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HIGHLIGHTS

o Generative adversarial linear discrimi-
nant analysis (GALDA) was developed
for spectral classification.

e A theoretical foundation for imple-
menting GALDA for spectral dimension
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derived.
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spectral classes supported the assess-
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ABSTRACT

Generative adversarial linear discriminant analysis (GALDA) is formulated as a broadly applicable tool for
increasing classification accuracy and reducing overfitting in spectrochemical analysis. Although inspired by the
successes of generative adversarial neural networks (GANs) for minimizing overfitting artifacts in artificial neural
networks, GALDA was built around an independent linear algebra framework distinct from those in GANs. In
contrast to feature extraction and data reduction approaches for minimizing overfitting, GALDA performs data
augmentation by identifying and adversarially excluding the regions in spectral space in which genuine data do not
reside. Relative to non-adversarial analogs, loading plots for dimension reduction showed significant smoothing
and more prominent features aligned with spectral peaks following generative adversarial optimization. Classifi-
cation accuracy was evaluated for GALDA together with other commonly available supervised and unsupervised
methods for dimension reduction in simulated spectra generated using an open-source Raman database (Romanian
Database of Raman Spectroscopy, RDRS). Spectral analysis was then performed for microscopy measurements of
microsphereroids of the blood thinner clopidogrel bisulfate and in THz Raman imaging of common constituents in
aspirin tablets. From these collective results, the potential scope of use for GALDA is critically evaluated relative to
alternative established spectral dimension reduction and classification methods.
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Z. Cao et al.
1. Introduction

The increasing volume and complexity of information from modern
chemical instrumentation places growing importance on methods to aid
in data-intensive visualization and analysis [1,2]. Dimension reduction
is a key arrow in the analysis quiver, in which raw measurements in a
high dimensional space (e.g., spectral space) are reduced to a handful of
manageable feature-dimensions [3,4]. Transformation to feature-space
provides several key advantages: i) ease of visualization of inherent
clustering veiled at high dimension, ii) signal to noise enhancement
through suppression of directions in measurement space that contribute
predominantly to noise, and iii) improved simplicity for statistical hy-
pothesis testing at low dimension. Dimension reduction can be per-
formed as a stand-alone operation for data visualization or in
conjunction with classification, in which the output is a class assignment
(e.g., through identification of decision boundaries within a
reduced-dimensional space). The number of methods available for
dimension reduction is many, ranging from classic linear methods such
as principal component analysis (PCA) and linear discriminant analysis
(LDA) through complex neural network architectures for navigating
highly nonlinear interrelationships in the data [5,6]. However, even in
these nonlinear cases, complementary analysis using linear methods can
provide useful benchmarking and enable estimates for quantitative
analysis using well-developed statistical methods for hypothesis testing
[5].

Classification of supervised high dimensional data is intimately
connected with dimension reduction operations. As in dimension
reduction, a diverse suite of algorithms exists for classification of high-
dimensional data. LDA [7] and soft independent modeling by class
analogy (SIMCA) [8,9] are two of the earliest classification approaches
finding widespread adoption. When used for classification, LDA assigns
classes to data based on the Mahalanobis distance to the class mean [9].
For any pair of classes with identical intraclass covariance matrices, the
dividing surface of equal probability for class assignment forms a linear
decision boundary within the reduced dimensional space. Extension to
quadratic discriminant analysis (QDA) relaxes the assumption of iden-
tical intraclass covariance matrices, producing decision boundaries with
quadratic curvature [7]. In SIMCA, classification is evaluated by first
performing unsupervised dimension reduction (e.g., via PCA) within
each class independently, followed by assessment of distance (Euclidean
or Mahalanobis) from the resulting PCA-based hypersurfaces [8,9].
More recently, artificial neural networks (ANNs) have found widespread
use for classification of high-dimensional data [10], notably exemplified
in image [10-12]and speech analysis [12-14]. ANNs are particularly
advantageous in navigating nonlinear relationships between
high-dimensional data (e.g., translation, rotation, rescaling) that noto-
riously frustrate linear methods. The number of methods available for
classification has ballooned rapidly in recent years with the expanded
use of ANNs. While laudable, these collective successes in classification
do not always cleanly translate to analogous successes in dimension
reduction for data visualization. For example, no universally excepted
approaches are available for using QDA [15,16] or SIMCA for dimension
reduction. Similarly, self-organizing maps (SOMs) produced by ANNs
can be interpreted as feature extraction representations [17]. However,
the nonlinear relationships inherent in ANNs can complicate intuitively
relating interconnectivity mapping in SOMs back to the initial input
data.

The two simplest and most universally adopted linear methods for
dimension reduction are arguably PCA and LDA, representing arche-
typical unsupervised and supervised dimension reduction approaches,
respectively [18,20]. In PCA, the data are pooled, and dimensions are
selected that maximize the variance within the projected data [19,21].
As an unsupervised learning approach, PCA is often used to identify
intrinsic patterns and groupings within high-dimensional data sets.
When class information is available, LDA identifies the dimensions that
maximize the resolution between the projected data through
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maximization of the Fisher linear discriminant function J (defined
explicitly in the Supporting Information). Based on these metrics, one
might initially expect LDA to be always preferred over PCA when clas-
sification information is available (i.e., with supervised data), as PCA
neglects the additional classification information in the analysis. How-
ever, in practice, LDA is often ill-posed and prone to computational in-
stabilities [20], most notably when the number of training spectra is
small relative to the dimensionality of the measurements (e.g., spectra)
[21,22].

The reason for the failure of LDA in these limits is tied to a matrix
inversion step in its evaluation [23]. The Fisher linear discriminant
function J maximized in LDA is given by the ratio of the between-class
variance divided by the within-class variance, evaluated following
projection of the input spectra onto a given test vector w in
spectral-space or matrix of test vectors W [24]. The linear algebra ma-
nipulations to determine the optimal projections w* to maximize J
involve identification of the eigenvectors of the product of two matrices:
one given by the inverse of a matrix describing the within-class variance
Sw and the other describing the between-class variance Sp. Because of
the matrix inversion operation, the eigenvectors and eigenvalues of Sy
~1 S, may not be uniquely solvable or may exhibit large uncertainties.
Such numerical instabilities are most likely to arise when the dimen-
sionality of the measurements p greatly exceeds the number of replicates
n in each class (i.e., p > n) [25], which is often the case in both spectral
and image analyses. One common consequence of this instability is high
overfitting in poorly-posed LDA evaluations, corresponding to a gap in
resolution between training and testing data sets.

A number of regularization strategies have been proposed for
addressing computational instabilities associated with the matrix
inversion step with p > n, and the corresponding propensities for over-
fitting that arise as a consequence. Arguably, the simplest regularization
approach is the “shrunken centroids” method proposed by Guo, Hastie,
and Tibshirani [26], in which scaled addition of an identity matrix to Sy
results in a mathematically stable matrix inversion operation [27].
Alternatively, Mehay, Cai, and Harrington demonstrated the use of
singular value decomposition (SVD) to estimate the pseudo-inverse (e.
g., the Moore-Penrose pseudo-inverse) for regularizing the evaluation of
Sw ~! Sp [28]. Friedman also proposed a regularized discriminant
analysis integrating linear and quadratic discriminant analysis, com-
bined with a weighted identity matrix sharing similarities with the
shrunken centroids method [27]. While generally very successful in
enabling full-dimension LDA of spectral data, regularization can be quite
sensitive to both the method and the degree of regularization [29].

Beyond regularization, a host of alternative approaches are available
for feature extraction to reduce the spectral dimensionality prior to
performing LDA as a means of overcoming the limitations of direct LDA
at full dimension. Arguably, the simplest method is to first perform PCA
as an initial dimension reduction step, then perform LDA within the
lower-dimensional PCA-space. Partial least-squared discriminant anal-
ysis (PLS-DA) is also widely for spectral classification [30], as well as
dimension reduction [31]. Fourier transformation and discrete wavelet
transforms have also been implemented for reducing dimensionality in
spectral space prior to LDA [32]. While generally quite successful, the
information lost by dimension reduction prior to LDA cannot be recov-
ered by subsequent operations, such that the method adopted for feature
extraction can significantly impact the quality of the final outcomes.

Complementing feature extraction approaches, a suite of methods
has also been developed for variable selection, in which only the most
informative dimensions within the raw input data (e.g., spectral peaks)
are retained for initial dimension reduction. Variable selection can be as
simple as manually windowing within the high dimensional inputs to
reject featureless sections in subsequent analyses. Improved generaliz-
ability and reproducibility can be achieved by formalizing criteria for
retention or rejection during variable selection [33-37]. In order to
select the optimal subset of variables, forward selection initially adds
significant variables (e.g., based on F-test assessments relative to
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variance within the total set of variables) [37,38]. Backward elimination
subsequently refines by removing variables with least contributions (e.
g., based on F-test assessments from within the forward-selected subset)
[38]. Among forward, backward, and stepwise (forward and backward)
variable section, stepwise selection arguably yields the most stable
result [38]. As one might expect, variable selection generally performs
well when signal information is localized to small numbers of discrete
spectral domains (e.g., sharp spectral peaks), and suffers when infor-
mation is broadly distributed across spectral space. In such cases, co-
ordinate transformation (e.g., via PCA, Fourier transformation, or
wavelet transformation) can substantially improve the benefits of vari-
able selection. In this limit, variable selection and feature extraction
become effectively synonymous.

Transfer learning strategies, broadly defined, have also been imple-
ments with considerable success for dimension reduction and spectral
analysis in the p > n regime. Calibration transfer methods have a long
and successful history of leveraging large volumes of well-characterized
measurements to inform on spectral analyses when few case-specific
spectra are available [39-41]. In work using artificial neural networks
for spectral analysis, Li et al. [42] developed a deep transfer learning
based near infrared spectroscopy multi-manufacturer drug identifica-
tion method. This method achieved higher classification accuracy and
scalability in multi-variety and multi-manufacturer NIR compared with
current popular methods, such as support vector machines (SVM), back
propagation (BP), the use of an autoencoder (AE) and extreme learning
machines (ELM). Zhang et al. [43] proposed an approach using a
transfer-learning model pretrained on a standard Raman spectral data-
base for the identification of Raman spectra of organic compounds that
were not included in the database and with limited data. Zhu et al. [44]
first demonstrated usefulness and effectiveness of GANs for classifica-
tion of hyperspectral images (HSIs), using training samples to fine-tune a
discriminative CNN for image classification. However, the application of
the paper was limited to remote sensing with a focus on classification
rather than dimension reduction, with no chemical spectral analysis.
Later, Yu et al. [45] demonstrated classification of pathogens by Raman
spectroscopy combined with generative adversarial networks to analyze
the most salient identification regions in the real spectrum. Much of this
collective body of work centers on classification, with fewer options for
dimension reduction to aid in visualization of high dimensional spectral
data. Furthermore, the inherent stochastic nature of neural network
training and decision-making complicates reliance on artificial neural
network architectures for decision-making requiring compliance with
federal guidance, such as in the pharmaceutical industry.

The numerical instability in full-dimension LDA with small training
size has some qualitative similarities to over-fitting effects arising in
machine learning tools, such as artificial neural networks [46]. Neural
networks also generally possess a substantially greater number of
adjustable parameters relative to the number of inputs used in their
training [47,48]. As one example, the convolutional neural network
ImageNet contained 6 x 107 network parameters for classification of
image data with only ~10° images per class [48]. In the limit of a small
number of training spectra, repeated optimization of an ANN during
training can result in increasing reliance on noise in driving classi-
fication/regression in addition to the signal. As a consequence, over-
fitting results in an increasing disparity between the accuracy of ANNs
when evaluated with training versus testing datasets [7]. In the case of
ANNSs, several strategies to address the consequences of overfitting in
data-limited settings have found widespread adoption. The most com-
mon are arguably transfer learning (TL) [49] and the use of generative
adversarial networks (GANSs) [50]. By analogy with calibration transfer
in chemometrics introduced in the preceding paragraph, TL in neural
network applications leverages a pre-trained network to serve as a
foundation for the extension to new systems [51]. In applications
involving neural networks, TL requires access to a pre-trained network,
which may not be available in many instances. Physics-informed simu-
lations for data augmentation approaches introduced in the discussion
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of spectral data are also widely used in neural networks [52], in which
neural networks are trained taking into consideration partial differential
equations that represent physics-informed constrains. Another common
approach is the use of generative adversarial networks (GANs), in which
a second competing neural network or algorithm is introduced to
improve the statistical reliability of an ANN. In brief, the generator is
most often designed to convert a random initial seed to an input regis-
tered as being genuine and of a particular target class. A re-optimized
ANN is produced to reject the generated “decoy” data as false, which
is then targeted again by an updated GAN. Iteration between attack and
defense improves the broader utility of the ANN in data-limited appli-
cations [53]. Between TL networks and GANs, GANs have the broader
utility of the two approaches, as they can operate wholly independently
for a given new problem without prior knowledge of related systems or
pre-training. Consistent with this expectation, Pavlou et al. [62] recently
demonstrated the use of a GAN for spectral augmentation to minimize
overfitting in PCA + LDA spectral analysis of bone tissue samples by
Raman spectroscopy. In that work, a GAN was used to generate synthetic
spectra that were statistically indistinguishable from genuine data
within the reduced-dimensional space. Compiled analysis of the
augmented data set resulted in improved accuracy in subsequent PCA +
LDA spectral analyses.

In light of the successes of generative adversarial approaches to
minimize over-fitting artifacts in ANNs [54,55] and for data augmen-
tation, we hypothesize that analogous benefits may be realized to
address overfitting in LDA by integrating adversarial updates directly
into the LDA operation itself. We developed an analog of the nonlinear
processes intrinsic in GANs but built around linear transformations
inherent in LDA. Specifically, we developed a linear mathematical
framework for optimally perturbing a random input seed to generate
decoy spectra for data augmentation and used LDA under computa-
tionally stable conditions of p < n to optimally separate genuine and
generated training data, and iteratively optimized the processes to
compete against each other by analogy with established GAN architec-
tures [53]. In contrast to calibration transfer and other transfer learning
methods for “nudging” models by rebuilding, the generative adversarial
approach leaves both the model and the training data fixed, and instead
adversarially augments real data with additional generated spectra, kept
separate from the real data in the analysis but constrained to co-locate
with real data in the reduced-dimensional space. In this sense, GALDA
is a data augmentation approach for dimension reduction by LDA, in
which overfitting is suppressed by locating and rejecting the regions in
the transformed space in which the real data are not located, in contrast
with most common chemometric approaches designed broadly around
data reduction prior to LDA. Because the raw data are transformed by
simple matrix multiplication in GALDA rather than through nonlinear
transformations inherent in artificial neural networks, the outcomes are
intuitively interpretable and amenable to standard approaches for un-
certainty propagation.

In this work, a mathematical framework for GALDA is proposed.
Implementation of GALDA is compared with other common linear
methods for dimension reduction using simulated spectra generated
from an archived spectral database. Following these proof-of-concept
studies using simulated data sets with known ground-truth outcomes,
the utility of GALDA is assessed for two classes of Raman imaging data: i)
dimension reduction of a set of spectra from Raman microscopy of clo-
pidogrel bisulfate microspheroids, and ii) dimension reduction and
classification of THz Raman measurements of common constituents of
aspirin tablets. The strengths and limitations of GALDA are then criti-
cally evaluated for dimension reduction and classification of spec-
trochemical data.
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2. Materials and methods
2.1. Overall workflow

Fig. 1 provides an overview of the workflow for GALDA, in which
LDA is used for dimension reduction. Classified initial input data in
Fig. 1A are projected into a reduced dimensional space defined by LDA,
indicated in Fig. 1B. Next, a generative adversarial iteration (Fig. 1C
through 1E) is performed. The panel in Fig. 1C shows the projection of
randomly generated inputs serving as initial “decoy” data projected into
LDA-space. In Fig. 1D, the decoy data are then modified by the linear
addition of a perturbation in spectral space to induce classification as
one of the input classes within LDA-space. In Fig. 1E, LDA is performed
again, but now with an additional class for the decoy data. The gener-
ation of decoy data, perturbations, and LDA is performed iteratively
until convergence is achieved (Fig. 1C through 1E). Convergence is
realized when additional adversarial iterations provide negligible
change in testing and training resolution (illustrated by plateaus in
Supporting Information Figures SI. 2 and SI. 6). Details on imple-
mentation of LDA are summarized in the Supporting Information.

2.2. Launching an attack to generate decoy spectra

By analogy with GANS, initial random inputs were used to seed the
generation of decoy data. For the simulated data, the random seeds were
produced from a uniform distribution with an upper bound of 6x 103
arbitrary amplitude units (a.u.) and a lower bound of 0 a.u. These
bounds were chosen to reflect the upper bound and lower bound of the
RDRS data following normalization. Random seeds were then projected
onto the reduced dimensional space using the eigenvectors from LDA,
producing broad distributions of projections.

An adversarial attack was performed by identifying the perturbation

Initiation: LDA
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¢ in the spectral domain that optimally altered the classification of an
initial spectrum x; (e.g., random seed) to a predetermined target class in
LDA-space, subject to constraints imposed by a cost function. A per-
turbed spectrum, x', was given by x = x, 4+ 6 . The general strategy in
the optimization of the attack perturbation § is illustrated Fig. 2, which
is intended to serve as a graphical depiction of an attack shown in the
reduced-dimensional space (e.g., as determined by LDA). Each wave-
length channel in the original spectral space results in a “nudge” to
collectively contribute to the position of the spectrum in the reduced
dimensional space. While the primary spectral features (indicated by the
thin black arrows) combine to dictate the general position within the
reduced dimensional space, randomness within the noise (indicated by
the short red arrows in Fig. 2). Fig. 2A and B produces a spread about
that mean position.

Additional “nudges” by perturbation to each wavelength channel of
the original spectrum can relocate the position of the initial spectrum in
the reduced dimensional space to one significantly closer to the target,
as illustrated in Fig. 2C. The vector of deviations d from the initial
sample spectrum, x;, to the “target”, x;, in the reduced dimensional
space is given by the following expression.

d=W-[(x;+6)—x/] Eq. 1

The matrix W is comprised of the set of eigenvectors that project the
high-dimensional data to a lower-dimensional space (such as PCA or
LDA). In the absence of other considerations, the optimal perturbation, 5
, will be one that maximizes the probability that the perturbed spectrum
will be classified as the target, subject to the cost function. In the absence
of a cost function, the reduction in dimension associated with W is an
underdetermined problem; an infinite number of selections for § will
generally produce comparable values for d.

The selection of one among the innumerable possible perturbations
was performed by addition of the cost function in Eq. (2) to minimize the

Iteration: GALDA
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squared magnitude of the perturbation. The total cost function for the
reduced dimensional analysis was given by the sum of the two terms,
which collectively minimized the sum of squared deviations to the target
in the reduced dimensional space while simultaneously minimizing the
overall squared magnitude of the perturbation, §, in spectral space, both
evaluated as the squared Ly norms.

& = argmin[|[W-(x, +8 — x| + 4]} Eq. 2

The scalar parameter f in Eq. (2) allows for empirical adjustment of
the relative weight given to proximity to the target relative to pertur-
bation of the major spectral features. The first term in the cost-function
is designed to “fool the classifier” by minimizing the distance to the
target in the reduced dimensional space, while the second term is tar-
geted to “fool the human” by minimizing the perturbation magnitude in
spectral space. Unless explicitly stated otherwise, a value of f = 1 was
used throughout for simplicity.

The optimal perturbation was determined analytically by rewriting
the cost function F in terms of the perturbation.

F(8)=|W-(x, + 6 —x,)|I; + BI85 Eq. 3

To solve for the optimal perturbation, the minimum of F(§) was
found by setting the gradient to zero (VF = 0). Before performing the
gradient, it is convenient to explicitly evaluate the squared magnitudes
analytically, which can be simplified by defining C = W'W andv = x, —
X

F(8) = ||[W-(v + 8)[3+5]16]13 = v"Cv + 20" C6 + 6" (C + pI)6 Eq. 4

The following vector gradient operations [57] for a general function f
(x) can be used to simplify Eq. (4).

Jx)=Ax=>Vf(x)=A Eq. 5

fx)=x"Ax =Vf(x)= (AT +A)x Eq. 6
Using the relations in Eq. (5) and Eq. (6) noting that vIc=cTvandCT =
C, VF can be written in the following form.

VF(6)=2 (C+pI)5 +2Cv Eq. 7

Setting VF = 0 and solving for ¢ yields the following expression for
the optimized perturbation.

5=—(C+p)7"'Clx, —x) Eq. 8
In the limit of # = 0 and with no rescaling, the perturbation é modifies
the source spectrum (e.g., random seed) to match exactly the target in
spectral space.

The script to perform gradient calculations is available at http
s://github.itap.purdue.edu/Simpson-Laboratory-for-Nonlinear-Op
tics/GALDA-public along with the other scripts for performing

adversarial and GALDA iterations.

2.3. Raman simulations

Simulations were performed to assess the performance of the GALDA
algorithm for a dataset with known ground-truth results. Six Raman
spectra selected from the Romanian Database of Raman Spectroscopy
[56] (magnetite, galena, molybdenite, goethite, stibnite, pyrolusite)
recorded with 1024 wavelength channels served as ground truth source
spectra. Prior to addition of noise, noise-free source spectra were
normalized to produce squared magnitudes of one. Following normali-
zation, 100 simulated spectra for each of the six were generated by
addition of noise with a mean of O for different assumed distributions. To
generate bimodally distributed classes, the spectra were grouped pair-
wise into three classes, with data distributed about two separate modes
in each class. This pairwise grouping (analogous to a single beach with
two kinds of pebbles) was designed as a simple model for classes with
non-normal probability distributions. Particularly in biological assem-
blies, spectral classification can routinely and reliably be performed
even when each class is comprised of a complex multi-component
mixture. A bimodal distribution represents a simple, minimal model
for accounting for diversity in composition within a given spectral class.
Unless stated otherwise, five-fold cross-validation was performed on all
reported simulated and experimental data, resulting 80%-20% split for
training and testing.

2.4. Raman measurements

Clopidogrel bisulfate Form I and Form II were produced in-house at
Dr. Reddy’s Laboratories and were used as received. Both the Form I and
Form II particles were spherical with similar particle size distributions
(diameter: ~25 pm). A set of 252 Raman spectra was collected from the
clopidogrel samples and separated into three classes (84 spectra per
class) — Form I, Form II, and background (glass slide). The ground truth
identity of these samples was known by visual inspection. Raman
spectra were acquired using a custom Raman microscope, built in-house,
and described in detail previously [57]. In brief, a continuous wave
diode laser (Toptica, 785 nm wavelength) coupled into a Raman probe
(InPhotonics, RPS785/24) was collimated by a fused silica lens and
directed through an X-Y scan head composed of two galvanometer
scanning mirrors. Two additional fused silica lenses formed a 4f
configuration to deliver a collimated beam to the back of a 10x objective
(Nikon). The Raman signal from the sample was collected through the
same objective and descanned back through the same beam path into the
Raman probe. A notch filter was built in the Raman probe to reject the
laser signal. Raman spectra were acquired using an Acton SP-300i
spectrometer with a 100 x 1340 CCD array and controlled by a com-
puter running WinSpec32 software. The laser power measured at the
sample was ~30 mW. The exposure time was 0.5 s per spectrum. To
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achieve a higher signal to noise ratio for high-quality training data for
classification, 30 consecutive frames were averaged for each spectrum
acquired over a spot size of ~2-3 pm diameter within the field of view.
After acquiring the Raman images, 84 spectra per class were randomly
sampled from the images from multiple particles locating at different
positions within the field of view to ensure a representative distribution
within the samples selected. A Savitzky-Golay filter [58] was applied to
smooth the spectra, and a rolling ball filter was used to remove the
fluorescence background. Finally, the spectra were normalized to their
integrated intensities, i.e., the areas under the curves. The optimal

perturbation 5 evaluated using Eq. (6) was added to each random seed to
produce generative adversarial decoy spectra.

2.5. THz Raman measurements

Acetylsalicylic acid, sucrose, and magnesium stearate were pur-
chased from Sigma, VWR Chemicals, and Alfa Aesar, respectively, and
mixed with mortar and pestle. THz Raman spectra were collected using a
DXR2xi Raman imaging microscope (Thermo Scientific) with a custom
modified incident beam path for compatibility with a ONDAX THz-
Raman System and a ONDAX Cleanline Laser System (Coherent, 785
nm CW laser). The laser output was directed through a 10x objective and
a 50 pm slit, and then focused onto a motorized sample stage (Prior). A
custom grating was used for THz Raman spectroscopy for a Raman shift
range of —500 cm ! to 2750 em ™! with a spectral resolution of 2 cm L.
Exposure time was 0.1 s, and signal averaging of 5 scans was performed
to generate each THz Raman spectrum. THz Raman spectroscopic im-
aging was achieved by point measurements and sample scanning. Image
pixel resolution was 3 pm.

2.6. Methods for comparison

Implementations of GALDA were benchmarked against multiple
established methods for dimension reduction. Benchmarking algorithms
included PCA, PCA-LDA (i.e., two-stage dimension reduction consisting
first of PCA followed by LDA in PCA-space), PLS-DA (partial least
squares discriminant analysis), and RLDA (regularized LDA, using
“shrunken centroids” regularization [26,59]). These methods were
selected based on their simplicity and ubiquity and are not meant to
represent an exhaustive set of comparators for dimension reduction.
PCA-LDA and RLDA were evaluated both using default parameters
(naive implementations) and following hyperparameter optimization (i.
e., the number of PCA-dimensions in PCA-LDA and the regularization
parameter in RLDA). The naive implementations of PCA-LDA are similar
to results obtained using a default metric (e.g., 70%) for the retained
variance [60]. For the optimized PCA-LDA analyses of the simulated
data, the exact probability density function (PDF) describing the data
distribution was known a priori. As such the theoretical maximum res-
olution and minimum in overfitting could be evaluated exactly as well,
corresponding to implementation of PCA with six retained dimensions
followed by LDA in the six-dimensional PCA-space. Optimization of
PCA-LDA for the measured spectral datasets was performed using a
“scree” test®®,

All results are reported for projection into spaces defined by the
intrinsic c-1 rank of LDA (e.g., 2-dimensional representations for three-
class datasets). Results from regularization of LDA using the Moore-
Penrose pseudo-inverse (PLDA) as described by Harrington and co-
workers [28] to evaluate the matrix inversion operation were also per-
formed using the built-in “pinv()” function in MATLAB using the default
tolerance for singular value decomposition (SVD). With the exception of
PCA as a stand-alone method, all other comparators were supervised
methods that retain the label information when performing dimension
reduction, analogous to GALDA. Additional details on the hyper-
parameter optimizations are summarized in the Supplemental
Information.
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GALDA was performed with two different implementations. In the
first, generative adversarial attacks were performed in spectral-space,
followed by dimension reduction by PCA-LDA (labeled as “GA-
PCALDA”). GA-PCALDA implementations were initially computation-
ally well-posed, with p < n. In addition, GALDA was implemented for the
initially ill-posed problem of direct LDA analysis in spectral-space, for
which p > n prior to generative attack for the spectral data sets used.
Values for the testing resolution for GALDA in this initially ill-posed case
are only reported in the regime p < ny, once the combined number of
initial and generated spectra (n,) exceeded the number of spectral
wavelength channels.

3. Results and discussion
3.1. Spectral adversarial attack

Consistent with Eq. (2), an adversarial attack is defined herein as an
additive perturbation to an initial seed or spectrum in spectral-space
with an optimally small overall magnitude intentionally designed to
induce misclassification in the reduced dimensional space (e.g., LDA-
space). An example of such can be found in Fig. 3A, in which an
initial source spectrum from Class 3 (an equal mixture of molybdenite
and goethite) of a simulated dataset derived from a mineral database is
perturbed to register as a spectrum from Class 1 (an equal mixture of
magnetite and galena). Fig. 3B contains the applied perturbed spectrum,
which is significantly smaller in amplitude comparing to the initial
source spectrum Fig. 3C shows the classification in the reduced-
dimensional LDA-space, in which the initial seed spectrum falls into
the cluster of data points belonging to Class 3, consistent with the
genuine class for the spectrum. Using Eq. (8), the optimal perturbation
direction in spectral space was calculated, with the green trace in with
the corresponding indicating the trajectory in LDA-space produced upon
the addition of the perturbation to the initial seed. No constraints other
than proximity to target in LDA-space and minimization of magnitude in
spectral-space were imposed on the cost function given in Eq. (3).

Interestingly, the perturbations shown in Fig. 3B that optimally
produced changes in classification did not affect the major spectral
features in the source spectrum, as it is visually difficult to detect the
perturbation in spectral space that squarely relocated the spectrum to
the target classes in the reduced dimensional space. Rather, the optimal
perturbations to induce misclassification as seen in Fig. 3B were char-
acterized by high-frequency content likely dominated by noise. This
result is initially somewhat counter-intuitive, as one might expect per-
turbations to recover the prominent low-frequency spectral features
clearly apparent in the mean target spectrum. In the absence of noise,
precisely such an outcome would be expected. However, the presence of
significant noise provides a route for misclassification through many
small perturbations distributed throughout the entire spectral range,
illustrated graphically in Fig. 2. These results are analogous to adver-
sarial examples observed in the image recognition field, in which “inputs
formed by applying small but intentionally worst-case perturbations to
examples from the dataset, such that the perturbed inputs results in the
model outputting an incorrect answer with high confidence.” [61].

3.2. Generative adversarial linear discriminant analysis

Fig. 1 provides an overview of the GALDA iterative “attack and
defend” process for the Raman spectroscopy of simulated data in the
reduced-dimensional space. Initially, a 3-class LDA of the training data
(100 spectra from each class), resulted in a clear separation between the
three bimodal classes, indicated by the red, blue, and black projected
data points, respectively. Next, uniformly distributed random seed data
were generated and projected onto this initializing 2D LDA-space,
resulting in a broad distribution indicated by the magenta data points
in Fig. 1C. Perturbation through adversarial attack in spectral space
transformed the seed data to decoy data, which subsequently projected
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Fig. 3. Example of a spectroscopic adversarial attack,
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close to targets randomly assigned from the training set, as demon-
strated in Fig. 1D. Note that “target” is defined here as the centroid of a
given target class selected randomly for each attack irrespective of
proximity to the initial random seed. Subsequently performing a 4-class
LDA produced separation between the generated and genuine training
data by assigning the generated “decoy” data as a fourth class. Upon
projection in 3D space, the LDA coordinate with the greatest eigenvalue
(LD1) distinctly separated the training and decoy data. The remaining
two coordinates (LD2 and LD3) served as the updated reduced dimen-
sional LDA-space for visualization of the training and testing data.

3.3. Classification accuracy

The classification accuracy of generative adversarial linear analyses
was evaluated using simulated datasets with known ground truths for
different distributions of testing and training spectra. The optimal
reduced-dimensional projections for both PCA and LDA are implicitly
formulated on the assumption of normally distributed noise about each
class mean. In practice, distributions in testing data can deviate sub-
stantially from this assumption through non-normally distributed noise
and through offsets in the mean by calibration shifts or addition of un-
accounted impurities. In order to approach the inherent deviations away
from normal PDFs expected in realistic datasets, while simultaneously
supporting facile replication of results by others, several non-standard
PDFs were assumed to evaluate the flexibility of PCA, LDA, and
GALDA to different PDFs describing the data distribution. The results
summarized in Fig. 4 were performed to evaluate the resiliance of
classification within reduced dimensional spaces to such deviations from
ideal behavior. Spectral features from an additional reference spectrum
(goethite) were added to the testing set but not included in the training
set to simulate an unidentified impurity. In addition, classification ac-
curacy for addition of Poisson and uniformly distributed noise was
considered. Decision boundaries within the reduced dimensional space
were determined based on shortest Euclidean distance to the class mode.

Relative to classical linear methods, generative adversarial linear
analyses exhibited improvements in classification accuracy upon addi-
tion of impurity spectral contributions. Naive PCA-LDA exhited sub-
stantial reductions in classification accuracy upon introduction of

impurity contributions (85%), while the corresponding GA-PCALDA
method retained 94% classification accuracy for the simulated Raman
spectra. Similar advantages were observed when comparing RLDA and
GALDA (both of which are evaluated directly by LDA without invoking
PCA for initial dimension reduction). Coordinates for dimension
reduction by RLDA produced substantial misclassification rates (87%
mean accuracy) when spectral features not included in the training were
added to the testing data to simulate the presence of an unknown im-
purity. In contrast, loading plots generated by GALDA retained 95%
classification accuracy for the same testing and training spectra. The
improvement of the classification accuracy is tentatively attributed to
further suppresion of noise in the loading plots due to adversarial data
augmentation.

Analysis of the bimodally distributed data suggest similar advantages
of generative adversarial algorithms relative to their common analogous
linear methods in the presence of non-normally distributed noise, the
results of which are also summarized in Fig. 4. Bimodal distributions
within each class were adopted to simulate a nontrivial intraclass dis-
tribution. For simulated classes with substantial non-normally distrib-
uted noise, the classification accuracy was notably low for RLDA (49%
for uniformly distributed noise and 44% for Poisson-distributed noise).
However, these accuracies improved substantially upon application of
GALDA (to 84% and 91%, respectively). Analogous improvements were
generally observed for PCA-LDA. following addition of uniform and
Poission noise to the testing and training data, initial accuracies for
naive PCA-LDA of 92% and 91% recovered to accuracies of 98% and
99%, respectively, by GA-PCALDA. The improvements in classification
accuracy for GALDA and GA-PCALDA in the presence of non-normally
distributed data is tentatively attributed to the absence of obvious im-
plicit assumptions regarding the functional form of the data distribution
within the adversarial stage of the generative advarsarial algorithms.

3.4. Analysis of clopidogrel bisulfate

Following the preceding proof of concept assessment based on sim-
ulations with known distributions, GALDA was used to analyze Raman
microspectroscopy measurements of clopidogrel bisulfate micro-
spheroidal formulations. Microparticles of clopidogrel bisulfate in two
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Fig. 4. Classification result of simulated monomodal Raman spectra from the
mineral database following five-fold cross-validation. The red rectangle groups
PCALDA with GA-PCALDA and the blue rectangle groups LDA with GALDA. In
A), an impurity of geothite spectrum of was added to noise free data scaling
between 0% and 50% of the total intensity. In B) and C), classification accuracy
is compared for simulations of bimodal Raman spectra produced with addition
of uniformly distributed B) and Poisson distributed C) noise. Poisson noise was
generated by proportionally setting the rescaled ground truth source spectrum
equal to the mean of a Poisson distribution at each wavelength. Uniform noise
was added with a variance of the input data variance. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)

different crystal forms (Form I and Form II) were physically mixed,
dispersed on a microscope slide, and analyzed by Raman microscopy to
determine the dominant crystal form within each individual micropar-
ticle. Spectra were assigned to three classes (Form I, Form II, and
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background) based on manual visual inspection of the spectra, as
detailed previously[57]. Forms I and II spectra contained several
distinctive spectral features in the fingerprint region from 800 cm™! —
1200 em ™!, while normalized background spectra were characterized by
a rolling feature centered at ~1375 cm™! tentatively assigned to a
spurious fluorescence interference.

Mirroring trends observed in the simualted data sets, application of
GA linear analyses improved the classification accuracy of clopidogrel
bisulphate spectral assignments. A summary of class accuracy, together
with loading plots, confusion matrices, and representative projections of
testing and training data in the corresponding reduced dimensional
spaces are shown in Fig. 5. Relative to PCALDA for dimension reduction
followed by a maximum likelihood estimate (MLE) distance linear
classifier, the use of GA-PCALDA improved the accuracy of class
assignment from 79% to 97%. A similar comparison between RLDA and
GALDA realized improvements from 80% to 94%, respectively.

This improvement in class accuracy was reflected by a corresponding
reduction in noise within the loading plots and a reduction in overfitting
when comparing the testing and training resolution (summarized in the
Supporting Information). Comparisons of the loading plots produced by
GALDA and RLDA in Fig. 5B and C, respectively, yields smoother curves
with more clearly discernible spectral features upon iterative optimi-
zation by GALDA. For spectra with peaks spanning multiple wavelength
channels, content at much higher frequencies is generally attributable to
noise, consistent with observed improvements in the accuracy by
GALDA. As with the simulated datasets, the improvement arising upon
application of GA methods is attributed to the rejection of high dimen-
sional contributions from locations where the genuine data do not reside
through adversarial data augmentation.

3.5. Analysis of THz Raman data

Low frequency THz Raman spectra were acquired using a Raman
imaging microscope to map powdered blends of constituents typically
found in commercially available aspirin tablets, including aspirin, su-
crose, and magnesium stearate. In contrast to conventional Raman
spectroscopy of molecular vibrations, THz Raman spectroscopy is typi-
cally dominated by weaker intermolecular interactions and librational
motions. As such, THz Raman is often highly sensitive to differences in
solid-state form, producing distinctive spectral features from molecular
crystals.

Prior to Raman imaging measurements of heterogeneous samples,
training and cross-validation was performed using spectra obtained
from thin films of pure components. Measurements of accuracy
following dimension reduction with MLE distance decision boundaries
are shown in Fig. 6. As in the preceding simulated and clopidogrel
bisulfate experimental datasets, the GA versions of common linear
analysis algorithms resulted in notable improvements in classification
accuracy under otherwise similar conditions. Implementation of GA-
PCALDA produced similar mean accuracy of discrimination between
aspirin, sucrose, and magnesium stearate of 99% by naive PCALDA and
GA-PCALDA. However, the mean accuracy of RLDA improved from 86%
to 97% upon implementation of GALDA. Interesting, the optimal dis-
tribution of spectra projected into the reduced-dimensional space for
GA-PCALDA was notably T-shaped compared to projections by PCALDA
alone, with the magnesium stearate spectra distributing broadly across
the first linear discriminant axis.

Following training and cross-validation, classifiers designed by GA-
PCALDA were used to perform chemical speciation in THz Raman mi-
croscopy measurements of an aspirin, sucrose, and magnesium-stearate
powdered blend, the results of which are shown in Fig. 7. Magnesium
stearate particles were characteristically only a few pm in diameter,
tentatively assigned as dark particulates dispersed throughout the bright
field images. From bright-field images, initial boundaries were identi-
fied for different crystal domains corresponding to sucrose and aspirin.
Tentative borders were identified for the larger crystalline particulates
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Fig. 5. Analysis of Raman spectra acquired for clopidogrel bisulfate polymorphs, comparing generative adversarial methods with common well-established linear
dimension reduction/classification approaches. A) Cross-validated classification accuracy of GA methods with their analogous non-GA counterparts. The red rect-
angle groups PCALDA with GA-PCALDA and the blue rectangle groups LDA with GALDA. B) Spectral loading plots, projections in latent space, and confusion matrices
for GALDA. C) Spectral loading plots, projections in latent space, and confusion matrices for RLDA. In latent spaces, hollowed symbols and crosses correspond to
training and solid symbols to testing sets. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

(indicated in the figures) and tentative initial assignments of composi-
tion were made based on differences in crystal habits and size distri-
butions, with red border indicating sucrose and blue aspirin. THz Raman
imaging was performed in the smaller region contained within the black
border in the bright field image. Each pixel in the Raman image was
assigned to aspirin, sucrose, or magesium stearate using the reduced
dimensional projections and decision boundaries for each method
described in Fig. 6.

Inspection of the resulting composition maps for RLDA, GALDA,
PCALDA and GA-PCALDA in Fig. 7 yields clear differences in per-pixel
classification assignments. Most notably, both GA methods classify the
region in the upper left as predominantly magnesium stearate, while
RLDA assigns the same region to sucrose and PCALDA is ambiguous
containing all three class assignments. The relatively large domain
indicated by the red outline in Fig. 7A is classified as sucrose with well-
defined borders in both GA methods. In contrast, RLDA provides no

significant border between the upper left and central bottom regions and
PCALDA yields assignments of both sucrose and aspirin for those pixels,
complicating definitive assignment. GA-PCALDA includes both assign-
ments of aspirin and magnesium stearate for the blue particles in the top
right corner, which may potentially arise from the apparent ubiquity of
small magnesium stearate microparticles adhered to the surfaces of the
larger crystalline particles. Magnesium stearate is often added to powder
blends to reduce friction and aid in particle flow. While no independent
ground truth results are available for classification of these individual
pixels, the assignments by GALDA and GA-PCALDA are arguably in best
agreement with the preliminary assessments of composition based on
crystal habit and size.

4. Conclusion

We describe an iterative generative adversarial approach to
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Fig. 6. Analysis of THz Raman spectra acquired for aspirin, sucrose, and magnesium stearate particulate samples, comparing generative adversarial methods with
common well-established linear dimension reduction/classification approaches. A) Cross-validated classification accuracy of GA methods with their analogous non-
GA counterparts. The red rectangle groups PCALDA with GA-PCALDA and the blue rectangle groups LDA with GALDA. B) Spectral loading plots, projections in latent
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to testing sets. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

minimize overfitting propensities inherent in many dimension reduc-
tion/feature extraction algorithms for spectrochemical analysis and
improve classification accuracy. GA methods were implemented for
PCA-LDA, RLDA, and for LDA performed at full spectral rank, then
compared with PCA, PCA-LDA, and RLDA as stand-alone methods using
both simulated and experimentally measured Raman spectral data sets.
Studies of simulated data with a known ground-truth optimum
demonstrate results from GA methods achieved higher classification
accuracy comparing to non-GA methods. Consistent with applications
using generative adversarial networks in artificial intelligence engines,
GA methods are anticipated to be compatible with complex and struc-
tured probability density functions underpinning data distributions. The
insensitivity to initial conditions also suggests GALDA may find use as
general-purpose tools for refinement of initial outcomes produced from
other established dimension reduction followed by classification
methods (e.g., PCA-LDA, RLDA), in lieu of potentially time-consuming
hyperparameter optimizations. Following validation of the method,

10

GA-PCALDA and GALDA were used to map composition through spec-
tral analysis of THz Raman imaging of pharmaceutically relevant
powdered blends.
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