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Abstract 

In this paper, two methodologies are used to speed 
up the maximization of the breakdown voltage (BV) 
of a vertical GaN diode that has a theoretical maxi-
mum BV of ~2100V. Firstly, we demonstrated a 5X 
faster accurate simulation method in Technology 
Computer-Aided-Design (TCAD). This allows us to 
find 50% more numbers of high BV (>1400V) designs 
at a given simulation time. Secondly, a machine 
learning (ML) model is developed using TCAD-gen-
erated data and used as a surrogate model for differ-
ential evolution optimization. It can inversely design 
an out-of-the-training-range structure with BV as 
high as 1887V (89% of the ideal case) compared to 
~1100V designed with human domain expertise. 

 
Keywords—Power Electronics, Power Device, 

Breakdown Voltage, Differential Evolution, Gal-
lium Nitride (GaN), Machine Learning, Technology 
Computer-Aided Design (TCAD), Diode 

 

1. Introduction 
GaN is becoming a mainstream semiconductor for 

RF and power applications, with total market size of 
over $1 billion [1]. Vertical GaN devices, such as ver-
tical GaN diodes, have been widely regarded as one 
of the most promising candidates for next-generation 
higher-voltage, high-power applications [2][3]. Due 
to its wide bandgap (3.4eV), the breakdown field of 
GaN is 10 times higher than that of Si. A GaN diode 
is expected to have more than 1450 times better 
Baliga’s Figure-of-Merit than Si [2]. However, its full 
potential can only be unfurled if the diode has a 
proper edge termination, such as guard rings [4] and 
junction termination extension (JTE) [5], the design 
of which requires a lot of domain expertise and pro-
longed simulation time due to the huge design space. 
For GaN power diodes, the deployment of GaN-on-
Si wafers can lower the cost but lead to higher leakage 
due to the threading dislocations [6][7]. GaN-on-GaN 
diode is preferred from the reliability considerations. 

In this paper, two methods are proposed to speed 
up the simulation and to find high BV (>1400V) de-
signs of GaN diode on GaN-substrate. One is to de-
velop a faster but accurate TCAD simulation method-
ology. Another is to use TCAD-data-trained machine 

learning to enable surrogate model development to in-
versely design a high BV diode. Section 2 discusses 
the structure used. Section 3 discusses various ap-
proaches used for BV maximization and the results.  
 
2. Simulation Setup 

TCAD Sentaurus is used for structure creation and 
device simulation [8]. Fig. 1 shows an example of the 
simulation structure. Guard rings are added next to 
the anode for edge termination. The n-type drift re-
gion is 10µm and is doped with 1016cm-3 Silicon. The 
anode and the guard rings are p-type and doped with 
1019cm-3 magnesium. Fermi-Dirac statistics, incom-
plete ionization, high-field mobility saturation, and 
impact ionization are turned on using the calibrated 
parameter values in [9]. To maximize the BV, 5 de-
sign variables are used. The variables are the space 
(S) between the guard rings, the width (W) of the 
guard rings, the depth (D) of the guard rings, the num-
ber (N) of the guard rings, and the standard deviation 
(σ) of the guard ring junction. Fig. 2 shows the BV of 
an ideal 1D structure of about 2100V which repre-
sents the theoretical limit. The current is scaled by as-
suming the third dimension is 1mm. Using human ex-
pertise by experimenting with S, W, D, and N, the 
highest BV obtained is ~1100V. 

 
3. Results and Discussion 

 
3.1. BV Maximization through TCAD Searching 

 
 

Figure 1: A simulation structure examplar of the vertical 
GaN diode used in this study. Guard ring number (N) = 7 is 
used as an example. Four of the five design variables (S, W, 

D, N) are highlighted. The standard deviation, σ, of the 
junction gradient is not shown. 



We then generate various devices using TCAD by 
randomly creating structures with 𝑆𝑆 ∈ [0.25,5], 𝑊𝑊 ∈
[0.25,5] , 𝐷𝐷 ∈ [0.01,1] , 𝑁𝑁 ∈ [0,32] , and 𝜎𝜎 ∈
[0.01,0.1] all in µm except 𝑁𝑁 which is unitless. 300 
structures were simulated, and the total simulation 
time is about 4 days on 30 cores. Only 2 structures are 
found to have BV > 1400V (the highest one is shown 
in Fig. 2) using this random TCAD searching method. 
 
3.2. Rapid BV Simulation 

 
It is desirable to find an accurate and fast simula-

tion setup to speed up the TCAD searching process. 
Such a setup can also be used to generate enough data 
for machine learning (ML) in the following study. 
Various BV simulation simplification schemes such 
as removing incomplete ionization model, not solving 
hole continuity equation, using ionization integral 
method, etc. have been tested. Among them, it is 
found that only removing impact ionization and mon-
itoring the peak electric field until it reaches 
3.3MV/cm (GaN critical field) (fast model) provides 
a significant speedup and accurate solutions. Fig. 3 
shows the relationship between the BV obtained us-
ing the fast model and the full model and they show a 
linear relationship. This shows that the onset of break-
down in this problem is determined by the electric 
field and its distribution. 

Fig. 4 shows the distribution of the simulation time 
of the two models. The speedup can be as much as 24 
times and on average, the speedup is 5 times. Moreo-
ver, among the 300 simulations, 91% converge using 
the fast model and only 62% converge with the full 
model. 

The fast model is then used to simulate 3530 struc-
tures in about 5 days. In contrast, the full model could 
only simulate 300 structures in about 4 days. To com-
pare the performance of the full and fast model, a 
comparison between the number of high BV 
(>1400V) structures obtained in each model is per-
formed. If the fast model is more performant, then a 
larger amount of high BV structures would be ex-
pected. For the full model, it is already known that 
only 2 structures have high BV (>1400V). To check 
how many high BV structures are obtained in the fast 
model simulation, selected structures need to be veri-
fied using full model simulations. The following 
methodology is used to select the structures to be ver-
ified. Fig. 3 shows a 95% prediction interval used to 

 
 

Figure 2: Reverse I-V curves of selected designs. The 
third dimension of the 2D structures is set to 1mm. The 
parentheses contain the values corresponding to S(µm), 

W(µm), D(µm), N and σ(µm).  

 
 

Figure 3: Relationship between the full model BV (with 
impact ionization) and the fast model BV (without 

impact ionization and extracting BV at maximum E-field 
= 3.3MeV/cm). The fitted slope is 1.5893. The dashed 

lines show how the search range is determined.  

 
 

Figure 4: Comparison of the simulation time using the 
full and fast models. Each point represents one simulated 

structure. The red line is y = x. 



determine this search range of structures with the 
highest chance to become high BV (>1400V). This 
search range was determined by first finding the low-
est fast model BV value that reaches a full model BV 
of at least 1400V in the 95% prediction interval. This 
value is found to be 812V. Therefore, all structure that 
has a fast model BV > 812V will be verified using the 
full model. There are 7 structures in this range and 
full model simulations of these structures are per-
formed for further verification. 3 structures out of the 
7 are found to have high BV (>1400V). Thus, this re-
sult is 50% more than the amount found solely using 
the full model in a similar amount of time.  

The benefit of the fast model can be seen by how 
it expands the search space greatly when the threshold 
of “high BV” is defined with lower values. Table I 
shows different redefinitions of what is considered 
“high BV” and the resulting performance. The 
amount of “high BV” in the full model still stagnates 
even if “high BV” is redefined with lower bounds. In 
contrast, the search space for the fast model increases 
greatly as “high BV” is redefined with lower bounds. 
This large search space is due to the speedup of the 
fast model, which allows for significantly more struc-
tures to be simulated at a reasonable time. 
 

3.3. BV Maximization by ML-enabled Surrogate 
Model 
 

Even though the fast model can speed up the sim-
ulation by 5X, it still cannot find a design with a high 
enough BV. With the speed-up gained by the fast 
model, lots of data are made available to train ML 
models quickly. Two ML models are thus developed 
to correlate the 5 design parameters to the BV of the 
two datasets generated with the fast model earlier. 
Thus, the goal of this model is to predict the BV of a 
structure as if it were run by a fast model simulation, 
not the full model. The models are called NN275 and 
NN3530, where one model is trained with 275 struc-
tures and the other is trained with 3530 structures, re-
spectively. Keras [8] was used to train the models. 
Each model is a neural network (NN) with 1 input 
layer, 2 hidden layers (each has 50 hidden nodes with 
L2 regularization followed by batch normalization), 

and 1 output layer is used (Fig. 5). 80% of the data is 
used with cross-validation and 20% of the data is used 
for testing. 10-fold cross-validation is used with 3 re-
peats for hyperparameter tuning and training with 
scikit-learn [9]. The performance metric used to eval-
uate the models is the coefficient of determination 
(R2) and it is used to determine how close the ex-
pected and predicted values are. An R2 value close to 
1 indicates a good correlation. With the final test set, 
NN275 obtains R2 above 0.77 and NN3530 obtains 
R2 above 0.95. 

The trained machines are then used as surrogate 
models for the differential evolution optimization al-
gorithm to design the guard ring based on any target 
BV. This is achieved by minimizing 
�𝑓𝑓(𝑆𝑆,𝑊𝑊,𝐷𝐷,𝑁𝑁,𝜎𝜎) − 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�, where 𝑓𝑓 is the output of 
the ML surrogate model and 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the target BV 
when running the fast model. 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  from 0V to 
1250V are then fed into the differential evolution al-
gorithm to inversely design the diode for the given 

 
 

Figure 5: NN used as a surrogate model for differential 
evolution algorithm to design guard rings for a target 

BV. 

 
 

Figure 6: TCAD simulatated BV for the inverse designed 
structures predicted by the differential evolution trained 
on NN275 and NN3530. Expected range is based on the 

relationship found in Fig. 3. 

TABLE I 
 

DIFFERENT DEFINITIONS OF “HIGH BV” AND NUMBER OF “HIGH BV” 
OBTAINED 

 

“High 
BV”  

Full 
Model 

Fast 
Model 
Search 
Space 

Fast Model 
Actual 

“High BV” 

Gain by 
using Fast 

Model 

1400 2 7 3 1.5X 

1300 3 12 5 1.67X 

1250 3 17 7 2.33X 

 



𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . Each of the optimizations takes only ~30 
minutes on a laptop. SciPy [10], which is a library 
written in Python, contained the implementation of 
the differential evolution algorithm that was used. 
The algorithm is a population-based method and does 
not use gradients to minimize. 

For example, for 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡= 1050V, it is deduced 
that 𝑆𝑆 = 1.385,𝑊𝑊 = 3.49,𝐷𝐷 = 0.85,𝑁𝑁 = 30,𝜎𝜎 =
0.097  should be used. The corresponding TCAD 
structures are then constructed and simulated with the 
full model. Fig. 6 shows that the algorithm can in-
versely design the device well and most of the BV is 
near or within the expected range. The expected range 
is from the 95% prediction interval in Fig. 3 which 
shows the variance in scaling between the fast and full 
models. Some points likely lie outside the expected 
range due to the ML models being trained on the fast 
model datasets, which are expected to have some in-
accuracy in predicting a structure with the given 
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and with scaling to the full model.  

Fig. 6 also shows that NN3530 has 7 structures 
within the expected range and thus is found to be 
slightly more accurate than NN275. But it should be 
noted that it also has a larger variance compared to 
NN275. One possibility is that NN3530 is more over-
fitted as 10x more data are used for training. How-
ever, NN275 still has many of its structures close to 
the expected region and thus both methods are found 
to be closely matched. This implies that NN275, 
which was trained on only 275 structures, has suffi-
cient data for optimization. It can also achieve BV = 
1887V for 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1050V (target of the fast model), 
much higher than its training data after scaling (Fig. 
2). This is ~89% of the ideal value. Fig. 7 shows the 
electric field distribution of this structure. NN275 is 
believed to be as performant as NN3530 even with 

less data it is trained on because it seems to be able to 
capture the underlying patterns sufficiently. 

 
4. Conclusion 

We proposed a new TCAD setup that has a 5X 
faster speed and 2X better convergence for GaN di-
ode BV simulation and has a linear correlation to the 
full model BV. This allows the finding of 50% more 
designs with high BV (>1400V). To further explore 
the design with higher BV, two NNs are built as sur-
rogate models and, by using differential evolution, a 
design with BV as high as 1887 V is discovered. Both 
NNs are comparable, and it is found that both are sim-
ilar in performance. 

 
Acknowledgment 

This material is based upon work supported by the 
National Science Foundation under Grant No. ECCS-
2134374. 

References 
[1] Y. Zhang et al., “GaN FinFETs and trigate devices for 

power and RF applications: review and perspective,” 
Semicond. Sci. Technol., vol. 36, no. 5, p. 054001, 
Mar. 2021, doi: 10.1088/1361-6641/abde17. 

[2] Y. Zhang and T. Palacios, “(Ultra)Wide-Bandgap 
Vertical Power FinFETs,” IEEE Trans. Electron De-
vices, vol. 67, no. 10, pp. 3960–3971, Oct. 2020, doi: 
10.1109/TED.2020.3002880. 

[3] T. Oka, “Recent development of vertical GaN power 
devices,” Jpn. J. Appl. Phys., vol. 58, no. SB, p. 
SB0805, Apr. 2019, doi: 10.7567/1347-4065/ab02e7. 

[4] K. Kinoshita, T. Hatakeyama, O. Takikawa, A. Yahata 
and T. Shinohe, "Guard ring assisted RESURF: a new 
termination structure providing stable and high 
breakdown voltage for SiC power devices," 
Proceedings of the 14th International Symposium on 
Power Semiconductor Devices and Ics, 2002, pp. 253-
256, doi: 10.1109/ISPSD.2002.1016219. 

[5] J. Wang et al., “High voltage, high current GaN-on-
GaN p-n diodes with partially compensated edge 
termination,” Appl. Phys. Lett., vol. 113, no. 2, p. 
023502, Jul. 2018, doi: 10.1063/1.5035267. 

[6] Y. Zhang et al., "Origin and Control of OFF-State 
Leakage Current in GaN-on-Si Vertical Diodes," 
in IEEE Transactions on Electron Devices, vol. 62, 
no. 7, pp. 2155-2161, July 2015, doi: 
10.1109/TED.2015.2426711. 

[7] Y. Zhang et al., "Design space and origin of off-state 
leakage in GaN vertical power diodes," 2015 IEEE 
International Electron Devices Meeting (IEDM), 
2015, pp. 35.1.1-35.1.4, doi: 
10.1109/IEDM.2015.7409830. 

[8] Sentaurus™ Device User Guide Version S-2021.06, 
June 2021. 

[9] Sentaurus Technology Template: Simulation of Verti-
cal GaN Devices: Trench-Gate MOSFET and Diodes, 
Synopsys Inc., 2021. 

[10] P. Virtanen et al., “SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python,” Nature 

 
 

Figure 7: Electric field distribution of the structure that 
achieves the highest BV (1887 V). Top: 2D plot. Bottom: 1D 

cut line along the junction bottom. 



Methods, vol. 17, pp. 261–272, 2020, doi: 
10.1038/s41592-019-0686-2. 


	Abstract

