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Abstract. We consider a nonlinear coupled PDE model for a single piezoelectric beam retaining the electromagnetic effects
and a long-range strain memory. Nonlinear source terms in both mechanical and electromagnetic equations and a viscous
magnetic damping term in the electromagnetic equation are considered in the model. The mathematical analysis of this
model is particularly needed for certain class of fully dynamic piezoelectric materials demonstrating a viscoelastic memory
or creep. With an injection of magnetic damping, the structure of the dynamical system associated with the solutions of
this system allows using the quasi-stability theory in order to obtain the existence of global and exponential attractors.
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1. Introduction

In this paper, a single-layer piezoelectric beam retaining the long-range viscoelastic memory (creep) and
fully dynamic electromagnetic effects is considered. Modeling creep is simply considering that the stress
and electric field at any instant may depend on both the instantaneous and the complete history of
strains [50]. Following the modeling assumptions in [33,50] and denoting v = v(x, t) and p = p(x, t) the
longitudinal displacement and total electric charge at point x and at time t, respectively, the following
sets of equations in the time domain, the equations of motion are

ρvtt − αvxx + γβpxx +

∞∫

0

λ(s)vxx(t − s)ds + f1(v, p) = h1(x) in (0, L) × (0,∞),

μptt − βpxx + γβvxx + g(pt) + f2(v, p) = h2(x) in (0, L) × (0,∞)

(1)

with initial conditions

v(x, 0) = v0(x), vt(x, 0) = v1(x), p(x, 0) = p0(x), pt(0, x) = p1(x), x ∈ (0, L),

v(x,−t) = v2(x, t), (x, t) ∈ (0, L) × (0,∞)
(2)

where f1(v, p), f2(v, p) represent internal forcing terms (sources), h1(x), h2(x) represent external forces,
and g(pt) denotes the distributed current damping. Moreover, λ(t) is a relaxation or memory kernel, v0,
v1, v2, p0, and p1 are functions that belong to appropriate spaces, and α, ρ, γ, β, μ are positive material
constants with

α := α1 + γ2β, α1 > 0, (3)
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and α1 satisfies

k1 := α1 −
∞∫

0

λ(s)ds > 0. (4)

Piezoelectric beams are multi-functional smart materials to develop electric displacement that is
directly proportional to an applied mechanical stress; see Fig. 1. Operating a piezoelectric beam as
an actuator requires an electrical input (voltage, current, or charge). One of the main components of the
electrical input is the drive frequency which determines how fast a piezoelectric beam vibrates or changes
its state. Periodic (regularly repeating) and arbitrary signals can be used to drive a piezoelectric beam,
which corresponds to continuous control of vibrational modes. Due to their small size, flexibility, and
high power density, they have become more and more promising in industrial applications such as from
implantable biomedical devices to PVDF sensors [5,13,25,27,44,47].

Two common piezoelectric materials are polymers (polyvinylidene fluoride, PVDF) and ceramics (lead
zirconate titanate, PZT) [48]. Synthetic PVDF polymers are widely used to construct various types of
sensors since having piezoelectric properties, and its flexibility allows applications of such sensors where
brittle and rigid ceramic materials are not suitable under various loadings and temperatures [49]. The
research on PVDF polymers reveals that the generic description of piezoelectricity has some shortcomings
[50], and thus, classical continuum mechanics fails to predict the interactive effects of creep for PVDF
polymers. In fact, it is observed that PVDF polymers tend to exhibit accelerated creep rates under
superimposed static and cyclic loads. The results indicate that the linear viscoelastic theory describes
a time response of PVDF polymers at the applied stress in both longitudinal and transverse directions
[50]. Therefore, the piezoelectric materials, used as sensors or energy harvesters, should be characterized
adequately by the long-memory dynamic modeling [12].

From the perspective of modeling of mechanical vibrations and electromagnetic effects on a piezo-
electric beam during the motion, the existing literature predominantly uses the electrostatic/quasi-static
approach due to the Maxwell’s equations; see [26,33,48] and the references therein. Therefore, the amount
of magnetic energy produced/stored is completely discarded [51]. However, these effects can be minor
or major in certain applications [52, Chap. 8], [53]. In fact, the fully dynamic electromagnetic effects,
unlike the electrostatic case, may have a dramatic effect on the boundary observability/controllability of
certain class of single-layer or multilayer piezoelectric systems, and observability/controllability results
are sensitive to material parameters if there is only one boundary controller applied to the piezoelectric
layer, i.e., see [33,36–38]. In fact, unlike the existing literature, two boundary controllers are necessary
for the exact controllability of mechanical and electromagnetic variables [41].

At this point, it is fair to mention about the research done to rigorously analyze wave equation-type
nonlinear PDE models like (1)–(2). For example, there is a large literature study for a single wave equation
modeling viscoelastic beams with a memory term added in a distributed fashion and other physics effects
such as damping, delay, nonlinear source, and external force terms. It is worth mentioning the pioneer
work of [11] where the asymptotic behavior of solutions of the viscoelastic equations (of memory type) is
investigated. Among several works which deal with viscoelastic equations long-time memory, we refer the
reader to a large class of papers on viscoelastic beams [6,28,32], Timoshenko beams [29], Berger plates
[39], and the references therein. Memory effects on the overall well-posedness and stability of coupled
systems of wave equations in the same domain can be considered via a boundary dissipation with the
addition of the memory term in one of the equations [30], or a distributed damping term together with the
memory term in one of the equations, i.e., [4,46]. There is also a large literature study on the transmission
problems with a memory term, i.e., see [7] and the references therein. In the case of no damping, a lack of
uniform stability result is shown since the memory term is not strong enough to exponentially stabilize
dynamics both in the case of two elastic membranes [2] and in the case of full set of Maxwell’s equations
[43].
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Fig. 1. Piezoelectric materials can be used as actuators and sensors especially in vibration control and energy harvesting,
respectively

The use of the quasi-stability theory is crucial for the long-time behavior analysis of (1)–(2) as a
decomposition of the difference dynamics into a stable component and compact component. Note that
the existence of a finite-dimensional attractor with optimal regularity and fractal exponential attractor is
achieved by the quasi-stability theory; see [8–10] for pioneer work and the references therein. Inspired by
the ample amount of results, similar approaches have been recently adopted by the authors to rigorously
analyze the long-time memory behavior for piezoelectric beams with delay term [18], boundary memory
terms [17], and thermal effects [22]. For other relevant work on wave systems, refer to [16,18–21,23,40,45]
and references therein.
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For the system (1)–(2) without the nonlinear damping term g(pt), i.e.,

ρvtt − αvxx + γβpxx +

∞∫

0

λ(s)vxx(t − s)ds + f1(v, p) = h1(x) in (0, L) × (0,∞), (5)

μptt − βpxx + γβvxx + f2(v, p) = h2(x) in (0, L) × (0,∞), (6)

with the same set of boundary conditions

v(0, t) = vx(L, t) = p(0, t) = px(L, t) = 0, t ≥ 0, (7)

the memory term is not strong enough to exponentially stabilize a coupled system of nonlinear equations
of this sort. Indeed, the system (5)–(7) is not even a gradient system. For the system (5)–(7) to be
exponentially stable, it is necessary to add more dissipation to the system. Adding the nonlinear damping
term g(pt) to the electromagnetic equation is physical and viable, and it can be implemented easily
through the circuit attached to the electrodes. Indeed, it is the electric current injected through the
electrodes.

The interaction between the memory term
∞∫
0

λ(s)vxx(t − s)ds and the damping term g(pt) in (1)–(2)

with the consideration of natural boundary conditions for the clamped-free beam generates mathematical
hurdles that are difficult to overcome by the Lyapunov’s approaches. This same difficulty is not present
for the coupled-wave systems involving two damping terms g1(vt) and g2(pt), i.e., [46], or Timoshenko
beams [34], where many authors consider the well-known equalizing relationship κ

ρ1
= b

ρ2
(something not

preferred in applications) to overcome the difficulty imposed by the Lyapunov’s approach.
The novelty of the work here can be summarized as the following:

(i) The results obtained here are novel for fully dynamic and non-compactly coupled piezoelectric beam
systems.

(ii) The system (1)–(2) deals with the interaction between the memory effect and the nonlinear damping,
which makes it challenging in using the Lyapunov approach.

(iii) Since the system (1) is accompanied by the natural clamped-free boundary conditions (2), it is
rather a difficult task to construct the quasi-stability result.

(iv) More importantly, there is no restriction for the speeds of wave propagations α
ρ and β

μ in (1),
corresponding to mechanical and electromagnetic vibrations, respectively.

The outline of the paper is as follows: In Sect. 2, assumptions and notations together with the functional
analytic setup are proposed. In Sect. 3, the Cauchy problem is formulated with energy of solutions. In
Sect. 4, existence, uniqueness, and continuous dependence of global solutions are discussed. In Sect. 5,
the existence of a compact global attractor is proved. Finally, in Sect. 6, the existence of an exponential
attractor is proved.

2. Notations and assumptions

In this work, L�(0, L), 1 ≤ � < ∞ denote the Lebesgue spaces of measurable functions on (0, L) whose
�th power is integrable and endowed with the norm ‖ · ‖�. In particular, when � = 2, we use the notation
‖ · ‖2 and 〈·, ·〉 the norm and inner product in L2(0, L), respectively. L∞(0, L) represents the space of
measurable functions that are essentially bounded on (0, L), endowed with the norm ‖ · ‖∞. Moreover,
Hn(0, L) (n = 1, 2) endowed with the norm ‖ · ‖Hn denotes the Sobolev spaces whose elements are
functions in L2(0, L) such that the weak derivative of rth order with r ≤ n belongs to L2(0, L). We also
define the following Sobolev space:

H1
∗ (0, L) =

{
u ∈ H1(0, L) : u(0) = 0

}
.
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Since u(0) = 0, the Poincaré’s inequality holds

‖u‖2 ≤ cp‖ux‖2, ∀u ∈ H1
∗ (0, L), (8)

and therefore, ‖u‖H1∗(0,L) := ‖ux‖2 is an equivalent norm in H1
∗ (0, L).

Assumption 2.1. Assume that the following set of hypotheses on the memory (relaxation) kernel λ holds:

λ ∈ C1(R+) ∩ L1(R+), λ(s) ≥ 0 and λ′(s) ≤ 0, ∀s ∈ R
+, (9)

λ′(s) + δ1λ(s) ≤ 0 for some δ1 > 0, ∀s ∈ R
+, λ0 :=

∞∫

0

λ(s)ds = λ(0) > 0. (10)

Besides, the requirement that λ has a unitary mass translates into
∞∫

0

sλ(s)ds = 1. (11)

Let λ be a memory kernel satisfying the assumptions (9)–(11). Now, we consider the weighted Hilbert
space

M := L2(R+;H1
∗ (0, L)) =

{
u : R+ → H1

∗ (0, L);

∞∫

0

λ(s)‖ux(s)‖2ds < ∞
}

(12)

for which the inner product and the norm (induced by the inner product) are given, respectively, by

〈
u, v

〉
M :=

∞∫

0

λ(s)
〈
ux(s), vx(s)

〉
ds,

‖u‖2M =

∞∫

0

λ(s)‖ux(s)‖22ds (13)

for all u, v ∈ M. Now, we define the linear operator T on M by

T u := −us, u ∈ D(T ) (14)

where

D(T ) :=
{

u ∈ M
∣∣ us ∈ M, u(0) = 0

}
.

For every u ∈ D(T ), the nonnegative functional

Γ(u) := −
∞∫

0

λ′(s)‖ux(s)‖22 ds

is well defined, and the following identity holds:

2〈T u, u〉M = −Γ(u). (15)

Moreover, following the assumption (10) on λ, we deduce the inequality

δ1‖u‖2M ≤ Γ(u), (16)

which is crucial for the rest of the paper.
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Using the operator T above and the relative history of v defined by η(t, s) = v(t)−v(t−s), introduced
first by Dafermos [11], the system (1)–(2) can be rewritten in the following equivalent form

ρvtt − k̃vxx + γβpxx −
∞∫

0

λ(s)ηxx(s)ds + f1(v, p) = h1 in (0, L) × (0,∞), (17)

μptt − βpxx + γβvxx + g(pt) + f2(v, p) = h2 in (0, L) × (0,∞), (18)
ηt − T η − vt = 0 in (0, L) × (0,∞) × (0,∞) (19)

with boundary conditions

v(0, t) = vx(L, t) = p(0, t) = px(L, t) = η(0, s, t) = ηx(L, s, t) = 0, t ≥ 0, s ≥ 0 (20)

and initial conditions
v(x, 0) = v0(x), vt(x, 0) = v1(x), p(x, 0) = p0(x), pt(0, x) = p1(x), x ∈ (0, L),

η(x, s, 0) = η0(x, s), (x, s) ∈ (0, L) × (0,∞).
(21)

Here,

k̃ = k1 + γ2β. (22)

Now, consider the Hilbert space

H = H1
∗ (0, L) × H1

∗ (0, L) × L2(0, L) × L2(0, L) × M (23)

with the following inner product:

(U, Ũ)H = ρ〈φ, φ̃〉 + μ〈ϕ, ϕ̃〉 + k1〈vx, ṽx〉 + β〈γvx − px, γṽx − p̃x〉 + 〈η, η̃〉M

where U = (v, p, φ, ϕ, η), Ũ = (ṽ, p̃, φ̃, ϕ̃, η̃) ∈ H. The corresponding norm is then given by

‖U‖2H = ρ‖φ‖22 + μ‖ϕ‖22 + k1‖vx‖22 + β‖γvx − px‖22 + ‖η‖2M.

Observe that there exists a constant κ0 > 0 such that

‖vx‖22 + ‖px‖22 ≤ κ0

(
k1‖vx‖22 + β‖γvx − px‖22

)
. (24)

Indeed, noting that

‖px‖22 = ‖γvx − px − γvx‖22 ≤ 2‖γvx − px‖22 + 2γ2‖vx‖22,

we have

‖vx‖22 + ‖px‖22 ≤ (2γ2 + 1)‖vx‖22 + 2‖γvx − px‖22.

Therefore, (24) holds with κ0 = max{(2γ2+1)k−1
1 , 2β−1}. Combining (8) and (24), there exists a constant

d0 > 0 such that

‖v‖22 + ‖p‖22 ≤ d0
(
k1‖vx‖22 + β‖γvx − px‖22

)
. (25)

Assumption 2.2. The following are assumed for the external forces and source terms:

(i) The external forces h1, h2 ∈ L2(0, L).
(ii) There exists a function F ∈ C2(R2) such that

∇F = (f1, f2). (26)

(iii) There exist q ≥ 1 and C > 0 such that

|∇fi(v, p)| ≤ C
(
1 + |v|q−1 + |p|q−1

)
, i = 1, 2. (27)
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(iv) There exist constants d ≥ 0, mF > 0 with

0 ≤ d <
1

2d0
(28)

such that

F (v, p) ≥ −d
(
|v|2 + |p|2

)
− mF . (29)

Moreover,

∇F (v, p) · (v, p) − F (v, p) ≥ −d
(
|v|2 + |p|2

)
− mF . (30)

Remark 2.3. Assumption 2.2, with few variations, can be found in several works such as [3,14,15,31,35,
42]. An example of a function satisfying this assumption is

F (v, p) = |v + p|4 − |v + p|2 + |vp|2. (31)

Assumption 2.4. Consider an increasing function g ∈ C1(R) with g(0) = 0. In addition, assume that
there exist constants m,M > 0 such that

m ≤ g′(s) ≤ M ∀ s ∈ R. (32)

By the mean value theorem and (32), the following monotonicity property is obtained:

m|u − v|2 ≤ (g(u) − g(v))(u − v) ≤ M |u − v|2, ∀u, v ∈ R. (33)

3. Cauchy’s problem

Let U(t) = (v(t), p(t), vt(t), pt(t), η(t)). The system (17)-(19) (with boundary and initial conditions) can
be rewritten as an abstract initial value problem (Cauchy’s problem) in H:{

Ut(t) + (A1 + A2)U(t) + F(U(t)) = 0, t > 0,
U(0) = U0,

(34)

where Ut = dU
dt and U0 = (v0, p0, v1, p1, η0), and the operators A1 : D(A) ⊂ H → H, A2 : H → H and

B : H → H are defined by

A1

⎛
⎜⎜⎜⎜⎝

v
p
φ
ϕ
η

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−φ
−ϕ

ρ−1(−k̃vxx + γβpxx −
∞∫
0

λ(s)ηxx(s)ds)

μ−1(−βpxx + γβvxx)
−T η − φ

⎞
⎟⎟⎟⎟⎟⎟⎠

, A2

⎛
⎜⎜⎜⎜⎝

v
p
φ
ϕ
η

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
0
0

μ−1g(ϕ)
0

⎞
⎟⎟⎟⎟⎠ , (35)

with

D(A1) :=
{

(v, p, φ, ϕ, η) ∈ H; v, p ∈ H2(0, L), φ, ϕ ∈ H1
∗ (0, L), η ∈ D(T ),

vx(L) = px(L) = 0, k̃vxx +

∞∫

0

λ(s)ηxx(s)ds ∈ L2(0, L)
}

,
(36)

F

⎛
⎜⎜⎜⎜⎝

v
p
φ
ϕ
η

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
0

ρ−1(f1(v, p) − h1)
μ−1(f2(v, p) − h2)

0

⎞
⎟⎟⎟⎟⎠ . (37)
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Definition 3.1. A strong solution to (34) on [0, T ) is a continuous function U : [0, T ) → H such that
U(0) = U0, U is differentiable a.e. on [0, T ) and Lipschitz continuous, U(t) ∈ D(A) for any t ∈ [0, T ).

Definition 3.2. A generalized solution to (34) on [0, T ] with T > 0 is a function U ∈ C([0, T ],H) with
U(0) = U0 for which there exists a sequence of strong solutions (Un) ∈ C([0, T ],H) of

d

dt
Un + (A1 + A2)Un + F(Un) = fn, n = 1, 2, . . . (38)

with Un → U in C([0, T ],H) and fn → 0 on L1(0, T ;H). A function U ∈ C([0, T );H) with 0 < T ≤ ∞ is
a generalized solution to (34) on [0, T ) if U is a generalized solution to (34) on [0, T ′] for any 0 < T ′ < T .

3.1. Energy of solutions

Given a solution U(t) = (v(t), p(t), pt(t), vt(t), η(t)) to (34) on [0, T ), define the energy E(t) of U(t) by

E(t) :=
ρ

2
‖vt(t)‖22 +

μ

2
‖pt(t)‖22 +

k1
2

‖vx(t)‖22 +
β

2
‖γvx(t) − px(t)‖22 +

1
2
‖η(t)‖2M

=
1
2
‖U(t)‖2H,

(39)

and define the modified energy E (t) of U(t) by

E (t) := E(t) +

L∫

0

F (v(t), p(t))dx − 〈h1, v(t)〉 − 〈h2, p(t)〉. (40)

Lemma 3.3. The modified energy (40) associated with solution U(t) = (v(t), p(t), vt(t), pt(t), η(t)) of (34)
on [0, T ) is non-increasing. Moreover, there exist constants χ0, CF > 0 such that

χ0‖U(t)‖2H ≤ E (0) + CF , t ∈ [0, T ). (41)

In other words, every solution U(t) of (34) always remains inside a closed ball whose radius depends on
U(0).

Proof. Suppose U(t) is a strong solution. Multiply (17) by vt, (18) by pt, and (19) by −k(s)ηxx. Now,
integrating by parts the first two equations in the variable x over [0, L], and the third one over [0,∞)×[0, L]
with respect x and s, yields

d

dt
E (t) = −〈g(pt), pt〉 − 1

2
Γ(η) ≤ 0. (42)

Therefore, E (t) is non-increasing, and in particular

E (t) ≤ E (0), t ∈ [0, T ). (43)

Next, (29) is integrated over [0, L] with respect to x and (25) is applied to obtain
L∫

0

F (v, p)dx ≥ −d(‖v‖22 + ‖p‖22) − LmF ≥ −dd0

(
k1‖vx‖22 + β‖γvx − px‖22

)
− LmF

≥ −dd0‖U(t)‖2H − LmF .

(44)

Now, (44) together with (28) leads to

E (t) ≥
(

1
2

− dd0

)
‖U(t)‖2H − LmF −

L∫

0

(h1v + h2p) dx.
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By letting

χ0 =
1
4
(
1 − 2dd0

)
> 0, (45)

and using the estimate
L∫

0

(h1v + h2p) dx ≤ χ0

d0

(
‖v‖22 + ‖p‖22

)
+

d0
4χ0

(
‖h1‖22 + ‖h2‖22

)
,

the inequality in (41) is obtained with

CF = LmF +
d0
4χ0

(
‖h1‖22 + ‖h2‖22

)
.

Finally, by a density argument, (41) is valid for every generalized solution on [0, T ′] for any 0 < T ′ < T .
�

4. Well-posedness

The following results are needed to prove thee global well-posedness of (34).

Lemma 4.1. The operator A1 is m-accretive.

Proof. By a standard computation,

〈A1U,U〉H = −1
2

∞∫

0

λ′(s)‖ηx(s)‖22ds ≥ 0, ∀U = (v, p, φ, ϕ, η) ∈ D(A1). (46)

Additionally, R(I + A1) = H. Letting U∗ = (v∗, p∗, φ∗, ϕ∗, η∗) ∈ H, it is aimed to obtain U =
(v, p, φ, ϕ, η) ∈ D(A1) such that

(I + A1)U = U∗. (47)

Note that (47) is equivalent to the following system:

v − φ = v∗, (48)
p − ϕ = p∗, (49)

ρφ − k̃vxx + γβpxx −
∞∫

0

λ(s)ηxx(s)ds = ρφ∗, (50)

μϕ − βpxx + γβvxx = μϕ∗, (51)
η − T η − φ = η∗. (52)

Now, observe that

η(s) = (1 − e−s)φ + e−s

s∫

0

eτη∗(τ)dτ (53)

satisfies (52) with η(0) = 0, and the second term on the right side in (53)

s ∈ R
+ �→ e−s

s∫

0

eτη∗(τ)dτ (54)



136 Page 10 of 22 M. J. Dos Santos et al. ZAMP

belongs to M. This can be seen by changing the order within the integral

∞∫

0

λ(s)
∥∥∥∥e−s

s∫

0

eτη∗
x(τ)dτ

∥∥∥∥
2

2

ds =

∞∫

0

λ(s)e−2s

L∫

0

⎛
⎝

s∫

0

eτη∗
x(τ)dτ

⎞
⎠

2

dxds

≤
∞∫

0

λ(s)e−2s

L∫

0

⎛
⎝

s∫

0

eτdτ

⎞
⎠
⎛
⎝

s∫

0

eτ |η∗
x(τ)|2dτdx

⎞
⎠ ds

≤
∞∫

0

λ(s)e−s

s∫

0

eτ‖η∗
x(τ)‖22dτds =

∞∫

0

∞∫

τ

λ(s)e−seτ‖η∗
x(τ)‖22dsdτ

=

∞∫

0

e2τ‖η∗
x(τ)‖22

⎛
⎝

∞∫

τ

λ(s)e−2sds

⎞
⎠ dτ ≤

∞∫

0

λ(τ)‖η∗
x(τ)‖22dτ < ∞.

(55)

Therefore, φ ∈ H1
∗ (0, L) implies η(s) ∈ H1

∗ (0, L) for s > 0 and η ∈ M,

ηs(s) = e−sφ − e−s

s∫

0

eτη∗(τ)dτ + η∗(s) ∈ M (56)

and thus η ∈ D(T ). By using (48) and (53) in ((50),(49), (51)),

ρv − (k̃0 + γ2β)vxx + γβpxx = ϑ∗,

μp − βpxx + γβvxx = μϕ∗ + μp∗ (57)

where (by (4))

k̃0 := α1 −
∞∫

0

λ(s)e−sds > 0 (58)

and

ϑ∗ := ρφ∗ + ρv∗ +

∞∫

0

λ(s)e−s

s∫

0

eτη∗
xx(τ)dτds −

∞∫

0

λ(s)(1 − e−s)dsv∗
xx. (59)

Note that ϑ∗ ∈ H−1
∗ (0, L). Since v∗

x ∈ L2(0, L) and for w ∈ H1
∗ (0, L) with ‖wx‖ ≤ 1, a calculation similar

to (55) (see [24] for more details) and from Holder’s inequality, the following is obtained:

∣∣∣∣
〈 ∞∫

0

λ(s)e−s

s∫

0

eτη∗
xx(τ)dτds, w

〉∣∣∣∣ =
∣∣∣∣
〈 ∞∫

0

λ(s)e−s

s∫

0

eτη∗
x(τ)dτds, wx

〉∣∣∣∣

≤
∞∫

0

λ(s)e−s

s∫

0

eτ‖η∗
x(τ)‖dτds ≤ k

1/2
0 ‖η∗‖M,

(60)

and analogously,

∣∣∣∣
〈 ∞∫

0

λ(s)(1 − e−s)dsv∗
xx, w

〉∣∣∣∣ ≤ k0‖v∗
x‖2. (61)
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Now, for solving the system (57), we use a standard variational approach in order to obtain a bilinear
functional B : (H1

∗ (0, L) × H1
∗ (0, L))2 → R defined by

B
(
(v, p), (ṽ, p̃)

)
:= ρ〈v, ṽ〉 + (k̃0 + γ2β)〈vx, ṽx〉 + μ〈p, p̃〉 + β〈γvx − px, γṽx − p̃x〉. (62)

It is not difficult to verify that B is continuous and coercive. Therefore, it follows from the Lax–Milgram’s
theorem that the system (57) has a unique solution (v, p). Now, (48) and (49) implies φ, ϕ ∈ H1

∗ (0, L),
and (53) implies η ∈ M, and (57)2 implies −p + γv ∈ H2(0, L). This together with (50) yields k̃vxx +
∞∫
0

λ(s)ηxx(s)ds ∈ L2(0, L), and therefore, v, p ∈ H2(0, L). Hence, (v, p, φ, ϕ, η) ∈ D(A1) and the result

follows from [54][Lemma 2.2.3]. �

Lemma 4.2. The operator A2 is accretive and Lipschitz continuous.

Proof. It follows from (35) that for any U = (v, p, φ, ϕ, η) and Ũ = (ṽ, p̃, φ̃, ϕ̃, η̃) in H
〈A2(U) − A2(Ũ), U − Ũ〉H = 〈g(ϕ) − g(ϕ̃), ϕ − ϕ̃〉 ≥ 0. (63)

Therefore, A2 is accretive. Considering (33) leads to

‖A2(U) − A2(Ũ)‖H ≤ C‖U − Ũ‖H (64)

for some positive constant C independent of U and Ũ . The proof is now complete. �

Lemma 4.3. The operator A = A1 + A2 is m-accretive.

Proof. Since A1 is m-accretive and A2 is accretive and Lipschitz continuous, it follows from [10][Proposition
2.2.3] that A is m-accretive. �

Lemma 4.4. The operator F is locally Lipschitz.

Proof. Let U = (v, p, φ, ϕ, η), Ũ = (ṽ, p̃, φ̃, ϕ̃, η̃) in H and K > 0 such that

‖U‖H, ‖Ũ‖H ≤ K. (65)

It follows from (37) that

‖F(U) − F(Ũ)‖2H = ρ−1

L∫

0

|f1(v, p) − f1(ṽ, p̃)|2dx + μ−1

L∫

0

|f2(v, p) − f2(ṽ, p̃)|2dx. (66)

By (27) and the mean value theorem, there exists θ ∈ (0, 1) such that

|fi(v, p) − fi(ṽ, p̃)|2 = |∇fi(θ(v, p) + (1 − θ)(ṽ, p̃))|2|(v, p) − (ṽ, p̃)|2

≤ C
(
|v|q−1 + |ṽ|q−1 + |p|q−1 + |p̃|q−1 + 1

)2 (|v − ṽ|2 + |p − p̃|2
)
.

(67)

Therefore, there exists a constant CK > 0 such that
L∫

0

|fi(v, p) − fi(ṽ, p̃)|2 dx ≤ CR‖U − Ũ‖2H, i = 1, 2. (68)

Finally, substituting (68) into (66), we conclude that there exists C̃R > 0 such that

‖F(U) − F(Ũ)‖H ≤ C̃R‖U − Ũ‖H.

This proves that F is locally Lipschitz continuous. �

Theorem 4.5. (Existence of Global Solution) Consider the Cauchy’s problem (34).
a. If U0 ∈ H, (34) has a unique global generalized solution.
b. If U0 ∈ D(A) where A = A1 + A2, the generalized solution obtained in (a) is strong solution.
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c. If U1(t) and U2(t) are two solutions to (34), there exists a positive constant C0 = C0(U1(0), U2(0))
such that for every T > 0

‖U1(t) − U2(t)‖H ≤ eC0t‖U1(0) − U2(0)‖H, 0 ≤ t ≤ T. (69)

Proof. (a) and (b): Since A is m-accretive, (34) is a local Lipschitz disturbance for
{

Ut(t) + AU(t) = 0, t > 0,

U(0) = U0.
(70)

It follows from [10][Theorem 2.3.8] that there exist Tmax > 0 such that if U0 ∈ H, (34) has a unique
generalized solution on [0, Tmax), and if U0 ∈ D(A), (34) has a unique strong solution on [0, Tmax). Let
U(t) be a solution of (34). By (41), we have

lim
t→T −

max

‖U(t)‖H < ∞. (71)

Therefore, we conclude that Tmax = ∞ following from Theorem 2.3.8 in [10], and hence, the solution is
global.

(c): By letting U1(t) = (v1, p1, v1
t , p1t , η

1) and U2(t) = (v2, p2, v2
t , p2t , η

2) be strong solutions of (34),
U(t) = U1(t) − U2(t) = (v, p, vt, pt, η) is a solution of

ρvtt − k̃vxx + γβpxx −
∞∫

0

λ(s)ηxx(s)ds = − (f1(v1, p1) − f1(v2, p2))

μptt − βpxx + γβvxx = − (g(p1t ) − g(p2t )) − (f2(v1, p1) − f2(v2, p2))
ηt + ηs = vt.

(72)

Now, multiply (72)1 by vt, (72)2 by pt, (72)3 by λ(s)ηxx, and integrate by parts the two first over [0, L]
with respect to x and the third over [0, L] × [0,∞] with respect to x and s to obtain

1
2

d

dt
‖U(t)‖2H ≤ −m‖pt‖22 +

∞∫

0

λ′(s)‖ηx‖22ds −
L∫

0

(f1(v1, p1) − f1(v2, p2))vtdx

−
L∫

0

(f2(v1, p1) − f2(v2, p2))ptdx ≤ −
L∫

0

(f1(v1, p1) − f1(v2, p2))vtdx

−
L∫

0

(f2(v1, p1) − f2(v2, p2))ptdx.

(73)

where (32) is taken into account. Next, apply the Young’s inequality to have

L∫

0

(f1(v1, p1) − f1(v2, p2))vtdx ≤ 1
2

L∫

0

|f1(v1, p1) − f1(v2, p2)|2dx +
1
2
‖vt‖22,

L∫

0

(f2(v1, p1) − f2(v2, p2))ptdx ≤ 1
2

L∫

0

|f2(v1, p1) − f2(v2, p2)|2dx +
1
2
‖pt‖22.

(74)
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Following the traces of a calculation similar to the one in Lemma 4.4, a positive constant C0 depending
on U1(0) and on U2(0) is obtained such that for i = 1, 2 :

1
2

L∫

0

|f1(v1, p1) − f1(v2, p2)|2dx ≤ C0‖U(t)‖2H. (75)

Combining (73), (74), and (75) leads to
d

dt
‖U(t)‖2H ≤ C0‖U(t)‖2H (76)

where C0 represents a generic positive constant of U1(0) and U2(0). Finally, (69) holds true on [0, T ] for
any T > 0. Using a density argument, (69) holds for every generalized solution. �

Remark 4.6. Once the existence of a global solution for (34) is established, represent U(t, U0) the solution
of (34) for all U0 ∈ H, and, this gives rise to a family of operators S(t), t ∈ R of H itself defined by

S(t)U0 = U(t, U0). (77)

From Theorem 4.5, t → S(t)U0 is Lipschitz continuous for any U0 ∈ H, and from (69), S(t) is continuous
for any t ≥ 0 with S(0) = I where I is the identity operator on H. It is not difficult to show that S(t)
defined in (77) satisfies the semigroup property. Therefore, the pair (H, S(t)) is a dynamical system with
S(t) being a C0-semigroup. Henceforth, the properties of this dynamical system shall be studied in order
to obtain global and exponential attractors.

5. Global attractor

5.1. Quasi-stability

The purpose of this subsection is to establish the quasi-stability for the dynamical system (H, S(t)) on
every bounded subset of H which is positively invariant. It is proved that the dynamical system satisfies
the stabilizability estimate [10, Section 7.9] for such sets.

Lemma 5.1. Suppose that Assumptions 2.1, 2.2, and 2.4 hold. Let B be a bounded positively invariant set
in H, and let S(t)U i = (vi, pi, vi

t, p
i
t, η

i) be the weak solutions of (17)–(21) with initial conditions U i ∈ B,
i = 1, 2. Then, there exist constants μ0, γ0, C

′
B > 0 such that

E(t) ≤ γ0e
−μ0tE(0) + C ′

B

t∫

0

e−μ0(t−s)(‖v(s)‖22q + ‖p(s)‖22q) ds (78)

where v = v1 − v2 and p = p1 − p2.

Proof. Note that u = v1 − v2, p = p1 − p2 and η = η1 − η2 solve the system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρvtt − k̃vxx + γβpxx −
∞∫
0

λ(s)ηxx(s)ds = −F1(v, p) in (0, L) × (0,∞),

μptt − βpxx + γβvxx + G(pt) = −F2(v, p) in (0, L) × (0,∞),
ηt − T ηs − vt = 0 in (0, L) × (0,∞) × (0,∞)

(79)

with boundary conditions

v(0) = vx(L) = p(0) = px(L) = 0

and initial conditions (
v(0), p(0), vt(0), pt(0)

)
= U1 − U2 (80)
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where

G(pt) = g(p1t ) − g(p2t ), Fi(v, p) = fi(v1, p1) − fi(v2, p2), i = 1, 2.

Step 1. It is claimed that there exists a constant C > 0 such that
d
dt

E(t) ≤ −m

2
‖pt‖22 − 1

2
Γ(η) + CB

(
‖v‖22q + ‖p‖22q

)
+ ρε1‖vt‖22, ∀ ε1 > 0. (81)

By multiplying the first equation in (79) by vt, the second one by pt, the third one by λ(s)ηxx respectively,
and integrating by parts the first and second equations over [0, L] with respect to x and the third one
over [0, L] × [0,∞) with respect x and s, we obtain

d
dt

E(t) = −
〈
G(pt), pt

〉
+
〈
T η, η

〉
M −

〈
F1(v, p), vt

〉
−
〈
F2(v, p), pt

〉

≤ −m‖pt‖22 − 1
2
Γ(η) −

〈
F1(v, p), vt

〉
−
〈
F2(v, p), pt

〉
. (82)

By (27), Hölder’s inequality and Young’s inequalities, and Lemma 3.3, there exists a constant CB > 0
such that∣∣〈F1(v, p), vt

〉∣∣ ≤ C
(
‖v1‖q−1

2q + ‖v2‖q−1
2q + ‖p1‖q−1

2q + ‖p2‖q−1
2q + 1

) (
‖v‖2q + ‖p‖2q

)
‖vt‖2

≤ CB

(
‖v‖2q + ‖p‖2q

)
‖vt‖2 ≤ CB

(
‖v‖22q + ‖p‖22q

)
+ ρε1‖vt‖22, ∀ ε1 > 0. (83)

In a similar fashion, it follows that
∣∣〈F2(v, p), pt

〉∣∣ ≤ C
(
‖v1‖q−1

2q + ‖v2‖q−1
2q + ‖p1‖q−1

2q + ‖p2‖q−1
2q + 1

) (
‖v‖2q + ‖p‖2q

)
‖pt‖2

≤ CB

(
‖v‖2q + ‖p‖2q

)
‖pt‖2 ≤ CB

(
‖v‖22q + ‖p‖22q

)
+

m

2
‖pt‖22, m > 0. (84)

Substituting the estimates (83) and (84) in (82) leads to (81).
Step 2. Multiplying the equation (79)1 by v and integrating over [0, L] leads to

d
dt

F (t) − ρ‖vt‖22 + k1‖vx‖22 + γβ
〈
γvx − px, vx

〉
+

∞∫

0

λ(s)
〈
ηx(s), vx

〉
ds +

〈
F1(v, p), v

〉
= 0 (85)

where

F (t) := ρ
〈
vt, v

〉
. (86)

Additionally,
∞∫

0

λ(s)
〈
ηx(s), vx

〉
ds ≤ C‖vx‖2‖η‖M ≤ k1

4
‖vx‖22 + CΓ(η). (87)

Using Young’s inequality in (85) leads to

d
dt

F (t) ≤ −k1
2

‖vx‖22 + ρ‖vt‖22 + C‖γvx − px‖22 + CΓ(η) +
〈
F1(v, p), v

〉
. (88)

By (27), Hölder’s inequality and the embedding L2q(0, L) ↪→ L2(0, L), it follows that
∣∣〈F1(v, p), v

〉∣∣ ≤ C
(
‖v1‖q−1

2q + ‖v2‖q−1
2q + ‖p1‖q−1

2q + ‖p2‖q−1
2q + 1

) (
‖v‖2q + ‖p‖2q

)
‖v‖2

≤ CB

(
‖v‖2q + ‖p‖2q

)
‖v‖2q ≤ CB

(
‖v‖22q + ‖p‖22q

)
. (89)

Next, substitute the estimates (89) in (88) to get

d
dt

F (t) ≤ −k1
2

‖vx‖22 + ρ‖vt‖22 + C‖γvx − px‖22 + CΓ(η) + CB

(
‖v‖22q + ‖p‖22q

)
. (90)
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Step 3. Multiplying the equation (79)1 by (γv − p) and integrating over [0, L] leads to

ρ
〈
vtt, γv − p

〉
+ k1

〈
vx, γvx − px

〉
+ γβ‖γvx − px‖22 +

∞∫

0

λ(s)
〈
ηx(s), γvx − px

〉
ds

+
〈
F1(v, p), γv − p

〉
= 0.

Now, define

G (t) := −ρ
〈
vt, γv − p

〉
. (91)

By vtt(γv − p) = ∂
∂t [vt(γv − p)] − vt(γv − p)t,

d
dt

G (t) = −ργ‖vt‖22 + ρ
〈
vt, pt

〉
+ k1

〈
vx, γvx − px

〉
+ γβ‖γvx − px‖22

+

∞∫

0

λ(s)
〈
ηx(s), γvx − px

〉
ds +

〈
F1(v, p), γv − p

〉
= 0. (92)

Next, utilize the Young’s inequality to obtain
∞∫

0

λ(s)
〈
ηx(s), γvx − px

〉
ds ≤ C‖γvx − px‖22 + CΓ(η),

∣∣〈F1(v, p), γv − p
〉∣∣ ≤ CB(‖v‖22q + ‖p‖22q),

and

k1
〈
vx, γvx − px

〉
≤ k1ε2‖vx‖22 + C‖γvx − px‖22, ∀ ε2 > 0,

Therefore, for all ε2 > 0
d
dt

G (t) = −ργ

2
‖vt‖22 + C‖pt‖22 + k1ε2‖vx‖22 + C‖γvx − px‖22 + CΓ(η) + CB(‖v‖22q + ‖p‖22q). (93)

Step 4. Multiply the equation (79)2 by (γv − p) and integrate over [0, L] to have

μ
〈
ptt, γv − p

〉
− β‖γvx − px‖22 +

〈
G(pt), γv − p

〉
+
〈
F2(v, p), γv − p

〉
= 0. (94)

Let

H (t) := −μ
〈
pt, γv − p

〉
. (95)

By ptt(γv − p) = ∂
∂t [pt(γv − p)] − pt(γv − p)t, and the Cauchy–Schwarz inequality, the following is

immediate:
d

dt
H (t) ≤ −μγ

〈
pt, vt

〉
+ μ‖pt‖22 − β‖γvx − px‖22 +

〈
G(pt), γv − p

〉
+
〈
F2(v, p), γv − p

〉
. (96)

Now, using the Young’s and Poincaré’s inequalities and the following estimates:
〈
G(pt), γv − p

〉
≤ C‖pt‖22 +

β

2
‖γvx − px‖22 and

∣∣〈F2(v, p), γv − p
〉∣∣ ≤ CB(‖v‖22q + ‖p‖22q) (97)

the following is obtained:
d
dt

H (t) ≤ −β

2
‖γvx − px‖22 + με3‖vt‖22 + C‖pt‖22 + CB(‖v‖22q + ‖p‖22q), ∀ ε3 > 0. (98)

Step 5. Consider the functional

L (t) := N1E(t) + F (t) + N2G (t) + N3H (t).

By Young’s and Poincaré’s inequalities, the following holds true:

|L (t) − N1E(t)| ≤ |F (t)| + N2|G (t)| + N3|H (t)| ≤ η̃E(t), η̃ > 0. (99)
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Consequently, for N1 > η̃ (
N1 − η̃

)
E(t) ≤ L (t) ≤

(
N1 + η̃

)
E(t), ∀t ≥ 0. (100)

Step 6. By the estimates (81), (90), (93), and (98):

d
dt

L (t) ≤ −
(
N2ργ/2 − N1ρε1 − N3με3 − ρ

)
‖vt‖22 −

(
mN1/2 − N2C − N3C

)
‖pt‖22

−
(
k1/2 − N2k1ε2

)
‖vx‖22 −

(
N3β/2 − C − N2C

)
‖γvx − px‖22

−
(
N1/2 − C − N2C

)
Γ(η) +

(
1 + N1 + N2 + N3

)
CB

(
‖v‖22q + ‖p‖22q

)
.

Now, choose ε1 := 1/4N1, ε2 := 1/4N2, and ε3 := ρ/4μN3 to obtain

d
dt

L (t) ≤ −
(
N2γ − 3

)ρ

2
‖vt‖22 −

(
mN1/2 − N2C − N3C

)
‖pt‖22 − k1

4
‖vx‖22

−
(
N3β/2 − C − N2C

)
β‖γvx − px‖22 −

(
N1/2 − C − N2C

)
Γ(η)

+
(
1 + N1 + N2 + N3

)
CB

(
‖v‖22q + ‖p‖22q

)
.

Choosing further that N2 > 3/γ, N3 > 2C
β (1+N2), and N1 > max

{
2
mC(N2 +N3), 2C(1+N2), η̃

}
, there

exists N0 > 0 such that
d
dt

L (t) ≤ −N0E(t) + CB

(
‖v‖22q + ‖p‖22q

)
.

Next, the second inequality in (100) is utilized to obtain

d
dt

L (t) ≤ − N0

N1 + η̃
L (t) + CB(‖v‖22q + ‖p‖22q). (101)

Finally, the Gronwall’s lemma is applied to (101) to get

L (t) ≤ e− N0
N1+η̃ tL (0) + CB

t∫

0

e− N0
N1+η̃ (t−s)(‖v(s)‖22q + ‖p(s)‖22q) ds.

Choosing γ0 := N1+η̃
N1−η̃ > 0, μ0 := N0

N1+η̃ > 0, C ′
B := CB

N1−η̃ > 0 and reusing (100), the following inequality
holds true:

E(t) ≤ γ0e
−μ0tE(0) + C ′

B

t∫

0

e−μ0(t−s)(‖v(s)‖22q + ‖p(s)‖22q) ds.

Hence, (78) is obtained. �

5.2. Gradient system

Recall that a dynamical system (H,S(t)) is gradient if it possesses a strict Lyapunov functional. That is,
a functional Φ : H → R is a strict Lyapunov function for a system (H,S(t)) if

(i) the map t → Φ(S(t)z) is non-increasing for each z ∈ H,
(ii) if Φ(S(t)z) = Φ(z) for some z ∈ H and for all t, then z is a stationary point of S(t), that is,

S(t)z = z.

Lemma 5.2. The dynamical system (H, S(t)) corresponding to problem (17)–(21) is gradient. Moreover,
there exists a Lyapunov functional Φ defined in H such that
a. the Lyapunov functional Φ is bounded from above on any bounded subset of H,
b. the set ΦR = {U0 ∈ H ; Φ(U0) ≤ R} is bounded in H for every R > 0.
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Proof. Consider the functional Φ on H defined by

Φ(v, p, φ, ϕ, η) =
1
2
‖(v, p, φ, ϕ, η)‖2H +

L∫

0

F (v, p)dx −
L∫

0

h1vdx −
L∫

0

h2pdx. (102)

Note that if U(t) = (v(t), p(t), vt(t), pt(t), η(t)) = S(t)U0 is a solution of (34), for any
U0 = (v0, p0, v1, p1, η0) ∈ H, t �→ Φ(S(t)U0) is non-increasing by Lemma 3.3. Moreover, if Φ(S(t)U0) =
Φ(U0) for any t > 0, (42) leads to

− m‖pt‖22 − 1
2
Γ(η) = 0 (103)

which implies that

pt(t) = 0, t > 0 =⇒ p(t) = p0, t > 0. (104)

On the other hand, by (103) and (16),

0 = Γ(η) ≤ −δ1‖η‖2M.

Therefore, η(t, s) = 0 for t, s > 0. Noting that ηt − T ηs − vt = 0, we can get

vt(t) = 0, t > 0 =⇒ v(t) = v0, t > 0, (105)

and consequently, U0 = (v0, p0, 0, 0, 0) ∈ N . This simply means that Φ is a strict Lyapunov function for
(H, S(t)) on H, and therefore, (H, S(t)) is gradient system.

From (42), Φ can be easily seen to be bounded from above on bounded subsets of H. Let U(t) be the
mild solution (corresponding to U0) to problem (17)-(21) such that Φ(U0) ≤ R. Then, it is inferred from
(41) that

χ0‖S(t)U0‖2H ≤ Φ(U0) + CF ≤ R + CF .

Hence, ΦR is a bounded set of H. �

Lemma 5.3. The set N = {U = (v, p, 0, 0, 0) ∈ H;−k̃vxx + γβpxx + f1(v, p) = h1, −βpxx + γβvxx +
f2(v, p) = h2} of stationary solutions is bounded in H.

Proof. By letting U = (v, p, 0, 0, 0) ∈ N , U satisfies

−k̃vxx + γβpxx + f1(v, p) = h1,

−βpxx + γβvxx + f2(v, p) = h2.
(106)

Multiplying (106)1 by v and (106)2 by p and integrating by parts each one over [0, L] leads to

k1‖vx‖22 + β‖γvx − px‖22 = −
L∫

0

∇F (v, p) · (v, p)dx +

1∫

0

(h1v + h2p)dx. (107)

where (26) is used. Considering (25), (29), and (30) yields

−
L∫

0

∇F (v, p) · (v, p)dx ≤ 2dd0

(
k1‖vx‖22 + β‖γvx − px‖22

)
+ 2LmF , (108)

and therefore, we obtain the following from (107), (108), and (45):

4χ0

(
k1‖vx‖22 + β‖γvx − px‖22

)
≤ 2LmF +

L∫

0

(h1v + h2p) dx. (109)
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By Young’s inequality and (25), it follows that
L∫

0

(h1v + h2p) dx ≤ χ0

d0

(
‖v‖22 + ‖p‖22

)
+

d0
4χ0

(
‖h1‖22 + ‖h2‖22

)

≤ χ0

(
k1‖vx‖22 + β‖γvx − px‖22

)
+

d0
4χ0

(
‖h1‖22 + ‖h2‖22

)
.

Finally, substituting the last estimate in (109) results in

3χ0‖U‖2 ≤ 2LmF +
d0
4χ0

(
‖h1‖22 + ‖h2‖22

)
(110)

which shows that the set N is bounded in H. �

Theorem 5.4. The dynamical system (H,S(t)) possesses a compact global attractor A = M (N ), where
M (N ) is the unstable manifold emanating from N . Moreover, A has finite fractal dimension.

Proof. Since the system (H, S(t)) is quasi-stable by Lemma 5.1, (H, S(t)) is asymptotically smooth by
Proposition 7.9.4 in [10]. Thus, noting Lemmas 5.2 and 5.2 and using Corollary 7.5.7 in [10], it is known
that (H, S(t)) has a compact global attractor given by A = M (N ). Finally, the attractor A has finite
fractal dimension by Theorem 7.9.6 in [10]. �

6. Regularity and exponential attractors

Theorem 6.1. Every trajectory {(v(t), p(t), pt(t), vt(t), ηt(t))} in A has further regularity

‖(v, p)‖(H2(0,1)∩H1∗(0,L))2 + ‖(vt, pt)‖(H1∗(0,L))2 + ‖(vtt, ptt)‖(L2(0,L))2 ≤ R, (111)

for some R > 0.

Proof. Since the system (H, S(t)) is quasi-stable on the attractor A, it follows from Theorem 7.9.8 in [10]
that any complete trajectory (v, p, pt, vt, η) in A enjoys the following regularity properties:

vt ∈ L∞(R,H1
∗ (0, L)) ∩ C(R, L2(0, L)), pt ∈ L∞(R,H1

∗ (0, L)) ∩ C(R, L2(0, L))

and

vtt ∈ L∞(R, L2(0, L)), ptt ∈ L∞(R, L2(0, L)), ηt ∈ L∞(R,M).

Noting that the nonlinear terms are continuous and using (17)-(18), w vxx ∈ L∞(R, L2(0, L)) and pxx ∈
L∞(R, L2(0, L)) are obtained. Hence, the proof is complete. �

Definition 6.2. A compact set Aexp ⊂ H is called an exponential attractor for (H, S(t)) if
• Aexp is a positively invariant set, that is, S(t)Aexp ⊂ Aexp for all t ≥ 0;
• Aexp has finite fractal dimension in H;
• Aexp attracts bounded sets of H at an exponential rate, that is, for any bounded set D ⊂ H there

exist tD, CD, γD > 0 such that

distH(S(t)D,Aexp) ≤ CDe−γD(t−tD), ∀t ≥ tD,

where distH represents the Hausdorff semi-distance in H. If there exists an exponential attractor
only having finite dimension in some extended space H̃ ⊇ H , then this exponentially attracting set
is called generalized fractal exponential attractor.

The proof of the following result is based on Theorem 7.9.9 of [10]. Note that this theorem does not
provide an estimate for the fractal dimension in extended phase space H̃.
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Theorem 6.3. The dynamical system (H, S(t)) possesses a generalized exponential attractor Aexp ⊂ H
with finite fractal dimension in extended space

H−1 = (H−1
∗ (0, L))2 × (L2(0, L))2 × M−1 ⊃ H, (112)

where H−1
∗ (0, L) is the dual space of H1

∗ (0, L) pivoted with respect to L2(0, L), and M−1 is the dual space
of M.

Proof. Consider the set BR given by

BR = {U ∈ H; Φ(U) ≤ R}, (113)

where Φ is the Lyapunov function defined by (102). For R large enough, we have BR absorbing positively
invariant. Therefore, (H, S(t)) is quasi-stable on BR. This way, there exists a positive constant CB such
that if U0 ∈ BR and U(t) = (v(t), p(t), vt(t), pt(t), η(t)) = S(t)U0

‖(v(t), p(t), vt(t), pt(t), η(t))‖H ≤ CB. (114)

From (17)–(19), we obtain

‖(vt(t), pt(t), vtt(t), ptt(t), ηt(t))‖H−1 ≤ C̃B (115)

where C̃B is a positive constant depending on BR. So, for any t1, t2 ∈ [0, T ] we have

‖S(t1)U0 − S(t2)U0‖H−1 =
∥∥∥∥

t2∫

t1

Ut(τ)dτ

∥∥∥∥
H−1

≤
t2∫

t1

‖Ut(τ)‖H−1dτ ≤ C̃B|t1 − t1|. (116)

This means that t �→ S(t)U0 is Hölder continuous on H−1 for any U0 ∈ BR. Therefore, the result follows
from [10, Theorem 7.9.9]. �
Remark 6.4. Note that proving the existence of exponential attractors even for a single wave equation
is a difficult task. Most of the techniques used in the literature are developed for the study of parabolic
problems, e.g., see [1]. In particular, this difficulty is pronounced due to the lack of regularity of the
memory component η in (19). For this reason, the existence of the so-called generalized exponential
attractors, defined in Definition 6.2, is proved in the similar fashion as discussed in [9,10]. It is crucial to
point out that the major difference here is that the set Aexp has a finite fractal dimension in an extended
phase space H̃ containing H. Hence, exponential attractors can be considered in weaker phase spaces.
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Augusto Corrêa Street 01
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