

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA Tiancheng Xie et al.

on 𝒞2, denoted by 𝒮𝒞2, will keep track of block headers of 𝒞1, based

on which transaction inclusion (and other events) can be verified

with Merkle proofs. This approach, however, incurs a significant

computation and storage overhead, since 𝒮𝒞2 needs to verify all

block headers and keep a long and ever-growing list of them. For

non-PoW chains, the verification can be even more expensive. For

example, for a bridge between a Proof-of-Stake chain (like Cosmos)

and Ethereum, verifying a single block header on Ethereum would

cost about 64 million gas [15] (about $6300 at time of writing),

which is prohibitively high.

Currently, as an efficient alternative, many bridge protocols

(PolyNetwork, Wormhole, Ronin, etc.) resort to a committee-based

approach: a committee of validators are entrusted to sign off on state

transfers. In these systems, the security boils down to, e.g., the hon-

est majority assumption. This is problematic for two reasons. First,

the extra trust assumption in the committee means the bridged asset

is not as secure as native ones, complicating the security analysis of

downstream applications. Second, relying on a small committee can

lead to single point failures. Indeed, in a recent exploit of the Ronin

bridge [27], the attackers were able to obtain five of the nine valida-

tor keys, through which they stole 624 million USD, making it the

largest attack in the history of DeFi by Apr 20221. Even the second

and third largest attacks are also against bridges ($611m was stolen

from PolyNetwork [6] and $326m was stolen from Wormhole [10]),

and key compromise was suspected in the PolyNetwork attack.

Our approach. We present zkBridge to enable an efficient cross-

chain bridge without trusting a centralized committee. The main

idea is to leverage zk-SNARK, which are succinct non-interactive

proofs (arguments) of knowledge [19, 34, 36, 37, 41, 44, 45, 51, 64, 69,

73, 74, 77, 78]. A zk-SNARK enables a prover to efficiently convince

𝒮𝒞2 that a certain state transition took place on 𝒞1. To do so, 𝒮𝒞2
will keep track of a digest𝐷 of the latest tip of 𝒞1. To sync 𝒮𝒞2 with

new blocks in 𝒞1, anyone can generate and submit a zk-SNARK

that proves to 𝒮𝒞2 that the tip of 𝒞1 has advanced from 𝐷 to 𝐷′.

This design offers three benefits. First, the soundness property

of a zk-SNARK ensures the security of the bridge. Thus, we do not

need additional security requirements beyond the security of the

underlying blockchains. In particular zkBridge does not rely on a

committee for security. Second, with a purpose-built zk-SNARK, 𝒞2
can verify a state transition of 𝒞1 far more efficiently than encoding

the consensus logic of 𝒞1 in 𝒮𝒞2. In this way, we reduce the cost

from 64𝑀 gas to only 220𝐾 gas on 𝒞2. The storage overhead of

the bridge is reduced to constant. Third, by separating the bridge

from application-specific logic, zkBridge makes it easy to enable

additional applications on top of the bridge.

Technical challenges. To prove correctness of a given compu-

tation outcome using a zk-SNARK, one first needs to express the

computation as an arithmetic circuit. While zk-SNARK verification

is fast (logarithmic in the size of the circuit or even constant), proof

generation time is at least linear, and in practice can be prohibitively

expensive. Moreover, components used by real-world blockchains

are not easily expressed as an arithmetic circuit. For example, the

widely used EdDSA digital signature scheme is very efficient to

verify on a CPU, but is expensive to express as an arithmetic circuit,

1see the ranking at https://rekt.news/leaderboard

requiring more than 2 million gates [13]. In a cross-chain bridge,

each state transition could require the verification of hundreds of

signatures depending on the chains, making it prohibitively expen-

sive to generate the required zk-SNARK proof. In order to make

zkBridge practical, we must reduce proof generation time.

To this end, we propose two novel ideas. First, we observe that the

circuits used by cross-chain bridges are data-parallel, in that they

contain multiple identical copies of a smaller sub-circuit. Specif-

ically, the circuit for verifying 𝑁 digital signatures contains 𝑁

copies of the signature verification sub-circuit. To leverage the

data-parallelism, we propose deVirgo, a novel distributed zero-

knowledge proofs protocol based on Virgo [76]. deVirgo enjoys

perfect linear scalability, namely, the proof generation time can

be reduced by a factor of 𝑀 if the generation is distributed over

𝑀 machines. The protocol is of independent interest and might

be useful in other scenarios. Other proof systems can be similarly

parallelized [72].

While deVirgo significantly reduces the proof generation time,

verifying deVirgo proofs on chain, especially for the billion-gate

circuits in zkBridge, can be expensive for smart contracts where

computational resources are extremely limited. To compress the

proof size and the verification cost, we recursively prove the correct-

ness of a (potentially large) deVirgo proof using a classic zk-SNARK

due to Groth [54], hereafter denoted Groth16. The Groth16 prover

outputs constant-size proofs that are fast to verify by a smart con-

tract on an EVM blockchain. We stress that one cannot use Groth16

to generate the entire zkBridge proof because the circuits needed

in zkBridge are too large for a Groth16 prover. Instead, our ap-

proach of compressing a deVirgo proof using Groth16 gives the

best of both worlds: a fast deVirgo parallel prover for the bulk of

the proof, where the resulting proof is compressed into a succinct

Groth16 proof that is fast to verify. We elaborate on this technique

in Section 5. This approach to compressing long proofs is also being

adopted in commercial zk-SNARK systems such as [23, 24, 26].

Implementation and evaluation. To demonstrate the practical-

ity of zkBridge, we implement an end-to-end prototype of zkBridge

between Cosmos and Ethereum, including the protocols of deVirgo

and the recursive verification, and the transaction relay applica-

tion. The experiments show that our system achieves practical

performance. deVirgo can generate a block header relay proof in

18s, which is more than 100x faster than the original Virgo system

with a single machine. Additionally, the on-chain cost decreases

from 64 million gas (direct signature verification) to 220K gas by

the recursive proof on the deVirgo system. Specifically, relaying a

transaction from Cosmos to Ethereum costs 221K gas.

1.1 Our contribution

In this paper, we make the following contributions:

• zkBridge: an efficient cross-chain bridge that avoids entrusting a

committee for correctness. We leverage succinct proofs to reduce

on-chain verification cost and ensure correctness.

• deVirgo: a distributed proof generation protocol that is more than

100x faster than Virgo for the workload in zkBridge. The novel

proof system is of independent interest.

3004

zkBridge: Trustless Cross-chain Bridges Made Practical CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA

• To reduce the on-chain verification cost of deVirgo proofs, we

use recursive proofs that achieve the best of both deVirgo (fast

proof) and Groth16 (small proof and fast on-chain verification).

• We fully implement an end-to-end prototype of zkBridge be-

tween Cosmos and Ethereum. We evaluate the performance of

zkBridge and show that it is the first practical cross-chain bridge

that achieves cryptographic assurance of correctness.

2 BACKGROUND

In this section we cover the preliminaries, essential background on

blockchains, and zero-knowledge proofs.

2.1 Notations

Let F be a finite field and 𝜆 be a security parameter. We use 𝑓 (),ℎ()

for polynomials, 𝑥,𝑦 for single variables, bold letters x,y for vec-

tors of variables. Both x[𝑖] and 𝑥𝑖 denote the 𝑖-th element in x.

For x, we use notation x[𝑖 :𝑘] to denote slices of vector x, namely

x[𝑖 :𝑘]= (𝑥𝑖 ,𝑥𝑖+1,···,𝑥𝑘). We use i to denote the vector of the binary

representation of some integer 𝑖 .

Merkle Tree. Merkle tree [59] is a data structure widely used

to build commitments to vectors because of its simplicity and effi-

ciency. The prover time is linear in the size of the vector while the

verifier time and proof size are logarithmic in the size of the vector.

Given a vector of x= (𝑥0,···,𝑥𝑁−1), it consists of three algorithms:

• rt←MT.Commit(x)

• (x[𝑖],𝜋𝑖)←MT.Open(x,𝑖)

• {1,0}←MT.Verify(𝜋𝑖 ,x[𝑖],rt).

2.2 Blockchains

A blockchain is a distributed protocol where a group of nodes col-

lectively maintains a ledger which consists of an ordered list of

blocks. A block blk is a data-structure that stores a header blkH and

a list of transactions, denoted by blk= {blkH;trx1,...,trx𝑡 }. A block

header contains metadata about the block, including a pointer to

the previous block, a compact representation of the transactions

(typically a Merkle tree root), validity proofs such as solutions to

cryptopuzzles in Proof-of-Work systems or validator signatures in

Proof-of-Stake ones.

Security of blockchains. The security of blockchains has been

studied extensively. Suppose the ledger in party 𝑖’s local view is

LOG𝑟
𝑖 = [blk1,blk2,...,blk𝑟] where 𝑟 is the height. For any 2≤𝑘 ≤ 𝑟

and the 𝑘-th block blk𝑘 , blk𝑘 .ptr=blkH𝑘−1, so every single block

is linked to the previous one. For the purpose of this paper, we care

about two (informal) properties:

1. Consistency: For any honest nodes 𝑖 and 𝑗 , and for any

rounds of 𝑟0 and 𝑟1, it must be satisfied that either LOG𝑟0
𝑖 is

a prefix of LOG𝑟1
𝑗 or vice versa.

2. Liveness: If an honest node receives some transaction trx at

some round 𝑟 , then trx will be included into the blockchain

of all honest nodes eventually.

Smart contracts and gas. In addition to reaching consensus over

the content of the ledger, many blockchains support expressive

user-defined programs called smart contracts, which are stateful

programs with state persisted on a blockchain. Without loss of gen-

erality, smart contract states can be viewed a key-value store (and

often implemented as such.) Users send transactions to interact

with a smart contract, and potentially alter its state.

A key limitation of existing smart contract platforms is that com-

putation and storage are scarce resources and can be considerably

expensive. Typically smart contract platforms such as Ethereum

charge a fee (sometimes called gas) for every step of computation.

For instance, EdDSA signatures are extremely cheap to verify (a

performant CPU can verify 71000 of them in a second [40]), but ver-

ifying a single EdDSA signature on Ethereum costs about 500K gas,

which is about $49 at the time of writing. Storage is also expensive

on Ethereum. Storing 1KB of data costs about 0.032 ETH, which can

be converted to approximately $90 at the time of writing. This limi-

tation is not unique to Ethereum but rather a reflection of the low ca-

pacity of permissionless blockchains in general. Therefore reducing

on-chain computation and storage overhead is one of the key goals.

2.3 Light client protocol

In a blockchain network, there are full nodes as well as light ones.

Full nodes store the entire history of the blockchain and verify all

transactions in addition to verifying block headers. Light clients,

on the other hand, only store the headers, and therefore can only

verify a subset of correctness properties.

The workings of light clients depend on the underlying consen-

sus protocol. The original Bitcoin paper contains a light client pro-

tocol (SPV [61]) that uses Merkle proofs to enable a light client who

only stores recent headers to verify transaction inclusion. A num-

ber of improvements have been proposed ever since. For instance,

in Proof-of-Stake, typically a light client needs to verify account

balances in the whole blockchain history (or up to a snapshot), and

considers the risk of long range attacks. For BFT-based consensus,

a light client needs to verify validator signatures and keeps track

of validator rotation. We refer readers to [42] for a survey.

To abstract consensus-specific details away, we use

LightCC(LCS𝑟−1,blkH𝑟−1,blkH𝑟)→{true,false}

to denote the block validation rule of a light client: given a new

block header blkH𝑟 , LightCC determines if the header represents a

valid next block after blkH𝑟−1 given its current state LCS𝑟−1. We

define the required properties of a light client protocol as follows:

Definition 2.1 (Light client protocol). A light client protocol en-

ables a node to synchronize the block headers of the state of the

blockchain. Suppose all block headers in party 𝑖’s local view is

LOG𝐻𝑟
𝑖 = [blkH1,blkH2,...,blkH𝑟], the light client protocol satisfies

following properties:

1. Succinctness: For each state update, the light client protocol

only takes 𝑂 (1) time to synchronize the state.

2. Liveness: If an honest full node receives some transaction

trx at some round 𝑟 , then trx must be included into the

blockchain eventually. A light client protocol will eventually

include a block header blkH𝑖 such that the corresponding

block includes the transaction trx.

3. Consistency: as for a full node, but with respect to LOG𝐻𝑟
𝑖 .

3005

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA Tiancheng Xie et al.

2.4 Zero-knowledge proofs

An argument system for an NP relationshipℛ is a protocol between

a computationally-bounded prover 𝒫 and a verifier 𝒱 . At the end

of the protocol, 𝒱 is convinced by 𝒫 that there exists a witness w

such that (x;w) ∈ℛ for some input x. We use 𝒢 to represent the

generation phase of the public parameters pp. Formally, consider

the definition below, where we assume ℛ is known to 𝒫 and 𝒱 .

Definition 2.2. Let 𝜆 be a security parameter and ℛ be an NP re-

lation. A tuple of algorithm (𝒢,𝒫,𝒱) is a zero-knowledge argument

of knowledge for ℛ if the following holds.

• Completeness. For every pp output by 𝒢 (1𝜆), (x;w) ∈ℛ

and 𝜋←𝒫 (x,w,pp),

Pr[𝒱 (x,𝜋,pp)=1]=1

• Knowledge Soundness. For any PPT prover 𝒫∗, there ex-

ists a PPT extractor ℰ such that for any auxiliary string z,

pp←𝒢 (1𝜆), 𝜋∗←𝒫∗ (x,z,pp),𝑤←ℰ𝒫
∗ (·) (x,z,pp), and

Pr[(x;w) ∉ℛ∧𝒱 (x,𝜋∗,pp)=1] ≤negl(𝜆),

where ℰ𝒫
∗ (·) represents that ℰ can rewind 𝒫∗,

• Zero knowledge. There exists a PPT simulator 𝒮 such that

for any PPT algorithm 𝒱∗, (x;w) ∈ℛ, pp output by 𝒢 (1𝜆),

it holds that

View(𝒱∗ (pp,x)) ≈𝒮𝒱
∗

(x),

where View(𝒱∗ (pp,x)) denotes the view that the verifier

sees during the execution of the interactive process with 𝒫 ,

𝒮𝒱
∗
(x) denotes the view generated by 𝒮 given input x and

transcript of 𝒱∗, and ≈ denotes two perfectly indistinguish-

able distributions.

We say that (𝒢,𝒫,𝒱) is a succinct argument system2 if the total

communication (proof size) between 𝒫 and 𝒱 , as well as 𝒱 ’s run-

ning time, are poly(𝜆,|x|,log|ℛ|), where |ℛ| is the size of the circuit

that computes ℛ as a function of 𝜆.

3 ZKBRIDGE PROTOCOL

At a high level, a smart contract is a stateful program with states

persisted on a blockchain. A bridge like zkBridge is a service that

enables smart contracts on different blockchains to transfer states

from one chain to another in a secure and verifiable fashion.

Below we first explain the design of zkBridge and its workflow

through an example, then we specify the protocol in more detail.

For ease of exposition, we focus on one direction of the bridge, but

the operation of the opposite direction is symmetric.

3.1 Overview of zkBridge design

To make it easy for different applications to integrate with zkBridge,

we adopt a modular design where we separate application-specific

logic (e.g., verifying smart contract states) from the core bridge

functionality (i.e., relaying block headers).

Figure 1 shows the architecture and workflow of zkBridge. The

core bridge functionality is provided by a block header relay

network (trusted only for liveness) that relays block headers of

𝒞1 along with correctness proofs, and an updater contract on

𝒞2 that verifies and accepts proofs submitted by relay nodes. The

2In our construction, we only need a succinct non-interactive arguments of knowledge
(SNARK) satisfying the first two properties and the succinctnes for validity. The zero
knowledge property could be used to further achieve privacy.

updater contract maintains a list of recent block headers, and up-

dates it properly after verifying proofs submitted by relay nodes;

it exposes a simple and application-agnostic API, from which ap-

plication smart contracts can obtain the latest block headers of the

sender blockchain and build application-specific logic on top of it.

Applications relying on zkBridge will typically deploy a pair of

contracts, a sender contract and a receiver contract on 𝒞1 and 𝒞2, re-

spectively. We refer to them collectively as application contracts or

relying contracts. The receiver contract can call the updater contract

to obtain block headers of 𝒞1, based on which they can perform ap-

plication specific tasks. Depending on the application, receiver con-

tracts might also need a user or a third party to provide application-

specific proofs, such as Merkle proofs for smart contract states.

As an example, Fig. 1 shows the workflow of cross-chain token

transfer, a common use case of bridges, facilitated by zkBridge. Sup-

pose a user 𝒰 wants to trade assets (tokens) she owns on blockchain

𝒞1 in an exchange residing on another blockchain 𝒞2 (presumably

because 𝒞2 charges lower fees or has better liquidity), she needs

to move her funds from 𝒞1 to 𝒞2. A pair of smart contracts 𝒮𝒞lock
and 𝒮𝒞mint are deployed on blockchains 𝒞1 and 𝒞2 respectively.

To move the funds, the user locks $v tokens in 𝒮𝒞lock (Step 1

in Fig. 1) and then requests $v tokens to be issued by 𝒮𝒞mint. To

ensure solvency, 𝒮𝒞mint should only issue new tokens if and only if

the user has locked tokens on 𝒞1. This requires 𝒮𝒞mint to read the

states of 𝒮𝒞lock (the balance of 𝒰 , updated in step 2) from a differ-

ent blockchain, which it cannot do directly. zkBridge enables this

by relaying the block headers of 𝒞1 to 𝒞2 along with proofs (step 3

and 4). 𝒮𝒞mint can retrieve the block headers from the smart con-

tract frontend (the updater contract), check that the balance of user

𝒰 is indeed $v (step 5), and only then mint $v tokens (Step 6).

Besides cross-chain token transfer, zkBridge can also enable vari-

ous other applications such as cross-chain collateralized loans, gen-

eral message passing, etc. We present three use cases in Section 3.3.

3.2 Protocol detail

Having presented the overview, in this section, we specify the

protocol in more detail.

3.2.1 Security and system model. For the purpose of modeling

bridges, we model a blockchain 𝒞 as a block-number-indexed key-

value store, denoted as 𝒞 [𝑡] :𝒦→𝒱 where 𝑡 is the block number,

𝒦 and 𝒱 are key and value spaces respectively. In Ethereum, for

example, 𝒱 = {0,1}256 and keys are the concatenation of a smart

contract identifier 𝒮𝒞 and a per-smart-contract storage address 𝐾 .

For a given contract 𝒮𝒞, we denote the value stored at address 𝐾

at block number 𝑡 as 𝒮𝒞 [𝑡,𝐾], and we call 𝒮𝒞 [𝑡,·] the state of 𝒮𝒞

at block number 𝑡 . Again, for ease of exposition, we focus on the

direction from 𝒮𝒞1 to 𝒮𝒞2, denoted as ℬℛ[𝒮𝒞1→𝒮𝒞2].

Functional and security goals. We require the bridgeℬℛ[𝒮𝒞1→

𝒮𝒞2] to reflect states of 𝒮𝒞1 correctly and timely:

1. Correctness: For all 𝑡,𝐾 ,𝒮𝒞2 accepts awrong state𝑉 ≠𝒮𝒞1 [𝑡,𝐾]

with negligible probability.

2. Liveness: Suppose 𝒮𝒞2 needs to verify 𝒮𝒞1’s state at (𝑡,𝐾), the

bridge will provide necessary information eventually.

Security assumptions. For correctness, zkBridge does not intro-

duce extra trust assumptions besides those made by the underlying

3006

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA Tiancheng Xie et al.

The updater contract maintains the light client’s internal state

including a list of block headers of 𝒞1 in headerDAG. It has two

publicly exposed functions. The HeaderUpdate function can be

invoked by any block header relay node, providing supposedly the

next block header and a proof as input. If the proof verifies against

the current light client state LCS and blkH𝑟−1, the contract will

do further light-client checks, and then the state will be updated

accordingly. Since the caller of this function must pay a fee, DoS

attacks are naturally prevented.

The GetHeader function can be called by receiver contracts to

get the block header at height 𝑡 . Receiver contracts can use the

obtained block header to finish application-specific verification,

potentially with the help of a user or some third party.

Application contracts. zkBridge has a modular design in that the

updater contract is application-agnostic. Therefore in ℬℛ[𝒮𝒞1→

𝒮𝒞2], it is up to the application contracts 𝒮𝒞1 and 𝒮𝒞2 to de-

cide what the information to bridge is. Generally, proving that

𝒮𝒞1 [𝑡,𝐾]=𝑉 is straightforward:𝒮𝒞2 can request for aMerkle proof

for the leaf of the state Trie Tree (at block number 𝑡) corresponding

to address 𝐾 . The receiver contract can obtain blkH𝑡 from the up-

dater contract by calling the functionGetHeader(𝑡). Then it can ver-

ify 𝒮𝒞1 [𝑡,𝐾]=𝑉 against the Merkle root in blkH𝑡 . Required Merkle

proofs are application-specific, and are typically provided by the

users of 𝒮𝒞2, some third party, or the developer/maintainer of 𝒮𝒞2.

Security arguments. The security of zkBridge is stated in the

following theorem.

Theorem 3.1. The bridge ℬℛ[𝒮𝒞1→𝒮𝒞2] implemented by pro-

tocols 1 and 2 satisfies both consistency and liveness, assuming the

following holds:

1. there is at least one honest node in the block header relay

network;

2. the sender chain is consistent and live;

3. the sender chain has a light-client verifier as in Def. 2.1; and

4. the succinct proof system is sound.

Proof (sketch). To prove the consistency of DAG, we first need

to convert the DAG into a list of blocks to match the definition of

blockchain consistency. We define an algorithm Longest :DAG→

List such that given aDAG, the algorithmwill output a listMainChain

representing the main chain. For example, if the sender chain is

Ethereum, the algorithm Longest will first calculate the path with

the maximum total difficulty in the DAG represented by L, and then

output MainChain :=L[:−𝐾]. Here 𝐾 is a security parameter. By

assumption 1 and 2, there will be an honest node in our system

running either a full node or a light node, which will be consistent

with the sender chain. Also, according to assumption 1, at least

one prover node is honestly proving the light client execution. By

assumption 4 that the proof system is sound, the updater contract

will correctly verify the light-client state. We argue that the updater

contract is correctly running the light-client protocol. Therefore,

by the consistency of the light-client protocol,MainChain will be

consistent with any other honest node.

The liveness of our protocol directly follows from the liveness

of 𝒞1 and its light client protocol.

3.3 Application use cases

In this section, we present three examples of applications that zk-

Bridge can support.

Transaction inclusion: a building block. A common building

block of cross-chain applications is to verify transaction inclusion

on another blockchain. Specifically, the goal is to enable a receiver

contract 𝒮𝒞2 on 𝒞2 to verify that a given transaction trx has been

included in a block 𝐵𝑡 on 𝒞1 at height 𝑡 . To do so, the receiver

contract 𝒮𝒞2 needs a user or a third-party service to provide the

Merkle proof for trx in 𝐵𝑡 . Then, 𝒮𝒞2 will call the updater contract

to retrieve the block header of 𝒞1 at height 𝑡 , and then verify the pro-

vided Merkle proof against the Merkle root contained in the header.

Next, we will present three use cases that extend the building

block above.

1. Message passing and data sharing. Cross-chain message

passing is another common building block useful for, e.g., sharing

off-chain data cross blockchains.

Message passing can be realized as a simple extension of transac-

tion inclusion, by embedding the message in a transaction. Specif-

ically, to pass a message𝑚 from 𝒞1 to 𝒞2, a user can embed𝑚 in

a transaction trx𝑚 , send trx𝑚 to 𝒞1, and then execute the above

transaction inclusion proof.

2. Cross-chain assets transfer/swap. Bridging native assets is a

common use case with growing demand. In this application, users

can stake a certain amount of token 𝑇𝐴 on the sender blockchain

𝒞1, and get the same amount of token 𝑇𝐴 (for native assets transfer

if eligible) or a certain amount of token 𝑇𝐵 of approximately the

same value (for native assets swap) on the receiver blockchain 𝒞2.

With the help of the transaction inclusion proof, native assets trans-

fer/swap can be achieved, as illustrated at a high level in Section 3.1.

Here we specify the protocol in more detail.

To set up, the developers will deploy a lock contract 𝒮𝒞lock on 𝒞1
and amint contract𝒮𝒞mint on 𝒞2. For a user whowants to exchange

𝑛𝐴 of token 𝑇𝐴 for an equal value in token 𝑇𝐵 , she will first send

a transaction trxlock that transfers 𝑛𝐴 of token 𝑇𝐴 to 𝒮𝒞lock, along

with an address 𝑎𝑑𝑑𝑟𝒞2
to receive token 𝑇𝐵 on 𝒞2. After trxlock is

confirmed in a block 𝐵, the user will send a transaction trxmint

to 𝒮𝒞mint, including sufficient information to verify the inclusion

of trxlock. Based on information in trxmint, 𝒮𝒞mint will verify that

trxlock has been included on 𝒞1, and transfer the corresponding 𝑇𝐵
tokens to the address 𝑎𝑑𝑑𝑟𝒞2

specified in trxlock. Finally, 𝒮𝒞mint

will mark trxlock as minted to conclude the transfer.

3. Interoperations for NFTs. In the application of Non-fungible

Token (NFT) interoperations, users always lock/stake the NFT on

the sender blockchain, and get minted NFT or NFT derivatives on

the receiver blockchain. By designing the NFT derivatives, the cross-

chain protocol can separate the ownership and utility of an NFT

on two blockchain systems, thus supporting locking the ownership

of the NFT on the sender blockchain and getting the utility on the

receiver blockchain.

3.4 Efficient Proof Systems for zkBridge

The most computationally demanding part of zkBridge is the zero-

knowledge proofs generation that relay nodes must do for every

3008

zkBridge: Trustless Cross-chain Bridges Made Practical CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA

block. So far we have abstracted away the detail of proof genera-

tion, which we will address in Sections 4 and 5. Here, we present

an overview of our solution.

For Proof-of-Stake chains, the proofs involve verifying hundreds

of signatures. A major source of overhead is field transformation be-

tween different elliptic curves when the sender and receiver chains

use different cryptography implementation, which is quite com-

mon in practice. For example, Cosmos uses EdDSA on Curve25519

whereas Ethereum natively supports a different curve BN254. The

circuit for verifying a single Cosmos signature in the field supported

by Ethereum involves around 2 million gates, thus verifying a block

(typically containing 32 signatures) will involve over 64 million

gates, which is too big for existing zero-knowledge proofs schemes.

To make zkBridge practical, we propose two ideas.

Reducing proof time with deVirgo We observe that the ZKP cir-

cuit for verifying multiple signatures is composed of multiple copies

of one sub-circuit. Our first idea is to take advantage of this special

structure and distribute proof generation across multiple servers.

We propose a novel distributed ZKP protocol dubbed deVirgo, which

carefully parallelizes the Virgo [76] protocol, one of the fastest ZKP

systems (in terms of prover time) without a trusted setup. With de-

Virgo, we can accelerate proof generation in zkBridge with perfect

linear scalability. We will dive into the detail of deVirgo in Section 4.

Reducing on-chain cost by recursive verification. While ver-

ifying deVirgo proofs on ordinary CPUs is very efficient, on-chain

verification is still costly. To further reduce the on-chain verification

cost (computation and storage), we use recursive verification: the

prover recursively proves the correctness of a (potentially large)

Virgo proof using a smart-contract-friendly zero-knowledge pro-

tocol to get a small and verifier-efficient proof. At a high level, we

trade slightly increased proof generation time for much reduced

on-chain verification cost: the proof size reduces from 200+KB to

131 bytes, and the required computation reduces from infeasible

amount of gas to 210K gas. We will present more detail of recursive

verification in Section 5.

4 DISTRIBUTED PROOF GENERATION

As observed previously, the opportunity for fast prover time stems

from the fact that the circuit for verifying 𝑁 signatures consists

of 𝑁 copies of identical sub-circuits. This type of circuits is called

data-parallel [67]. The advantage of data-parallel circuits is that

there is no connection among different sub-copies. Therefore, each

copy can be handled separately. We consider accelerating the proof

generation on such huge circuits by dealing with each sub-circuit

in parallel. In this section, we propose a distributed zk-SNARK

protocol on data-parallel circuits.

There are many zero knowledge proofs protocols [19, 34, 36, 37,

45, 51, 64, 69, 73, 74, 76] supporting our computation. We choose

Virgo as the underlying ZKP protocols for two reasons: 1. Virgo

does not need a trusted setup and is plausibly post-quantum secure.

2. Virgo is one of the fastest protocols with succinct verification

time and succinct proof size for problems in large scale. We present

a new distributed version of Virgo for data-parallel arithmetic cir-

cuits achieving optimal scalability without any overhead on the

proof size. Specifically, our protocol of deVirgo on data-parallel

circuits with 𝑁 copies using 𝑁 parallel machines is 𝑁 times faster

than the original Virgo while the proof size remains the same. Our

scheme is of independent interest and is possible to be used in other

Virgo-based systems to improve the efficiency.

We provide the overall description of deVirgo as follows. Sup-

pose the prover has 𝑁 machines in total, labeled from 𝒫0 to 𝒫𝑁−1.

Assume 𝒫0 is the master node while other machines are ordinary

nodes. Assume 𝒱 is the verifier. Given a data-parallel arithmetic

circuit consisting of 𝑁 identical structures, the naïve algorithm

of the distributed Virgo is to assign each sub-circuit to a separate

node. Then each node runs Virgo to generate the proof separately.

The concatenation of 𝑁 proofs is the final proof. Unfortunately, the

proof size in this naive algorithm scales linearly in the number of

sub-circuits, which can be prohibitively large for data-parallel cir-

cuits with many sub-copies. To address the problem, our approach

removes the additional factor of 𝑁 in the proof size by aggregating

messages and proofs among distributed machines. Specifically, the

original protocol of Virgo consists of two major building blocks.

One is the GKR protocol [53], which consists of 𝑑 sumcheck pro-

tocols [58] for a circuit of depth 𝑑 . The other is the polynomial

commitment (PC) scheme. We design distributed schemes for each

of the sumcheck and the polynomial commitment (PC). In our dis-

tributed sumcheck protocol, a master node 𝒫0 aggregates messages

from all machines, then sends the aggregated message to 𝒱 in every

round, instead of sending messages from all machines directly to 𝒱 .

Our protocol for distributed sumcheck has exactly the same proof

size as the original sumcheck protocol, thus saving a factor 𝑁 over

the naïve distributed protocol. Additionally, in our distributed PC

protocol, we optimize the commitment phase and make 𝒫0 aggre-

gate 𝑁 commitments into one instead of sending 𝑁 commitments

directly to 𝒱 . During the opening phase, the proof can also be ag-

gregated, which improves the proof size by a logarithmic factor in

the size of the polynomial.

We present preliminaries in Section 4.1, the detail of the dis-

tributed sumcheck protocol in Section 4.2 and the detail of the

distributed PC protocol in Section 4.3. We combine them all to-

gether to build deVirgo in Section 4.4.

4.1 Preliminaries

Multi-linear extension/polynomial. Let 𝑉 : {0,1}ℓ → F be a

function. The multi-linear extension/polynomial of 𝑉 is the unique

polynomial 𝑉̃ : Fℓ→ F such that 𝑉̃ (x) =𝑉 (x) for all x ∈ {0,1}ℓ . 𝑉̃

can be expressed as:

𝑉̃ (x)=
∑︁

b∈{0,1}ℓ

∏ℓ

𝑖=1
((1−𝑥𝑖) (1−𝑏𝑖)+𝑥𝑖𝑏𝑖)) ·𝑉 (b),

where 𝑏𝑖 is 𝑖-th bit of b.

Identity function. Let 𝛽 : {0,1}ℓ×{0,1}ℓ→{0,1} be the identity

function such that 𝛽 (x,y)=1 if x=y, and 𝛽 (x,y)=0 otherwise. Sup-

pose 𝛽 is the multilinear extension of 𝛽 . Then 𝛽 can be expressed

as: 𝛽 (x,y)=
∏ℓ

𝑖=1 ((1−𝑥𝑖) (1−𝑦𝑖)+𝑥𝑖𝑦𝑖).

4.2 Distributed sumcheck

Background: the sumcheck protocol. The sumcheck problem

is to sum a multivariate polynomial 𝑓 : Fℓ → F over all binary

inputs:
∑
𝑏1,· · ·,𝑏ℓ ∈{0,1} 𝑓 (𝑏1,···,𝑏ℓ). The sumcheck protocol allows

3009

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA Tiancheng Xie et al.

the prover 𝒫 to convince the verifier 𝒱 that the summation is 𝐻

via a sequence of interactions, and the formal protocol is presented

in Protocol 3 in Appendix A. The high-level idea of the sumcheck

protocol is to divide the verification into ℓ rounds. In each round,

the prover only sends a univariate polynomial to the verifier. The

verifier checks the correctness of the polynomial by a single equa-

tion. Then this variable will be replaced by a random point sampled

by the verifier. As there are totally ℓ variables in 𝑓 , after ℓ rounds,

the claim about the summation will be reduced to a claim about

𝑓 on a random vector r. Given the oracle access to 𝑓 on a random

vector, the verifier can check the last claim.

Background: the sumcheck equation in the GKR protocol.

In the GKR protocol working for a layered arithmetic circuit, both

parties build a sumcheck equation to describe wire connections

between the 𝑖-th layer and the (𝑖+1)-th layer. Without loss of gen-

erality, we suppose there are 2ℓ gates in each layer. We define a

polynomial 𝑉𝑖 : {0,1}
ℓ→F such that 𝑉𝑖 (b) represents the value of

gate b in layer 𝑖 , where b is the binary representation of integer 𝑏.

We use 𝑉̃𝑖 as the multi-linear polynomial of 𝑉𝑖 . Then we can write

a sumcheck equation

𝑉̃𝑖 (g)=
∑︁

x∈{0,1}ℓ

𝑓 (x,𝑉̃𝑖+1 (x)), (1)

where 𝑓 is some polynomial from Fℓ to F and g is a random vector

in Fℓ . By invoking the sumcheck protocol, the prover reduces a

claim about the 𝑖-th layer to a claim about the (𝑖+1)-th layer. Sup-

pose the circuit depth is 𝑑 , after running 𝑑 sumcheck protocols, the

prover reduces the claim about the output layer to the input layer,

which the verifier itself can verify. Due to the space limitation, we

present the formal GKR protocol in Protocol 5 in Appendix C.

We treat Equation 1 as the sumcheck equation in the GKR pro-

tocol and give the complexity of the sumcheck protocol running

on Equation 1 as follows.

Complexity of the sumcheck protocol. For the multivariate

polynomial of 𝑓 defined in Equation 1, the prover time in Protocol 3

is 𝑂 (2ℓ). The proof size is 𝑂 (ℓ) and the verifier time is 𝑂 (ℓ).

In the setting of data-parallel circuits, we distribute the sumcheck

polynomial 𝑓 among parallel machines. Suppose the data-parallel

circuit C consists of 𝑁 identical sub-circuits of C0, ··· ,C𝑁−1 and

𝑁 =2𝑛 for some integer𝑛without loss of generality. The polynomial

𝑓 :Fℓ→F is defined on 𝐶 by Equation 1.

The idea of our distributed sumcheck protocol is to treat each

sub-copy as a new circuit as there is no wiring connections across

different sub-circuits. We define polynomials of 𝑓 (0) , ··· , 𝑓 (𝑁−1)

on C0,···,C𝑁−1 :F
ℓ−𝑛→F respectively by Equation 1 in the GKR

protocol, which have the same form as 𝑓 defined on 𝐶 . The naïve

approach is running the sumcheck protocol on these polynomials

separately. As there are 𝑁 proofs in total and each size is 𝑂 (ℓ−𝑛),

the total proof size will be 𝑂 (𝑁 (ℓ−𝑛)). To reduce the proof size

back to ℓ , the prover needs to aggregate 𝑁 proofs to generate a

single proof on 𝑓 . We observe that the sumcheck protocol on data-

parallel circuits satisfies 𝑓 (𝑖) (x) = 𝑓 (x,i). As shown in Protocol 3,

the protocol proceeds for ℓ variables round by round. We first run

the sumcheck protocol on variables that are irrelevant to the index

of sub-copies in the circuit. In the first (ℓ−𝑛) rounds, each prover

𝒫𝑖 generates the univariate polynomial of 𝑓
(𝑖)
𝑗 (𝑥 𝑗) for 𝑓

(𝑖) (x) and

sends it to 𝒫0. 𝒫0 constructs the univariate polynomial for 𝑓𝑗 (𝑥 𝑗)

by summing 𝑓
(𝑖)
𝑗 (𝑥 𝑗) altogether since 𝑓𝑗 (𝑥 𝑗) =

𝑁∑
𝑖=0

𝑓
(𝑖)
𝑗 (𝑥 𝑗), and

sends 𝑓𝑗 (𝑥 𝑗) to 𝒱 in the 𝑗-th round. The aggregation among par-

allel machines reduces the proof size to constant in each round.

Hence the final proof size is only 𝑂 (ℓ). A similar approach has

appeared in [68]. The main focus of [68] was improving the prover

time of the sumcheck protocol in the GKR protocol to 𝑂 (2ℓ (ℓ−𝑛))

for data-parallel circuits, which was later subsumed by [73] with

a prover running in 𝑂 (2ℓ) time. Instead, our scheme is focused on

improving the prover time by 𝑁 times with distributed computing

on 𝑁 machines without any overhead on the proof size.

With this idea in mind, we rewrite the sumcheck equation on

𝑓 as follows.

𝐻 =

∑︁

b∈{0,1}ℓ

𝑓 (b)=

𝑁−1∑︁

𝑖=0

∑︁

b∈{0,1}ℓ−𝑛

𝑓 (𝑖) (b).

Then we divide the original sumcheck protocol on 𝑓 into 3 phases

naturally in the setting of distributed computing.We present the for-

mal protocol of distributed sumcheck in Protocol 4 in Appendix B.

1. From round 1 to round (ℓ − 𝑛) (step 1. in Protocol 4), 𝒫𝑖

runs the sumcheck protocol on 𝑓 (𝑖) and sends the univariate

polynomial to 𝒫0. After receiving all univariate polynomials

from other machines,𝒫0 aggregates these univariate polyno-

mials by summing them together and sends the aggregated

univariate polynomial to the verifier. When 𝒫0 receives a

random query from the verifier, 𝒫0 relays the random chal-

lenge to all nodes as the random query of the current round.

2. In round (ℓ−𝑛) (step 2. in Protocol 4), the polynomials of

𝑓 (0) ,···,𝑓 (𝑁−1) have been condensed to one evaluation on a

random vector r∈Fℓ−𝑛 . 𝒫0 uses these 𝑁 points as an array

to construct the multi-linear polynomial 𝑓 ′ : F𝑛→ F such

that 𝑓 ′ (x)= 𝑓 (r,x[1 :𝑛]).3

3. After round (ℓ−𝑛) (step 3. in Protocol 4), 𝒫0 continues to

run the sumcheck protocol on 𝑓 ′ with 𝒱 in last 𝑛 rounds.

In this way, the computation of 𝒫𝑖 is equivalent to running the

sumcheck protocol in Virgo on C𝑖 . It accelerates the sumcheck

protocol in Virgo by 𝑁 times without any overhead on the proof

size using 𝑁 distributed machines, which is optimal for distributed

algorithms both in asymptotic complexity and in practice. We give

the complexity of Protocol 4 in the following.

Complexity of the distributed sumcheck protocol. For the

multivariate polynomial of 𝑓 defined in Equation 1, The total prover

work is 𝑂 (2ℓ) while the prover work for each machine is 𝑂 (2
ℓ

𝑁).

The communication between 𝑁 machines is 𝑂 (𝑁ℓ). The proof size

and the verifier time are both 𝑂 (ℓ).

4.3 Distributed polynomial commitment

In the last step of the sumcheck phase, the prover needs to prove

to the verifier 𝑦= 𝑓 (𝑟1,···,𝑟ℓ) for some value 𝑦. In Virgo, The prover

convinces 𝒱 of the evaluation by invoking the PC scheme. We

present the PC scheme in Virgo and the complexity of the scheme

in the following.

3The approach can extend to the product of two multi-linear polynomials, which
matches the case in Virgo.

3010

zkBridge: Trustless Cross-chain Bridges Made Practical CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA

Background: the polynomial commitment in Virgo. Letℱ be

a family of ℓ-variate multi-linear polynomial over F. LetH, L be two

disjoint multiplicative subgroups of F such that |H|=2ℓ and |L|=

𝜌 |H|, where 𝜌 is a power of 2. The polynomial commitment (PC)

in Virgo for 𝑓 ∈ℱ and r∈Fℓ consists of the following algorithms:

• pp←PC.KeyGen(1𝜆): Given the security parameter 𝜆, the

algorithm samples a collision resistant hash function from

a hash family as pp.

• com𝑓 ← PC.Commit(𝑓 ,pp): Given a multi-linear polyno-

mial 𝑓 , the prover treats 2ℓ coefficients of 𝑓 as evaluations

of a univariate polynomial 𝑓𝑈 on H. The prover uses the

inverse fast Fourier transform (IFFT) to compute 𝑓𝑈 . Then

the prover computes fL as evaluations of 𝑓𝑈 on L via the fast

Fourier transform (FFT). Let com𝑓 =MT.Commit(fL).

• (𝑦,𝜋𝑓) ← PC.Open(𝑓 ,r,pp): The prover computes 𝑦 = 𝑓 (r).

Given 𝑐 =𝑂 (𝜆) random indexes (𝑘1,···,𝑘𝑐), the prover com-

putes (fL [𝑘1], 𝜋𝑘1) = MT.Open(fL,𝑘1), ··· , (fL [𝑘𝑐], 𝜋𝑘𝑐) =

MT.Open(fL,𝑘𝑐). Let 𝜋𝑓 = (fL [𝑘1],𝜋𝑘1 , ···, fL [𝑘𝑐],𝜋𝑘𝑐).
4

• {1, 0} ← PC.Verify(com𝑓 , r,𝑦, 𝜋𝑓 , pp): The verifier parses

𝜋𝑓 = (qL [𝑘1],𝜋𝑘1 ,···,qL [𝑘𝑐],𝜋𝑘𝑐), then checks that qL [𝑘1], ···,

qL [𝑘𝑐] are consistent with 𝑦 by a certain equation 𝑝 (𝑓L [𝑘1],

··· , 𝑓L [𝑘𝑐],𝑦) = 0, 5 and checks that fL [𝑘1], ··· , fL [𝑘𝑐] are

consistent with com𝑓 by MT.Verify (𝜋𝑘1 ,fL [𝑘1], com𝑓), ···,

MT.Verify (𝜋𝑘𝑐 ,fL [𝑘𝑐],com𝑓). If all checks pass, the verifier

outputs 1, otherwise the verifier outputs 0.

Complexity of PC in Virgo. The prover time is 𝑂 (ℓ ·2ℓ). The

proof size is 𝑂 (𝜆ℓ2) and the verifier time is 𝑂 (𝜆ℓ2).

In the setting of distributed PC, 𝒫𝑖 knows 𝑓
(𝑖) . With the help

of 𝛽 function, we have

𝑓 (r)=

𝑁−1∑︁

𝑖=0

𝛽 (r[ℓ−𝑛+1 : ℓ],i) 𝑓 (𝑖) (r[1 : ℓ−𝑛]). (2)

A straightforward way for distributed PC is that 𝒫𝑖 runs the PC

scheme on 𝑓 (𝑖) separately. In particular, 𝒫𝑖 invokes PC.Commit to

commit 𝑓 (𝑖) in the beginning of the sumcheck protocol. In the last

round, 𝒫𝑖 runs PC.Open to compute 𝑓 (𝑖) (r[1 : ℓ −𝑛]) and sends

the proof to 𝒱 . After receiving all 𝑓 (𝑖) (r[1 : ℓ−𝑛]) from 𝒫𝑖 , 𝒱 in-

vokes PC.Verify to validate 𝑁 polynomial commitments separately.

Then 𝒱 computes 𝛽 (r[ℓ −𝑛+1 : ℓ],i) for each 𝑖 . Finally, 𝒱 checks

𝑓 (r)=
∑𝑁−1
𝑖=0 𝛽 (r[ℓ−𝑛+1 : ℓ],i) 𝑓 (𝑖) (r[1 : ℓ−𝑛]).

Although the aforementioned naïve distributed protocol achieves

𝑂 (2ℓ (ℓ−𝑛)) in computation time for each machine, the total proof

size is 𝑂 (𝜆𝑁 (ℓ −𝑛)2) as the individual proof size for each 𝒫𝑖 is

𝑂 (𝜆(ℓ−𝑛)2). To reduce the proof size, we optimize the algorithm

by aggregating 𝑁 commitments and 𝑁 proofs altogether. For sim-

plicity, we assume 𝜌 =1without loss of generality in the multi-linear

polynomial commitment6. We present the formal protocol of dis-

tributed PC in Protocol 6 in Appendix D.

4The prover also computes log |L | polynomials of 𝑓1, · · · , 𝑓log|L| depending on 𝑓 .

But sizes of these polynomials are
|L|
2 , · · ·,1 respectively. The prover commits these

polynomial and opens them on at most 𝑐 locations correspondingly. Our techniques
on distributed commitment and opening can apply to these smaller polynomials easily.
We omit the process for simplicity. It brings a logarithmic factor in the size of the
polynomial on the proof size and the verification time.
5𝑝 also takes all openings on polynomials of 𝑓1,· · ·,𝑓log|L| (at most𝑐 for each polynomial)
as input, we omit them for simplicity.
6In Virgo, 𝜌 =32 for security requirements. Our scheme can extend to 𝜌 =32 easily.

The idea of our scheme is that each𝒫𝑖 exchanges data with other

machines immediately after computing f
(𝑖)
L

instead of invoking

MT.Commit on f
(𝑖)
L

directly. The advantage of such arrangement

is that the prover aggregates evaluation on the same index into one

branch and can open them together by a single Merkle tree proof for

this branch. As described in the polynomial commitment of Virgo,

the prover needs to open 𝑓L on some random indexes depending

on r in PC.Open. As r is identical to each 𝑓 (𝑖) , the prover would

open each 𝑓
(𝑖)
L

at same indexes. If the prover aggregates 𝑓
(𝑖)
L

by

the indexes, she can open 𝑁 values in one shot by providing only

one Merkle tree path instead of naïvely providing 𝑁 Merkle tree

paths, which helps her to save the total proof size by a logarithmic

factor in the size of the polynomial.

Specifically,𝒫𝑖 collects evaluations of f
(0)
L
[𝑖+1], ···, f

(𝑁−1)
L

[𝑖+1]

with identical index of (𝑖+1) in L from other machines (step 1. and

step 2.). Then𝒫𝑖 invokesMT.Commit to get a commitment, 𝑐𝑜𝑚ℎ (𝑖) ,

for these values, and submits 𝑐𝑜𝑚ℎ (𝑖) to 𝒫0 (step 3.). 𝒫0 invokes

MT.Commit on 𝑐𝑜𝑚ℎ (0) , ···, 𝑐𝑜𝑚ℎ (𝑁 −1) to compute the aggregated

commitment, com, and𝒫0 sends com to 𝒱 (step 4.). In the PC.Open

phase, given a random index 𝑘 𝑗 from 𝒱 , 𝒫0 retrieves f
(𝑁−1)
L

[𝑘 𝑗],

···, f
(𝑁−1)
L

[𝑘 𝑗] from𝒫𝑘 𝑗−1, computes (com
ℎ (𝑘𝑗 −1)

,𝜋𝑘 𝑗
) =MT.Open

(com,𝑘 𝑗), and sends these messages to 𝒱 (step 5. and step 6.). 𝒱 can

validate 𝑁 evaluations by invokingMT.Verify only once (step 7.).

With this approach, we reduce the proof size to 𝑂 (𝜆(𝑁 +ℓ2)). And

the complexity of Protocol 6 is shown in the following.

Complexity of distributed PC. Given that 𝑓 is a multi-linear

polynomial with ℓ variables, the total communication among 𝑁 ma-

chines is 𝑂 (2ℓ). The total prover work is 𝑂 (2ℓ ·ℓ) while the prover

work for each device is (2
ℓ

𝑁 ·ℓ). The proof size is 𝑂 (𝜆(𝑁 +ℓ
2)). The

verification cost is 𝑂 (𝜆(𝑁 +ℓ2)).

4.4 Combining everything together

In this section, we combine the distributed sumcheck and the dis-

tributed PC altogether to build deVirgo.

For a data-parallel layered arithmetic circuit𝐶 with 𝑁 copies and

𝑑 layers, following the workflow of Virgo in Protocol 7 in Appen-

dix E, our distributed prover replaces 𝑑 sumcheck schemes in Virgo

by 𝑑 distributed sumcheck schemes, and replaces the PC scheme

in Virgo by our distributed PC scheme to generate the proof. We

present the formal protocol of deVirgo in Protocol 8 in Appendix F.

And we have the theorem as follows.

Theorem 4.1. Protocol 8 is an argument of knowledge satisfy-

ing the completeness and knowledge soundness in Definition 2.2 for

the relation 𝐶 (x,w) = 1, where 𝐶 consists of 𝑁 identical copies of

𝐶0,···,𝐶𝑁−1.

Proof (sketch). Completeness. The completeness is straight-

forward.

Knowledge soundness. deVirgo generates the same proof as

Virgo for 𝑑 sumcheck protocols. So we only need to consider the

knowledge soundness of distributed PC scheme. If the commitment

of 𝑓 is inconsistent with the opening of 𝑓 (r) in the distributed PC

3011

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA Tiancheng Xie et al.

scheme, there must exist at least one 𝑓 (𝑖) (r[1 : ℓ−𝑛]) being incon-

sistent with the commitment 𝑓 by Equation 2. Otherwise, when all

𝑓 (𝑖) (r[1 : ℓ−𝑛]) are consistent with the commitment of 𝑓 , 𝑓 (r) must

be consistent with the commitment of 𝑓 . As shown in Protocol 6,

𝑐𝑜𝑚𝑓 is equivalent to 𝑐𝑜𝑚𝑓 (𝑖) with additional dummy messages in

each element of the vector in the Merkle tree commitment. It does

not affect the soundness of the PC in Virgo in the random oracle

model [75, 76]. The verifier outputs 0 in the PC.Verify phase with

the probability of (1−negl(𝜆)). Therefore, deVirgo still satisfies

knowledge soundness.

The zero-knowledge property is not necessary as there is no

private witness in the setting of zkbridge. However, we can achieve

zero-knowledge for deVirgo by adding some hiding polynomials.

Virgo uses the same method to achieve zero-knowledge.

Additionally, Fiore and Nitulescu [50] introduced the notion of O-

SNARK for SNARK over authenticated data such as cryptographic

signatures. Protocol 8 is an O-SNARK for any oracle family, albeit

in the random oracle model. To see this, Virgo relies on the con-

struction of computationally sound proofs of Micali [60] to achieve

non-interactive proof and knowledge soundness in the random or-

acle model, which has been proven to be O-SNARK in [50]. Hence

Virgo is an O-SNARK, and so is deVirgo because deVirgo also relies

on the same model.

Protocol 8 achieves optimal linear scalability on data-parallel

circuits without significant overhead on the proof size. In partic-

ular, our protocol accelerates Virgo by 𝑁 times given 𝑁 distributed

machines. Additionally, the proof size in our scheme is reduced by

a factor of 𝑁 compared to the naïve solution of running each sub-

copy of data-parallel circuits separately and generating 𝑁 proofs.

The complexity of Protocol 8 is shown in the following.

Complexity of distributed Virgo. Given a data-parallel layered

arithmetic circuit 𝐶 with 𝑁 sub-copies, each having 𝑑 layers and

𝑚 inputs, the total prover work of Protocol 8 is 𝑂 (|𝐶 |+𝑁𝑚log𝑚).

The prover work for a single machine is 𝑂 (|𝐶 |/𝑁 +𝑚 log𝑚), and

the total communication among machines is 𝑂 (𝑁𝑚+𝑁𝑑 log |𝐶 |).

The proof size is 𝑂 (𝑑 log |𝐶 | +𝜆(𝑁 + log2𝑚)). The verification cost

is 𝑂 (𝑑log|𝐶 |+𝜆(𝑁 +log2𝑚)).

5 REDUCING
PROOF SIZE AND VERIFIER TIME

Although deVirgo improves the prover time by orders of magni-

tude, we want to further reduce the cost of the verification time

and the proof size. As mentioned in the above section, the circuit

which validates over 100 signatures is giant due to non-compatible

instructions on different curves across different blockchains. Addi-

tionally, Virgo’s proof size, which is around 210KB for a circuit with

10 million gates, is large in practice. Thus we cannot post deVirgo’s

proof on-chain and validate the proof directly. Aiming at smaller

proof size and simpler verification on-chain, we propose to further

compress the proof by recursive proofs with two layers. Intuitively,

for a large-scale statement (x,w) ∈ℛ in Definition 2.2, the prover

generates the proof 𝜋1 by a protocol with fast prover time in the

first layer. If the length of 𝜋1 is not as short as desired, then the

prover can produce a shorter proof 𝜋2 by invoking another protocol

for (x,𝜋1) ∈ℛ
′ in the second layer, whereℛ′ represents that 𝜋1 is a

of sigs Total circuit size
Circuit size

for GKR part

Circuit size

for PC part

1 1.2×107 gates 8.4×106 gates 3.3×106 gates

4 1.2×107 gates 8.4×106 gates 4.0×106 gates

32 1.3×107 gates 8.4×106 gates 4.7×106 gates

128 1.4×107 gates 8.4×106 gates 5.4×106 gates

Table 1: The verification circuit size of deVirgo

valid proof for (x,w) ∈ℛ. To shrink the proof size and simplify the

verification as much as possible, we choose Groth16 as the second

layer ZKP protocol since Groth16 has constant proof size and fast

verification time. Moreover, the curve in Groth16 is natively sup-

ported by Ethereum, which is beneficial for saving on-chain cost on

Ethereum. In our approach, the prover invokes deVirgo to generate

𝜋1 on the initial circuit in the first layer. In the second layer, the

prover invokes Groth16 to generate 𝜋2 on the circuit implementing

the verification algorithm of deVirgo where |𝜋2 |≪ |𝜋1 |. The prover

only needs to submit 𝜋2 on-chain for verification. The recursion

helps cross-chain bridges to reduce gas cost on blockchains because

of simple verification on the compatible curve. The security of re-

cursive proofs relies on random oracle assumption, which can be

instantiated by a cryptographic hash function in practice [45].

Performance gains. We use the signature validation circuit for

Cosmos [11] as an example to show concrete numbers of the verifi-

cation circuit of deVirgo in Table 1. We record the size of the whole

verification circuit in the 2𝑛𝑑 column, the size for the GKR part in

the 3𝑟𝑑 column, and the size for the PC part in the 4𝑡ℎ column, as

the number of signatures in data-parallel circuits increases from

1 to 128 in the 1𝑠𝑡 column. The number of gates in the 2𝑛𝑑 column

equals the sum of numbers of gates in the 3𝑟𝑑 column and the 4𝑡ℎ

column. As shown in Table 1, although the data-parallel circuit size

expands, the size for the sumcheck part in deVirgo’s verification

circuit does not change. That is because the verification for the

GKR part is only based on the structure of the sub-circuit, which

is identical among different copies. However, the size for the PC

part in deVirgo’s verification circuit up-scales sub-linearly in the

number of copies due to the growth of the polynomial size. Even

given 128 copies of the signature validation circuit, the bottleneck

of deVirgo’s verification circuit is the sumcheck part. Therefore,

the recursive proof size and the recursive verification cost are inde-

pendent of the number of signatures to validate in our instance. In

addition, the prover time of Groth16 on the verification circuit of

deVirgo is only 25% of the prover time of deVirgo in practice. There-

fore, our recursive proof scheme reduces the on-chain verification

cost from 6×108 gas (an estimation) to 2×105 gas for verifying a

new block header of Cosmos on Ethereum.

6 IMPLEMENTATION AND EVALUATION

To demonstrate the practicality of zkBridge, we implement a bi-

directional bridge between Cosmos [11] (a PoS blockchain built

on top of the Tendermint [57] protocol) and Ethereum. Supports

for other PoS blockchains can be similarly implemented with more

3012

zkBridge: Trustless Cross-chain Bridges Made Practical CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA

engineering effort. In this section, we discuss implementation detail,

its performance, as well as operational cost.

The bridge from Cosmos to Ethereum is realized with the full

blown zkBridge protocol presented so far to achieve practical perfor-

mance. In comparison, the direction fromEthereum to Cosmos incur

much less overhead and does not require deVirgo. Therefore, in

what follows, we focus on the direction from Cosmos to Ethereum.

6.1 Implementation detail

The bridge from Cosmos to Ethereum consists of four components:

a relayer that fetches Cosmos block headers and sends them to

Ethereum (implemented in 300+ lines of Python), deVirgo (imple-

mented in 10000+ lines of C++) for distributed proof generation, a

handcrafted recursive verification circuit, and an updater contract

on Ethereum (implemented in 600+ lines of Solidity). Our signature

verification circuit is based on the optimized signature verification

circuit [14]. However, we use Gnark instead of Circom as in [14]

for better efficiency for proof generation.

6.1.1 Generating correctness proofs. Relay nodes submit Cosmos

block headers to the updater contract on Ethereum along with cor-

rectness proofs, which proves that the block is properly signed by

the Cosmos validator committee appointed by the previous block.

(In Cosmos a hash of the validator committee members is included

in the previous block.)

In Cosmos, each block header contains about 128 EdDSA sig-

natures (on Curve25519), Merkle roots for transactions and states,

along with other metadata, where 32 top signatures are required to

achieve super-majority stakes. However, the most efficient curve

supported by the Ethereum Virtual Machine (EVM) is BN254. To

verify Cosmos digital signatures in EVM, onemust simulate Curve25519

on curve BN254, which will lead to large circuits. Concretely, to

verify a Cosmos block header (mainly, to verify about 32 signatures),

we need about 64 million gates. We implement deVirgo (Section 4)

and recursive verification (Section 5) to accelerate proof generation

and verification.

Moreover, in practical deployment, multiple relayers can form

a pipeline to increase the throughput. Looking ahead, based on the

evaluation results, our implementation can handle 1 second block

time in Cosmos with 120+ capable relayers in the network.

For proof verification, we build an outer circuit that verifies

Virgo proofs and use Gnark [16] to generate the final Groth16 proof

that can be efficiently verified by the updater contract on Ethereum.

6.1.2 The updater contract. We implement the updater contract

on Ethereum in Solidity that verifies Groth16 proofs and keeps a

list of the Cosmos block headers in its persistent storage. The cost

of verifying a Groth16 proof on-chain is about 221𝐾 gas.

The updater contract exposes a simple API which takes block

height as its input, and returns the corresponding block header.

The receiver contracts can then use the block header to complete

application-specific verification.

Batching. Instead of calling the updater contract on every new

block header, we implement batching where the updater contract

stores Merkle roots of batches of 𝐵 consecutive block headers. The

prover will first collect 𝐵 consecutive blocks, and then make a

unified proof for all 𝐵 blocks. The updater contract will only need

2 8 32 128 512

101

102

103

104

Number of signatures

P
ro
v
er

T
im

e
(s
ec
o
n
d
s)

The original Virgo

8-machine deVirgo

32-machine deVirgo

128-machine deVirgo

Figure 2: Prover time of deVirgo and the original Virgo for

Cosmos block header verification.

to verify one proof for the batch of 𝐵 blocks. After the verification,

the updater contract checks the difficulty, maintains the longest

chain, and stores the Merkle tree root. It costs 132K gas on top of the

cost of verifying a Groth16 proof (which is independent of 𝐵). We

only store the Merkle tree root of 𝐵 blocks on-chain to reduce cost.

Thus 𝐵 can be set to balance user experience and cost: With

a larger 𝐵, users need to wait longer, but the cost of running the

system is lower.

We implement the aforementioned batched proof verification

and show the experimental results in Section 6.2. In addition, we

propose a more complex batching optimization presented in Ap-

pendix G for further optimization.

6.2 Evaluation

We evaluate the performance of zkBridge (Cosmos to Ethereum)

from four aspects: proof generation time, proof generation commu-

nication cost, proof size, and on-chain verification cost.

6.2.1 Experiment setup. We envision that a relayer node in zk-

Bridgewill be deployed as a service in amanaged network, therefore

we evaluate zkBridge in a data-center-like environment. Specifically,

we run all the experiments on 128 AWS EC2 c5.24xlarge instances

with the Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz and

192GB of RAM. Our implementation for the proof generation is

parallelized with at most 128 machines. We report the average run-

ning time of 10 executions. Whenever applicable, we report costs

both in terms of running time and monetary expenses.

6.2.2 Proof generation time of deVirgo. We first evaluate the main

cryptographic building blockÐdeVirgoÐand compare its perfor-

mance with the original Virgo [76]. The source code of the original

Virgo is obtained at https://github.com/sunblaze-ucb/Virgo. We run

both protocols on the same circuit for correctness proofs, which

mainly consists of 𝑁 invocation of EdDSA signature verification.

Figure 2 shows the prover time (in seconds) against different 𝑁 .

For deVirgo, we repeat the experiment with 8, 32, 128 distributed

machines. According to Fig. 2, the prover time of the original Virgo

3013

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA Tiancheng Xie et al.

Proof Gen. Time (seconds) Proof Gen. Comm. (GB) Proof Size (Bytes) On-chain Ver. Cost (gas)

of sigs deVirgo RV total total per-machine w/o RV w/ RV w/o RV w/ RV

8 12.52 4.90 17.42 7.34 0.92 1946476 131 78M 221K

32 12.80 5.41 18.21 32.24 1.01 1952492 131 78M 221K

128 13.28 5.49 18.77 131.89 1.03 1958508 131 79M 221K

Table 2: Evaluation results. RV is the shorthand for recursive verification.

increases linearly in the number of signatures 𝑁 , while the prover

time of deVirgo is almost independent of 𝑁 until 𝑁 is greater than

the number of servers when computation becomes an bottleneck.

The linear scalability suggests that the workload of each machine

only depends on its own sub-circuit and the communication over-

head is small. Table 2 reports the communication cost among paral-

lel machines. The total communication cost is linear in the number

of machines, consistent with the analysis in Section 4.4, with each

machine sending and receiving around 1 GB of data. Since we envi-

sion a relayer node in zkBridge to be deployed in a data-center-like

environment, the amount of traffic is reasonable.

In practice, the Cosmos block headers typically have 𝑁 = 128

signatures while 32 top signatures are sufficient to achieve super-

majority. Therefore, generating a correctness proof for a Cosmos

block header would take more than 400 seconds with the original

Virgo, but it decreases to 13.28 seconds with deVirgo, implying a

30x speedup. In general, as is consistent with the analysis in Sec-

tion 4, deVirgo accelerates the proof generation on data-parallel

circuits with 𝑁 copies by a factor of almost 𝑁 , which is optimal for

distributed algorithms.

6.2.3 Proof size and verification time. To reduce on-chain verifi-

cation cost, we use the recursive verification technique presented

in Section 5. Now we report on its efficacy.

Recursive proof generation time. We implement recursive ver-

ification by invoking Groth16 (constructed using gnark [16]) on

the verification circuit. We report the proof time in deVirgo, the

generation time of recursive proofs (the column marked RV), and

the sum, in Table 2, for various numbers of signatures. The RV time

almost remains constant in the number of signatures verified by

the deVirgo proofs. That is because of the data-parallel structure

of the state transition proof circuit: the size of Groth16 verification

circuit is only a function of the size of a sub-circuit.

The main benefit of recursive verification is a reduction in both

proof size and verification cost.

Reduced proof size. Table 2 shows the proof size both with and

without recursive verification. For the practical scenario where

𝑁 =32, the proof size is reduced from 1.9 MB to 131 Bytes. Overall,

for 𝑁 =32, with an increase of about 25% in prover time, we get a

reduction of around 14000x in proof size.

Reduced on-chain verification cost. The final proof is 131 Bytes

while the final verification only costs 3 pairings. As shown in Table 2,

the on-chain verification cost is constant (221K). In comparison,

without recursive verification, directly verifying Virgo proofs on-

chain would be infeasible. (Our estimation of the gas cost is 78M,

which far exceeds the single block gas limit 30M).

6.2.4 Comparison with optimistic bridges. With batching, the con-

firmation latency of zkBridge is under 2 minutes, including 3×32

seconds for waiting for all blocks in the batch and another 20 sec-

onds for proof generation. While this is not blazing fast, in compar-

ison, optimistic bridges have much longer confirmation time. E.g.,

NEAR’s Rainbow bridge has a challenge window of 4 hours [15]

before which the transfer cannot be confirmed.

6.3 Cost analysis

In this section, we analyze the operational cost of zkBridge, which

consists of off-chain cost (generating proofs) and on-chain cost

(storing headers and verifying proofs).

Off-chain cost. Off-chain cost can vary significantly based on the

deployment. While we use AWS in our performance benchmark, it

may not be the best option for practical deployment. AWS service

is expensive due to its high margin, elastic scaling capability, and

high reliability, which isn’t necessary for our proof generation pro-

cess. To show a representative range, we consider two deployment

options: cloud-based and self-hosted. For cloud-based deployment,

we search for reputable and economical dedicated server rental

services and choose Hetzner[17] as an example. For self-hosted

options, we calculate the cost to purchase the hardware and the

on-going cost (mainly the electricity).

On AWS c5.24xlarge, it takes 18 seconds to generate a proof

with 32 machines. Renting a server with a similar spec as AWS

c5.24xlarge from Hetzner costs $253.12 per month, thus the cost

of cloud-based deployment with Hetzner will be around $8100 per

month for all 32 machines. It translates to $0.02 per block.

To estimate the cost for self-hosted deployment, we use online

tools to configure a machine with a comparable spec to that in

AWS. Table 3 in Appendix H reports the configuration and each ma-

chine costs around $4.5k. The total setup cost is thus around $4.5k

×32=$144k. For self-hosted servers, the main on-going cost is elec-

tricity. With each machine consuming 657W power, a 32-machine

cluster consumes 0.105 kWh per block. Assuming US average elec-

tricity rate $0.12/KWh [8], the electricity cost is $0.012 per block,

or $5184 per month.

On-chain cost. On-chain cost refers to the total gas used for on-

chain operation, and we report the equivalent USD cost based on

the gas price (about 20 gwei) and ETH price (about 1600 USD) at the

time of writing (August 2022). If we use efficient batched proofs, for

a batch of 𝑁 headers, we only need one-time Groth16 verification

for on-chain block validation, which costs around 210𝑘+132𝑘 =342𝑘

gas, roughly $11. If we choose 𝑁 = 32 for example, the on-chain

cost will be $0.3 per block. Moreover, if we adopt the optimization

3014

zkBridge: Trustless Cross-chain Bridges Made Practical CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA

mentioned in appendix G, we can further reduce the on-chain cost

and offload the cost to users if the number of users is large.

6.4 Ethereum to other EVM-compatible chains

So far we have focused on the bridge from Cosmos to Ethereum

because generating and verifying correctness proofs for that direc-

tion is challenging. We also implement a prototype of a bridge from

Ethereum to any EVM-compatible blockchains, including Cosmos.

The high level idea is simple: upon receiving a block header,

the updater contract on the receiver chain (e.g., Cosmos) verifies

the PoW and appends it to the list of headers if the verification is

passed. However, a wrinkle to the implementation is that Ethereum

uses a memory hard hash function, EthHash [71], which is pro-

hibitively inefficient to run on-chain. Basically, EthHash involves

randomly accessing elements in a 1 gigabyte dataset (called a DAG)

derived from a public seed and the block height. Generating the

DAGs on-chain is prohibitively expensive.

Our idea is to pre-compute many DAGs off-chain and store their

hashes on-chain. Specifically, as part of zkBridge setup, we pre-

compute 2,048 DAGs , build a Merkle tree for each DAG using

MiMC [33], and store the Merkle roots on-chain. Per EthHash spec-

ification, a new DAG is generated every 30,000 blocks, so 2,048 of

them can last for 10 years; the off-chain pre-computation process

takes no more than 4 days. Then, the correctness proofs will show

that a given EthHash PoW is correct with respect to the Merkle

root of the DAG corresponding to the block in question. We em-

phasize that the setup process is verifiable and anyone can verify

the published Merkle roots on their own before using the service.

The circuit for verifying EthHash PoW has around 2 million gates.

The rest of the protocol is the same as a regular light client,

which involves storing the headers, following the longest chain by

computing accumulated difficulty, resolving forks, etc.

Cost analysis. Since EthHash PoW verification circuit has only

around 2 million constraints, a single machine with the configu-

ration in Appendix H can generate a proof within 10 seconds. As

long as the receiver chain is EVM-compatible (such as Cosmos), the

on-chain cost will be close to that presented in Section 6.3, since

the updater contract only verifies Groth16 proofs in all cases.

7 RELATEDWORK

In this section, we compare zkBridge to existing cross-chain bridge

systems and the line of work on zk-rollups which also uses ZKPs

for scalability and security.

Cross-chain bridges in the wild and security issues. Cross-

chain systems are widely deployed and used. Below we briefly sur-

vey the representative ones. The list is not meant to be exhaustive.

PolyNetwork [3] is an interoperability protocol using a side-chain as

the relay with a two-phase commitment protocol. Wormhole [5] is a

generic message-passing protocol secured by a network of guardian

nodes, and its security relies on 2/3 of the committee being honest.

Ronin operates in a similar model. While relying on decentralized

committees for security, practical deployment usually opts for rela-

tively small ones for efficiency (e.g., 9 in case of Ronin). Committee

breaches are far from being rare in practice. In a recent exploit

against Ronin [27], the attacker obtained five of the nine validator

keys, stealing 624 million USD. PolyNetwork and Wormhole were

also recently attacked, losing $611m [6] and $326m [10] respectively.

Key compromise was suspected in the PolyNetwork attack.

An alternative design is to leverage economic incentives. No-

mad [7] (which recently lost more than $190m to hackers due to

an implementation bug [22]) and Near’s Rainbow Bridge [4] are

such examples. These systems require participants to deposit a

collateral, and rely on a watchdog service to continuously monitor

the blockchain and confiscate offenders’ collateral upon detect-

ing invalid updates. Optimistic protocols fundamentally require a

long confirmation latency in order to ensure invalid updates can

be detected with high probability (e.g., Near [4] requires 4 hours).

Moreover, participants must deposit significantly collateral (e.g., 20

ETH in Near [4]). Both issues can be avoided by zkBridge.

In summary, compared to existing protocols, zkBridge achieve

both efficiency and cryptographic assurance. zkBridge is łtrustlessž

in that it does not require extra assumptions other than those of

blockchains and underlying cryptographic protocols. It also avoids

the long confirmation of optimistic protocols.

zk-rollups. Rollups are protocols that batch transaction execution

using ZKPs to scale up the layer-1 blockchains. Starkware [28],

ZkSync [31], and Polygon Zero [25] are a few examples.

These zk-rollup solutions have not been applied to the bridge

setting, where our work is the first to use ZKP to enable a decen-

tralized trustless bridge. In addition, the current zk-rollup work

in general has not dealt with such large circuits as in zkBridge,

whereas in our work, we need to design and develop a number of

techniques including deVirgo and proof recursion to make build-

ing a ZKP-based bridge practical for the first time. In particular,

we leverage the data parallelism of the circuits to obtain a ZKP

protocol that is more than 100x faster than existing protocols for

the workload in zkBridge and combine it with proof recursion for

efficient on-chain verification. The idea behind deVirgo protocol

may be applicable to zk-rollups too.

ACKNOWLEDGMENTS

This material is in part based upon work supported by the National

Science Foundation (NSF) under Grant No. TWC-1518899 and Grant

No. 2144625, DARPA under Grant No. N66001-15-C-4066, the Cen-

ter for Long-Term Cybersecurity (CLTC), the Simons Foundation,

and NTT Research. Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of these institutes.

REFERENCES
[1] 2014. Filecoin: A Decentralized Storage Network. (2014). https:

//filecoin.io/filecoin.pdf
[2] 2017. Hyperledger Sawtooth. (2017). https://sawtooth.hyperledger.org/
[3] 2020. Poly Network. https://poly.network/. (2020).
[4] 2020. Rainbow Bridge. https://near.org/bridge/. (2020).
[5] 2020. Wormhole Solana. https://solana.com/wormhole. (2020).
[6] 2021. At least $611 million stolen in massive cross-chain hack. (2021).
[7] 2021. Nomad Protocol. https://docs.nomad.xyz/the-nomad-protocol/overview.

(2021).
[8] 2022. Average Price of Electricity. https://www.eia.gov/electricity/monthly/

epm_table_grapher.php?t=epmt_5_6_a. (2022).
[9] 2022. Axelar. https://axelar.network/. (2022).
[10] 2022. Blockchain Bridge Wormhole Suffers Possible Exploit Worth Over

$326M. (2022). https://www.coindesk.com/tech/2022/02/02/blockchain-bridge-
wormhole-suffers-possible-exploit-worth-over-250m/

3015

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA Tiancheng Xie et al.

[11] 2022. Cosmos. https://cosmos.network/. (2022).
[12] 2022. Cryptocurrency prices, charts and market capitalizations. (2022).

https://coinmarketcap.com/
[13] 2022. ed25519-circom. https://github.com/Electron-Labs/ed25519-circom. (2022).
[14] 2022. ed25519-circom. https://github.com/Electron-Labs/ed25519-circom. (2022).
[15] 2022. ETH-NEAR Rainbow Bridge ś NEAR Protocol. (2022).

https://near.org/blog/eth-near-rainbow-bridge/
[16] 2022. gnark. https://docs.gnark.consensys.net/en/latest/. (2022).
[17] 2022. Hetzner. https://www.hetzner.com/. (2022).
[18] 2022. LayerZero. https://layerzero.network/. (2022).
[19] 2022. libSNARK. https://github.com/scipr-lab/libsnark. (2022).
[20] 2022. Multi-chain future likely as Ethereum’s DeFi dominance declines

| Bloomberg Professional Services. (2022). https://www.bloomberg.com/
professional/blog/multi-chain-future-likely-as-ethereums-defi-dominance-
declines/

[21] 2022. A multichain approach is the future of the blockchain industry. (2022).
https://cointelegraph.com/news/a-multichain-approach-is-the-future-of-the-
blockchain-industry

[22] 2022. Nomad crypto bridge loses $200 million in łchaotic" hack.
https://www.theverge.com/2022/8/2/23288785/nomad-bridge-200-million-
chaotic-hack-smart-contract-cryptocurrency. (2022).

[23] 2022. Polygon Hermez. https://polygon.technology/solutions/polygon-hermez/.
(2022).

[24] 2022. Polygon Miden. https://polygon.technology/solutions/polygon-miden/.
(2022).

[25] 2022. Polygon Zero. https://polygon.technology/solutions/polygon-zero/. (2022).
[26] 2022. Risc Zero. https://www.risczero.com/. (2022).
[27] 2022. Ronin Attack Shows Cross-Chain Crypto Is a ‘Bridge’ Too Far. (2022).

https://www.coindesk.com/layer2/2022/04/05/ronin-attack-shows-cross-
chain-crypto-is-a-bridge-too-far/

[28] 2022. Starkware. https://starkware.co/. (2022).
[29] 2022. Vbuterin comments on [AMA] We are the EF’s Research Team (Pt. 7: 07

January, 2022). (2022). https://old.reddit.com/r/ethereum/comments/rwojtk/
ama_we_are_the_efs_research_team_pt_7_07_january/hrngyk8/

[30] 2022. YouTube includes NFTs in new creator tools. (2022). https://www.nbcnews.
com/pop-culture/viral/youtube-includes-nfts-new-creator-tools-rcna15813

[31] 2022. ZkSync. https://zksync.io/. (2022).
[32] 2022-04-24. Beeple sold an NFT for $69 million - The Verge. (2022-04-24).

https://www.theverge.com/2021/3/11/22325054/beeple-christies-nft-sale-cost-
everydays-69-million

[33] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. 2016. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 191ś219.

[34] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. 2017. Ligero: Lightweight sublinear arguments without a trusted setup.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security.

[35] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. 2014.
Proofs of space: When space is of the essence. In International Conference on
Security and Cryptography for Networks. Springer, 538ś557.

[36] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint (2018).

[37] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Succinct Arguments
for R1CS. In EUROCRYPT 2019. 103ś128.

[38] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. 2014. Proof of
activity: Extending bitcoin’s proof of work via proof of stake [extended abstract]
y. ACM SIGMETRICS Performance Evaluation Review 42, 3 (2014), 34ś37.

[39] Iddo Bentov, Rafael Pass, and Elaine Shi. 2016. Snow White: Provably Secure
Proofs of Stake. IACR Cryptol. ePrint Arch. 2016, 919 (2016).

[40] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
2012. High-speed high-security signatures. Journal of cryptographic engineering
2, 2 (2012), 77ś89.

[41] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short Proofs for Confidential Transactions and More. In Proceedings of the
Symposium on Security and Privacy (SP), 2018, Vol. 00. 319ś338.

[42] Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. 2021.
SoK: Blockchain Light Clients. Cryptology ePrint Archive (2021).

[43] Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. 2017. A Zero
Knowledge Sumcheck and its Applications. CoRR abs/1704.02086 (2017).
arXiv:1704.02086 http://arxiv.org/abs/1704.02086

[44] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,
and Nicholas Ward. 2020. Marlin: Preprocessing zkSNARKs with Universal and
Updatable SRS. In EUROCRYPT 2020. 738ś768.

[45] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. 2020. Fractal: Post-quantum
and Transparent Recursive Proofs from Holography. In EUROCRYPT 2020.

769ś793.
[46] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical Verified

Computation with Streaming Interactive Proofs. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference (ITCS ’12).

[47] Bernardo David, Peter Ga, Aggelos Kiayias, and Alexander Russell. 2017.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake
protocol. Cryptology ePrint Archive (2017).

[48] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. 2015. Proofs of space. In Annual Cryptology Conference. Springer,
585ś605.

[49] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Crypto 1986.

[50] Dario Fiore and Anca Nitulescu. 2016. On the (in) security of SNARKs in the
presence of oracles. In Theory of Cryptography Conference. Springer, 108ś138.

[51] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. 2019. Plonk:
Permutations over lagrange-bases for oecumenical noninteractive arguments
of knowledge. Cryptology ePrint Archive (2019).

[52] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies.
In Proceedings of the 26th symposium on operating systems principles. 51ś68.

[53] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2015. Delegating
Computation: Interactive Proofs for Muggles. J. ACM 62, 4, Article 27 (Sept.
2015), 64 pages.

[54] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In
EUROCRYPT 2016. 305ś326.

[55] Jessica Hamlin. 2022. Big investors are finally serious about crypto. but expe-
rienced talent is still scarce. (Mar 2022). https://www.institutionalinvestor.com/
article/b1x0gr2y3dzzp3/Big-Investors-Are-Finally-Serious-About-Crypto-But-
Experienced-Talent-Is-Still-Scarce

[56] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
2017. Ouroboros: A provably secure proof-of-stake blockchain protocol. In
Annual international cryptology conference. Springer, 357ś388.

[57] Jae Kwon. 2014. Tendermint: Consensus without mining. Draft v. 0.6, fall 1, 11
(2014).

[58] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. 1992. Algebraic
Methods for Interactive Proof Systems. J. ACM 39, 4 (Oct. 1992), 859ś868.

[59] Ralph C Merkle. 1987. A digital signature based on a conventional encryption
function. In Conference on the theory and application of cryptographic techniques.

[60] Silvio Micali. 2000. Computationally Sound Proofs. SIAM J. Comput. (2000).
[61] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.

Decentralized Business Review (2008), 21260.
[62] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. 2021. Attacking

the defi ecosystem with flash loans for fun and profit. In International Conference
on Financial Cryptography and Data Security. Springer, 3ś32.

[63] Ling Ren and Srinivas Devadas. 2016. Proof of space from stacked expanders.
In Theory of Cryptography Conference. Springer, 262ś285.

[64] Srinath Setty. 2020. Spartan: Efficient and General-Purpose zkSNARKs Without
Trusted Setup. In CRYPTO 2020. Springer International Publishing, 704ś737.

[65] Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papamanthou, Alin
Tomescu, and Yupeng Zhang. 2021. Hyperproofs: Aggregating and Maintaining
Proofs in Vector Commitments. IACR Cryptol. ePrint Arch. (2021), 599.

[66] Justin Thaler. 2013. Time-Optimal Interactive Proofs for Circuit Evaluation. In
Advances in Cryptology ś CRYPTO 2013, Ran Canetti and Juan A. Garay (Eds.).

[67] Justin Thaler. 2015. A Note on the GKR Protocol. (2015). Available at
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf.

[68] Riad S Wahby, Max Howald, Siddharth Garg, Abhi Shelat, and Michael Walfish.
2016. Verifiable asics. In Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 759ś778.

[69] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.
2018. Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 926ś943.

[70] Lawrence Wintermeyer. 2021. Institutional money is pouring into the crypto
market and its only going to grow. (Aug 2021). https://www.forbes.com/sites/
lawrencewintermeyer/2021/08/12/institutional-money-is-pouring-into-the-
crypto-market-and-its-only-going-to-grow/?sh=2660a69d1459

[71] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1ś32.

[72] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion
Stoica. 2018. DIZK: A Distributed Zero-Knowledge Proof System. (2018).

[73] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover
Computation. In Advances in Cryptology (CRYPTO).

[74] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang
Xie, and Yupeng Zhang. 2021. Doubly efficient interactive proofs for general
arithmetic circuits with linear prover time. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. 159ś177.

[75] Jiaheng Zhang, Tiancheng Xie, Thang Hoang, Elaine Shi, and Yupeng Zhang.
2022. Polynomial Commitment with a {One-to-Many} Prover and Applications.

3016

zkBridge: Trustless Cross-chain Bridges Made Practical CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA

In 31st USENIX Security Symposium (USENIX Security 22). 2965ś2982.
[76] Jiaheng Zhang, Tiancheng Xie, Y. Zhang, and D. Song. 2020. Transparent

Polynomial Delegation and Its Applications to Zero Knowledge Proof. 2020 IEEE
Symposium on Security and Privacy (SP) (2020), 859ś876.

[77] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over
Dynamic Outsourced Databases. In IEEE Symposium on Security and Privacy
(S&P) 2017.

[78] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos,
and Charalampos Papamanthou. 2018. vRAM: Faster verifiable RAM with
program-independent preprocessing. In Proceeding of IEEE Symposium on
Security and Privacy (S&P).

Protocol 3 (Sumcheck). The protocol proceeds in ℓ rounds.

• In the first round, 𝒫 sends a univariate polynomial

𝑓1 (𝑥1)
𝑑𝑒𝑓
=

∑︁

𝑏2,...,𝑏ℓ ∈{0,1}

𝑓 (𝑥1,𝑏2,...,𝑏ℓ),

𝒱 checks 𝐻 = 𝑓1 (0)+ 𝑓1 (1). Then 𝒱 sends a random challenge

𝑟1 ∈F to 𝒫 .

• In the 𝑖-th round, where 2 ≤ 𝑖 ≤ ℓ −1, 𝒫 sends a univariate

polynomial

𝑓𝑖 (𝑥𝑖)
𝑑𝑒𝑓
=

∑︁

𝑏𝑖+1,...,𝑏ℓ ∈{0,1}

𝑓 (𝑟1,...,𝑟𝑖−1,𝑥𝑖 ,𝑏𝑖+1,...,𝑏ℓ),

𝒱 checks 𝑓𝑖−1 (𝑟𝑖−1)= 𝑓𝑖 (0)+ 𝑓𝑖 (1), and sends a random chal-

lenge 𝑟𝑖 ∈F to 𝒫 .

• In the ℓ-th round, 𝒫 sends a univariate polynomial

𝑓ℓ (𝑥ℓ)
𝑑𝑒𝑓
= 𝑓 (𝑟1,𝑟2,...,𝑟𝑙−1,𝑥ℓ),

𝒱 checks 𝑓ℓ−1 (𝑟ℓ−1) = 𝑓ℓ (0) + 𝑓ℓ (1). The verifier generates

a random challenge 𝑟ℓ ∈ F. Given oracle access to an eval-

uation 𝑓 (𝑟1, 𝑟2, ... , 𝑟ℓ) of 𝑓 , 𝒱 will accept if and only if

𝑓ℓ (𝑟ℓ) = 𝑓 (𝑟1,𝑟2,...,𝑟ℓ). The oracle access can be instantiated

by PC.

A BACKGROUND:
THE SUMCHECK PROTOCOL

The sumcheck protocol is given in Protocol 3.

B THE DISTRIBUTED SUMCHECK PROTOCOL

The distributed sumcheck protocol is given in Protocol 4.

C BACKGROUND: THE GKR PROTOCOL

Notations in GKR protocol. We follow the convention in prior

works of GKR protocols [46, 66, 73, 76, 77].We denote the number of

gates in the 𝑖-th layer as 𝑆𝑖 and let 𝑠𝑖 = ⌈log𝑆𝑖 ⌉. (For simplicity, we as-

sume 𝑆𝑖 is a power of 2, and we can pad the layer with dummy gates

otherwise.) We then define a function 𝑉𝑖 : {0,1}
𝑠𝑖→F that takes a

binary string b∈ {0,1}𝑠𝑖 and returns the output of gate b in layer 𝑖 ,

where b is called the gate label. With this definition,𝑉0 corresponds

to the output of the circuit, and𝑉𝑑 corresponds to the input layer. Fi-

nally, we define two additional functions𝑎𝑑𝑑𝑖 ,𝑚𝑢𝑙𝑡𝑖 : {0,1}
𝑠𝑖−1+2𝑠𝑖→

{0,1}, referred to as wiring predicates in the literature. 𝑎𝑑𝑑𝑖 (𝑚𝑢𝑙𝑡𝑖)

takes one gate label z∈ {0,1}𝑠𝑖−1 in layer 𝑖−1 and two gate labels

x,y∈ {0,1}𝑠𝑖 in layer 𝑖 , and outputs 1 if and only if gate z is an addi-

tion (multiplication) gate that takes the output of gate x,y as input.

With these definitions, for any z∈ {0,1}𝑠𝑖 , 𝑉𝑖 can be written as:

𝑉𝑖 (z)=
∑︁

x,y∈{0,1}𝑠𝑖+1
(𝑎𝑑𝑑𝑖+1 (z,x,y) (𝑉𝑖+1 (x)+𝑉𝑖+1 (y))

+𝑚𝑢𝑙𝑡𝑖+1 (z,x,y)𝑉𝑖+1 (x)𝑉𝑖+1 (y))
(3)

In the equation above, 𝑉𝑖 is expressed as a summation, so 𝒱 can

use the sumcheck protocol to check that it is computed correctly.

As the sumcheck protocol operates on polynomials defined on F,

3017

	Abstract
	1 Introduction
	1.1 Our contribution

	2 Background
	2.1 Notations
	2.2 Blockchains
	2.3 Light client protocol
	2.4 Zero-knowledge proofs

	3 zkBridge Protocol
	3.1 Overview of zkBridge design
	3.2 Protocol detail
	3.3 Application use cases
	3.4 Efficient Proof Systems for zkBridge

	4 Distributed proof generation
	4.1 Preliminaries
	4.2 Distributed sumcheck
	4.3 Distributed polynomial commitment
	4.4 Combining everything together

	5 Reducing proof size and verifier time
	6 Implementation and Evaluation
	6.1 Implementation detail
	6.2 Evaluation
	6.3 Cost analysis
	6.4 Ethereum to other EVM-compatible chains

	7 Related work
	References
	A Background: The sumcheck protocol
	B The distributed sumcheck protocol
	C Background: The GKR protocol
	D The distributed PC protocol
	E Background: The Virgo protocol
	F The distributed Virgo protocol
	G On-chain Gas Cost Optimization
	H Prover machine configuration

