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Abstract— In this paper, we study the error propagation and 

generation in the Harrow-Hassidim-Lloyd (HHL) quantum 

algorithm runs on IBM-Q hardware with the help of a MATLAB 

simulator. HHL is a quantum algorithm that can provide 

exponential speedup over the fastest classical algorithm (conjugate 

gradient method) in solving systems of linear equations (SLE). 

However, without error correction, it cannot give correct results 

even in a 2-variable system due to its complexity. In this study, an 

HHL quantum circuit for a 2-variable SLE is implemented in 

IBM-Q and the error is extracted after each stage of the circuit 

and compared to a MATLAB simulator. We identified three 

major sources of errors, namely single-qubit flipping, gate 

infidelity, and error propagation. We also found that at the 

ancillary bit rotation stage, the error becomes large but the 

encoded solution still has high fidelity. However, the solution is 

mostly lost after the inverse quantum phase estimation which is 

necessary to extract the solution efficiently. Therefore, it is 

suggested that error correction resources, if limited, should be 

added to the second half of the circuit.  
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I. INTRODUCTION  

Quantum computing is expected to solve many 
computationally challenging problems in classical computing 
such as factorization [1], quantum simulation [2], and 
optimization [3]. Quantum supremacy also has been 
demonstrated recently [4]. Among the important quantum 
algorithms, the Harrow-Hassidim-Lloyd (HHL) quantum 
algorithm promises to provide an exponential speedup in 
solving systems of linear equations (SLE) [5][6] and has a time 
complexity of O(log N), while the fastest classical algorithm, 
namely the conjugate gradient method, has a complexity of 

O(N) [7]. An SLE can be represented as 𝑨𝑥⃗ = 𝑏⃗⃗ , in which 
vector 𝑥⃗  is solved for a given symmetric matrix, 𝑨 , and a 

vector, 𝑏⃗⃗. HHL algorithm can be used in machine learning [8], 
quantum system modeling [2][9], and solving poisson 
equations [10][11].  

However, it is well-known that quantum computers are very 
susceptible to noise and even a simple SWAP gate implemented 
by 3 CNOT gates has more than 10% of error in a 
superconducting qubit computer [12]. Although it is expected 
that error correction is possible by implementing multiple 
physical qubits as one fault-tolerant logical qubit in the future 
[13], it is desirable to understand the source of the error in an 

algorithm and the parts of the algorithm that are the most 
affected by the error. This will help to optimize the error 
correction resources (e.g. which part of the algorithm needs a 
more expensive error correction). In this paper, we study the 
error generation and propagation in the HHL algorithm by 
using a 2-variable SLE. The equations are the same as in [14]. 
The quantum circuit is implemented and executed in 
ibmq_santiago in the IBM-Q system, which is a 5- 
superconducting-qubit quantum computer. The results are 
extracted at each stage of the HHL circuit and compared to the 
idea solution generated by a MATLAB simulator. 

II. IMPLEMENTATION OF HHL ALGORITHM 

The SLE to be solved has  𝑏⃗⃗ = (
0
1

)  and 𝑨 =

(
1 −1/3

−1/3 1
) with eigenvalues, 𝜆1 and 𝜆2, of 2/3 and 4/3, 

respectively.  The corresponding HHL circuit is shown in Fig. 
1. A brief explanation of the HHL algorithm will be provided 
here but the readers are encouraged to read the step-by-step 
explanation of the HHL algorithm in [14] and the basics of 
Quantum Fourier Transform (QFT) and Quantum Phase 
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Fig. 1. The HHL quantum circuit implemented in this study. The circuit is 

partitioned into two parts (top and bottom). The 4-qubit input, |Ψ0⟩, goes from 

the left to the right. The output of the top part, |Ψ4⟩,  becomes the input of the 

bottom part. The output of the HHL circuit is |Ψ6⟩. Note that the Most-

Significant Bit (MSB) is at the bottom. 
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Estimation (QPE) in [12]. We follow the IBM-Q convention 
[15] to have the Most Significant Bit (MSB) at the bottom of 
the circuit in Fig. 1. Therefore, the 4 qubits are labeled as 
|b0⟩|c1⟩|c0⟩|a0⟩ or |b0c1c0a0⟩. For example, in a measurement, 
if the system collapses to |b0⟩ = |0⟩, |c1⟩ = |1⟩, |c0⟩ =
|0⟩, |a0⟩ = |1⟩, it will be labeled as |0101⟩ since |b0⟩ is the 
MSB. The input wavefunction is initialized to the ground state 

with |Ψ0⟩ = |0000⟩. |b0⟩ is used to encode 𝑏⃗⃗ and therefore, in 
this case, a NOT gate is applied to the MSB to change the state 
to |Ψ1⟩ = |1000⟩ before the HHL algorithm. The matrix 𝑨 is 

encoded in the controlled-U rotations (𝑼 = 𝑒𝑖𝑨𝑡, where t is a 
parameter). Through QPE, the phases of the eigenvalues of 𝑼 
are obtained and stored in |c1⟩|c0⟩ at |Ψ4⟩. But the phases of the 
eigenvalues of 𝑼  correspond to the eigenvalues of 𝑨 . 
Therefore, |c1⟩|c0⟩ stores the encoded eigenvalues of 𝑨. The 
ancillary qubit |a0⟩  is then rotated with |c1⟩|c0⟩  as the 
controlling qubits, and thus is rotated based on the eigenvalues 
of 𝑨. The controlled rotation is designed such that the solution 
of the SLE is encoded as the amplitudes of the basis states 
[11][14]. At |Ψ4⟩, the amplitudes are already encoded as the 
amplitude successfully. However, it does not allow direct 
measurement due to the entanglement between the qubits. 
Therefore, inverse QPE is then used to unentangled the qubits 
and the solution is stored in |b0⟩ eventually at |Ψ6⟩.  

The solution to this equation is 𝑥⃗ = (
𝑥0

𝑥1 ) =
1

8
(

3
9 

) and thus 

𝑥0: 𝑥1 = 1: 3. Therefore, at the end of the HHL, the is expected 

that |b0⟩ =
1

√10
(1|0⟩ + 3|1⟩)  and the probabilities of 

measuring |0⟩ and |1⟩ have a ratio of 12: 32 = 1: 9. 

In a regular HHL circuit, measurement on |a0⟩ (the LSB) 
will be performed at  |Ψ5⟩ (i.e. after the rotation of the ancillary 
bit). The result is discarded if it is |0⟩ and the whole circuit will 
be recomputed. This is because only when |a0⟩ = |1⟩  the 
solution is encoded successfully as the amplitudes. In this 
study, we only perform this measurement until the end of the 
circuit (|Ψ6⟩). This is equivalent to measuring at |Ψ5⟩ but we 
need to discard any measurement results that end with LSB = 
|0⟩. 

III. ERROR GENERATION AND PROPAGATION 

We try to understand the error generation and propagation 
in the HHL circuit in Fig. 1 by running the circuit in IBM-Q 
[15]. Measurements are performed at |Ψ1⟩  to |Ψ6⟩  and 
compared to the MATLAB simulator [14]. In each 
measurement, the system will collapse to one of its basis states, 
namely |b0c1c0a0⟩ = |0000⟩, |0001⟩, |0010⟩, ⋯, |1111⟩. For 
convenience, they will be labeled in decimal and named as |0⟩, 
|1⟩, |2⟩, ⋯, |15⟩. It should be noted that the measurement gives 
the square of the magnitude of the amplitude of each basis in 
the wavefunction. It is impossible to measure the amplitude in 
the experiment but the MATLAB simulator can predict the 
amplitudes. 

Fig. 2 shows the simulation and experimental output of |Ψ1⟩ 
which is obtained by applying a NOT gate to the MSB of |Ψ0⟩. 
Ideally, |Ψ1⟩ = |b0c1c0a0⟩ = |1000⟩ = |8⟩, which is what is 
obtained from the simulator. However, the experiment shows 
that there is about a 1% of probability obtaining also |0000⟩ =
|0⟩ , |1001⟩ = |9⟩ , |1010⟩ = |10⟩ , and |1100⟩ = |12⟩ . It is 

clear that these are due to the single bit flipping. For example, 
|1001⟩ is due to the flipping of a0 from the expected outcome 
|1000⟩. Also, note that the flipping is probably not due to the 
infidelity of the quantum gate as it is only applied to the MSB 
(b0). All errors show a similar probability and therefore, the 
errors are likely due to the noise from the environment (e.g. 
absorption of a photon). It should be noted that flipping 2 or 
more qubits simultaneously is rare. For example, there is no 
measurement of |0001⟩ which requires the MSB and LSB to be 
flipped at the same time. 

Fig. 3 shows the simulation and experimental output of |Ψ2⟩ 
which is obtained by applying Hadamard gates to |c1⟩|c0⟩ of 
|Ψ1⟩ . The Hadamard gate is expected to generate an equal 
superposition of |c1⟩|c0⟩ = |0⟩|0⟩, |0⟩|1⟩, |1⟩|0⟩, |1⟩|1⟩  with 
|b0⟩ = |1⟩, |a0⟩ = |0⟩  and thus the probability of measuring 
|8⟩, |10⟩, |12⟩, |14⟩ should be the same (0.25). However, the 
experiment shows that there are unexpected outcomes of 
|0⟩, |2⟩, |4⟩, |6⟩, |9⟩, |11⟩, |13⟩, |15⟩ . There are two possible 
sources of error. One is the single-bit flipping error as discussed 
before. Another is the propagating of errors from |Ψ1⟩.  

If the error is purely due to bit flipping, it is possible to 
generate all the unexpected outcomes from the expected 
outcomes (e.g. |1000⟩ with the first bit flipped and becomes 
|0000⟩). But the probability of the error will be ¼ of that in Fig. 
2 because the expected outcomes only have a probability of 
0.25 instead of 1. The average probability of the unexpected 
outcome is about 0.00927 in Fig. 2. Therefore, the probability 

 

Fig. 2. |Ψ1⟩ measurement results. Top: simulation. Bottom: Hardware. 

 

 

Fig. 3. |Ψ2⟩ measurement results. Top: simulation. Bottom: Hardware. 

 



of measuring the unexpected outcome due to flipping is 
expected to be about 0.0023 in |Ψ2⟩.  

If the error is due to the propagation of the error from |Ψ1⟩, 
(for example, a |0000⟩ = |0⟩  error component in |Ψ1⟩  can 
create |0⟩, |2⟩, |4⟩, |6⟩ in |Ψ2⟩ due to the Hadamard gates), we 
can obtain the error in |Ψ2⟩ by multiplying the matrix with the 
error in |Ψ1⟩. The matrix elements connecting the error in |Ψ1⟩ 
and |Ψ2⟩ are all 0.25 (squared for probability). It is found that 
|0⟩ in |Ψ1⟩ will contribute an error amplitude of 0.00275 to 
|0⟩, |2⟩, |4⟩, |6⟩  in |Ψ2⟩  and |9⟩  will contribute 0.0015 to 
|9⟩, |10⟩, |13⟩, |15⟩ in |Ψ2⟩. Note that the probability (squares 
of amplitudes) are calculated using the square of the matrix as 
the experimental amplitudes are unknown. It also means that 
there will be no interference between different basis errors. 

Fig. 4 plots the probabilities of the unexpected basis errors 
estimated by different methods. “Total” is the sum of flipping 
and propagation errors by assuming that there is no correlation 
between flipping error and propagation error. It can be seen that 
the experimental error (IBM-Q) is much lower than the “Total” 
in most cases. Therefore, the flipping error and propagation 
error partially cancel each other in some cases. However, this 
does not happen for |13⟩  and therefore, cancellation is a 
random process. We also see that the propagation error and 
flipping error have similar magnitudes. 

Fig. 5 shows the simulation and experimental output of |Ψ3⟩ 
after the controlled-U gate is applied. It can be seen that errors 
due to |0⟩ (0.02) and |12⟩ (0.14) are very high. Compared to 
the expected outcome such as |2⟩ (0.106), it is almost 20%. 
Therefore, the fidelity degrades substantially after this step. 
Fig. 6 shows the possible sources of the errors. |0⟩ and |12⟩ can 
be the results of the flipping errors due to 3 basis states. For 
example, |0⟩ = |0000⟩ can be obtained by single bit flipping in 
the expected outcomes |0010⟩, |0100⟩, and |1000⟩. The noise 
propagated from the previous stage is also higher in |0⟩ and 
|12⟩ . Therefore, the largest errors occur at |0⟩  and |12⟩ . 
However, unlike other errors and in the case of |Ψ2⟩ where the 
“IBM-Q” errors are smaller than the sum of the maximum 
possible flipping errors and propagated errors (“Total”), the 
“IBM-Q” errors are higher than “Total”. This means there is 
another source of error. Upon further inspection, it is found that  
|0⟩ and |12⟩ are the only two unexpected outcomes that can be 
obtained by flipping |b0⟩. For example, |12⟩ = |1100⟩ can be 
obtained by flipping the MSB of the expected outcome 
|4⟩ = |0100⟩. This stage is after a controlled operation on |b0⟩. 
Therefore, it is believed that the additional error is due to the 
inaccuracy of the control pulse or enhanced flipping due to the 
inaccurate control pulse, i.e. the gate error. 

Fig. 7 shows the simulation and experimental output of |Ψ4⟩ 
after IQFT. The maximum error (e.g. |8⟩ (0.04)) is still about 
20% of the expected outcome (e.g. |12⟩  (0.206)). This is 
similar to |Ψ3⟩.  

 

Fig. 4. |Ψ2⟩ error probabilities of unexpected basis numbers based on various 

estimations. Only the errors of the unexpected basis states are shown. 

 

 

 

Fig. 5. |Ψ3⟩ measurement results. Top: simulation. Bottom: Hardware. 

 

Fig. 6. |Ψ3⟩ error probabilities of unexpected basis numbers based on various 

estimations. Only the errors of the unexpected basis states are shown. 

 

 

 

Fig. 7. |Ψ4⟩ measurement results. Top: simulation. Bottom: Hardware. 

 



However, after the controlled rotation of the ancillary bit 
|a0⟩, the error increases substantially as shown in Fig. 8. For 
example, the unexpected outcome |8⟩ has a probability of 0.042 
and the expected outcome |5⟩ has a probability of 0.06. 
Therefore, the unexpected outcome is 70% of the expected one. 
At  |Ψ5⟩, as explained earlier, the solution is already encoded 
into the amplitude of the qubits. Although the error is large in a 
certain basis state (e.g. |8⟩), the overall information is still 
preserved pretty well. We argue that if there is a method to 
extract the information at this stage, the algorithm might work 
statistically without error correction. 

Unfortunately, for effective information extraction, IQPE is 
required. Fig. 8 shows the simulation and experimental output 
of |Ψ6⟩ after IQPE. As mentioned earlier, in HHL, if the LSB 
is 0, it will be discarded. Therefore, only odd numbers are 
meaningful to the results. From the simulation, the probability 
ratio of |1⟩  to |9⟩  is 0.0625:0.5625 = 1:9 which is what is 
expected. However, the IBM-Q hardware result is very far from 
the expected solution. This is due to the error and the error is 
magnified as the algorithm tries to obtain the solution through 
interference.  

IV. CONCLUSION 

In this paper, we study the error propagation and 

generation in an HHL quantum algorithm for solving a 2-

variable SLE. The 4-qubit quantum circuit is run on a quantum 

computer based on superconducting qubits. Measurements are 

performed on 6 parts of the circuits and compared to an ideal 

MATLAB simulation code. It is found that single-qubit 

flipping, gate infidelity, and error propagation are the main 

sources of errors. Two-qubit flipping is rare and not observed. 

It is found that the information is still pretty well preserved 

when the solution is obtained after the ancillary qubit rotations 

(although cannot be extracted efficiently). However, the 

information is mostly destroyed by the error after the inverse 

quantum phase estimation which is essential to extract the 

solution. Therefore, it is suggested that if the error correction 

resources are limited, they should be placed in the second half 

of the circuit. 
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Fig. 8. |Ψ5⟩ measurement results. Top: simulation. Bottom: Hardware. 

 

 

Fig. 9. |Ψ6⟩ measurement results. Top: simulation. Bottom: Hardware. Note 

that the y-axis is in a linear scale. 

 


