zkBridge: Trustless Cross-chain Bridges Made Practical

Tiancheng Xie Jiaheng Zhang
UC Berkeley UC Berkeley
Zerui Cheng Fan Zhang Yupeng Zhang
Tsinghua University Yale University Texas A&M University
Yongzheng Jia Dan Boneh Dawn Song
Overeality Labs Stanford University UC Berkeley
ABSTRACT 7-11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 19 pages.

Blockchains have seen growing traction with cryptocurrencies
reaching a market cap of over 1 trillion dollars, major institution
investors taking interests, and global impacts on governments, busi-
nesses, and individuals.

Also growing significantly is the heterogeneity of the ecosystem
where a variety of blockchains co-exist. Cross-chain bridge is a
necessary building block in this multi-chain ecosystem. Existing
solutions, however, either suffer from performance issues or rely
on honesty assumptions of committees that significantly lower the
security. Recurring attacks against bridges have cost users more
than $1.5 billion USD. In this paper, we introduce zkBridge, an ef-
ficient cross-chain bridge that guarantees strong security without
extra trust assumptions. With succinct proofs, zkBridge not only
guarantees correctness, but also significantly reduces on-chain ver-
ification cost. We propose novel succinct proof protocols that are
orders-of-magnitude faster than existing solutions for workload in
zkBridge. With a modular design, zkBridge enables a few useful
capabilities, including message passing, token transferring, and
other computational logic operating on state changes from differ-
ent chains. We fully implemented zkBridge between Cosmos and
Ethereum and evaluated the end-to-end performance. The exper-
iment shows that zkBridge achieves practical performance: it can
generate a block header proof within 2 minutes, while verifying
proofs on-chain costs less than 220K gas (the same as Groth16).
Relaying a transaction from Cosmos to Ethereum costs 210K gas.

CCS CONCEPTS

« Security and privacy — Software and application security.

KEYWORDS

Blockchain, Distributed computing, Zero-knowledge proofs

ACM Reference Format:

Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,
Yongzheng Jia, Dan Boneh, and Dawn Song. 2022. zkBridge: Trustless Cross-
chain Bridges Made Practical. In Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS °22), November

® This work is licensed under a Creative Commons Attribution
By International 4.0 License.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560652

https://doi.org/10.1145/3548606.3560652

1 INTRODUCTION

Since the debut of Bitcoin, blockchains have evolved to an expansive
ecosystem of various applications and communities. Cryptocurren-
cies like Bitcoin and Ethereum are gaining rapid traction with
the market cap reaching over a trillion USD [12] and institutional
investors [55, 70] taking interests. Decentralized Finance (DeFi)
demonstrates that blockchains can enable finance instruments that
are otherwise impossible (e.g., flash loans [62]). More recently, dig-
ital artists [32] and content creators [30] resort to blockchains for
transparent and accountable circulation of their works.

Also growing significantly is the heterogeneity of the ecosys-
tem. A wide range of blockchains have been proposed and de-
ployed, ranging from ones leveraging computation (e.g., in Proof-of-
Work [61]), to economic incentives (e.g., in Proof-of-Stake [38, 39, 47,
52, 56]), and various other resources such as storage [1, 35, 48, 63],
and even time [2]. While it is rather unclear that one blockchain
dominates others in all aspects, these protocols employ different
techniques and achieve different security guarantees and perfor-
mance. It has thus been envisioned that (e.g., in [20, 21, 29]) the
ecosystem will grow to a multi-chain future where various protocols
co-exist, and developers and users can choose the best blockchain
based on their preferences, the cost, and the offered amenities.

A central challenge in the multi-chain universe is how to enable
secure cross-chain bridges through which applications on different
blockchains can communicate. An ecosystem with efficient and in-
expensive bridges will enable assets held on one chain to effortlessly
participate in marketplaces hosted on other chains. In effect, an
efficient system of bridges will do for blockchains what the Internet
did for siloed communication networks.

The core functionality of a bridge between blockchains C; and Cy
is to prove to applications on C; that a certain event took place on
C1, and vice versa. We use a generic notion of a bridge, namely one
that can perform multiple functions: message passing, asset trans-
fers, etc. In our modular design, the bridge itself neither involves
nor is restricted to any application-specific logic.

The problem. While cross-chain bridges have been built in prac-
tice [3, 4, 9, 18], existing solutions either suffer from poor perfor-
mance, or rely on central parties.

The operation of the bridge depends on the consensus protocols
of both chains. If C; runs Proof-of-Work, a natural idea is to use a
light client protocol (e.g., SPV [61]). Specifically, a smart contract

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

on Cy, denoted by SC2, will keep track of block headers of Cy, based
on which transaction inclusion (and other events) can be verified
with Merkle proofs. This approach, however, incurs a significant
computation and storage overhead, since SC needs to verify all
block headers and keep a long and ever-growing list of them. For
non-PoW chains, the verification can be even more expensive. For
example, for a bridge between a Proof-of-Stake chain (like Cosmos)
and Ethereum, verifying a single block header on Ethereum would
cost about 64 million gas [15] (about $6300 at time of writing),
which is prohibitively high.

Currently, as an efficient alternative, many bridge protocols
(PolyNetwork, Wormhole, Ronin, etc.) resort to a committee-based
approach: a committee of validators are entrusted to sign off on state
transfers. In these systems, the security boils down to, e.g., the hon-
est majority assumption. This is problematic for two reasons. First,
the extra trust assumption in the committee means the bridged asset
is not as secure as native ones, complicating the security analysis of
downstream applications. Second, relying on a small committee can
lead to single point failures. Indeed, in a recent exploit of the Ronin
bridge [27], the attackers were able to obtain five of the nine valida-
tor keys, through which they stole 624 million USD, making it the
largest attack in the history of DeFi by Apr 20221, Even the second
and third largest attacks are also against bridges ($611m was stolen
from PolyNetwork [6] and $326m was stolen from Wormbhole [10]),
and key compromise was suspected in the PolyNetwork attack.

Our approach. We present zkBridge to enable an efficient cross-
chain bridge without trusting a centralized committee. The main
idea is to leverage zk-SNARK, which are succinct non-interactive
proofs (arguments) of knowledge [19, 34, 36, 37, 41, 44, 45, 51, 64, 69,
73,74, 77, 78]. A zk-SNARK enables a prover to efficiently convince
SC;, that a certain state transition took place on C;. To do so, SCy
will keep track of a digest D of the latest tip of Cy. To sync SCp with
new blocks in Cj, anyone can generate and submit a zk-SNARK
that proves to SC; that the tip of C; has advanced from D to D’.

This design offers three benefits. First, the soundness property
of a zk-SNARK ensures the security of the bridge. Thus, we do not
need additional security requirements beyond the security of the
underlying blockchains. In particular zkBridge does not rely on a
committee for security. Second, with a purpose-built zk-SNARK, C»
can verify a state transition of C; far more efficiently than encoding
the consensus logic of C; in SCj. In this way, we reduce the cost
from 64M gas to only 220K gas on C;. The storage overhead of
the bridge is reduced to constant. Third, by separating the bridge
from application-specific logic, zkBridge makes it easy to enable
additional applications on top of the bridge.

Technical challenges. To prove correctness of a given compu-
tation outcome using a zk-SNARK, one first needs to express the
computation as an arithmetic circuit. While zk-SNARK verification
is fast (logarithmic in the size of the circuit or even constant), proof
generation time is at least linear, and in practice can be prohibitively
expensive. Moreover, components used by real-world blockchains
are not easily expressed as an arithmetic circuit. For example, the
widely used EdDSA digital signature scheme is very efficient to
verify on a CPU, but is expensive to express as an arithmetic circuit,

Isee the ranking at https://rekt.news/leaderboard

3004

Tiancheng Xie et al.

requiring more than 2 million gates [13]. In a cross-chain bridge,
each state transition could require the verification of hundreds of
signatures depending on the chains, making it prohibitively expen-
sive to generate the required zk-SNARK proof. In order to make
zkBridge practical, we must reduce proof generation time.

To this end, we propose two novel ideas. First, we observe that the
circuits used by cross-chain bridges are data-parallel, in that they
contain multiple identical copies of a smaller sub-circuit. Specif-
ically, the circuit for verifying N digital signatures contains N
copies of the signature verification sub-circuit. To leverage the
data-parallelism, we propose deVirgo, a novel distributed zero-
knowledge proofs protocol based on Virgo [76]. deVirgo enjoys
perfect linear scalability, namely, the proof generation time can
be reduced by a factor of M if the generation is distributed over
M machines. The protocol is of independent interest and might
be useful in other scenarios. Other proof systems can be similarly
parallelized [72].

While deVirgo significantly reduces the proof generation time,
verifying deVirgo proofs on chain, especially for the billion-gate
circuits in zkBridge, can be expensive for smart contracts where
computational resources are extremely limited. To compress the
proof size and the verification cost, we recursively prove the correct-
ness of a (potentially large) deVirgo proof using a classic zk-SNARK
due to Groth [54], hereafter denoted Groth16. The Groth16 prover
outputs constant-size proofs that are fast to verify by a smart con-
tract on an EVM blockchain. We stress that one cannot use Groth16
to generate the entire zkBridge proof because the circuits needed
in zkBridge are too large for a Groth16 prover. Instead, our ap-
proach of compressing a deVirgo proof using Groth16 gives the
best of both worlds: a fast deVirgo parallel prover for the bulk of
the proof, where the resulting proof is compressed into a succinct
Groth16 proof that is fast to verify. We elaborate on this technique
in Section 5. This approach to compressing long proofs is also being
adopted in commercial zk-SNARK systems such as [23, 24, 26].

Implementation and evaluation. To demonstrate the practical-
ity of zkBridge, we implement an end-to-end prototype of zkBridge
between Cosmos and Ethereum, including the protocols of deVirgo
and the recursive verification, and the transaction relay applica-
tion. The experiments show that our system achieves practical
performance. deVirgo can generate a block header relay proof in
18s, which is more than 100x faster than the original Virgo system
with a single machine. Additionally, the on-chain cost decreases
from 64 million gas (direct signature verification) to 220K gas by
the recursive proof on the deVirgo system. Specifically, relaying a
transaction from Cosmos to Ethereum costs 221K gas.

1.1 Owur contribution

In this paper, we make the following contributions:

o zkBridge: an efficient cross-chain bridge that avoids entrusting a
committee for correctness. We leverage succinct proofs to reduce
on-chain verification cost and ensure correctness.

e deVirgo: a distributed proof generation protocol that is more than
100x faster than Virgo for the workload in zkBridge. The novel
proof system is of independent interest.

zkBridge: Trustless Cross-chain Bridges Made Practical

o To reduce the on-chain verification cost of deVirgo proofs, we
use recursive proofs that achieve the best of both deVirgo (fast
proof) and Groth16 (small proof and fast on-chain verification).

o We fully implement an end-to-end prototype of zkBridge be-
tween Cosmos and Ethereum. We evaluate the performance of
zkBridge and show that it is the first practical cross-chain bridge
that achieves cryptographic assurance of correctness.

2 BACKGROUND

In this section we cover the preliminaries, essential background on
blockchains, and zero-knowledge proofs.

2.1 Notations

Let FF be a finite field and A be a security parameter. We use f(),h()
for polynomials, x,y for single variables, bold letters x,y for vec-
tors of variables. Both x[i] and x; denote the i-th element in x.
For x, we use notation x[i:k] to denote slices of vector x, namely
x[i:k]=(xi,xit+1,-xx). We use i to denote the vector of the binary
representation of some integer i.

Merkle Tree. Merkle tree [59] is a data structure widely used
to build commitments to vectors because of its simplicity and effi-
ciency. The prover time is linear in the size of the vector while the
verifier time and proof size are logarithmic in the size of the vector.
Given a vector of x=(x,".xN_1), it consists of three algorithms:

e rt«— MT.Commit(x)
o (x[i],m;) < MT.Open(x,i)
o {1,0} « MT.Verify(m;,x[i].rt).

2.2 Blockchains

A blockchain is a distributed protocol where a group of nodes col-
lectively maintains a ledger which consists of an ordered list of
blocks. A block blk is a data-structure that stores a header blkH and
a list of transactions, denoted by blk={blkH;trxy,...,trx; }. A block
header contains metadata about the block, including a pointer to
the previous block, a compact representation of the transactions
(typically a Merkle tree root), validity proofs such as solutions to
cryptopuzzles in Proof-of-Work systems or validator signatures in
Proof-of-Stake ones.

Security of blockchains. The security of blockchains has been
studied extensively. Suppose the ledger in party i’s local view is
LOG; = [blky,blky,....blk,] where r is the height. For any 2<k <r
and the k-th block blky , blkg.ptr=blkH_1, so every single block
is linked to the previous one. For the purpose of this paper, we care
about two (informal) properties:

1. Consistency: For any honest nodes i and j, and for any
rounds of ry and rq, it must be satisfied that either LOG;" is
a prefix of LOG'! or vice versa.

. Liveness: If an honest node receives some transaction trx at
some round r, then trx will be included into the blockchain
of all honest nodes eventually.

Smart contracts and gas. In addition to reaching consensus over
the content of the ledger, many blockchains support expressive
user-defined programs called smart contracts, which are stateful

3005

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

programs with state persisted on a blockchain. Without loss of gen-
erality, smart contract states can be viewed a key-value store (and
often implemented as such.) Users send transactions to interact
with a smart contract, and potentially alter its state.

A key limitation of existing smart contract platforms is that com-
putation and storage are scarce resources and can be considerably
expensive. Typically smart contract platforms such as Ethereum
charge a fee (sometimes called gas) for every step of computation.
For instance, EADSA signatures are extremely cheap to verify (a
performant CPU can verify 71000 of them in a second [40]), but ver-
ifying a single EdDSA signature on Ethereum costs about 500K gas,
which is about $49 at the time of writing. Storage is also expensive
on Ethereum. Storing 1KB of data costs about 0.032 ETH, which can
be converted to approximately $90 at the time of writing. This limi-
tation is not unique to Ethereum but rather a reflection of the low ca-
pacity of permissionless blockchains in general. Therefore reducing
on-chain computation and storage overhead is one of the key goals.

2.3 Light client protocol

In a blockchain network, there are full nodes as well as light ones.
Full nodes store the entire history of the blockchain and verify all
transactions in addition to verifying block headers. Light clients,
on the other hand, only store the headers, and therefore can only
verify a subset of correctness properties.

The workings of light clients depend on the underlying consen-
sus protocol. The original Bitcoin paper contains a light client pro-
tocol (SPV [61]) that uses Merkle proofs to enable a light client who
only stores recent headers to verify transaction inclusion. A num-
ber of improvements have been proposed ever since. For instance,
in Proof-of-Stake, typically a light client needs to verify account
balances in the whole blockchain history (or up to a snapshot), and
considers the risk of long range attacks. For BFT-based consensus,
a light client needs to verify validator signatures and keeps track
of validator rotation. We refer readers to [42] for a survey.

To abstract consensus-specific details away, we use

LightCC(LCS;—1,blkH,_1,blkH;) — {true,false}

to denote the block validation rule of a light client: given a new
block header blkH,, LightCC determines if the header represents a
valid next block after blkH,_; given its current state LCS,_1. We
define the required properties of a light client protocol as follows:

Definition 2.1 (Light client protocol). A light client protocol en-
ables a node to synchronize the block headers of the state of the
blockchain. Suppose all block headers in party i’s local view is
LOGHi' =[blkH1,blkHy,...,.blkH,], the light client protocol satisfies
following properties:

1. Succinctness: For each state update, the light client protocol
only takes O(1) time to synchronize the state.

Liveness: If an honest full node receives some transaction
trx at some round r, then trx must be included into the
blockchain eventually. A light client protocol will eventually
include a block header blkH; such that the corresponding
block includes the transaction trx.

3. Consistency: as for a full node, but with respect to LOGH] .

2.

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

2.4 Zero-knowledge proofs

An argument system for an NP relationship R is a protocol between
a computationally-bounded prover P and a verifier V. At the end
of the protocol, V is convinced by P that there exists a witness w
such that (x;w) € R for some input x. We use G to represent the
generation phase of the public parameters pp. Formally, consider
the definition below, where we assume R is known to P and V.

Definition 2.2. Let A be a security parameter and R be an NP re-
lation. A tuple of algorithm (G,P,V) is a zero-knowledge argument
of knowledge for R if the following holds.

e Completeness. For every pp output by G(1%), (x;w) € R
and 7« P(x,w,pp),
Pr[V(x,mpp)=1]=1
e Knowledge Soundness. For any PPT prover P*, there ex-
ists a PPT extractor £ such that for any auxiliary string z,
pp — g(ﬂ), 7" —P*(x,2,pp), W gP () (x,z,pp), and
Pr[(x;w) ¢ RAV(x,7%,pp)=1] < negl(}),
where 7" () represents that £ can rewind P*,
Zero knowledge. There exists a PPT simulator S such that
for any PPT algorithm V*, (x;w) € R, pp output by G(1%),
it holds that
View(V* (pp.x) ~ SV (x),
where View(V*(pp,x)) denotes the view that the verifier
sees during the execution of the interactive process with P,
SV (x) denotes the view generated by S given input x and
transcript of V*, and ~ denotes two perfectly indistinguish-
able distributions.
We say that (G,P,V) is a succinct argument system? if the total
communication (proof size) between P and V, as well as V’s run-
ning time, are poly(4,|x|,log|R|), where | R| is the size of the circuit
that computes R as a function of A.

3 ZKBRIDGE PROTOCOL

At a high level, a smart contract is a stateful program with states
persisted on a blockchain. A bridge like zkBridge is a service that
enables smart contracts on different blockchains to transfer states
from one chain to another in a secure and verifiable fashion.

Below we first explain the design of zkBridge and its workflow
through an example, then we specify the protocol in more detail.
For ease of exposition, we focus on one direction of the bridge, but
the operation of the opposite direction is symmetric.

3.1 Overview of zkBridge design

To make it easy for different applications to integrate with zkBridge,
we adopt a modular design where we separate application-specific
logic (e.g., verifying smart contract states) from the core bridge
functionality (i.e., relaying block headers).

Figure 1 shows the architecture and workflow of zkBridge. The
core bridge functionality is provided by a block header relay
network (trusted only for liveness) that relays block headers of
C; along with correctness proofs, and an updater contract on
Cz that verifies and accepts proofs submitted by relay nodes. The

In our construction, we only need a succinct non-interactive arguments of knowledge
(SNARK) satisfying the first two properties and the succinctnes for validity. The zero
knowledge property could be used to further achieve privacy.

3006

Tiancheng Xie et al.

updater contract maintains a list of recent block headers, and up-
dates it properly after verifying proofs submitted by relay nodes;
it exposes a simple and application-agnostic APL, from which ap-
plication smart contracts can obtain the latest block headers of the
sender blockchain and build application-specific logic on top of it.
Applications relying on zkBridge will typically deploy a pair of
contracts, a sender contract and a receiver contract on C; and Cy, re-
spectively. We refer to them collectively as application contracts or
relying contracts. The receiver contract can call the updater contract
to obtain block headers of C1, based on which they can perform ap-
plication specific tasks. Depending on the application, receiver con-
tracts might also need a user or a third party to provide application-
specific proofs, such as Merkle proofs for smart contract states.
As an example, Fig. 1 shows the workflow of cross-chain token
transfer, a common use case of bridges, facilitated by zkBridge. Sup-
pose a user U wants to trade assets (tokens) she owns on blockchain
C1 in an exchange residing on another blockchain Cy (presumably
because Cy charges lower fees or has better liquidity), she needs
to move her funds from C; to Ca. A pair of smart contracts SCjock
and SCpint are deployed on blockchains C; and Cy respectively.
To move the funds, the user locks $v tokens in SCjocx (Step €
in Fig. 1) and then requests $v tokens to be issued by SCyyint. To
ensure solvency, SCint should only issue new tokens if and only if
the user has locked tokens on C;. This requires SCpjn; to read the
states of SCjocx (the balance of I, updated in step @) from a differ-
ent blockchain, which it cannot do directly. zkBridge enables this
by relaying the block headers of C; to Cy along with proofs (step €)
and @). SCyint can retrieve the block headers from the smart con-
tract frontend (the updater contract), check that the balance of user
U is indeed $v (step @), and only then mint $v tokens (Step @).
Besides cross-chain token transfer, zkBridge can also enable vari-
ous other applications such as cross-chain collateralized loans, gen-
eral message passing, etc. We present three use cases in Section 3.3.

3.2 Protocol detail

Having presented the overview, in this section, we specify the
protocol in more detail.

3.2.1 Security and system model. For the purpose of modeling
bridges, we model a blockchain C as a block-number-indexed key-
value store, denoted as C[t]:/C— V where t is the block number,
K and V are key and value spaces respectively. In Ethereum, for
example, V = {0,1}2% and keys are the concatenation of a smart
contract identifier SC and a per-smart-contract storage address K.
For a given contract SC, we denote the value stored at address K
at block number t as SC[t,K], and we call SC[t,-] the state of SC
at block number ¢. Again, for ease of exposition, we focus on the
direction from SCp to SCy, denoted as BR[SC1 — SC»].

Functional and security goals. We require the bridge BR[SC1 —

SC;] to reflect states of SC; correctly and timely:

1. Correctness: For all t,K, SC; accepts a wrong state V#SC1 [£,K]
with negligible probability.

2. Liveness: Suppose SCy needs to verify SCy’s state at (¢,K), the
bridge will provide necessary information eventually.

Security assumptions. For correctness, zkBridge does not intro-
duce extra trust assumptions besides those made by the underlying

zkBridge: Trustless Cross-chain Bridges Made Practical

S
vy W
10¢

© Relay header with proofs

a-a
\/

Block Header

O Write: hul[U]vl ﬁ

Sender chain

Ci

Relay Network

CCS °22, November 7-11, 2022, Los Angeles, CA, USA

User U

&

© Read
v:=bal[U] on SCy

Receiver chain

Co

Figure 1: The design of zkBridge illustrated with the example of cross-chain token transfer. The components in shade belongs
to zkBridge. For clarity we only show one direction of the bridge and the opposite direction is symmetric.

blockchains. Namely, we assume both the sender blockchain and
the receiver blockchain are consistent and live (Section 2), and the
sender chain has a light client protocol to enable fast block header
verification. For both properties, we assume there is at least one hon-
est node in the relay network, and that the zk-SNARK used is sound.

3.2.2 Construction of zkBridge. As described in Section 3, a bridge
BR[SC; — SC;] consists of three components: a block header
relay network, a updater contract, and one or more application
contracts. Below we specify the protocols for each component.

Block header relay network. We present the formal protocol of
block header relay network in Protocol 1.

Protocol 1 Block header relay network

procedure RELAYNEXTHEADER(LCS,_1,blkH,_1)

Contact k different full nodes to get the block headers follow-
ing blkH,_1, namely blkH,.

Generate a ZKP & proving

Light CC(LCS;—1,blkHy_1,blkH;) — true.

Send (7,blkH;) to the updater contract.
end procedure

Nodes in the block header relay network run RelayNextHeader
with the current state of the updater contract (LCS,—1,blkH,_1)
as input. The exact definition of LCS,_; is specific to light client
protocols (see [42] for a survey). The relay node then connects to
full nodes in C; and gets the block header blkH, following blkH,_1.
The relay node generates a ZKP 7 showing the correctness of blkH,
by essentially proving that blkH, is accepted by a light client of C;
after block blkH,_1. It then sends (sr,blkH,) to the updater contract
on Cy. To avoid the wasted proof time due to collision (note that
when multiple relay nodes send at the same time, only one proof can
be accepted), relay nodes can coordinate using standard techniques
(e.g., to send in a round robin fashion). While any zero-knowledge
proofs protocol could be used, our highly optimized one will be
presented later in Section 4.

3007

To incentivize block header relay nodes, provers may be re-
warded with fees after validating their proofs. We leave incentive
design for future work. A prerequisite of any incentive scheme is
unstealability [65], i.e., the guarantee that malicious nodes cannot
steal others’ proofs. To this end, provers will embed their identifiers
(public keys) in proofs, e.g., as input to the hash function in the
Fiat-Shamir heuristic [49].

We note that this design relies on the security of the light client
verifier of the sender chain. For example, the light client verifier
must reject a valid block header that may eventually become or-
phaned and not part of the sender chain.

The updater contract. The protocol for the updater contract is
specified in Protocol 2.

Protocol 2 The updater contract

headerDAG:=0 > DAG of headers
LCS:=1 > light client state
procedure HEADERUPDATE(7,blkH ., blkH, —1)
if blkH,_1 ¢ headerDAG then
return False > skip if parent block is not in the DAG
end if
if & verifies against LCS,blkH,_1,blkH;, then
Update LCS according to the light client protocol.
Insert blkH, into headerDAG.
end if
end procedure
procedure GETHEADER(?)
header
if t ¢ headerDAG then
return L
else
return headerDAG[t],LCS » The LCS will help users to
determine if ¢ is on a fork.
end if
end procedure

> t is a unique identifier to a block

> tell the caller to wait

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

The updater contract maintains the light client’s internal state
including a list of block headers of C; in headerDAG. It has two
publicly exposed functions. The HeaderUpdate function can be
invoked by any block header relay node, providing supposedly the
next block header and a proof as input. If the proof verifies against
the current light client state LCS and blkH,_1, the contract will
do further light-client checks, and then the state will be updated
accordingly. Since the caller of this function must pay a fee, DoS
attacks are naturally prevented.

The GetHeader function can be called by receiver contracts to
get the block header at height t. Receiver contracts can use the
obtained block header to finish application-specific verification,
potentially with the help of a user or some third party.

Application contracts. zkBridge has a modular design in that the
updater contract is application-agnostic. Therefore in BR[SC1 —
SCy], it is up to the application contracts SC1 and SC; to de-
cide what the information to bridge is. Generally, proving that
SC1[t,K] =V is straightforward: SC; can request for a Merkle proof
for the leaf of the state Trie Tree (at block number t) corresponding
to address K. The receiver contract can obtain blkH; from the up-
dater contract by calling the function GetHeader(t). Then it can ver-
ify SC1[t,K] =V against the Merkle root in blkH;. Required Merkle
proofs are application-specific, and are typically provided by the
users of SCy, some third party, or the developer/maintainer of SC,.

Security arguments. The security of zkBridge is stated in the
following theorem.

THEOREM 3.1. The bridge BR[SC1— SCa] implemented by pro-
tocols 1 and 2 satisfies both consistency and liveness, assuming the
following holds:

1. there is at least one honest node in the block header relay
network;

2. the sender chain is consistent and live;

3. the sender chain has a light-client verifier as in Def. 2.1; and

4. the succinct proof system is sound.

ProoF (skeTCH). To prove the consistency of DAG, we first need
to convert the DAG into a list of blocks to match the definition of
blockchain consistency. We define an algorithm Longest: DAG —
List such that given a DAG, the algorithm will output a list MainChain
representing the main chain. For example, if the sender chain is
Ethereum, the algorithm Longest will first calculate the path with
the maximum total difficulty in the DAG represented by L, and then
output MainChain :=L[: —K]. Here K is a security parameter. By
assumption 1 and 2, there will be an honest node in our system
running either a full node or a light node, which will be consistent
with the sender chain. Also, according to assumption 1, at least
one prover node is honestly proving the light client execution. By
assumption 4 that the proof system is sound, the updater contract
will correctly verify the light-client state. We argue that the updater
contract is correctly running the light-client protocol. Therefore,
by the consistency of the light-client protocol, MainChain will be
consistent with any other honest node.

The liveness of our protocol directly follows from the liveness
of C; and its light client protocol. ||

3008

Tiancheng Xie et al.

3.3 Application use cases

In this section, we present three examples of applications that zk-
Bridge can support.

Transaction inclusion: a building block. A common building
block of cross-chain applications is to verify transaction inclusion
on another blockchain. Specifically, the goal is to enable a receiver
contract SCy on Cy to verify that a given transaction trx has been
included in a block B; on C; at height t. To do so, the receiver
contract SCy needs a user or a third-party service to provide the
Merkle proof for trx in B;. Then, SC3 will call the updater contract
to retrieve the block header of C; at height ¢, and then verify the pro-
vided Merkle proof against the Merkle root contained in the header.

Next, we will present three use cases that extend the building
block above.

1. Message passing and data sharing. Cross-chain message
passing is another common building block useful for, e.g., sharing
off-chain data cross blockchains.

Message passing can be realized as a simple extension of transac-
tion inclusion, by embedding the message in a transaction. Specif-
ically, to pass a message m from C; to Cy, a user can embed m in
a transaction trx,,, send trx;, to C1, and then execute the above
transaction inclusion proof.

2. Cross-chain assets transfer/swap. Bridging native assets is a
common use case with growing demand. In this application, users
can stake a certain amount of token T4 on the sender blockchain
Cy, and get the same amount of token T4 (for native assets transfer
if eligible) or a certain amount of token Tp of approximately the
same value (for native assets swap) on the receiver blockchain Cs.
With the help of the transaction inclusion proof, native assets trans-
fer/swap can be achieved, as illustrated at a high level in Section 3.1.
Here we specify the protocol in more detail.

To set up, the developers will deploy a lock contract SCiyc on Cq
and a mint contract SCpint on Cy. For a user who wants to exchange
na of token T4 for an equal value in token Tg, she will first send
a transaction trxoc) that transfers ng of token T4 to SCigck, along
with an address addrc, to receive token Tg on Cy. After trxjock is
confirmed in a block B, the user will send a transaction trxmint
to SCuint, including sufficient information to verify the inclusion
of trxjock- Based on information in trxpint, SCpint Will verify that
trxjock has been included on Cy, and transfer the corresponding Tg
tokens to the address addrc, specified in trxjock. Finally, SCrmint
will mark trxj,ck as minted to conclude the transfer.

3. Interoperations for NFTs. In the application of Non-fungible
Token (NFT) interoperations, users always lock/stake the NFT on
the sender blockchain, and get minted NFT or NFT derivatives on
the receiver blockchain. By designing the NFT derivatives, the cross-
chain protocol can separate the ownership and utility of an NFT
on two blockchain systems, thus supporting locking the ownership
of the NFT on the sender blockchain and getting the utility on the
receiver blockchain.

3.4 Efficient Proof Systems for zkBridge

The most computationally demanding part of zkBridge is the zero-
knowledge proofs generation that relay nodes must do for every

zkBridge: Trustless Cross-chain Bridges Made Practical

block. So far we have abstracted away the detail of proof genera-
tion, which we will address in Sections 4 and 5. Here, we present
an overview of our solution.

For Proof-of-Stake chains, the proofs involve verifying hundreds
of signatures. A major source of overhead is field transformation be-
tween different elliptic curves when the sender and receiver chains
use different cryptography implementation, which is quite com-
mon in practice. For example, Cosmos uses EdDSA on Curve25519
whereas Ethereum natively supports a different curve BN254. The
circuit for verifying a single Cosmos signature in the field supported
by Ethereum involves around 2 million gates, thus verifying a block
(typically containing 32 signatures) will involve over 64 million
gates, which is too big for existing zero-knowledge proofs schemes.

To make zkBridge practical, we propose two ideas.

Reducing proof time with deVirgo We observe that the ZKP cir-
cuit for verifying multiple signatures is composed of multiple copies
of one sub-circuit. Our first idea is to take advantage of this special
structure and distribute proof generation across multiple servers.
We propose a novel distributed ZKP protocol dubbed deVirgo, which
carefully parallelizes the Virgo [76] protocol, one of the fastest ZKP
systems (in terms of prover time) without a trusted setup. With de-
Virgo, we can accelerate proof generation in zkBridge with perfect
linear scalability. We will dive into the detail of deVirgo in Section 4.

Reducing on-chain cost by recursive verification. While ver-
ifying deVirgo proofs on ordinary CPUs is very efficient, on-chain
verification is still costly. To further reduce the on-chain verification
cost (computation and storage), we use recursive verification: the
prover recursively proves the correctness of a (potentially large)
Virgo proof using a smart-contract-friendly zero-knowledge pro-
tocol to get a small and verifier-efficient proof. At a high level, we
trade slightly increased proof generation time for much reduced
on-chain verification cost: the proof size reduces from 200+KB to
131 bytes, and the required computation reduces from infeasible
amount of gas to 210K gas. We will present more detail of recursive
verification in Section 5.

4 DISTRIBUTED PROOF GENERATION

As observed previously, the opportunity for fast prover time stems
from the fact that the circuit for verifying N signatures consists
of N copies of identical sub-circuits. This type of circuits is called
data-parallel [67]. The advantage of data-parallel circuits is that
there is no connection among different sub-copies. Therefore, each
copy can be handled separately. We consider accelerating the proof
generation on such huge circuits by dealing with each sub-circuit
in parallel. In this section, we propose a distributed zk-SNARK
protocol on data-parallel circuits.

There are many zero knowledge proofs protocols [19, 34, 36, 37,
45, 51, 64, 69, 73, 74, 76] supporting our computation. We choose
Virgo as the underlying ZKP protocols for two reasons: 1. Virgo
does not need a trusted setup and is plausibly post-quantum secure.
2. Virgo is one of the fastest protocols with succinct verification
time and succinct proof size for problems in large scale. We present
a new distributed version of Virgo for data-parallel arithmetic cir-
cuits achieving optimal scalability without any overhead on the
proof size. Specifically, our protocol of deVirgo on data-parallel

3009

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

circuits with N copies using N parallel machines is N times faster
than the original Virgo while the proof size remains the same. Our
scheme is of independent interest and is possible to be used in other
Virgo-based systems to improve the efficiency.

We provide the overall description of deVirgo as follows. Sup-
pose the prover has N machines in total, labeled from Py to Pnr—1.
Assume P is the master node while other machines are ordinary
nodes. Assume V is the verifier. Given a data-parallel arithmetic
circuit consisting of N identical structures, the naive algorithm
of the distributed Virgo is to assign each sub-circuit to a separate
node. Then each node runs Virgo to generate the proof separately.
The concatenation of N proofs is the final proof. Unfortunately, the
proof size in this naive algorithm scales linearly in the number of
sub-circuits, which can be prohibitively large for data-parallel cir-
cuits with many sub-copies. To address the problem, our approach
removes the additional factor of N in the proof size by aggregating
messages and proofs among distributed machines. Specifically, the
original protocol of Virgo consists of two major building blocks.
One is the GKR protocol [53], which consists of d sumcheck pro-
tocols [58] for a circuit of depth d. The other is the polynomial
commitment (PC) scheme. We design distributed schemes for each
of the sumcheck and the polynomial commitment (PC). In our dis-
tributed sumcheck protocol, a master node Py aggregates messages
from all machines, then sends the aggregated message to VV in every
round, instead of sending messages from all machines directly to V.
Our protocol for distributed sumcheck has exactly the same proof
size as the original sumcheck protocol, thus saving a factor N over
the naive distributed protocol. Additionally, in our distributed PC
protocol, we optimize the commitment phase and make Py aggre-
gate N commitments into one instead of sending N commitments
directly to V. During the opening phase, the proof can also be ag-
gregated, which improves the proof size by a logarithmic factor in
the size of the polynomial.

We present preliminaries in Section 4.1, the detail of the dis-
tributed sumcheck protocol in Section 4.2 and the detail of the
distributed PC protocol in Section 4.3. We combine them all to-
gether to build deVirgo in Section 4.4.

4.1 Preliminaries

Multi-linear extension/polynomial. Let V:{0,1} — Fbe a
function. The multi-linear extension/polynomial of V' is the unique
polynomial V : FY — F such that V(x) = V(x) for all x € {0,1}¢. V
can be expressed as:

~ 4

V=3 omyel Loy (A=x) (1=bi)+xib2)) -V (b),
where b; is i-th bit of b.
Identity function. Let f:{0,1}’x{0,1}Y —{0,1} be the identity
function such that f(x,y) =1 if x=y, and f(x,y) =0 otherwise. Sup-

pose f is the multilinear extension of . Then f can be expressed
as: B(xy) =15, ((1=x;) (1-yi) +xiy;).

4.2 Distributed sumcheck

Background: the sumcheck protocol. The sumcheck problem
is to sum a multivariate polynomial f : F* — F over all binary
inputs: X, ... p,e(0,1) f(b1,br). The sumcheck protocol allows

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

the prover P to convince the verifier V that the summation is H
via a sequence of interactions, and the formal protocol is presented
in Protocol 3 in Appendix A. The high-level idea of the sumcheck
protocol is to divide the verification into £ rounds. In each round,
the prover only sends a univariate polynomial to the verifier. The
verifier checks the correctness of the polynomial by a single equa-
tion. Then this variable will be replaced by a random point sampled
by the verifier. As there are totally ¢ variables in f, after £ rounds,
the claim about the summation will be reduced to a claim about
f on arandom vector r. Given the oracle access to f on a random
vector, the verifier can check the last claim.

Background: the sumcheck equation in the GKR protocol.
In the GKR protocol working for a layered arithmetic circuit, both
parties build a sumcheck equation to describe wire connections
between the i-th layer and the (i+1)-th layer. Without loss of gen-
erality, we suppose there are 2¢ gates in each layer. We define a
polynomial V;:{0,1} = F such that V;(b) represents the value of
gate b in layer i, where b is the binary representation of integer b.
We use V; as the multi-linear polynomial of V;. Then we can write
a sumcheck equation

V= D, f&xVin(),

x€{0,1}¢

1

where f is some polynomial from F’ to F and g is a random vector
in F’. By invoking the sumcheck protocol, the prover reduces a
claim about the i-th layer to a claim about the (i+1)-th layer. Sup-
pose the circuit depth is d, after running d sumcheck protocols, the
prover reduces the claim about the output layer to the input layer,
which the verifier itself can verify. Due to the space limitation, we
present the formal GKR protocol in Protocol 5 in Appendix C.

We treat Equation 1 as the sumcheck equation in the GKR pro-
tocol and give the complexity of the sumcheck protocol running
on Equation 1 as follows.

Complexity of the sumcheck protocol. For the multivariate
polynomial of f defined in Equation 1, the prover time in Protocol 3
is O(2). The proof size is O(¢) and the verifier time is O(¥).

In the setting of data-parallel circuits, we distribute the sumcheck
polynomial f among parallel machines. Suppose the data-parallel
circuit C consists of N identical sub-circuits of Cg,-,Cn_1 and
N =2" for some integer n without loss of generality. The polynomial
f:Ff > Fis defined on C by Equation 1.

The idea of our distributed sumcheck protocol is to treat each
sub-copy as a new circuit as there is no wiring connections across
different sub-circuits. We define polynomials of f(O)’... ,f<N—1)
on Cg,--,Cn_1 :F*=" — F respectively by Equation 1 in the GKR
protocol, which have the same form as f defined on C. The naive
approach is running the sumcheck protocol on these polynomials
separately. As there are N proofs in total and each size is O(£—n),
the total proof size will be O(N(£—n)). To reduce the proof size
back to ¢, the prover needs to aggregate N proofs to generate a
single proof on f. We observe that the sumcheck protocol on data-
parallel circuits satisfies f (D (x) = f(x,i). As shown in Protocol 3,
the protocol proceeds for ¢ variables round by round. We first run
the sumcheck protocol on variables that are irrelevant to the index
of sub-copies in the circuit. In the first (£—n) rounds, each prover

‘P; generates the univariate polynomial of fj(i) (x;) for f () (x) and

3010

Tiancheng Xie et al.

sends it to Pg. Py constructs the univariate polynomial for f;(x;)
. N .
by summing fj(l)(xj) altogether since fj(x;) = X fj(l) (xj), and
i=0

sends fj(x;) to V in the j-th round. The aggregation among par-
allel machines reduces the proof size to constant in each round.
Hence the final proof size is only O(¢). A similar approach has
appeared in [68]. The main focus of [68] was improving the prover
time of the sumcheck protocol in the GKR protocol to O(2¢ (¢—n))
for data-parallel circuits, which was later subsumed by [73] with
a prover running in O(2°) time. Instead, our scheme is focused on
improving the prover time by N times with distributed computing
on N machines without any overhead on the proof size.

With this idea in mind, we rewrite the sumcheck equation on

f as follows.
N-1
H= Y fb)=> > fOw).
bef0,1}¢ i=0 be{0,1}¢-n
Then we divide the original sumcheck protocol on f into 3 phases
naturally in the setting of distributed computing. We present the for-
mal protocol of distributed sumcheck in Protocol 4 in Appendix B.

1. From round 1 to round (£ — n) (step 1. in Protocol 4), P;
runs the sumcheck protocol on £) and sends the univariate
polynomial to Py. After receiving all univariate polynomials
from other machines, Py aggregates these univariate polyno-
mials by summing them together and sends the aggregated
univariate polynomial to the verifier. When Py receives a
random query from the verifier, Py relays the random chal-
lenge to all nodes as the random query of the current round.

. In round (£-n) (step 2. in Protocol 4), the polynomials of
f(0>,--~,f(N’1) have been condensed to one evaluation on a
random vector r e F~". Py uses these N points as an array
to construct the multi-linear polynomial f” : F" — F such
that f/(x) = f(r,x[1:n]).3

. After round (£—n) (step 3. in Protocol 4), Py continues to
run the sumcheck protocol on f” with V in last n rounds.

In this way, the computation of P; is equivalent to running the
sumcheck protocol in Virgo on C;. It accelerates the sumcheck
protocol in Virgo by N times without any overhead on the proof
size using N distributed machines, which is optimal for distributed
algorithms both in asymptotic complexity and in practice. We give
the complexity of Protocol 4 in the following.

Complexity of the distributed sumcheck protocol. For the
multivariate polynomial of f defined in Equation 1, The total prover
work is O(2¢) while the prover work for each machine is O(z—]\;)
The communication between N machines is O(N¥). The proof size
and the verifier time are both O(?).

4.3 Distributed polynomial commitment

In the last step of the sumcheck phase, the prover needs to prove
to the verifier y=f(ry,--,r¢) for some value y. In Virgo, The prover
convinces V of the evaluation by invoking the PC scheme. We
present the PC scheme in Virgo and the complexity of the scheme
in the following.

3The approach can extend to the product of two multi-linear polynomials, which
matches the case in Virgo.

zkBridge: Trustless Cross-chain Bridges Made Practical

Background: the polynomial commitment in Virgo. Let F be
a family of f-variate multi-linear polynomial over F. Let H, L be two
disjoint multiplicative subgroups of F such that |H|=2¢ and |L|=
p|H|, where p is a power of 2. The polynomial commitment (PC)
in Virgo for f € F and reF¥ consists of the following algorithms:

e pp— PC.KeyGen(l’l): Given the security parameter A, the
algorithm samples a collision resistant hash function from
a hash family as pp.
comy « PC.Commit(f,pp): Given a multi-linear polyno-
mial f, the prover treats 2¢ coefficients of f as evaluations
of a univariate polynomial f;; on H. The prover uses the
inverse fast Fourier transform (IFFT) to compute f;;. Then
the prover computes ff, as evaluations of fi; on L via the fast
Fourier transform (FFT). Let com p =MT.Commit(fL.).
(y,7f) < PC.Open(f,r,pp): The prover computes y = f(r).
Given ¢c=0(A) random indexes (ki,---,kc), the prover com-
putes (fp[k1], m,) = MT.Open(fy, k1), -, (fL[kc], i) =
MT.Open(fy,k¢). Let TF = (f, [kl],ﬂ'kl, - L [kc],ﬂke)fl
{1,0} « PC.Verify(comp,r,y, 77, pp): The verifier parses
np=(qulkilm,,qulke].mk,), then checks that qp, [k1], -+,
qL [kc] are consistent with y by a certain equation p(ff,[k1],
-, fulkel,y) = 0, > and checks that i [k{], -, fi [kc] are
consistent with com¢ by MT.Verify (7 fL[k1], comg), -,
MT.Verify (my .fL[kc].comp). If all checks pass, the verifier
outputs 1, otherwise the verifier outputs @.

Complexity of PC in Virgo. The prover time is O(£-2¢). The
proof size is O(A£?) and the verifier time is O(A£2).

In the setting of distributed PC, P; knows f (1), With the help
of ,6’~ function, we have

f(r)= Zﬂ(r [e-n+1:6D) £ D (x[1:0-n]). @)

A stralghtforward way for distributed PC is that P; runs the PC
scheme on f @) separately. In particular, P; invokes PC.Commit to
commit f () in the beginning of the sumcheck protocol. In the last
round, P; runs PC.Open to compute f(i) (r[1:£-n]) and sends
the proof to V. After receiving all f(i) (r[1:£-n]) from P;, V in-
vokes PC.Verify to validate N polynomial commitments separately.
Then V computes [;(r[t’—n+ 1:¢],i) for each i. Finally, V checks
F@=2Np(c[e—n+1:£1) f D (r[1:-n]).

Although the aforementioned naive distributed protocol achieves
O(2¢(¢-n)) in computation time for each machine, the total proof
size is O(AN (£ — n)?) as the individual proof size for each P; is
O(A(£-n)?). To reduce the proof size, we optimize the algorithm
by aggregating N commitments and N proofs altogether. For sim-
plicity, we assume p =1 without loss of generality in the multi-linear
polynomial commitment®. We present the formal protocol of dis-
tributed PC in Protocol 6 in Appendix D.

4The prover also computes log |L| polynomials of f;, -+ , fiogL| depending on f.
L

But sizes of these polynomials are =,---,1 respectively. The prover commits these
polynomial and opens them on at most ¢ locations correspondingly. Our techniques
on distributed commitment and opening can apply to these smaller polynomials easily.
We omit the process for simplicity. It brings a logarithmic factor in the size of the
polynomial on the proof size and the verification time.

> p also takes all openings on polynomials of f;,---, Slog/L| (at most ¢ for each polynomial)
as input, we omit them for simplicity.

%In Virgo, p =32 for security requirements. Our scheme can extend to p =32 easily.

3011

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

The idea of our scheme is that each P; exchanges data with other

machines immediately after computing f]L(,i) instead of invoking

MT.Commit on fﬂ(f) directly. The advantage of such arrangement
is that the prover aggregates evaluation on the same index into one
branch and can open them together by a single Merkle tree proof for
this branch. As described in the polynomial commitment of Virgo,
the prover needs to open fi, on some random indexes depending
onr in PC.Open. As r is identical to each f(9) the prover would
open each f]él) at same indexes. If the prover aggregates fﬁl) by
the indexes, she can open N values in one shot by providing only
one Merkle tree path instead of naively providing N Merkle tree
paths, which helps her to save the total proof size by a logarithmic
factor in the size of the polynomial.

Specifically, P; collects evaluations off() [i+1], - (N b [i+1]
with identical index of (i+1) in L from other machlnes (step 1. and
step 2.). Then P; invokes MT.Commit to get a commitment, comy,),
for these values, and submits comy;) to Py (step 3.). Po invokes
MT.Commit on comy, (o), -+, comy(n-1) to compute the aggregated
commitment, com, and Py sends com to V (step 4.). In the PC.Open
phase, given a random index k; from V, Py retrieves f]L(del) [k;],

- fHEN_l) [k;] from ij_l, computes (comh(kjfl),ﬁkj) = MT.Open
(com,kj), and sends these messages to V (step 5. and step 6.). V' can
validate N evaluations by invoking MT.Verify only once (step 7.).
With this approach, we reduce the proof size to O(A(N+¢2)). And

the complexity of Protocol 6 is shown in the following.

Complexity of distributed PC. Given that f is a multi-linear
polynomial with ¢ variables, the total communication among N ma-
chines is O(2°). The total prover work is O(2¢-£) while the prover
work for each device is (% -£). The proof size is O(A(N+£2)). The
verification cost is O(A(N+£2)).

4.4 Combining everything together

In this section, we combine the distributed sumcheck and the dis-
tributed PC altogether to build deVirgo.

For a data-parallel layered arithmetic circuit C with N copies and
d layers, following the workflow of Virgo in Protocol 7 in Appen-
dix E, our distributed prover replaces d sumcheck schemes in Virgo
by d distributed sumcheck schemes, and replaces the PC scheme
in Virgo by our distributed PC scheme to generate the proof. We
present the formal protocol of deVirgo in Protocol 8 in Appendix F.
And we have the theorem as follows.

THEOREM 4.1. Protocol 8 is an argument of knowledge satisfy-
ing the completeness and knowledge soundness in Definition 2.2 for
the relation C(x,w) = 1, where C consists of N identical copies of
Co,CN—1.

ProoF (skeTcH). Completeness. The completeness is straight-
forward.

Knowledge soundness. deVirgo generates the same proof as
Virgo for d sumcheck protocols. So we only need to consider the
knowledge soundness of distributed PC scheme. If the commitment
of f is inconsistent with the opening of f(r) in the distributed PC

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

scheme, there must exist at least one f(i) (r[1:£—n]) being incon-
sistent with the commitment f by Equation 2. Otherwise, when all
f(i) (r[1:£—n]) are consistent with the commitment of f, f(r) must
be consistent with the commitment of f. As shown in Protocol 6,
comy is equivalent to com ¢(;) with additional dummy messages in
each element of the vector in the Merkle tree commitment. It does
not affect the soundness of the PC in Virgo in the random oracle
model [75, 76]. The verifier outputs 0 in the PC.Verify phase with
the probability of (1 —negl(A)). Therefore, deVirgo still satisfies
knowledge soundness.

The zero-knowledge property is not necessary as there is no
private witness in the setting of zkbridge. However, we can achieve
zero-knowledge for deVirgo by adding some hiding polynomials.
Virgo uses the same method to achieve zero-knowledge. [l

Additionally, Fiore and Nitulescu [50] introduced the notion of O-
SNARK for SNARK over authenticated data such as cryptographic
signatures. Protocol 8 is an O-SNARK for any oracle family, albeit
in the random oracle model. To see this, Virgo relies on the con-
struction of computationally sound proofs of Micali [60] to achieve
non-interactive proof and knowledge soundness in the random or-
acle model, which has been proven to be O-SNARK in [50]. Hence
Virgo is an O-SNARK, and so is deVirgo because deVirgo also relies
on the same model.

Protocol 8 achieves optimal linear scalability on data-parallel
circuits without significant overhead on the proof size. In partic-
ular, our protocol accelerates Virgo by N times given N distributed
machines. Additionally, the proof size in our scheme is reduced by
a factor of N compared to the naive solution of running each sub-
copy of data-parallel circuits separately and generating N proofs.
The complexity of Protocol 8 is shown in the following.

Complexity of distributed Virgo. Given a data-parallel layered
arithmetic circuit C with N sub-copies, each having d layers and
m inputs, the total prover work of Protocol 8 is O(|C|+Nmlogm).
The prover work for a single machine is O(|C|/N +mlogm), and
the total communication among machines is O(Nm+ Ndlog|C|).
The proof size is O(dlog|C]| +}L(N+log2 m)). The verification cost
is O(dlog|C|+A(N+log?m)).

5 REDUCING
PROOF SIZE AND VERIFIER TIME

Although deVirgo improves the prover time by orders of magni-
tude, we want to further reduce the cost of the verification time
and the proof size. As mentioned in the above section, the circuit
which validates over 100 signatures is giant due to non-compatible
instructions on different curves across different blockchains. Addi-
tionally, Virgo’s proof size, which is around 210KB for a circuit with
10 million gates, is large in practice. Thus we cannot post deVirgo’s
proof on-chain and validate the proof directly. Aiming at smaller
proof size and simpler verification on-chain, we propose to further
compress the proof by recursive proofs with two layers. Intuitively,
for a large-scale statement (x,w) € R in Definition 2.2, the prover
generates the proof 77 by a protocol with fast prover time in the
first layer. If the length of 71 is not as short as desired, then the
prover can produce a shorter proof 7z by invoking another protocol
for (x,71) € R’ in the second layer, where R’ represents that 7 is a

3012

Tiancheng Xie et al.

of sigs | Total circuit size Circuit size | Circuit size
for GKR part | for PC part

1 1.2x107 gates 8.4x10° gates | 3.3x10° gates

4 1.2x107 gates 8.4x10° gates | 4.0X 10° gates

32 1.3x107 gates 8.4x10% gates | 4.7x10° gates

128 1.4x107 gates 8.4x10° gates | 5.4X 10° gates

Table 1: The verification circuit size of deVirgo

valid proof for (x,w) € R. To shrink the proof size and simplify the
verification as much as possible, we choose Groth16 as the second
layer ZKP protocol since Groth16 has constant proof size and fast
verification time. Moreover, the curve in Groth16 is natively sup-
ported by Ethereum, which is beneficial for saving on-chain cost on
Ethereum. In our approach, the prover invokes deVirgo to generate
1 on the initial circuit in the first layer. In the second layer, the
prover invokes Groth16 to generate 2 on the circuit implementing
the verification algorithm of deVirgo where |m2| < |71|. The prover
only needs to submit m; on-chain for verification. The recursion
helps cross-chain bridges to reduce gas cost on blockchains because
of simple verification on the compatible curve. The security of re-
cursive proofs relies on random oracle assumption, which can be
instantiated by a cryptographic hash function in practice [45].

Performance gains. We use the signature validation circuit for
Cosmos [11] as an example to show concrete numbers of the verifi-
cation circuit of deVirgo in Table 1. We record the size of the whole

verification circuit in the 274

column, the size for the GKR part in
the 374 column, and the size for the PC part in the 4th column, as
the number of signatures in data-parallel circuits increases from
1 to 128 in the 1% column. The number of gates in the 2" column
equals the sum of numbers of gates in the 3¢ column and the 4%
column. As shown in Table 1, although the data-parallel circuit size
expands, the size for the sumcheck part in deVirgo’s verification
circuit does not change. That is because the verification for the
GKR part is only based on the structure of the sub-circuit, which
is identical among different copies. However, the size for the PC
part in deVirgo’s verification circuit up-scales sub-linearly in the
number of copies due to the growth of the polynomial size. Even
given 128 copies of the signature validation circuit, the bottleneck
of deVirgo’s verification circuit is the sumcheck part. Therefore,
the recursive proof size and the recursive verification cost are inde-
pendent of the number of signatures to validate in our instance. In
addition, the prover time of Groth16 on the verification circuit of
deVirgo is only 25% of the prover time of deVirgo in practice. There-
fore, our recursive proof scheme reduces the on-chain verification
cost from 6x10% gas (an estimation) to 2x10° gas for verifying a
new block header of Cosmos on Ethereum.

6 IMPLEMENTATION AND EVALUATION

To demonstrate the practicality of zkBridge, we implement a bi-
directional bridge between Cosmos [11] (a PoS blockchain built
on top of the Tendermint [57] protocol) and Ethereum. Supports
for other PoS blockchains can be similarly implemented with more

zkBridge: Trustless Cross-chain Bridges Made Practical

engineering effort. In this section, we discuss implementation detail,
its performance, as well as operational cost.

The bridge from Cosmos to Ethereum is realized with the full
blown zkBridge protocol presented so far to achieve practical perfor-
mance. In comparison, the direction from Ethereum to Cosmos incur
much less overhead and does not require deVirgo. Therefore, in
what follows, we focus on the direction from Cosmos to Ethereum.

6.1 Implementation detail

The bridge from Cosmos to Ethereum consists of four components:
a relayer that fetches Cosmos block headers and sends them to
Ethereum (implemented in 300+ lines of Python), deVirgo (imple-
mented in 10000+ lines of C++) for distributed proof generation, a
handcrafted recursive verification circuit, and an updater contract
on Ethereum (implemented in 600+ lines of Solidity). Our signature
verification circuit is based on the optimized signature verification
circuit [14]. However, we use Gnark instead of Circom as in [14]
for better efficiency for proof generation.

6.1.1 Generating correctness proofs. Relay nodes submit Cosmos
block headers to the updater contract on Ethereum along with cor-
rectness proofs, which proves that the block is properly signed by
the Cosmos validator committee appointed by the previous block.
(In Cosmos a hash of the validator committee members is included
in the previous block.)

In Cosmos, each block header contains about 128 EdDSA sig-
natures (on Curve25519), Merkle roots for transactions and states,
along with other metadata, where 32 top signatures are required to
achieve super-majority stakes. However, the most efficient curve
supported by the Ethereum Virtual Machine (EVM) is BN254. To

verify Cosmos digital signatures in EVM, one must simulate Curve25519

on curve BN254, which will lead to large circuits. Concretely, to
verify a Cosmos block header (mainly, to verify about 32 signatures),
we need about 64 million gates. We implement deVirgo (Section 4)
and recursive verification (Section 5) to accelerate proof generation
and verification.

Moreover, in practical deployment, multiple relayers can form
a pipeline to increase the throughput. Looking ahead, based on the
evaluation results, our implementation can handle 1 second block
time in Cosmos with 120+ capable relayers in the network.

For proof verification, we build an outer circuit that verifies
Virgo proofs and use Gnark [16] to generate the final Groth16 proof
that can be efficiently verified by the updater contract on Ethereum.

6.1.2 The updater contract. We implement the updater contract
on Ethereum in Solidity that verifies Groth16 proofs and keeps a
list of the Cosmos block headers in its persistent storage. The cost
of verifying a Groth16 proof on-chain is about 221K gas.

The updater contract exposes a simple API which takes block
height as its input, and returns the corresponding block header.
The receiver contracts can then use the block header to complete
application-specific verification.

Batching. Instead of calling the updater contract on every new
block header, we implement batching where the updater contract
stores Merkle roots of batches of B consecutive block headers. The
prover will first collect B consecutive blocks, and then make a
unified proof for all B blocks. The updater contract will only need

3013

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

4
10% | _s— The original Virgo
—a— 8-machine deVirgo
—§ —s— 32-machine deVirgo
§ 103 128-machine deVirgo
3
[}
E
=
5 102
>
2
o
10! o =
| | | | |
2

32 128

Number of signatures

512

Figure 2: Prover time of deVirgo and the original Virgo for
Cosmos block header verification.

to verify one proof for the batch of B blocks. After the verification,
the updater contract checks the difficulty, maintains the longest
chain, and stores the Merkle tree root. It costs 132K gas on top of the
cost of verifying a Groth16 proof (which is independent of B). We
only store the Merkle tree root of B blocks on-chain to reduce cost.

Thus B can be set to balance user experience and cost: With
a larger B, users need to wait longer, but the cost of running the
system is lower.

We implement the aforementioned batched proof verification
and show the experimental results in Section 6.2. In addition, we
propose a more complex batching optimization presented in Ap-
pendix G for further optimization.

6.2 Evaluation

We evaluate the performance of zkBridge (Cosmos to Ethereum)
from four aspects: proof generation time, proof generation commu-
nication cost, proof size, and on-chain verification cost.

6.2.1 Experiment setup. We envision that a relayer node in zk-
Bridge will be deployed as a service in a managed network, therefore
we evaluate zkBridge in a data-center-like environment. Specifically,
we run all the experiments on 128 AWS EC2 c5.24xlarge instances
with the Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz and
192GB of RAM. Our implementation for the proof generation is
parallelized with at most 128 machines. We report the average run-
ning time of 10 executions. Whenever applicable, we report costs
both in terms of running time and monetary expenses.

6.2.2 Proof generation time of deVirgo. We first evaluate the main
cryptographic building block—deVirgo—and compare its perfor-
mance with the original Virgo [76]. The source code of the original
Virgo is obtained at https://github.com/sunblaze-ucb/Virgo. We run
both protocols on the same circuit for correctness proofs, which
mainly consists of N invocation of EADSA signature verification.
Figure 2 shows the prover time (in seconds) against different N.
For deVirgo, we repeat the experiment with 8, 32, 128 distributed
machines. According to Fig. 2, the prover time of the original Virgo

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Tiancheng Xie et al.

Proof Gen. Time (seconds) | Proof Gen. Comm. (GB) | Proof Size (Bytes) | On-chain Ver. Cost (gas)
of sigs | deVirgo | RV | total total | per-machine w/oRV | w/RV w/oRV | w/ RV
8 12.52 490 | 17.42 7.34 0.92 1946476 | 131 78M 221K
32 12.80 541 | 18.21 32.24 1.01 1952492 | 131 78M 221K
128 13.28 5.49 | 18.77 131.89 | 1.03 1958508 | 131 79M 221K

Table 2: Evaluation results. RV is the shorthand for recursive verification.

increases linearly in the number of signatures N, while the prover
time of deVirgo is almost independent of N until N is greater than
the number of servers when computation becomes an bottleneck.
The linear scalability suggests that the workload of each machine
only depends on its own sub-circuit and the communication over-
head is small. Table 2 reports the communication cost among paral-
lel machines. The total communication cost is linear in the number
of machines, consistent with the analysis in Section 4.4, with each
machine sending and receiving around 1 GB of data. Since we envi-
sion a relayer node in zkBridge to be deployed in a data-center-like
environment, the amount of traffic is reasonable.

In practice, the Cosmos block headers typically have N =128
signatures while 32 top signatures are sufficient to achieve super-
majority. Therefore, generating a correctness proof for a Cosmos
block header would take more than 400 seconds with the original
Virgo, but it decreases to 13.28 seconds with deVirgo, implying a
30x speedup. In general, as is consistent with the analysis in Sec-
tion 4, deVirgo accelerates the proof generation on data-parallel
circuits with N copies by a factor of almost N, which is optimal for
distributed algorithms.

6.2.3 Proof size and verification time. To reduce on-chain verifi-
cation cost, we use the recursive verification technique presented
in Section 5. Now we report on its efficacy.

Recursive proof generation time. We implement recursive ver-
ification by invoking Groth16 (constructed using gnark [16]) on
the verification circuit. We report the proof time in deVirgo, the
generation time of recursive proofs (the column marked RV), and
the sum, in Table 2, for various numbers of signatures. The RV time
almost remains constant in the number of signatures verified by
the deVirgo proofs. That is because of the data-parallel structure
of the state transition proof circuit: the size of Groth16 verification
circuit is only a function of the size of a sub-circuit.

The main benefit of recursive verification is a reduction in both
proof size and verification cost.

Reduced proof size. Table 2 shows the proof size both with and
without recursive verification. For the practical scenario where
N =32, the proof size is reduced from 1.9 MB to 131 Bytes. Overall,
for N =32, with an increase of about 25% in prover time, we get a
reduction of around 14000x in proof size.

Reduced on-chain verification cost. The final proof is 131 Bytes
while the final verification only costs 3 pairings. As shown in Table 2,
the on-chain verification cost is constant (221K). In comparison,
without recursive verification, directly verifying Virgo proofs on-
chain would be infeasible. (Our estimation of the gas cost is 78M,
which far exceeds the single block gas limit 30M).

3014

6.2.4 Comparison with optimistic bridges. With batching, the con-
firmation latency of zkBridge is under 2 minutes, including 3x32
seconds for waiting for all blocks in the batch and another 20 sec-
onds for proof generation. While this is not blazing fast, in compar-
ison, optimistic bridges have much longer confirmation time. E.g.,
NEAR’s Rainbow bridge has a challenge window of 4 hours [15]
before which the transfer cannot be confirmed.

6.3 Cost analysis

In this section, we analyze the operational cost of zkBridge, which
consists of off-chain cost (generating proofs) and on-chain cost
(storing headers and verifying proofs).

Off-chain cost. Off-chain cost can vary significantly based on the
deployment. While we use AWS in our performance benchmark, it
may not be the best option for practical deployment. AWS service
is expensive due to its high margin, elastic scaling capability, and
high reliability, which isn’t necessary for our proof generation pro-
cess. To show a representative range, we consider two deployment
options: cloud-based and self-hosted. For cloud-based deployment,
we search for reputable and economical dedicated server rental
services and choose Hetzner[17] as an example. For self-hosted
options, we calculate the cost to purchase the hardware and the
on-going cost (mainly the electricity).

On AWS c5.24xlarge, it takes 18 seconds to generate a proof
with 32 machines. Renting a server with a similar spec as AWS
c5.24xlarge from Hetzner costs $253.12 per month, thus the cost
of cloud-based deployment with Hetzner will be around $8100 per
month for all 32 machines. It translates to $0.02 per block.

To estimate the cost for self-hosted deployment, we use online
tools to configure a machine with a comparable spec to that in
AWS. Table 3 in Appendix H reports the configuration and each ma-
chine costs around $4.5k. The total setup cost is thus around $4.5k
%x32=$144k. For self-hosted servers, the main on-going cost is elec-
tricity. With each machine consuming 657W power, a 32-machine
cluster consumes 0.105 kWh per block. Assuming US average elec-
tricity rate $0.12/KWh [8], the electricity cost is $0.012 per block,
or $5184 per month.

On-chain cost. On-chain cost refers to the total gas used for on-
chain operation, and we report the equivalent USD cost based on
the gas price (about 20 gwei) and ETH price (about 1600 USD) at the
time of writing (August 2022). If we use efficient batched proofs, for
a batch of N headers, we only need one-time Groth16 verification
for on-chain block validation, which costs around 210k +132k =342k
gas, roughly $11. If we choose N =32 for example, the on-chain
cost will be $0.3 per block. Moreover, if we adopt the optimization

zkBridge: Trustless Cross-chain Bridges Made Practical

mentioned in appendix G, we can further reduce the on-chain cost
and offload the cost to users if the number of users is large.

6.4 Ethereum to other EVM-compatible chains

So far we have focused on the bridge from Cosmos to Ethereum
because generating and verifying correctness proofs for that direc-
tion is challenging. We also implement a prototype of a bridge from
Ethereum to any EVM-compatible blockchains, including Cosmos.

The high level idea is simple: upon receiving a block header,
the updater contract on the receiver chain (e.g., Cosmos) verifies
the PoW and appends it to the list of headers if the verification is
passed. However, a wrinkle to the implementation is that Ethereum
uses a memory hard hash function, EthHash [71], which is pro-
hibitively inefficient to run on-chain. Basically, EthHash involves
randomly accessing elements in a 1 gigabyte dataset (called a DAG)
derived from a public seed and the block height. Generating the
DAGs on-chain is prohibitively expensive.

Our idea is to pre-compute many DAGs off-chain and store their
hashes on-chain. Specifically, as part of zkBridge setup, we pre-
compute 2,048 DAGs , build a Merkle tree for each DAG using
MiMC [33], and store the Merkle roots on-chain. Per EthHash spec-
ification, a new DAG is generated every 30,000 blocks, so 2,048 of
them can last for 10 years; the off-chain pre-computation process
takes no more than 4 days. Then, the correctness proofs will show
that a given EthHash PoW is correct with respect to the Merkle
root of the DAG corresponding to the block in question. We em-
phasize that the setup process is verifiable and anyone can verify
the published Merkle roots on their own before using the service.
The circuit for verifying EthHash PoW has around 2 million gates.

The rest of the protocol is the same as a regular light client,
which involves storing the headers, following the longest chain by
computing accumulated difficulty, resolving forks, etc.

Cost analysis. Since EthHash PoW verification circuit has only
around 2 million constraints, a single machine with the configu-
ration in Appendix H can generate a proof within 10 seconds. As
long as the receiver chain is EVM-compatible (such as Cosmos), the
on-chain cost will be close to that presented in Section 6.3, since
the updater contract only verifies Groth16 proofs in all cases.

7 RELATED WORK

In this section, we compare zkBridge to existing cross-chain bridge
systems and the line of work on zk-rollups which also uses ZKPs
for scalability and security.

Cross-chain bridges in the wild and security issues. Cross-
chain systems are widely deployed and used. Below we briefly sur-
vey the representative ones. The list is not meant to be exhaustive.
PolyNetwork [3] is an interoperability protocol using a side-chain as
the relay with a two-phase commitment protocol. Wormhole [5] is a
generic message-passing protocol secured by a network of guardian
nodes, and its security relies on 2/3 of the committee being honest.
Ronin operates in a similar model. While relying on decentralized
committees for security, practical deployment usually opts for rela-
tively small ones for efficiency (e.g., 9 in case of Ronin). Committee
breaches are far from being rare in practice. In a recent exploit
against Ronin [27], the attacker obtained five of the nine validator

3015

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

keys, stealing 624 million USD. PolyNetwork and Wormhole were
also recently attacked, losing $611m [6] and $326m [10] respectively.
Key compromise was suspected in the PolyNetwork attack.

An alternative design is to leverage economic incentives. No-
mad [7] (which recently lost more than $190m to hackers due to
an implementation bug [22]) and Near’s Rainbow Bridge [4] are
such examples. These systems require participants to deposit a
collateral, and rely on a watchdog service to continuously monitor
the blockchain and confiscate offenders’ collateral upon detect-
ing invalid updates. Optimistic protocols fundamentally require a
long confirmation latency in order to ensure invalid updates can
be detected with high probability (e.g., Near [4] requires 4 hours).
Moreover, participants must deposit significantly collateral (e.g., 20
ETH in Near [4]). Both issues can be avoided by zkBridge.

In summary, compared to existing protocols, zkBridge achieve
both efficiency and cryptographic assurance. zkBridge is “trustless”
in that it does not require extra assumptions other than those of
blockchains and underlying cryptographic protocols. It also avoids
the long confirmation of optimistic protocols.

zk-rollups. Rollups are protocols that batch transaction execution
using ZKPs to scale up the layer-1 blockchains. Starkware [28],
ZkSync [31], and Polygon Zero [25] are a few examples.

These zk-rollup solutions have not been applied to the bridge
setting, where our work is the first to use ZKP to enable a decen-
tralized trustless bridge. In addition, the current zk-rollup work
in general has not dealt with such large circuits as in zkBridge,
whereas in our work, we need to design and develop a number of
techniques including deVirgo and proof recursion to make build-
ing a ZKP-based bridge practical for the first time. In particular,
we leverage the data parallelism of the circuits to obtain a ZKP
protocol that is more than 100x faster than existing protocols for
the workload in zkBridge and combine it with proof recursion for
efficient on-chain verification. The idea behind deVirgo protocol
may be applicable to zk-rollups too.

ACKNOWLEDGMENTS

This material is in part based upon work supported by the National
Science Foundation (NSF) under Grant No. TWC-1518899 and Grant
No. 2144625, DARPA under Grant No. N66001-15-C-4066, the Cen-
ter for Long-Term Cybersecurity (CLTC), the Simons Foundation,
and NTT Research. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of these institutes.

REFERENCES

[1] 2014. Filecoin: A Decentralized Storage Network.
//filecoin.io/filecoin.pdf

2] 2017. Hyperledger Sawtooth. (2017). https://sawtooth.hyperledger.org/

3] 2020. Poly Network. https://poly.network/. (2020).

4] 2020. Rainbow Bridge. https://near.org/bridge/. (2020).

5]

6]

7]

(2014). hittps:

2020. Wormhole Solana. https://solana.com/wormbhole. (2020).

2021. At least $611 million stolen in massive cross-chain hack. (2021).

2021. Nomad Protocol. https://docs.nomad.xyz/the-nomad-protocol/overview.
(2021).

2022. Average Price of Electricity. https://www.eia.gov/electricity/monthly/
epm_table_grapher.php?t=epmt_5_6_a. (2022).

2022. Axelar. https://axelar.network/. (2022).

2022. Blockchain Bridge Wormhole Suffers Possible Exploit Worth Over
$326M. (2022). https://www.coindesk.com/tech/2022/02/02/blockchain-bridge-
wormhole-suffers-possible- exploit-worth-over-250m/

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

[11]
[12]

[13
[14
[15]

[16
[17
[18
[19]
[20]

[21]

[22]

[23]

[24

[25]
[26]
[27]

[28]
[29]

[30]

[34]

[35

[36

[37]

[38

[39

[40

[41

[42]

S
&

[44]

[45

2022. Cosmos. https://cosmos.network/. (2022).

2022. Cryptocurrency prices, charts and market capitalizations. (2022).
https://coinmarketcap.com/

2022. ed25519-circom. https://github.com/Electron-Labs/ed25519-circom. (2022).
2022. ed25519-circom. https://github.com/Electron-Labs/ed25519-circom. (2022).
2022. ETH-NEAR Rainbow Bridge - NEAR Protocol. (2022).
https://near.org/blog/eth-near-rainbow-bridge/

2022. gnark. https://docs.gnark.consensys.net/en/latest/. (2022).

2022. Hetzner. https://www.hetzner.com/. (2022).

2022. LayerZero. https://layerzero.network/. (2022).

2022. libSNARK. https://github.com/scipr-lab/libsnark. (2022).

2022. Multi-chain future likely as Ethereum’s DeFi dominance declines
| Bloomberg Professional Services. (2022). https://www.bloomberg.com/
professional/blog/multi-chain-future-likely- as-ethereums-defi-dominance-
declines/

2022. A multichain approach is the future of the blockchain industry. (2022).
https://cointelegraph.com/news/a- multichain-approach-is-the-future- of-the-
blockchain-industry

2022. Nomad crypto bridge loses $200 million in “chaotic” hack.
https://www.theverge.com/2022/8/2/23288785/nomad-bridge-200-million-
chaotic-hack-smart-contract-cryptocurrency. (2022).

2022. Polygon Hermez. https://polygon.technology/solutions/polygon-hermez/.
(2022).

2022. Polygon Miden. https://polygon.technology/solutions/polygon-miden/.
(2022).

2022. Polygon Zero. https://polygon.technology/solutions/polygon-zero/. (2022).
2022. Risc Zero. https://www.risczero.com/. (2022).

2022. Ronin Attack Shows Cross-Chain Crypto Is a ‘Bridge’ Too Far. (2022).
https://www.coindesk.com/layer2/2022/04/05/ronin-attack-shows-cross-
chain-crypto-is-a-bridge-too-far/

2022. Starkware. https://starkware.co/. (2022).

2022. Vbuterin comments on [AMA] We are the EF’s Research Team (Pt. 7: 07
January, 2022). (2022). https://old.reddit.com/r/ethereum/comments/rwojtk/
ama_we_are_the_efs_research_team_pt_7_07_january/hrngyk8/

2022. YouTube includes NFTs in new creator tools. (2022). https://www.nbcnews.
com/pop-culture/viral/youtube-includes- nfts-new- creator-tools-rcnal5813
2022. ZkSync. https://zksync.io/. (2022).

2022-04-24. Beeple sold an NFT for $69 million - The Verge. (2022-04-24).
https://www.theverge.com/2021/3/11/22325054/beeple-christies- nft- sale-cost-
everydays-69-million

Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. 2016. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 191-219.
Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. 2017. Ligero: Lightweight sublinear arguments without a trusted setup.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security.

Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. 2014.
Proofs of space: When space is of the essence. In International Conference on
Security and Cryptography for Networks. Springer, 538-557.

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint (2018).

Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Succinct Arguments
for R1CS. In EUROCRYPT 2019. 103-128.

Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. 2014. Proof of
activity: Extending bitcoin’s proof of work via proof of stake [extended abstract]
y. ACM SIGMETRICS Performance Evaluation Review 42, 3 (2014), 34-37.

Iddo Bentov, Rafael Pass, and Elaine Shi. 2016. Snow White: Provably Secure
Proofs of Stake. IACR Cryptol. ePrint Arch. 2016, 919 (2016).

Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
2012. High-speed high-security signatures. Journal of cryptographic engineering
2,2 (2012), 77-89

B. Biinz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short Proofs for Confidential Transactions and More. In Proceedings of the
Symposium on Security and Privacy (SP), 2018, Vol. 00. 319-338.

Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. 2021.
SoK: Blockchain Light Clients. Cryptology ePrint Archive (2021).

Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. 2017. A Zero
Knowledge Sumcheck and its Applications. CoRR abs/1704.02086 (2017).
arXiv:1704.02086 http://arxiv.org/abs/1704.02086

Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,
and Nicholas Ward. 2020. Marlin: Preprocessing zkSNARKs with Universal and
Updatable SRS. In EUROCRYPT 2020. 738-768.

Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. 2020. Fractal: Post-quantum
and Transparent Recursive Proofs from Holography. In EUROCRYPT 2020.

Tiancheng Xie et al.

769-793.

Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical Verified
Computation with Streaming Interactive Proofs. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference (ITCS °12).

Bernardo David, Peter Ga, Aggelos Kiayias, and Alexander Russell. 2017.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake
protocol. Cryptology ePrint Archive (2017).

Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. 2015. Proofs of space. In Annual Cryptology Conference. Springer,
585-605.

Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Crypto 1986.

Dario Fiore and Anca Nitulescu. 2016. On the (in) security of SNARKSs in the
presence of oracles. In Theory of Cryptography Conference. Springer, 108-138.
Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. 2019. Plonk:
Permutations over lagrange-bases for oecumenical noninteractive arguments
of knowledge. Cryptology ePrint Archive (2019).

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies.
In Proceedings of the 26th symposium on operating systems principles. 51-68.
Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2015. Delegating
Computation: Interactive Proofs for Muggles. 7 ACM 62, 4, Article 27 (Sept.
2015), 64 pages.

Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In
EUROCRYPT 2016. 305-326.

Jessica Hamlin. 2022. Big investors are finally serious about crypto. but expe-
rienced talent is still scarce. (Mar 2022). https://www.institutionalinvestor.com/
article/b1x0gr2y3dzzp3/Big-Investors- Are-Finally-Serious- About-Crypto-But-
Experienced-Talent-Is-Still-Scarce

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
2017. Ouroboros: A provably secure proof-of-stake blockchain protocol. In
Annual international cryptology conference. Springer, 357-388.

Jae Kwon. 2014. Tendermint: Consensus without mining. Draft v. 0.6, fall 1, 11
(2014).

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. 1992. Algebraic
Methods for Interactive Proof Systems. J. ACM 39, 4 (Oct. 1992), 859-868.
Ralph C Merkle. 1987. A digital signature based on a conventional encryption
function. In Conference on the theory and application of cryptographic techniques.
Silvio Micali. 2000. Computationally Sound Proofs. SIAM J. Comput. (2000).
Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
Decentralized Business Review (2008), 21260.

Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. 2021. Attacking
the defi ecosystem with flash loans for fun and profit. In International Conference
on Financial Cryptography and Data Security. Springer, 3-32.

Ling Ren and Srinivas Devadas. 2016. Proof of space from stacked expanders.
In Theory of Cryptography Conference. Springer, 262-285.

Srinath Setty. 2020. Spartan: Efficient and General-Purpose zkSNARKs Without
Trusted Setup. In CRYPTO 2020. Springer International Publishing, 704-737.
Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papamanthou, Alin
Tomescu, and Yupeng Zhang. 2021. Hyperproofs: Aggregating and Maintaining
Proofs in Vector Commitments. JACR Cryptol. ePrint Arch. (2021), 599.

Justin Thaler. 2013. Time-Optimal Interactive Proofs for Circuit Evaluation. In
Advances in Cryptology — CRYPTO 2013, Ran Canetti and Juan A. Garay (Eds.).
Justin Thaler. 2015. A Note on the GKR Protocol. (2015). Available at
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf.

Riad S Wahby, Max Howald, Siddharth Garg, Abhi Shelat, and Michael Walfish.
2016. Verifiable asics. In Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 759-778.

Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.
2018. Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 926-943.

Lawrence Wintermeyer. 2021. Institutional money is pouring into the crypto
market and its only going to grow. (Aug 2021). https://www.forbes.com/sites/
lawrencewintermeyer/2021/08/12/institutional-money-is- pouring- into- the-
crypto-market-and-its-only-going-to-grow/?sh=2660a69d1459

Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1-32.

Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion
Stoica. 2018. DIZK: A Distributed Zero-Knowledge Proof System. (2018).
Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover
Computation. In Advances in Cryptology (CRYPTO).

Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang
Xie, and Yupeng Zhang. 2021. Doubly efficient interactive proofs for general
arithmetic circuits with linear prover time. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. 159-177.

[75] Jiaheng Zhang, Tiancheng Xie, Thang Hoang, Elaine Shi, and Yupeng Zhang.

2022. Polynomial Commitment with a {One-to-Many} Prover and Applications.

zkBridge: Trustless Cross-chain Bridges Made Practical CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

In 31st USENIX Security Symposium (USENIX Security 22). 2965-2982.

[76] Jiaheng Zhang, Tiancheng Xie, Y. Zhang, and D. Song. 2020. Transparent
Polynomial Delegation and Its Applications to Zero Knowledge Proof. 2020 IEEE
Symposium on Security and Privacy (SP) (2020), 859-876.

[77] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over

Dynamic Outsourced Databases. In IEEE Symposium on Security and Privacy

(S&P) 2017.

Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos,

and Charalampos Papamanthou. 2018. vRAM: Faster verifiable RAM with

program-independent preprocessing. In Proceeding of IEEE Symposium on

Security and Privacy (S&P).

[78

3017

	Abstract
	1 Introduction
	1.1 Our contribution

	2 Background
	2.1 Notations
	2.2 Blockchains
	2.3 Light client protocol
	2.4 Zero-knowledge proofs

	3 zkBridge Protocol
	3.1 Overview of zkBridge design
	3.2 Protocol detail
	3.3 Application use cases
	3.4 Efficient Proof Systems for zkBridge

	4 Distributed proof generation
	4.1 Preliminaries
	4.2 Distributed sumcheck
	4.3 Distributed polynomial commitment
	4.4 Combining everything together

	5 Reducing proof size and verifier time
	6 Implementation and Evaluation
	6.1 Implementation detail
	6.2 Evaluation
	6.3 Cost analysis
	6.4 Ethereum to other EVM-compatible chains

	7 Related work
	References
	A Background: The sumcheck protocol
	B The distributed sumcheck protocol
	C Background: The GKR protocol
	D The distributed PC protocol
	E Background: The Virgo protocol
	F The distributed Virgo protocol
	G On-chain Gas Cost Optimization
	H Prover machine configuration

