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Abstract— In this paper, we study the error propagation and
generation in the Harrow-Hassidim-Lloyd (HHL) quantum
algorithm runs on IBM-Q hardware with the help of a MATLAB
simulator. HHL is a quantum algorithm that can provide
exponential speedup over the fastest classical algorithm (conjugate
gradient method) in solving systems of linear equations (SLE).
However, without error correction, it cannot give correct results
even in a 2-variable system due to its complexity. In this study, an
HHL quantum circuit for a 2-variable SLE is implemented in
IBM-Q and the error is extracted after each stage of the circuit
and compared to a MATLAB simulator. We identified three
major sources of errors, namely single-qubit flipping, gate
infidelity, and error propagation. We also found that at the
ancillary bit rotation stage, the error becomes large but the
encoded solution still has high fidelity. However, the solution is
mostly lost after the inverse quantum phase estimation which is
necessary to extract the solution efficiently. Therefore, it is
suggested that error correction resources, if limited, should be
added to the second half of the circuit.

Keywords—Error, HHL, Quantum Algorithm, Quantum
Computing, Qubit Flipping
I. INTRODUCTION
Quantum computing is expected to solve many

computationally challenging problems in classical computing
such as factorization [1], quantum simulation [2], and
optimization [3]. Quantum supremacy also has been
demonstrated recently [4]. Among the important quantum
algorithms, the Harrow-Hassidim-Lloyd (HHL) quantum
algorithm promises to provide an exponential speedup in
solving systems of linear equations (SLE) [5][6] and has a time
complexity of O(log N), while the fastest classical algorithm,
namely the conjugate gradient method, has a complexity of

O(N) [7]. An SLE can be represented as AX = b , in which
vector X is solved for a given symmetric matrix, 4, and a

vector, b. HHL algorithm can be used in machine learning [8],
quantum system modeling [2][9], and solving poisson
equations [10][11].

However, it is well-known that quantum computers are very
susceptible to noise and even a simple SWAP gate implemented
by 3 CNOT gates has more than 10% of error in a
superconducting qubit computer [12]. Although it is expected
that error correction is possible by implementing multiple
physical qubits as one fault-tolerant logical qubit in the future
[13], it is desirable to understand the source of the error in an
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Fig. 1. The HHL quantum circuit implemented in this study. The circuit is
partitioned into two parts (top and bottom). The 4-qubit input, |¥,), goes from
the left to the right. The output of the top part, |¥,), becomes the input of the

bottom part. The output of the HHL circuit is |Wg). Note that the Most-
Significant Bit (MSB) is at the bottom.

algorithm and the parts of the algorithm that are the most
affected by the error. This will help to optimize the error
correction resources (e.g. which part of the algorithm needs a
more expensive error correction). In this paper, we study the
error generation and propagation in the HHL algorithm by
using a 2-variable SLE. The equations are the same as in [14].
The quantum circuit is implemented and executed in
ibmq santiago in the IBM-Q system, which is a 5-
superconducting-qubit quantum computer. The results are
extracted at each stage of the HHL circuit and compared to the
idea solution generated by a MATLAB simulator.

II. IMPLEMENTATION OF HHL ALGORITHM

The SLE to be solved has E=(0) and A=

1 -1/3\ .. . !
(_ 1/3 1 ) with eigenvalues, 4, and 4,, of 2/3 and 4/3,
respectively. The corresponding HHL circuit is shown in Fig.
1. A brief explanation of the HHL algorithm will be provided
here but the readers are encouraged to read the step-by-step
explanation of the HHL algorithm in [14] and the basics of
Quantum Fourier Transform (QFT) and Quantum Phase
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Estimation (QPE) in [12]. We follow the IBM-Q convention
[15] to have the Most Significant Bit (MSB) at the bottom of
the circuit in Fig. 1. Therefore, the 4 qubits are labeled as
[bo)cidcodlag) or [bgcycoag). For example, in a measurement,
if the system collapses to |by) =10),[cy) =11),1co) =
|0), |ag) = |1), it will be labeled as |0101) since |b,) is the
MSB. The input wavefunction is initialized to the ground state
with |¥,) = |0000). |b,) is used to encode b and therefore, in
this case, a NOT gate is applied to the MSB to change the state
to |¥;) = |1000) before the HHL algorithm. The matrix A4 is
encoded in the controlled-U rotations (U = et where ¢ is a
parameter). Through QPE, the phases of the eigenvalues of U
are obtained and stored in |c,)|cy) at |P,). But the phases of the
eigenvalues of U correspond to the eigenvalues of A .
Therefore, |c;)|cy) stores the encoded eigenvalues of A. The
ancillary qubit |ay) is then rotated with |c,)|cy) as the
controlling qubits, and thus is rotated based on the eigenvalues
of A. The controlled rotation is designed such that the solution
of the SLE is encoded as the amplitudes of the basis states
[11][14]. At |W¥,), the amplitudes are already encoded as the
amplitude successfully. However, it does not allow direct
measurement due to the entanglement between the qubits.
Therefore, inverse QPE is then used to unentangled the qubits
and the solution is stored in |b,) eventually at |Wg).
1

X
The solution to this equation is ¥ = (xf) =3 ( 93 ) and thus

Xg: X1 = 1: 3. Therefore, at the end of the HHL, the is expected
ﬂwtlm)=7%ﬂﬂn+3ﬂh and the probabilities of

measuring |0) and |1) have a ratio of 12:32 = 1:9.

In a regular HHL circuit, measurement on |a,) (the LSB)
will be performed at |Ws) (i.e. after the rotation of the ancillary
bit). The result is discarded if it is |0) and the whole circuit will
be recomputed. This is because only when |ag) = |1) the
solution is encoded successfully as the amplitudes. In this
study, we only perform this measurement until the end of the
circuit (|Wg)). This is equivalent to measuring at |[¥5) but we
need to discard any measurement results that end with LSB =
[0).

III. ERROR GENERATION AND PROPAGATION

We try to understand the error generation and propagation
in the HHL circuit in Fig. 1 by running the circuit in IBM-Q
[15]. Measurements are performed at |¥;) to |¥,) and
compared to the MATLAB simulator [14]. In each
measurement, the system will collapse to one of its basis states,
namely |byc,coay) = [0000), |0001), [0010), --+, |[1111). For
convenience, they will be labeled in decimal and named as |0),
[1), [2), -++, |15). It should be noted that the measurement gives
the square of the magnitude of the amplitude of each basis in
the wavefunction. It is impossible to measure the amplitude in
the experiment but the MATLAB simulator can predict the
amplitudes.

Fig. 2 shows the simulation and experimental output of |¥;)
which is obtained by applying a NOT gate to the MSB of |W¥,).
Ideally, |¥;) = [bycicoag) = |1000) = |8), which is what is
obtained from the simulator. However, the experiment shows
that there is about a 1% of probability obtaining also [0000) =
10), [1001) = [9), [1010) = |10), and [1100) = |12). It is
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Fig. 2. |¥;) measurement results. Top: simulation. Bottom: Hardware.

clear that these are due to the single bit flipping. For example,
|1001) is due to the flipping of ay from the expected outcome
|1000). Also, note that the flipping is probably not due to the
infidelity of the quantum gate as it is only applied to the MSB
(by). All errors show a similar probability and therefore, the
errors are likely due to the noise from the environment (e.g.
absorption of a photon). It should be noted that flipping 2 or
more qubits simultaneously is rare. For example, there is no
measurement of [0001) which requires the MSB and LSB to be
flipped at the same time.

Fig. 3 shows the simulation and experimental output of |¥,)
which is obtained by applying Hadamard gates to |c;)|cy) of
|¥;). The Hadamard gate is expected to generate an equal
superposition of |c;)|co) = 10)]0), [0)|1),]1)]0), [1)|1) with
|by) = |1),]ay) = |0) and thus the probability of measuring
[8),110),|12),|14) should be the same (0.25). However, the
experiment shows that there are unexpected outcomes of
|0),12),14),16),19),111),|13),|15) . There are two possible
sources of error. One is the single-bit flipping error as discussed
before. Another is the propagating of errors from |¥, ).

If the error is purely due to bit flipping, it is possible to
generate all the unexpected outcomes from the expected
outcomes (e.g. |1000) with the first bit flipped and becomes
|0000)). But the probability of the error will be ¥4 of that in Fig.
2 because the expected outcomes only have a probability of
0.25 instead of 1. The average probability of the unexpected
outcome is about 0.00927 in Fig. 2. Therefore, the probability
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Fig. 3. |¥,) measurement results. Top: simulation. Bottom: Hardware.
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Fig. 4. |¥,) error probabilities of unexpected basis numbers based on various
estimations. Only the errors of the unexpected basis states are shown.

of measuring the unexpected outcome due to flipping is
expected to be about 0.0023 in |W¥,).

If the error is due to the propagation of the error from |¥;),
(for example, a |0000) = |0) error component in |W¥;) can
create |0), |2), |4),|6) in |¥,) due to the Hadamard gates), we
can obtain the error in |¥,) by multiplying the matrix with the
error in |¥; ). The matrix elements connecting the error in |¥; )
and |W¥,) are all 0.25 (squared for probability). It is found that
[0) in |W;) will contribute an error amplitude of 0.00275 to
[0),]2),14),16) in |¥,) and |9) will contribute 0.0015 to
[9),]10),]13),|15) in |W,). Note that the probability (squares
of amplitudes) are calculated using the square of the matrix as
the experimental amplitudes are unknown. It also means that
there will be no interference between different basis errors.

Fig. 4 plots the probabilities of the unexpected basis errors
estimated by different methods. “Total” is the sum of flipping
and propagation errors by assuming that there is no correlation
between flipping error and propagation error. It can be seen that
the experimental error (IBM-Q) is much lower than the “Total”
in most cases. Therefore, the flipping error and propagation
error partially cancel each other in some cases. However, this
does not happen for |13) and therefore, cancellation is a
random process. We also see that the propagation error and
flipping error have similar magnitudes.
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Fig. 5. |¥;) measurement results. Top: simulation. Bottom: Hardware.
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Fig. 6. |W;) error probabilities of unexpected basis numbers based on various
estimations. Only the errors of the unexpected basis states are shown.

Fig. 5 shows the simulation and experimental output of |¥5)
after the controlled-U gate is applied. It can be seen that errors
due to |0) (0.02) and |12) (0.14) are very high. Compared to
the expected outcome such as [2) (0.106), it is almost 20%.
Therefore, the fidelity degrades substantially after this step.
Fig. 6 shows the possible sources of the errors. |0) and |12) can
be the results of the flipping errors due to 3 basis states. For
example, |0) = |0000) can be obtained by single bit flipping in
the expected outcomes [0010), [0100), and [1000). The noise
propagated from the previous stage is also higher in |0) and
|12) . Therefore, the largest errors occur at |0) and |12).
However, unlike other errors and in the case of |¥,) where the
“IBM-Q” errors are smaller than the sum of the maximum
possible flipping errors and propagated errors (“Total”), the
“IBM-Q” errors are higher than “Total”. This means there is
another source of error. Upon further inspection, it is found that
|0) and [12) are the only two unexpected outcomes that can be
obtained by flipping |b,). For example, |12) = [1100) can be
obtained by flipping the MSB of the expected outcome
|4) = |0100). This stage is after a controlled operation on |by).
Therefore, it is believed that the additional error is due to the
inaccuracy of the control pulse or enhanced flipping due to the
inaccurate control pulse, i.e. the gate error.

Fig. 7 shows the simulation and experimental output of |¥,)
after IQFT. The maximum error (e.g. |8) (0.04)) is still about
20% of the expected outcome (e.g. |12) (0.206)). This is
similar to |¥5).
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Fig. 7. |¥,) measurement results. Top: simulation. Bottom: Hardware.
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Fig. 8. |Ws) measurement results. Top: simulation. Bottom: Hardware.

However, after the controlled rotation of the ancillary bit
|ag), the error increases substantially as shown in Fig. 8. For
example, the unexpected outcome |8) has a probability of 0.042
and the expected outcome |5) has a probability of 0.06.
Therefore, the unexpected outcome is 70% of the expected one.
At |Ws), as explained earlier, the solution is already encoded
into the amplitude of the qubits. Although the error is large in a
certain basis state (e.g. |8)), the overall information is still
preserved pretty well. We argue that if there is a method to
extract the information at this stage, the algorithm might work
statistically without error correction.

Unfortunately, for effective information extraction, IQPE is
required. Fig. 8 shows the simulation and experimental output
of |W,) after IQPE. As mentioned earlier, in HHL, if the LSB
is 0, it will be discarded. Therefore, only odd numbers are
meaningful to the results. From the simulation, the probability
ratio of |1) to [9) is 0.0625:0.5625 = 1:9 which is what is
expected. However, the IBM-Q hardware result is very far from
the expected solution. This is due to the error and the error is
magnified as the algorithm tries to obtain the solution through
interference.

IV. CONCLUSION

In this paper, we study the error propagation and
generation in an HHL quantum algorithm for solving a 2-
variable SLE. The 4-qubit quantum circuit is run on a quantum
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Fig. 9. |¥s) measurement results. Top: simulation. Bottom: Hardware. Note
that the y-axis is in a linear scale.

computer based on superconducting qubits. Measurements are
performed on 6 parts of the circuits and compared to an ideal
MATLAB simulation code. It is found that single-qubit
flipping, gate infidelity, and error propagation are the main
sources of errors. Two-qubit flipping is rare and not observed.
It is found that the information is still pretty well preserved
when the solution is obtained after the ancillary qubit rotations
(although cannot be extracted efficiently). However, the
information is mostly destroyed by the error after the inverse
quantum phase estimation which is essential to extract the
solution. Therefore, it is suggested that if the error correction
resources are limited, they should be placed in the second half
of the circuit.
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