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Abstract—In this paper, a novel variation of Generative
Adversarial Network (GAN) is proposed and used to predict
device and circuit characteristics based on design
parameters. Unlike regular GAN which takes white noise as
inputs, this modified GAN uses device or circuit parameters
as inputs. Unlike regular Physics-informed GAN (PI-GAN)
which incorporates differential equations in the training
process, this modified GAN learns physics through the
inputs and has one extra step of supervised learning.
FinFET is used as a device example and Technology
Computer-Aided-Design (TCAD) is used to generate its
current-voltage (/oVe, IpVp) and capacitance-voltage (CcVi)
curves as the training data by varying the gate length (Lg),
fin top width (Wror), and gate metal workfunction (WF). A
CMOS inverter with source contact defects is used as a
circuit example and a SPICE simulator is used to generate
its Voltage Transfer Characteristics (VTC) by varying the
source contact resistances. We show that 1) the GAN model
is able to generate both the device and circuit electrical
characteristics based on the input parameters, 2) it can
predict the characteristics of the device and circuit out of
the training range (in a testing volume 3.7x to 4.6x larger
than the training volume), and 3) it is further verified on
experimentally measured data in the inverter case that it
does not overfit and has learned the underlying physics.

Index Terms— FinFET, Generative Adversarial Networks
(GANSs), Inverter, Machine Learning, Simulation,
Technology Computer-Aided Design (TCAD)

I. INTRODUCTION

IMULATION-augmented machine learning (SAML) [1]-[4]

has been proposed to use simulation data to train better
machines for defect analysis [1]-[5], device characteristic
predictions [6][7], device/circuit manifold learning [8][9],
inverse design [10], and surrogate model development [11][12].
Since simulations, such as Technology Computer-Aided-
Design (TCAD) or spice circuit simulation, are very cost-
effective [4][5] and well-controlled [1]-[14] (e.g. defects can be
placed precisely in the simulation structure), using simulation
data in SAML makes it very useful.
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To make SAML more useful and meaningful, we believe it
needs to have at least one of the following features. 1) It uses a
reasonably small set of training data so that it can save the
simulation time when it is used to predict the device
characteristics under unseen bias conditions [8]. 2) It obviates
domain expertise and input feature extraction so that different
devices and circuits can reuse the same framework without the
need to go over another cycle of human testing [5][8] [13][14].
3) It can be used for optimization and inverse design which
cannot be done using brute force simulations [11][12]. 4) It can
be used to predict the characteristics out of the training range.
It is worth noting that ML with these features can also be used
to develop novel devices/circuits by using limited experimental
data as the training data [8]. However, to the best of our
knowledge, 4) has not been demonstrated yet.

In this paper, Generative Adversarial Network (GAN) [16]-
[17], which has been shown to produce higher-resolution and
more accurate outputs in other applications, is studied. A
modified GAN which takes the device/circuit parameters as the
input (instead of white noise [16]-[19]) and has an extra
supervised learning step is used. It is demonstrated that it can
predict the IV and CV of a FinFET and VTC of an inverter out
of the training range. It also fulfills the aforementioned merits
that no domain expertise is required (applicable to device and
circuit problems) and only a limited number of training data is
required.

We also note that there have been substantial works in
applying physics to neural networks (NN) such as incorporating
differential equations in Physics-informed GAN (PI-GAN) [19]
and adding constraints [20], for initialization and pre-training
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Fig. 1. The modified GAN used in this study (1 epoch shown). The red dotted
boxes highlight the novelties of the proposed GAN. The first/top step is to train
D (highlighted in black dotted box) while the bottom/second step is to train G
(highlighted in black dotted box). 600 epochs are used. The blue semi-
transparent arrows show the back propagation paths. Compared to a regular
GaN, an extra training step on G is conducted by comparing to the true data.
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[21], representing NN by Hamiltonian [22], for data generation
[23], and hardwiring physics in NN [24]. They usually need
significant domain expertise and are also not suitable if the
underlying physics is unknown (as in a novel device).

II. MODIFIED GAN

Fig. 1 shows the novel GAN. Like a regular GAN [17], it
has a generator (G) and a discriminator (D). The purpose is to
train G to capture the underlying physics of the true data (each
data point is one simulated IV, CV, and VTC curve) so that it
will generate synthetic (fake) data resembling the simulated
data. D is used to distinguish if the data is true (simulated) or
fake (generated by G). In each epoch, D is trained with the true
data and the fake data through supervised learning with G fixed.
Then D is fixed and G is trained so that it will generate data that
makes D predict 1 (thought that it is simulated data). This is
repeated for 600 epochs.

In this novel GAN, unlike regular GAN using white noise
as the input, the device or circuit parameters are used (e.g. Lg,
WF, Wrop). The parameters are sampled uniformly and the
sampling is described in detail in Section III and Fig. 3. This
allows G’s output to be correlated to device/circuit parameters.
Moreover, in each epoch, G is trained one more time by
comparing to the simulated curves (training data) through back-
propagation. All training is applied sequentially. Both novelties
help G to learn physics without incorporating differential
equations as in [19].

To avoid mode collapse, W-GAN [16] is used with a
learning rate of 10-. Weight clipping is also used during the
training of D (-102 to 102 for VTC and -107 to 10 for IpVg,
IbVp, and CsVi) to speed up the training and improve stability.
Note that gradient penalty was not used. The training loss
function and the structures of the neural networks are shown in
Fig. 2. The NN structures used are obtained after a few trials of
parameter optimization with hand. The optimizer used is the
RMSprop optimizer with a momentum of 0, a smoothing factor
of 0.99, a learning rate of 107, and a parameters clamp of 10
after each training loop.

III. DATA GENERATION AND PREPARATION
3D TCAD simulation of FinFET, with calibrated TCAD
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Fig. 2. Left: Training losses as a function of epoch for a) IV and VTC b).
The neural network structures (hidden and output layers) are also shown with
LR: Leaky Relu, PR: Parametric Relu, T: tanh, L: Linear, S: Sigmoid, SP:
SoftPlus. Middle: ¢) FinFET structure and d) inverter circuit. Right: The
corresponding predictions of Ip Vg (e) and VTC (f) for a FInFET with (Ls, WF,
Wrop) = (21nm, 13nm, 4.58eV) and for an inverter with (Ro, R;) = (0.74kQ2,
0.74k kQ), respectively.

models [25], is used to generate the IpVa/InVp/CsVe curves by
varying the gate length (Lg), gate work function (WF), and the
fin top width (Wrep). They are varied independently and
uniformly in the range 15nm-25nm, 4.4eV-4.7eV, and Snm-
15nm, respectively. The details of the FInFET simulation can
be found in [8].

Inverters formed by planar PMOS and NMOS are simulated
for VTC curves with the PMOS and NMOS source contact
resistances (Ro and R,) varied logarithmically uniformly and
independently from 10Q to 10MQ. Ry and R; are normalized to
the NMOS resistance, Ry, at Vps= Vgs= Vpp/2 =1.5V as 1y =
In(Ro/Ry) and 11 = In(R1/R;). The SPICE simulation is calibrated
to experiments. Experimental circuits are also constructed and
measured. The details of the simulation and experimental setup
can be found in [4]. Each IpV/ IpVp/Cg Vs curve is discretized
to 81 points and each VTC curve is discretized to 51 points. In
data preprocessing, the VTC’s are divided by 3 and used
directly. For IV’s, the logarithmic values are used followed by
standard scaling. The IpVp (V5=0.8V), saturation (Vp = 0.8V)
and linear (Vp=0.05V) IpVg, and CgV are trained separately.

IV. MACHINE LEARNING RESULTS

Firstly, we show the novel GAN network learns physics
gradually as G and D are improved in each epoch. Fig. 2 shows
the prediction errors as a function of epoch and the snapshots of
the output of G for a given set of parameters.

Then, we show that the modified GAN network has better
performance than the traditional manifold learning using an
autoencoder to capture the underlying physics [8]. The machines
are trained by only 50 randomly chosen simulation data and used
to predict the rest of the unseen simulation data. Tables I and II
show the R? of various quantities predicted by the machines and
it can be seen that, overall, the novel GAN performs better than
the autoencoder in the FinFET case. Note that the R? of G is
relatively low because it is the derivative of the IV curves.

TABLEI
FINFET SATURATION I AND G,, PREDICTION ACCURACY (R?)
SATURATION I, @ Vg G2 @V "
Machine 0.8V 0.4V -0.2V -0.6V 0.8V
AES0 [8] | 0.97 0.98 0.91 0.66 0.66
GAN 0.99 0.96 0.95 0.73 0.60

4Gy is defined as the transconductance at Vg = 0.8V in an 87.5mV interval.

TABLE II
OTHER FINFET METRICS PREDICTION ACCURACY (R?)
CV Quantities IV Quantities IpVp
Machine | Cpig® Ciow” DIBL? SS¢ Rox®
AES50[8] | 0.84 0.93 0.84 0.87 N/A
GAN 0.98 0.97 0.94 0.98 0.98

*Gate capacitance at V=0.8V, "Gate capacitance at V=0V, “Subthreshold
Slope defined in the region between 10°A to 10°A in saturation IpVg. ‘DIBL
is calculated based on the difference between linear and saturation Vry’s,
where Vry is defined as Vo@ In=10"A. °The ON-state resistance is the inverse
of the slope of the IpVp curves calculated between Vp=0V and Vp=58mV.

TABLE III
PREDICTION ACCURACY (Rz) BY GAN OF VIN GIVING SPECIFIC Vour

VOUT 075VDD O.SVDD OZSVDD VM
(Vin:Vnut )
R2 0.982 0.995 0.992 0.995
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Fig. 3. The training (orange) and prediction (blue) data distribution of GAN
for FinFET (left) and inverter (right).

To gauge the performance of VTC prediction by the GAN, the
VlN’S give VOUT = 0.75VDD, O.SVDD, 0.25VDD, and V[N = VOUT =
Vu in the GAN’s outputs are compared to the simulation one.
Again, the GAN is only trained by 50 simulated VTC’s and the
R?’s of predicting unseen data are shown in Table II1. It can be
seen that the prediction of GAN is also very accurate.

Finally, to further verify that the novel GAN can capture the
underlying physics, it is trained with data from a restricted
parameter set and used to predict the curves out of the training
range. We define a quantity called parameter volume as the
product of the parameter ranges in the training. For the FinFET,
the training parameter ranges are Lg € (17nm, 23nm), WFe
(4.46eV,4.64eV), Wrop € (7nm,13nm). Therefore, the
parameter volume is 6.48x107'®m?eV (64 data). The trained
GAN is then used to predict the IpVs/IpVp/CsVg of FInNFET
with Lg € (15nm,25nm), WFe€ (4.4eV,4.7eV), Wrop€
(5nm, 15nm) (parameter volume = 30x10"¥m?eV (151 data),
which is 4.6x of the training volume). Similarly for the inverter,
the training parameter range is ro € (—1.5,5.5), ri€ (—1.5,5.5)
(parameter volume = 49 (~2k data) and it is used to predict the
inverter with Ro € (—4.5,9), R|€ (—4.5,9) (~10k data) which
is 3.7x of the training volume. Fig. 3 shows the training and
testing space for the FinFET and the inverter, respectively.

The FinFET GAN is used to predict the InVs/IpVp/CsVa
curves of the FInFET with parameters out of the training range.
Important characteristics are extracted from the generated
curves and compared to TCAD simulations. Their prediction R?
(Vp=0.05V) are 0.93 for I, 0.89 for subthreshold slope, 0.98
for Vi (defined as Vg when Ip=107A), 0.97 for Chign, 0.97 for
Clow, 0.91 for gm, 0.89 for DIBL, 0.92 for Ry, 0.99 for Ip (Ve =
0V), 0.9 for Ip (Vg = -0.425V) and 0.34 for Ip (Vg = -0.6V).
They all predict well except for Ip (Vg = -0.6V). Therefore, the
machine can predict all curves well in the region Vg €
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Fig. 4. FinFET Ip(Vs=-0.6V) prediction (left) and prediction of V;, that gives
Vout = Vin = Vi by the GAN within/out-of training range for simulation data
and experimental data (right).
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Fig. 5. Linear (a) and saturation (b) IpVg curves. The green lines are all the
training data and the red lines are the testing data which have bad prediction
on Ip(Vs=-0.6V).

(—0.425V,0.8V). This is the same for the machine in Table I.

Fig. 4 shows the scatter plot of the Ip (Vg = -0.6V)
prediction. It is found that the leakages of 16 structures are not
predicted well and they are all located at the corner of the
training space (Fig. 3) with small Lg, low WF, and large Wrop,
thus with very low Vry and Gate Induced Drain Leakage
(GIDL) effect (i.e. Ip increases at very negative Vg) is not
observed in the simulation range. Fig. 5a) plots the IpV¢ curves
of the training dataset (green) and the outlier testing curves (red)
from Fig. 4a). It can be seen that almost all of the training curves
have a strong GIDL. Therefore, the machine “thinks” that every
curve should have GIDL and predicts the outliers’ Ip (Vg = -
0.6V) wrong. This does not affect the prediction of the Vry and
SS because they are defined at a much higher current level (10
A for Vy and 10°A to 10°A for SS). If the outliers are not
included, the R? is 0.93.

To further confirm the understanding, the saturation curves
are also plotted (Vp=0.8). It can be seen that, due to high Vp,
GIDL occurs at a much higher current level (>10%x) and only 4
of the testing curves are not showing GIDL. As a result, the R?
of Ip (Vg = -0.6V) prediction is 0.72 even with the outliers.
Therefore, the machine can learn the physics given in the
training data set well. This also explains the relatively low R?
of In(Vg=-0.6V) in Table I. Fig. 4 also shows the prediction
of Vi, that gives Vin= Vour =Vm. Prediction of experimental
curves from [4] is also shown. The out-of-range prediction has
R? > 0.98. Results for predicting Vi,’s giving Vour = 0.75Vpp,
0.5Vpp, and 0.25Vpp are similar. It should be noted that while
~2k low-cost training data are used to achieve the highest out-
of-range accuracy (R?>=0.98), good prediction accuracy can still
be achieved (R?=0.96) even with 50 training data points.

V. CONCLUSIONS

A novel GAN for device and circuit curve generation is
demonstrated. The modifications of the GAN allow the
correlation of device/circuit parameters to the generated
electrical outputs. It is believed to have learned physics without
incorporating differential equations in the training because 1) it
applies to different problems without using domain expertise,
2) it can be trained with as few as 50 data for with-in-training-
range prediction, and 3) it can predict out-of-training-range
structures’ electrical characteristic well. We expect this can be
used in novel device/circuit development in which the training
curves can be replaced by the scarce experimental curves.
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