
 

Abstract—In this paper, a novel variation of Generative 
Adversarial Network (GAN) is proposed and used to predict 
device and circuit characteristics based on design 
parameters. Unlike regular GAN which takes white noise as 
inputs, this modified GAN uses device or circuit parameters 
as inputs. Unlike regular Physics-informed GAN (PI-GAN) 
which incorporates differential equations in the training 
process, this modified GAN learns physics through the 
inputs and has one extra step of supervised learning. 
FinFET is used as a device example and Technology 
Computer-Aided-Design (TCAD) is used to generate its 
current-voltage (IDVG, IDVD) and capacitance-voltage (CGVG) 
curves as the training data by varying the gate length (LG), 
fin top width (WTOP), and gate metal workfunction (WF). A 
CMOS inverter with source contact defects is used as a 
circuit example and a SPICE simulator is used to generate 
its Voltage Transfer Characteristics (VTC) by varying the 
source contact resistances. We show that 1) the GAN model 
is able to generate both the device and circuit electrical 
characteristics based on the input parameters, 2) it can 
predict the characteristics of the device and circuit out of 
the training range (in a testing volume 3.7x to 4.6x larger 
than the training volume), and 3) it is further verified on 
experimentally measured data in the inverter case that it 
does not overfit and has learned the underlying physics. 

 
Index Terms— FinFET, Generative Adversarial Networks 

(GANs), Inverter, Machine Learning, Simulation, 
Technology Computer-Aided Design (TCAD) 

I. INTRODUCTION 

IMULATION-augmented machine learning (SAML) [1]-[4] 

has been proposed to use simulation data to train better 

machines for defect analysis [1]-[5], device characteristic 

predictions [6][7], device/circuit manifold learning [8][9], 

inverse design [10], and surrogate model development [11][12]. 

Since simulations, such as Technology Computer-Aided-

Design (TCAD) or spice circuit simulation, are very cost-

effective [4][5] and well-controlled [1]-[14] (e.g. defects can be 

placed precisely in the simulation structure), using simulation 

data in SAML makes it very useful. 

To make SAML more useful and meaningful, we believe it 

needs to have at least one of the following features. 1) It uses a 

reasonably small set of training data so that it can save the 

simulation time when it is used to predict the device 

characteristics under unseen bias conditions [8]. 2) It obviates 

domain expertise and input feature extraction so that different 

devices and circuits can reuse the same framework without the 

need to go over another cycle of human testing [5][8] [13][14]. 

3) It can be used for optimization and inverse design which 

cannot be done using brute force simulations [11][12]. 4) It can 

be used to predict the characteristics out of the training range. 

It is worth noting that ML with these features can also be used 

to develop novel devices/circuits by using limited experimental 

data as the training data [8]. However, to the best of our 

knowledge, 4) has not been demonstrated yet. 

In this paper, Generative Adversarial Network (GAN) [16]-

[17], which has been shown to produce higher-resolution and 

more accurate outputs in other applications, is studied. A 

modified GAN which takes the device/circuit parameters as the 

input (instead of white noise [16]-[19]) and has an extra 

supervised learning step is used. It is demonstrated that it can 

predict the IV and CV of a FinFET and VTC of an inverter out 

of the training range. It also fulfills the aforementioned merits 

that no domain expertise is required (applicable to device and 

circuit problems) and only a limited number of training data is 

required.  

We also note that there have been substantial works in 

applying physics to neural networks (NN) such as incorporating 

differential equations in Physics-informed GAN (PI-GAN) [19] 

and adding constraints [20], for initialization and pre-training 
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Fig. 1. The modified GAN used in this study (1 epoch shown). The red dotted 

boxes highlight the novelties of the proposed GAN. The first/top step is to train 

D (highlighted in black dotted box) while the bottom/second step is to train G 

(highlighted in black dotted box). 600 epochs are used. The blue semi-

transparent arrows show the back propagation paths. Compared to a regular 

GaN, an extra training step on G is conducted by comparing to the true data. 
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[21], representing NN by Hamiltonian [22], for data generation 

[23], and hardwiring physics in NN [24]. They usually need 

significant domain expertise and are also not suitable if the 

underlying physics is unknown (as in a novel device). 

II. MODIFIED GAN 

Fig. 1 shows the novel GAN. Like a regular GAN [17], it 

has a generator (G) and a discriminator (D). The purpose is to 

train G to capture the underlying physics of the true data (each 

data point is one simulated IV, CV, and VTC curve) so that it 

will generate synthetic (fake) data resembling the simulated 

data. D is used to distinguish if the data is true (simulated) or 

fake (generated by G). In each epoch, D is trained with the true 

data and the fake data through supervised learning with G fixed. 

Then D is fixed and G is trained so that it will generate data that 

makes D predict 1 (thought that it is simulated data). This is 

repeated for 600 epochs.  

In this novel GAN, unlike regular GAN using white noise 

as the input, the device or circuit parameters are used (e.g. LG, 

WF, WTOP). The parameters are sampled uniformly and the 

sampling is described in detail in Section III and Fig. 3. This 

allows G’s output to be correlated to device/circuit parameters. 

Moreover, in each epoch, G is trained one more time by 

comparing to the simulated curves (training data) through back-

propagation. All training is applied sequentially. Both novelties 

help G to learn physics without incorporating differential 

equations as in [19].  

To avoid mode collapse, W-GAN [16] is used with a 

learning rate of 10-3. Weight clipping is also used during the 

training of D (-10-2 to 10-2 for VTC and -10-3 to 10-3 for IDVG, 

IDVD, and CGVG) to speed up the training and improve stability. 

Note that gradient penalty was not used. The training loss 

function and the structures of the neural networks are shown in 

Fig. 2. The NN structures used are obtained after a few trials of 

parameter optimization with hand. The optimizer used is the 

RMSprop optimizer with a momentum of 0, a smoothing factor 

of 0.99, a learning rate of 10-3, and a parameters clamp of 10-2 

after each training loop. 

III. DATA GENERATION AND PREPARATION 

3D TCAD simulation of FinFET, with calibrated TCAD 

models [25], is used to generate the IDVG/IDVD/CGVG curves by 

varying the gate length (LG), gate work function (WF), and the 

fin top width (WTop). They are varied independently and 

uniformly in the range 15nm-25nm, 4.4eV-4.7eV, and 5nm-

15nm, respectively. The details of the FinFET simulation can 

be found in [8].  

Inverters formed by planar PMOS and NMOS are simulated 

for VTC curves with the PMOS and NMOS source contact 

resistances (R0 and R1) varied logarithmically uniformly and 

independently from 10 to 10M. R0 and R1 are normalized to 

the NMOS resistance, Rn, at VDS = VGS = VDD/2 = 1.5V as r0 = 

ln(R0/Rn) and r1 = ln(R1/Rn). The SPICE simulation is calibrated 

to experiments. Experimental circuits are also constructed and 

measured. The details of the simulation and experimental setup 

can be found in [4]. Each IDVG/ IDVD/CGVG curve is discretized 

to 81 points and each VTC curve is discretized to 51 points. In 

data preprocessing, the VTC’s are divided by 3 and used 

directly. For IV’s, the logarithmic values are used followed by 

standard scaling. The IDVD (VG=0.8V), saturation (VD = 0.8V) 

and linear (VD = 0.05V) IDVG, and CGVG are trained separately.  

IV. MACHINE LEARNING RESULTS 

Firstly, we show the novel GAN network learns physics 

gradually as G and D are improved in each epoch. Fig. 2 shows 

the prediction errors as a function of epoch and the snapshots of 

the output of G for a given set of parameters.  

Then, we show that the modified GAN network has better 

performance than the traditional manifold learning using an 

autoencoder to capture the underlying physics [8]. The machines 

are trained by only 50 randomly chosen simulation data and used 

to predict the rest of the unseen simulation data. Tables I and II 

show the R2 of various quantities predicted by the machines and 

it can be seen that, overall, the novel GAN performs better than 

the autoencoder in the FinFET case. Note that the R2 of GM2 is 

relatively low because it is the derivative of the IV curves. 

 
Fig. 2. Left: Training losses as a function of epoch for a) IDVG and VTC b). 

The neural network structures (hidden and output layers) are also shown with 

LR: Leaky Relu, PR: Parametric Relu, T: tanh, L: Linear, S: Sigmoid, SP: 

SoftPlus. Middle: c) FinFET structure and d) inverter circuit. Right: The 

corresponding predictions of IDVG (e) and VTC (f) for a FinFET with (LG,WF, 

WTOP) = (21nm, 13nm, 4.58eV) and for an inverter with (R0, R1) = (0.74k, 

0.74k k), respectively. 

TABLE I 

FINFET SATURATION ID AND GM PREDICTION ACCURACY (R2)  

 SATURATION ID @ VG GM2 @VG
A 

Machine 0.8V 0.4V -0.2V -0.6V 0.8V 

AE50 [8] 0.97 0.98 0.91 0.66 0.66 

GAN 0.99 0.96 0.95 0.73 0.60 

AGM2 is defined as the transconductance at VG = 0.8V in an 87.5mV interval. 

 
TABLE II 

OTHER FINFET METRICS PREDICTION ACCURACY (R2) 

 CV Quantities IV Quantities IDVD 

Machine Chigh
a Clow

b DIBLd SSc RON
e 

AE50[8] 0.84 0.93 0.84 0.87 N/A 

GAN 0.98 0.97 0.94 0.98 0.98 
aGate capacitance at VG=0.8V, bGate capacitance at VG=0V, cSubthreshold 

Slope defined in the region between 10-9A to 10-6A in saturation IDVG. dDIBL 

is calculated based on the difference between linear and saturation VTH’s, 

where VTH is defined as VG@ ID=10-7A. eThe ON-state resistance is the inverse 

of the slope of the IDVD curves calculated between VD=0V and VD=58mV. 

 

 

 

TABLE III 

PREDICTION ACCURACY (R2) BY GAN OF VIN GIVING SPECIFIC VOUT 

VOUT 0.75VDD 0.5VDD 0.25VDD VM 

(Vin=Vout) 

R2 0.982 0.995 0.992 0.995 
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To gauge the performance of VTC prediction by the GAN, the 

VIN’s give VOUT = 0.75VDD, 0.5VDD, 0.25VDD, and VIN = VOUT = 

VM in the GAN’s outputs are compared to the simulation one. 

Again, the GAN is only trained by 50 simulated VTC’s and the 

R2’s of predicting unseen data are shown in Table III. It can be 

seen that the prediction of GAN is also very accurate. 

Finally, to further verify that the novel GAN can capture the 

underlying physics, it is trained with data from a restricted 

parameter set and used to predict the curves out of the training 

range. We define a quantity called parameter volume as the 

product of the parameter ranges in the training. For the FinFET, 

the training parameter ranges are LG ∈ (17𝑛𝑚, 23𝑛𝑚), WF∈
(4.46𝑒𝑉, 4.64𝑒𝑉), WTOP ∈ (7𝑛𝑚, 13𝑛𝑚). Therefore, the 

parameter volume is 6.48×10-18m2eV (64 data). The trained 

GAN is then used to predict the IDVG/IDVD/CGVG of FinFET 

with LG ∈ (15𝑛𝑚, 25𝑛𝑚), WF∈ (4.4𝑒𝑉, 4.7𝑒𝑉), WTOP∈
(5𝑛𝑚, 15𝑛𝑚)  (parameter volume = 30×10-18m2eV (151 data), 

which is 4.6x of the training volume).  Similarly for the inverter, 

the training parameter range is r0 ∈ (−1.5, 5.5), r1∈ (−1.5, 5.5) 

(parameter volume = 49 (~2k data) and it is used to predict the 

inverter with R0 ∈ (−4.5, 9), R1∈ (−4.5, 9) (~10k data) which 

is 3.7x of the training volume. Fig. 3 shows the training and 

testing space for the FinFET and the inverter, respectively.  

The FinFET GAN is used to predict the IDVG/IDVD/CGVG 

curves of the FinFET with parameters out of the training range. 

Important characteristics are extracted from the generated 

curves and compared to TCAD simulations. Their prediction R2 

(VD = 0.05V) are 0.93 for Ion, 0.89 for subthreshold slope, 0.98 

for VTH (defined as VG when ID=10-7A), 0.97 for Chigh, 0.97 for 

Clow, 0.91 for gm, 0.89 for DIBL, 0.92 for Ron, 0.99 for ID (VG = 

0V), 0.9 for ID (VG = -0.425V) and 0.34 for ID (VG = -0.6V).  

They all predict well except for ID (VG = -0.6V). Therefore, the 

machine can predict all curves well in the region VG ∈

(−0.425𝑉, 0.8𝑉). This is the same for the machine in Table I. 

Fig. 4 shows the scatter plot of the ID (VG = -0.6V) 

prediction. It is found that the leakages of 16 structures are not 

predicted well and they are all located at the corner of the 

training space (Fig. 3) with small LG, low WF, and large WTOP, 

thus with very low VTH and Gate Induced Drain Leakage 

(GIDL) effect (i.e. ID increases at very negative VG) is not 

observed in the simulation range. Fig. 5a) plots the IDVG curves 

of the training dataset (green) and the outlier testing curves (red) 

from Fig. 4a). It can be seen that almost all of the training curves 

have a strong GIDL. Therefore, the machine “thinks” that every 

curve should have GIDL and predicts the outliers’ ID (VG = -

0.6V) wrong. This does not affect the prediction of the VTH and 

SS because they are defined at a much higher current level (10-

7A for VTH and 10-9A to 10-6A for SS). If the outliers are not 

included, the R2 is 0.93.  

To further confirm the understanding, the saturation curves 

are also plotted (VD=0.8). It can be seen that, due to high VD, 

GIDL occurs at a much higher current level (>104x) and only 4 

of the testing curves are not showing GIDL. As a result, the R2 

of ID (VG = -0.6V) prediction is 0.72 even with the outliers. 

Therefore, the machine can learn the physics given in the 

training data set well. This also explains the relatively low R2 

of ID(VG = -0.6V) in Table I.  Fig. 4 also shows the prediction 

of Vin that gives VIN= VOUT =VM. Prediction of experimental 

curves from [4] is also shown. The out-of-range prediction has 

R2 > 0.98. Results for predicting Vin’s giving VOUT = 0.75VDD, 

0.5VDD, and 0.25VDD are similar. It should be noted that while 

~2k low-cost training data are used to achieve the highest out-

of-range accuracy (R2=0.98), good prediction accuracy can still 

be achieved (R2=0.96) even with 50 training data points. 

V. CONCLUSIONS 

 A novel GAN for device and circuit curve generation is 

demonstrated. The modifications of the GAN allow the 

correlation of device/circuit parameters to the generated 

electrical outputs. It is believed to have learned physics without 

incorporating differential equations in the training because 1) it 

applies to different problems without using domain expertise, 

2) it can be trained with as few as 50 data for with-in-training-

range prediction, and 3) it can predict out-of-training-range 

structures’ electrical characteristic well. We expect this can be 

used in novel device/circuit development in which the training 

curves can be replaced by the scarce experimental curves. 

 
Fig. 3. The training (orange) and prediction (blue) data distribution of GAN 

for FinFET (left) and inverter (right). 

 
 

Fig. 4. FinFET ID(VG=-0.6V) prediction (left) and prediction of Vin that gives 

Vout = Vin = VM by the GAN within/out-of training range for simulation data 

and experimental data (right).  

 
Fig. 5. Linear (a) and saturation (b) IDVG curves. The green lines are all the 

training data and the red lines are the testing data which have bad prediction 

on ID(VG=-0.6V). 
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