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Abstract—Characterization of fatigue using surface elec-
tromyography (SEMG) data has been motivated for rehabilita-
tion and injury-preventative technologies. Current SEMG-based
models of fatigue are limited due to (a) linear and parametric
assumptions, (b) lack of a holistic neurophysiological view, and
(c) complex and heterogeneous responses. This paper proposes
and validates a data-driven non-parametric functional muscle
network analysis to reliably characterize fatigue-related changes
in synergistic muscle coordination and distribution of neural
drive at the peripheral level. The proposed approach was tested
on data collected in this study from the lower extremities of 26
asymptomatic volunteers (13 subjects were assigned to the fatigue
intervention group, and 13 age/gender-matched subjects were
assigned to the control group). Volitional fatigue was induced
in the intervention group by moderate-intensity unilateral leg
press exercises. The proposed non-parametric functional muscle
network demonstrated a consistent decrease in connectivity
after the fatigue intervention, as indicated by network degree,
weighted clustering coefficient (WCC), and global efficiency. The
graph metrics displayed consistent and significant decreases at
the group level, individual subject level, and individual muscle
level. For the first time, this paper proposed a non-parametric
functional muscle network and highlighted the corresponding
potential as a sensitive biomarker of fatigue with superior
performance to conventional spectrotemporal measures.

Index Terms—Functional Muscle Connectivity, Network Anal-
ysis, Surface Electromyography, Fatigue

I. INTRODUCTION

USCLE fatigue has been correlated with a degradation

in the ability of a group of muscles to generate forces in
response to the corresponding neural drive due to the changes
in conduction fiber velocity, changes in recruitment patterns of
motor units (especially fast units), and time synchronization
in motor unit action potentials [1], [2], [3]. In the literature,
fatigue is seen as a physiological phenomenon with a complex
effect on human manipulability and mobility [4], [5], [6].
For example, fatigue has been postulated to drive muscle
adaptation [7], exercise-induced hypoalgesia [8], while it can
also challenge motor control and task completion, and conse-
quently has been identified as a contributor to injury [9], [10],
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[11], [12]. Individuals with motor impairments secondary to
neurological (such as stroke) and or orthopedic (such as knee
ligament repair) conditions may experience altered patterns of
muscle fatigue, likely because muscle recruitment also changes
with these conditions [13], [14], [15]. Because of the above-
mentioned reasons, it is important to objectively quantify and
track fatigue and this can be used for injury prevention or
monitoring the course of a rehabilitation regimen.

It is known that central motor control of the peripheral
nervous system is critically responsive to muscle fatigue [16],
[17], [18]. Muscle fatigue is accompanied by changes in
muscle activation [19], conduction fiber velocities [20], [21],
varied cocontraction patterns [22] and likely modulation of
contralateral limb muscle activation either as a compensatory
mechanism or due to the neurophysiological and biochemical
interlinkage [23], [24], [25].

Surface electromyography (SEMG) has been historically
used for fatigue analysis to capture potential changes in
the exercised muscles. Although, SEMG has been seen as
an informative modality for fatigue assessment, there is an
extensive yet heterogeneous literature regarding the use of
SEMG for fatigue monitoring [26], [27] and it is known that
SEMG behavior is complex and often non-linear in response
to fatigue [28], [29], [30].

In this regard, it was classically suggested that changes in
motor unit recruitment and firing rate, caused by fatigue, can
be seen as a decrease in median frequency (MDF) of sSEMG
signals [31]. Also changes in magnitude activation, caused
by fatigue may be seen as an increase in root mean square
(RMS) of sEMG [32]. However, as mentioned earlier, due
to the complexity of the SEMG in response to fatigue [28],
the aforementioned observations are not always consistent.
The RMS has been shown to both increase and decrease in
response to fatigue during static and dynamic tasks [33], [20],
[34], [35], [36], [37]. Indeed the RMS behavior was shown to
vary depending on the fatiguing task protocol [38], [39]. The
response of the MDF also varies depending on the protocol,
with some studies reporting a decrease [20], [40], [41] and
others observing no change [42], [33], [43]. In addition to the
above, it can be mentioned that SEMG outcomes that focus
on a single muscle behavior may be overly simplistic because
fatigue-related changes are not only confined to the exercised
muscle due to its holistic and systematic effect [7], [44].

As a result of the above-mentioned complexity of SEMG
response to fatigue and inconsistency in the corresponding lit-
erature, more advanced modeling and analysis have been con-
sidered in the literature in order to explain, predict, or model
fatigue [45], [46], [47], [48]. For example, muscle synergies
have been discussed in the context of fatigue [49], [50], [51].
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Fig. 1.

Experimental Outline. a. Subjects performed 30s of sit-to-stand repetitions before and after a fatiguing task. The fatiguing task consisted of four sets

of resistance exercises with a leg press machine. b. Seven bipolar SEMG sensors were placed bilaterally on the anterior and posterior leg muscles. GMED
= Gluteus Medius, GMAX = Gluteus Maximus, BF = Biceps Femoris, GO = Gastrocnemius, RF = Rectus Femoris, VL = Vastus Lateralis, TA = Tibialis
Anterior. ¢. An exemplar SEMG recording from RF during the sit-to-stand pre-fatigue, fatiguing exercise and sit-to-stand post-fatigue. d. (i) Spearman power
correlation (p) is non-parametric and more robust than the parametric Pearson correlation () to outliers. The grey dashed line corresponds to the least

squares linear regression (which is skewed by the outliers, -2

= 0.22). (ii) p captures non-linear relationships such as an exponential function while the linear

Pearson correlation (7) cannot accurately measure the monotonic correlation. e. Subject-mean non-parametric muscle network. Spearman power correlation
(pay) was computed between all muscle pairs to generate the non-parametric muscle network. The heat map (left) illustrates the changes from before to after
for all network edges. The top 50% most changeable edges from before to after fatigue are shown in the network map (right). The width of the lines is
proportional to the pz, between that muscle pair and the size of the circles is proportional to the degree of that node (muscle). The mean network comparison

highlights the stronger connectivity trends before versus after fatigue.

However, the literature suggests that synergy-based patterns
are user-specific (depending on their recruitment history), and
thus it may not be used as a consistent modeling technique
for fatigue due to its high intersubject variabilities [52], [53],
[54], [55], [56]. Thus, although synergy-based analysis may
unfold some of the complexities in modeling fatigue, it may
not be used as a robust, reliable, and reproducible method to
monitor and model fatigue.

The above-mentioned discussion highlights the necessity
of designing a novel method that can potentially provide a
generalizable observation for a consistent group-level anal-

ysis besides individual-level monitoring as a trustworthy
“biomarker”. This motivates the current article, which pro-
poses the use of a novel analysis, i.e., non-parametric muscle
network.

In this regard, it should be noted that the discriminative
power of functional connectivity networks based on bio-
signals such as the electrohysterogram to distinguish physio-
logical states (not including fatigue) has been recently demon-
strated [57], [58]. In addition, the generic concept of functional
muscle connectivity network has attracted a great deal of
interest in the last five years as it can leverage full-spectrum
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synchronicity of muscle recruitment during functional tasks
[59], [60]. In this regard, it should be noted that muscle
networks reflect characteristics of both peripheral and central
nervous systems in conduction of functional tasks, as it can
quantify how the neural drive (generated by the central nervous
system) is propagated among various groups of muscles which
are recruited to conduct a functional task. This concept has
been recently investigated, using linear spectral coherence
analysis for non-fatiguing regular tasks, and shown high sen-
sitivity to subtle motor changes [59], [61], [62], motivating
the current study. Specifically, using intermuscular coherence,
it is shown that muscle networks have high responsiveness
to motor changes in the beta and gamma bands [59], [61]. It
should be noted that such a level of task sensitivity to changes
in motor tasks has not been reported before using muscle
synergy analysis (which utilizes mainly SEMG envelopes) or
other forms of conventional spectrotemporal metrics. To the
best of our knowledge, the response of muscle networks to
fatigue has not been evaluated in the literature.

It should also be noted that despite the aforementioned
strength of functional muscle network analysis, all existing
literature on functional muscle networks has been built based
on conventional intermuscular coherence analysis (as the main
processing method), which is a linear connectivity metric.
Recently, the change of coherence in response to fatigue
was found to be inconsistent across muscles [63], [64]. The
inconsistent response could be due to limitations of the linear
metric for capturing non-linear physiological changes.

Thus, in this paper, for the first time, we propose a non-
parametric and non-linear holistic analysis of muscle network
(designed to model monotonic but non-linear synchronicity
in the activations of muscles) with the goal of providing a
consistent understanding of the neurophysiological changes
caused by fatigue. This paper hypothesizes that physiological
fatigue can be readily quantified by a non-parametric form
of intermuscular connectivity (Fig. 1). Unlike conventional
connectivity metrics which are linear, such as Pearson’s cor-
relation or coherence, a non-parametric technique can detect
more complex changes in the distributed peripheral nervous
activities and is hence proposed in this work (Fig. 1d).

It should be noted that the protocol in this study quantifies
non-parametric functional muscle network changes in a sit-
to-stand task following a fatiguing leg press task. The leg
press exercise would mostly fatigue muscles which control
knee extension, including quadriceps muscles such as rectus
femoris (RF) and vastus lateralis (VL) [65], [66]. Therefore,
we further hypothesize that the greatest changes in the non-
parametric muscle network will be noted in the RF and VL
nodes of the network during the sit-to-stand task. The choice
of the sit-to-stand task is supported by previous works, which
have shown this task to be a useful test of composite lower
extremity muscle strength [67], [68] in which knee extension is
an important component [69], [70]. Sit-to-stand has also been
utilized in clinical settings [71], [72], [73], and hence results
from this work could potentially be applied to identifying
fatigue during rehabilitation programs.

Given the uncovered potential of the non-parametric muscle
network to measure variation in motor control after fatigue,

metrics which quantify the network characteristics are utilized
to analyze the consistency of network changes among 13
subjects. In this regard, the network’s functional integration
and segregation are considered as core characteristics which
can evaluate changes in the collective neural drive due to
fatigue, and are quantified using global efficiency (GE), de-
gree and weighted clustering coefficient (WCC) respectively
(definitions of GE, degree, and WCC can be found in [74],
[75D.

In this paper, we investigated the effect of targeted fa-
tigue on the non-parametric synchronicity between lower limb
muscles. Lower extremity sSEMG was assessed in thirteen
asymptomatic volunteers during 30s of a sit-to-stand task,
performed before and after completing a fatiguing task. Sepa-
rately, the protocol was repeated with an age/gender-matched
control group of thirteen asymptomatic participants, but the
fatiguing task was removed (in order to isolate the effect
of fatigue). With fatigue, the non-parametric muscle network
demonstrated a consistent decrease in graph-based metrics (in
particular, network degree, WCC, and global efficiency) at
the group and individual subject levels. Without fatigue, the
results of the control group showed an absence of consistent
network changes between trials of sit-to-stand. The control
group results highlighted the reliability of the proposed muscle
network metrics and isolated the effect of fatigue observed in
the intervention group. The results suggest that the proposed
non-parametric muscle network can be an effective and robust
biomarker of fatigue.

II. METHODS
A. Fatigue Intervention

Thirteen asymptomatic subjects (seven females, six males)
with an age of 26.0 £ 3.7 (mean * standard deviation (SD))
years and a BMI of 22.7 + 3.2 (mean * SD) kg.m? participated
in the fatigue intervention study. The institutional review board
of New York University approved the study (IRB-FY2019-
3039), and subjects provided their written consent after they
received the study description. Following the institutional
review board approval, individuals between 18-50 years old
who had no pain at the time of the study were recruited. Note
that the actual age range of recruited subjects was 19-32 years.
Individuals who were bedridden for more than three days, had
major surgery within the last 12 weeks, had been diagnosed
with cancer in the last six months, or had any conditions
related to sensory or musculoskeletal dysfunction were not
recruited. If a subject was physically unable to complete the
protocol on the day of the experiment, they were excluded.

1) Experimental Procedure: Subjects performed a sit-to-
stand task before and after sub-maximal fatigue was induced
by a single-session of moderate intensity resistance exercise
(Fig. 1a). The 30 second sit-to-stand task involved repeatedly
standing up from a seated position in a chair, for 30 seconds
[76], [77]. Next, one repetition maximum (1RM) was deter-
mined for the unilateral leg press. Subjects then performed four
sets at 50% of the 1RM on their right side, with a target of 30
repetitions in the first set and a target of 15 repetitions for the
last three sets to induce sub-maximal fatigue [78], [79]. The
last set was specifically performed to failure, defined as the
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TABLE 1

LEG PRESS INFORMATION OF SUBJECTS
Subject Set# 1 Set#2 Set#3 Set#4 Load (Ibs)
1 30 15 12 11 20
2 30 15 15 15 100
3 30 15 15 15 100
4 30 15 15 15 30
5 30 15 12 12 100
6 27 12 9 7 15
7 30 15 10 7 100
8 13 12 10 8 40
9 30 15 15 15 20
10 24 15 10 9 100
11 25 15 11 14 60
12 30 15 15 15 45
13 30 15 15 15 30
mean 27.62 14.54 12.62 12.1 58.46
SD 4.87 1.13 243 3.34 36.08

inability to complete a repetition while maintaining cadence
and form. The load with which the leg press was performed
in addition to the mean and SD number of repetitions for
each set are shown in Table I. Subjects were given a fixed
recovery time (30 seconds) between sets. All participants
reported an RPE (Rate of Perceived Exertion) of 18 at the final
repetition. Ninety seconds after completing the last repetition
of the leg press, subjects performed the post-fatigue sit-to-
stand task. Subjects were instructed to complete the sit-to-
stand at a natural rate and the number of repetitions was
recorded. As illustrated in Table II, the number of repetitions
was comparable before and after fatigue, for all subjects.

sEMG signals were recorded from fourteen sensors (Fig.
1b), using the wireless Trigno sEMG system (Delsys Inc.,
Natick, MA), with a sampling frequency of 1259 Hz and a
built-in 20 Hz high-pass filter. Fourteen bipolar Trigno Avanti
sensors were used bilaterally for (i) Rectus Femoris (RF), (ii)
Vastus Lateralis (VL), (iii) Tibialis Anterior (TA), (iv) Gluteus
Medius (GMED), (v) Gluteus Maximus (GMAX), (vi) Biceps
Femoris (BF) and (vii) Gastrocnemius (GO). The skin surface
was thoroughly wiped prior to sensor placement. Sensors were
placed parallel to the direction of the muscles. Following the
recording, signals were pre-processed using MATLAB R2020b
(MathWorks Inc., Natick, MA). The first and last one second
of all trials were clipped out.

2) Non-parametric Muscle Network: A zero-phase Butter-
worth low pass filter was applied at 50 Hz, such that the
resultant SEMG signals were in the 20-50 Hz range. This
range was chosen since recent work has shown that humans
reorganize coherence-based muscle networks across limbs in
the beta-to-gamma bands [59]. Spearman power correlation
networks were constructed for before and after fatigue since
it is robust to outliers and can capture non-linear monotonic
relationships (Fig. 1d).

Spearman power correlation (pg,) between two SEMG
signals z(t) and y(t) was computed. The power time series
x2(t),y%(t) were first calculated and then each power time
series was rank transformed. For example, an SEMG signal
with n samples will have its power values replaced by ranks
from 1 to n, in ascending order - the maximum power value
will be assigned the rank n. The power time series z2(¢) and
y*(t) were rank transformed to p,(t) and p,(t) respectively,
and the respective means p, and p,, across the n samples were

TABLE II
SIT-TO-STAND REPETITIONS, BEFORE AND AFTER FATIGUE
Subject Before After

1 22 20
2 21 24
3 11 11
4 10 11

5 29 32
6 7 7

7 10 12
8 8 7

9 10 11
10 15 21
11 8 8

12 10 8

13 7 8
mean 12.92 13.85
SD 6.87 7.88

calculated. p,, is computed according to:

_ Z?:l(pm (t) — ﬁz)(py (t) B ﬁy)
V2t (1) = P2)? 220, (py (1) — By)?
For the muscle network, the magnitude |p,,| was computed

between each sensor pair, across the sit-to-stand trial duration.

When using the magnitude |p,|, the monotonic negative

correlation between 22(t) and y?(t) of —p,, is interpreted as

having equivalent non-parametric connectivity to the mono-
tonic positive correlation of p,,. Each node in the network
represents a muscle, and the width of each line illustrates |pg,|.

The degree of each node, D;, is the average of all edges
connected to the node. If the muscle network is represented
by adjacency matrix A, D; is defined as:

1 N

D; = (ﬁ) 2 Ay @
Jj=1,5#i

where IV is the number of nodes and A;; represents the edge

that connects nodes ¢ and j. Mean network degree, is the mean

of all nodes’ degrees:

Pzy ey

1 &
D:N;Di 3)

A node’s weighted clustering coefficient (WCC;) gives
a relative measure of how well node ¢ is connected to its
neighbors (A;;, A;;) while also accounting for the neigbors’
interconnection (A;x). A node’s clustering coefficient (C'C;)
can be considered the sum of the triangles (Zi t;) connected
to node ¢, normalized by the maximum possible value [80].

221‘ 2
(N-1)(N-2)
Each triangle’s value will be the product of the three edges,
t; = A;;AirAj,. The weighted adjacency matrix A is
scaled by the maximum connection in the network, hence
A;j = A;j/maz(A). The node’s weighted clustering coef-
ficient WCC; is then defined as:

2 e ~ ~
J.k

CC; = “)

wWCC; =

A node which has (i) 0 connectivity to its neighbors or (ii)
has neighbors whose interconnections are all 0 will have
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WCC; = 0, while a node which is (i) maximally connected to
its neighbors and (ii) has neighbors whose interconnections are
all maximal has WCC; = 1. Note that the value of WCC;
is more dependent on node ¢’s connections to its neighbors
(flij,fiik terms) rather than the neighbors’ interconnections
(fijk term). Mean network WCC, is the mean of all nodes’
WCCs:

N
—_ 1
WCC =+ ; wWCo, (6)

Global efficiency is directly proportional to how well the
network is connected overall. The efficiency (£) of a network
is defined as:

1 1
E=—r——> —. (7)
N(N -1 L;;
where L;; is the shortest path between nodes i and j [74],
[81]. The efficiency (E) is normalized by the ideal efficiency
(FE;q) to give the global efficiency, GE:

E
Eiq’

which is bounded between 0 and 1. A network with perfect
connectivity will have GE = 1, while one with no connectivity
will have GE = 0.

3) Fatigue Propagation in Muscle Network: The contribu-
tions from each effect of fatigue to the overall change in |p,|
were quantified. The mean |pg,| for a sub-network within
each subject’s fourteen-muscle network was computed, and
the bar plot illustrates the median across subjects (Fig. 5).
The overall effect of fatigue is defined as the change in the
mean |pg,| across the fourteen-muscle network (All-All). The
primary effect type 1 is defined as the change in the |pgy|
between RF and VL on the fatigue-targeted side (RF-VL).
The primary effect type 2 is defined as the change in the mean
of 13 |pgy| values between each fatigue-targeted muscle and
other muscles (RF-All and VL-All). The secondary effect is
defined as the change in the mean |p,,| across the twelve-
muscle network without the fatigue-targeted muscles (All-All
without RF and VL).

4) Conventional Spectrotemporal Measurements: To com-
pare the proposed network results to the existing attempted
biomarker methods, RMS, power spectral density (PSD) and
median frequency (MDF) were computed for particular mus-
cles. All measurements were calculated by considering the full
trial duration, before and after fatigue, for each subject. For the
calculation of RMS, PSD and MDF, the full sSEMG bandwidth
(20-200 Hz) was considered to minimize contamination of
the SEMG signals by movement artifacts and analyze the
most significant portion of the signals’ power spectrum [82],
[83], [84], [85]. The signal was band-pass filtered between
20 and 200 Hz with a zero-phase 4th order Butterworth
filter in addition to applying zero-phase 4th order Butterworth
notch filters (half-width = 2.5 Hz) at multiples of 60 Hz. For
the purpose of RMS calculation, each trial’s signal envelope
(the magnitude of the Hilbert transform) was normalized.
Normalization was performed because it reduces inter/intra-
individual variability of the sSEMG amplitude values based

GE = ®)

TABLE III
CONTROL GROUP: SIT-TO-STAND REPETITIONS
Subject Trial 1  Trial 2

14 12 13
15 15 17
16 10 9

17 8 9

18 11 11
19 21 19
20 10 10
21 8 9
22 19 17
23 8 9
24 25 24
25 8 11
26 12 13
Mean 12.85 13.15
Std 5.57 4.74

on recommendations from the literature [86], [87], [88], [89],
[90]. For each muscle, the envelopes from all subject trials
were concatenated before computing the ensemble mean. After
dividing the trial envelope by the corresponding ensemble
mean and thus normalizing with a method appropriate for the
isotonic sit-to-stand task [91], [92], the normalized RMS was
computed across the trial duration. The filtered signal without
any normalization was used for PSD and MDF calculations. In
the case of PSD, the median PSD in the 20-200 Hz range was
used. The MDF is defined as that frequency which divides the
area under the power spectrum density curve in two, hence
it indicates the power spectrum shape while the median PSD
indicates the overall magnitude. In Fig. 2b, the mean for each
of RMS (mean(RMS)), median PSD (mean(median PSD)), and
MDF (mean(MDF)) was computed across fourteen muscles.

B. Control Group: Without Fatigue Intervention

The effect of the presence or absence of fatigue on changes
in the non-parametric muscle network was investigated by re-
peating the protocol without the fatigue intervention. Thirteen
control subjects (seven females, six males) with an age of
25.9 + 4.3 (mean + SD) years and a BMI of 22.9 + 2.7 (mean
+ SD) kg.m? participated in the without-fatigue study. The
institutional review board of New York University approved
the study (IRB-FY2022-5888), and the inclusion/exclusion
criteria matched those of the fatigue intervention study. The
protocol, including time between tasks and task duration, was
matched with the protocol of the fatigue intervention study, but
the fatiguing task was removed. Subjects performed two 30-
second trials of sit-to-stand separated by a rest interval while
SEMG signals were recorded. The number of repetitions for
each trial is shown in Table III.

C. Statistical Analysis

To evaluate the statistical trends observed in absolute power
correlation muscle networks, (i) group-level, (ii) individual
subject and (iii) particular node analyses were conducted. In
all cases, connectivity (|pIy|) was evaulated at each of the
fourteen nodes. Group level analysis examines the change
in mean degree, mean WCC and global efficiency distribu-
tions (Figs. 2a, 7) across all subjects (n = 13). Individual
level analysis examines the change in each subject’s network,
specifically the degree of all nodes and global efficiency (Figs.
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Fig. 2. Statistical analysis for all subjects. The effect was investigated by

testing for statistical significance between the metrics’ distributions before
and after fatigue using the Wilcoxon signed-rank test. a. Mean degree, mean
WCC and global efficiency are compared from before to after fatigue (n = 13
subjects). For all network metrics, the null hypothesis that the distributions are
similar was rejected at the 0.05 significance level (mean degree, mean WCC
and global efficiency: p < 0.001.) b. For each of mean(RMS), mean(median
PSD), and mean(MDF), the Wilcoxon signed-rank test failed to reject the null
hypothesis (mean(RMS), mean(median PSD) and mean(MDF): p > 0.215).

3, 8). When considering the connectivity statistics of particular
nodes (Fig. 4), the node’s absolute power correlations for all
subjects are included (n = 13). Similarly, when considering
the spectrotemporal measurements (e.g. RMS in (Fig. 6)), a
given muscle’s value for all subjects (n = 13) is used for the
statistical analysis.

The Kolmogorov-Smirnov test for normality rejected the
normal distribution hypothesis for the absolute Spearman
power correlation distributions (Figs. 2a, 4, 7). The Wilcoxon
signed-rank test was used to test statistical significance, with
the significance level @ = 0.05. For the sake of even com-
parison, the Wilcoxon signed-rank test was also utilized for
measuring the significance of spectrotemporal measurement
distributions (Fig. 6) and the response of the muscle network
without fatigue (Figs. 7 and 8).

III. RESULTS
A. Response of Muscle Network to Fatigue

1) Group Analysis of Non-parametric Muscle Network:
The group-level results from the sit-to-stand task show a strong
trend of decreasing lower limb network connectivity after
fatigue. The subject-mean network (i.e., the mean network
calculated by the average of each pairwise connection across
all subjects) in both heat map and network map forms indicate
this decreasing connectivity (Fig. 1e). To confirm these trends,
graph theory metrics of connectivity (degree, WCC and global
efficiency) were evaluated. Group-level statistical analysis of
all subjects’ network metrics confirms that non-parametric in-
termuscular connectivity significantly decreases from before to
after fatigue (Fig. 2a). All network metrics were significantly
higher before the fatiguing exercise than after (mean degree,

mean WCC and global efficiency: p < 0.001). These results
illustrate that the non-parametric muscle network can detect
the effect of fatigue at the group level.

The effect of decreasing connectivity with fatigue appears to
be most pronounced in quadriceps muscles (Fig 1e). We note
the decrease in the size of the nodes (proportional to degree of
the node) for the two quadricep muscles, i.e. RF and VL, in
a bilateral manner. Looking at the heat maps, it appears that
for the ipsilateral RF-VL connection on both sides, there is a
marked decrease from before to after fatigue (Fig le). High
connectivity was observed for contralateral muscle pairs, for
example left RF with right RF, left VL with right VL. These
two connections also appear to show a decrease after fatigue.
The contralateral effect (for further detail see Discussion
section, paragraph 5) highlights the possible systematic effect
of fatigue on neural aspects of motor control.

In contrast to the overall network metrics, the mean of each
spectrotemporal metric did not show a significant response
to the effect of fatigue (Fig. 2b). For each of mean(RMS),
mean(median PSD), and mean(MDF), the Wilcoxon signed-
rank test failed to reject the null hypothesis (mean(RMS),
mean(median PSD) and mean(MDF): p > 0.215).

2) Individual Analysis of Non-parametric Muscle Network:
Non-parametric muscle network analysis was undertaken for
each subject to explore the possibility of between-subject
variability in pattern and extent of connectivity. All thirteen
subjects showed a pattern of decreasing connectivity after
fatigue, with a decrease in both degree and global efficiency
(Fig. 3). The percentage change in global efficiency from
before to after fatigue was calculated for each subject, and
the mean percentage change across subjects was a decrease of
30% * 14.6% (mean + SD). This subject-specific result fur-
ther emphasizes the robustness of the non-parametric muscle
network’s response to fatigue.

3) Nodewise Analysis of Non-parametric Muscle Network:
The non-parametric connectivity of all nodes (muscles) was
analyzed (Fig. 4) and all left and right-side muscles showed
a significant decrease in node degree from before to after
fatigue (p < 0.014). The decrease was most pronounced for
RF bilaterally, VL bilaterally and right BF (p < 0.001). This
demonstrates that not only does the overall network show a
significant decrease from before to after fatigue, individual
nodes also exhibit the connectivity decline. Moreover, the
blue hairlines show the individual subject changes and this
most strongly emphasizes the robustness of the result for RF
bilaterally, VL bilaterally and right BF since all subjects follow
the group trend of decreasing connectivity.

4) Fatigue Propagation in Muscle Network: Each of the
three effects of fatigue contributed to the overall decrease in
non-parametric connectivity (Fig. 5). Examining the change in
the median across subjects, it was observed that, interestingly,
all three effects showed a decrease which contributed to the
overall decline in non-parametric connectivity post-fatigue.

5) Nodewise Analysis of Spectrotemporal Measurements:
In contrast with the robust and consistent results obtained
for the non-parametric intermuscular coupling in response to
fatigue, classical SEMG-based spectrotemporal measurements
of fatigue showed inconsistent responses. The RMS, PSD
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Fig. 3. Non-parametric muscle network statistics for each subject, comparing before and after fatigue. The degree for all fourteen nodes form the distributions
and the blue hairlines depict the change in degree from before to after fatigue. The median degree and global efficiency (GE) decreased from before to after

fatigue for 13/13 subjects.

(median in 20-200 Hz range) and MDF for each muscle are
shown in Fig. 6. There was a significant pairwise change in
RMS and median PSD for left VL from before to after fatigue
(p = 0.041) although the respective medians were almost
equal. There was a significant post-fatigue increase in RMS,
median PSD, and MDF for right BF (p = 0.034) although for
each metric, the blue hairlines show that 2 or more subjects
decreased contrary to the group trend (Fig. 6). Overall, there
was a lack of a robust general trend across the subjects and
muscles for the spectrotemporal metrics in contrast to the non-
parametric muscle network results.

B. Response of Muscle Network Without Fatigue Intervention

1) Group Analysis of Non-parametric Muscle Network:
Group-level statistical analysis of all subjects’ network metrics
did not indicate a significant change in non-parametric connec-
tivity from Trial 1 to Trial 2 without the fatigue intervention
(Wilcoxon signed-rank test for mean degree, mean WCC and
global efficiency: p > 0.734, Fig. 7).

2) Individual Analysis of Non-parametric Muscle Network:
Non-parametric muscle network analysis was undertaken for
each subject to explore the possibility of between-subject
variability in pattern and extent of connectivity. Analysis of
the change in network metrics did not reveal either consistent
increase or decrease from Trial 1 to Trial 2 (Fig. 8). Seven
subjects increased while six subjects decreased their median
degree and global efficiency from Trial 1 to Trial 2. The
percentage change in global efficiency from Trial 1 to Trial
2 was calculated for each subject, and the mean percentage
change across subjects was a decrease of 0.35% + 5.4% (mean
+ SD).

IV.

The key findings of our study indicate that the non-
parametric muscle network is a statistically robust biomarker
of fatigue, since it efficiently delineated fatigue-related
changes at the group and individual levels. Moreover, key
muscles were shown to have a decrease in their degree for
all subjects, emphasizing the ability of the network to detect
degradation of the peripheral nervous system (PNS) response

DISCUSSION

to central nervous system (CNS) command after resistance-
training induced muscle fatigue. Additionally, conventional
methods (RMS, PSD and MDF) showed heterogeneous re-
sponses to fatigue, highlighting the relative strength of the
proposed method. The proposed method can be utilized in
rehabilitation settings involving assessment and intervention,
where sensitive and comprehensive quantification of fatigue is
needed.

As hypothesized, the non-parametric muscle network was
able to detect muscle fatigue. This is demonstrated by post-
fatigue decreases in network metrics at the group (Fig. 2a) and
individual (Fig. 3) levels. The absolute Spearman power cor-
relation detects fatigue-related decreases in the non-parametric
coupling between muscle activations (in power form), which
is illustrated by the median degree and global efficiency
declining for all subjects (Fig. 3). The ability of the proposed
biomarker to detect the effect of neurophysiological changes
associated with fatigue was indicated by, firstly, the consistent
response of network metrics across a subject pool with a wide
range of physical capabilities, and secondly, the failure of the
classical measures to show a consistent behavior for the same
pool of subjects in this study. The fatigue-related degradation
in the non-parametric intermuscular coupling was highlighted
in all seven muscles bilaterally (Fig. 4). In the control group,
we did not observe consistent differences between Trial 1 and
Trial 2 at the group (Fig. 7) or individual levels (Fig. 8).
This observation highlights the reliability of the method in the
absence of the intervention, as well as the sensitivity to fatigue
when comparing the control group results with the significant
change in response to the fatigue intervention. Indeed, the
mean change in the subjects’ global efficiency was ~ 0%
without fatigue versus a decrease of ~ 30% with fatigue.

A secondary hypothesis was that the non-parametric func-
tional muscle network could detect physiological muscle fa-
tigue most particularly in the quadriceps muscles, since they
serve as agonists in knee extension and are most active during
leg press and play a key role in the sit-to-stand task. Examining
the mean non-parametric muscle network in Fig. le showed
a visible decrease in ipsilateral RF-VL on the right side, and
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Fig. 4. Nodewise non-parametric connectivity statistics across all subjects, comparing before and after fatigue (n = 13). The blue lines show the change in
degree from before to after fatigue for each subject. For all fourteen muscles, the degree of all subjects decreased from pre to post-fatigue (Wilcoxon signed
rank test p < 0.014). The fatigue-induced decrease was most pronounced for RF bilaterally, VL bilaterally and right BF (p < 0.001 and 13/13 subjects

followed the group trend).
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Analysis of the contributions from each effect of fatigue to the overall decrease in |pgzy|. Each effect was estimated as the change in the mean

|pzy| across a sub-network within each subject’s fourteen-muscle network and the bars represent the median across subjects. All-All indicates the complete
fourteen-muscle network, and the change in the mean |pzy | measures the overall effect of fatigue. RF-VL indicates the single |pzy | between the two fatigue-
targeted muscles, and the change measures the primary effect type 1 of fatigue. RF-All and VL-All each indicate a sub-network composed of the thirteen
connections between the fatigue-targeted and other muscles, and the change in the mean |pz, | measures the primary effect type 2 of fatigue. All-All without
RF and VL indicates the twelve-muscle network without the fatigue-targeted muscles, and the change in the mean |pgy| measures the secondary effect of
fatigue. The primary and secondary effects indicated a decrease in non-parametric connectivity which contributed to the overall post-fatigue decline.

in contralateral RF-RF and VL-VL. Moreover, the hypothesis
was thoroughly validated in Fig. 4, where all subjects showed
a decrease in degree for RF and VL on the right side
(p < 0.001). The consistent decrease in degree for RF and VL
on the non-fatigued side (p < 0.001, 13/13 subjects) can be
explained by compensation of the contralateral knee extensors.

Additionally, the other ten muscles showed fatigue-related
network changes. This observation is despite the fact that
these muscles were not directly targeted by the fatiguing
task. The consistent decrease in BF on the fatigued side
(p < 0.001, 13/13 subjects) can be explained by fatigue
decreasing the knee flexor’s ability to control the descent of sit-
to-stand. The change in TA can be attributed to a compensatory
mechanism; since RF and VL were fatigued, TA (which
is active during sit-to-stand, Fig. 6) may need to provide
supplementary control, which could result in deviations from
the typical network. In addition, the GO muscle showed a
consistent decrease in degree after fatigue, for 12/13 subjects
(Fig. 4). An important component of the uniform change
in average GO connectivity is its non-parametric coupling
with GMAX and GMED. Indeed, both ipsilateral GO-GMED
and ipsilateral GO-GMAX decreased post-fatigue for 11/13
subjects on the fatigued side. These results indicate that non-
parametric synergistic proximal-distal coupling is diminished

after submaximal fatigue is induced in a leg press task. It
should be noted that fatigue has been previously shown to
effect lower limb joint coupling [93]; thus the reduced hip-
ankle muscular coupling here is perhaps indicative of a fatigue-
related decrease in the precision of lower limb motor control.

The response of the network indicates the suitability of
global analysis of the non-parametric network for detecting
fatigue. The consistent decrease in the non-parametric network
metrics across muscles is in contrast to recent works based on
linear network metrics [63], [64]. Complex, oscillator-based
models have been suggested for decoding neural synchroniza-
tion [94], and non-linear muscle networks have recently de-
coded the alterations in sensorimotor integration due to stroke
[95]. In this paper, the results indicate that non-linear and non-
parametric methods are suitable for detecting the neurophys-
iological phenomenon of fatigue. Macro-connectivity metrics
such as global efficiency measure functional integration [74],
[81]. Hence, the demonstrated sensitivity (Figs. 2, 3, 7, 8) of
such global metrics as biomarkers of fatigue can be explained
by the holistic changes observed throughout the network (Figs.
4,5).

The results support the notion that the disruption of motor
control induced by fatigue, can result in a systematic response
of the proposed non-parametric muscle network. The muscle
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Fig. 6. Nodewise spectrotemporal measurements statistical analysis. Dis-
tributions are constructed for each muscle using all subject values for that
measurement (n = 13). Blue hairlines show the individual subject changes.
a. The change in RMS on both left and right is analyzed, before and after
fatigue. Left VL (p = 0.04) and right BF (p = 0.027) each show a small
increase. b. Change in PSD (median in 20-200 Hz range), before and after
fatigue. Left VL (p = 0.033) and right BF (p = 0.002) show an increase.
c. Change in MDF, before and after fatigue. Right BF shows an increase
(p = 0.033).

network response is influenced by subtle functional motor
changes and the overall synchronicity of PNS with commands
from CNS. The decrease in the connectivity at the muscles
targeted by fatigue (shown for the first time in this paper as
the primary effect, Figs. 4, 5), can be potentially explained
as the reduction in the responsiveness of the fatigued muscles
to central commands. The decrease of the connectivity at the
other muscles not targeted by fatigue (shown for the first time
in this paper as the secondary effect, Figs. 4, 5) may be due to
an adaptation mechanism such as compensation or a mirrored
biomechanical response. Such an adaptation mechanism would
potentially mean that the CNS modulates the control of the
other muscles in a synergistically suboptimal and possibly less
coordinated manner to conduct the bilateral exercise of sit-
to-stand while compensating for the reduction of the natural
symmetric response of the fatigued muscles on one side.

It should be noted that the possibility of changes in con-
tralateral control due to fatigue has also been acknowledged in
the literature [24], [25], [96]. The fatigue-related decorrelation
of the muscle network at both contralateral and ipsilateral
levels shows a holistic propagation of synergistic decline at
different nodes of the network and the reflection of the decor-
relating suboptimal synergies between the two aforementioned
levels. As mentioned, this effect may also be caused by the
underlying biomechanical coupling or triggered compensatory
mechanisms.

In contrast to the consistent response from the non-
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Fig. 7.  Statistical analysis for all subjects, comparing the non-parametric

muscle network changes between two trials of sit-to-stand, in the absence of
fatigue. Mean degree, mean WCC and global efficiency are compared between
the trials (n = 13 subjects). For all network metrics, the null hypothesis
that the two trials have similar distributions was not rejected at the 0.05
significance level (Wilcoxon signed-rank test for mean degree, mean WCC
and global efficiency: p > 0.734.)

parametric muscle network, conventional spectrotemporal
methods (RMS, PSD and MDF) showed variable outcomes
following volitional submaximal fatigue induced in a leg press
task. Inconclusive changes were observed for the average
spectrotemporal measurements (Fig. 2b). Furthermore, incon-
sistent patterns of RMS, PSD and MDF were observed for
the selected muscles (Fig. 6). The RMS, median PSD, and
MDF did not show significant change after fatigue in the
targeted muscles (Fig. 6). Therefore, the decrease in network
metrics can be attributed to the overall decline in nonlinear
and nonparametric synergistic network synchronicity rather
than altered amplitude at targeted muscles. The increase in
RMS and PSD loosely corresponds to previous studies which
found that SEMG activation measurements (RMS) increase in
response to fatigue (please note that most existing literature
in this regard relates to aerobic fatigue). However, even the
aforementioned changes in spectrotemporal measurements do
not follow a consistent trend for all subjects. The heterogeneity
of the RMS, PSD and MDF results is highlighted by the blue
hairlines, which show some subjects showing an increased
metric for a given muscle, and other subjects showing no
change or even decrease. High inter-subject variability within
the results for the established spectrotemporal measurements
in response to fatigue tallies with the existing literature
[97] and emphasizes the significance of uncovering a robust
biomarker of fatigue.

Regarding the broader impact of this work, it can be men-
tioned that accurate detection of fatigue has strong applications
in physiological and rehabilitation settings. The method could
be broadly used in exercise sciences, for example measuring
individual muscle strength, or a muscle’s capacity to work
before degradation. Additionally, the muscle group’s capability
to function correctly in tandem could be monitored, since the
non-parametric muscle network identifies fatigue at both the
particular muscle and overall network levels. The sub-maximal
fatigue that was induced in the participants of this study is
also commonly experienced by patients during rehabilitation.
Accurate detection of sub-maximal fatigue could optimize
clinical rehabilitation programs for various conditions, such as
cardiovascular diseases [98], [99] and neuromuscular disorders
[100]. Objective quantification of fatigue would represent an
improvement on current practices of self-reporting fatigue in
current clinical practice [101], where accurate fatigue-tracking
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Fig. 8. Non-parametric muscle network statistics for each subject, comparing two trials of sit-to-stand, in the absence of fatigue. The degree for all fourteen
nodes form the distributions and the blue hairlines depict the change in degree between the trials. Seven subjects increased while six subjects decreased their
median degree and global efficiency from Trial 1 to Trial 2. The percentage change in global efficiency (GE) from Trial 1 to Trial 2 was calculated for each
subject, and the mean percentage change across subjects was a decrease of 0.35% + 5.4% (mean + SD).

could help fatigue management during recovery from condi-
tions such as cancer [102] and other functional motor disorders
[103]. The proposed biomarker can help guide rehabilitation
from the mentioned disorders, as well as other serious prob-
lems which lead to weaker muscles, such as a joint injury
or stroke. Accurate monitoring of fatigue could help such
patients and therapists to determine when the exercise limit
has been reached, and prevent injury potentially caused by
continuing. A further rehabilitation application of this method
lies in augmented sEMG control of assistive devices. It is
known that SEMG signal characteristics change in response to
fatigue, and this transformation can affect SEMG-based control
of prosthetics and assistive exoskeletons [104]. A precise
quantification of fatigue can help such systems to accurately
compensate for its effects and maintain their function.

The study is limited by (a) the number of subjects, and
(b) not controlling for the variation in ability among the
participants. The network biomarker of fatigue was evaluated
with 26 subjects, 13 with and 13 without a fatigue intervention.
The study did not exclude subjects based on their physical
attributes or level of activity. This is done so that the results of
the study would be more applicable to the general population.
Hence some variations can be expected in physical capabilities
across subjects. The future line of research will include a
focused analysis of athletic subjects with comparable muscle
composition.

V. CONCLUSION

In this paper, a new modeling technique for decoding the
nonlinear synergistic distribution of neural drive at the periph-
eral nervous system is proposed, namely the non-parametric
functional muscle network, and the corresponding efficacy is
analyzed as a biomarker of muscle fatigue. Data from 26
subjects (13 in the fatigue intervention group and 13 in the
control group) showed that the proposed biomarker could
significantly detect fatigue-related decorrelation of the muscle
network at the subject level, group level, and node/muscle
level. The strong performance of the proposed non-parametric
muscle network is accentuated by the observed heterogeneous

and inconclusive response of the conventional spectrotemporal
measurements of SEMG for detecting fatigue. The proposed
fatigue quantification technique has a broad range of appli-
cations, most significantly in rehabilitation programs and for
motor assessment purposes. The authors would like to high-
light that the study was limited by (a) the size of the studied
groups of subjects and (b) not controlling for the physical
ability of the participants. Future studies would be needed to
better understand any compounding factor, such as athletic
status. It should be noted that the focus of this study is to
propose a new biomarker of fatigue, and the paper has shown
that the proposed method can have a superior performance,
specifically when classic methods (such as median frequency)
fail to detect fatigue consistently.
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