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Spectral classification by generative adversarial linear discriminant analysis 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Generative adversarial linear discrimi
nant analysis (GALDA) was developed 
for spectral classification. 

• A theoretical foundation for imple
menting GALDA for spectral dimension 
reduction and classification was 
derived. 

• Simulations with known ground truth 
spectral classes supported the assess
ment of GALDA. 

• Application of GALDA improved classi
fication accuracy in polymorph 
discrimination by conventional Raman 
spectroscopy. 

• Pixel-wise application of GALDA pro
duced composition maps in good 
agreement with manual assignments for 
model system.  
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A B S T R A C T   

Generative adversarial linear discriminant analysis (GALDA) is formulated as a broadly applicable tool for 
increasing classification accuracy and reducing overfitting in spectrochemical analysis. Although inspired by the 
successes of generative adversarial neural networks (GANs) for minimizing overfitting artifacts in artificial neural 
networks, GALDA was built around an independent linear algebra framework distinct from those in GANs. In 
contrast to feature extraction and data reduction approaches for minimizing overfitting, GALDA performs data 
augmentation by identifying and adversarially excluding the regions in spectral space in which genuine data do not 
reside. Relative to non-adversarial analogs, loading plots for dimension reduction showed significant smoothing 
and more prominent features aligned with spectral peaks following generative adversarial optimization. Classifi
cation accuracy was evaluated for GALDA together with other commonly available supervised and unsupervised 
methods for dimension reduction in simulated spectra generated using an open-source Raman database (Romanian 
Database of Raman Spectroscopy, RDRS). Spectral analysis was then performed for microscopy measurements of 
microsphereroids of the blood thinner clopidogrel bisulfate and in THz Raman imaging of common constituents in 
aspirin tablets. From these collective results, the potential scope of use for GALDA is critically evaluated relative to 
alternative established spectral dimension reduction and classification methods.  
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1. Introduction 

The increasing volume and complexity of information from modern 
chemical instrumentation places growing importance on methods to aid 
in data-intensive visualization and analysis [1,2]. Dimension reduction 
is a key arrow in the analysis quiver, in which raw measurements in a 
high dimensional space (e.g., spectral space) are reduced to a handful of 
manageable feature-dimensions [3,4]. Transformation to feature-space 
provides several key advantages: i) ease of visualization of inherent 
clustering veiled at high dimension, ii) signal to noise enhancement 
through suppression of directions in measurement space that contribute 
predominantly to noise, and iii) improved simplicity for statistical hy
pothesis testing at low dimension. Dimension reduction can be per
formed as a stand-alone operation for data visualization or in 
conjunction with classification, in which the output is a class assignment 
(e.g., through identification of decision boundaries within a 
reduced-dimensional space). The number of methods available for 
dimension reduction is many, ranging from classic linear methods such 
as principal component analysis (PCA) and linear discriminant analysis 
(LDA) through complex neural network architectures for navigating 
highly nonlinear interrelationships in the data [5,6]. However, even in 
these nonlinear cases, complementary analysis using linear methods can 
provide useful benchmarking and enable estimates for quantitative 
analysis using well-developed statistical methods for hypothesis testing 
[5]. 

Classification of supervised high dimensional data is intimately 
connected with dimension reduction operations. As in dimension 
reduction, a diverse suite of algorithms exists for classification of high- 
dimensional data. LDA [7] and soft independent modeling by class 
analogy (SIMCA) [8,9] are two of the earliest classification approaches 
finding widespread adoption. When used for classification, LDA assigns 
classes to data based on the Mahalanobis distance to the class mean [9]. 
For any pair of classes with identical intraclass covariance matrices, the 
dividing surface of equal probability for class assignment forms a linear 
decision boundary within the reduced dimensional space. Extension to 
quadratic discriminant analysis (QDA) relaxes the assumption of iden
tical intraclass covariance matrices, producing decision boundaries with 
quadratic curvature [7]. In SIMCA, classification is evaluated by first 
performing unsupervised dimension reduction (e.g., via PCA) within 
each class independently, followed by assessment of distance (Euclidean 
or Mahalanobis) from the resulting PCA-based hypersurfaces [8,9]. 
More recently, artificial neural networks (ANNs) have found widespread 
use for classification of high-dimensional data [10], notably exemplified 
in image [10–12]and speech analysis [12–14]. ANNs are particularly 
advantageous in navigating nonlinear relationships between 
high-dimensional data (e.g., translation, rotation, rescaling) that noto
riously frustrate linear methods. The number of methods available for 
classification has ballooned rapidly in recent years with the expanded 
use of ANNs. While laudable, these collective successes in classification 
do not always cleanly translate to analogous successes in dimension 
reduction for data visualization. For example, no universally excepted 
approaches are available for using QDA [15,16] or SIMCA for dimension 
reduction. Similarly, self-organizing maps (SOMs) produced by ANNs 
can be interpreted as feature extraction representations [17]. However, 
the nonlinear relationships inherent in ANNs can complicate intuitively 
relating interconnectivity mapping in SOMs back to the initial input 
data. 

The two simplest and most universally adopted linear methods for 
dimension reduction are arguably PCA and LDA, representing arche
typical unsupervised and supervised dimension reduction approaches, 
respectively [18,20]. In PCA, the data are pooled, and dimensions are 
selected that maximize the variance within the projected data [19,21]. 
As an unsupervised learning approach, PCA is often used to identify 
intrinsic patterns and groupings within high-dimensional data sets. 
When class information is available, LDA identifies the dimensions that 
maximize the resolution between the projected data through 

maximization of the Fisher linear discriminant function J (defined 
explicitly in the Supporting Information). Based on these metrics, one 
might initially expect LDA to be always preferred over PCA when clas
sification information is available (i.e., with supervised data), as PCA 
neglects the additional classification information in the analysis. How
ever, in practice, LDA is often ill-posed and prone to computational in
stabilities [20], most notably when the number of training spectra is 
small relative to the dimensionality of the measurements (e.g., spectra) 
[21,22]. 

The reason for the failure of LDA in these limits is tied to a matrix 
inversion step in its evaluation [23]. The Fisher linear discriminant 
function J maximized in LDA is given by the ratio of the between-class 
variance divided by the within-class variance, evaluated following 
projection of the input spectra onto a given test vector w in 
spectral-space or matrix of test vectors W [24]. The linear algebra ma
nipulations to determine the optimal projections w* to maximize J 
involve identification of the eigenvectors of the product of two matrices: 
one given by the inverse of a matrix describing the within-class variance 
SW and the other describing the between-class variance Sb. Because of 
the matrix inversion operation, the eigenvectors and eigenvalues of SW 
−1 Sb may not be uniquely solvable or may exhibit large uncertainties. 
Such numerical instabilities are most likely to arise when the dimen
sionality of the measurements p greatly exceeds the number of replicates 
n in each class (i.e., p > n) [25], which is often the case in both spectral 
and image analyses. One common consequence of this instability is high 
overfitting in poorly-posed LDA evaluations, corresponding to a gap in 
resolution between training and testing data sets. 

A number of regularization strategies have been proposed for 
addressing computational instabilities associated with the matrix 
inversion step with p > n, and the corresponding propensities for over
fitting that arise as a consequence. Arguably, the simplest regularization 
approach is the “shrunken centroids” method proposed by Guo, Hastie, 
and Tibshirani [26], in which scaled addition of an identity matrix to SW 
results in a mathematically stable matrix inversion operation [27]. 
Alternatively, Mehay, Cai, and Harrington demonstrated the use of 
singular value decomposition (SVD) to estimate the pseudo-inverse (e. 
g., the Moore-Penrose pseudo-inverse) for regularizing the evaluation of 
SW 

−1 Sb [28]. Friedman also proposed a regularized discriminant 
analysis integrating linear and quadratic discriminant analysis, com
bined with a weighted identity matrix sharing similarities with the 
shrunken centroids method [27]. While generally very successful in 
enabling full-dimension LDA of spectral data, regularization can be quite 
sensitive to both the method and the degree of regularization [29]. 

Beyond regularization, a host of alternative approaches are available 
for feature extraction to reduce the spectral dimensionality prior to 
performing LDA as a means of overcoming the limitations of direct LDA 
at full dimension. Arguably, the simplest method is to first perform PCA 
as an initial dimension reduction step, then perform LDA within the 
lower-dimensional PCA-space. Partial least-squared discriminant anal
ysis (PLS-DA) is also widely for spectral classification [30], as well as 
dimension reduction [31]. Fourier transformation and discrete wavelet 
transforms have also been implemented for reducing dimensionality in 
spectral space prior to LDA [32]. While generally quite successful, the 
information lost by dimension reduction prior to LDA cannot be recov
ered by subsequent operations, such that the method adopted for feature 
extraction can significantly impact the quality of the final outcomes. 

Complementing feature extraction approaches, a suite of methods 
has also been developed for variable selection, in which only the most 
informative dimensions within the raw input data (e.g., spectral peaks) 
are retained for initial dimension reduction. Variable selection can be as 
simple as manually windowing within the high dimensional inputs to 
reject featureless sections in subsequent analyses. Improved generaliz
ability and reproducibility can be achieved by formalizing criteria for 
retention or rejection during variable selection [33–37]. In order to 
select the optimal subset of variables, forward selection initially adds 
significant variables (e.g., based on F-test assessments relative to 
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variance within the total set of variables) [37,38]. Backward elimination 
subsequently refines by removing variables with least contributions (e. 
g., based on F-test assessments from within the forward-selected subset) 
[38]. Among forward, backward, and stepwise (forward and backward) 
variable section, stepwise selection arguably yields the most stable 
result [38]. As one might expect, variable selection generally performs 
well when signal information is localized to small numbers of discrete 
spectral domains (e.g., sharp spectral peaks), and suffers when infor
mation is broadly distributed across spectral space. In such cases, co
ordinate transformation (e.g., via PCA, Fourier transformation, or 
wavelet transformation) can substantially improve the benefits of vari
able selection. In this limit, variable selection and feature extraction 
become effectively synonymous. 

Transfer learning strategies, broadly defined, have also been imple
ments with considerable success for dimension reduction and spectral 
analysis in the p > n regime. Calibration transfer methods have a long 
and successful history of leveraging large volumes of well-characterized 
measurements to inform on spectral analyses when few case-specific 
spectra are available [39–41]. In work using artificial neural networks 
for spectral analysis, Li et al. [42] developed a deep transfer learning 
based near infrared spectroscopy multi-manufacturer drug identifica
tion method. This method achieved higher classification accuracy and 
scalability in multi-variety and multi-manufacturer NIR compared with 
current popular methods, such as support vector machines (SVM), back 
propagation (BP), the use of an autoencoder (AE) and extreme learning 
machines (ELM). Zhang et al. [43] proposed an approach using a 
transfer-learning model pretrained on a standard Raman spectral data
base for the identification of Raman spectra of organic compounds that 
were not included in the database and with limited data. Zhu et al. [44] 
first demonstrated usefulness and effectiveness of GANs for classifica
tion of hyperspectral images (HSIs), using training samples to fine-tune a 
discriminative CNN for image classification. However, the application of 
the paper was limited to remote sensing with a focus on classification 
rather than dimension reduction, with no chemical spectral analysis. 
Later, Yu et al. [45] demonstrated classification of pathogens by Raman 
spectroscopy combined with generative adversarial networks to analyze 
the most salient identification regions in the real spectrum. Much of this 
collective body of work centers on classification, with fewer options for 
dimension reduction to aid in visualization of high dimensional spectral 
data. Furthermore, the inherent stochastic nature of neural network 
training and decision-making complicates reliance on artificial neural 
network architectures for decision-making requiring compliance with 
federal guidance, such as in the pharmaceutical industry. 

The numerical instability in full-dimension LDA with small training 
size has some qualitative similarities to over-fitting effects arising in 
machine learning tools, such as artificial neural networks [46]. Neural 
networks also generally possess a substantially greater number of 
adjustable parameters relative to the number of inputs used in their 
training [47,48]. As one example, the convolutional neural network 
ImageNet contained 6 × 107 network parameters for classification of 
image data with only ~103 images per class [48]. In the limit of a small 
number of training spectra, repeated optimization of an ANN during 
training can result in increasing reliance on noise in driving classi
fication/regression in addition to the signal. As a consequence, over
fitting results in an increasing disparity between the accuracy of ANNs 
when evaluated with training versus testing datasets [7]. In the case of 
ANNs, several strategies to address the consequences of overfitting in 
data-limited settings have found widespread adoption. The most com
mon are arguably transfer learning (TL) [49] and the use of generative 
adversarial networks (GANs) [50]. By analogy with calibration transfer 
in chemometrics introduced in the preceding paragraph, TL in neural 
network applications leverages a pre-trained network to serve as a 
foundation for the extension to new systems [51]. In applications 
involving neural networks, TL requires access to a pre-trained network, 
which may not be available in many instances. Physics-informed simu
lations for data augmentation approaches introduced in the discussion 

of spectral data are also widely used in neural networks [52], in which 
neural networks are trained taking into consideration partial differential 
equations that represent physics-informed constrains. Another common 
approach is the use of generative adversarial networks (GANs), in which 
a second competing neural network or algorithm is introduced to 
improve the statistical reliability of an ANN. In brief, the generator is 
most often designed to convert a random initial seed to an input regis
tered as being genuine and of a particular target class. A re-optimized 
ANN is produced to reject the generated “decoy” data as false, which 
is then targeted again by an updated GAN. Iteration between attack and 
defense improves the broader utility of the ANN in data-limited appli
cations [53]. Between TL networks and GANs, GANs have the broader 
utility of the two approaches, as they can operate wholly independently 
for a given new problem without prior knowledge of related systems or 
pre-training. Consistent with this expectation, Pavlou et al. [62] recently 
demonstrated the use of a GAN for spectral augmentation to minimize 
overfitting in PCA + LDA spectral analysis of bone tissue samples by 
Raman spectroscopy. In that work, a GAN was used to generate synthetic 
spectra that were statistically indistinguishable from genuine data 
within the reduced-dimensional space. Compiled analysis of the 
augmented data set resulted in improved accuracy in subsequent PCA +
LDA spectral analyses. 

In light of the successes of generative adversarial approaches to 
minimize over-fitting artifacts in ANNs [54,55] and for data augmen
tation, we hypothesize that analogous benefits may be realized to 
address overfitting in LDA by integrating adversarial updates directly 
into the LDA operation itself. We developed an analog of the nonlinear 
processes intrinsic in GANs but built around linear transformations 
inherent in LDA. Specifically, we developed a linear mathematical 
framework for optimally perturbing a random input seed to generate 
decoy spectra for data augmentation and used LDA under computa
tionally stable conditions of p < n to optimally separate genuine and 
generated training data, and iteratively optimized the processes to 
compete against each other by analogy with established GAN architec
tures [53]. In contrast to calibration transfer and other transfer learning 
methods for “nudging” models by rebuilding, the generative adversarial 
approach leaves both the model and the training data fixed, and instead 
adversarially augments real data with additional generated spectra, kept 
separate from the real data in the analysis but constrained to co-locate 
with real data in the reduced-dimensional space. In this sense, GALDA 
is a data augmentation approach for dimension reduction by LDA, in 
which overfitting is suppressed by locating and rejecting the regions in 
the transformed space in which the real data are not located, in contrast 
with most common chemometric approaches designed broadly around 
data reduction prior to LDA. Because the raw data are transformed by 
simple matrix multiplication in GALDA rather than through nonlinear 
transformations inherent in artificial neural networks, the outcomes are 
intuitively interpretable and amenable to standard approaches for un
certainty propagation. 

In this work, a mathematical framework for GALDA is proposed. 
Implementation of GALDA is compared with other common linear 
methods for dimension reduction using simulated spectra generated 
from an archived spectral database. Following these proof-of-concept 
studies using simulated data sets with known ground-truth outcomes, 
the utility of GALDA is assessed for two classes of Raman imaging data: i) 
dimension reduction of a set of spectra from Raman microscopy of clo
pidogrel bisulfate microspheroids, and ii) dimension reduction and 
classification of THz Raman measurements of common constituents of 
aspirin tablets. The strengths and limitations of GALDA are then criti
cally evaluated for dimension reduction and classification of spec
trochemical data. 
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2. Materials and methods 

2.1. Overall workflow 

Fig. 1 provides an overview of the workflow for GALDA, in which 
LDA is used for dimension reduction. Classified initial input data in 
Fig. 1A are projected into a reduced dimensional space defined by LDA, 
indicated in Fig. 1B. Next, a generative adversarial iteration (Fig. 1C 
through 1E) is performed. The panel in Fig. 1C shows the projection of 
randomly generated inputs serving as initial “decoy” data projected into 
LDA-space. In Fig. 1D, the decoy data are then modified by the linear 
addition of a perturbation in spectral space to induce classification as 
one of the input classes within LDA-space. In Fig. 1E, LDA is performed 
again, but now with an additional class for the decoy data. The gener
ation of decoy data, perturbations, and LDA is performed iteratively 
until convergence is achieved (Fig. 1C through 1E). Convergence is 
realized when additional adversarial iterations provide negligible 
change in testing and training resolution (illustrated by plateaus in 
Supporting Information Figures SI. 2 and SI. 6). Details on imple
mentation of LDA are summarized in the Supporting Information. 

2.2. Launching an attack to generate decoy spectra 

By analogy with GANs, initial random inputs were used to seed the 
generation of decoy data. For the simulated data, the random seeds were 
produced from a uniform distribution with an upper bound of 6× 10−3 

arbitrary amplitude units (a.u.) and a lower bound of 0 a.u. These 
bounds were chosen to reflect the upper bound and lower bound of the 
RDRS data following normalization. Random seeds were then projected 
onto the reduced dimensional space using the eigenvectors from LDA, 
producing broad distributions of projections. 

An adversarial attack was performed by identifying the perturbation 

δ in the spectral domain that optimally altered the classification of an 
initial spectrum xs (e.g., random seed) to a predetermined target class in 
LDA-space, subject to constraints imposed by a cost function. A per
turbed spectrum, x′ , was given by x′

= xs + δ . The general strategy in 
the optimization of the attack perturbation δ is illustrated Fig. 2, which 
is intended to serve as a graphical depiction of an attack shown in the 
reduced-dimensional space (e.g., as determined by LDA). Each wave
length channel in the original spectral space results in a “nudge” to 
collectively contribute to the position of the spectrum in the reduced 
dimensional space. While the primary spectral features (indicated by the 
thin black arrows) combine to dictate the general position within the 
reduced dimensional space, randomness within the noise (indicated by 
the short red arrows in Fig. 2). Fig. 2A and B produces a spread about 
that mean position. 

Additional “nudges” by perturbation to each wavelength channel of 
the original spectrum can relocate the position of the initial spectrum in 
the reduced dimensional space to one significantly closer to the target, 
as illustrated in Fig. 2C. The vector of deviations d from the initial 
sample spectrum, xs, to the “target”, xt, in the reduced dimensional 
space is given by the following expression. 

d = W⋅[(xs + δ) − xt] Eq. 1 

The matrix W is comprised of the set of eigenvectors that project the 
high-dimensional data to a lower-dimensional space (such as PCA or 
LDA). In the absence of other considerations, the optimal perturbation, ̂δ 
, will be one that maximizes the probability that the perturbed spectrum 
will be classified as the target, subject to the cost function. In the absence 
of a cost function, the reduction in dimension associated with W is an 
underdetermined problem; an infinite number of selections for δ will 
generally produce comparable values for d. 

The selection of one among the innumerable possible perturbations 
was performed by addition of the cost function in Eq. (2) to minimize the 

Fig. 1. Workflow of the generative adversarial linear analysis algorithm. (A, B) Initial data that fall into distinct classes are projected onto a reduced dimensional 
space. C) Random inputs serve as initial decoy data projected into this LDA-space, depicted in magneta here in 2D. D) The decoy data classes (red, blue, black) are 
then “attacked” to induce classification as one of the original input classes in LDA-space while minimizing the magnitude of the perturbation depicted in magenta 
here in spectral space. E) LDA is then performed again, but now with an additional class and corresponding dimension for isolating the decoy data. Early generations 
of decoy data are well separated from the genuine data with separation narrowing in the subsequent interactions The processes C-E are iterated until convergence 
is achieved. 
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squared magnitude of the perturbation. The total cost function for the 
reduced dimensional analysis was given by the sum of the two terms, 
which collectively minimized the sum of squared deviations to the target 
in the reduced dimensional space while simultaneously minimizing the 
overall squared magnitude of the perturbation, δ, in spectral space, both 
evaluated as the squared L2 norms. 

δ̂ = argmin
δ

[
‖W⋅(xs + δ − xt)‖

2
2 + β‖δ‖

2
2

]
Eq. 2 

The scalar parameter β in Eq. (2) allows for empirical adjustment of 
the relative weight given to proximity to the target relative to pertur
bation of the major spectral features. The first term in the cost-function 
is designed to “fool the classifier” by minimizing the distance to the 
target in the reduced dimensional space, while the second term is tar
geted to “fool the human” by minimizing the perturbation magnitude in 
spectral space. Unless explicitly stated otherwise, a value of β = 1 was 
used throughout for simplicity. 

The optimal perturbation was determined analytically by rewriting 
the cost function F in terms of the perturbation. 

F(δ) = ‖W⋅(xs + δ − xt)‖
2
2 + β‖δ‖

2
2 Eq. 3 

To solve for the optimal perturbation, the minimum of F(δ) was 
found by setting the gradient to zero (∇F = 0). Before performing the 
gradient, it is convenient to explicitly evaluate the squared magnitudes 
analytically, which can be simplified by defining C = WTW and v = xs −

xt. 

F(δ) = ‖W⋅(v + δ)‖
2
2+β‖δ‖

2
2 = vTCv + 2vTCδ + δT(C + βI)δ Eq. 4 

The following vector gradient operations [57] for a general function f 
(x) can be used to simplify Eq. (4). 

f (x) = A x ⇒∇f (x) = A Eq. 5  

f (x) = xTAx ⇒∇f (x) =
(
AT + A

)
x Eq. 6  

Using the relations in Eq. (5) and Eq. (6) noting that vTC = CTv and CT =

C, ∇F can be written in the following form. 

∇F(δ) = 2 (C + βI)δ + 2Cv Eq. 7 

Setting ∇F = 0 and solving for δ yields the following expression for 
the optimized perturbation. 

δ̂ = −(C + βI)
−1C(xs − xt) Eq. 8  

In the limit of β = 0 and with no rescaling, the perturbation δ modifies 
the source spectrum (e.g., random seed) to match exactly the target in 
spectral space. 

The script to perform gradient calculations is available at http 
s://github.itap.purdue.edu/Simpson-Laboratory-for-Nonlinear-Op 
tics/GALDA-public along with the other scripts for performing 

adversarial and GALDA iterations. 

2.3. Raman simulations 

Simulations were performed to assess the performance of the GALDA 
algorithm for a dataset with known ground-truth results. Six Raman 
spectra selected from the Romanian Database of Raman Spectroscopy 
[56] (magnetite, galena, molybdenite, goethite, stibnite, pyrolusite) 
recorded with 1024 wavelength channels served as ground truth source 
spectra. Prior to addition of noise, noise-free source spectra were 
normalized to produce squared magnitudes of one. Following normali
zation, 100 simulated spectra for each of the six were generated by 
addition of noise with a mean of 0 for different assumed distributions. To 
generate bimodally distributed classes, the spectra were grouped pair
wise into three classes, with data distributed about two separate modes 
in each class. This pairwise grouping (analogous to a single beach with 
two kinds of pebbles) was designed as a simple model for classes with 
non-normal probability distributions. Particularly in biological assem
blies, spectral classification can routinely and reliably be performed 
even when each class is comprised of a complex multi-component 
mixture. A bimodal distribution represents a simple, minimal model 
for accounting for diversity in composition within a given spectral class. 
Unless stated otherwise, five-fold cross-validation was performed on all 
reported simulated and experimental data, resulting 80%–20% split for 
training and testing. 

2.4. Raman measurements 

Clopidogrel bisulfate Form I and Form II were produced in-house at 
Dr. Reddy’s Laboratories and were used as received. Both the Form I and 
Form II particles were spherical with similar particle size distributions 
(diameter: ~25 μm). A set of 252 Raman spectra was collected from the 
clopidogrel samples and separated into three classes (84 spectra per 
class) – Form I, Form II, and background (glass slide). The ground truth 
identity of these samples was known by visual inspection. Raman 
spectra were acquired using a custom Raman microscope, built in-house, 
and described in detail previously [57]. In brief, a continuous wave 
diode laser (Toptica, 785 nm wavelength) coupled into a Raman probe 
(InPhotonics, RPS785/24) was collimated by a fused silica lens and 
directed through an X–Y scan head composed of two galvanometer 
scanning mirrors. Two additional fused silica lenses formed a 4f 
configuration to deliver a collimated beam to the back of a 10x objective 
(Nikon). The Raman signal from the sample was collected through the 
same objective and descanned back through the same beam path into the 
Raman probe. A notch filter was built in the Raman probe to reject the 
laser signal. Raman spectra were acquired using an Acton SP-300i 
spectrometer with a 100 × 1340 CCD array and controlled by a com
puter running WinSpec32 software. The laser power measured at the 
sample was ~30 mW. The exposure time was 0.5 s per spectrum. To 

Fig. 2. Conceptual illustration of a spectroscopic adversarial attack. Major spectral peaks drive the position of spectra in lower-dimensional projections, demon
strated by the set of thin, long black arrows for Classes A and B, respectively. In C) the addition of patterned perturbations in the vector δ, illustrated by the set of 
directional red arrows, optimally relocates the position from the source Class A to Class B in this reduced dimensional space. 
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achieve a higher signal to noise ratio for high-quality training data for 
classification, 30 consecutive frames were averaged for each spectrum 
acquired over a spot size of ~2–3 μm diameter within the field of view. 
After acquiring the Raman images, 84 spectra per class were randomly 
sampled from the images from multiple particles locating at different 
positions within the field of view to ensure a representative distribution 
within the samples selected. A Savitzky-Golay filter [58] was applied to 
smooth the spectra, and a rolling ball filter was used to remove the 
fluorescence background. Finally, the spectra were normalized to their 
integrated intensities, i.e., the areas under the curves. The optimal 
perturbation ̂δ evaluated using Eq. (6) was added to each random seed to 
produce generative adversarial decoy spectra. 

2.5. THz Raman measurements 

Acetylsalicylic acid, sucrose, and magnesium stearate were pur
chased from Sigma, VWR Chemicals, and Alfa Aesar, respectively, and 
mixed with mortar and pestle. THz Raman spectra were collected using a 
DXR2xi Raman imaging microscope (Thermo Scientific) with a custom 
modified incident beam path for compatibility with a ONDAX THz- 
Raman System and a ONDAX Cleanline Laser System (Coherent, 785 
nm CW laser). The laser output was directed through a 10x objective and 
a 50 μm slit, and then focused onto a motorized sample stage (Prior). A 
custom grating was used for THz Raman spectroscopy for a Raman shift 
range of −500 cm−1 to 2750 cm−1 with a spectral resolution of 2 cm−1. 
Exposure time was 0.1 s, and signal averaging of 5 scans was performed 
to generate each THz Raman spectrum. THz Raman spectroscopic im
aging was achieved by point measurements and sample scanning. Image 
pixel resolution was 3 μm. 

2.6. Methods for comparison 

Implementations of GALDA were benchmarked against multiple 
established methods for dimension reduction. Benchmarking algorithms 
included PCA, PCA-LDA (i.e., two-stage dimension reduction consisting 
first of PCA followed by LDA in PCA-space), PLS-DA (partial least 
squares discriminant analysis), and RLDA (regularized LDA, using 
“shrunken centroids” regularization [26,59]). These methods were 
selected based on their simplicity and ubiquity and are not meant to 
represent an exhaustive set of comparators for dimension reduction. 
PCA-LDA and RLDA were evaluated both using default parameters 
(naïve implementations) and following hyperparameter optimization (i. 
e., the number of PCA-dimensions in PCA-LDA and the regularization 
parameter in RLDA). The naïve implementations of PCA-LDA are similar 
to results obtained using a default metric (e.g., 70%) for the retained 
variance [60]. For the optimized PCA-LDA analyses of the simulated 
data, the exact probability density function (PDF) describing the data 
distribution was known a priori. As such the theoretical maximum res
olution and minimum in overfitting could be evaluated exactly as well, 
corresponding to implementation of PCA with six retained dimensions 
followed by LDA in the six-dimensional PCA-space. Optimization of 
PCA-LDA for the measured spectral datasets was performed using a 
“scree” test63. 

All results are reported for projection into spaces defined by the 
intrinsic c-1 rank of LDA (e.g., 2-dimensional representations for three- 
class datasets). Results from regularization of LDA using the Moore- 
Penrose pseudo-inverse (PLDA) as described by Harrington and co
workers [28] to evaluate the matrix inversion operation were also per
formed using the built-in “pinv()” function in MATLAB using the default 
tolerance for singular value decomposition (SVD). With the exception of 
PCA as a stand-alone method, all other comparators were supervised 
methods that retain the label information when performing dimension 
reduction, analogous to GALDA. Additional details on the hyper
parameter optimizations are summarized in the Supplemental 
Information. 

GALDA was performed with two different implementations. In the 
first, generative adversarial attacks were performed in spectral-space, 
followed by dimension reduction by PCA-LDA (labeled as “GA- 
PCALDA”). GA-PCALDA implementations were initially computation
ally well-posed, with p ≤ n. In addition, GALDA was implemented for the 
initially ill-posed problem of direct LDA analysis in spectral-space, for 
which p > n prior to generative attack for the spectral data sets used. 
Values for the testing resolution for GALDA in this initially ill-posed case 
are only reported in the regime p < ntot, once the combined number of 
initial and generated spectra (ntot) exceeded the number of spectral 
wavelength channels. 

3. Results and discussion 

3.1. Spectral adversarial attack 

Consistent with Eq. (2), an adversarial attack is defined herein as an 
additive perturbation to an initial seed or spectrum in spectral-space 
with an optimally small overall magnitude intentionally designed to 
induce misclassification in the reduced dimensional space (e.g., LDA- 
space). An example of such can be found in Fig. 3A, in which an 
initial source spectrum from Class 3 (an equal mixture of molybdenite 
and goethite) of a simulated dataset derived from a mineral database is 
perturbed to register as a spectrum from Class 1 (an equal mixture of 
magnetite and galena). Fig. 3B contains the applied perturbed spectrum, 
which is significantly smaller in amplitude comparing to the initial 
source spectrum Fig. 3C shows the classification in the reduced- 
dimensional LDA-space, in which the initial seed spectrum falls into 
the cluster of data points belonging to Class 3, consistent with the 
genuine class for the spectrum. Using Eq. (8), the optimal perturbation 
direction in spectral space was calculated, with the green trace in with 
the corresponding indicating the trajectory in LDA-space produced upon 
the addition of the perturbation to the initial seed. No constraints other 
than proximity to target in LDA-space and minimization of magnitude in 
spectral-space were imposed on the cost function given in Eq. (3). 

Interestingly, the perturbations shown in Fig. 3B that optimally 
produced changes in classification did not affect the major spectral 
features in the source spectrum, as it is visually difficult to detect the 
perturbation in spectral space that squarely relocated the spectrum to 
the target classes in the reduced dimensional space. Rather, the optimal 
perturbations to induce misclassification as seen in Fig. 3B were char
acterized by high-frequency content likely dominated by noise. This 
result is initially somewhat counter-intuitive, as one might expect per
turbations to recover the prominent low-frequency spectral features 
clearly apparent in the mean target spectrum. In the absence of noise, 
precisely such an outcome would be expected. However, the presence of 
significant noise provides a route for misclassification through many 
small perturbations distributed throughout the entire spectral range, 
illustrated graphically in Fig. 2. These results are analogous to adver
sarial examples observed in the image recognition field, in which “inputs 
formed by applying small but intentionally worst-case perturbations to 
examples from the dataset, such that the perturbed inputs results in the 
model outputting an incorrect answer with high confidence.” [61]. 

3.2. Generative adversarial linear discriminant analysis 

Fig. 1 provides an overview of the GALDA iterative “attack and 
defend” process for the Raman spectroscopy of simulated data in the 
reduced-dimensional space. Initially, a 3-class LDA of the training data 
(100 spectra from each class), resulted in a clear separation between the 
three bimodal classes, indicated by the red, blue, and black projected 
data points, respectively. Next, uniformly distributed random seed data 
were generated and projected onto this initializing 2D LDA-space, 
resulting in a broad distribution indicated by the magenta data points 
in Fig. 1C. Perturbation through adversarial attack in spectral space 
transformed the seed data to decoy data, which subsequently projected 
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close to targets randomly assigned from the training set, as demon
strated in Fig. 1D. Note that “target” is defined here as the centroid of a 
given target class selected randomly for each attack irrespective of 
proximity to the initial random seed. Subsequently performing a 4-class 
LDA produced separation between the generated and genuine training 
data by assigning the generated “decoy” data as a fourth class. Upon 
projection in 3D space, the LDA coordinate with the greatest eigenvalue 
(LD1) distinctly separated the training and decoy data. The remaining 
two coordinates (LD2 and LD3) served as the updated reduced dimen
sional LDA-space for visualization of the training and testing data. 

3.3. Classification accuracy 

The classification accuracy of generative adversarial linear analyses 
was evaluated using simulated datasets with known ground truths for 
different distributions of testing and training spectra. The optimal 
reduced-dimensional projections for both PCA and LDA are implicitly 
formulated on the assumption of normally distributed noise about each 
class mean. In practice, distributions in testing data can deviate sub
stantially from this assumption through non-normally distributed noise 
and through offsets in the mean by calibration shifts or addition of un
accounted impurities. In order to approach the inherent deviations away 
from normal PDFs expected in realistic datasets, while simultaneously 
supporting facile replication of results by others, several non-standard 
PDFs were assumed to evaluate the flexibility of PCA, LDA, and 
GALDA to different PDFs describing the data distribution. The results 
summarized in Fig. 4 were performed to evaluate the resiliance of 
classification within reduced dimensional spaces to such deviations from 
ideal behavior. Spectral features from an additional reference spectrum 
(goethite) were added to the testing set but not included in the training 
set to simulate an unidentified impurity. In addition, classification ac
curacy for addition of Poisson and uniformly distributed noise was 
considered. Decision boundaries within the reduced dimensional space 
were determined based on shortest Euclidean distance to the class mode. 

Relative to classical linear methods, generative adversarial linear 
analyses exhibited improvements in classification accuracy upon addi
tion of impurity spectral contributions. Naïve PCA-LDA exhited sub
stantial reductions in classification accuracy upon introduction of 

impurity contributions (85%), while the corresponding GA-PCALDA 
method retained 94% classification accuracy for the simulated Raman 
spectra. Similar advantages were observed when comparing RLDA and 
GALDA (both of which are evaluated directly by LDA without invoking 
PCA for initial dimension reduction). Coordinates for dimension 
reduction by RLDA produced substantial misclassification rates (87% 
mean accuracy) when spectral features not included in the training were 
added to the testing data to simulate the presence of an unknown im
purity. In contrast, loading plots generated by GALDA retained 95% 
classification accuracy for the same testing and training spectra. The 
improvement of the classification accuracy is tentatively attributed to 
further suppresion of noise in the loading plots due to adversarial data 
augmentation. 

Analysis of the bimodally distributed data suggest similar advantages 
of generative adversarial algorithms relative to their common analogous 
linear methods in the presence of non-normally distributed noise, the 
results of which are also summarized in Fig. 4. Bimodal distributions 
within each class were adopted to simulate a nontrivial intraclass dis
tribution. For simulated classes with substantial non-normally distrib
uted noise, the classification accuracy was notably low for RLDA (49% 
for uniformly distributed noise and 44% for Poisson-distributed noise). 
However, these accuracies improved substantially upon application of 
GALDA (to 84% and 91%, respectively). Analogous improvements were 
generally observed for PCA-LDA. following addition of uniform and 
Poission noise to the testing and training data, initial accuracies for 
naïve PCA-LDA of 92% and 91% recovered to accuracies of 98% and 
99%, respectively, by GA-PCALDA. The improvements in classification 
accuracy for GALDA and GA-PCALDA in the presence of non-normally 
distributed data is tentatively attributed to the absence of obvious im
plicit assumptions regarding the functional form of the data distribution 
within the adversarial stage of the generative advarsarial algorithms. 

3.4. Analysis of clopidogrel bisulfate 

Following the preceding proof of concept assessment based on sim
ulations with known distributions, GALDA was used to analyze Raman 
microspectroscopy measurements of clopidogrel bisulfate micro
spheroidal formulations. Microparticles of clopidogrel bisulfate in two 

Fig. 3. Example of a spectroscopic adversarial attack, 
in which a Class 3 spectrum is perturbed such that it is 
misclassified as Class 1, performed with bimodal 
simulated data. A) Includes the initial source spec
trum, the Class 1 mean target spectrum, and the 
optimally perturbed post-“attack” spectrum. Spectra 
are vertically offset to aid visualization. B) Indicates 
the optimal perturbation δ. In C), the direction of the 
perturbation and the final position are shown in the 
reduced dimensional LDA-space.   
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different crystal forms (Form I and Form II) were physically mixed, 
dispersed on a microscope slide, and analyzed by Raman microscopy to 
determine the dominant crystal form within each individual micropar
ticle. Spectra were assigned to three classes (Form I, Form II, and 

background) based on manual visual inspection of the spectra, as 
detailed previously[57]. Forms I and II spectra contained several 
distinctive spectral features in the fingerprint region from 800 cm−1 – 
1200 cm−1, while normalized background spectra were characterized by 
a rolling feature centered at ~1375 cm−1 tentatively assigned to a 
spurious fluorescence interference. 

Mirroring trends observed in the simualted data sets, application of 
GA linear analyses improved the classification accuracy of clopidogrel 
bisulphate spectral assignments. A summary of class accuracy, together 
with loading plots, confusion matrices, and representative projections of 
testing and training data in the corresponding reduced dimensional 
spaces are shown in Fig. 5. Relative to PCALDA for dimension reduction 
followed by a maximum likelihood estimate (MLE) distance linear 
classifier, the use of GA-PCALDA improved the accuracy of class 
assignment from 79% to 97%. A similar comparison between RLDA and 
GALDA realized improvements from 80% to 94%, respectively. 

This improvement in class accuracy was reflected by a corresponding 
reduction in noise within the loading plots and a reduction in overfitting 
when comparing the testing and training resolution (summarized in the 
Supporting Information). Comparisons of the loading plots produced by 
GALDA and RLDA in Fig. 5B and C, respectively, yields smoother curves 
with more clearly discernible spectral features upon iterative optimi
zation by GALDA. For spectra with peaks spanning multiple wavelength 
channels, content at much higher frequencies is generally attributable to 
noise, consistent with observed improvements in the accuracy by 
GALDA. As with the simulated datasets, the improvement arising upon 
application of GA methods is attributed to the rejection of high dimen
sional contributions from locations where the genuine data do not reside 
through adversarial data augmentation. 

3.5. Analysis of THz Raman data 

Low frequency THz Raman spectra were acquired using a Raman 
imaging microscope to map powdered blends of constituents typically 
found in commercially available aspirin tablets, including aspirin, su
crose, and magnesium stearate. In contrast to conventional Raman 
spectroscopy of molecular vibrations, THz Raman spectroscopy is typi
cally dominated by weaker intermolecular interactions and librational 
motions. As such, THz Raman is often highly sensitive to differences in 
solid-state form, producing distinctive spectral features from molecular 
crystals. 

Prior to Raman imaging measurements of heterogeneous samples, 
training and cross-validation was performed using spectra obtained 
from thin films of pure components. Measurements of accuracy 
following dimension reduction with MLE distance decision boundaries 
are shown in Fig. 6. As in the preceding simulated and clopidogrel 
bisulfate experimental datasets, the GA versions of common linear 
analysis algorithms resulted in notable improvements in classification 
accuracy under otherwise similar conditions. Implementation of GA- 
PCALDA produced similar mean accuracy of discrimination between 
aspirin, sucrose, and magnesium stearate of 99% by naïve PCALDA and 
GA-PCALDA. However, the mean accuracy of RLDA improved from 86% 
to 97% upon implementation of GALDA. Interesting, the optimal dis
tribution of spectra projected into the reduced-dimensional space for 
GA-PCALDA was notably T-shaped compared to projections by PCALDA 
alone, with the magnesium stearate spectra distributing broadly across 
the first linear discriminant axis. 

Following training and cross-validation, classifiers designed by GA- 
PCALDA were used to perform chemical speciation in THz Raman mi
croscopy measurements of an aspirin, sucrose, and magnesium-stearate 
powdered blend, the results of which are shown in Fig. 7. Magnesium 
stearate particles were characteristically only a few μm in diameter, 
tentatively assigned as dark particulates dispersed throughout the bright 
field images. From bright-field images, initial boundaries were identi
fied for different crystal domains corresponding to sucrose and aspirin. 
Tentative borders were identified for the larger crystalline particulates 

Fig. 4. Classification result of simulated monomodal Raman spectra from the 
mineral database following five-fold cross-validation. The red rectangle groups 
PCALDA with GA-PCALDA and the blue rectangle groups LDA with GALDA. In 
A), an impurity of geothite spectrum of was added to noise free data scaling 
between 0% and 50% of the total intensity. In B) and C), classification accuracy 
is compared for simulations of bimodal Raman spectra produced with addition 
of uniformly distributed B) and Poisson distributed C) noise. Poisson noise was 
generated by proportionally setting the rescaled ground truth source spectrum 
equal to the mean of a Poisson distribution at each wavelength. Uniform noise 
was added with a variance of the input data variance. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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(indicated in the figures) and tentative initial assignments of composi
tion were made based on differences in crystal habits and size distri
butions, with red border indicating sucrose and blue aspirin. THz Raman 
imaging was performed in the smaller region contained within the black 
border in the bright field image. Each pixel in the Raman image was 
assigned to aspirin, sucrose, or magesium stearate using the reduced 
dimensional projections and decision boundaries for each method 
described in Fig. 6. 

Inspection of the resulting composition maps for RLDA, GALDA, 
PCALDA and GA-PCALDA in Fig. 7 yields clear differences in per-pixel 
classification assignments. Most notably, both GA methods classify the 
region in the upper left as predominantly magnesium stearate, while 
RLDA assigns the same region to sucrose and PCALDA is ambiguous 
containing all three class assignments. The relatively large domain 
indicated by the red outline in Fig. 7A is classified as sucrose with well- 
defined borders in both GA methods. In contrast, RLDA provides no 

significant border between the upper left and central bottom regions and 
PCALDA yields assignments of both sucrose and aspirin for those pixels, 
complicating definitive assignment. GA-PCALDA includes both assign
ments of aspirin and magnesium stearate for the blue particles in the top 
right corner, which may potentially arise from the apparent ubiquity of 
small magnesium stearate microparticles adhered to the surfaces of the 
larger crystalline particles. Magnesium stearate is often added to powder 
blends to reduce friction and aid in particle flow. While no independent 
ground truth results are available for classification of these individual 
pixels, the assignments by GALDA and GA-PCALDA are arguably in best 
agreement with the preliminary assessments of composition based on 
crystal habit and size. 

4. Conclusion 

We describe an iterative generative adversarial approach to 

Fig. 5. Analysis of Raman spectra acquired for clopidogrel bisulfate polymorphs, comparing generative adversarial methods with common well-established linear 
dimension reduction/classification approaches. A) Cross-validated classification accuracy of GA methods with their analogous non-GA counterparts. The red rect
angle groups PCALDA with GA-PCALDA and the blue rectangle groups LDA with GALDA. B) Spectral loading plots, projections in latent space, and confusion matrices 
for GALDA. C) Spectral loading plots, projections in latent space, and confusion matrices for RLDA. In latent spaces, hollowed symbols and crosses correspond to 
training and solid symbols to testing sets. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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minimize overfitting propensities inherent in many dimension reduc
tion/feature extraction algorithms for spectrochemical analysis and 
improve classification accuracy. GA methods were implemented for 
PCA-LDA, RLDA, and for LDA performed at full spectral rank, then 
compared with PCA, PCA-LDA, and RLDA as stand-alone methods using 
both simulated and experimentally measured Raman spectral data sets. 
Studies of simulated data with a known ground-truth optimum 
demonstrate results from GA methods achieved higher classification 
accuracy comparing to non-GA methods. Consistent with applications 
using generative adversarial networks in artificial intelligence engines, 
GA methods are anticipated to be compatible with complex and struc
tured probability density functions underpinning data distributions. The 
insensitivity to initial conditions also suggests GALDA may find use as 
general-purpose tools for refinement of initial outcomes produced from 
other established dimension reduction followed by classification 
methods (e.g., PCA-LDA, RLDA), in lieu of potentially time-consuming 
hyperparameter optimizations. Following validation of the method, 

GA-PCALDA and GALDA were used to map composition through spec
tral analysis of THz Raman imaging of pharmaceutically relevant 
powdered blends. 
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