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Prethermalization via self driving and external driving of extensive subsystems
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We investigate the nonequilibrium states of an interacting multicomponent quantum system when only an

extensive subsystem is quantum quenched or driven from the ground state. As a concrete example, we consider

a system where two XXZ spin chains are coupled to a transverse field Ising (TFI) chain, and only the transverse

field in the TFI chain is quantum quenched or periodically driven in time, starting from an initially ordered

state. This system is studied using density matrix renormalization group simulations and various entanglement

entropy diagnostics. In the case of quantum quenching, when the transverse field is suddenly switched on to

become the largest energy scale, the resulting internal dynamics leads to a prethermal steady state with persistent

oscillating magnetization (“self driving”) and emergent conservation laws. Upon applying the time-dependent

drive to the TFI chain (“external driving”), sufficiently fast drive gives rise to a prethermal steady state with

finite magnetization, whereas a slow drive generates a high-temperature disordered state. We briefly discuss the

experimental implementation of our protocol in organic materials with quantum-tunneling hydrogen atoms.

DOI: 10.1103/PhysRevB.106.174417

I. INTRODUCTION

Our ability to understand nonequilibrium quantum states

of interacting quantum matter would significantly expand

the scope of accessible quantum phases of condensed mat-

ter and cold atom systems [1–3]. Of particular interest are

the prethermal states that may persist for an exponentially

long period of time and arise as a consequence of emergent

quasiconservation laws. For example, in closed systems, the

Floquet-type (periodic in time) drive may, in general, heat up

the system to the infinite-temperature state [4–6]; however,

the integrable systems [7,8] and many-body localized (MBL)

systems [9–11] show prethermal steady states in accordance

with associated conserved quantities. Alternatively, quantum

quenching in certain systems may lead to quasiconserved

quantities, which can then give rise to long-lived prethermal

steady states. Yet, most of the previous studies are limited

to cases in which the entire system is quenched or driven

together (see, e.g., Refs. [2,12–15]). Many condensed matter

and cold atomic systems, however, consist of multiple degrees

of freedom, and different parts of the system may possess dis-

tinct natural time scales. In this setting, one may ask whether

quenching or driving only a subsystem would necessarily heat

up the entire system or whether there may be a different limit

in which nontrivial dynamic states can be realized. Moreover,

we may also ask how one could effectively characterize the
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nonequilibrium states in such subsystem-driven interacting

quantum systems.

In this paper, we consider an interacting spin model, where

two XXZ spin chains are coupled to a transverse field Ising

(TFI) spin chain and only the latter is quenched or driven by a

time-dependent transverse field; see the schematic illustration

in Fig. 1. This model is partially motivated by the theory

of organic materials in which layers of electronic degrees of

freedom are coupled via hydrogen bonds; quantum tunneling

between the bistable ground-state configurations of the hy-

drogen bonds can then be modeled by transverse field Ising

spins [16,17]. Using the density matrix renormalization group

(DMRG), we study both equilibrium and nonequilibrium sce-

narios in our model. First, we establish the equilibrium phase

diagram as a function of the time-independent transverse field

strength in the TFI chain and the exchange interaction scales

in the system. It is demonstrated that there exists a direct

transition from an ordered state (ordered in both the XXZ and

TFI subsystems) to a fully quantum disordered state, where

neither of the subsystems shows finite magnetization. We then

consider a quantum-quench protocol where a large transverse

field in the TFI chain is suddenly turned on, starting from an

ordered ground state. It is found that when the transverse field

becomes the largest intrinsic energy scale, the entire system

enters a prethermal state with oscillating magnetization in

both the XXZ and TFI chains. We explain this phenomenon

by constructing an effective Hamiltonian where emergent de-

coupling between the XXZ and TFI chains occurs and new

quasiconservation laws arise. Next, by imposing a periodic

drive on the transverse field in the TFI chain and starting from

an ordered ground state of the whole system, we investigate
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FIG. 1. Coupled three-chain model. (a) The top and bottom

chains (yellow sites) are XXZ models with exchange constants Jx and

Jz. The middle chain (blue sites) is a TFI chain with interaction J and

on-site time-dependent transverse field h(t ). The chains interact via

a term gσ z
i (σ z

i,t − σ z
i,b); see text for details. (b) Quench protocol with

a sudden onset of the transverse field. (c) Periodic driving protocol.

how the resulting nonequilibrium state evolves as a function of

the driving frequency. We demonstrate that the low- and high-

frequency drives of the TFI subsystem lead to very different

behaviors of the composite model. We show that if the drive

frequency is sufficiently large, the system may remain in a

long-lived, symmetry-broken prethermal regime and maintain

its finite magnetization. Remarkably, the polarizable environ-

ment of XXZ chains significantly enhances the stability of the

prethermal regime when compared with an isolated TFI chain.

II. MODEL

We investigate a model of three coupled spin chains that

consists of a transverse field Ising (TFI) chain at the center

and two XXZ spin chains at the top (t) and bottom (b) of the

system as illustrated in Fig. 1. The Hamiltonian of the full

system reads H = HTFI + HXXZ,t + HXXZ,b + Hint, where the

TFI and XXZ terms are given by

HTFI = J
∑

〈i, j〉

σ z
i σ z

j + h(t )
∑

i

σ x
i ,

HXXZ,α =
∑

〈i, j〉

Jx

(

σ x
i,ασ x

j,α + σ
y

i,ασ
y

j,α

)

+ Jzσ
z
i,ασ z

j,α. (1)

Here, 〈i, j〉 denote nearest-neighbor lattice sites i and j within

each chain, α = t, b discriminates the top and bottom chain,

and σ γ are the Pauli matrices with γ = x, y, z. The three

spin chains are locally coupled via an interaction term Hint =
g
∑

i σ
z
i (σ z

i,t − σ z
i,b

), which couples the local magnetization σ z
i

of the TFI chain to the local magnetization difference of the

two XXZ chains via the interaction constant g. In addition

to the symmetries corresponding to the U(1) rotation about

the z axis separately in the top and bottom chains, there

exists also a global Ising symmetry corresponding to σ z
i �→

−σ z
i , σ z

i,α �→ −σ z
i,α . Note that the top and bottom XXZ chains

do not interact directly. We fix J = 1, Jx = 1, and g = 0.5

and investigate the role of varying h(t ) and Jz in this paper.

Our rationale behind fixing J = 1 and Jx = 1 is to induce two

inherently different types of spin chains that nonetheless have

the same characteristic energy scale: Both the TFI chain and

the XXZ chains exhibit quantum phase transitions at h = 1

and Jz, respectively, between their ordered and disordered

phases. Similarly, choosing an interchain coupling of g = 0.5

ensures that the dominant energy scale is set by the interaction

FIG. 2. Quench dynamics after a sudden shift in the mag-

netic field from h = 0 to various values h = 2, 5, 15. Data shown

are for finite chain length L = 30 with periodic boundary condi-

tions, interaction Jz = 0, and maximum bond dimension χmax = 512.

(a) Evolution of the staggered magnetization in the XXZ subsystem.

The inset shows data for larger system size L = 100. The dashed

line depicts data for Jz = 0.5. (b) Staggered magnetization in the

TFI chain. The inset shows the short-time dynamics for h = 15.

(c) Conserved quantity χ yz in the TFI chain. (d) Bipartite entan-

glement entropy at the cut between the (top) XXZ chain and the

remainder of the system; these data are for L = 10 and χmax = 1024.

The inset illustrates the layout of the MPS using thick gray lines; the

bipartitioning cut is colored red.

within each individual chain; yet it remains non-negligible in

determining the qualitative behavior of the system. Such in-

termediate coupling strength is believed to be appropriate for

the modeling of hydrogen-bond-mediated exchange between

electronic degrees of freedom in organic materials [17]—a

class of materials that inspired our model Hamiltonian in

Eq. (1).

III. METHOD

Our calculations of the equilibrium ground state are

based on the density matrix renormalization group (DMRG)

method [18–20]. For this purpose, unless indicated otherwise,

the three-chain model is mapped onto a one-dimensional

matrix product state (MPS) by winding the MPS along the

first XXZ chain, then along the TFI chain, and finally along

the second XXZ chain [see inset of Fig. 2(d)]. To study

the quantum quench or periodic driving from the ground

states, we employ the time-dependent variational principle

(TDVP) [21]. For characterizing the entanglement between

different subsystems, in addition to more conventional
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measures, we calculate the “quantum disentanglement liquid”

(QDL) diagnostic [22–25]. The QDL diagnostic is designed

to extract an effective entanglement between two subsys-

tems of a tripartite system: We consider the whole system

as a union of three subsystems A, B, and C and project the

subsystem C into a given basis state, X ≡ {xc}, resulting in

a state |ψX
AB〉 ≡

⊗

c∈C〈xc|ψ〉. Then, the QDL diagnostic is

defined as SQDL ≡
∑

X pX SX
AB, where pX ≡ 〈ψX

AB|ψX
AB〉 and

SX
AB ≡ −Tr(ρX

A ln ρX
A ) is the entanglement entropy (EE) of the

reduced density matrix ρX
A ≡ TrB(|ψX

AB〉〈ψX
AB|). Consequently,

the QDL diagnostic reflects an effective entanglement be-

tween subsystems A and B, and as shown in Ref. [25] it also

bounds the conditional entanglement between the subsystems.

See Supplemental Material (SM) for further details on the

QDL diagnostic [26].

IV. GROUND-STATE PHASE DIAGRAM

We first carve out the ground-state phase diagram of the

three-chain model as a function of h ≡ h(t ) and Jz. We ob-

serve two possible ground-state phases of the three-chain

model. At small values for the transverse field h (< J ), or

large values of Jz (> Jx ), the ground state is a composite mag-

netic order where the global Ising symmetry is broken and all

three chains obtain a finite magnetization along the z axis. In

the opposite limit, i.e., h > J and Jz < Jx, the magnetization

vanishes across all three chains as they remain disordered;

note that in this parameter regime the chains would also

be disordered in the absence of any interchain interaction,

i.e., g = 0, where the XXZ (TFI) chains form a Luttinger

liquid (paramagnet) [27–30]. The detailed phase diagram is

discussed in the SM. We note that our ground-state phase

diagram has strong resemblance to that for models of organic

materials such as κ-H3(Cat-EDT-TTF)2 [16,17], whereby the

XXZ chains play the role of electronic spins, while the TFI

chain spins play the role of hydrogen atoms tunneling in a

double-well potential.

V. “SELF-DRIVEN” PRETHERMALIZATION

VIA QUANTUM QUENCHING

We imagine a scenario where we start from an ordered

ground state of the entire system at vanishing transverse

field in the TFI chain and then suddenly change the trans-

verse field to become finite—a so-called quantum quench

[schematically depicted in Fig. 1(c)]. In this setting we shall

investigate the time evolution of the magnetization in the

XXZ chains for various strengths of the transverse field.

While for small transverse field strength the time evolution

is expected to be chaotic and therefore difficult to predict

in detail, we are able to formulate an analytically reasoned

expectation for the case when the transverse field is much

larger than all other interaction scales in the system. For

our analysis we employ the following mapping [31,32]. Let

us write H = h
∑

i σ
x
i + V and utilize the interaction picture

with V treated as a perturbation to the transverse field term.

The interaction picture many-body wave function |ψ I (t )〉 is

given by i
d|ψ I (t )〉

dt
= V I (t )|ψ I (t )〉, where V I (t ) = U (t )VU (t )†

and U (t ) = exp(ith
∑

i σ
x
i ). As one may readily check, U (t +

2π/h) = U (t ), and thus V I (t ) is time periodic with fre-

quency ω ≡ T −1 = h/2π , despite H not having any such

periodicity. One can now borrow the results on prethermal-

ization in time-periodic systems [31–34] to understand the

behavior of |ψ I (t )〉. The essential point is that when h is

much larger than all other intrinsic energy scales in the prob-

lem, then for times that are exponential in h, the interaction

picture wave function |ψ I (t )〉 will evolve with an effec-

tive, time-independent Hamiltonian Veff = V I (t ) that equals

the time-averaged V I (t ). Explicitly, |ψ I (t )〉 = e−iVeff t |ψ I (0)〉.
One can then obtain the time dependence of any observable O

using the relation 〈O〉(t ) = 〈ψ I (t )|OI (t )|ψ I (t )〉. For our prob-

lem, we obtain Veff = HXXZ,t + HXXZ,b + J
2

∑

〈i, j〉(σ
y

i σ
y

j +
σ z

i σ z
j ). Remarkably, in this effective description, the three

chains decouple into three separate integrable systems, and

furthermore there now exists an emergent U(1) symmetry in

the TFI chain which corresponds to arbitrary rotations around

the x axis.

We are now equipped to calculate the local magnetization

in the (bottom) XXZ chain and in the TFI chain. We an-

ticipate a qualitative distinction between the XXZ and TFI

magnetizations: The local magnetization operator in the XXZ

chain σ
z,I
b

(t ) = Uσ z
b
U † = σ z

b
is independent of time since U

and σ z
b

commute, while for the TFI chain it is explicitly time

dependent, σ z,I (t ) = σ z cos(2ht ) + σ y sin(2ht ) (note that we

suppressed the site labels to improve readability). Therefore

the local magnetization in the XXZ chain 〈σ z
b
〉 is fully deter-

mined by the quench dynamics in an integrable XXZ chain

while in the TFI chain 〈σ z〉 will exhibit oscillations with

period T = π/h in addition to its behavior determined by

the TFI chain quench dynamics. As an example, we con-

sider the case Jz = 0. Using results from Ref. [35], one finds

〈σ z
b
〉(t ) ≈ cos(8Jxt − π/4)/

√
t for t < cL, where c is a con-

stant. For t > cL, the finite-size effects take over and lead to

oscillations whose time period is proportional to the finite-

size gap ∼8πJx/L. Indeed, in our numerical simulations we

observe systematic oscillations in the staggered magnetization

mXXZ
z ≡ 1

L

∑

i(−1)iσ z
i,t of the XXZ subsystem with period

T ≈ π/(4Jx ) [see Fig. 2(a)], which corresponds to L = 30.

Since oscillations are cut off by finite-size effects at time

O(L), we also studied much larger system size, L = 100, and

found agreement with the prediction that T ≈ π/(4Jx )—see

the inset of Fig. 2(a). The same inset also shows the effect of

including nonzero Jz = 0.5, in which case it is expected that

the magnetization decays exponentially, modulated with weak

oscillatory behavior [35], in line with our observation.

Turning next to the TFI chain, we find that the staggered

magnetization mTFI
z ≡ 1

L

∑

i(−1)iσ z
i oscillates with period

T = π/h in agreement with our prediction [Fig. 2(b)]. Two

additional predictions of the prethermal physics encapsulated

in Veff can be made: (i) The emergence of the conserved quan-

tities χ yz ≡ 1
L

∑

〈i, j〉(σ
y

i σ
y

j + σ z
i σ z

j ) and mTFI
x ≡ 1

L

∑

i σ
x
i and

(ii) the decoupling of the three chains. We have verified nu-

merically that the quantity χ yz remains constant after a quench

to strong transverse field h = 15, as depicted in Fig. 2(c).

Similarly, we also observe the conservation of mTFI
x (see SM).

To detect the decoupling of the three chains, we studied the

entanglement between the top XXZ chain and the remainder

of the system and find that it remains constant for sufficiently

strong transverse field; see Fig. 2(d). By symmetry, the entan-

glement between the bottom chain and the remainder of the
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system shows the same behavior, implying a decoupling of all

three chains.

VI. EXTENSIVE SUBSYSTEM DRIVE

We now consider a periodic steplike transverse field h(t )

akin to the driving protocol illustrated in Fig. 1(c). During

a single period T , we chose h(t ) = hmax for t < T/2 and

h(t ) = 0 for T/2 < t < T . A translationally invariant closed

quantum system subject to an external drive is generally ex-

pected to heat to infinite temperature in the long-time limit.

A slow drive is indeed generally associated with fast heating.

In contrast, the heating rate can become exponentially small

in rapidly driven systems, resulting in long-lived prethermal

states [31–34]. Such prethermalization behavior is typically

studied when the whole system or a nonextensive subsystem

is driven externally, and the case of an extensive subsystem

drive has not received much attention. Here, we address the

question of whether an extensive subsystem drive can also

be associated with prethermal behavior and study how the

system evolves under the slow (ω = 0.5) and fast (ω = 5)

subsystem drives with hmax = 1.5. We first consider the case

when the system is initially prepared in an eigenstate of the

time-averaged Hamiltonian, i.e., it is an eigenstate of the

equilibrium model with h(t ) ≡ hmax/2. We keep track of three

quantities during the time evolution: The magnetization, the

bond dependence of the bipartition EE, and the QDL diagnos-

tic for the effective entanglement between a single XXZ chain

and the TFI chain.

For a slow drive (ω = 0.5), the magnetization in both TFI

and XXZ subsystems rapidly decays to half its initial value

on the time scale of just a single period T . Over the course of

approximately ten periods, the magnetization vanishes almost

entirely, which is indicative of fast heating towards a triv-

ial high-temperature paramagnetic state. In strong contrast,

with the fast drive (ω = 5) we find signatures of a long-lived

prethermal state which preserves the finite magnetization of

the ground-state configuration [Fig. 3(a)]. In both the TFI

and XXZ subsystems a finite magnetization is maintained for

more than 250 periods of the extensive subsystem drive, which

is the maximum time duration in our numerical simulation.

We substantiate the qualitative difference between the slow

drive and the fast drive by considering two different entan-

glement diagnostics. First, we calculate the dynamics of the

bipartite EE, which reveals that under the slow drive the sys-

tem becomes maximally entangled such that the EE scales as

SvN = n ln 2 in the long-time limit, where n is the bond index

in the matrix product state (MPS) representation of the system

[Fig. 3(b)]. Such volume-law scaling of the EE is implied by a

heating of the system to infinite temperature; note that the fi-

nite bond dimension χmax of the MPS causes a deviation from

the scaling near the center (n = 15) of the chain when the

EE approaches its theoretical upper bound ln χmax ≈ 7. In the

fast-driven case, when ω = 5, the bipartite EE plateaus far be-

fore reaching the upper bound and does not seem to follow the

volume law. This implies that the system does not thermalize

within a moderate time scale, and the system instead remains

in a prethermal phase. As a second entanglement measure we

calculate the QDL diagnostic, which provides a more detailed

characterization of entanglement in a multicomponent sys-

FIG. 3. Time evolution of the system under fast (ω = 5) and

slow (ω = 0.5) periodic driving. Data shown are for L = 30 and

χmax = 256. (a) Staggered magnetization in the XXZ and TFI sub-

systems. (b) Bipartition EE as a function of the bond index n, where

n = 1 denotes the end of the MPS and n = 15 is the center; the inset

shows the MPS structure used in this calculation. Data in this panel

are for L = 10 and χmax = 1024. (c) QDL diagnostic for the effec-

tive entanglement between subsystems A and B shown in the inset.

(d) Staggered magnetization in the XXZ and TFI subsystems when

the initial configuration is not an eigenstate of the time-averaged

Hamiltonian.

tem. Unlike the bipartite EE, the QDL diagnostic allows us

to extract the effective entanglement between two arbitrary

subsystems, which do not necessarily need to combine to the

entire system. Let us consider STFI-XXZ, which corresponds to

the entanglement between the top XXZ chain and the TFI

chain after a projective measurement on the bottom XXZ

chain [see the definition of the QDL diagnostic in Sec. III and

the inset of Fig. 3(c)]. For the slow drive, we observe a steep

growth in the QDL diagnostic, indicating that spins on each

chain—which are close to a product state initially—become

strongly entangled in a short time [Fig. 3(c)]. In contrast, for

the fast drive, the QDL diagnostic remains vanishingly small

for the entire time scale observed, in line with our expectations

for a prethermal regime.

Finally, we briefly address the case when the initial config-

uration of the system is not an eigenstate of the time-averaged

Hamiltonian. To this end, we prepare the system in the ground

state of the equilibrium model at h(t ) ≡ 0 and subsequently

apply the periodic drive. Generally, one would not expect a

prethermal regime to arise. However, in analogy to the results

discussed above, we still observe persistent magnetization

for fast driving ω = 5; the steady-state magnetization is only

slightly reduced when compared with its initial value [see
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Fig. 3(d)]. We speculate that this rigidity against alteration

of the initial configuration is a consequence of small varia-

tion of the ground-state wave function on finite-sized systems

within the ordered phase of our three-chain model; for an

isolated TFI chain, which shows greater variation throughout

the ordered phase, such rigidity is not observed (see SM). We

conclude that the environment of polarizable XXZ chains adds

extra stability not only to the ground-state magnetization of

the embedded TFI chain, but also to its time evolution.

VII. DISCUSSION

In this paper, we ask whether an interacting quantum

system can enter a long-lived prethermal steady state when

quantum-quench protocols or time-dependent drives are ap-

plied only to an extensive subsystem. Using the DMRG and

TDVP for time evolution, we study the example of two XXZ

spin chains coupled to a TFI chain, where only the TFI chain

is quantum quenched or driven from a fully ordered ground

state. In the case of sudden onset of the transverse field, when

the strength of the transverse field is bigger than any other

energy scale, it is shown that a prethermal steady state arises

due to emergent quasiconservation laws. In a similar spirit,

when a sufficiently fast time-dependent drive of the transverse

field is applied, the system develops a prethermal state where

the magnetization remains finite across the system and the

entanglement between the spin chains remains small.

While the scenario of a prethermal state after a quantum

quench is well captured within the framework of dynamic

decoupling of chains [31,32], a universal description of the

mechanism behind the formation of a prethermal state un-

der a sufficiently fast extensive subsystem drive is currently

lacking. However, we point out that the system under an

extensive subsystem drive behaves like a fictitious substitute

system that is subject to a global external drive: If the drive is

slow, the system rapidly thermalizes, but if the drive is fast,

the entanglement growth is impeded and the system enters

a prethermal state. At least for a global external drive, such

behavior is known to generalize across a large set of Hamilto-

nians. It remains an open question for future research whether

our findings for an extended subsystem drive are similarly

generalizable.

Our coupled spin-chain model is partly motivated by recent

experiments on the organic material κ-H3(Cat-EDT-TTF)2

(“H-Cat”) and its deuterated analog. In those materials, lay-

ers of interacting electron systems (represented by XXZ spin

chains in our model) are coupled via hydrogen bonds, where

protons tunnel quantum mechanically in a double-well poten-

tial (spanned by bistable hydrogen bond configurations and

modeled by transverse field Ising spins in our setup) with

an intrinsic time scale. In first-principles calculations, the

estimated tunnel barrier in H-Cat implies a tunneling rate of

1011–1014 Hz [16]. While the actual tunneling rate may be

affected by the presence of other molecules attached to the

hydrogen bond [16], it is conceivable that the phonon-assisted

optic mode associated with the hydrogen tunneling would

couple to infrared light [36,37]. It would thus be interesting

to explore whether an external optical drive in the infrared

regime can be utilized to study the dynamic properties of H-

Cat and the possibility to stabilize a prethermal regime (in the

sense of our extensive subsystem drive model) in these organic

compounds. Furthermore, if the tunneling rate of the hydrogen

atoms can be tuned to be larger than all other scales, then even

in the absence of any external driving, the system behaves

as if it were being “self-driven” at a frequency given by the

hydrogen tunneling rate. Therefore, if one prepares the system

in the ground state of the symmetry-broken phase and evolves

it with the time-independent Hamiltonian corresponding to a

large tunneling rate, one still expects a prethermal symmetry-

broken regime whose time now scales exponentially with the

hydrogen tunneling rate.
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