
Integrating ξ0v0 = −`v0 we obtain,

v0 = (r −M)` . (6.23)

The rest of the representation is then built by acting with ξ−1,

v1 = ξ−1v0 = −2λ` t (r −M)` ,

v2 = ξ−1v1 = −2λ2`

[
(1− 2`) t2 +

(
M2 + a2)2
(r −M)2

]
(r −M)` ,

(6.24)

and so on. Similarly to the of the extremal Reissner-Nordström black hole, only the static
solution υ0 satisfies the full extremal s = 0 Teukolsky equation and can be extended beyond
the near horizon approximation; its polynomial form implies the vanishing of the Love
numbers for static axisymmetric perturbations. However, this polynomial form is related to
the special form of the generator ξ0, rather than the highest weight property.

For a generic perturbation with magnetic number m the corresponding frequency is
fixed to be ω = mΩ, in which case the Casimir eigenvalue is not an integer. These solutions
do not belong to highest weight SL (2,R) representations and their response coefficients are
not zero.

7 Teukolsky equation from spin weighted Lie derivatives

In the previous section we saw that the extremal near horizon isometries allow one to
constrain wave dynamics in the corresponding extremal AdS2 factors. In particular, the
Casimir made of the Killing vectors of the AdS2 isometry group SL (2,R) exactly reproduces
the appropriate Klein-Gordon equation.
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A similar picture takes place for general spin-s perturbations, including the gravitational
ones. In this section we review an appropriate generalization of AdS2 Killing vectors through
spin weighted Lie derivatives, which takes into account the geometric structure behind spin
weighted Newman-Penrose scalars. The Casimir constructed from these generalized vectors
reproduces the corresponding spin-s Teukolsky equation in the near horizon region.

It is natural to ask whether a similar construction can be applied to the Love symmetry
generators. We will argue that the spin-s Love generators in the non-extremal case are
indeed natural to interpret as approximate spin weighted Lie derivatives of the Kerr-Newman
spacetime. This interpretation works most nicely for the Starobinsky SL (2,R) generators.
Additionally, we discuss the geometric meaning of the Love symmetry in the context of
black hole subtracted geometries.

7.1 Elements of the NP formalism

Let us briefly review some basics of the Newman-Penrose (NP) formalism that will be
important for our purposes [42]. The NP formalism is a particular case of the tetrad
formalism, with the local tetrads chosen to be null. The relevant four local tetrads are
composed of two real vectors, `µ and nµ, and two complex valued vectors, mµ and its
complex conjugate m̄µ, normalized according to,

`µn
µ = −1 , mµm̄

µ = 1 . (7.1)

These tetrads are related to the metric tensor through

gµν = 2
(
−`(µnν) +m(µm̄ν)

)
. (7.2)

Within the NP formalism, non-scalar degrees of freedom are encoded into complex spacetime
scalars obtained by projecting the relevant tensors on the local null tetrads. In particular,
the 10 independent components of the Weyl tensor are cast into the 5 complex Weyl scalars,

ψ0 = Cµνρσ`
µmν`ρmσ , ψ1 = Cµνρσ`

µnν`ρmσ , ψ2 = Cµνρσ`
µmνm̄ρnσ ,

ψ3 = Cµνρσ`
µnνm̄ρnσ , ψ4 = Cµνρσn

µm̄νnρm̄σ ,

(7.3)
while the 6 independent components of the Maxwell field strength tensor are rearranged
into the 3 complex Maxwell-NP scalars,

φ0 = Fµν`
µmν , φ1 = 1

2Fµν (`µnν + m̄µmν) , φ2 = Fµνm̄
µnν . (7.4)

The NP scalar of a scalar field is the scalar field itself. All of the above NP scalars transform
homogeneously under two particular local Lorentz transformations known as local rotations
and local boosts,14

14These are also known as type III transformations in the traditional language of the NP formalism.
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NP scalar {b, s} {p, q}

ψ0 {+2,+2} {+4, 0}
ψ1 {+1,+1} {+2, 0}
ψ2 {0, 0} {0, 0}
ψ3 {−1,−1} {−2, 0}
ψ4 {−2,−2} {−4, 0}

φ0 {+1,+1} {+2, 0}
φ1 {0, 0} {0, 0}
φ2 {−1,−1} {−2, 0}

Φ {0, 0} {0, 0}

Table 1. Spin weights, boost weights and GHP weights of the Weyl scalars ψa, the Maxwell-NP
scalars φa and the scalar field Φ.

• Local rotations: these are complex local SO (2) rotations of the tetrad mµ, keeping
the real vectors `µ and nµ invariant,

`µ

nµ

mµ

m̄µ

 χ−→


`µ

nµ

eiχmµ

e−iχm̄µ

 . (7.5)

• Local boosts: these are real local rescalings of the real tetrads `µ and nµ, keeping the
complex vector mµ invariant, 

`µ

nµ

mµ

m̄µ

 λ−→


λ`µ

λ−1nµ

mµ

m̄µ

 . (7.6)

NP scalars are labeled according to their transformation properties w.r.t. local rotations
and boosts via a spin weight s and a boost weight b. In particular, an NP scalar Ψ
transforming as

Ψ λ,χ−−→ λbeisχΨ (7.7)

is said to have weights {b, s}. These are related to the GHP weights p and q [43] according to,

b = p+ q

2 , s = p− q
2 . (7.8)

The weights associated with the scalar field, Maxwell-NP scalars and Weyl scalar can be
found in table 1.

In the tetrad formalism, the Christoffel symbols are repackaged into the Ricci rotation
coefficients, known as spin coefficients when the tetrad vectors are null as in the NP
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formalism. In total there are 12 spin coefficients. These can be categorized into the 8
so-called “good” spin coefficients,

κ = −mµD`µ , τ = −mµ4`µ , σ = −mµδ`µ , ρ = −mµδ̄`µ ,

π = m̄µDnµ , ν = m̄µ4nµ , µ = m̄µδnµ , λ = m̄µδ̄nµ ,
(7.9)

which transform covariantely under local rotation and boost transformations, and the 4
so-called “bad” spin coefficients,

ε = −1
2 (nµD`µ − m̄µDmµ) , γ = −1

2 (nµ4`µ − m̄µ4mµ) ,

β = −1
2 (nµδ`µ − m̄µδmµ) , α = −1

2
(
nµδ̄`µ − m̄µδ̄mµ

)
,

(7.10)

which do not have definite spin and boost weights. In the above expressions, the NP
directional derivatives D, 4, δ and δ̄ are the covariant derivatives projected onto the
null tetrads,

D ≡ `µ∇µ , 4 ≡ nµ∇µ , δ ≡ mµ∇µ , δ̄ ≡ m̄µ∇µ , (7.11)

whose action on a NP scalar also does not transform homogeneously (see appendix E).

7.2 Spin weighted generators of isometries

For the special case of a Killing vector field ξµ, there exists a canonical generalization
Lξ of the usual Lie derivative Lξ that acts on a NP scalar of spin weight s and boost
weight b [38, 39],

Lξ = Lξ + (b nµLξ`µ − s m̄µLξmµ) . (7.12)

These are improvements of the traditional GHP Lie derivatives such that the information
that ξµ is a Killing vector can be read off from the tetrad vectors themselves, namely,
if there exists a null tetrad vector which is annihilated by Lξ, then ξ is a Killing vector
field [38, 39]. We will refer to this generalized Lie derivative as the spin weighted Lie
derivative in what follows. The spin weighted Lie derivative operator is covariant w.r.t. spin
and boost transformations and does not change the spin or boost weights of the NP scalar
it acts on.

As an explicit application, let us compute these derivatives along the Killing vectors of
the extremal near horizon isometry group (6.9). We will use the fact that b = s for the NP
scalars appearing in the Teukolsky equation and the Kinnersley tetrad [59],

` = r2 + a2

∆

(
∂t + a

r2 + a2 ∂φ

)
+ ∂r ,

n = ∆
2Σ

[
r2 + a2

∆

(
∂t + a

r2 + a2 ∂φ

)
− ∂r

]
,

m = 1√
2 (r + ia cos θ)

[
ia sin θ ∂t + ∂θ + i

sin θ ∂φ
]
,

(7.13)

which we simplify in the scaling limit eq. (6.7). Using the notation

ξ(s)
m ≡ Lξm , m = 0,±1 , (7.14)
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we obtain the following generators corrected by s-dependent scalar pieces,

ξ
(s)
0 = ξ0 − s , ξ

(s)
+1 = ξ+1 , ξ

(s)
−1 = ξ−1 − 2s

(
M2

ρ
+ τ

)
. (7.15)

These generators satisfy the SL (2,R) commutation relations. The corresponding Casimir
reproduces the relevant part of the radial spin-s Teukolsky differential operator for an
extremal black hole in the near horizon limit,

CNHE, (s)
2, SL(2,R) = ρ−2s∂ρρ

2(s+1)∂ρ −
(
M2 + a2)2

ρ2 ∂2
τ + 4Ma

ρ
∂τ∂ϕ + 2sM

2 + a2

ρ
∂τ + s (s+ 1)

= (r −M)−2s ∂r (r −M)2(s+1) ∂r −
(
M2 + a2)2
(r −M)2 (∂t + Ω ∂φ)2

+ 4Ma

r −M
(∂t + Ω ∂φ) ∂φ + 2sM

2 + a2

r −M
∂t + s(s+ 1) .

(7.16)

The full near horizon Teukolsky equation is obtained by adding the appropriate U (1) Casimir,

CNHE, (s)
2,full Ψs =

[
CNHE, (s)

2, SL(2,R) − 2
(
3M2 + a2

)
Ω2 ∂2

φ

]
Ψs = ` (`+ 1) Ψs . (7.17)

We see that, in order to describe the symmetry structure of the extremal black hole
geometries relevant for spin-s perturbations, we need to introduce the spin weighted Lie
derivatives. In a coordinate basis, these derivatives modify the isometry generators by scalar
s-dependent pieces, see eq. (7.15). The modified generators inherit the algebraic structure
of the underlying extremal black hole geometry.

7.3 Near zone symmetries as isometries of subtracted geometries

Unfortunately, the generalized Lie derivative can be uniquely defined only for exact Killing
vectors, see appendix E. The non-extremal Love symmetry (4.34) or the Starobinsky near
zone SL (2,R) symmetry (5.1) are not exact and in this situation the additional s-dependent
scalar pieces in the generators cannot be directly assigned a strict geometric meaning.
However, there exists a framework where the vector fields generating the Love or the
Starobinsky near zone SL (2,R)’s are realized as Killing vectors of effective geometries,
which are in turn realized as relatives of subtracted geometries of the Kerr-Newman black
hole geometry ([35, 36]).

Let us briefly review how the construction of subtracted geometries is performed,
focusing to the geometry of interest of a Kerr-Newman black hole. In the notation of [36],
the full Kerr-Newman geometry is written as,

ds2 = −∆−1/2
0 G (dt+A)2 + ∆1/2

0

(
dr2

X
+ dθ2 + X

G
sin2 θ dφ2

)
, (7.18)

where
G = X − a2 sin2 θ . (7.19)
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In the standard notations of (2.20), the warp factor ∆0, the discriminant X and the angular
potential A are given by,

∆0 = Σ2 , X = ∆ , A = a sin2 θ

G

(
2Mr −Q2

)
dφ . (7.20)

The main observation then is that the thermodynamic variables of the black hole are
completely independent of the warp factor ∆0, a fact suggesting that ∆0 encodes information
about the environment around the black hole rather than its interior [36]. Furthermore,
the location of the ergosphere only depends on G, corresponding to G = 0. A subtracted
geometry as introduced in [35] then corresponds to modifying the warp factor ∆0, which
preserves the internal structure of the black hole. We will more loosely refer to a subtracted
geometry of the Kerr-Newman black hole, to whatever geometry which preserves its
thermodynamic properties. In other words, besides arbitrary modifications of the warp
factor ∆0, we will also allow alterations of the angular potential A and the function G such
that its near horizon behavior is preserved,

ds2
sub = −∆−1/2

0,subGsub (dt+Asub)2 + ∆1/2
0,sub

(
dr2

∆ + dθ2 + ∆
Gsub

sin2 θ dφ2
)
, (7.21)

with arbitrary ∆0,sub and,

lim
r→r+

Asub = lim
r→r+

A = −
(
r2

+ + a2
)
dφ , lim

r→r+
Gsub = lim

r→r+
G = −a2 sin2 θ . (7.22)

Within this framework, both the Love symmetry as well as the Starobinsky near zone
SL (2,R) vector fields can be realized as isometries of the relevant subtracted geometries and
this in turn allows to apply the uniquely defined spin weighted Lie derivative for isometries
to attempt to infer the s 6= 0 pieces.

7.3.1 Starobinsky near zone symmetry

We start with the s = 0 Starobinsky near zone SL (2,R) generators (5.1). The relevant
subtracted geometry that ensures separability of the massless Klein-Gordon operator is
given by (7.21) with,

∆0,Star =
(
r2

+ + a2
)2

, AStar = a sin2 θ

G

(
r2

+ + a2
)
dφ GStar = G . (7.23)

This geometry is what [88] refers to as the “effective near zone geometry” of the Kerr-
Newman black hole, here connected to the earlier notion of subtracted geometries ([35, 36]).
Let us see if the spin weighted Lie derivative (7.12) captures the correct s 6= 0 extensions
in (5.1). We first need to identify a proper set of tetrad vectors. This is achieved by,

`Star = r2
+ + a2

∆ (∂t + Ω∂φ) + ∂r ,

nStar = ∆
2
(
r2

+ + a2)
[
r2

+ + a2

∆ (∂t + Ω∂φ)− ∂r
]
,

mStar = 1√
2 (r+ + ia)

[
∂θ + i

sin θ∂φ
]
,

(7.24)
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which preserves the algebraic classification of the Kerr-Newman black hole, i.e. the above
subtracted geometry is still a Petrov type-D spacetime. A direct calculation then reveals
that the s 6= 0 pieces in the Starobinsky near zone SL (2,R) generators (5.1) are exactly
reproduced by the spin weighted Lie derivative (7.12),

LLStar
0

= LStar
0 = L

Star, (s)
0 ,

LLStar
±1

= LStar
±1 ∓ s e±t/β

r − r∓√
∆

= L
Star, (s)
±1 ,

(7.25)

where LStar
m are the s = 0 vector fields generating the Starobinsky near zone SL (2,R)

symmetry of the massless Klein-Gordon equation. This shows that the s 6= 0 pieces in the
Starobinsky near zone SL (2,R) generators can indeed be assigned a geometric interpretation
in terms of spin weighted Lie derivatives in a particular subtracted geometry.

7.3.2 Love symmetry

For the Love symmetry s = 0 vector fields (4.22), the corresponding subtracted geometry is
given by (7.21) with,

∆0,Love =
(
r2

+ + a2
)2 (

1 + β2Ω2 sin2 θ
)
,

ALove = a sin2 θ

G

(
r2

+ + a2 + β (r − r+)
)
dφ , GLove = G .

(7.26)

One can then attempt to infer the s 6= 0 generators (4.34) using the spin weighted Lie
derivative (7.12). The associated tetrad vectors are, up to local boosts and rotations,

`Love = r2
+ + a2

∆

(
∂t + ∆′

r+ − r−
Ω∂φ

)
+ ∂r ,

nLove = ∆
2∆1/2

0,Love

[
r2

+ + a2

∆

(
∂t + ∆′

r+ − r−
Ω∂φ

)
− ∂r

]
,

mLove = 1√
2M0,Love

[
∂θ + i

√
1

sin2 θ
+ β2Ω2 ∂φ

]
,

(7.27)

with |M0,Love|2 = ∆1/2
0,Love. These would imply the following s 6= 0 extensions of the Love

symmetry vector fields,

LLLove
0

= LLove
0 = L

Love, (s)
0 − s ,

LLLove
±1

= LLove
±1 ∓ s e±t/β

r − r∓√
∆

= L
Love, (s)
±1 + s e±t/β

√
r − r+
r − r−

,
(7.28)

which do not reproduce the actual s 6= 0 pieces involved in the Love symmetry genera-
tors (4.34). As a result a geometric interpretation in terms of spin weighted Lie derivatives
for the subtracted geometry does not seem to be possible in this case.15 The corresponding

15As a disclaimer here, there actually exists a possible choice of tetrads that ensures that the spin weighted
Lie derivative does indeed capture the correct s 6= 0 pieces of the Love symmetry generators in (4.34). This
is given by a particular local boost,

`Love → λ`Love , nLove → λ−1nLove , mLove → mLove ,

with λ = e(t−φ/Ω)β . However, this local boost is not globally defined and does not have a smooth spinless limit.
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Casimir associated with this spin weighted Lie derivative along the Love symmetry vector
fields is,

CLove2 = CLove, (s)
2 + s

r+ − r−
r − r−

(∂t + Ω ∂φ) , (7.29)

which fails to be a valid near zone truncation due to the additional static contribution for
Ω 6= 0, while, for Ω = 0, this is just the Starobinsky near zone approximation (2.30)–(2.31).

Another peculiar property of the Love symmetry generators is that the corresponding
s-dependent pieces can be completely gauged away through a particular globally defined
local boost transformation of the NP scalars involved in the Teukolsky equation,

Ψs → Ψ̃s =
(
e−t/β

√
∆
)s

Ψs ⇒ LLove, (s)
m Ψs =

(
e−t/β

√
∆
)−s

LLove
m Ψ̃s . (7.30)

In other words, the Love near zone truncation of the spin-s Teukolsky equation (2.25)–(2.26)
is effectively a near zone truncation of the s = 0 Teukolsky equation for the boosted NP
scalars Ψ̃s. Note, however, that the required boost has a non-trivial time dependence, so
that it turns static perturbations into time-dependent ones.

7.4 Infinite-dimensional extension and relation to extremal near horizon
isometries

We will finish this section by demonstrating how one can recover the spin weighted Killing
vectors of the near horizon geometry of extremal Kerr-Newman black holes from non-
extremal SL (2,R) algebras. As in the scalar example analyzed in section 6, these non-
extremal SL (2,R) algebras are subalgebras of the infinite extension SL (2,R)nU (1)V found
in section 5.3. Here, the U (1) vector field in (5.13) is supplemented by a scalar piece,

βΩ ∂φ → βΩ ∂φ + s . (7.31)

The SL (2,R)(α) subalgebras of this s-extended SL (2,R) n U (1)V are then generated by,

L(s)
m (α) = L(s)

m + αυ0,m (βΩ ∂φ + s) , m = 0,±1 , (7.32)

where L(s)
m are the s-extended Love generators (4.34) and υ0,m belong to the representation

V constructed from L
(0)
m (see figure 4). The associated Casimir is given by,

C(s)
2 (α) = ∆−s∂r∆s+1∂r −

(
r2

+ + a2)2
∆ (∂t + Ω ∂φ)2

+ s

(
r2

+ + a2)∆′
∆ (∂t + Ω ∂φ) + s (s+ 1)

+ 2r
2
+ + a2

r − r−

(
∂t + αΩ ∂φ + α

s

β

)
(α− 1)βΩ ∂φ .

(7.33)

Again, even though all of these operators preserve the near horizon characteristic exponents
of the non-extremal Teukolsky equation, only the choices α = 0 and α = 1 give rise to
valid near zone approximations, corresponding to the s-extended Love and Starobinsky near
zones respectively.
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Choosing α as in equation (6.18) for arbitrary sub-extremal contributions, we obtain
the SL (2,R) algebra,

L
NHE, (s)
0 = − 1

2πTH
[∂t + (1 + 4πTHM) Ω ∂φ] +O (TH) ,

L
NHE, (s)
±1 = e±2πTH t

[
∓
√

∆ ∂r + ∂r
(√

∆
) 1

2πTH
(∂t + Ω ∂φ) + s

r − r∓√
∆

+ 2M
√
r − r+
r − r−

Ω ∂φ +O (TH)
]
.

(7.34)

The Casimir of this algebra is explicitly given by

CNHE2 = ∆−s∂r∆s+1∂r −
(
r2

+ + a2)2
∆ (∂t + Ω ∂φ)2 + 2 rsa

r − r−
(∂t + Ω ∂φ) ∂φ

+ s

(
r2

+ + a2)∆′
∆ (∂t + Ω ∂φ) + s (s+ 1)

+ r+ − r−
r − r−

(2MΩ ∂φ + s) 2MΩ ∂φ +O (TH) ,

(7.35)

which reduces to the appropriate near horizon extremal Teukolsky operator (7.16) in the
extremal limit.

We can then follow the same prescription we used in 6.3 to recover the spin weighted
Killing vectors (7.15),

ξ
(s)
+1 = λ−1 lim

TH→0

(
−2πTHLNHE, (s)

0

)
,

ξ
(s)
0 = lim

TH→0

L
NHE, (s)
+1 − LNHE, (s)

−1
2 ,

ξ
(s)
−1 = λ lim

TH→0

L
NHE, (s)
+1 + L

NHE, (s)
−1 + 2LNHE, (s)

0
2πTH

.

(7.36)

An important remark here that was not relevant in the scalar example in section 6 is
that the infinite-dimensional extension SL (2,R) n U (1)V is now needed not only in the
Kerr-Newman case, but also in the spherically symmetric Reissner-Nordström case in order
to correctly reproduce the full spin weighted Killing vectors (7.15).

Last, it is instructive to ask whether the SL (2,R)(α) subalgebras of the infinite ex-
tension SL (2,R) n U (1)V admit similar subtracted geometry analyses as with the near
zone SL (2,R)’s. The subtracted geometry associated with SL (2,R)(α) is given by (7.21),
now with,

∆0,(α) =
(
r2

+ + a2
)2 (

1 + (α− 1)2 β2Ω2 sin2 θ
)

A(α) = a sin2 θ

G(α)

[
r2

+ + a2 − (α− 1)β (r − r+)
]
,

G(α) = G+ 4α (α− 1) r − r+
r+ − r−

a2 sin2 θ .

(7.37)
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The SL (2,R)(α) generators (7.32) are then Killing vectors of this geometry. Even though
this effective geometry preserves the thermodynamic properties of the Kerr-Newman black
hole, it fails to capture properties that extend beyond the near horizon behavior. For
instance, the ergosphere of this black hole geometry is now located at G(α) = 0 which does
not match the original locus condition G = 0 unless α = 0 or α = 1.

Let us finally see whether the s 6= 0 pieces can be inferred from the spin weighted Lie
derivative (7.12). The corresponding tetrad vectors are, up to local boosts and rotations,

`(α) = r2
+ + a2

∆

(
∂t + ∆′ − 2α (r − r+)

r+ − r−
Ω∂φ

)
+ ∂r ,

n(α) = ∆
2∆1/2

0,(α)

[
r2

+ + a2

∆

(
∂t + ∆′ − 2α (r − r+)

r+ − r−
Ω∂φ

)
− ∂r

]
,

m(α) = 1√
2M0,(α)

[
∂θ + i

√
1

sin2 θ
+ (α− 1)2 β2Ω2 ∂φ

]
,

(7.38)

with
∣∣∣M0,(α)

∣∣∣2 = ∆1/2
0,(α). The spin weighted Lie derivative (7.12) then outputs,

LL0(α) = L0 (α) = L
(s)
0 (α)− (1− α) s ,

LL±1(α) = L±1 (α)∓ s e±t/β r − r∓√
∆

= L
(s)
±1 (α) + (1− α) s e±t/β

√
r − r+
r − r−

,
(7.39)

and the corresponding spin weighted Casimir is given by,

C(s)
2 (α) = C(s)

2 (α = 1) + 2r
2
+ + a2

r − r−

(
∂t + αΩ ∂φ + s

β

)
(α− 1)βΩ ∂φ , (7.40)

where C(s)
2 (α = 1) is the Starobinsky near zone SL (2,R) Casimir.

Just like in the analysis for the Love symmetry generators, the spin weighted Lie
derivative does not agree with the actual s 6= 0 pieces of L(s)

m (α).16 In fact, the s 6= 0
corrections predicted from the spin weighted Lie derivative are independent of α and they are
always equal to the s 6= 0 pieces of the Starobinsky near zone SL (2,R) algebra generators.
However, in contrast to the Love symmetry example, the s 6= 0 pieces of L(s)

m (α) cannot be
gauged away by any globally defined local boost or rotation.

8 Further generalizations

We have seen that many properties of static Love numbers of non-extremal black holes can
be explained by means of the Love symmetry and its extensions. We also discussed the

16Similar to the Love symmetry example, there exists a particular local boost on the tetrad vectors with
the same boost parameter λ = e(t−φ/Ω)/β whose implementation in the spin weighted Lie derivative correctly
reproduces the appropriate scalar pieces in L(s)

m (α), but is not globally defined and does not have a smooth
Ω→ 0 limit. Interestingly, this boost parameter is independent of α, but the Starobinsky near zone algebra
is in fact invariant under such transformations involving the co-rotating azimuthal angle, which allows to
always gauge away such pathological factors.
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relation of the Love symmetry to the near horizon isometries in the extremal case. However,
the near zone approximation breaks down for the extremal black holes. In this section we
show that the vanishing of Love numbers of extremal black holes can be proven using a
novel so-called “middle zone” Love symmetry.

In the second part of this section we present the most general infinite-dimensional and
globally defined extension of the Love symmetry and of the Starobinsky near zone algebra.
Finally, we discuss some implications of the Love symmetry for modified gravity theories.

8.1 Extremal middle zones

Let us see that in the extremal case there is another set of generators that allows us to
derive the vanishing of Love numbers from the group theory arguments. Let us first focus
on the Reissner-Nordström case. Consider the following set of vector fields regular at the
future horizon,

L0 = −2M∂t + s ,

L±1 = e
±
(

t
2M−

M
2(r−M)

) [
∓ (r −M) ∂r + 2M

(
1± M

2 (r −M)

)
∂t − s (1± 1)

]
.

(8.1)

The corresponding Casimir is given by

C2 = (r −M)−2s ∂r (r −M)2(s+1) ∂r + M4

(r −M)2 ∂
2
t

− 2M2 ∂t∂r − 2s M2

r −M
∂t + s (s+ 1) .

(8.2)

Strictly speaking, it matches the Teukolsky equation only in the static limit: the ∂2
t term

has a wrong sign, and hence the Casimir provides a good approximation to the physical
Teukolsky operator only in the regime

ωM2 � r −M � 1/ω . (8.3)

We call this region the “middle zone” in what follows. The appearance of the middle
zone is natural because the extremal near horizon patch obviously decouples from the
asymptotically flat region. Previously, we had reproduced the static solution and derived
the properties of Love numbers from the near horizon symmetry. However, the Love numbers
themselves are defined through the matching in the asymptotically flat space patch, and
the fact that they can be fully extracted from the near horizon approximation looks like a
miracle. This might simply be a result of some accidental degeneracy that takes place in
the Reissner-Nordström case.

In contrast to the near horizon region, the middle zone interpolates between the
asymptotic infinity and the near horizon region. Hence, it is natural to expect that it is
this symmetry that should be important for Love numbers of extremal black holes. Indeed,
we can use this symmetry for an alternative derivation of the vanishing of Love numbers of
extremal four dimensional black holes. However, the near horizon symmetry is a symmetry
of the background geometry itself, while right now we do not have a similar interpretation
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for the “middle zone” symmetry. It remains to be seen if there is a deeper reason behind
the appearance of this symmetry.

Importantly, there is an analog of the middle zone for the extremal rotating black holes,
which captures solutions that are not even present in the AdS2 near horizon throat. The
static part of the extreme Kerr-Newman black hole near zone Teukolsky equation can be
reproduced with the following SL (2,R) vector fields,

L0 = −2M∂t + s ,

L±1 = e
±
(

t
2M−

M2+a2
2M(r−M)

)[
∓ (r −M) ∂r + 2M

(
1± M2 + a2

2M (r −M)

)
∂t

+ a

r −M
∂φ − s (1± 1)

]
,

(8.4)

which are regular in the advanced Kerr coordinates. The Casimir of this algebra

C2 = (r −M)−2s ∂r (r −M)2(s+1) ∂r +
(
M2 + a2)2
(r −M)2

(
∂2
t − Ω2 ∂2

φ

)
− 4Ma

r −M
∂t∂φ − 2

(
M2 + a2

)
∂t∂r − 2sM

2 + a2

r −M
(∂t − Ω ∂φ) + s (s+ 1) ,

(8.5)

is again somewhat different from the full extremal Kerr-Newman low-frequency Teukolsky
operator (A.10), but it is still accurate provided that eq. (8.3) holds true. Importantly, the
middle zone symmetry also captures states with mode frequencies different from the locking
one, and hence it is suitable to describe dynamics outside the throat.

We can use the middle zone symmetry for an algebraic derivation of the vanishing
of Love numbers for general static non-axisymmetric perturbations. Unlike the Reissner-
Nordsröm case, this statement cannot be made within the non-extremal Love symmetry or
the near horizon symmetry. The proof goes essentially the same way as in the non-extremal
Kerr-Newman case. The crucial observation is that the static solution belongs to the highest
weight SL (2,R) representation with h = −`, which dictates its polynomial form in r.

8.2 Infinite zones of Love from local translations of time

Interestingly, by carefully solving the constraints that need to be satisfied for a near zone
SL (2,R) symmetry to exist as is sketched in appendix D, the most general forms of the
generators come into two classes. These are generalizations of the Love and Starobinsky
near zones and are controlled by an arbitrary radial function g (r) that is regular at the
horizon, g (r+) = finite, according to,

L0 [g (r)] = L0 [0]
L±1 [g (r)] = e±g(r)/βL±1 [0]± e±(t+g(r))/β√∆g′ (r) ∂t

(8.6)

where primes denote radial derivatives and L0 [0] and L±1 [0] are the already found ex-
pressions for the Love and Starobinsky near zone SL (2,R) generators in (4.34) and (5.1)
respectively. For higher-dimensional spherically symmetric black holes, the same exten-
sion holds but this time with primes denoting derivatives with respect to the variable
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ρ = rd−3. These generalizations are not simple rescalings of L±1, which trivially leave
the algebra and the Casimir unchanged. They are local rescalings accompanied with
an additional t-component which are realized as local, r-dependent, translations of the
temporal coordinate,

t̃ ≡ t+ g (r) . (8.7)

This is seen more transparently by comparing (4.34) and (5.1) in (t, r, φ) coordinates with
the explicit expressions for the generalized generators in

(
t̃, r, φ

)
coordinates,

• Generalized Love near zone:

L0 [g] = −β∂t̃ + s

L±1 [g] = e±t̃/β
[
∓
√

∆ ∂r + ∂r
(√

∆
)
β ∂t̃ + a√

∆
∂φ − s (1± 1) ∂r

(√
∆
)] (8.8)

• Generalized Starobinsky near zone:

LStar
0 [g] = −β (∂t̃ + Ω∂φ)

LStar
±1 [g] = e±t̃/β

[
∓
√

∆ ∂r + ∂r
(√

∆
)
β (∂t̃ + Ω ∂φ)∓ sr − r∓√

∆

] (8.9)

The Love symmetry argument implying vanishing Love numbers can still be applied in the
same way as before but with this translated temporal coordinate t̃ appearing in place of t
in the elements of highest weight representations. This does not alter the conclusion that
static Love numbers vanish due to the polynomial form, up to overall irrelevant form-factors,
of the static solution.

The corresponding equations of motion arising from the Casimirs of the above two
generalized near zone SL (2,R)’s are the same as the “fundamental” (g = 0) ones but with
t replaced by t̃.

8.3 Love symmetry beyond general relativity

In this section we investigate general conditions for the existence of the Love symmetry in
general relativity modifications. Let us focus on a simple example of a massless scalar field
in the background of a generalized spherically symmetric black hole geometry which can
always be brought to the form,

ds2 = −ft (r) dt2 + dr2

fr (r) + r2dΩ2
d−2 . (8.10)

The functions ft (r) and fr (r) are arbitrary at this point. In vacuum general relativity,
fr (r) = ft (r) but in general modified gravity this is not true anymore. The preliminary
assumptions we impose on these radial functions are that there exists a horizon at r = rh
where ft (rh) = fr (rh) = 0 with multiplicity one,

ft (rh) = fr (rh) = 0 , f ′t (rh) 6= 0 , f ′r (rh) 6= 0 , (8.11)
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that is, the geometry describes a non-extremal spherically symmetric black hole. The
full radial Klein-Gordon equation after expanding over monochromatic spherical harmonic
modes of orbital number ` reads,

OfullΦω`m = ˆ̀(ˆ̀+ 1)Φω`m

Ofull = ∂ρ∆r∂ρ + ∆2
r

2∆t

(∆t

∆r

)′
∂ρ −

r2(d−2)

(d− 3)2 ∆t

∂2
t

(8.12)

where ρ = rd−3 and ˆ̀ = `/ (d− 3) as before, ∆t ≡ ρ2ft, ∆r ≡ ρ2fr and primes denote
derivatives with respect to ρ.

We now explore whether there exist near zone truncations that are equipped with an
SL (2,R) structure. Of particular interest is the following near zone approximation of the
radial Klein-Gordon operator,

ONZ = ∂ρ∆r∂ρ + ∆2
r

2∆t

(∆t

∆r

)′
∂ρ −

r
2(d−2)
h

(d− 3)2 ∆t

∂2
t . (8.13)

This differential operator can be represented as a Casimir of a certain regular and globally
defined SL (2,R) algebra if and only if the following condition is satisfied,

∆r

∆t
∆′′t + 1

2∆′t
(∆r

∆t

)′
= 2 . (8.14)

The generators of the SL (2,R) near zone symmetry are given by,

L0 = −β ∂t , L±1 = e±t/β

∓√∆r ∂ρ +
√

∆r

∆t
∂ρ
(√

∆t

)
β ∂t

 , (8.15)

where β is the inverse Hawking temperature,

β = 2√
f ′t (rh) f ′r (rh)

, (8.16)

and are regular at both the future and past event horizons. The geometric constraint (8.14)
can be solved explicitly,

∆r (ρ) = ∆t (ρ)
4∆t (ρ) +

(
βs
β ρh

)2

∆′2t (ρ) , (8.17)

with βs = 2rh
d−3 the inverse Hawking temperature for the Schwarzschild black hole. At the

level of the functions ft (r) and fr (r) themselves, the above condition reads,

fr (r) = ft (r) (d− 3)2 r2(d−4)(
r2(d−3)ft (r)

)′2
[
4r2(d−3)ft (r) +

(
βs
β

)2
r

2(d−3)
h

]
. (8.18)

As can be checked explicitly, the asymptotic flatness condition is automatically imposed by
the above condition if either ft or fr is asymptotically flat. For the case where fr (r) = ft (r),
we get that the most general such geometry is the higher-dimensional Reissner-Nordström
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black hole. Following the procedure outlined in appendix D, one can in fact show that
the near zone truncation (8.13) employed here is the only one that is a candidate of being
equipped with an SL (2,R) structure. Indeed, the above results set absolute geometric
constraints on the existence of Love symmetry beyond General Relativity as long as we
ignore possible scalar field redefinitions and only consider fields minimally coupled to gravity.

One can also check that the above near zone SL (2,R) implies the vanishing of static
Love numbers when ˆ̀ ∈ N. Using the same symmetry argument of the regular static
solution being an element of a highest weight representation of this SL (2,R), we obtain
(L+1)`+1 υ−`,` = 0. We now get a modified “polynomial” requirement. In particular,
noticing that,

(L+1)n F (ρ) =
(
−et/β

√
∆t

)n √∆r

∆t

d

dρ

n F (ρ) (8.19)

for an arbitrary purely radial function F (ρ), we again get that the static radial wavefunction
Rω=0,`m belongs to a highest weight representation if and only if ˆ̀∈ N, in which case it is
again a polynomial, but this time not in the radial variable ρ = rd−3, but in the variable ρ̃,
defined as

dρ̃ ≡
√

∆t

∆r
dρ⇒ ρ̃ =

√
∆t +

(
βs
2β ρh

)2
+ ρ̃h −

βs
2β ρh , (8.20)

where ρ̃h is an integration constant indicating the location of the event horizon in this new
radial coordinate,

Rω=0,`m (r) =
ˆ̀∑

n=0
c(m)
n ρ̃n (r) if ˆ̀∈ N . (8.21)

We note that, asymptotically, ρ̃ → ρ due to the asymptotic flatness of ft. Expanding
this polynomial in ρ̃ at large distance in the initial radial variable ρ, one observes the
appearance of an ρ−ˆ̀−1 = r−`−d+3 term. However, this term is a relativistic correction in
the profile of the “source” part of the solution, rather than a response effect from induced
multipole moments. Indeed, if the geometric condition (8.14) for the existence of a near
zone SL (2,R) symmetry is satisfied, we arrive at a situation practically identical to the case
of Schwarzschild black hole, eq. (4.48), when working with the variable ρ̃. More explicitly,
the full radial Klein-Gordon operator reads,

Ofull = ∂ρ̃∆t∂ρ̃ −
r2(d−2)

(d− 3)2 ∆t

∂2
t , (8.22)

and ∆t is a quadratic polynomial in ρ̃,

∆t = (ρ̃− ρ̃h)
(
ρ̃− ρ̃h + βs

β
ρh

)
. (8.23)

Matching onto the worldline EFT is equivalent to solving the equations motion after
analytically continuing the orbital number to perform the source/response split of the scalar
field, and only in the end sending ` to take its physical integer values. Doing this, we see
that the “response” part of the static scalar field is singular at the horizon when ˆ̀∈ N
and is therefore absent, while the “source” part becomes a polynomial of degree ˆ̀ in ρ̃.
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Consequently, the corresponding static Love numbers vanish identically and we see again
how a polynomial form of the solution is indicative of this vanishing. For generic ˆ̀, the
procedure just described gives the following static scalar Love numbers,

k
(0)
` = 1

24ˆ̀+2

Γ2
(

ˆ̀+ 1
)

Γ
(

ˆ̀+ 1
2

)
Γ
(

ˆ̀+ 3
2

) tan π ˆ̀
(
βs
β

ρh
ρs

)2ˆ̀+1
, (8.24)

which are exactly analogous to the ones for the higher-dimensional Schwarzschild black hole
obtained in [17].

All in all, we observe that the Love symmetry can be present beyond general relativity.
We have derived a generic class of geometries enjoying the near zone SL (2,R) symmetries.
All these geometries must have exactly zero static Love numbers when ˆ̀∈ N as a result of
the highest weight property.

An instructive application of our construction is the non-vanishing of Love numbers in
Riemann-cubed gravity considered in section 3.3. In this case, the Klein-Gordon equation
does not posses an SL (2,R) symmetry, which can be seen from the fact that the geometric
constraint (8.14) is violated for any non-zero α. Thus, Riemann-cubed gravity gives an
explicit example where the absence of the Love symmetry is accompanied by running
Love numbers.

9 Discussion

We have presented the SL (2,R) Love symmetry of black hole perturbations that allows for
a group theory description of Love numbers’ properties and, in particular, addresses the
vanishing of black hole Love numbers in four dimensions.

On the one hand, it is satisfactory that the “Love hierarchy problem” [9] has lead us
to the identification of a novel (approximate) black hole symmetry. Static solutions of the
near zone Teukolsky equation belong to highest weight SL (2,R) representations, which
dictate a polynomial form of these solutions (in appropriate coordinates) and consequently
forces the Love numbers to vanish. At first glance, this picture is consistent with the ‘t
Hooft naturalness dogma [21].

On the other hand, the Love symmetry has an unconventional property that it mixes
UV and IR modes. This happens because of the e±t/β factors in the L±1 generators. As a
result, SL (2,R) multiplets contain both the static solution and modes with large (imaginary)
frequencies. However, only in the near extreme limit M/β � 1 the action of the Love
symmetry is compatible with the near zone validity conditions (2.29). This does not, of
course, invalidate our arguments. Our logic is first to work in the near zone limit ε = 0,
solve the resulting theory exactly, and then perturb around this exact solution. Formally, in
the general Kerr-Newman case, the near zone limit is valid only for small frequency modes,
which include, of course, the static solution. For them the Love symmetry argument allows
us to obtain exact results despite the UV/IR mixing.

All in all, it is somewhat unclear whether the discovery of the Love symmetry should
be considered as a triumph of naturalness in the sense of ‘t Hooft, or rather an example of
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a “UV miracle.” At the moment all evidence suggests that it is a UV symmetry whose full
action cannot be understood from the EFT point of view. It remains to be seen whether
this UV/IR mixing example may be useful for other known hierarchy problems.

Related to the UV/IR mixing it is worth commenting on the recently presented “ladder
symmetry” of black hole perturbations [89]. This construction appears to be very different
from ours. Unlike the Love symmetry, the “ladder symmetry” does not have a conventional
spacetime algebra. Instead, the ladder operators act directly on the multipole moments
of the fields, mixing modes with different orbital number `. Using the ladder operators
one can obtain that the profile of a static perturbing filed, regular at the horizon, has
a polynomial form. This form thus is dictated by the structure of the ladder operators
and the regularity requirement. In contrast, the Love symmetry gives a group theory
explanation of vanishing Love numbers as a consequence of the highest weight property of
the corresponding representation. Comparing the two, we see that the “ladder symmetry”
does not have a similar group theoretical interpretation of Love numbers’ vanishing.

Another peculiar property of the “ladder symmetry” proposal is that it does not, in
general, transform physical solutions into other physical solutions. In particular, the ladder
“multiplets” of Kerr black hole perturbations contain unphysical states with |m| ≥ `. In
this sense the ladder symmetry is somewhat different from conventional symmetries that
transform a physical solution into another physical solution.

It should also be pointed out that the ladder construction operates at the level of static
perturbations. Thus, it has a potential to address the vanishing of Love numbers in a more
conventional way, i.e. by providing symmetry selection rules at the IR level. It remains to
be seen if this symmetry can successfully address all peculiar properties of Love numbers,
including their fine-tuning for higher-dimensional black holes.

As a continuation of that work, [88] appeared while our paper was being prepared
(see also [90]). There, the ladder symmetry structure arises from a larger conformal group
of an effective conformally flat near zone metric. As mentioned above, such effective
black hole metrics are known as “subtracted geometries” in the literature, see e.g. [35, 36,
91]. The effective Kerr near zone geometry presented in [88] actually corresponds to our
Starobinsky near zone approximation (2.30), i.e. the s = 0 Starobinsky near zone SL (2,R)
generators (5.1) are Killing vectors of that effective near zone geometry. This construction
offers an interpretation of the ladder generators for Schwarzschild black holes as boost-like
conformal Killing vectors of the subtracted geometry.

A different geometric interpretation of the ladder operators similar to [89] is given in
an earlier work [92]. This work has shown that if a spacetime possesses a closed conformal
Killing vector, this vector can be used to construct ladder operators that change the effective
mass of a scalar field in this spacetime. In this context, the Schwarzschild ladder operators
of [89] match the ladder operators generated by an effective conformal Killing vector of the
subtracted geometry.

It is useful to mention that the Love symmetry parallels the spherical symmetry of the
hydrogen atom. The Love symmetry generators L± raise and lower the imaginary frequency
(SL (2,R) weight h) of black hole perturbations just like the SO(3) operators raise and
lower the magnetic quantum number m. The orbital number ` stays the same because the
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symmetry operators only transform vectors within the same representation. The spherical
symmetry, however, also implies the existence of a ladder structure that changes the orbital
number ` [92]. This ladder structure parallels that of [89].

All in all, we stress that we do not see a direct connection between the ladder construc-
tion [89] and our Love symmetry generators (4.22). While some link exists in the context
of the effective subtracted geometry [88], its physical meaning is unclear to us. Our above
results suggest that a proper interpretation of the Love symmetry should be in terms of the
broken near horizon isometries of extremal black holes.

10 Future directions

Our work suggests a number of future research directions.

Complete symmetry structure. First of all, it would be important to understand the
full symmetry structure of black hole perturbations. We have already seen that the Love
symmetry can be extended to cover other near zones as well as perturbations with real
frequencies. It is natural to expect that the SL (2,R) algebra of the Love symmetry can
be extended into the full Virasoro algebra by including the asymptotic Bondi-Metzner-
Sachs symmetries [93].

It should be pointed out that even if such an extension exists, it can only be approximate.
This is because the full solution of the Teukolsky equation is known only in terms of infinite
series [94–96], which cannot be interpreted as a basis function in some particular Lie
algebra representation.

Kerr/CFT conjecture. The Love symmetry can be contrasted with the non-critical
Kerr/CFT proposal [57], see also [56]. It is based on the fact that for a different choice
of the near zone split the wave equation in the Kerr black hole background enjoys a
local “hidden” SL (2,R)R × SL (2,R)L conformal symmetry. However, its generators are
not globally well-defined because they do not respect the φ → φ + 2π periodicity, and
therefore regular solutions of the Teukolsky equation do not form SL (2,R)R × SL (2,R)L
representations. Furthermore, the Kerr/CFT SL (2,R)R × SL (2,R)L generators do not
have a smooth Schwarzschild limit.

In contrast, our Love symmetry generators are well defined globally and have a smooth
Schwarzschild limit. This suggest that the Love symmetry may be a better starting point
for a hypothetical holographic description of Kerr black holes. This expectation is further
supported by the observation that the Love symmetry is a cousin of the extremal Kerr-
Newman near horizon isometry [33, 34]: they are subalgebras of the same common algebra.

Reorganization of black hole perturbation theory. An immediate practical appli-
cation of the Love symmetry is that it can be used as a guiding principle in organizing
black hole perturbation theory calculations. The standard approach is to first find a formal
full solution to the Teukolsky equation in terms of a series of hypergeometric functions,
and then Taylor expand it at small frequencies [94–96]. However, this way the information
that the Teukolsky equation is exactly solvable in the near zone approximation is lost and

– 59 –



J
H
E
P
1
0
(
2
0
2
2
)
1
7
5

can be recovered only a posteriori. A better way to build perturbation theory is to start
with an expansion around the near zone, where perturbations obey the Love symmetry. In
this approach the Love symmetry can play a role similar to the chiral symmetry in pion
perturbation theory. Treating symmetry breaking parameters in eq. (2.26) as spurions
under the Love symmetry, one should be able to derive analogues of the Gell-Mann-Okubo
relations between finite frequency black hole responses and quasinormal modes.

Quasinormal modes. Another natural question is to what extent the Love symmetry can
be useful for the study of quasinormal modes. We have argued that states of Love highest
weight multiplets with negative imaginary frequencies can be interpreted as highly-damped
quasinormal modes in the Schwarzschild case and as total transmission modes in the Kerr
and Reissner-Nördstrom case. It is quite unexpected that the leading imaginary frequency
of the highly damped quasinormal modes easily follows from the Love algebra. This can be
compared with the celebrated simple derivation from the poles of the scattering amplitude
in the Born approximation [97]. In fact, the Born approximation gives a universal result of
the 2πTH spacing of highly-damped QNMs for all black hole backgrounds, which agrees
with the spacing in Love multiplets. This suggests a connection between the two approaches
and it would be interesting to investigate it in the future.

In addition, it would be important to study the relationship between the Love multiplet
and QNMs in more detail and understand how this relationship transforms beyond the near
zone expansion and the highly-damped limit.

Higher spin fields in higher dimensions. We have presented a generalization of the
Love symmetry that describes the properties of scalar Love numbers of higher dimensional
Schwarzschild black holes. In order to complete the Love symmetry arguments in higher
dimensions, it would be important to generalize our results to the case of spin-1 and spin-2
perturbations. In particular, it would be interesting if the Love symmetry can address the
intricate structure of electric and magnetic type Love numbers that takes place in higher
dimensions as well [18]. Related to this, it would be interesting to also investigate the
existence of Love symmetry in non-spherically symmetric black hole geometries in higher
dimensions, such as Myers-Perry black holes [98], or even black objects with non-compact
horizons, i.e. black p-branes [99], where the associated near zone symmetry structure is
expected to follow from the SO (p+ 1, 2) subgroup of the enhanced isometry of the near
horizon geometry of extremal black p-branes.

Love symmetry beyond General Relativity. Another interesting outcome of the
analysis done in this paper is the possibility of Love symmetry existing in theories beyond
General Relativity. We have in fact derived a geometric constraint and theories of gravity
supporting such black hole solutions will have vanishing static scalar Love numbers due
to the highest weight property of the near zone SL (2,R). It is natural to study better
what theories of gravity do support such solutions. It should be noted here that our
current analysis has been quite restrictive on the form of the generators, namely, we have
ignored possible field redefinitions and global rescalings that are not a priori forbidden, and
some relaxations on this front will allow for a more proper investigation. An immediate
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interest that arises here is to apply such analyses to string theories, e.g. the spherically
symmetric Callan-Myers-Perry black hole of bosonic/heterotic string theory [100] or the
type-II supertstring theory α′3-corrections to the Schwarzschild black hole [101] which do
not satisfy the geometric constraint (8.14) and do not appear to posses a Love symmetry at
first sight.
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A Teukolsky equation for extremal black holes

The behavior of extremal Kerr-Newman black hole perturbations is somewhat different
from the non-extremal case because of the presence of additional singularities as r− → r+
in the Teukolsky equation. We treat this case in this appendix.

The purely incoming boundary condition has the following form in the tortoise
coordinate r∗,

R ∼ ∆−se−i(ω−mΩ)r∗ , as r∗ → −∞ (r → r+), (A.1)

where
dr∗
dr

= r2 + a2

∆ , ⇒ r∗ = r + 2M ln r −M
M

− M2 + a2

r −M
. (A.2)

In the Boyer-Lindquist coordinates it reads

R = const · (r −M)−2s−i2M(ω−mΩ) ei
M2+a2
r−M (ω−mΩ) . (A.3)

In what follows it is useful to introduce the variables

α ≡ 1− ω

mΩ , x ≡ r −M
M

, ε ≡ 2Mω , (A.4)

in which the boundary condition (A.3) reads

R = const · x−2s+2iαmΩMe−im
aα
Mx as x→ 0 . (A.5)

The radial Teukolsky equation can be written as[
(r −M)−2s ∂r (r −M)2(s+1) ∂r +

(
M2 + a2)2
(r −M)2 (ω −mΩ)2 − 4Ma

r −M
mω

+ r +M

r −M

(
r2 +M2 + 2a2

)
ω2 − 2isM

2 + a2

r −M
(ω −mΩ)

+ 2is (r −M)ω + s(s+ 1)− `(`+ 1)
]
R = 0 .

(A.6)
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In the new variables it reads[
x−2s∂x x

2(s+1) ∂x + m2α′2

x2 − 2 (ε− is) mα
′

x
+ isεx

+ ε2

2

(
x2

2 + 2x+ 3 + a2

M2

)
+ s (s+ 1)− ` (`+ 1)

]
R = 0 ,

(A.7)

where we have introduced,
α′ ≡ a

M
α . (A.8)

Let us solve this equation in some approximations.

A.1 Low frequency limit and Love numbers

Let us neglect the terms which are suppressed provided that

ε� 1 , εx� 1 . (A.9)

This is identical to the near zone approximation. It is convenient to make a new transfor-
mation z = 1/x, with which the approximate Teukolsky equation reads:[

z2(s+1)∂z z
−2s ∂z +m2α′2z2 − 2 (ε− is)mα′z + s (s+ 1)− ` (`+ 1)

]
R = 0 . (A.10)

This equation can be brought to the Whittaker form after transforming to the new variable

y = 2imα′z , (A.11)

and the field redefinition R = ysϕ,[
∂2
y −

1
4 + iε+ s

y
− ` (`+ 1)

y2

]
ϕ = 0 . (A.12)

The general solution has the form:

R = e−imα
′z(2imα′z)`+1+s

(
Φ
(
−iε+ `− s+ 1, 2`+ 2; 2imα′z

)
+ Ψ

(
−iε+ `− s+ 1, 2`+ 2; 2imα′z

) )
,

(A.13)

where Φ and Ψ are the confluent hypergeometric functions of the first and second kind.
Their expansions at the horizon z →∞ read [102]

Ψ (a, b, y) =
∑
n=0

(−1)n (a)n (a− b+ 1)n
n! y−a−n ,

Φ (a, b, y) = Γ (b)
Γ (b− a)

(
−1
y

)a
(1 + . . .) + Γ (b)

Γ (a)e
yya−b (1 + . . .) ,

(A.14)

from which we see that Ψ is the solution regular at the horizon. We also used

(a− b+ 1)n = Γ (a− b+ 2)
Γ (a− b+ 2− n) . (A.15)
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To find the Love numbers we expand Ψ (a, n+ 1, x) at spatial infinity z → 0 and find logs,

Ψ (a, n+ 1; y) = (−1)n−1

n!Γ (a− n)

(
Φ (a, n+ 1;x) log (y)

+
∞∑
r=0

(a)r
(n+ 1)r

[ψ (a+ r)− ψ (1 + r)− ψ (1 + n+ r)] y
r

r!

)

+ (n− 1)!
Γ (a)

n−1∑
r=0

(a− n)r
(1− n)r

yr−n

r! .

(A.16)

At the leading order we have the following source and response contributions,

Ψ
(
−iε+ `− s+ 1, 2`+ 2; 2imα′z

)
= (2`)!

Γ (−iε− s+ `+ 1)
(
2imα′z

)−2`−1 + log (2imα′z)
(2`+ 1)!Γ (−iε− s− `) ,

(A.17)

which gives the following expression for the response coefficient

k
(s)
`m =

(
log

(
2mα′z

)
+ i

π

2

) (imα′)2`+1 Γ (−iε− s+ `+ 1)
(2`)! (2`+ 1)!Γ (−iε− s− `)

= (−1)s ε
(
mα′

)2`+1
(

log 2mα′M
r −M

+ i
π

2

) (`− s)! (`+ s)!
(2`)! (2`+ 1)! ,

(A.18)

where in the last line we kept terms linear in ε and used formulas from appendix D of
ref. [19]. We see that frequency-dependent response coefficients are not zero and run with
the distance. However, the exact static (ε = 0) Love numbers vanish.

A.2 Near horizon at the locking frequency

The Teukolsky equation has a different behavior in the regime

mx� 1 and m2α� 1 , (A.19)

which corresponds to a near horizon approximation and modes with frequencies closed to
the locking one. In this case we have,[

x−2s∂x x
2(s+1)∂x + m2α′2

x2 − 2 (2MmΩ− is) mα
′

x

+ 2
(
3M2 + a2

)
m2Ω2 + s (s+ 1)− ` (`+ 1)

]
R = 0 .

(A.20)

We proceed by defining [31, 32]

`(`+ 1)− 2
(
3M2 + a2

)
m2Ω2 ≡ 1

4
(
δ2 − 1

)
, (A.21)

z = x−1, ϕ = z−sR and m′ = 2MΩm such that our equation takes the form[
z2∂2

z +m2α′2z2 − 2mα′
(
m′ − is

)
z + 1− δ2

4

]
ϕ = 0 (A.22)
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Introducing y = 2imα′z, we arrive at the Whittaker equation[
∂2
y −

1
4 + im′ + s

y
− δ2 − 1

4y2

]
ϕ = 0 , (A.23)

whose general solution is expressed in terms of the Whittaker functions,

ϕ = c1Mim′+s, δ2

(
2imα′z

)
+ c2Wim′+s, δ2

(
2imα′z

)
. (A.24)

B Love symmetry vectors in the advanced/retarded coordinates

In this section we present the Love symmetry generators in the advanced and retarded
coordinates [103]. From these expressions, it will be clear that the Love vectors are regular
at the horizon r = r+, both the future and the past one.

Investigation of regularity at the future and the past event horizon is achieved by
transitioning to advanced and retarded null coordinates (υ, r, θ, ϕ) and (u, r, θ, ϕ̃) respectively.
These are related to the Boyer-Lindquist coordinates (t, r, θ, φ) according to,17

dυ = dt+ r2 + a2

∆ dr ⇒ υ = t+ r + r2
+ + a2

r+ − r−
ln r − r+

r+
−
r2
− + a2

r+ − r−
ln r − r−

r+
,

dϕ = dφ+ a

∆ dr ⇒ ϕ = φ+ a

r+ − r−
ln r − r+
r − r−

.

(B.1)

and,

du = dt− r2 + a2

∆ dr ⇒ u = t− r −
r2

+ + a2

r+ − r−
ln r − r+

r+
+ r2

− + a2

r+ − r−
ln r − r−

r+
,

dϕ̃ = dφ− a

∆ dr ⇒ ϕ̃ = φ− a

r+ − r−
ln r − r+
r − r−

.

(B.2)

In advanced null coordinates (υ, r, θ, ϕ), the Love vector fields (4.22) read,

L0 = −β ∂υ ,

L±1 = e±(υ−r)/β
(
r − r−
r+

)∓2M/β

[
∓ (r − r∓) ∂r + r − r∓

r − r−
(β ∓ (r + r+)) ∂υ + (1∓ 1) r

2
+ + a2

r − r−
(∂υ + Ω ∂ϕ)

]
,

(B.3)

and regularity at the future event horizon becomes clear, at least for non-extremal black holes.
17We are writing here the expressions for a non-extremal Kerr-Newman black hole. However, we have

fixed the integration constants such that, besides the asymptotic behaviors υ → t+ r, u→ t− r and ϕ→ φ,
ϕ̃→ φ as r →∞, we also get a smooth extremal limit. Namely, taking the extremal limit a2 +Q2 →M2

(r+ − r− → 0), we retrieve the correct expressions,

a2 +Q2 →M2 ⇒

{
υ → t+ r + 2M ln r−M

M
− M2+a2

r−M , ϕ→ φ− a
r−M

u→ t− r − 2M ln r−M
M

+ M2+a2

r−M , ϕ̃→ φ+ a
r−M

,

– 64 –



J
H
E
P
1
0
(
2
0
2
2
)
1
7
5

Similarly, in retarded null coordinates (u, r, θ, ϕ̃), the corresponding components are,

L0 = −β ∂u ,

L±1 = e±(u+r)/β
(
r − r−
r+

)±2M/β

[
∓ (r − r±) ∂r + r − r±

r − r−
(β ± (r + r+)) ∂u + (1± 1) r

2
+ + a2

r − r−
(∂u + Ω ∂ϕ̃)

]
,

(B.4)

revealing regularity also at the past event horizon in the non-extremal case.
Last, the extreme middle zone algebra vectors (8.4) have the following form in advanced

null coordinates,

L0 = −2M∂v ,

L+1 = −Me
v−r
2M (∂v + ∂r) ,

L−1 = M−1e−
v−r
2M

(
(r −M)(r + 3M)∂v + (M − r)2∂r + 2a∂ϕ

)
.

(B.5)

C Some properties of SL (2,R) representations

The lowest and highest weight representations are two standard reducible representations of
SL (2,R). Here we present some basic properties of these representations (see [83] for more
detail).18 The highest weight module Vh has a basis of L0− eigenvectors vj (j = 0, 1, 2, . . .)
that satisfy

L0vj = (h+ j) vj , L−1vj = vj+1 ,

L+1vj = j (2h+ j − 1) vj−1 , L+1v0 = 0 ,
Cvj = h (h− 1) vj .

(C.1)

The lowest weight module V̄h has a basis of L0− eigenvectors v̄j (j = 0, 1, 2, . . .) that satisfy

L0v̄j = (h− j) v̄j , L+1v̄j = −v̄j+1 ,

L−1v̄j = j (2h− j + 1) v̄j−1 , L−1v̄0 = 0 ,
Cv̄j = h (h+ 1) v̄j .

(C.2)

Note that ref. [82] offers a somewhat different classification of reducible representations
of SL (2,R). In particular, the representation relevant for the d = 4 Schwarzschild case
is the finite-dimensional representation D(2`), whereas the generic highest/lowest weight
Verma modules correspond to the representations D−(2`)/D+(2`), respectively.

18In the notation of that book we have e± = ±L∓1, h = 2L0, Chere
2 = Cthere

2 /4, λ = 2h.
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For completeness, we also present here the three additional standard modules W (µ, λ),
W̄ (µ, λ) and U

(
ν+, ν−

)
, spanned by infinite sets of vectors vj (j ∈ Z), which satisfy

W (µ, λ) : L0vj =
(
λ

2 + j

)
vj , L−1vj = vj+1 , Cvj = (µ/4) vj ,

L+1vj = −1
4
[
µ− (λ+ 2j − 1)2 + 1

]
vj−1 ,

W̄ (µ, λ) : L0v̄j =
(
λ

2 + j

)
v̄j , L+1v̄j = −v̄j−1 , Cv̄j = (µ/4) v̄j ,

L−1v̄j = 1
4
[
µ− (λ+ 2j + 1)2 + 1

]
v̄j+1 ,

U
(
ν+, ν−

)
: L0vj =

(
ν+ − ν−

2 + j

)
vj , L∓1vj =

(
j ± ν±

)
vj±1 ,

Cvj = ν+ + ν−

2

(
ν+ + ν−

2 − 1
)
vj .

(C.3)

D Derivation of SL (2,R) generators

In this appendix we will derive the form of the generators of the SL (2,R) symmetry of
the near zone equations of motion. Our method will be to first find those truncations
of the Teukolsky equation that enjoy an enhanced SL (2,R) structure and preserve the
characteristic exponents of the NP scalars in the vicinity of the event horizon. These
truncations of the Teukolsky equation are realized as wave operators built from effective
background black hole geometries, which have the property of preserving the internal
structure of the black hole, namely, its thermodynamic properties. Such geometries were
originally studied in [35, 36] and were coined the term “subtracted geometries”.19 We will
adopt the same terminology here for these effective black hole geometries.

After finding those subtracted geometry truncations of the Teukolsky operator equipped
with an SL (2,R) structure, we then identify the ones that are true near zone approximations,
i.e. the ones that, besides preserving the characteristic exponents of the NP scalars in the
vicinity of the event horizon, also preserve the entire static Teukolsky operator. These will
in general not be globally defined, spontaneously broken by the periodicity of the azimuthal
angle similarly to [57]. However, we will see that there exist two particular families of near
zone truncations with an SL (2,R) symmetry which are globally defined; these are the Love
symmetry and the Starobinsky near zone SL (2,R) symmetry examined in the main text,
up to local r-dependent translations in time.

The analysis in this appendix has the upshot of generalizing some already known results
in the literature, such as the local SL (2,R)× SL (2,R) originally found in [57]. We focus
on the non-extremal case but, as we discuss in the main text, there is a particular subset

19Strictly speaking, subtracted geometries as introduced in [35, 36] preserve more structure than just
the thermodynamic variables. For example, they also preserve the location of the ergosphere which is a
property of the black hole geometry that extends beyond the behavior of observables in the vicinity of the
event horizon.
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of the subtracted geometry truncations of the Teukolsky operator equipped with SL (2,R)
symmetries for non-extremal black holes that can be utilized to get the correct spin weighted
SL (2,R) Killing vectors of the near horizon extremal black hole configuration as well.

D.1 Subtracted geometry truncations

The full master Teukolsky operator (2.22)–(2.23) for the spin-s NP scalar has the form,

T(s)
fullΨs = 1

Σ [Gµνfull (r, θ)∇µ∇ν + s (γµfull∇µ (r, θ) + Ffull,0 (r, θ))] Ψs

= 1
Σ
[
O(s)

full − P(s)
full

]
Ψs ,

(D.1)

where Gµνfull ≡ Σgµνfull is the rescaled Kerr-Newman metric and γµfull and Ffull,0 are tetrad-
dependent modifications of the Klein-Gordon operator due a non-zero spin weight. All of
these functions depend only on the radial and polar coordinates by virtue of the Rt×Uφ (1)
isometry group of the background geometry. In the second equality above, we have dumbed
as O(s)

full and P(s)
full the full radial and angular Teukolsky operators respectively to stress out

the separability of the Teukolsky equation. The important point here is that the second
derivatives terms in the equations of motion always come from the inverse metric.

Let us momentarily focus on the s = 0 Teukolsky operator. As a preliminary approx-
imation on the geometry, we wish to truncate the Klein-Gordon operator such that the
characteristic exponents of the scalar field in the vicinity of the event horizon are preserved
for any frequency ω of the perturbation.20 For the second derivative terms, this means that,

Gµν (r, θ) ∂µ∂ν =
[
∆ ∂2

r −
(
r2

+ + a2)2
∆ (∂t + Ω ∂φ)2

]
+
[
∂2
θ + 1

sin2 θ
∂2
φ

]
+ δGµν (r, θ) ∂µ∂ν ,

(D.2)
with δGµν being “far-horizon” corrections, while we have enclosed into square brackets
the separated contributions to the radial and angular wave operators. The most general
such subtracted geometry metric that makes the second derivative terms separable in the
Boyer-Lindquist coordinates has the following form,

δGrr (r, θ) = ∆2frr (r) ,
δGtt (r, θ) = ftt (r) + f̃tt (θ) ,

δGtφ (r, θ) = Ω
[
ftφ (r) + f̃tφ (θ)

]
,

δGφφ (r, θ) = Ω2
[
fφφ (r) + f̃φφ (θ)

]
,

δGtr (r, θ) = ∆ ftr (r) , δGrφ (r, θ) = Ω ∆ frφ (r) ,

δGµθ (r, θ) = 0 ,

(D.3)

20For the separated scalar field, Φ = e−iωteimφR (r)S (θ), this would mean,

R (r) ∼ Ain (r − r+)−iZ(ω) +Aout (r − r+)+iZ(ω) , Z (ω) = β

2 (ω −mΩ) ,

with the first and second terms describing ingoing and outgoing waves respectively.
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where all fµν functions are regular at r = r+ and the Ω insertions are to remind us that
these functions are absent for non-rotating black holes. The fact that δGµθ = 0 is just
a consequence of the separability condition. We remark here that we are also allowing
the generation of the non-diagonal terms δGtr and δGrφ, as well as the offset diagonal
term δGrr. These are zero in the full background geometry but are in general allowed
in the current subtracted geometry treatment, as long as they vanish on the horizon.21
All these terms, however, can be removed by performing appropriate r-dependent “far-
horizon” transformations, namely, we can introduce coordinates (t̃, r̃, φ̃), related to (t, r, φ),
according to,

dr̃√
∆ (r̃)

= dr√
Grr (r)

, dt̃ = dt− Gtr (r)
Grr (r) dr , dφ̃ = dφ− Grφ (r)

Grr (r) dr . (D.4)

Then,

Gµ̃ν̃∂µ̃∂ν̃ =
[
∆ (r̃) ∂2

r̃ −
(
r2

+ + a2)2
∆ (r̃)

(
∂t̃ + Ω ∂φ̃

)2
]

+
[
∂2
θ + 1

sin2 θ
∂2
φ̃

]
+ δGµ̃ν̃ (r̃, θ) ∂µ̃∂ν̃ ,

(D.5)
with,

δGt̃t̃ (r̃, θ) = ft̃t̃ (r̃) + f̃tt (θ) ,

δGt̃φ̃ (r̃, θ) = Ω
[
ft̃φ̃ (r̃) + f̃tφ (θ)

]
,

δGφ̃φ̃ (r̃, θ) = Ω2
[
fφ̃φ̃ (r̃) + f̃φφ (θ)

]
,

δGr̃r̃ (r̃, θ) = 0 , δGt̃r̃ (r̃, θ) = 0 , δGr̃φ̃ (r̃, θ) = 0 ,
δGµ̃θ (r̃, θ) = 0 ,

(D.6)

and fµ̃ν̃ (r̃) are related to fµν (r) according to,

ft̃t̃ (r̃) = ftt (r)−
(
Gtr (r)

)2
Grr (r) ,

ft̃φ̃ (r̃) = ftφ (r)− Gtr (r)Grφ (r)
Grr (r) ,

fφ̃φ̃ (r̃) = fφφ (r)−

(
Grφ (r)

)2

Grr (r) .

(D.7)

Interestingly, these subtracted geometries give rise to a separable full wave operator, that
is, the following conditions on the Christoffel symbols,

∂θ
(
GµνΓrµν

)
= 0 , ∂r

(
GµνΓθµν

)
= 0 ,

∂r∂θ
(
GµνΓtµν

)
= 0 , ∂r∂θ

(
GµνΓφµν

)
= 0 ,

(D.8)

are automatically satisfied.
21The need for δGtr and δGrφ to vanish on the horizon can also be physically motivated by requiring the

angular velocity of the black hole to be Ω = a
r2

++a2 , i.e. that the Killing vector ∂t + Ω ∂φ becomes null at
the horizon for this particular value of Ω, along with a finite and non-zero horizon surface area, practically
meaning that the induced spatial metric at r = r+ has finite and non-zero determinant.
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In the rest of this appendix, we will be working in the (t̃, r̃, φ̃, θ) coordinates but we will
drop the tildes to ease our notation. Nevertheless, in the final expressions, we will always
have in mind to supplement with the more general results corresponding to the replacements,

r → r + ∆2gr (r) , t→ t+ gt (r) , φ→ φ+ gφ (r) , (D.9)

with gr, gt and gφ radial functions that are regular near the horizon, giving rise to non-zero
δGrr, δGtr and δGrφ respectively.

Last, let us analyze the s 6= 0 tetrad-dependent part of the Teukolsky operator.
Requiring the preservation of the near horizon characteristic exponents, we write,

s (γµ (r, θ) ∂µ + F0 (r, θ)) = s

[
∆′ ∂r +

(
r2

+ + a2)∆′
∆ (∂t + Ω ∂φ) + s+ 1

]

+ s

[
− s

sin2 θ

]
+ s (δγµ (r, θ) ∂µ + δF0 (r, θ)) ,

(D.10)

with the “far-horizon” terms having the form,

δγr (r, θ) = ∆ fr (r) , δγt (r, θ) = ft (r) + f̃t (θ) ,

δγφ (r, θ) = Ω
[
fφ (r) + f̃φ (θ)

]
, δγθ (r, θ) = 0 ,

δF0 (r, θ) = ∆ f0 (r) .

(D.11)

We can now utilize the additional gauge actions, associated with local Lorentz transfor-
mations acting on the tetrad vectors, to further simplify the above operator in a general
manner. Given that the Teukolsky operator acts on the perturbed NP scalars Ψs which
have boost weights equal to their spin weights, b = s, and since the Teukolsky operator itself
is built from background quantities, that is, it is invariant under gauge transformations of
the perturbations, we can always perform a “far-horizon” local boost transformation,

Ψs
boost−−−→ es∆ε η(r)Ψs , (D.12)

with η (r) a purely radial function that is regular at the horizon, chosen such that we remove
the s δγr∂r term, while the exponent ε must be such that the near horizon characteristic
exponents of the equations of motion are simultaneously preserved. Indeed, choosing, η (r)
to satisfy,

[∆ε η (r)]′ = −2fr , (D.13)

removes the term that goes like s ∂r, while the modifications in the scalar part are always
subleading in the vicinity of the horizon as long as ε > 1. We will adopt this particular
gauge where δγr = 0 but always have in mind to supplement with the more general results
corresponding to the above local boost transformation.

D.2 Construction of SL (2,R)’s

With this background effective geometry in hand, we now investigate the existence of the
three generators L0, L+1 and L−1 satisfying the SL (2,R) algebra,

[L±1, L0] = ±L±1 , [L±1, L∓1] = ±2L0 , (D.14)
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and whose Casimir is given by the truncated radial Teukolsky operator,

C2 = L2
0 −

1
2 (L±1L∓1 + L∓1L±1)

≡ CStar2 + ftt (r) ∂2
t + 2ftφ (r) Ω ∂t∂φ + fφφ (r) Ω2 ∂2

φ

+ ∆ fr (r) ∂r + s [ft (r) ∂t + fφ (r) Ω ∂φ + ∆f0 (r)] ,

(D.15)

where CStar2 is the Starobinsky near zone approximation,

CStar2 = ∆−s ∂r∆s+1∂r −
(
r2

+ + a2)2
∆ (∂t + Ω ∂φ)2

+ s

(
r2

+ + a2)∆′
∆ (∂t + Ω ∂φ) + s (s+ 1) .

(D.16)

In the above radial operator, we used the facts that GµνΓtµν = 0 and GµνΓφµν = 0 according
to our generic subtracted geometry treatment above, i.e. we identified any ∂t and ∂φ terms as
arising due to a non-zero spin weight, while fr is independent of s as per our last discussion
regarding local boost transformations of the perturbed NP scalars.

The goal here is to be able write solutions of the subtracted equations charged under
the action of this SL (2,R), i.e. labeled by L0 and C2. Given that these solutions are also
charged under the action of the Rt × Uφ (1) isometry group, we make the following general
ansatz for L0,

L0 = − (βt∂t + βφΩ ∂φ) + s β0 , (D.17)

with βt, βφ and β0 constants. This is supplemented with a completely general form of the
remaining generators,

L±1 = g̃± (t, r, φ) ∂r + k̃± (t, r, φ)βt ∂t + h̃± (t, r, φ) Ω ∂φ + s λ̃± (t, r, φ) , (D.18)

where all scalar parts of the generators are assigned to a non-zero spin weight. However, we
are not explicitly assuming that the vector part functions do not depend on s, even though
this will turn out to be the case as we will see. We note here that we are explicitly assuming
that βt 6= 0, indicated also by the explicit appearance of βt in the t-component of L±1. This
should be regarded as an additional requirement, rather as an assumption, associated to the
fact that we are also looking for generators that have a smooth non-rotating limit, where
the equations of motion become spherically symmetric and no φ-derivatives appear in the
radial operator.

With this starting ansatz for the generators, we begin applying the SL (2,R) algebra
constraints. First of all, [L±1, L0] = ±L±1 implies that,

(βt∂t + βφΩ ∂φ) χ̃± = ±χ̃± , χ̃± = g̃±, k̃±, h̃±, λ̃± , (D.19)

which can be solved to eliminate the explicit t-dependence,

χ̃± (t, r, φ) = e±t/βtχ±(r, φ̂) , φ̂ ≡ φ− βφ
βt

Ωt , χ± = g±, k±, h±, λ± . (D.20)
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From the above form of the functions χ̃±, it is instructive to reformulate the problem in
the (t, r, φ̂) coordinates, instead of (t, r, φ). In these coordinates, the generators read,

L0 = −βt ∂t + s β0 ,

L±1 = e±t/βt
[
g±(r, φ̂) ∂r + k±(r, φ̂)βt ∂t + ĥ±(r, φ̂)Ω ∂φ̂ + s λ±(r, φ̂)

]
,

(D.21)

with ĥ± = h±−βφk±. The remaining algebra constraints [L±1, L∓1] = ±2L0 then become,

g[±∂rg∓] + ĥ[±Ω ∂φ̂g∓] = ±k(±g∓) , (D.22a)

g[±∂rĥ∓] + ĥ[±Ω ∂φ̂ĥ∓] = ±k(±ĥ∓) , (D.22b)

g[±∂rk∓] + ĥ[±Ω ∂φ̂k∓] = ± (k±k∓ − 1) , (D.22c)

g[±∂rλ∓] + ĥ[±Ω ∂φ̂λ∓] = ±
(
k(±λ∓) + β0

)
, (D.22d)

where we have defined the symmetric and antisymmetric operations with respect to the
“±” indices A(±B∓) ≡ (A±B∓ +A∓B±) /2 and A[±B∓] ≡ (A±B∓ −A∓B±) /2. These are
supplemented with the Casimir constraints associated with the near horizon characteristic
exponents of the equations of motion,

g±g∓ = −∆ , g(±k∓) = 0 , g(±ĥ∓) = 0 , (D.23a)

k±k∓ − 1 = −β−2
t

[
−
(
r2

+ + a2)2
∆ + ftt (r)

]
, (D.23b)

k(±ĥ∓) = −β−1
t

[
−
(
r2

+ + a2)2
∆

(
1− βφ

βt

)
+ ftφ̂ (r)

]
, (D.23c)

ĥ±ĥ∓ = −
[
−
(
r2

+ + a2)2
∆

(
1− βφ

βt

)2
+ fφ̂φ̂ (r)

]
, (D.23d)

1
2∂r (g±g∓)+ĥ(±Ω∂φ̂g∓)∓k[±g∓]+2sλ(±g∓) =−

[
(s+1)∆′+∆fr (r)

]
, (D.24a)

g(±∂rk∓)+ĥ(±Ω∂φ̂k∓)+2s
(
λ(±k∓)+β0

)
=−β−1

t s

[(
r2

++a2)∆′
∆ +ft (r)

]
,

(D.24b)

g(±∂rĥ∓)+ 1
2Ω∂φ̂(ĥ±ĥ∓)∓k[±ĥ∓]+2sλ(±ĥ∓) =−s

[(
r2

++a2)∆′
∆

(
1−βφ

βt

)
+fφ̂ (r)

]
,

(D.24c)

g(±∂rλ∓)+ĥ(±Ω∂φ̂λ∓)∓k[±λ∓]+s
(
λ±λ∓−β2

0

)
=− [s+1+∆f0 (r)] . (D.24d)

We can now proceed to solve the above algebra and Casimir constraints. The first thing to
notice is that the Casimir constraints imply that products of any component of χ± and any
component of χ∓ are φ̂-independent and s-independent. As such, any φ̂-dependence must
come in the form,

χ±(r, φ̂) = e±A(r,φ̂)X± (r) , X± = G±,K±, Ĥ±,Λ± (D.25)

with X± (r) being independent of s as well.
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For the radial components g±(r, φ̂), (D.23a) and the differential equation (D.22a) allow
to completely fix the radial dependence. In particular, the second Casimir constraint
in (D.23a) makes the r.h.s. of (D.22a) zero, while the second term in the algebra con-
straint (D.22a) also vanishes by virtue of the third Casimir constraint in (D.23a) since, due
to the first of (D.23a), ĥ[±Ω ∂φ̂g∓] = g(±ĥ∓)Ω ∂φ̂ ln g± = 0. As such, all the r-dependence
in A(r, φ̂) can be separated with the end result,

g±(r, φ̂) = e±A(φ̂)
[
∓
√

∆
]
. (D.26)

Here, we note that we also have the freedom of an overall integration constant c that
comes in the form e±c. Such overall constant reciprocal rescalings of L±1, however, are
automorphisms and are, therefore, algebraically trivial. With this extracted function form
of G± = ∓

√
∆, the second and third of the Casimir constraints (D.23a) imply that the

radial functions in t- and φ̂-components of the generators L±1 are equal,

K± (r) = K (r) , Ĥ± (r) = Ĥ (r) . (D.27)

It is then straightforward to conclude that the purely angular function A(φ̂) is linear in φ̂.
For example, taking the φ̂-derivative of the algebra constraint (D.22b) or (D.22c), we get,

A′′(φ̂) = 0⇒ A(φ̂) = τ φ̂ , (D.28)

with τ an arbitrary integration constant, while we have again ignored algebraically trivial
reciprocal rescalings of L±1.

Moving on, multiplying (D.22b) with τΩ and adding with it (D.22c), we end up with a
first order non-linear differential equation for the function K (r) + τΩĤ (r) which can be
solved to find,

K (r) + τΩĤ (r) = (√r − r+ +√r − r−)4 + c1

(√r − r+ +√r − r−)4 − c1
, (D.29)

with c1 an integration constant. In the mean time, the Casimir constraints (D.23b)
and (D.23d) tell us that, up to an overall sign, which falls into the category of auto-
morphisms of the SL (2,R) algebra,

K (r) ∼ β−1
t

r2
+ + a2
√

∆
and Ĥ (r) ∼

(
1− βφ

βt

)
r2

+ + a2
√

∆
as ∆→ 0 , (D.30)

where the sign of Ĥ (r) relative to K (r) was also fixed by using the near horizon behavior
of (D.23c). From these, we infer the near horizon behavior of (D.29) which fixes c1 =
(r+ − r−)2 regardless of the values of βt, βφ and τ . This greatly simplifies (D.29) to,

K (r) + τΩĤ (r) = ∂r
(√

∆
)
, (D.31)

and results in the following quite pleasing exact expressions of K (r) and Ĥ (r) after
solving (D.22b) and matching the near horizon behavior of Ĥ (r),

K (r) = ∂r
(√

∆
)
− τΩ

(
1− βφ

βt

)
r2

+ + a2
√

∆
, Ĥ (r) =

(
1− βφ

βt

)
r2

+ + a2
√

∆
(D.32)
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The near horizon behavior of K (r) also eliminates βt or βφ, depending on the value of τ .
More explicitly,

βt = β
1− τβφΩ
1− τβΩ ≡ β(τ) and βφ ∈ R if τ 6= 1

βΩ ,

OR

βφ = β and βt ∈ R if τ = 1
βΩ .

(D.33)

We now move on to the remaining constraints (D.22d) and (D.24a)–(D.24d). (D.22d)
results in a linear first-order inhomogeneous differential equation for Λ+ (r) + Λ− (r) which
is easily solved to give,

Λ+ (r) + Λ− (r) = −
[
2β0

√
r − r+
r − r−

+ r+ − r−
2
√

∆

]
, (D.34)

where the integration constant was fixed by the near horizon behavior of (D.24b). Next,
(D.24a) simplifies to,

s
[√

∆ (Λ+ (r)− Λ− (r)) + ∆′
]

= −∆fr (r) (D.35)

and, since fr (r) is independent of the spin weight, fr (r) = 0, leaving us with,

Λ+ (r)− Λ− (r) = −2∂r
(√

∆
)

(D.36)

These two finally tell us that,

Λ± (r) = − (1± 1) ∂r
(√

∆
)

+ (1− β0)
√
r − r+
r − r−

, (D.37)

and the remaining constraints fix the “far-horizon” corrections ft (r), fφ̂ (r) and f0 (r).
In summary, after some rearrangement, the most general subtracted geometry SL (2,R)

is generated by,

L0 = − (βt ∂t + βφΩ ∂φ) + s β0 ,

L±1 = e±[t/β+τ(φ−Ωt)]
[
∓
√

∆ ∂r +
(
βt
β

√
r − r+
r − r−

+ r+ − r−
2
√

∆

)
β ∂t

+
(
βφ
β

√
r − r+
r − r−

+ r+ − r−
2
√

∆

)
βΩ ∂φ

− s
(

(β0 ± 1)
√
r − r+
r − r−

+ (1± 1) r+ − r−
2
√

∆

)]
,

(D.38)

with βt = β(τ) and generic βφ, β0 and τ if τβΩ 6= 1 or βφ = β and generic βt and β0 if
τβΩ = 1. The associated Casimir is given by,

C2 = CStar2 + r+ − r−
r − r−

[
βt ∂t + βφΩ ∂φ + s (1− β0)

]
[(βt − β) ∂t + (βφ − β) Ω ∂φ − s β0] .

(D.39)
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From all of the above subtracted Casimirs, only the subset with (βφ, β0) = (0, 1) or
(βφ, β0) = (β, 0) give rise to valid near zone approximations, for which all the static terms
must be kept explicitly, and precisely correspond to τ -generalizations of the Love and
Starobinsky near zones respectively.

Interestingly, all the generators written above are automatically regular at both the
future and the past event horizons, as can be seen by working in advanced and retarded
null coordinates respectively. This statement of course only holds for the vector, s = 0,
parts, since the scalar s 6= 0 parts are tetrad-dependent and we are working here in the
singular at the horizon Kinnerslay tetrad. More explicitly,

L0
∣∣
s=0 =−(βt∂υ+βφΩ∂ϕ) ,

L±1
∣∣
s=0 = exp

{
±
[
υ−r
β
−τ (ϕ−Ω(υ−r))

]}(
r−r−
r+

)∓2M(1+τβΩ)/β

[
∓(r−r∓)∂r+ r−r∓

r−r−
((βt∓(r+r+))∂υ+βφΩ∂ϕ)+ 1∓1

2
r+−r−
r−r−

β (∂υ+Ω∂ϕ)
]
,

(D.40)

in advanced coordinates (B.1) and,

L0
∣∣
s=0 =−(βt∂u+βφΩ∂ϕ̃) ,

L±1
∣∣
s=0 = exp

{
±
[
u+r
β
−τ (ϕ̃−Ω(u+r))

]}(
r−r−
r+

)±2M(1+τβΩ)/β

[
∓(r−r±)∂r+ r−r±

r−r−
((βt±(r+r+))∂u+βφΩ∂ϕ̃)+ 1±1

2
r+−r−
r−r−

β (∂u+Ω∂ϕ̃)
]
,

(D.41)

in retarded coordinates (B.2).

D.3 Globally defined, time-reversal symmetric subtracted SL (2,R)’s

In the main text, we are mostly interested in those subtracted geometry approximations
which preserve all the symmetries of the full geometry, including time-reversal invariance,22
and are globally defined. These correspond to τ = 0 and make up a 2-parameter family of
subtracted geometry approximations enjoying an SL (2,R) symmetry, labeled by the βφ
and β0 parameters. The generators read,

L0 = −β ∂t + s+ (−1)
(
βφΩ ∂φ + s (1− β0)

)
,

L±1 = e±t/β
[
∓
√

∆ ∂r + ∂r
(√

∆
)
β ∂t + a√

∆
∂φ − s (1± 1) ∂r

(√
∆
)]

+
(
e±t/β

√
r − r+
r − r−

)(
βφΩ ∂φ + s (1− β0)

)
,

(D.42)

and the associated Casimir operator is given by,

C2 = CStar2 + r+ − r−
r − r−

[
β ∂t + βφΩ ∂φ + s (1− β0)

][
(βφ − β) Ω ∂φ − s β0

]
. (D.43)

22Time-reversal invariance here refers to the simultaneous time-reversal transformation t→ −t and the
flip of the direction of rotation of the black hole a→ −a.
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As already mentioned, only the subset with (βφ, β0) = (0, 1) (Love near zone) or (βφ, β0) =
(β, 0) (Starobinsky near zone) give rise to valid near zone approximations. We also remind
here that we still have the freedom of performing the coordinate transformations (D.9)
and the local boost transformation (D.12). From these, only the temporal translations
t → t + gt (r) preserve the near zone behavior which, however, break the time-reflection
symmetry.

A nice remark here is that the τ -generalized generators of the spontaneously broken
near zone SL (2,R) can be obtained by the τ = 0 globally defined ones after performing a
particular φ-dependent temporal translation,

L(τ=0)
m

t→t+τβ(φ−Ωt)−−−−−−−−−→
τβΩ 6=1

L(τ 6=0)
m (D.44)

D.4 Subtracted SL (2,R) × SL (2,R)’s

As a last piece of analysis, let us investigate under what conditions it is possible to
enhance the SL (2,R) symmetry of the subtracted region to SL (2,R) × SL (2,R). Let
SL (2,R)(1) and SL (2,R)(2) be two generic subtracted geometry SL (2,R)’s with parameters
(β(1)
t , β

(1)
φ , β

(1)
0 , τ (1)) and (β(2)

t , β
(2)
φ , β

(2)
0 , τ (2)) respectively. If τ (i)βΩ 6= 1, then β(i)

t = βτ
(i) .

Otherwise, if τ (i)βΩ = 1, then β(i)
φ = β. We wish to work out the requirements,[

L(1)
m , L(2)

n

]
= 0 , m, n = 0,±1 , (D.45)

for the various cases of possibles values of the parameters.
First, for the case where τ (1)βΩ 6= 1 and τ (2)βΩ 6= 1, where β(1)

t = βτ
(1) and β(2)

t = βτ
(2) ,

one finds the unique solution,

β
(2)
φ = β − β(1)

φ , β
(2)
0 = 1− β(1)

0 , τ (2) =
1− τ (1)β

(1)
φ Ω(

β − β(1)
φ

)
Ω
, (D.46)

with generic τ (1) 6= 1/ (βΩ), β(1)
φ 6= β and β(1)

0 .
For the case where τ (1)βΩ = 1 and τ (2)βΩ = 1, no solutions exists for which the two

SL (2,R)’s commute.
Last, for the case of τ (1)βΩ 6= 1 and τ (2)βΩ = 1, for which β(1)

t = βτ
(1) and β(2)

φ = β,
we find the solution,

β
(1)
φ = 0 , β

(2)
t = β

−τ (1)βΩ
1− τ (1)βΩ

, (D.47)

with generic τ (1) 6= 1/ (βΩ), β(1)
0 and β(2)

0 .
For all of these enhancements the two Casimir operators are automatically equal, C(2)

2 =
C(1)

2 . Interestingly, all of the above requirements for the subtracted geometry truncations to
be equipped with an SL (2,R)× SL (2,R) symmetry can be elegantly reproduced from the
following absolute condition,

L
(1)
0 + L

(2)
0 = −β (∂t + Ω ∂φ) + s . (D.48)
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This allows to write the L±1 generators and the Casimir very compactly in terms of the L0
generators as,

L
(i)
±1 = e±[t/β+τ (i)(φ−Ωt)]

[
∓
√

∆ ∂r − ∂r
(√

∆
) (
L

(i)
0 ± s

)
+ r+ − r−

2
√

∆
L

(j)
0

]
,

C(i)
2 = C(j)

2 = CStar2 − r+ − r−
r − r−

(
L

(i)
0 − s

) (
L

(j)
0 − s

)
,

(D.49)

with i = 1, 2 and j 6= i. Even though there are infinitely many such enhancements, none
can have simultaneously τ (1) = τ (2) = 0, that is, these subtracted geometry conformal
symmetries are unavoidably spontaneously broken by the periodicity of the azimuthal angle.

D.5 Near zone SL (2,R) × SL (2,R)’s

Finally, it is possible to construct enhancements of the near zone SL (2,R)’s, not just the
subtracted SL (2,R)’s. These now correspond to the third case above, supplemented with
the near zone requirement β(1)

0 = 1 and β(2)
0 = 0, but for generic τ (1) ≡ τ . The new element

here compared to [57] is that we find a 1-parameter family of near zone SL (2,R)×SL (2,R)’s
controlled by generic23 τ , with generators,

L
(1)
0 = − 1

1− τβΩβ ∂t + s ,

L
(1)
±1 = e±[t/β+τ(φ−Ωt)]

[
∓
√

∆ ∂r +
(
∂r
(√

∆
)

+ τβΩ
1− τβΩ

√
r − r+
r − r−

)
β ∂t

+ a√
∆
∂φ − s (1± 1) ∂r

(√
∆
) ]

,

L
(2)
0 = −β

( −τβΩ
1− τβΩ ∂t + Ω ∂φ

)
,

L
(2)
±1 = e±φ/βΩ

[
∓
√

∆ ∂r +
(
∂r
(√

∆
)
− 1

1− τβΩ

√
r − r+
r − r−

)
β ∂t

+ ∂r
(√

∆
)
βΩ ∂φ ∓ s

r − r∓√
∆

]
,

(D.50)

and Casimir,

C(1)
2 = C(2)

2 = CStar2 − r+ − r−
r − r−

[
β

( −τβΩ
1− τβΩ ∂t + Ω ∂φ

)
+ s

]
β ∂t

1− τβΩ . (D.51)

The same generalization was provided in [104] but only for s = 0. To our best knowledge,
no such extensions have been previously introduced beyond a specific case of particular
values of τ for electromagnetic fields in [105], even though these were not performed in
the framework of the NP formalism employed in the Teukolsky equation. We also remark
here how the globally defined Love symmetry, corresponding to SL (2,R)(1) with τ = 0, can
be extended to SL (2,R) × SL (2,R), in contrast to the other globally defined near zone
SL (2,R) symmetry, the Starobinsky near zone.

23In [57], τ = − rs
2a and βt = rs

rs
r+−r−

.
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E Generalized Lie derivative on GHP tensors

In this appendix, we present the construction of the generalized “spin weighted” Lie
derivative. In particular, we will construct the most general generalized Lie derivative
acting on objects that are spacetime tensors of some particular rank and also carry definite
GHP weights. We will refer to such object as GHP tensors, with the “tensors” and “GHP”
parts referring to their homogeneous transformation rules under diffeomorphisms and local
boosts and rotations respectively.

There are some minimal conditions that such a Lie derivative must obey for it to be well
defined. In the following conditions, we denote a general GHP tensor of GHP weights {p, q}
and spacetime tensorial structure (k, l), with k the contravariant rank and l the covariant
rank, as A(k,l)

{p,q}.

• It reduces to the usual unique Lie derivative Lξ in the case the GHP tensor it acts on
has zero GHP weights, i.e. when it acts on pure spacetime tensors,

LξA
(k,l)
{0,0} = LξA(k,l)

{0,0} . (E.1)

• It obeys the Leibniz rule,

Lξ
(
A

(k,l)
{p,q}B

(k′,l′)
{p′,q′}

)
=
(
LξA

(k,l)
{p,q}

)
B

(k′,l′)
{p′,q′} +A

(k,l)
{p,q}

(
LξB

(k′,l′)
{p′,q′}

)
. (E.2)

• It acts covariantly, leaving the GHP weights and spacetime rank unaltered, i.e. when
it acts on a GHP tensors, it outputs a GHP tensor of the same type,

LξA
(k,l)
{p,q}

λ,χ−−→ λbeisχLξA
(k,l)
{p,q} , (E.3)

with the spin and boost weights related to the GHP weights according to b = p+q
2

and s = p−q
2 .

• It is linear in the vector ξµ with respect to which we are Lie dragging.

Then, in order to satisfy the first two conditions, one starts with an ansatz that contains
at most first spacetime derivatives, such that the Leibniz rule is satisfied,

Lξ = Lξ + λ0,ξ (p, q; k, l) + λµ1,ξ (p, q; k, l) ∂µ , (E.4)

where (k, l) and {p, q} are the spacetime rank and GHP weights of the GHP tensor the
generalized Lie derivative acts on. The Leibniz rule then further imposes,

λ0,ξ
(
p+ p′, q + q′; k + k′, l + l′

)
= λ0,ξ (p, q; k, l) + λ0,ξ

(
p′, q′; k′, l′

)
,

λµ1,ξ
(
p+ p′, q + q′; k + k′, l + l′

)
= λµ1,ξ (p, q; k, l) = λµ1,ξ

(
p′, q′; k′, l′

)
.

(E.5)

The first constraint is the usual multi-variable Cauchy functional equation implying that
λ0,ξ (p, q; k, l) must be linear in k, l, p and q, while the second constraint tells us that
λµ1,ξ (p, q; k, l) is independent of the spacetime rank and GHP weights. Combining with the
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first condition of getting the usual Lie derivative Lξ when acting on pure spacetime tensors
with zero GHP weights,

λ0,ξ (0, 0; k, l) = 0 , λµ1,ξ (0, 0; k, l) = 0 , (E.6)

we see that so far we have,
Lξ = Lξ + pαξ + q βξ , (E.7)

with αξ and βξ some spacetime scalar functions, linear in ξ, that are independent of k, l, p
and q.

We next impose the third condition of this generalized Lie derivative to act covariantly
on GHP tensors. Since the additive modifications on the usual Lie derivative are independent
of the spacetime tensorial structure of the GHP tensor it acts on, it is sufficient to consider
the case of spacetime scalars of general GHP weights for which Lξ = ξµ∇µ. The spacetime
covariant derivative is written in terms of the NP directional derivatives,

D ≡ `µ∇µ , 4 ≡ nµ∇µ , δ ≡ mµ∇µ , δ̄ ≡ m̄µ∇µ , (E.8)

as,
∇µ = −`µ4− nµD +mµδ̄ + m̄µδ , (E.9)

so,
ξµ∇µ = −ξ`4− ξnD + ξmδ̄ + ξm̄δ . (E.10)

It is well known that the NP derivatives do not transform covariantly under local boosts
and rotations when acting on NP scalars. Their “bad” transformation rules read,


D

4
δ

δ̄

 λ,χ−−→


λ
[
D + 1

2

(
D ln

(
BpB̄q

))]
λ−1

[
4+ 1

2

(
4 ln

(
BpB̄q

))]
eiχ
[
δ + 1

2

(
δ ln

(
BpB̄q

))]
e−iχ

[
δ̄ + 1

2

(
δ̄ ln

(
BpB̄q

))]

 , (E.11)

where we have defined,
B ≡ λeiχ . (E.12)

As a result, the usual Lie derivative transforms as,

Lξ
λ,χ−−→ Lξ + 1

2
(
ξµ∇µ ln

(
BpB̄q

))
, (E.13)

and the covariance of the generalized Lie derivative implies the following transformation
rules for the unknown scalar functions αξ and βξ,

αξ
λ,χ−−→ αξ −

1
2ξ

µ∇µ ln B ,

βξ
λ,χ−−→ βξ −

1
2ξ

µ∇µ ln B̄ .
(E.14)
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Comparing with the transformation laws for the “bad” spin coefficients (7.10),
ε

γ

β

α

 λ,χ−−→


λ
(
ε+ 1

2D ln B
)

λ−1
(
γ + 1

24 ln B
)

eiχ
(
β + 1

2δ ln B
)

e−iχ
(
α+ 1

2 δ̄ ln B
)

 , (E.15)

we see that the non-homogeneous part of the transformation laws for the scalar functions
αξ and βξ can be reproduced from,

αbadξ = −ξµζµ , βbadξ = −ξµζ̄µ , (E.16)

where,
ζµ = −`µγ − nµε+mµα+ m̄µβ = −1

2 (nν∇µ`ν − m̄ν∇µmν) . (E.17)

In conclusion, the most general generalized Lie derivative that acts on GHP tensors of GHP
weights {p, q} reads,

Lξ = Lξ − ξµ
(
p ζµ + q ζ̄µ

)
+ p ηξ + q ϑξ , (E.18)

with ηξ and ϑξ two scalar functions independent of p and q that transform covariantly with
zero GHP weight,

ηξ
λ,χ−−→ ηξ , ϑξ

λ,χ−−→ ϑξ , (E.19)
that are also linear in the vector field ξµ. For the minimal choice ηξ = ϑξ = 0, we retrieve
the usual GHP derivative ([43]). These scalar functions that appear above are arbitrary
but part of them can be fixed by uniquely constructing a generalized Lie derivative when
Lie dragging along a Killing vector. This was first proposed by Ludwig et al. ([38, 39])
and is obtained from our above construction by requiring the existence of a Killing vector,
satisfying Lξgµν = 0, to be apparent directly at the level of the tetrad vectors. It is sufficient
to impose,

nµLξ`µ = m̄µLξmµ = 0 when Lξgµν = 0 , (E.20)
uniquely fixing ηξ and ϑξ with the end result for the generalized Lie derivative,

Lξ = Lξ + b nµLξ`µ − s m̄µLξmµ , when Lξgµν = 0 . (E.21)

E.1 Preserving the algebra

A further feature we would like the generalized Lie derivative to have is for it to preserve the
algebra already satisfied by the usual Lie derivative with respect to some vector generators
of the algebra. In particular, we would like to preserve the identity,

[Lξ1 ,Lξ2 ] = L[ξ1,ξ2]LB
, (E.22)

where [ξ1, ξ2]LB = Lξ1ξ2 is the Lie bracket of the two vector fields. At the level of the
scalar functions αξ and βξ in (E.7), prior to requiring the generalized Lie derivative to act
covariantly on a general GHP tensor, the above algebra-preserving identity implies,

[Lξ1 ,Lξ2 ] = L[ξ1,ξ2]LB
⇒

Lξ1αξ2 − Lξ2αξ1 = α[ξ1,ξ2]LB

Lξ1βξ2 − Lξ2βξ1 = β[ξ1,ξ2]LB

. (E.23)
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Then, after writing αξ = −ξµζµ + ηξ and βξ = −ξµζ̄µ + ϑξ to ensure the covariance of the
generalized Lie derivative and since the tensorial structure associated with the geometry
itself is carried only by the tetrad vectors, the most general form of the scalar function ηξ is
some linear operator containing at least one spacetime covariant derivative acting on the
vector field ξµ,

ηξ =
[
H(µν) + 1

2
(
`[µnν] −m[µm̄ν]

)]
∇νξµ +H(µν)ρ∇ρ∇νξµ + . . . ,

ϑξ =
[
Θ(µν) + 1

2
(
`[µnν] +m[µm̄ν]

)]
∇νξµ + Θ(µν)ρ∇ρ∇νξµ + . . . ,

(E.24)

where H(µν), Θ(µν), H(µν)ρ, Θ(µν)ρ, . . . are pure spacetime tensors carrying zero GHP
weights that are symmetric in their first two indices, while the antisymmetric parts of
the rank-2 tensors were fixed such that we reproduce the generalized Lie derivative (E.21)
when Lie dragging along a Killing vector. We want the algebra preserving identity to be
independent of the involved vector fields ξµ1 and ξµ2 . Unfortunately, it can be shown directly
from the algebra preserving constraints (E.23) that this is never possible, unless ξµ is a
Killing vector.
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