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We study the power of price discrimination via an intermediary in bilateral trade, when there is a revenue-
maximizing seller selling an item to a buyer with a private value drawn from a prior. Between the seller and
the buyer, there is an intermediary that can segment the market by releasing information about the true values
to the seller. This is termed signaling, and enables the seller to price discriminate. In this setting, Bergemann
et al. [7] showed the existence of a signaling scheme that simultaneously raises the optimal consumer surplus,
guarantees the item always sells, and ensures the seller’s revenue does not increase.

Our work extends the positive result of Bergemann et al. to settings where the type space is larger, and
where optimal auction is randomized, possibly over a menu that can be exponentially large. In particular, we
consider two settings motivated by budgets: The first is when there is a publicly known budget constraint on the
price the seller can charge [12] and the second is the FedEx problem [19] where the buyer has a private deadline
or service level (equivalently, a private budget that is guaranteed to never bind). For both settings, we present a
novel signaling scheme and its analysis via a continuous construction process that recreates the optimal
consumer surplus guarantee of Bergemann et al. and further subsumes their signaling scheme as a special
case. In effect, our results show settings where even though the optimal auction is randomized over a possibly
large menu, there is a market segmentation such that for each segment, the optimal auction is a simple posted
price scheme where the item is always sold.

The settings we consider are special cases of the more general problem where the buyer has a private
budget constraint in addition to a private value. We finally show that our positive results do not extend to this
more general setting, particularly when the budget can bind in the optimal auction, and when the seller’s
mechanism allows for all-pay auctions. Here, we show that any eficient signaling scheme necessarily transfers
almost all the surplus to the seller instead of the buyer.
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1 INTRODUCTION

A canonical problem in mechanism design is that of bilateral trade – a single seller selling an item
to a buyer, or equivalently, an infinite supply of identical items to a stream of buyers. We assume
the item has no value to the seller. Typically, the buyers directly interact with the seller, who given
distributional knowledge of the buyer’s private valuation, runs an incentive compatible mechanism
in order to maximize its own revenue. This mechanism is termed the optimal auction, which in this
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case is just a “take it or leave it" (or monopoly) price offered to the buyer [24]. Such a mechanism
could potentially lead to loss in social welfare, since the item is unsold if the value of the buyer
falls below the monopoly price.

Price Discrimination via an Intermediary. Now imagine a platform or exchange that mediates
the interaction between the buyers and the seller. This intermediary observes the private value of
each arriving buyer, and it uses this information to segment the market of buyers by providing
additional information (or a signal) to the seller. The seller uses this signal (or additional information)
to price discriminate between different types of buyers by running separate optimal auctions for
each signal. Such intermediaries are motivated by modern platforms such as ad exchanges [1–4],
which help buyers (in this case, advertisers) interact with sellers (in this case, publishers of
content).
The ad exchange is usually run by a search engine or social media company that can use its own data
to accurately learn values of advertisers for various ad slots, and selectively release this information
to the publishers who then set the prices based on this information.

Such an intermediary clearly benefits the seller’s revenue; after all, thesellerhas more information
that enables it to price discriminate. Counter-intuitively, as shown by Bergemann, Brooks, and
Morris [7], it can also lead to more utility for the buyers, and hence larger social welfare! In fact,
the main result of [7] is remarkable – there is a signaling scheme such that the item always sells (so
that the social welfare is as large as possible), while the seller’s revenue is the same as that without
signaling. Therefore, the entire extra social surplus due to signaling goes to the buyer as its utility
(or its consumer surplus). This is the best possible outcome buyers can expect given that the seller
controls the auction (or the pricing scheme).

Though this result is striking, the underlying setting is the simplest possible – there is one
seller and one buyer (bilateral trade), so that the optimal auction given distributional information
about the buyer’s valuation (either with or without signaling) is a posted price scheme that can be
computed in closed form. Given a prior distribution G on the valuation of the buyer with a
monopoly price �, the algorithms in [7] sequentially construct signals while maintaining the
invariant that at any step, the monopoly price of the residual distribution after subtracting the
signals constructed so far remains �. This strong invariant seems critical to the guarantee on social
optimality achieved in [7]. This makes the positive results appear specific to this setting. The
question we ask in this paper is:

Can the positive results in [7] be extended to significantly more general settings where
the optimal auction need not be so simple?

In this paper, we answer this question in the afirmative by extending the positive results in [7]
to settings where the optimal auction can be randomized, even with exponential menu complexity.1

Concretely, we study the setting where the type space of the buyer is discrete, and includes not
only their private value for the item, but also a budget or deadline. Our positive results concern
two settings. In the first setting, there is a publicly known upper bound on the price any buyer
can be charged; this is termed the public budget setting in literature [12, 23]. In the second setting,
the buyer has a private deadline by which time they need to receive the item; receiving it later
than the deadline yields the buyer no value. This can be equivalently viewed as a private service
level for the product. The private values and deadlines are assumed to be drawn from an arbitrary
two-dimensional discrete prior distribution. The auction thus needs to be incentive compatible in
the sense that the buyer should not derive more utility by reporting a tighter deadline. This is
termed the FedEx problem in literature [19, 26].

1In randomized auctions where the outcome for each buyer type is a (payment, allocation) pair, one can equivalently view
the collection of all such pairs as a menu, from which the buyers can choose the best one for them. This encodes incentive
compatibility. The menu complexity refers to the size of this set.
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In both settings, the optimal auction can be randomized. In the public budget case, the random-
ization is over two possible menu options [12], while for the FedEx case, the randomization can be
over a menu that can be exponentially large in the number of deadlines [15, 19, 26].

1.1 Our Results

Our main contribution is a novel signaling scheme for price discrimination in bilateral trade for the
two settings of public budgets and the FedEx problem mentioned above. We show that this scheme
recreates the guarantee in [7] – it achieves full social welfare (that is, it always sells the item), while
ensuring the seller’s revenue is the same as without signaling, thereby transferring all excess social
surplus to the buyer. In particular, this shows the following surprising corollary: For both these
problems, even though the optimal auction is randomized in general, there is a decomposition of
the prior distribution into a collection of signals such that for each signal, the optimal auction is a
simple posted price scheme where the item is always sold.

The first technical highlight of our paper is a reinterpretation of the signaling schemes for
bilateral trade in [7] as a continuous time process. In this process, an infinitesimal quantity of a
signal is continuously removed from the prior distribution, and we maintain two invariants at any
time instant: (a) An optimal auction for the signal being removed is eficient; and (b) the revenue
for this signal is exactly equal to the rate of decrease in revenue of the optimal auction on the
current prior distribution. We present a general proof technique based on convexity, which in
essence shows that any algorithm that satisfies invariants (a) and (b) recreates the guarantee in [7],
regardless of how complex the optimal auction for the setting in consideration is. The advantage of
this approach is that it enables us to sidestep both the fine-grained characterization in [7] of how
the prior changes when signals are removed from it, as well as proving their invariant that the
optimal auction is preserved as signals are removed from the prior.

The continuous framework provides a unifying method to analyze signaling schemes for both the
public budget and the private deadline settings. However, we still need a careful choice of how to
run the continuous process so that the two invariants hold. This is particularly challenging for the
FedEx problem, since the type space here is two-dimensional, representing the values and deadlines.
As we show in the full paper [22], a naive approach that applies the scheme in [7] separately
to the marginal induced by each deadline raises too little consumer surplus. We therefore need
to develop an approach that carefully hides both the value and deadline information, and our
main algorithmic contribution is the development of a novel signaling method in such spaces
(Section 4) that achieves precisely this. This forms our second technical highlight.

Our signaling scheme and analysis require discrete (finite support) priors over valuations. Fol-
lowing [9, 25], such priors are also an arbitrary good approximation for continuous priors via
discretization. Our analysis requires a characterization of the optimal auctions in this setting,
which we present in Theorems 3.4 and 4.6. These are the discrete analogs of results in [12, 19]
for
continuous priors, and show that the optimal auction is a distribution over posted prices that satisfy
certain nice properties. The characterizations we require are much coarser than those in [12, 19]
and we present stand-alone alternate proofs of these properties that are tailored to the discrete
nature of the priors. In particular, the proof for the deadline setting (Theorem 4.6) uses convexity
in the primal instead of duality, and this technique may be of independent interest.

Impossibility for Private Budgets. We finally ask how far we can push this positive result. Towards
this end, we consider the generalization of the above settings to the private budget setting [13, 15].
Here, the buyer has a private budget, and the values and budgets are assumed to be drawn from an
arbitrary two-dimensional discrete prior distribution. The buyer cannot over-report her budget, but
an incentive compatible auction needs to prevent under-reporting it. We assume interim rationality
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to allow for all-pay auctions, or equivalently, views the item as infinitely divisible; this is a standard
assumption in economics literature [13, 23]. Note that the FedEx problem is a special case where
the budgets are larger than all valuations.

For private budgets, there is no signaling scheme that satisfies both criteria (a) and (b) above.
This leads to a strong lower bound: Even with two values and two budgets, any eficient signaling
scheme (that always sells the item) transfers all surplus to the seller, leading to vanishingly small
consumer surplus. Therefore, no eficient signaling scheme can reproduce the consumer surplus
guarantee in [7] to any approximation. Furthermore, even if we sacrifice eficiency, we cannot hope
to achieve better than a constant approximation to the consumer surplus guarantee.

1.2 Related Work

Our problem falls in the general framework of information design [8] where an information me-
diator can deliberately provide additional information to impact the behavior of agents in given
mechanisms; this is also sometimes termed signaling or persuasion [16]. The Bayesian Persuasion
model [21] is a special case of information design with only one agent (often called the receiver)
receiving additional information that comes from a sender with more knowledge of the state of
nature. Given the signal, the receiver chooses the actions to maximize her own utility based on her
belief of the state of nature (which may be influenced by the signal). Therefore, the sender designs
the signals so that the receiver, acting in her own interest, maximizes some utility function the
sender cares about. This problem is studied from various theoretical perspectives [6, 17, 18] as well
as in different application domains [7, 11, 20, 28].

Starting with the seminal work of Bergemann et al. [7], there has been a line of work [10, 14,
17, 20, 27] on Bayesian persuasion in the bilateral trade model and its extensions. In this context,
the sender is an intermediary and the receiver is the seller, who given the signal, implements an
incentive-compatible auction to maximize expected revenue. The sender, on the other hand, is
interested in maximizing consumer surplus or social welfare. In the versions we study with
budgets or deadlines, the receiver’s action space is the set of all randomized pricing rules, instead of
just the posted prices in the basic setting [7]. Our main contribution is to show the existence of
socially eficient signaling schemes that preserve receiver utility (the revenue) and maximally
increases sender utility (consumer surplus) despite this additional complexity. We note that for other
non-trivial extensions of bilateral trade, for instance, the multi-buyer auction setting in [5] and the
multi-item auction setting in [20], it may in general not be possible to find socially optimal signaling
schemes that preserve seller revenue. This makes our positive results all the more surprising.

As mentioned before, our work crucially requires a characterization of optimal randomized
auction in the respective settings. For public budgets, Laffont and Roberts [23] show that the
optimal auction is a posted price scheme assuming regular distributions; for general priors, Chawla
et al. [12] show it is a lottery over two options. Che and Gale [13] consider private budgets with
a decreasing marginal revenue assumption, and show it is a different price curve for each budget.
Fiat et al. [19] and subsequently Devanur and Weinberg [15] use duality to respectively generalize
this characterization to private deadlines and private budgets with arbitrary priors; however, the
characterization in the latter case is not closed form. Since we use finite support priors, we present
stand-alone proofs of the required characterizations, and these may be of independent interest.

Organization. In Section 2, we present preliminaries for optimal auction design and signaling. In
Section 3, we present the signaling scheme and analysis for the public budget case. In Section 4, we
present our main result – the new signaling scheme for the FedEx problem, where the deadlines
are private. In Section 5, we present the impossibility result for the private budget setting with
interim rationality. All omitted proofs are in the full version of the paper [22].
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2 PRELIMINARIES

2.1 Optimal Auctions with Budgets

We consider a single seller selling an item to a single buyer with private valuation � and private
budget� as a hard upper bound of payment. It is known that optimal auctions with budgets require
randomized allocations [12, 13, 15]: The buyer’s utility is (� · � −  �) if she pays a price of � ≤  � to
get the item with probability � � [0, 1], and is −∞ if � >  �. Throughout the paper, we focus on
interim IR auctions where the buyer pays at most� before learning whether or not she receives the
item. As mentioned before, this is the standard model for studying budget constrained auctions
in economics literature [13, 23], and allows for all-pay auctions. Alternatively, it models ex-post
rationality assuming the item is infinitely divisible, and � � [0, 1] represents the fraction of the
item the buyer obtains at price �.

The joint distribution (�,�) � G is common knowledge and supported on a discrete set
supp(G) B  {�1, . . . ,��} ×  {�1, . . . ,��}, where 0 <  �1 <  · · · <  �� and 0 <  �1 <  · · · <  ��. For � =
1, 2, . . . ,�, let G� represent the marginal distribution of � given � = ��, and define �G as the
probability mass function of G�, i.e., �G� (��) = Pr��G� [� = ��] = Pr(�,�)�G [� = �� | � = ��]. Let
�G (��) = Pr��G� [� ≤  ��] and �G� (��) = Pr��G� [� ≥  ��]. We assume the item holds no value to the
seller; therefore, the maximum social welfare is SW (G) = E(�,�)�G [�], and is achieved by any
auction that always makes the trade happen (or sells the item).

Optimal Auctions. It is known [12, 13, 15, 23, 24] that the revenue maximizing auction for the
seller can be described using lotteries or randomized allocation rules. Specifically, each buyer type
with valuation �� and budget�� is associated to a payment ��� ≥  0 and an allocation probability
��� � [0, 1] to receive the item. Note that in the interim-IR setting the buyer pays ��� upfront
regardless of whether she receives the item.

Following [13, 15], we assume buyer with type (��,��) cannot report a budget larger than ��;
this can be enforced by collecting the entire reported budget with a small probability, or simply by a
cash bond that requires the full reported budget. Further, the setting where the IC constraints are
only enforced to smaller budgets is more challenging for designing optimal auctions [13]. By the
revelation principle, it is suficient to consider lotteries that are incentive compatible, i.e., for all�
and �, a buyer of type (��,��) receives maximum possible utility from reporting her true type
(��,��) and thereby receiving the item with allocation probability ��� at price ���.

The revenue optimal auction can be computed by the following LP from [15].

Budgets(G) B max
{��� }, {���

}

∑� ∑�
!

Pr � = ��     · �G� (��) ·
��� �=1                               �=1

s.t. �� · ��� −  ��� ≥  �� · ��′� −  ��′�,
�� · ��� −  ��� ≥  �� · ��(�−1) −

��(�−1) , �� · ��� −  ��� ≥  0,

0 ≤  ��� ≤  1,

��� ≤  ��,

�1 ≤  �,�′ ≤  �, 1 ≤  � ≤  �,

�1 ≤  � ≤  �, 2 ≤  � ≤  �,

�1 ≤  � ≤  �, 1 ≤  � ≤  �,

�1 ≤  � ≤  �, 1 ≤  � ≤  �,

�1 ≤  � ≤  �, 1 ≤  � ≤
�.

(Same-budget IC)

(Inter-budget IC)

(IR)

(Feasibility)

(Budgets)

By transitivity, the same-budget and inter-budget IC constraints imply all necessary IC constraints
so that the buyer with valuation �� and budget�� does not misreport with some valuation ��′ ≠  ��
and/or some budget��′ <  ��.
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Definition 2.1. For the revenue maximizing auction ({�� }, {�� }) that is the optimal solution to

Budgets(G), denote
∑�R(G) = Pr G = (��,��) · ���

, �,�

SW(G) = Pr G = (��,��) · �� · ��� ,
and �,�

CS(G) = Pr G = (��,��) · (�� · ��� −
���) �,�

as the expected revenue (generated by the seller), the expected social welfare, and the expected consumer
surplus (generated for the buyer), respectively. Then we have CS(G) + R(G) = SW(G).2

We now specify two special cases of the budgeted problem for which we derive positive results.

Optimal Auctions with Public Budget. The first special case we consider is the public budget
setting [12, 23] where � = 1, the budget � = �1 is public information, and the only marginal
distribution is G = G1. This setting is motivated by the seller having an upper bound on the price
they can charge any buyer, say due to regulation or other considerations.

In this case we omit the subscripts by referring to �G (��), � (��), and �G (��), and use �� and
�� as shorthand for the payment variables ��1 and allocation variables ��1, respectively. For this
case, the optimal auction is captured by the following special case of Budgets with � = 1:

Public(G) B      max
{�� }, {�� }

s.t.

∑�
�G (��) ·

�� �=1

�� · �� −  �� ≥  �� · ��′ −
��′, �� · �� −  �� ≥  0,

0 ≤  �� ≤  1,

�� ≤  �,

�1 ≤  �,�′ ≤  �,
�1 ≤  � ≤  �,
�1 ≤  � ≤  �,
�1 ≤  � ≤
�.

(IC)

(IR)

(Feasibility)

(Budget)

We devise price discrimination schemes for the public budget setting in Section 3.

Optimal Auctions with Deadlines. In this setting [19, 26], we consider a single seller selling an
identical item with different levels of service quality to a single buyer. The buyer now has private
valuation � (conditioned on getting the item with at least her desired level of quality) and a private
desired level of quality �. One can think of� as either a personal deadline for shipping options,
or as a level of service quality for a product. Keeping with previous work, we will refer to � as
deadlines throughout.

The buyer’s utility is (� · � −  �) if she pays a price of � to get the item with a probability of � at
some point before or right at her deadline. She incurs utility −� if she gets the item later than her
deadline, since in this case, she accrues no value from the item. As observed in [19], it is suficient
to consider auctions that, for each buyer with deadline�, only allocates the item right at the�-th
deadline (if at all). This is because a buyer does not get any additional utility if she receives the
item at some point earlier than her own deadline. Furthermore, the buyer weakly prefers getting
nothing over getting the item after her own deadline for some price.

This setting is a special case of the private budget setting with large budgets, that is, when�� <  ��
holds for all budget types � = 1, . . . ,�. As every budget is above the highest possible valuation, by

2If there are multiple optimal auctions maximizing R(G), we break ties by defining ( {��� }, {��� }) to be the auction that
maximizes SW( G) among the optimal solutions. This auction must maximize CS( G) as well.
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the IR constraint, the optimal auction never sets a price above�� for any buyer with budget��,
and thus the budget constraint ��� ≤  �� in Budgets can be omitted.

For this case, we simplify the notations by denoting the joint distribution (�,�) � G supported
on supp(G) B  {�1, . . . ,��} ×  {1, . . . ,�}, where 0 <  �1 <  · · · <  ��. The deadlines can be represented
as {1, . . . ,�} since their cardinal values do not matter. For � = 1, 2, . . . ,�, G� now represents the
marginal distribution of � given� = �, and the corresponding probability mass function of G� is

� (� ) = Pr [� = � ] = Pr [� = � | � = �].
� (�,�)�G

Let � (��) = Pr��G� [� ≤  ��] and �G� (��) = Pr��G� [� ≥  ��]. We again assume the item holds
no value to the seller; therefore, the maximum social welfare is SW�(G) = E(�,�)�G
[�], and is achieved by any auction that always allocates the item to each buyer right at her personal
deadline.

The revenue maximizing randomized incentive compatible auction for the deadlines setting is
thus the following:

Deadlines(G) B max
{��� }, {���

}

∑� ∑�
!

Pr [� = �] · � (� ) · �
�=1     

(�,�)�G
�=1

s.t. �� · ��� −  ��� ≥  �� · ��′� −  ��′�,
�� · ��� −  ��� ≥  �� · ��(�−1) −

��(�−1) , �� · ��� −  ��� ≥  0,

0 ≤  ��� ≤  1,

�1 ≤  �,�′ ≤  �, 1 ≤  � ≤  �,

�1 ≤  � ≤  �, 2 ≤  � ≤  �,

�1 ≤  � ≤  �, 1 ≤  � ≤  �,

�1 ≤  � ≤  �, 1 ≤  � ≤
�.

(Same-deadline IC)

(Inter-deadline IC)

(IR)

(Feasibility)

Note that Deadlines is a special case of Budgets where the budget constraint is omitted, and the
IC constraints in Deadlines prevent misreporting a lower deadline.

Remarks. We first note that though our scheme require discrete priors over valuations, these
also serve as arbitrarily good approximations to continuous priors via simple discretization [9, 25].
Secondly, note that the optimal auctions with interim IR coincides with that for ex-post IR for both
the public budget and the deadline setting; the former follows from Theorem 3.4 (or from [12]),
while the latter follows because the prices are not really constrained by any budget. Therefore,
our positive results in Sections 3 and 4 extend as is to ex-post IR. Our negative results in Section 5
do require interim IR.

2.2 Price Discrimination

We next introduce price discrimination via signaling by an information intermediary for the
general private budget setting; specializing it to deadlines or public budgets is straightforward. The
intermediary knows the type (��,��) of the buyer, and can propose a signaling scheme that maps
the buyer’s private information (i.e., a value-budget pair (��,��)) to a distribution over signals that
conveys additional information to the seller. This makes the seller update her belief of the buyer’s
information via Bayes’ rule. The signaling scheme thus can be seen as segmenting the market
of buyers, each segment representing the conditional distribution of buyer type given the signal.
Therefore, we can overload terminology and simply define a signal� as the posterior distribution
of (�,�) given the signal.

Signaling Scheme. Formally, a signaling scheme Θ = {(��,��)}��[�] is a collection of signals
�1, . . . ,�� and probability weights �1, . . . ,�� >  0, where �=1 �� = 1. Here �� represents the
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posterior distribution of the type given the�-th signal. We also require Θ being Bayes plausible [21],

∑�
���� = G, (1)

�=1

i.e., the average signal is just the prior G. The intermediary commits to this signaling scheme before
she observes the buyer type, and this scheme is public knowledge to all parties.

Upon observing private information (�,�), the intermediary sends the�-th signal with probability
��·Pr[��=(�,�) ]

 , and given this signal, if the seller uses Bayes rule to update the prior on the buyer’s
type, the posterior will be precisely��. The seller then implements the revenue maximizing auction
based on the updated prior��.

Buyer Optimal Schemes. Abusing the notation defined before, we let R(Θ) = 
˝
�= 1  �� · R(��) ,

SW(Θ) = �� · SW(��) , and CS(Θ) = �� · CS(��) denote the expected revenue,
the expected social welfare, and the expected consumer surplus, respectively, achieved by the
signaling scheme Θ, where the expectation is now taken over all signals. As before, we have
CS(Θ) + R(Θ) = SW(Θ).

Furthermore, R(Θ) ≥  R(G); otherwise, the seller can ignore the signaling scheme Θ and im-
plement the revenue maximizing auction based on G instead. Hence, for any possible signaling
scheme Θ, we have

CS(Θ) = SW(Θ) −  R(Θ) ≤  SW�(G) −  R(G)
as an upper bound of the expected consumer surplus. Recall that SW�(G) is the maximum possible
social welfare assuming the item always sells. We define this bound on maximum achievable
consumer surplus as

CS�(G) B  SW�(G) −  R(G) = E      [�] −  R(G).
(�,�)�G

To achieve CS(Θ) = CS�(G), the signaling scheme Θ thereby needs to satisfy (a) the item always
sells, and (b) the revenue R(Θ) generated by Θ is exactly R(G), i.e., the expected revenue without
signaling. We call a signaling scheme buyer optimal if it achieves this upper bound.

2.3 Buyer Optimal Signaling without Budgets or Deadlines

In this case, as shown by Bergemann et al. [7] the optimal consumer surplus CS�(G) is indeed
achieved by a signaling scheme Θ.

Theorem 2.1 (Bergemann et  al. ’s signaling schemes [7]). Suppose� = 1 and�1 ≥  ��. Then
for any arbitrary prior G, there exists a signaling scheme ΘG that guarantees:

(1) eficiency: SW(Θ ) = SW�(G) (i.e., the item always sells);
(2) minimum revenue: R(Θ ) = R(G) (i.e., the seller’s revenue does not increase);
(3) maximum consumer surplus: CS(ΘG) = CS�(G) = SW�(G)−R(G) (i.e., theschememaximizes

the expected consumer surplus among all possible signaling schemes.)

Note that the third property is implied from the first two. There are multiple constructions of ΘG
given in [7], and one of these is equivalent to our scheme for public budgets presented in Section
3. These schemes proceed via the notion of Equal Revenue Signals. We now introduce this notion
since it is essential to our signaling scheme as well.

Definition 2.2 (Equal Revenue Signals). A valuation distribution � over its support set supp(�) =
{�1, . . . ,��} is equal revenue if it satisfies:

�� (�1) · �1 = �� (�2) · �2 = · · · = �� (��) · �� = R(�).
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In other words, assuming no budgets, every valuation with nonzero probability mass in supp(�)
is an optimal monopoly price for�. This distribution is unique and can be obtained as follows:

�� (�1) = 1 −  
�1

; 2
�� (��) = 

 
1 −  � (��−1)

 
· (1 −  

�� ), �2 ≤  � ≤  � −
1; �+1

�� (��) = 1 −  �� (��−1).

3 WARMUP: SIGNALING SCHEME FOR PUBLIC BUDGETS

In this section, we prove the analog of Theorem 2.1 when there is a public budget. We show that
there is a signaling scheme that is buyer optimal with a public budget. We will show this via
reinterpreting the algorithm in [7] as a continuous time process (Algorithm 1 below). The nice
aspect of this interpretation is that it leads to a different proof of optimality (than [7]) via a general
convexity property of the revenue of the residual prior as a function of time (see Lemma 3.5). This
continuous time interpretation and convexity property will form the building blocks for our main
result for the version with deadlines (the FedEx problem) in Section 4.

Interestingly, our signaling scheme for public budgets is the same as the no-budget signaling
scheme in [7]; this is easy to check and we omit the proof. However, our analysis is entirely different
and more generalizable to the more complex deadline setting considered later.

3.1 Signaling Algorithm

Throughout this section, the buyer’s budget� = �1 is public information, and we use G to denote the
prior over the buyer values {�1,�2, . . . ,��}. We view the progress of the algorithm as continuously
decreasing this prior into a residual prior, and continuously placing the remaining probability mass
into the constructed signals.

We use the function f (�) = ⟨�1(�), . . . , ��(�)⟩ to represent the residual prior, where ��(�)
represents the remaining probability mass on type��
in the residual prior distribution at time�. Strictly speaking, f (�) is not a distribution since the
process we describe only guarantees �     ��(�) <  1 for� >  0. To make this a valid distribution, we
place the remaining probability mass 1 −      �=1 ��(�) at a dummy value�0 = 0. We call the resulting
distribution G(�). In the subsequent discussion, the notation f (�) represents the probability mass of
G(�) at non-zero valuations, and we omit explicitly considering the dummy value�0 =
0 as part of the support of G(�). We define supp(G(�)) B  {�� >  0 | ��(�) >  0} and �min (G(�)) B
min{�� >  0 | ��(�) >  0}.

We start with the prior G(0) = G and let ��(0) = �G (��), i.e., f (0) is just the probability vector
associated with G. Our algorithm continuously takes away probability mass from f (�) and transfers
it to the constructed signals, terminating when f (�) becomes 0; denote the latter time as�.

At any time � such that f (�) ≠  0, we denote fis(�) as the probability distribution associated with
the equal revenue distribution (see Definition 2.2)�(�) over the set of values in supp(G(�)). Note
that fis(�) depends on supp(G(�)) but not the ��(�); therefore, it is fixed as long as supp(G(�)) does
not change.3 Our algorithm continuously reduces f (�) at rate fis(�) until f becomes 0. Formally:

df 
= −fis(�). (2)

Since 
˝�     ��(�) = 1, the rate of decrease of 

˝�     ��(�) is also 1. Since 
˝�     ��(0) = 1, this

means the process terminates at time� = 1.

3Note that there exist other equal revenue distributions over different support sets; for example, any distribution with a
support size of one is equal revenue. However, for the purpose of our algorithm, the equal revenue distribution must use
all remaining nonzero valuations with nonzero probability mass in the residual prior.
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Signals constructed. We say the type-� valuation�� is exhausted at time� if ��(�) = 0 but ��(�′)
>  0 for all �′ <  �. The algorithm therefore terminates once all types are exhausted. Consider a
maximal time interval� � [�1,�2) in which supp(G(�)) remains fixed; denote the equal revenue
signal in this interval by fis. Therefore,�(�) = fis for� � [�1,�2). Then we have:

∫  �2

f (�1) −  f (�2) = − −fis(�) d� = (�2 −  �1) · fis (3)
�=�1

Therefore, the final scheme includes a signal fis with weight (�2 −  �1). This holds for every such
interval [�1,�2). Since fis(�) changes only if some element in f (�)
becomes zero, the number of signals constructed is at most�. The signaling scheme is now formally
described in Algorithm 1.

Algorithm 1 Continuous Algorithm for Public Budget Setting

Input: G
Output: Θ = Θ�

1: f (0) ← ⟨�G (�1), . . . , �G (��)⟩
2: Compute f (�),�(�), and fis(�) for all� � [0, 1) (as defined in Equation 2)
3: Compute 0 <  �1 <  · · · <  �� = 1 so that some type is exhausted at each� = ��; let�0 = 0
4: for � � {1, . . . ,�} do
5: �� ← �� −  ��−1; �� ← �(��−1); Θ ← Θ � {(��,��)}

6: return Θ

We have 
˝�     �� = 

˝� (�� −��−1) = �� −�0 = 1. Further, we have Bayes plausibility (as defined
in Eq. (1) in Section 2):

Observation 3.1. For any arbitrary G, let ΘG = {(��,��)}��[�] be the set of signals output by

Algorithm 1 taking G as input. Then we have � ≤  |supp(G)|, and �=1 ���� = G.

3.2 Optimal Auction For Signals

We start with the easy step. We characterize the revenue-optimal auctions in the signals created
by Algorithm 1 in Lemma 3.2. As an easy consequence, Θ� always sells the item, and therefore
guarantees eficiency. This is the first necessary condition for buyer optimality.

Let�� � Θ� denote a signal created by Algorithm 1 for the prior G, and let �min (��) denote the
minimum �� >  0 such that Pr���� [� = ��] >  0.

Lemma 3.2. The optimal auction for�� has the following structure:

• If� ≤  �min(��), there is an optimal auction that posts a price of�, and raises a revenue of�.
• If � >  �min (��), there is an optimal auction that posts price �min (��) and raises a revenue
�min (��). Further, for every � � supp(��), we have � · ��� (�) = �min(��).

By the characterizations of the optimal auctions in the above two cases, we have the following
claim that states the item always sells in ΘG.

Lemma 3.3 (Eficiency of Θ� ). For each signal�� � Θ� , there exists a revenue optimal auction that
always allocates the item. As a consequence, SW(ΘG) = SW�(G).
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3.3 Characterization of Optimal Auction for G(�)
We analyze the revenue of the signals by showing that the rate of decrease in revenue of the optimal
auction for G(�) is equal to the revenue of the signal�(�). (See Theorem 3.6.) This when integrated
over time shows that the optimal revenue of the signals is exactly equal to the optimal revenue for
prior G, hence showing buyer optimality.

Continuous Constraints. For the purpose of analysis, we make the constraints in Public(G(�))
hold not just for supp(G(�)), but for all continuous values � ≥  0, where the prior possibly has
zero probability mass.4 Among other things, this formulation allows us to argue that the revenue
changes continuously as the prior changes while constructing our signals.

Formally, fix some time�, and let A  = G(�) so that supp(A) � supp(G). Recall that the decision
variables in Public(A) are �� (the payment) and �� (the allocation probability) for all buyer types
with valuation ��. We augment the variables by extending the domain to [0,��]; for all � � [0,��],
we let �(�) and �(�) denote the expected payment and allocation probability at � � [0,��]. This
yields the following LP, where the IC and IR constraints are extended to this domain.

∑�
PublicContinuous(A) B  max � (� ) · �(� )

�( ·),�( ·) �
=1

s.t. � · �(�) −  �(�) ≥  � · �(�′) −
�(�′),

� · �(�) −  �(�) ≥
0, 0 ≤  �(�) ≤  1,

�(�) ≤  �,

��,�′ � [0,��],
�� � [0,��],
�� � [0,��],
�� � [0,��].

(Cont. IC)

(Cont. IR)

(Feasibility)

(Budget)

From Definition 2.1, R ( A ) is the optimal revenue achievable by Public(A). Denote by R ( A ) the
optimal revenue achievable by PublicContinuous(A). Clearly, R ( A ) ≥  R(A) .

We now present the main characterization result for the optimal solution to this LP. This can
be viewed as a discrete analog of the characterization for continuous priors in [12]. We present a
stand-alone proof for our discrete setting in the full paper [22] via convexity of the utility curve.

Theorem 3.4. For any prior A  = G(�) with � >  �min (A) , there exists a set of valuations
{�1,�

′, . . . ,�′ 
′  }  � supp(A) and weights �1,�2, . . . ,��′     � (0, 1] such that �=1 �� = 1, and the

optimal revenue of PublicContinuous(A) is R ( A ) = �=1 �� · �′ · �A (�′) .

3.4 Revenue Preservation in Algorithm 1

We are now ready to prove the second necessary criterion for buyer optimality: R(Θ� ) = R(G),
i.e., Algorithm 1 minimizes the expected seller revenue through signaling. As mentioned above, the
key step (Theorem 3.6) is to argue that the rate of decrease of revenue of PublicContinuous(G(�))
exactly equals the optimal revenue of the signal�(�). This when combined with Lemma 3.3 gives
buyer optimality. As a side effect, this will also show the optimal objectives of Public(G) and
PublicContinuous(G) are identical.

Convexity of Revenue in PublicContinuous(G(�)). The next lemmas bound the continuous flow of
revenue being transferred into the signals. At any time �, let R(�) denote the optimal revenue of
PublicContinuous(G(�)).

4It follows from [9, 25] that this formulation is equivalent to Public( G (�)), though we will not need this equivalence.
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Our first key step is fairly generic, and shows that R(�) is convex5 in any time interval (��−1,��)
where supp(G(�)) (and hence �(�)) does not change for� � (��−1,��). Let this signal be � and its
corresponding probability vector to be fis = {��} over� � (��−1,��).

Consider the decrease in revenue of any feasible solution M  B  (�(·),�(·)) of PublicContin-
uous(G(�)). The revenue of the solution M  in PublicContinuous(G(�)) is given by R M  (�)
B

�=1 
��(�) · �(��) . Fixing this M ,  for each� � (��−1,��), we have:

dRM (�) 
= 

d ∑�  
��(�) · �(��)

! 

= −
∑�

�� · �(��), (4)
�=1 �� �supp( G(�))

where the last equality uses Eq. (2) and the fact that �� = 0 for any �� � supp(G(�)).
Therefore, for each M ,  its revenue R M  (�) decreases linearly with time. Further, since the
constraints of PublicContinuous(G(�)) do not change with time, M
remains feasible at all points in time� � [0, 1] (the duration of the algorithm), and its revenue
R M  (�) is continuous at all � � [0, 1] since each ��(�) changes continuously. Since R(�) =
maxM R M  (�), we have:

Lemma 3.5. In Algorithm 1, for any interval (��−1,��) where supp(G(�)) doesnotchange, the function
R(�) is convex. Further, the function R(�) is continuous for all� � [0, 1], that is, the entire duration of
the algorithm.

Revenue ofSignals. We are now ready to prove our main theorem quantifying the rate of decrease
of R(�), and thus bounding the revenue of the signals.

Theorem 3.6. In any interval (��−1,��) where supp(G(�)) does not change, the function R(�) is
linear, and dR(�) = −R(�(�)), where R(�(�)) is the optimal revenue of Public(�(�)). Furthermore, at
the end of Algorithm 1, it holds that R(ΘG) = R(G).

Proof. Fix some � � (��−1,��), and assume supp(G(�)) does not change in (��−1,��) and thus
�(�) = �. Note that supp(G(�)) = supp(�). First consider the case where�min(�) ≥
�. By Lemma 3.2, every revenue maximizing auction for� must have �� = � for all �� � supp(�), and
thus R(�) = �; the same proof implies every revenue maximizing auction M ′  for
PublicContinuous(G(�)) must have �� = � for all �� � supp(G(�)). Therefore, we have

dR(�) 
=

∑�  d��(�) 
· �

 
= � ·

∑�
−�� = −� = −R(�) =

−R(�(�)). �� �supp( G(�))                                              �� �supp(�)

Next consider the case when �min (�) <  � and let supp(�) = {�1, . . . ,��}. Since � is an equal
revenue distribution, by Lemma 3.2, we have

�1 · �� (�1) = · · · = �� · �� (��) = �1 = �min (�) = R(�). (5)

Let M � be an optimal solution to PublicContinuous(G(�)). Note that M � is not necessarily
unique, and further, can change as � changes. Since supp(�) = supp(G(�)), by Theorem 3.4, the
revenue R(�) achieved by M � in PublicContinuous(G(�)) is the revenue of a distribution of posted
prices {�′, . . . ,�′ 

′  }  � supp(�) with weights�1, . . . ,��′ � (0, 1], where �=1 �� = 1.

5This is slightly misleading: As we show later, the function R(�) is actually linear as long as supp( G(�)) does not change.
The overall function over� � [0, 1] turns out to be piece-wise linear and concave.
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At any time �′ � (��−1,��), the function RM� (�′) – the revenue of M � over G(�′) – is
linearly

decreasing. We now calculate the rate of decrease at time �′. By Theorem 3.4,

dRM� (�′) 
= 

d
′ 

'∑�  
�� · �′ · 

∑� �
�(�′)fi

« �=1 �:�� ≥�′ ‹
∑� 

= −�� �� · �� (��) (by definition that d�′ = −fis)
�=1

∑�
= − �� · R(�) = −R(�),

�=1

where the second last equality is by Eq. (5), and the last because 
˝
�=1  �� = 1.

Therefore, RM� (�′) is a linear function for �′ � (��−1,��). By Lemma 3.5, R(�′) is a maximum
of linear revenue functions, one for each feasible solution, and hence convex. Since the solution
M � achieves this maximum at time �′ = �, the function RM � (·) is a subgradient of R(·) at time �
with slope −R(�) . But the same holds for all � � (��−1,��) (although the corresponding optimal
solution M � may be different). Therefore, at every point � � (��−1,��), the function R(�) has a
subgradient of slope −R(�). Since R(�) is convex in this interval, it must be a linear function, and

hence differentiable. It also implies dR(�) = −R(�) = −R(�(�)), completing the proof of this case.
Note that�(�) and thus −R(�(�)) changes only when some valuation in the residual prior
G(�)

is exhausted. This happens finitely many times throughout the process. Hence dR(�) = −R(�(�)) is
a piecewise constant function with finitely many discontinuities, and is thus Riemann integrable.
Recall R(0) = R(G) and R(1) = 0. Also recall every signal �� in Algorithm 1 is associated with
weight �� = �� −  ��−1. Therefore we have

R(G) = R(0) −  R(1) =  
1   

−  
dR(�)  

d� =
1 

R(�(�))
d� �=0                                      �=0

∑� �� ∑�
= R(�(�)) d� = �� · R(��) = R(Θ ). (6)

�=1     �=��−1                                     �=1

We then observe that it is always feasible for the seller to ignore the signals: Consider any arbitrary
optimal auction M  = ({��}, {��}) for Public(G). If the seller implements M  as the auction for each
signal�� created by Algorithm 1, by Bayes plausibility, the resulting revenue is given by

∑� ∑� ∑�  ∑� ∑�
�� · ��� (��) · �� = �� · ��� (��) · �� = �G (��) · �� =

R(G). �=1              �=1                                     �=1      �=1                                              �=1

Since the above is the total revenue raised by some auction M  over all signals {��}, the total
revenue R(Θ� ) raised by implementing the optimal auction for each signal�� is at least as much.
Therefore, we have R(G) ≤  R(Θ� ). Combining this with Eq. (6), and observing that
PublicContin-
uous(G) relaxes Public(G), we have:

R(G) ≥  R(G) = R(ΘG) ≥  R(G).

Hence, all inequalities must be equalities, which proves the theorem. □

In Theorem 3.6 above, we have proved that the process in Algorithm 1 preserves the seller’s
expected revenue. By Lemma 3.3, ΘG also achieves eficiency, and thus maximizes social welfare.



489



G

G
� � �

˜

�

˝ �

˝
�=1� �

ˆ

ˆ ˆ

ˆ ˆ  

Session 4D: Auctions with Budget-Constrained Bidders ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

Hence Θ� must maximize the consumer surplus. This implies that the analog of Theorem 2.1 on
buyer optimality holds for the public budget case:

Theorem 3.7 (Buyer opt imal i ty fo r  public budgets). Suppose� = 1 in Budgets(G) for some
prior G. Then there exists a signaling scheme Θ� (given by Algorithm 1) that guarantees:
(1) SW(ΘG) = SW�(G); (2) R(ΘG) = R(G); and (3) CS(ΘG) = CS�(G) = SW�(G) −  R(G).

Discussion. The nice aspect of our proof approach is twofold. First, we can derive the following
corollary showing the existence of a common revenue-optimal auction throughout the process.

Corollary 3.1. Any optimal auction M�(�′) for PublicContinuous(G(�′)) at time�′ in Algorithm
1 stays revenue optimal throughout the course of the algorithm (i.e., for all� >  �′).

Secondly, our approach is extensible to more complex settings in the following sense: Theorem 3.4
yields a characterization of the revenue optimal auction in the specific case of public budgets. We
use this to prove the first claim in Theorem 3.6, that the rate of decrease of revenue of the optimal
auction is equal to the revenue of the signal constructed. The rest of the proof is generic in that it
involves the convexity of R(�), which only relies on this function being the maximum of linear
functions, one for each solution to the revenue maximizing LP. Our proof for the FedEx case simply
reuses the generic portion, along with a specialized characterization of the optimal auction there.

4 MAIN RESULT: SIGNALING SCHEME WITH PRIVATE DEADLINES

We now focus on the case with private valuation-deadline pairs (�,�) � G, where G� denotes the
marginal distribution of � given� = �. This is the so-called FedEx problem [19]. The non-trivial
aspect now is the construction of the signals themselves. We first generalize the notion of equal
revenue signals in Section 4.1, and outline the corresponding signaling algorithm (Algorithm 2). We
then proceed to show that Algorithm 2 is buyer optimal, using the same plan of attack in Section 3.

We begin with some notation. For an arbitrary prior A with supp(A) � supp(G) = {�1, . . . ,��}×
{1, . . . ,�}, we denote by A � the conditional distribution of A  given� = �. Further, let �A (��) B
Pr (�,�)�A [� = �� | � = �], and �A� 

(��) B  Pr (�,�)�A [� ≤  �� | � = �]. Further, define values(A) B
{�� >  0 | �=1 �A� (��) >  0} as the set of values with non-zero support in A ,  and similarly,

values(A�) B  {�� >  0 | �A (��) >  0}. Finally, let �min (A) B  min{�� >  0 | � �A (��)
>  0}, and �min (A�) B  min{�� >  0 | �A� (��) >  0}.

4.1 Generalized Equal Revenue Signals

One natural approach to solving this problem is to apply the algorithm in [7] to the marginal G�

induced by each deadline separately. However, as we show in the full paper [22], such an approach
does not raise optimal consumer surplus. The main reason is that such a signaling scheme must
reveal the deadline of the buyer, which provides the seller with too much information. We therefore
need a different and novel signaling scheme that can “blur" the deadline information in addition
to the value information. Our key idea is to define signals that continuously pull mass from all
marginals G� at once, albeit in an equal revenue fashion.

Definition 4.1 (Lower Envelope). Given prior A  with supp(A) � supp(G), for all � � [1,�], let

�� B  max{� : �A�′  
(��) = 0 ��′ � [�,�]}

denote the largest� such that no buyer with valuation at most �� and deadline at least � exists in
A .  Note that�� = 0 if �A�′  (�1) >  0 for some �′ � [�,�]. Let��+1 = �. The lower envelope of A  is

defined as

LE (A) B  {(��, �) | �A� (��) >  0 � �� <  � ≤  ��+1 }.
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We say a value-deadline pair (��, �) is on the lower envelope of A  if (��, �) � LE (A) . Two pairs
(��,�), (��,�′) � LE (A) where � <  � and �′ ≥  � are consecutive points on LE (A) if there is no �
� (�,�) and some � such that (��, �) is on the lower envelope of A .

An immediate observation is that for any A ,  its lower envelope LE (A) does not contain two
different valuation-deadline pairs with the same valuation:

Observation 4.1. For any prior A ,  if (��, �), (��, �′) � LE (A) for some�, then � = �′.

Definition 4.2 (Equal revenue Lower Envelope ����). For an arbitrary prior A  with supp(A) �
supp(G), let LE (A) be supported on {(�′, �′), (�′, �′), . . . , (�′ , �′ ) }, where 0 <  �min (A) = �′ <  �′

<  · · · <  �′     ≤  ��.6 We define the Equal Revenue Lower Envelope signal ���� for A  to be the equal
revenue distribution over {(�′, �′) }, i.e.,

Pr [� ≥  �′ ] · �′ = Pr [� ≥  �′ ] · �′ = · · · = Pr [� ≥  �′ ] · �′ = �′ = � (A) .
(�,�)����� (�,�)����� (�,�)�����

In other words, when disregarding the deadlines (and thus treating ���� as a distribution of
�), every valuation with nonzero probability mass in its support is an optimal monopoly price.
Analogous to Definition 2.2, this distribution is unique given LE(A) . We also have the following
observation:

Observation 4.2. For an arbitrary prior A  with supp(A) � supp(G), for any�, � such that (��, �)
� supp(����), it holds that �(����)�′ 

(��) = 0 for all � <  �′ ≤  �.

Algorithm. For any time � � [0, 1], we now let F(�) = [��� (�)] be an � ×  � matrix
function representing the residual prior,where ��� (�)
represents the remaining probability mass on type (��, �) at time�. Similar to the public budget
case, let G(�) denote the probability distribution obtained by placing the remaining probability
mass 1 −      � �     ��� (�) at (�,�) = (0, 0). We omit considering (0, 0)
as part of the support of G(�). Therefore we define supp(G(�)) B  {(��, �) | �� >  0, ��� (�) >  0}.
For each deadline � = �, we denote the marginal distribution of G(�) as G� (�). We
therefore have: values(G(�)) B  {�� >  0 | � ��� (�) >  0}, values(G� (�)) B  {�� >  0 |
��� (�) >  0}, and �min (G� (�)) B  min{�� >  0 | ��� (�) >  0}.

We now start with the prior distribution G(0) = G and let ��� (0) = Pr[G = (��, �)] for
every �, �. Our algorithm continuously takes away probability mass from F(�) and transfers it
to the constructed signals, terminating when F(�) becomes 0 at time � = �. At any time � �
[0,�), denote �(�) = �G (�) over LE(G(�)) (Definition 4.2), ��� (�) = Pr(�,�)����� [(�,�) = (��,
�)], and S(�) B  [��� (�)]. As S(�) depends on values(G(�)) but not {���

(�)}, it is fixed as long as values(G(�)) does not change. Our algorithm continuously reduces F(�)
at rate S(�) until F(�) becomes 0:

dF 
= −S(�). (7)

Since 
˝
�,� ��� (�) = 1, the rate of decrease of 

˝
�,� ��� (�) is 1. Since 

˝
�,� ��� (0) = 1, we have�

= 1.

Signals constructed. We say the type (��, �) is exhausted at time� if ��� (�) = 0 but ��� (�′) >
0 for all �′ <  �. Therefore, values(G(�)) changes only when some type is exhausted. For each
maximal time interval� � [�1,�2) in which values(G(�)) remains fixed, the final scheme includes a
corresponding signal � with weight (�2 −  �1) so that �(�) = � for � � [�1,�2). Since �(�)
changes only if some element in F(�) becomes zero, the number of signals constructed is finite.

The overall signaling scheme is described in Algorithm 2.
6Note that all �′ ’s are unique by Observation 4.1.
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Algorithm 2 Continuous Algorithm for Deadlines Setting

Input: G
Output: Θ = Θ�

1: F(0) ← [Pr(�,�)�G [(�,�) = (��, �)]]
2: Compute F(�),�(�), S(�) for all� � [0,�)
3: Compute 0 <  �1 <  · · · <  �� = 1 so that some type (��, �) is exhausted at each� = ��; let�0

= 0 4: for � � {1, . . . ,�} do
5: �� ← �� −  ��−1; �� ← �(��−1); Θ ← Θ � {��,��}

6: return Θ

Similar to Algorithm 1, the signals created by Algorithm 2 are Bayes plausible:

Observation 4.3. For any arbitrary G, let Θ�     = {(��,��)}��[�] be the set of signals output by

Algorithm 2 taking G as input. Then we have �=1 ���� = G.

4.2 Optimal Auction for Signals

In the following, we show the counterparts of Lemmas 3.2 and 3.3 in the deadlines context, and
that Algorithm 2 guarantees eficiency. Let�� � Θ� denote a signal created by Algorithm 2 for the
prior G.

Lemma 4.4. There is an optimal auction for �� that posts a price of �min (��). Further, for every
�� � values(��), we have �� · Pr(�,�)��� [� ≥  ��] = �min (��).

The characterization of the optimal auction above implies the item always sells in ΘG :

Lemma 4.5 (Eficiency of Θ� ). For each signal�� � Θ� , there exists a revenue optimal auction that
always sells the item. As a consequence, SW(ΘG) = SW�(G).

4.3 Characterization of Optimal Auction for G(�)
In the following, we analyze the revenue of the signals using the same technique in Section 3.3:
We make the constraints in Deadlines(G(�)) hold not just for values in values(G(�)) but for all
continuous values � >  0. Fix some time �, and let A  = G(�) so that supp(A) � supp(G). We
describe the linear program with extended domain and IC/IR constraints:

DeadlinesContinuous(A) B max
{�� ( ·) }, {�� ( ·) }

∑� ∑�
!

Pr [� = �] · � (� ) · � (� )
�=1     

(�,�)�A
�=1

s.t. � · �� (�) −  �� (�) ≥  � · �� (�′) −  ��
(�′),

� · �� (�) −  �� (�) ≥  � · ��−1 (�) −
��−1 (�), � · �� (�) −  �� (�) ≥  0,

0 ≤  �� (�) ≤  1,

��,�′ � [0,��], 1 ≤  � ≤  �,

�� � [0,��], 2 ≤  � ≤  �,

�� � [0,��], 1 ≤  � ≤  �,

�� � [0,��], 1 ≤  � ≤  �.

We denote R(A) the optimal revenue achievable by Deadlines(A) and R(A) the optimal revenue
achievable by DeadlinesContinuous(A). Clearly, R ( A ) ≥  R(A) .7

We now present a characterization result for the optimal auction that is a discrete analog of the
characterization for continuous priors in [15, 19]. We present a stand-alone and elementary proof

7It follows from [9, 25] that these two revenues are equal; however, we will not need this fact in our proof.
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for the discrete setting in the full paper [22]. We note that unlike [15, 19], our proof uses convexity
of the utility curve in the primal solution instead of invoking duality, and may be of independent
interest.

Theorem 4.6. For any prior A  = G(�) such that values(A) = {�1,�2, . . . ,��}, where �1 <  �2 <
· · · <  ��, there exists weights � ,� , . . . ,�� � [0, 1] for all � � [1,�] such that the optimal revenue of
DeadlinesContinuous(A) is

∑� ∑�
!

R ( A ) = Pr [� = �] · � · � (� ′ ) · � ′ .
�
=1     

(�,�)�A �
′=1

Furthermore, we have the following properties about the lower envelope LE(A) :

• If (��,�) � LE(A) , then�� = �� for all � ≥  �.
• If (��,�) and (��,�′) are consecutive points on LE (A) where� <  � and �′ ≥  �, then� = 0 for

all� � (�,�) and � ≥  �.
• �=1 1LE ( A) · �� = 1, where 1LE ( A) equals 1 if (��, �) � LE (A) for some �, and 0 otherwise.

4.4 Revenue Preservation in Algorithm 2

We now prove that Algorithm 2 preserves the expected seller revenue, following the same roadmap
as in Section 3.4: We argue that the rate of decrease of revenue of DeadlinesContinuous(G(�))
equals the optimal revenue of the signal�(�).

Convexity of Revenue in DeadlinesContinuous(G(�)). At any time�, let R(�) denote the optimal
revenue of DeadlinesContinuous(G(�)); since DeadlinesContinuous(G(0)) = DeadlinesContinu-
ous(G) has more constraints than Deadlines(G), we have R(0) ≤  R(G). Also, R(1) = 0.

Similar to Section 3.4, we consider any time interval (��−1,��) in which supp(G(�)), and hence
�(�), does not change for � � (��−1,��), and let the signal be � and its corresponding probability
matrix to be S = [���] over� � (��−1,��). Then for any feasible solution M  B  ({�� (·)}, {�� (·)}), its
revenue in DeadlinesContinuous(G(�)) is given by R M  (�) B � �     ��� (�) · �� (��). Fixing
this M ,  for each� � (��−1,��) we have

dRM (�)        d
d�          d�

∑� ∑�
!

∑� ∑�
��� (�) · �� (��) = − ��� · �� (��) , (8)

�=1 �=1                                           �=1 �� �values( G� (�))

where the last equality uses Eq. (7) and the fact that ��� = 0 for any �� � values(G� (�)) for all �
� [1,�]. Therefore, for each M ,  its revenue R M  (�) decreases linearly with time. Further, since the
constraints of DeadlinesContinuous(G(�)) do not change with time, M  remains feasible at all
points in time� � [0, 1] (the duration of the algorithm), and its revenue R M  (�) is continuous at
all � � [0, 1] since each ��� (�) changes continuously. Since R(�) = maxM R M  (�), we have:

Lemma 4.7. For any interval (��−1,��) where supp(G(�)) does not change, the function R(�)
isconvex. Further, the function R(�) is continuous for all� � [0, 1], the entire duration of the
algorithm.

Revenue of Signals. We now quantify the rate of decrease of R(�) in the deadlines setting.

Theorem 4.8. In any interval (��−1,��) where supp(G(�)) does not change, the function R(�) is
linear, and dR(�) = −R(�(�)), where R(�(�)) is the optimal revenue of Deadlines(�(�)). Furthermore,
at the end of Algorithm 2, it holds that R(ΘG) = R(G).
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Proof. Fix some � � (��−1,��), and assume supp(G(�)) does not change in (��−1,��) and thus
�(�) = �. Let values(G(�)) = {�1,�2, . . . ,��}, where �1 <  �2 <  · · · <  ��. Recall that � is an equal
revenue lower envelope distribution supported on LE(G(�)) (see Definition 4.2), and thus
values(�) � values(G(�)). By Lemma 4.4, for all�� � values(�) we have:

Pr [� ≥  � ] · � = � (�) = R(�). (9)
(�,�)��

Let M � be the (not necessarily unique) revenue maximizing solution to DeadlinesContinu-
ous(G(�)). At any time �′ � (��−1,��), the function RM� (�′) – the revenue of M � over G(�′) –
is
linearly decreasing. We now calculate the rate of decrease at time �′. By Theorem 4.6, for each
deadline � = �, the revenue R(�) achieved by M � in DeadlinesContinuous(G(�)) is a weighted
combination of the revenue for posted prices {�1, . . . ,��} with weights��, . . . ,�� � [0, 1], where

�=1 1LE( G(�)) · ��      = 1. Therefore,

′ ∑� ∑�
= Pr [� = �] · � · � ′  · � ′  (� ′ )

�
=1     

(�,�)�G (� ) �
′=1

∑� ∑� ∑� ∑� ∑� ∑�
= ′ ��′ · ��′ · ��� (� ) = −��′ · ��′ · ��� (� )

�=1 �′=1 �:�� ≥� ′ �=1 �′=1 �:�� ≥� ′

(using d�′ = −S)
∑� ∑� ∑�

= − ��′ · ��′ · ��� (� ) . (★) �′=1               �=1             �:�� ≥� ′

Consider some ��′     � values(�). Suppose there exist some � <  �′ <  � and � ≤  �′ such that
(��,�), (��,�′) � LE(G(�)) = supp(�) are consecutive points in LE(G(�)). By Theorem 4.6, this
implies� ′  = 0 for all � ≥  �. Also, for all�� ≥  ��′ we have��� (�′) = 0 for all � <  �. Otherwise, there
is no �� >  ��′ such that �� � supp(�); in this case we have��� (�′) = 0 for all �� ≥  ��′ and all �
� [1,�].

In both cases, the summation �=1 �
� · �:�� ≥� ′  ��� (�′) evaluates to 0.

On the other hand, for each��′ � values(�), there is a unique � such that (��′,�) � LE(G(�)) =
supp(�), which (by Theorem 4.6) implies� ′  = � ′  for all � � [�,�]. Since for all�� ≥  ��′ it still holds
that��� (�′) = 0 for all � <  �, we have

∑� ∑� ∑� ∑� ∑� ∑�
� · � (� ) = � · � (� ) = � · � (� ) = � ·     Pr [� ≥  � ′].

�=1 �:�� ≥� ′ �=� �:�� ≥� ′ �:�� ≥� ′  �=� (�,�)��

Combining the above with Eq. (9), the expression (★) evaluates to
∑� ∑�

− � · � ·     Pr [� ≥  � ] = − � · R = −R(�),
�:� �values(�)

(�,�)��
�:� �values(�)

where the last equality is by 
˝
�: � �values(�) �� = 

˝
�=1  

 
1LE( G (�′)) · ��

 
= 1.

Therefore, RM� (�′) is a linear function for�′ � (��−1,��). By Lemma 4.7 and the same arguments
in the proof of Theorem 3.6, the above implies R(�) is linear and hence differentiable in the interval �
� (��−1,��), and dR(�) = −R(�) = −R(�(�)).

Note that�(�) and thus −R(�(�)) changes only when some (�,�)-type in the residual prior

G(�) is exhausted; this happens finitely many times throughout the process. Hence dR(�) =
−R(�(�)) is a piecewise constant function with finitely many discontinuities, and is thus
Riemann integrable.
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Similar to that in the proof of Theorem 3.6, we have R(0) = R(G), R(1) = 0, and every signal�� in
Algorithm 2 is associated with weight �� = �� −  ��−1. Therefore Eq. (6) holds exactly as is.

We observe that it is still feasible for the seller to ignore the signals by implementing some
revenue optimal auction for Deadlines(G) as the auction for each signal�� and achieve R(G) as
the total revenue. Thus, the theorem follows analogously to the public budget case. □

Theorem 4.8 shows that Algorithm 2 preserves expected revenue. By Lemma 4.5,Θ� also achieves
eficiency, and thus maximizes social welfare. Hence Θ� must maximize the expected consumer
surplus, and the analog of Theorem 3.7 on buyer optimality holds for the deadlines case as well:

Theorem 4.9 (Buyer optimality fo r  deadlines). In the private deadlines setting, there exists a
signaling scheme Θ� for prior G that guarantees: (1) SW(Θ� ) = SW�(G); (2) R(Θ� ) = R(G); and
(3) CS(ΘG) = CS�(G) = SW�(G) −  R(G).

5 IMPOSSIBILITY OF OPTIMAL SIGNALING FOR PRIVATE BUDGETS

We now consider the setting with private budgets. Recall the program Budgets(G) from Section 2,
where the type space has valuation and budget, with the IR constraint being interim. We show that
there are instances with just two budget types in which achieving full social welfare via signaling
requires sacrificing almost all consumer surplus.

Theorem 5.1. For � = � = 2, for any given constant � >  0, there exists a prior G in which any
signaling scheme Θ that achieves eficiency (i.e., item always sells) has CS(Θ) ≤  � · CS�(G), where
CS�(G) = SW�(G) −  R(G) is the maximum achievable consumer surplus with respect to prior G.

Furthermore, a similar proof shows a lower bound of 2 on approximating the consumer surplus
even when it is no longer required that the signaling scheme retains full social welfare.

Theorem 5.2. For � = � = 2, for any given constant � >  0, there exists a prior G in which any
signaling scheme Θ has CS(Θ) ≤  ( 2 + �) · CS�(G).

Both these theorems use the following family of instances, and are proved in the full paper [22].

Definition 5.1. For any � >  1 and � <   1 , let the prior G�,� be supported on {(�1,�1), (�2,�2)},
where �1 = 1, �1 = 1 −  �, and �2 = �2 = �. Let �1 = Pr(�,�)�G [(�,�) = (�1,�1)] = 1 −  �, and
�2 = Pr(�,�)�G�,� [(�,�) = (�2,�2)] = �.

6 CONCLUSION

Observe that our positive results hold for two budgeted settings where the optimal auctions with
interim and ex-post IR constraints coincide, while our negative result holds for the most general
budgeted setting where imposing ex-post IR constraints does reduce optimal revenue. In effect,
our work points to a separation between auctions with ex-post IR constraints, where optimal
signaling is possible (public budget or deadlines), and interim IR constraints, where it is not possible
(private budget setting). The main open question is whether this separation can be formalized. We
conjecture that there is indeed an optimal signaling scheme for the general private budget setting,
when the mechanism is required to be ex-post IR instead of interim IR.

Several other open questions arise from our work. For instance, for private budgets with interim
IR, is there an ineficient signaling scheme that extracts a constant factor of the optimal consumer
surplus, thereby providing a positive counterpart to Theorem 5.2? Finally, can our results be
generalized to larger type spaces, for instance, spaces with three dimensions such as value, deadline,
and amount required?
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