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Abstract— Going beyond the traditional sparse multi-
channel peripheral human-machine interface that has been
used widely in neurorobotics, high-density surface electromyog-
raphy (HD-sEMG) has shown significant potential for decoding
upper-limb motor control. We have recently proposed hetero-
geneous temporal dilation of LSTM in a deep neural network
architecture for a large number of gestures (>60), securing
spatial resolution and fast convergence. However, several fun-
damental questions remain unanswered. One problem targeted
explicitly in this paper is the issue of “electrode shift,” which
can happen specifically for high-density systems and during
doffing and donning the sensor grid. Another real-world prob-
lem is the question of transient versus plateau classification,
which connects to the temporal resolution of neural interfaces
and seamless control. In this paper, for the first time, we
implement gesture prediction on the transient phase of HD-
sEMG data while robustifying the human-machine interface
decoder to electrode shift. For this, we propose the concept
of deep data augmentation for transient HD-sEMG. We show
that without using the proposed augmentation, a slight shift
of 10mm may drop the decoder’s performance to as low
as 20%. Combining the proposed data augmentation with a
3D Convolutional Neural Network (CNN), we recovered the
performance to 84.6% while securing a high spatiotemporal
resolution, robustifying to the electrode shift, and getting closer
to large-scale adoption by the end-users, enhancing resiliency.

I. INTRODUCTION

In the last decade, thanks to significant technical and

technological developments, neural interfaces used in neu-

rorobotics have gone through major transformations, un-

leashing the potential for interfacing human cognition with

machine intelligence. Focusing on peripheral interfacing in

this paper, two major directions of research are (a) utilization

of dense and flexible electronics and (b) implementation of

deep biosignal processing, which can demystify the neural

code of motor intention to be used for the control of

neurorobots.
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The field has gone through a rapid progression after the

introduction of deep learning (DL), for example, [1]–[5].

Despite recent algorithmic progress, a major obstacle to real-

world implementation is the need for extensive recalibration

and the corresponding sensitivity of the trained model to var-

ious experimental conditions. Among the existing challenges

is the topic of electrode shift, which is significantly more

pronounced when signals are collected using miniaturized

and densely-located electrodes. Electrode shift can be the

result of doffing and donning the device, or it may happen

due to skin stretches during intensive tasks. It is known

that electrode shift would lead to degradation in model

accuracy [6]–[8]. In order to address the issue of electrode

displacement and misplacement, recalibration has been uti-

lized in practice. However, it is a time-consuming process,

complicated for non-expert users to conduct accurately, and

cannot address several issues such as skin stretch. This has

made the performance of such technologies limited and of-

ten increased the rejection rates of prosthetic systems. Thus,

it can be summarized that there is an unmet need for the

development of computational models and frameworks that

minimize the need for recalibration and can generalize the

performance over “possible electrode shift” configurations.

The challenge of the electrode shift has been discussed

in the literature for over a decade, initially on multi-

channel electrodes sparsely placed directly on the muscles of

interest. For example, the electrode shift issue has been dis-

cussed in the context of gesture and motion prediction using

traditional ML models, where manual feature engineering

was conducted to enhance the performance. In this regard,

Young et al. [9] proposed optimization of the electrode

configuration, achieving 78% accuracy on seven classes. In

addition, there exists some literature that suggests fixing the

problem by collecting a larger, more representative dataset.

Besides the concerns for generalizability and the limited

number of gestures that were detected using classic algo-

rithms, there are also concerns about the long data collection

processes, which can be arduous for the end-user [10]–[13].

To avoid this, more recently, Ameri et al. [14] proposed the

use of transfer learning for sparse multi-channel recording

to minimize the amount of new data that is needed each

time the user doffs/dons the device, allowing for a faster

recalibration process. While the proposed transfer learning

is an effective later-stage processing step, the compounded

performance would be limited by the functionality of the
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initial phase of processing. It should also be noted that

in most of these examples since the channels are treated

independently, the spatial relationship between the channels

is not fully exploited. This can be another limiting factor

in considering electrode shift, which is inherently a spatial

problem.

Fig. 1 shows an example of high-density sEMG (HD-

sEMG), which has significantly boosted the information rate

captured from one muscle. HD-sEMG enables decompo-

sition of the collected dense signal space into spike train

activities deriving motor units in the muscles [15]. More

recently, HD-sEMG has been used as a direct input into

deep neural network models to decode the motor intention

of the user with high spatiotemporal resolution [1]. In [1],

we have recently proposed a novel deep recurrent neural

network, one of the very first deep neural networks on

transient-phase high-density EMG data, that can map the

dynamic phase of high-density recording captured using 128

channels from the upper limb (64 flexors and 64 extensors),

into a prediction of over 60 classes of gestures. Utilizing the

new concept of temporal dilation of LSTM, the proposed

algorithm was able to make the convergence of the network

20 times faster when compared with conventional networks

while providing high accuracy and sensitivity. In addition,

our previous work showed that the transient phase of sEMG

(which is classically discarded for ML-based processing)

indeed has enough information to be used for augmenting

the temporal resolution of human-machine interfaces. We

also showed that the high-density information context sig-

nificantly boosted the power of such machines so that the

model could achieve over 80% performance for 65 gestures.

The problem of electrode shift is significantly more pro-

nounced for high-density recording of surface electromyog-

raphy due to the size of the electrodes and since some exist-

ing computational models may depend on the corresponding

contextual meaning of electrode locations. This issue is

discussed in [16], which sheds light on the effect of electrode

shift for decoding muscle synergies. The authors of [16]

showed that when electrodes are shifted, it would require

a new model for synergy estimation, which emphasizes the

sensitivity of the problem to small electrode shifts and the

existing central question regarding the generalizability of

such models to various configurations.

In addition to the literature regarding the effect of elec-

trode shift on decomposition and synergy, there exists some

work showing the degradation of HD-sEMG-based decoders

in the presence of small shifts of the sensor grid when

using ML for gesture classification. Some have used classic

ML algorithms and manual feature engineering. In this

regard, Stango et al. [17] used spatial correlation features

fed into Support Vector Machines, achieving 80% accuracy

on 9 classes. Pan et al. [18] used Common Spacial Pattern

features with LDA classifiers, achieving 80% accuracy on

11 classes. Also, He & Zhu [19] used Fourier domain

Fig. 1: Two wireless OT Bioelettronica high-density sEMG 8×8
grids attached to the extensors (top) and flexors (bottom) of the
forearm for gesture prediction.

features, achieving 85% accuracy on 11 classes. Also,

Lv et al. [20] proposes memory-free autoencoder design

of multilayer perceptron, achieving 90% accuracy for 10

classes. In the mentioned examples, the cost to address

electrode shift was the lower number of degrees of freedom,

limiting the versatility of the human-robot interface. [17]–

[21]. However, these simplifications defeat the very purpose

of neural interfaces, i.e., dexterity in predicting human motor

intention.

In addition to the above, it can be mentioned that the

existing literature mainly focuses on the plateau phase of the

sEMG signals. However, a hand gesture involves a dynamic

transient phase, which represents the dynamical recruitment

of motor units in the first part of the task and contains critical

temporal information. However, in the literature, this part of

data is often discarded due to the complexity of modeling.

Thus, it can be mentioned that gesture prediction from

the transient phase is an under-explored area of research.

Addressing this would allow for detecting the motor intent

at the very beginning of the muscle contraction and when the

signals are not stabilized. Such an approach would enable

faster response and better real-time control. Thus, detecting

abrupt transient phases of actions and translating that into

motor intention is of high importance.

In this paper, for the first time, we address the problem of

electrode shift for decoding the transient HD-sEMG while

securing a large number of gesture classes. We showed

that the performance of DL models could drop significantly

(from %80 to %20) by a slight electrode shift. The specific

augmentation proposed in this paper targets this issue while

not requiring extra data collection. Utilizing a 3D CNN

architecture, the proposed approach can robustly predict the

gestures based on the transient HD-sEMG.

II. MATERIAL AND METHODS

A. Data Acquisition

In this paper, we used a high-density HD-sEMG database,

available online [22], to allow benchmarking the proposed

technique. The dataset contains 65 isometric hand gestures

with different degrees of freedom (DoFs), including six 1-

DoF finger and wrist gestures, forty-one 2-DoF compound

gestures of fingers and wrist, and eight multi-DoF gestures

of grasping, pointing, and pinching. Fig. 2 shows examples

of these gestures: at rest, 1-Dof little finger bend, 1-Dof

ring finger bend, and the 2-Dof combination of these two

finger-bends. The HD-sEMG signals were recorded using
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Fig. 2: Examples of four gestures. (a) At rest; (b) Gesture 1: little
finger bend; (c) Gesture 3: ring finger bend; (d) 2-Dof, Gesture 17:
combining little finger and ring finger bend.

a Quattrocento (OT Bioelettronica) biomedical amplifier

system through two pads of 8×8 electrode grids (for a total

of 128 channels) with a 10mm inter-electrode distance. As

an example, a high-density sEMG system is depicted in

Fig. 1 to highlight the electrode locations. The signals

are collected at a sampling rate of 2048 Hz. This system

allows for collecting dense biosignal space with information

in both space and time. The two electrode grids are placed

on both sides of the forearm, namely the dorsal (outer

extensor muscles) and the volar (inner flexor muscles) of the

upper forearm. In order to reduce common-mode noise, the

recording was performed in a differential manner, where the

signal of channel i in the final output signal is the difference

between electrode i + 1 and i in the original collection.

Twenty healthy adults, fourteen males and six females, with

an age range between 25 and 57 years old, provided the

data for collection. In this paper, we only used data from

19 subjects because data from subject 5 is unavailable. Each

subject was asked to perform the gestures for five repetitions

before switching to the next one. Each of those repetitions

would last for 5 seconds, followed by an equal-duration

interval of rest. In this way, the muscles get less influenced

by fatigue and therefore provide more consistent data.

Some examples of muscle-activity heatmaps are shown in

Fig. 3 for the best-performing subject to make the readers

familiar with the heatmap representation of HD-sEMG. In

this figure, due to the space constraints, we only show 16

out of the 65 gestures from the extensors and flexors grids,

thus, a total of 32 heatmaps.

Forces measured at each finger and the wrist are included

in the dataset to provide the labeling mechanism for cutting

the transient and plateau phases of the data. The plateau

phase is once the gesture has reached its final steady state,

and the transient phase is the movement of the from rest to

the begining of the steady state, as can be seen in Fig. 5.

B. Data Preprocessing

As mentioned before, in this paper, we compare the

performance of the proposed model on the transient phase

with that of the model on the plateau phase. In this paper,

we define these phases by averaging the force signal of

each gesture (see Fig. 5). From this, we chose the first

Fig. 3: 32 muscle-activity heatmaps associated with 16 1-DoF
movements from the best-performing subject (#17). Each gesture
has two heatmaps (forearm extensor and flexor). Each heatmap is
an 8×8 grid, consisting 64 electrodes.

0.5 seconds of data as the most dynamic portion of the

sEMG time series, which encodes the transient phase. Force

signals are shown in Fig. 5 for the same gestures shown

in Fig. 2 (Movement 1: little finger bend, Movement 3:

ring finger bend, and Movement 17: little finger bend plus

ring finger bend.) The 0.5-second transient phase demar-

cation is shown with a dashed line. Force indices 0-8

denote measurements on the index finger, middle finger, ring

finger, little finger, thumb finger flexion/extension, thumb

finger abduction/adduction, wrist-flexion/extension, wrist-

pronation/supination, and wrist-radial/ulnar, respectively.

In this paper, in order to normalize the signal space of

HD-sEMG, we propose to use the μ-law transformation

after applying a Min-Max normalization on the signals.

μ-law transformation enhances the discriminability among

information channels and therefore helps the model capture

more information.

F (xt) = sign(xt)
ln(1 + μ|xt|)
ln(1 + μ)

. (1)

In (1), xt denotes each data scalar and μ is a hyperparameter

and selected to be 2048. Following the real-time implemen-

tation standards in myoelectric control, [23]–[27], we choose

to conduct our experiments using a sliding window size of

200ms with a step size of 10ms. On each timestamp, one

data point is generated, with the dimension of (sampling

rate×window size)×8×8×2, where 8×8 is the size of each

of the two grids. To help understand, Fig. 4 visualizes the

data collection and sliding window process.

C. Data Augmentation

In order to augment the input space without requiring

to collect a large data, instead of using the full set of

8×8 (which is the complete neurophysiological window for

each electrode grid), we use subsets of 6×6 (named as the

window of observation). This would leave out two extra

electrodes which can be leveraged for data augmentation.

In other words, the task will be to predict the gesture

based on the window of observation, which may shift

to right/left/top/down (or a dual combination) resembling

electrode shift and augmenting the input space, which will
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Fig. 4: Data acquisition and sliding window process.

(a)(a( ))

(b)(b(( )

(c)

Fig. 5: The corresponding forces of the same three gestures shown
in Fig. 2, on each repetition. The dashed lines indicate the end
(0.5 seconds) of transient phases. Line colors denote five different
repetitions. (a) Force by little finger flexing; (b) Force by ring
finger flexing; (c) Force by little finger and ring finger flexing.

force the neural network to learn the common underlying

patterns of information which can be decoded in all shifted

input space. In terms of the numbers, the aforementioned

techniques would result in multiple choices of 6×6 obser-

vations window of observation within the 8×8 neurophysi-

ological activation window. This data augmentation process

is visually show in Fig. 6. Thus, two alternative spatial shifts

can be considered, one includes only one-step shifting, and

one includes two-step shifting. In the experiments where we

use the one-step shifts, our dataset is multiplied by a factor

of 5 (one ’standard’ position of no shift + four ’one-step’

shifts including shift to the right, left, top and down). In

the experiments where we use both the one-step and two-

step shifts, our dataset is multiplied by a factor of 9 (one

‘standard’ position + four ‘one-step’ shifts + four ‘two-

step’ shifts).

Fig. 6: The heatmap with the 8×8 electrode grids. The black box
shows the ’standard’ position, the blue box shows a shift ’one-step
away’, and the dashed red line shows a shift ’two-step away’. The
corresponding heatmap of the boxes are shown on the right.

III. MODEL STRUCTURE

Motivated by the literature on deep video processing, we

considered the 2D signal at each timestamp as a frame of

a neurophysiological video capturing the 2D spatial dis-

tributed muscle activation over time. In addition to 3D CNN

we also tested the performance of 2D CNN deep neural

networks, and a hybrid solution (when adding recurrent

layers for their potential in modeling temporal dynamics).

This is to conduct a comprehensive comparative analysis

on the performance of the system taking into account

complexity and performance.

A. CNN-RNN Hybrid Models

Our 2D CNN-RNN hybrid model is depicted in Fig. 7a.

The concept is to assign spatial decoding to CNN and

temporal modeling to RNN. The CNN section is composed

of a series of Conv2D layers with 2×2 kernel size and Relu

activation function for nonlinearity, each with 8, 16, 32, 64

and 128 filters to gradually parse the images to a vector of

128 channels. It parses the (number of samples)×6×6×2-

sized input signal to a shape of (number of samples)×72.

Afterwards, it is fed into a 4-layer LSTM network with

128 hidden parameters and 400 LSTM nodes on each

layer. Finally, the output of the LSTM layers is fed into

3 fully-connected layers with 65 nodes in the last layer,

corresponding to the number of classes for the classification

task. We also train a 1D CNN-RNN hybrid model. For this,

instead of taking the 6×6 signal through a 2D CNN, the

signals are reshaped into a 36×1 vector and then considered

1D convolution.

B. 3D CNN Model

In the case of 3D CNN models, as shown in Fig. 7b, we

directly take the whole input data through several Conv3D

layers to let the models decompose spatial and temporal

information at the same time. This is critical to consider

spatial and temporal interactions between various segments

of the signal. In detail, the structure consists of 4 layers

of (100, 2, 2) kernel size, each with 8, 16, 32 and 64 filters,

followed by 1 layer of (4, 2, 2) kernel and 128 filters. Similar

to the 2D case, the output was flattened and fed into three

fully connected layers for classification.
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(a)( )

(b)

Fig. 7: (a) Hybrid model using a combination of 2D CNN and
multilayer LSTM; (b) Model using 3D CNN

IV. EXPERIMENTS AND RESULTS

A. Experiment Models

In this part,the accuracy of the three aforementioned

CNN models are compared using data with ’one-step away’

augmentation. The experiment was conducted using bothe

transient phase and stable phase data. In both cases, the 3D

CNN structure consistently resulted in best performance. As

the next step, the 3D CNN-based model was treined using

both ’1 step away’ and ’2 steps away’ augmentations. In

addition, the performance of a small experiment we call

’non-aug’ is represented, where the best performing model

was trained in the ’standard’ position and tested in one of the

’1 step away’ shifts to simulate the case of misplacement.

The experimental models and the corresponding model ID’s

are listed in table I. The model ID’s act as a reference

for a later box plot. The median model accuracy across all

experiment subjects of every experiment is listed in table II.

B. Results and Statistical Analysis

To evaluate the performances, k-fold (k=5) cross valida-

tion was utilized. For this, one of the five repetitions was

held out for testing and the rest was used for training.

Fig. 8 shows the box plots of the classification accuracy

of the aforementioned models using either the transient

phase signal or the stable phase signal. In the box plot, the

model ID corresponds to what is listed in table I, the black

horizontal lines indicate the medians, and the green triangles

indicate the means. In order to evaluate the significance of

effect from the proposed augmentation method, statistical

TABLE I: Model ID

Conv1d Conv2d Conv3d Conv3d 2step

Transient 1 2 3 4

Stable 5 6 7 8

TABLE II: Median model accuracy

Non-Aug Conv1D Conv2D Conv3D Conv3D 2step

Transient 18.54% 69.01% 67.89% 78.50% 80.22%

Stable 20.03% 73.61% 72.63% 84.60% 84.45%

analysis is performed on all the aforementioned models

across all 19 subjects. Model 1 did not pass the Shapiro

normality analysis. Thus, we performed Wilcoxon’s test

for analyizing the significance. Bonferroni correction was

applied to the observed p-values. The corrected p-value

ranges are denoted with markers at the top of Fig 8. The

marker symbols are defined as follows: (a) The ns marker

(for not significant) represents 0.05 to 1; (b) * represents

0.01 to 0.05; (c) ** represents 0.001 to 0.01; (d) ***

represents 0.0001 to 0.001; and (e) **** represents smaller

than 0.0001.

As can be seen in the results, the performance grad-

ually increases going from using 1D to 2D and to 3D

Convolutional architectures. Conv1D and Conv2D did not

show significant differences under both cases of transient

and stable signals. The Conv3D model achieved the highest

performance and significant gain compared to Conv1D and

2D. This can be due to the fact that Conv3D structure utilizes

the full spectrum of spatial and temporal content of the

signal. This can be particularly important when handling

electrode shift for the dynamic phase since the spatial

component is critical for handling the electrode shift, while

the temporal is critical during the dynamic phase. We also

observe that by adding data augmentations that are 2-steps

away from the ’standard position,’ the performance gained

slight improvement.

Fig. 8: Classification accuracy of the experiment models.
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V. CONCLUSION

In this paper, we have implemented a data augmentation

strategy to make the performance of HD-sEMG-based neural

interfaces robust to electrode shift, focusing on the transient

phase of the signal, which would also enhance the agility

of the system. Using 128 HD-sEMG channels with the

proposed data augmentation, a 3D CNN classifier was

trained, which achieved 84.6% accuracy on the transient

phase in the presence of synthetic electrode shift. The results

showed that without such augmentation, the performance of

the neural interface could significantly drop to as low as

20%.
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