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Abstract. We consider a nonlinear coupled PDE model for a single piezoelectric beam retaining the electromagnetic effects
and a long-range strain memory. Nonlinear source terms in both mechanical and electromagnetic equations and a viscous
magnetic damping term in the electromagnetic equation are considered in the model. The mathematical analysis of this
model is particularly needed for certain class of fully dynamic piezoelectric materials demonstrating a viscoelastic memory
or creep. With an injection of magnetic damping, the structure of the dynamical system associated with the solutions of
this system allows using the quasi-stability theory in order to obtain the existence of global and exponential attractors.
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1. Introduction

In this paper, a single-layer piezoelectric beam retaining the long-range viscoelastic memory (creep) and
fully dynamic electromagnetic effects is considered. Modeling creep is simply considering that the stress
and electric field at any instant may depend on both the instantaneous and the complete history of
strains [50]. Following the modeling assumptions in [33,50] and denoting v = v(x,t) and p = p(z,t) the
longitudinal displacement and total electric charge at point x and at time ¢, respectively, the following
sets of equations in the time domain, the equations of motion are

PV — QU + Y ODua +/)\(s)vm(t —s)ds+ f1(v,p) = h1(z) in (0,L) x (0,00),
0
upet = BPzx + YBVza + g(pt) + fa(v,p) = ha(z) in (0,L) x (0,00)

(1)

with initial conditions

U('I’O) = UO(I)v ’Ut(ZE,O) = Ul(x)v p(l’,O) ZPO(I)a pt(ovx) :pl(x)v T € (OvL)a

0@, —t) = va(at), (,8) € (0,L) X (0,00) @

where f1(v,p), f2(v,p) represent internal forcing terms (sources), hy(z), ho(z) represent external forces,
and ¢g(p;) denotes the distributed current damping. Moreover, A(¢) is a relaxation or memory kernel, vy,
v1, V2, Po, and pp are functions that belong to appropriate spaces, and «, p,~, 3, 4 are positive material
constants with

a:=o +7928, o >0, (3)
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and o satisfies

ki :=a; — [ A(s)ds > 0. (4)

Piezoelectric beams are multi-functional smart materials to develop electric displacement that is
directly proportional to an applied mechanical stress; see Fig. 1. Operating a piezoelectric beam as
an actuator requires an electrical input (voltage, current, or charge). One of the main components of the
electrical input is the drive frequency which determines how fast a piezoelectric beam vibrates or changes
its state. Periodic (regularly repeating) and arbitrary signals can be used to drive a piezoelectric beam,
which corresponds to continuous control of vibrational modes. Due to their small size, flexibility, and
high power density, they have become more and more promising in industrial applications such as from
implantable biomedical devices to PVDF sensors [5,13,25,27,44,47].

Two common piezoelectric materials are polymers (polyvinylidene fluoride, PVDF) and ceramics (lead
zirconate titanate, PZT) [48]. Synthetic PVDF polymers are widely used to construct various types of
sensors since having piezoelectric properties, and its flexibility allows applications of such sensors where
brittle and rigid ceramic materials are not suitable under various loadings and temperatures [49]. The
research on PVDF polymers reveals that the generic description of piezoelectricity has some shortcomings
[50], and thus, classical continuum mechanics fails to predict the interactive effects of creep for PVDF
polymers. In fact, it is observed that PVDF polymers tend to exhibit accelerated creep rates under
superimposed static and cyclic loads. The results indicate that the linear viscoelastic theory describes
a time response of PVDF polymers at the applied stress in both longitudinal and transverse directions
[50]. Therefore, the piezoelectric materials, used as sensors or energy harvesters, should be characterized
adequately by the long-memory dynamic modeling [12].

From the perspective of modeling of mechanical vibrations and electromagnetic effects on a piezo-
electric beam during the motion, the existing literature predominantly uses the electrostatic/quasi-static
approach due to the Maxwell’s equations; see [26,33,48] and the references therein. Therefore, the amount
of magnetic energy produced/stored is completely discarded [51]. However, these effects can be minor
or major in certain applications [52, Chap. 8], [53]. In fact, the fully dynamic electromagnetic effects,
unlike the electrostatic case, may have a dramatic effect on the boundary observability /controllability of
certain class of single-layer or multilayer piezoelectric systems, and observability /controllability results
are sensitive to material parameters if there is only one boundary controller applied to the piezoelectric
layer, i.e., see [33,36-38]. In fact, unlike the existing literature, two boundary controllers are necessary
for the exact controllability of mechanical and electromagnetic variables [41].

At this point, it is fair to mention about the research done to rigorously analyze wave equation-type
nonlinear PDE models like (1)—(2). For example, there is a large literature study for a single wave equation
modeling viscoelastic beams with a memory term added in a distributed fashion and other physics effects
such as damping, delay, nonlinear source, and external force terms. It is worth mentioning the pioneer
work of [11] where the asymptotic behavior of solutions of the viscoelastic equations (of memory type) is
investigated. Among several works which deal with viscoelastic equations long-time memory, we refer the
reader to a large class of papers on viscoelastic beams [6,28,32], Timoshenko beams [29], Berger plates
[39], and the references therein. Memory effects on the overall well-posedness and stability of coupled
systems of wave equations in the same domain can be considered via a boundary dissipation with the
addition of the memory term in one of the equations [30], or a distributed damping term together with the
memory term in one of the equations, i.e., [4,46]. There is also a large literature study on the transmission
problems with a memory term, i.e., see [7] and the references therein. In the case of no damping, a lack of
uniform stability result is shown since the memory term is not strong enough to exponentially stabilize
dynamics both in the case of two elastic membranes [2] and in the case of full set of Maxwell’s equations
[43].
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actively compressed. Conversely, forced compres- (D) The color mapping indicates the voltage
sions produce negative voltages. distribution.

Fic. 1. Piezoelectric materials can be used as actuators and sensors especially in vibration control and energy harvesting,
respectively

The use of the quasi-stability theory is crucial for the long-time behavior analysis of (1)—(2) as a
decomposition of the difference dynamics into a stable component and compact component. Note that
the existence of a finite-dimensional attractor with optimal regularity and fractal exponential attractor is
achieved by the quasi-stability theory; see [8—-10] for pioneer work and the references therein. Inspired by
the ample amount of results, similar approaches have been recently adopted by the authors to rigorously
analyze the long-time memory behavior for piezoelectric beams with delay term [18], boundary memory
terms [17], and thermal effects [22]. For other relevant work on wave systems, refer to [16,18-21,23,40,45]
and references therein.
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For the system (1)—(2) without the nonlinear damping term g(p), i.e.,

PV — Qg + YPBPwz + / A(8) vz (t — 8)ds + fi(v,p) = hy(z) in (0,L) x (0,00), (5)
0
UPtt — 5prx + Vﬂvmx + f2(vvp) = hQ(x) in (Oa L) X (07 00)7 (6)
with the same set of boundary conditions
v(0,t) = v, (L,t) = p(0,t) = p,(L,t) =0, t>0, (7)

the memory term is not strong enough to exponentially stabilize a coupled system of nonlinear equations
of this sort. Indeed, the system (5)—(7) is not even a gradient system. For the system (5)—(7) to be
exponentially stable, it is necessary to add more dissipation to the system. Adding the nonlinear damping
term g(p;) to the electromagnetic equation is physical and viable, and it can be implemented easily
through the circuit attached to the electrodes. Indeed, it is the electric current injected through the
electrodes.

oo
The interaction between the memory term [ A(s)vz,(t — s)ds and the damping term g(p;) in (1)-(2)
0

with the consideration of natural boundary conditions for the clamped-free beam generates mathematical
hurdles that are difficult to overcome by the Lyapunov’s approaches. This same difficulty is not present
for the coupled-wave systems involving two damping terms g1 (v:) and ga2(pt), i-e., [46], or Timoshenko
beams [34], where many authors consider the well-known equalizing relationship o= p% (something not
preferred in applications) to overcome the difficulty imposed by the Lyapunov’s approach.

The novelty of the work here can be summarized as the following;:

(i) The results obtained here are novel for fully dynamic and non-compactly coupled piezoelectric beam

systems.

(ii) The system (1)—(2) deals with the interaction between the memory effect and the nonlinear damping,
which makes it challenging in using the Lyapunov approach.

(iii) Since the system (1) is accompanied by the natural clamped-free boundary conditions (2), it is
rather a difficult task to construct the quasi-stability result.

(iv) More importantly, there is no restriction for the speeds of wave propagations % and % in (1),
corresponding to mechanical and electromagnetic vibrations, respectively.

The outline of the paper is as follows: In Sect. 2, assumptions and notations together with the functional
analytic setup are proposed. In Sect. 3, the Cauchy problem is formulated with energy of solutions. In
Sect. 4, existence, uniqueness, and continuous dependence of global solutions are discussed. In Sect. 5,
the existence of a compact global attractor is proved. Finally, in Sect. 6, the existence of an exponential
attractor is proved.

2. Notations and assumptions

In this work, L2(0,L), 1 < ¢ < oo denote the Lebesgue spaces of measurable functions on (0, L) whose
oth power is integrable and endowed with the norm || - ||,. In particular, when ¢ = 2, we use the notation
| - |]2 and {-,-) the norm and inner product in L?(0, L), respectively. L>°(0, L) represents the space of
measurable functions that are essentially bounded on (0, L), endowed with the norm || - ||s. Moreover,
H"(0,L) (n = 1,2) endowed with the norm || - ||z» denotes the Sobolev spaces whose elements are
functions in L%(0, L) such that the weak derivative of rth order with r < n belongs to L?(0, L). We also
define the following Sobolev space:

HY0,L) = {u e HY(0,L) : u(0) = 0}.
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Since u(0) = 0, the Poincaré’s inequality holds
lullz < cpllusll2,  Vu € H(0,L), (8)

and therefore, ||u|

H1(0,1) := |[ug |2 is an equivalent norm in H} (0, L).

Assumption 2.1. Assume that the following set of hypotheses on the memory (relaxation) kernel A holds:

AeC*RT)NLYRT), As)>0 and N(s) <0, VsecRT, (9)
N(s)+d1A(s) <0 forsome d; >0, Vse R, Ng:= /)\(s)ds = A(0) > 0. (10)
0

Besides, the requirement that A has a unitary mass translates into

o0

/s/\(s)ds =1. (11)

0

Let A be a memory kernel satisfying the assumptions (9)—(11). Now, we consider the weighted Hilbert
space

M = L2(R*: HY(0, L)) = {u R HL(0,L); //\(s)||um(s)||2ds < oo} (12)

for which the inner product and the norm (induced by the inner product) are given, respectively, by
(o]
<u,U>M = //\(s)<ul(s),vl(s)> ds,
0

oo

Julfys = [ AGllus(5)ds (13)
0

for all u,v € M. Now, we define the linear operator 7 on M by
Tu:= —us, ue P T) (14)
where

DT = {u eM |u, €M, u(0) = o}.

For every u € Z(7T ), the nonnegative functional

rww=—/X@wma%@
0

is well defined, and the following identity holds:
2T u,uyp = =T (u). (15)
Moreover, following the assumption (10) on A, we deduce the inequality
o1llullig < T(w), (16)

which is crucial for the rest of the paper.
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Using the operator 7 above and the relative history of v defined by n(t, s) = v(t) —v(t — ), introduced

first by Dafermos [11], the system (1)—(2) can be rewritten in the following equivalent form

PV — kv + YBPrs — /)\(s)nm(s)ds + fi(v,p) =h1 in (0,L) x (0,00),
0

WDt — BPaz + VBVzz + g(0e) + f2(v,p) = he in (0,L) x (0,00),

n—Tn— vy =0 in (0,L) x (0,00) x (0,00)

with boundary conditions

v(0,t) = v, (L,t) = p(0,t) = p.(L,t) =n(0,s,t) =n.(L,s,t) =0, t>0, s>0

and initial conditions
v(x,0) = vo(x), vi(x,0) = v1(x), p(x,0) =po(x), p:(0,2) = p1(z), x=€(0,L),
n(xz,s,0) =no(z,s), (x,s) € (0,L) x (0,00).

Here,
k= ki +~%8.
Now, consider the Hilbert space
H = H!0,L) x H}(0,L) x L*(0, L) x L*(0, L) x M

with the following inner product:

(U, 0)n = ple, &) + 1lsp, @) + k1 (v, ) + B{YVa — P, Y0u — ) + (0, 7)1
where U = (v,p, $,0,1),U = (0, p, ¢, $,7) € H. The corresponding norm is then given by

U113, = pllell3 + pliells + killvalls + Bllvoe — pall3 + 0l
Observe that there exists a constant kg > 0 such that
[vz]13 + P23 < wo(killvz 3 + Bllvve — pall3)-
Indeed, noting that
P23 = 10z = po = Yvall3 < 2l7vve — pall3 + 292 [lvall3,

we have

[vall3 + [Ipall3 < (29% + Dl|vell3 + 2[lvve — poll3.

(17)

(24)

Therefore, (24) holds with g = max{(2y2+1)k; !, 26~ "}. Combining (8) and (24), there exists a constant

do > 0 such that
[0ll3 + lIpll3 < do (k1 llvell3 + Bllvos — pall3) -

Assumption 2.2. The following are assumed for the external forces and source terms:

(i) The external forces hy, ho € L?(0, L).
(ii) There exists a function F' € C?(R?) such that

VE = (f1, f2).
(iii) There exist ¢ > 1 and C' > 0 such that
IVFi,p) <C A+l +pl*7), i=12

(25)

(26)

(27)



ZAMP Global attractors for a novel nonlinear piezoelectric beam mode Page 7 of 22 136

(iv) There exist constants d > 0, mp > 0 with

0<d< g (28)

such that
F(v,p) = =d (Jo]* + [p|*) —mp. (29)

Moreover,
VE(v,p) - (v,p) = F(v,p) = —d (|v]* + [p|*) — mp. (30)

Remark 2.3. Assumption 2.2, with few variations, can be found in several works such as [3,14,15,31,35,
42]. An example of a function satisfying this assumption is

F(v,p) =lv+p|* = |v+p|* + |vp|*. (31)

Assumption 2.4. Consider an increasing function g € C*(R) with g(0) = 0. In addition, assume that
there exist constants m, M > 0 such that

m<g(s)<M VseR. (32)
By the mean value theorem and (32), the following monotonicity property is obtained:

mlu —v* < (g(u) — g(v))(u —v) < Mlu—v|?, Vu,veR. (33)

3. Cauchy’s problem

Let U(t) = (v(t),p(t), ve(t), pe(t), n(t)). The system (17)-(19) (with boundary and initial conditions) can
be rewritten as an abstract initial value problem (Cauchy’s problem) in H:

Ui(t) + (AL + AU () + F(U(t)) =0,t > 0,
{ U(O) = U07

where U; = % and Uy = (vo, po, v1,P1,M0), and the operators A, : D(A) C H — H, A2 : H — H and

B :H — H are defined by

(34)

v :¢ . ;
p ~ ¥ - ) X

Al o | = | p (—kvee +78p2e — 6f)\(s)nm(s)ds) Ao | = _10 , (35)
;? 1 (= BPaa + VB2 s; U g(@

-In—¢
with
D(Ay) ={(v,p. 6 0.m) € H; v.p € HA(0,L), 6. € HX(0,L), € D(T),

B 7 (36)
0a(L) = po(L) = 0, Fvgy + / A(8)naa (s)ds € L2(0, L)},

0

v 0
P 0
Flo|=1]pr"(frlv,p) =) (37)
® p (fa(v,p) — ha)
n 0
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Definition 3.1. A strong solution to (34) on [0,7T) is a continuous function U : [0,7) — H such that
U(0) = Uy, U is differentiable a.e. on [0,7) and Lipschitz continuous, U(t) € D(A) for any t € [0, 7).

Definition 3.2. A generalized solution to (34) on [0,T] with T" > 0 is a function U € C([0,T],H) with
U(0) = Uy for which there exists a sequence of strong solutions (U,,) € C([0,T],H) of
4
dt

with U,, — U in C([0,T],’H) and f,, — 0 on L*(0,T;H). A function U € C([0,T); H) with 0 < T < oo is
a generalized solution to (34) on [0,7") if U is a generalized solution to (34) on [0,7"] for any 0 < T" < T.

3.1. Energy of solutions
Given a solution U(t) = (v(t), p(t), pe(t), ve(t),n(t)) to (34) on [0,T), define the energy E(t) of U(t) by

k 1
201) = 2on®l3+ Ellpe I3 + e (13 + 2 lreet) — pe )13 + 2 In(e) 3

1 (39)
= S0
and define the modified energy &(t) of U(t) by
L
£0) = B(O)+ [ Plo(®).p(0)dz ~ (h,o(6) ~ (ha,p(0). (40)

0

Lemma 3.3. The modified energy (40) associated with solution U(t) = (v(t),p(t), ve(t), p:(t),n(t)) of (34)
on [0,T) is non-increasing. Moreover, there exist constants xo, Cr > 0 such that

XollU@I3 < &(0) +Cp, t€0,T). (41)
In other words, every solution U(t) of (34) always remains inside a closed ball whose radius depends on

U(0).

Proof. Suppose U(t) is a strong solution. Multiply (17) by v, (18) by p:, and (19) by —k(8)nz.. Now,
integrating by parts the first two equations in the variable x over [0, L], and the third one over [0, 00) %[0, L]
with respect z and s, yields

L 6(t) = (o). p) — 5T () <0 (42)
Therefore, &(t) is non-increasing, and in particular
E(t) < &0), telo,T). (43)
Next, (29) is integrated over [0, L] with respect to x and (25) is applied to obtain
L
[ Pz ol + 1) = L > o (il + Bl = palf) = I
0

> —ddo||U(t)||3, — Lmp.

Now, (44) together with (28) leads to

L
Et) > (; — ddo) U3, — Lmp — /(hlv + hap) dz.
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By letting
1
Xo = Z(l——2dd0):>07 (45)
and using the estimate
/ d
Xo 0
/(hw +hap)da < == ([[o]l3 + [Ipll2) + -~ (ka3 + [1R2]3)
) 0 X0

the inequality in (41) is obtained with
do
Cr = Lmp + = ([Ih]l5 + [[ho13)
X0

Finally, by a density argument, (41) is valid for every generalized solution on [0,7”] for any 0 < T" < T.

U
4. Well-posedness
The following results are needed to prove thee global well-posedness of (34).
Lemma 4.1. The operator Ay is m-accretive.
Proof. By a standard computation,
1 o0
AUV = =5 [ N(6)lnas)[ds = 0. YU = (0,p.6.0m) € D). (16)
0
Additionally, R(I + A1) = H. Letting U* = (v*,p*,¢*,¢*,n*) € H, it is aimed to obtain U =
(v,p, 0, ,m) € D(A;y) such that
I+ ANU=U". (47)
Note that (47) is equivalent to the following system:
v—¢ =", (48)
p—¢=p" (49)
0~ Fas 49002 — [ A(s)ea(s)ds = o, (50)
0
n—=Tn—¢=n" (52)
Now, observe that
we) = (1= ore [ennar (53)
0
satisfies (52) with 7(0) = 0, and the second term on the right side in (53)
sERT — efS/eTn*(T)dT (54)

0
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belongs to M. This can be seen by changing the order within the integral

L s 2

o0 S 2 o0
/)\(s) e_s/eTn;(T)dT ds:/)\(s)e_2s/ /eTn;(T)dT dxds
0 0 2 0 0 \0
oo L s s
< /)\(8)6_28/ /erT /eT|77;(7')\2dex ds
0 0 0 0 (55)
< [0 [enimiards = [ [ Ao e mlasar
0 0 0T
= [ | [aoe=ds | dr < [l < .
0 T 0

Therefore, ¢ € HL(0, L) implies n(s) € HL(0, L) for s > 0 and n € M,

S

nxﬁzeﬂ¢ff{/afvm7+w@waM (56)

0
and thus n € D(7). By using (48) and (53) in ((50),(49), (51)),

PV — (];'0 + ’726)1)136 + ’Yﬂpww = 19*7

. . (57)
Hp = BPze + Y BVze = pp” + pip

where (by (4))

ko := oy — /)\(s)efsds >0 (58)
0
and
9 = pe™ + pv* —&—/A(s)e_s/eTnzgj(T)des - /)\(8)(1 — e ®)dsv},. (59)
0 0 0

Note that 9* € H;1(0,L). Since v} € L?(0, L) and for w € H}(0, L) with ||w,| < 1, a calculation similar
o (55) (see [24] for more details) and from Holder’s inequality, the following is obtained:

{ Mmsja@ﬁmm@ﬂKZM*SZJ@W““W»‘

. ] (60)
< [ae [ Elneldrds < kL,
0 0

and analogously,

K/)\ V(1 — e %)dsvy,, w >‘ < kol|vi]l2- (61)
0
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Now, for solving the system (57), we use a standard variational approach in order to obtain a bilinear
functional B : (HL(0,L) x HL(0,L))? — R defined by

B((0,0), (@) i= pv,5) + (ko + 728) {02, T} + (0, B) + By0s = pay 1T — ). (62)

It is not difficult to verify that B is continuous and coercive. Therefore, it follows from the Lax—Milgram’s
theorem that the system (57) has a unique solution (v,p). Now, (48) and (49) implies ¢, € HL(0, L),
and (53) implies n € M, and (57)2 implies —p + yv € H?(0, L). This together with (50) yields kv, +

J A(8)nza(s)ds € L*(0, L), and therefore, v,p € H?(0,L). Hence, (v,p,$,p,n) € D(A;) and the result
0

follows from [54][Lemma 2.2.3]. O
Lemma 4.2. The operator As is accretive and Lipschitz continuous.

Proof. Tt follows from (35) that for any U = (v, p, ¢, p,n) and U= (v, p, 5, ®,7) in H

(As(U) = Ao(U),U = U)py = (9(0) — 9($), ¢ — §) > 0. (63)

Therefore, A, is accretive. Considering (33) leads to
142(U) = A2 (0) 13 < CIIU — Ul (64)
for some positive constant C' independent of U and U. The proof is now complete. O

Lemma 4.3. The operator A = A; + As is m-accretive.

Proof. Since A; is m-accretive and Aj is accretive and Lipschitz continuous, it follows from [10][Proposition
2.2.3] that A is m-accretive. 0

Lemma 4.4. The operator F s locally Lipschitz.

Proof. Let U = (v,p, ¢, ¢,1), U = (0, p, o, @,7) in H and K > 0 such that
U, [U]l3 < K. (65)
It follows from (37) that

L L
IF(U) = F(O)l3, =p_1/|f1(v7p)—f1(5715’)|2d$+u_1/|f2(vap)—fz(ﬁ@lew- (66)
0 0

By (27) and the mean value theorem, there exists 6 € (0, 1) such that
|fi(v,p) = fi(@,5)]* = [V fi(0(v,p) + (1 = 0)(0,5))]*|(v,p) — (3,)

(67)
< C (o7t + Bt 4 [pl = + 18177 + 1) (Jo — B + [p— 52) -
Therefore, there exists a constant C'x > 0 such that
L
[ 1508 = £GP do < CallU = Ol i= 1.2 (68)
0

Finally, substituting (68) into (66), we conclude that there exists Cx > 0 such that
|FW) = FO)ln < CrllU ~Tllse.
This proves that F is locally Lipschitz continuous. O

Theorem 4.5. (Existence of Global Solution) Consider the Cauchy’s problem (34).

a. If Uy € H, (34) has a unique global generalized solution.
b. If Uy € D(A) where A= Ay + Az, the generalized solution obtained in (a) is strong solution.
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c. IfUL(t) and U?(t) are two solutions to (34), there exists a positive constant Co = Co(U(0), U?(0))
such that for every T > 0

U (t) = U (@)ll2¢ < UM (0) = U*(0)l|2, 0<t<T. (69)

Proof. (a) and (b): Since A is m-accretive, (34) is a local Lipschitz disturbance for

{Ut(t) +AU(t) =0, t>0, (70)

U(0) = Us.

It follows from [10][Theorem 2.3.8] that there exist Tiax > 0 such that if Uy € H, (34) has a unique
generalized solution on [0, Tiax), and if Uy € D(A), (34) has a unique strong solution on [0, Tinax). Let
U(t) be a solution of (34). By (41), we have

lim [U(t)]|x < oo. (71)

t—Tmax

Therefore, we conclude that Tyax = oo following from Theorem 2.3.8 in [10], and hence, the solution is
global.

(c): By letting UL(t) = (vt pt, v}, pt,nt) and U%(t) = (v%,p%,vZ, p7, 1) be strong solutions of (34),
U(t) = Ut) — U2(t) = (v,p, vs, pt,n) is a solution of

PVt — ];Uzz + ’Yﬁpza: - /)‘(S)nxw(s)ds = - (fl(vl7p1) - fl(v27p2))
0 (72)
11pit = Bpra + ¥Bv2e = — (9(py) — 9(07)) — (f2(0', ") — f2(v®,p%))
Ne +MNs = V.

Now, multiply (72); by v, (72)2 by pt, (72)s by A(s)n.., and integrate by parts the two first over [0, L]
with respect to « and the third over [0, L] x [0, oo] with respect to x and s to obtain

0o L

5 U1 < —mll + [ X(6)lnalBas = [ (el p!) — A2 p*)uda
L ’ L ’
- /(fz(’l)l,pl) - f2(v27p2))ptdm < _/(fl(vl7p1> - fl(’UQ,pQ))’Utdl' (73)
0 0
L

- /(f2(’l)1,p1) - f2(v2;p2))ptdm.
0

where (32) is taken into account. Next, apply the Young’s inequality to have

L
(') = Fi2 P ods < 5 [ 1GNP = Al ) Pde -+ 5 ol
0

Tt — Tt—

L
1 1
(R0 = oo pP e < 5 [ 100 = Falo® p2)Pdo + 3 i
0
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Following the traces of a calculation similar to the one in Lemma 4.4, a positive constant Cy depending
on U'(0) and on U?(0) is obtained such that for i = 1,2 :

L
5 [1AGNSY) ~ A )Pz < ColU O] (75)
0

Combining (73), (74), and (75) leads to
d
ZNTOI3 < CollU@I3, (76)

where Cj represents a generic positive constant of U'(0) and U?(0). Finally, (69) holds true on [0, T] for
any T > 0. Using a density argument, (69) holds for every generalized solution. O

Remark 4.6. Once the existence of a global solution for (34) is established, represent U (¢, Uy) the solution
of (34) for all Uy € H, and, this gives rise to a family of operators S(¢), t € R of H itself defined by
S(t)Up = U(t, Uyp). (77)

From Theorem 4.5, t — S(t)Uy is Lipschitz continuous for any Uy € H, and from (69), S(¢) is continuous
for any ¢ > 0 with S(0) = I where I is the identity operator on H. It is not difficult to show that S(t)
defined in (77) satisfies the semigroup property. Therefore, the pair (H, S(t)) is a dynamical system with
S(t) being a Cy-semigroup. Henceforth, the properties of this dynamical system shall be studied in order
to obtain global and exponential attractors.

5. Global attractor

5.1. Quasi-stability

The purpose of this subsection is to establish the quasi-stability for the dynamical system (H,S(¢)) on
every bounded subset of H which is positively invariant. It is proved that the dynamical system satisfies
the stabilizability estimate [10, Section 7.9] for such sets.

Lemma 5.1. Suppose that Assumptions 2.1, 2.2, and 2.4 hold. Let B be a bounded positively invariant set
in'H, and let S(t)U* = (v, p', v}, pi,n) be the weak solutions of (17)—(21) with initial conditions U* € B,
i =1,2. Then, there exist constants po, o, Cg > 0 such that
t
B(t) < yoe "' E(0) + Cj / e ([[u(s)|13, + Ilp(s)[3,) ds (78)
0

1

where v = vt —v? and p = p' — p.

Proof. Note that u = v' —v?, p = p! — p? and n = n' — n? solve the system
PVt — ];'wa + ’yﬁpzx - f )\(S)nwm(s)ds = _Fl (U7p) in (Oa L) X (07 00)7
0

HPtt — ﬁpzm + ’Yﬁvzz + G(pt) = —F2(U»P) in (OvL) X (07 OO),
n—Tns— vy =0 in (0,L) x (0,00) x (0,00)

with boundary conditions

and initial conditions
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where
G(pt):g(p%)fg(p%), Fi(v7p):fi(vl,pl)—fi(UQ,p2), i=1,2.
Step 1. It is claimed that there exists a constant C' > 0 such that
d m 1
2 < —5llpt||§ =5l + Cr(llvl3q + Ipl3g) + peillvell3,  Ver > 0. (81)

By multiplying the first equation in (79) by v, the second one by p;, the third one by A(s)n,. respectively,
and integrating by parts the first and second equations over [0, L] with respect to = and the third one
over [0, L] x [0, 00) with respect « and s, we obtain

gE(t) = —(Gp1), pr) + (T, m) o — (Fr(v,p); ve) = (Fa(v,p), pr)

dt
< _m”ptH% - %F(U) - <F1(’U7p), vt> - <F2(Uap)7 pt>- (82)

By (27), Holder’s inequality and Young’s inequalities, and Lemma 3.3, there exists a constant Cz > 0
such that

[(Fi(o,p), v)] < (015, + 10215, + o', + 19203, + 1) (lwllzq + Ipllaq) el
< Cu(|[vll2g + Ipllzo) el < Ca(l0l3, + Ipl3,) + perlioely, Ver >0, (83)

In a similar fashion, it follows that

—1 —1 —1 —1
[(Faw,p), 2] < C (1015 + 02057 + 1M 13, + 12155 + 1) (Follag + plag) el

m
< Cp([[vll2g + pll20) pell2 < Co (03, + Ipl5,) + 5 Ipell3, 7 > 0. (84)

Substituting the estimates (83) and (84) in (82) leads to (81).
Step 2. Multiplying the equation (79); by v and integrating over [0, L] leads to

Lz = pllvell3 + Eallvs |3 +v8(vve — o, Uw>+//\(5)<77x(8)7 vz )ds + (Fi(v,p), v) =0 (85)
0

dt
where
F(t) == p(vg, v). (86)
Additionally,
r k
//\(S)<nx(5)7vx>d5 < Cllvall2llnllm < Zl||vx||§ +CT(n). (87)
0
Using Young’s inequality in (85) leads to
d k
S (1) < "L uull3 + pllvll3 + Cllyee — pell +CT() + (Fu(w,p), v). (58)

y (27), Holder’s inequality and the embedding L29(0, L) — L?(0, L), it follows that
[(Fi(op), 0)] <€ (0t 15" + 025, + 1o g, + 19203, + 1) (lvllzg + pllaq) el
< Cp(|vll2g + lIpll2g) 10ll2g < Cr(lIv]13, + IplI3,)- (89)
Next, substitute the estimates (89) in (88) to get

d k1
77 ® < =S llvallz + pllvellz + Clives = pollz + CT(n) + C (|[vll3, + lIpl2,)- (90)
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Step 3. Multiplying the equation (79); by (yv — p) and integrating over [0, L] leads to

p{ve, Y0 = p) + k1 {va, Yoo — pa) + VB0 — pall3 + / A(8) (12 (8), Y0z — 2 )ds
0
+ (Fi(v,p), yv —p) = 0.
Now, define
G(t) == —p(ve, v — p). (91)

By Utt(Wf —p) = %[%(7” —p)] - Ut(’YU - p)t,

d

720 = —pllvell3 + p(vr, o) + ka (v, Yoz = p2) +VBllvve — D3

o0

+/ A(8)(12(8), Y02 = payds + (Fi(v,p), yo —p) = 0. (92)
0
Next, utilize the Young’s inequality to obtain

/A(S)%(S), Y0z = pr)ds < Cllyve = poll3 + CT(n),  [(Fi(v,p), o = p)| < Cr(|lvl3, + Ipl3,),
0

and
k1<vw7 YUz _pa;> S k152llvag + C”’va _pLEH%? V€2 > 07
Therefore, for all e5 > 0
d jal
37 = —Ellvtllg + Cllpell3 + Ereallvz |3 + Clivos — poll3 + CT(n) + Cr(|[vl3, + Ipll3,)-  (93)
Step 4. Multiply the equation (79)2 by (yv — p) and integrate over [0, L] to have

1(pee, Y0 — p) = Blvve — pall3 + (G(pe), v — p) + (Fa(v,p), yv — p) =0. (94)
Let

H(t) == —p(pt, v —p). (95)

By pu(yv —p) = %[pt('yv —p)] = pt(yv — p)t, and the Cauchy-Schwarz inequality, the following is
immediate:

d
(&) < =y (pes ve) + pllpel3 = Bllvve = pall3 + (G(pe), y0 = p) + (Fa(v,p), 0 =p). (96)
Now, using the Young’s and Poincaré’s inequalities and the following estimates:
p
(G(p), v0 = p) <Cllpel3 + Sllvoe = pall3 and  [(Fa(v,p), yv = p)| < Crllvllz, + lIpl3,)  (97)
the following is obtained:
d B
77f ) < —5llvvs = pall3 + nesllvell3 + Cllpell3 + Co(llvll3, + llpl3,), Ves > 0. (98)
Step 5. Consider the functional
L) = NiE(t) + F(1) + N () + Na A (1),
By Young’s and Poincaré’s inequalities, the following holds true:
|Z(t) = NiE@t)| < |7 (1)] + Na| (8)] + Na|A2(t)| < 7E(t), 17> 0. (99)
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Consequently, for Ny > 7
(N1 =) E(t) < Z(t) < (N1 +7)E(t), Vt=>0. (100)
Step 6. By the estimates (81), (90), (93), and (98):
€ (1) < —(Nopy/2— Niper — Napies — p) [l — (mN1 /2 NoC — N5 )3
— (k1/2 — Nokie2)|Jva |3 — (N3B/2 — C — N2O) |lvve — pall3
— (N1/2 = C = NoCO)T(n) + (1 + N1 + Na + N3)C (|[0]|3, + [IplI3,)-

Now, choose €1 := 1/4N, €5 := 1/4N>, and e3 := p/4uN3 to obtain

d k
S < —(Ney = 3) 2ol — (mN1/2 = NaC = NoC) el —

— (N3B3/2 = C = NoC) Bllyvs — pell3 — (N1/2 — C = NoC)T ()
+ (1+ Ny + No + N3)Cg(||v]I3, + Ipl13,)-

Choosing further that Ny > 3/v, N3 > %(lJrNQ), and N > max { 2C(Nz+ N3), 2C(1+ Na), i}, there
exists Ng > 0 such that

lve 13

d
S2(H) < ~NoB(®) + Co (0], + Ipl3,)-

Next, the second inequality in (100) is utilized to obtain

d Ny 2 2
< — .
g2 = N+ ﬁi”(t) + Cr([lv]l24 + lIplizg) (101)

Finally, the Gronwall’s lemma is applied to (101) to get
t

_ _No — No (4
ZL(t) <e Wit 2(0) + Cp / e~ M4 ) ([lu(s) |13, + [Ip(s)[13,) ds.
0

Choosing vy := %1—:@ >0, po := NJIV-T-ﬁ >0, Cp = Ce_ > ( and reusing (100), the following inequality

Ni—17
holds true:

t
B(®) < e " E(O) +Cp [ e (Ju(o)], + (o)) ds.
0

Hence, (78) is obtained. O

5.2. Gradient system

Recall that a dynamical system (H, S(t)) is gradient if it possesses a strict Lyapunov functional. That is,
a functional ® : H — R is a strict Lyapunov function for a system (H,S(t)) if
(i) the map t — ®(S(t)z) is non-increasing for each z € H,
(i) if ®(S(t)z) = P®(z) for some z € H and for all ¢, then z is a stationary point of S(¢), that is,
S(t)z = z.

Lemma 5.2. The dynamical system (H,S(t)) corresponding to problem (17)-(21) is gradient. Moreover,
there exists a Lyapunov functional ® defined in H such that

a. the Lyapunov functional ® is bounded from above on any bounded subset of H,
b. the set  p = {Uy € H ; ®(Uy) < R} is bounded in H for every R > 0.
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Proof. Consider the functional ® on H defined by

L L L

1

B(0.p.6.0m) = 3006l + [ Fop)ds [ yvda — [ hapda, (102
0 0 0

Note that if U(t) = (v(t), p(t), ve(t), pe(t), n(t)) = S(¢)Up is a solution of (34), for any
Uy = (vo,p0,v1,01,M0) € H, t — ®(S(t)Uy) is non-increasing by Lemma 3.3. Moreover, if ®(S(t)Uy) =
®(Uy) for any t > 0, (42) leads to

1
— w3 = 5T =0 (103)

which implies that
pe(t)=0, t>0 = p(t)=py, t>0. (104)
On the other hand, by (103) and (16),
0 =T(n) < =1||n3.
Therefore, 7(t,s) = 0 for t,s > 0. Noting that n, — Tns — v; = 0, we can get
wu(t)=0, t>0 = wv(t)=wvy, >0, (105)

and consequently, Uy = (vo, po,0,0,0) € 4. This simply means that ® is a strict Lyapunov function for
(H,S(t)) on H, and therefore, (H,S(t)) is gradient system.

From (42), ® can be easily seen to be bounded from above on bounded subsets of H. Let U(t) be the
mild solution (corresponding to Up) to problem (17)-(21) such that ®(Uy) < R. Then, it is inferred from
(41) that

XollS(OUol3; < ®(Uo) + Cr < R+ Cp.
Hence, g is a bounded set of H. O

Lemma 5.3. The set A& = {U = (v,p,0,0,0) € H; — kv, + VBPzz + f1(v,p) = h1, —PPyz + V0Vzz +
fa(v,p) = ha} of stationary solutions is bounded in H.

Proof. By letting U = (v,p,0,0,0) € A, U satisfies
_kvzz + ’Yﬁpa:a: + fl(vvp) = h17

(106)
~BPuz +VBVzz + f2(v,p) = ho.
Multiplying (106); by v and (106) by p and integrating by parts each one over [0, L] leads to
L 1
krllvzll3 + Bllyos — pall3 = —/VF(v,p) - (v,p)dz + /(hw + hop)dz. (107)
0 0
where (26) is used. Considering (25), (29), and (30) yields
L
— [ VF (@) (0.0 < 2 (k02 + Bl = pal) + 2L, (108)
0

and therefore, we obtain the following from (107), (108), and (45):
L

txo(klloal + Blos = pal) < 2L+ [ (hav + hap) da. (109)
0
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By Young’s inequality and (25), it follows that

L
X0 do
[0+ ap)a < X0 (1ol + 1918) + 1 (a3 + 13)
0 X0
0
do
< xo(krllvall3 + Bllvve — pall3) + M(Ilhlﬂg + [|h2]13)-
Finally, substituting the last estimate in (109) results in
do
BollUI* < 2Lme + = (Ihal3 + 17213) (110)
which shows that the set .4 is bounded in H. O

Theorem 5.4. The dynamical system (H,S(t)) possesses a compact global attractor A = A (AN"), where
M (N) is the unstable manifold emanating from A . Moreover, 2 has finite fractal dimension.

Proof. Since the system (H, S(t)) is quasi-stable by Lemma 5.1, (H,S(t)) is asymptotically smooth by
Proposition 7.9.4 in [10]. Thus, noting Lemmas 5.2 and 5.2 and using Corollary 7.5.7 in [10], it is known
that (H,S(t)) has a compact global attractor given by 2 = .Z(.4"). Finally, the attractor 2 has finite
fractal dimension by Theorem 7.9.6 in [10]. O

6. Regularity and exponential attractors

Theorem 6.1. Fvery trajectory {(v(t),p(t), p:(t), ve(t), n* (¢))} in A has further reqularity

(v, D)l (20,1 E2 0,2))2 + 1V, o)l (1 0,29)2 + [ (Vets Do) | (22(0,2))2 < R, (111)
for some R > 0.

Proof. Since the system (H, S(t)) is quasi-stable on the attractor 2, it follows from Theorem 7.9.8 in [10]
that any complete trajectory (v, p, ps, ve,n) in 2 enjoys the following regularity properties:
v € (R, Hy (0, L)) N C(R,L*(0,L)), py € L®(R, H.(0,L)) N C(R, L*(0, L))
and
vy € L®(R,L*(0,L)), pu € L®(R,L*(0,L)), n € L™(R, M).

Noting that the nonlinear terms are continuous and using (17)-(18), w v, € L>(R, L?(0,L)) and p,, €
L*(R, L%(0, L)) are obtained. Hence, the proof is complete. O

Definition 6.2. A compact set Uex, C H is called an exponential attractor for (H,S(t)) if

e ey is a positively invariant set, that is, S(t)Uexp C Hexp for all t > 0;

o 2., has finite fractal dimension in H;

o 2., attracts bounded sets of H at an exponential rate, that is, for any bounded set D C H there
exist tp,Cp,vp > 0 such that

disty(S(£)D, Aexp) < Cpe PEE0) it > ¢y
where disty; represents the Hausdorff semi-distance in H. If there exists an exponential attractor

only having finite dimension in some extended space HDOH , then this exponentially attracting set
is called generalized fractal exponential attractor.

The proof of the following result is based on Theorem 7.9.9 of [10]. Note that this theorem does not
provide an estimate for the fractal dimension in extended phase space H.



ZAMP Global attractors for a novel nonlinear piezoelectric beam mode Page 19 of 22 136

Theorem 6.3. The dynamical system (H,S(t)) possesses a generalized exponential attractor Ueyy C H
with finite fractal dimension in extended space

H_1 = (H7'(0,L))% x (L*(0,L))?> x M~! D H, (112)

where H;1(0, L) is the dual space of H}(0, L) pivoted with respect to L*(0, L), and M~ is the dual space
of M.

Proof. Consider the set Br given by
Br = {U € H; ®(U) < R}, (113)

where ® is the Lyapunov function defined by (102). For R large enough, we have By absorbing positively
invariant. Therefore, (H, S(t)) is quasi-stable on Br. This way, there exists a positive constant Cg such
that if UO S BR and U(t) = (U(t)7p(t)aUt(t)vpt(t)7n(t)) = S(t)UO

[(o(8), p(t), ve(£), pe(t), (1)1 < C. (114)
From (17)-(19), we obtain
(v (£), pe(8), vt (£), D (), me (1)) |20, < Cis (115)

where Cj is a positive constant depending on Bg. So, for any t;,ts € [0,T] we have

to
< / U (7)[l¢_, dr < Ciglts — ta]. (116)
H-_1

t1

to
[1S(t1)Uo — S(t2)Uolln_, = H /Ut(T)dT
ty

This means that ¢t — S(t)Up is Holder continuous on H_; for any Uy € Bgr. Therefore, the result follows
from [10, Theorem 7.9.9]. O

Remark 6.4. Note that proving the existence of exponential attractors even for a single wave equation
is a difficult task. Most of the techniques used in the literature are developed for the study of parabolic
problems, e.g., see [1]. In particular, this difficulty is pronounced due to the lack of regularity of the
memory component 7 in (19). For this reason, the existence of the so-called generalized exponential
attractors, defined in Definition 6.2, is proved in the similar fashion as discussed in [9,10]. It is crucial to
point out that the major difference here is that the set 2., has a finite fractal dimension in an extended

phase space H containing H. Hence, exponential attractors can be considered in weaker phase spaces.
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