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We study the limits of an information intermediary in the classical Bayesian auction, where a revenue-

maximizing seller sells one item to 𝑛 buyers with independent private values. In addition, we have an

intermediary who knows the buyers’ private values, and can map these to a public signal so as to increase

consumer surplus. This model generalizes the single-buyer setting proposed by Bergemann, Brooks, and

Morris, who present a signaling scheme that raises the optimal consumer surplus, by guaranteeing that the

item is always sold and the seller gets the same revenue as without signaling. Our work aims to understand

how this result ports to the setting with multiple buyers.

We likewise define the benchmark for the optimal consumer surplus: one where the auction is efficient (i.e.,

the item is always sold to the highest-valued buyer) and the revenue of the seller is unchanged. We show that

no signaling scheme can guarantee this benchmark even for 𝑛 = 2 buyers with 2-point valuation distributions.

Indeed, no signaling scheme can be efficient while preserving any non-trivial fraction of the original consumer

surplus, and no signaling scheme can guarantee consumer surplus better than a factor of 1
2 compared to the

benchmark. These impossibility results are existential (beyond computational), and provide a sharp separation

between the single and multi-buyer settings.

In light of this impossibility, we develop signaling schemes with good approximation guarantees to the

benchmark. Our main technical result is an𝑂 (1)-approximation for i.i.d. regular buyers, via signaling schemes

that are conceptually simple and computable in polynomial time. We also present an extension to the case of

general independent distributions.
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1 INTRODUCTION

Consider a seller selling an item to a buyer, whose private value 𝑉 is drawn from some known
distributionD. The overall social welfare is maximized when the seller sells the item for $0, assuming
the seller has no cost for the item. In contrast, to maximize the (average) revenue, the seller’s optimal
strategy is to sell at a revenue-maximizing price, which may lead to welfare loss due to the item
going unsold.
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More generally, in a single-item Bayesian auction with 𝑛 buyers with independent private
valuations, a welfare-optimal mechanism is the second-price (or VCG) auction, which always gives
the item to the highest-valued buyer. In contrast, even when the buyers have i.i.d. regular valuations,
the revenue-optimal mechanism was shown by Myerson [19] to be a second-price auction with a
reserve price; this may lead to the item going unsold. The situation is more complex for non-regular
distributions, and/or non-i.i.d. buyers, where the revenue-optimal mechanism may in addition
sell the item to a buyer with lower value than the highest, leading to additional welfare loss. We
visualize this via a revenue-CS trade-off diagram (Fig. 1b), where, for different mechanisms and
value distributions, we plot expected consumer-surplus (i.e., value minus payment), denoted CS,
versus expected seller-revenue, denoted by R. Any welfare-maximizing mechanism including VCG
(point 𝑉 ) lies on the R + CS =W∗ line. In contrast, Myerson’s mechanism (point𝑀) has revenue
R𝑀 greater than that under VCG, but can also lie below the maximum-welfare line.

Information Intermediary. Now consider the same setting, but with an additional information

intermediary: a third-party who knows the true buyer values ®𝑉 = (𝑉1,𝑉2, . . . ,𝑉𝑛) and can provide
a łsignalž or side-information to the seller and the buyers. Both the signal and signaling scheme
are common knowledge to all agents (buyers and seller), who can thus use Bayes’ rule to update
the prior over valuations given the signal. The signal łre-shapesž the joint prior over the buyer
valuations in a Bayes-plausible manner (i.e., such that the posterior averaged over signals equals
the prior). Though the intermediary can modulate information, it does not control the mechanism,
which still resides with the seller. Such a setting is motivated by ad exchanges, where the platform
(or intermediary) acts only as a clearinghouse, and does not itself run a mechanism. Therefore,
given the signal, the seller then proposes the revenue-maximizing mechanism, and buyers bid
optimally, under the posterior distribution. We illustrate this in Fig. 1a.

Formally, consider a setting where 𝑛 buyers have independent private valuations ®𝑉 drawn from

a distribution D = D1 × D2 × · · · × D𝑛 . The valuations ®𝑉 are known to the intermediary, who
maps them to a signal 𝜎 via a public signaling schemeZ. Given 𝜎 , all agents compute the posterior
S over buyer values; note these can now be correlated. The seller then proposes a mechanismMS
(comprising allocation and payment rules) which maximizes its expected revenue assuming buyers
act in a manner which is ex-post incentive-compatible (IC) and interim individually-rational (IR)
given S. If 𝜎 is such that S = D, thenMS is Myerson’s auction (point𝑀 in Fig. 1b); on the other

hand, if the signal fully reveals ®𝑉 , then the seller can extract full surplus (i.e., get revenueW∗,
point 𝐴 in Fig. 1b). Moreover, the seller gets revenue at least R𝑀 under any signaling scheme, as
she can always ignore the signal (see Section 2). Thus any signaling schemeZ must give a point in
the shaded triangle with consumer surplus CS(Z) and revenue R(Z), and the maximum possible
surplus Opt is achieved at point 𝑂 in Fig. 1b. Now we can ask:

What revenue-CS trade-offs can an information intermediary achieve via signaling? More

specifically, what is the maximum possible consumer surplus that is achievable?

In the single-buyer case, the seminal work of Bergemann, Brooks, and Morris [2] completely
answer these questions by showing that the entire shaded region is always achievable. In particular,
the point 𝑂 is met by a simple signaling scheme where the revenue is exactly R𝑀 , and the item is
always sold thus the mechanism is efficient.
In this work we study the effectiveness of an information intermediary in a multi-buyer (i.e.,

𝑛 ≥ 2 buyers) Bayesian auction. In brief, we expose a sharp separation between the single and
multi-buyer settings, as in the latter, no signaling scheme can guarantee more than a constant
fraction of the optimal consumer surplus (Opt in Fig. 1b). On the positive side, we obtain a novel
yet simple signaling scheme with strong approximation guarantees for a wide range of settings.
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Fig. 1. (a) The auction with information intermediary setting, where the intermediary has full knowledge of

valuations ®𝑉 , and can use this to provide a signal 𝜎 to the seller and the buyers. The seller then uses the revenue-

optimal mechanismMS for the posterior distribution over valuations S given 𝜎 .

(b) Two-dimensional space of seller revenue, R, and consumer surplus, CS, of different signaling schemes. The

points 𝑀 and 𝑉 correspond to Myerson’s and VCG mechanisms, and the point 𝐴 corresponds to selling to the

highest-valued buyer at her value when the seller has full information.

While our main focus is on theoretical results, our work has broader practical relevance. Consider
an agency like the FCC with privileged information about bidders in a spectrum auction, or a
bid optimizer working for multiple competing clients in an ad-exchange. These intermediaries
have private information about the buyers, and can selectively release it to influence the auction.
For instance, in an ad exchange, the platform running the exchange (intermediary) typically uses
machine learning and advertiser features to infer true valuations. However, the pricing rules are
decided by the publishers (seller) and not the exchange. For its own long term viability, the platform
clearly has incentives to make both parties ś publisher and advertisers ś as happy as possible,
and would therefore like to release information selectively to the publisher in order to maximize
advertiser happiness (consumer surplus) while keeping publisher happiness (revenue) at least what
it is without its presence. In effect, we use the alternate view of the market segmentation problem
in [2] as a special case of a signaling problem where a more informed intermediary works for the
benefit of the buyers.

Our work also fits in a broader space of multi-criteria optimization where a third-party platform
or government agency can release information about agents to a principal in charge of an activity
such as admissions or hiring, so as to trade-off the principal’s objective such as maximizing quality
of hire, with a societal objective such as fairness or diversity.

1.1 Our Results

We consider a single-item auction with 𝑛 buyers with discrete valuations. We assume the buyer
valuations are independent, so D = D1 × D2 × · · · × D𝑛 , where D𝑖 has support size K𝑖 , and the
size of the union of the supports is K . We parametrize our results in terms of 𝑛,K𝑖 , and K .
Our first set of results (Section 3) shows a sharp demarcation between the cases of 𝑛 = 1 and

𝑛 ≥ 2 buyers. In contrast with the former case (where signaling achieves the entire shaded region
in Fig. 1b), we show in the latter case, the entire segment 𝐵𝑂 is not achievable; indeed, the only
achievable points on segment𝐴𝑂 are arbitrarily close to𝐴. Therefore, achieving full welfare requires
sacrificing an arbitrarily large fraction of consumer surplus compared to the no-signaling baseline.
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Theorem 1.1 (Proved in Section 3). For any given constant 𝜀 > 0, there are instances with 𝑛 = 2

buyers each with K𝑖 = 2, where any signaling schemeZ under which the revenue-optimal auction

obtains full welfare (i.e., allocates to highest-value buyer), has CS(Z) ≤ 𝜀 · CS(D), where CS(D) is
the consumer surplus of Myerson’s auction without signaling.

We next ask if we can sacrifice on welfare, but raise a consumer surplus arbitrarily close to Opt?
We again answer in the negative, and show a lower bound of 2 on the approximation ratio.

Theorem 1.2 (Proved in Section 3). For any constant 𝜀 > 0, there are problem instances with

𝑛 = 2 buyers each with K𝑖 = 2, where any signaling schemeZ has CS(Z) ≤
(
1
2
+ 𝜀

)
· Opt.

We note that the above results are existential impossibility results, and do not depend on the
complexity of the signaling scheme.1 Overall, the negative results in Theorems 1.1 and 1.2 strongly
suggest that in this setting, the focus should be on approximating the consumer surplus.
The situation improves in Section 3.3 when we restrict to D𝑖 that are identical and (discrete-

)regular. Here, we first circumvent Theorem 1.1 by showing a simple signaling scheme that achieves
the point 𝐵 (i.e., optimal welfare, and same consumer surplus as under Myerson’s auction). One
problem that remains, however, is that Myerson’s auction may have arbitrarily poorCS: for example,
if the D𝑖 are regular, and chosen such that the reserve price is the highest value in the support,
then CS = 0, while Opt > 0 (and so the approximation factor of Myerson’s auction is unbounded).
Indeed, even restricting to MHR priors, one can construct instances where the reserve price is close
to the maximum value in the support, leading Myerson’s auction to have vanishing CS relative to
Opt. This is one reason why getting any non-trivial approximation to Opt is challenging, and we
present more discussion in Section 4.1.

In Section 4, we present our main technical result, where we show that when buyers’ valuations
are drawn from i.i.d. regular distributions, then a simple signaling scheme achieves a constant-
approximation to Opt. In more detail, our Rank𝑡 signaling scheme is based on two simple but
critical steps: First, the intermediary can use its knowledge of agent valuations to perform a pre-
screening step that eliminates all but the top-𝑡 buyers (for a carefully chosen 𝑡 ). Second, given the
top 𝑡 buyers, it can then choose a uniform buyer among this set to serve as a hold-out buyer, who
the seller can sell to in case she is unable to raise sufficient revenue from the remaining 𝑡 − 1 buyers
via an auction; this can be achieved by using the single-buyer signaling scheme of Bergemann et al.
[3] on the chosen buyer. Using a combination of these two ideas, we get the following:

Theorem 1.3 (Proved in Section 4). When the D𝑖 ’s are identical and regular, there is a signaling

scheme achieves an 𝑂 (1)-approximation to the optimal consumer surplus Opt, and has computation

time polynomial in 𝑛 and K .

The nice feature of Rank𝑡 is that it generates signals with posteriors that are (non-identical)
product distributions, so that the seller’s optimal auction is Myerson’s auction [19], which is also
ex-post IC and IR. This scheme also turns out to achieve Opt for the special case when K = 2 and
𝑛 is arbitrary.

In the full paper [1], we extend this scheme to when the buyers are independent, but not
necessarily identical or regular. We obtain the following theorem for this case.

Theorem 1.4 (Proved in the full paper [1]). When the D𝑖 ’s are arbitrary, the Rank𝑡 scheme

achieves an 𝑂
(
min

(
𝑛 log𝑛,K2

) )
-approximation to the optimal consumer surplus Opt, and has com-

putation time polynomial in 𝑛 and K .

1Our proofs also imply the same lower bounds when the seller is constrained to run an ex-post IR mechanism, provided the

intermediary’s signals induce a product-form posterior distribution.
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1.2 Intuition and Techniques

For any 𝑛, the optimal signaling scheme for maximizing surplus can be obtained via an infinite-sized
linear program (see Eq. (2) in Section 3) with variables for every possible signal, i.e., every possible
joint distribution over buyer valuations. Further, for each such signal, the quantity of interest is
the consumer surplus of the revenue-optimal auction given the signal. For 𝑛 = 1 case, Bergemann
et al. show this LP has a special structure in that it admits a basis comprising of łequal-revenue
distributionsž containing the revenue-maximizing price (see Section 2.2). Our work shows that this
breaks down for optimal auctions with signaling involving 𝑛 ≥ 2 buyers.
To understand why things change dramatically from 𝑛 = 1 to 𝑛 ≥ 2 buyers, in the former

case, the optimal mechanism is a simple posted price scheme and its revenue is continuous in the
distribution D. However, with multiple buyers, the optimal auction does not have simple structure
even for independent buyers (see Algorithm 1), and we need to analyze the consumer surplus of this
auction, which can be a discontinuous function of the prior. (See Section 3 for examples.) Further,
for correlated buyers, the revenue of the auction itself may not be continuous in the prior! Indeed,
a celebrated result of Crémer and McLean [8] shows that slightly perturbing an independent prior
to a correlated one can discontinuously increase the revenue toW∗, hence decreasing consumer
surplus to 0. (See Theorem 2.1 in Section 2.) This makes it tricky to reason about the optimal
signaling scheme, leading to the gap between our upper and lower bounds.
In more detail: Our proofs of Theorems 1.1 and 1.2 use a special case of the Crémer-McLean

characterization [8]: for 𝑛 = 2 buyers each with K𝑖 = 2, under any non-independent prior the
seller can extract full social surplus as revenue. This lets us focus on signaling schemes where
buyers’ posterior given each signal are product distributions. Using Myerson’s characterization of
the optimal auction for discrete valuations [13], we show a structural characterization that reduces
the space of optimal signals to a sufficiently simple form, yielding the desired counterexamples.
Note that we still need to reason about a large space of possible product distributions as signals,
which makes our constructions quite non-trivial.

The technically most interesting result in the paper is the 𝑂 (1)-approximation signaling scheme
for i.i.d. buyers (Theorem 1.3 in Section 4). The challenge is the following: Even if we restrict the
space of signals so that the posteriors are (non-identical) product distributions, this space is still
infinite size, with CS being a discontinuous function in this space. Our signaling scheme in Section 4
balances the trade-off between revealing enough information about valuations so that the item
is sold to a high-value buyer, and revealing too much information such that the seller extracts all
the surplus. Balancing these is delicate; nevertheless, our final scheme is simple with polynomial
computation time and signal complexity. We present more intuition in Section 4.1, where we argue
that the guarantee in Theorem 1.3 cannot be achieved in a straightforward fashion.

1.3 Related Work

The general problem of information structure design considers how sharing additional information
can influence the outcome of a mechanism. Different variants of this problem have been formulated
and studied; we refer the reader to [4, 10] for surveys. Of particular importance to us is the Bayesian
persuasion problem formulated by Kamenica and Gentzkow [16], where a receiver selects a utility-
maximizing action based on incomplete information about the state of nature. A sender who knows
the state of nature can signal side-information to the receiver so that the action taken by the
receiver is utility-maximizing for the sender. This general problem has been widely studied in
different domains such as monopoly pricing and advertising [2, 7, 15, 22]. For this problem, there is
a distinction between existence and computational results, and the work of Dughmi and Xu [12]
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studies the computational complexity of finding the optimal signaling scheme under different input
models.
The restriction of our problem to one buyer is the monopoly pricing problem. Here, the in-

termediary is the sender whose utility is consumer surplus, and the seller is the receiver whose
action space is take-it-or-leave-it prices and whose utility is revenue. Beginning with the work
of Bergemann et al. [2], several works [6, 9, 11, 15, 17, 18, 20] have considered various extensions
and modifications to this basic problem. Unlike monopoly pricing where the buyer is perfectly
informed, in our setting, not only the seller, but also all the buyers are receivers, in the sense that
they have imperfect knowledge of the true valuations of other buyers, and modify their respective
bidding strategies in response to the intermediary’s signal to maximize their own utilities. Our
setting is therefore a Bayesian persuasion problem with multiple receivers, and this aspect makes
it significantly more complex.
There has been work on signaling in auctions that cannot be modeled as Bayesian persuasion,

i.e., in which the common signal is not generated by an intermediary who knows all the true
values of the buyers. For instance, in the work of Bergemann and Pesendorfer [5], the auctioneer
has perfect information about buyer valuations and controls the precision to which buyers can
learn it, and in the work of Fu et al. [14], the seller’s signal is drawn from a distribution that is
correlated with the buyer’s value, In both these works, the goal is to maximize seller revenue.
Finally, Shen et al. [21] studies equilibria of optimal auctions when each buyer commits to a
signaling scheme with imperfect knowledge of other buyers’ valuations, while Bergemann et al. [3]
studies equilibria in first price auctions when buyers are provided correlated signals about other
buyers’ valuations. In contrast with the former, our work considers a richer space of signals via an
information intermediary, while compared to the latter, in our setting the seller’s mechanism is not
fixed, but is instead also a function of the information structure.

2 PRELIMINARIES

We consider Bayesian single-item auctions with 𝑛 buyers, with independent private valuations
®𝑉 = (𝑉1,𝑉2, . . . ,𝑉𝑛) drawn from a known product distributionD = D1×· · ·×D𝑛 . Unless otherwise
stated, we present our results for the setting in which each D𝑖 is discrete. We denote by K𝑖 the size
of the support of D𝑖 , and by K the size of the union of these supports.
For distribution D𝑖 , we use 𝑓𝐷𝑖

to denote its probability mass function, and define 𝑆𝐷𝑖
(𝑥) =

Pr𝑉𝑖∼𝐷𝑖
[𝑉𝑖 ≥ 𝑥] and 𝐹𝐷𝑖

(𝑥) = Pr𝑉𝑖∼𝐷𝑖
[𝑉𝑖 ≤ 𝑥]. For a joint distribution D and vector ®𝑣 , we use

Pr[D = ®𝑣] = 𝑓D (®𝑣) as shorthand for denoting the probability of ®𝑣 drawn from D.

2.1 Revenue-Maximizing Auctions

Given any shared prior D′ on the valuations of the buyers, which in the case of signaling, can
be different from D and arbitrarily correlated, the seller runs an optimal (revenue maximizing)
auction that satisfies ex-post incentive compatibility and interim individual rationality. The standard
description of these constraints is relegated to the full paper [1].
For any prior D′, let (R(D′),W(D′),CS(D′)) denote the expected revenue, welfare (or total

surplus) and consumer surplus under the revenue-maximizing auction. Then we have CS(D′) =
W(D′) − R(D′), and:

R(D′) =
∑︁
®𝑣

Pr[D′ = ®𝑣] ·
∑︁
𝑖

𝜃 ∗𝑖 (®𝑣) and W(D′) =
∑︁
®𝑣

Pr[D′ = ®𝑣] ·
∑︁
𝑖

𝑣𝑖𝑥
∗
𝑖 (®𝑣),

where 𝑥∗ (®𝑣) ≥ 0 and 𝜃 ∗ (®𝑣) are the allocation rule and the payment rule of the optimal auction
given any realized valuation profile ®𝑣 .
Our work builds on two special cases ś independent valuations, and full surplus extraction.
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Optimal auction for independent valuations. When D = D1 × · · · × D𝑛 is a product distribution,
the optimal auction has a simple form given by Myerson [19]. For distribution D𝑖 with support
𝑧1 < 𝑧2 < · · · < 𝑧𝑘 , its virtual value function 𝜑D𝑖

is defined as:

𝜑D𝑖
(𝑧𝑘 ) = 𝑧𝑘 and 𝜑D𝑖

(𝑧ℓ ) = 𝑧ℓ − (𝑧ℓ+1 − 𝑧ℓ )
𝑆D𝑖
(𝑧ℓ+1)

𝑓D𝑖
(𝑧ℓ )

, ∀ℓ < 𝑘. (1)

If buyer 𝑖 is the only buyer in the system, the optimal auction sets a fixed price, and the buyer
buys the item when her valuation is at least this price. The reserve price of D𝑖 , denoted 𝑟D𝑖

is the
smallest value 𝑟 in the support of D𝑖 that maximizes the corresponding revenue 𝑟𝑆D𝑖

(𝑟 ). It is easy
to check that 𝜑D𝑖

(𝑟D𝑖
) ≥ 0.

Throughout this paper, we assume the distributions D𝑖 are regular, so that 𝜑D𝑖
(𝑧) is a non-

decreasing function of 𝑧. Therefore, for all 𝑣 < 𝑟D𝑖
, we have 𝜑D𝑖

(𝑣) < 0. Our results for the non-i.i.d.
case also hold when the distributions are non-regular, by using the non-decreasing ironed virtual
value function [13, 19] instead.

For discrete regular distributions, Myerson’s auction takes the form [13] in Algorithm 1. Note
that this auction is also ex-post IC and IR.

ALGORITHM 1: Myerson’s Auction with prior D and valuations ®𝑣 .

Sort the buyers in decreasing order of 𝑞𝑖 = 𝜑D𝑖
(𝑣𝑖 ). Assume no two values are identical (can be ensured

by using a fixed tie-breaking rule).

Allocate to the bidder 𝑗 with highest virtual value 𝑞 𝑗 , provided 𝑞 𝑗 ≥ 0.

Let𝑚 be the bidder with second highest virtual value, and let𝑤 = max(0, 𝑞𝑚).

Charge 𝑗 the smallest value 𝑧 in the support of D𝑗 such that 𝜑D𝑗
(𝑧) > 𝑤 .

Extracting full surplus as revenue. At the other extreme, a celebrated result of Crémer and McLean
[8] shows that for distributions D′ which are łsufficiently correlatedž, the optimal auction extracts
full surplus (i.e., the revenue equals the maximum valuation in each valuation profile). Formally,
the result requires that for each agent, their conditional distribution over others’ values given their
own value is full rank; for our purposes, we require a restriction of their result to 𝑛 = 2 buyers,
each with two possible valuations.

Theorem 2.1 ([8]). For 𝑛 = 2 buyers, where each buyer 𝑖 has K𝑖 = 2 and the joint distribution over

the valuations isD′, the seller (who faces an interim IR constraint) can extract the entire social welfare

(i.e. get expected revenue equal to the expected value of the maximum of the buyer’s valuations) when

D′ is a correlated (i.e. not independent) distribution.

2.2 Auctions with an Information Intermediary

We next formalize the model of an information intermediary illustrated in Fig. 1a. Since the effect
of the intermediary’s signal is captured by the resulting posterior distribution over valuations, for
ease of notation, we henceforth use łsignalž to refer to a distribution S over valuations.

A signaling schemeZ = {𝛾𝑞,S𝑞}𝑞∈[𝑚] comprises a collection of signals (i.e., joint distributions
over valuations) S1,S2, . . . ,S𝑚 and corresponding non-negative weights 𝛾1, 𝛾2, . . . , 𝛾𝑚 . The scheme
Z is feasible (or łBayes plausiblež [16]) if it satisfies

∑
𝑞 𝛾𝑞 = 1 and

∑
𝑞 𝛾𝑞S𝑞 = D. The intermediary

commits to schemeZ before the auction, and it is known to the seller and all buyers.

The intermediary maps observed valuation profile ®𝑣 ∼ D to signalS𝑞 with probability
𝛾𝑞 Pr[S𝑞=®𝑣 ]

Pr[D=®𝑣 ]
.

The seller uses S𝑞 as the shared prior and runs an optimal auction on the buyers. Note that though
D is a product distribution, the {S𝑞} can be correlated. Abusing the notations introduced earlier in
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Section 2.1, we denote the revenue generated by signaling schemeZ as R(Z) =
∑

𝑞 𝛾𝑞R(S𝑞), its
consumer surplus by CS(Z) =

∑
𝑞 𝛾𝑞CS(S𝑞), and its welfare byW(Z) =

∑
𝑞 𝛾𝑞W(S𝑞).

When D is a product distribution, the revenue from any signaling scheme must be at least
the optimal revenue of Myerson’s auction without signaling, R(D). To see this, we note that
Myerson’s auction on D is ex-post IC and IR. This means that this allocation and payment rule is
still a feasible (interim IC and IR) mechanism conditioned on receiving any signal, completing the
argument. Therefore, the consumer surplus CS(Z) under any signaling schemeZ is bounded by
the difference of the maximum possible welfareW∗

= E ®𝑉∼D
[max𝑖 𝑉𝑖 ] and the maximum revenue

without signaling R(D). We henceforth denote this bound as Opt, which is defined as follows:

Opt =W∗ − R(D) .

We say thatZ is a 𝜏-approximation signaling scheme if CS(Z) ≥ Opt
𝜏
. Our goal is to find the best

approximation factor 𝜏 via a signaling scheme whose computation time is polynomial in 𝑛 and K .
In the rest of the paper, we omit the dependence on D when clear from context.

Optimal signaling for a single buyer. For 𝑛 = 1 buyer, Bergemann et al. [2] present a signaling
scheme with consumer surplus exactly equal to Opt (i.e., implementing the point𝑂 in Fig. 1b. Their
signaling scheme constructs distributions (signals) S1,S2, . . . ,S𝑚 and assigns weights 𝛾1, 𝛾2, . . . , 𝛾𝑚
to them such that

∑
𝑞 𝛾𝑞S𝑞 = D.

Let prior D takes value 𝑣𝑖 with probability 𝜂𝑖 , where 0 < 𝑣1 < · · · < 𝑣𝑘 . Let ®𝜂 = (𝜂1, 𝜂2, · · · , 𝜂𝑘 ).
In each iteration ℓ , the algorithm constructs an equal revenue distribution Sℓ and subtracts it from
the prior D. This equal revenue distribution assigns positive probability 𝜂𝑖ℓ to 𝑣𝑖 if 𝜂𝑖 > 0 and
assigns 𝜂𝑖ℓ = 0 if 𝜂𝑖 = 0. In Sℓ , the seller raises equal revenue by setting the price to be any of
the values 𝑣𝑖 with 𝜂𝑖 > 0. It is easy to see that the equal revenue condition specifies a unique
distribution Sℓ . Note that since this signal is equal revenue, (we may assume) the seller sets the
lowest value as price, so that the item always sells and the consumer surplus is maximum possible.
Let ®𝜂ℓ be the probability vector of Sℓ . We set the largest weight 𝛾ℓ such that ®𝜂 − 𝛾ℓ ®𝜂ℓ ≥ 0. We

update D by setting ®𝜂 to ®𝜂 − 𝛾ℓ ®𝜂ℓ , and increase ℓ by one. We repeat this till the support of D
becomes empty. The {𝛾ℓ ,Sℓ } specifies the signaling scheme. We illustrate this procedure by an
example.

Example 2.2. Suppose the type space is {1, 2, 3} and D = ⟨ 1
3
, 1
3
, 1
3
⟩ are the probabilities of these

types. The monopoly price is 𝜃 = 2 with revenue R(D) = 4
3
, while the point 𝐴 in Fig. 1b has

social welfare R(𝐴) =W∗
= E[D] = 2. Suppose S1 = ⟨ 1

2
, 1
6
, 1
3
⟩ with 𝛾1 =

2
3
; S2 = ⟨0, 1

3
, 2
3
⟩ with

𝛾2 =
1
6
; and S3 = ⟨0, 1, 0⟩ with 𝛾3 =

1
6
. It is easy to check that the monopoly price for each signal

is the lowest price in its support so that the item always sells, and
∑
𝛾𝑖R(S𝑖 ) =

4
3
. Therefore,∑

𝛾𝑖CS(S𝑖 ) = 2 − 4
3
=

2
3
= Opt, which corresponds to point 𝑂 in Fig. 1b.

We henceforth use BBM(𝑣, 𝐷) to refer to this scheme when the buyer has valuation distribution
𝐷 and the realized value is 𝑣 ∼ 𝐷 . Below we state some critical properties of the BBM scheme
which we use in our results.

Lemma 2.3 (Implicit in [2]). For a single buyer with value distribution D (with reserve price 𝑟D ),

the BBM mechanism satisfies the following properties:

(1) For any signal S𝑞 , 𝜑S𝑞 (𝑣) ≥ 0 for all 𝑣 in the support of S𝑞 .

(2) CS(BBM) = Opt ≥ Pr𝑉∼D [𝑉 < 𝑟D] · E𝑉∼D [𝑉 | 𝑉 < 𝑟D] =
∑

𝑣<𝑟D 𝑣 𝑓D (𝑣).

3 LOWER BOUND INSTANCES

We now prove Theorems 1.1 and 1.2. We note that though our lower bounds assume that the seller
runs interim IR and ex-post IC mechanisms, and the intermediary can send arbitrary signals, the
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𝜑 (𝑣)

𝑎

𝜑1 (𝑏 )
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𝜑1 (𝑎)

𝜑2 (𝑐 )

𝑣

0 𝜑 (𝑣)

𝜑1 (𝑏 |𝑠 )

𝜑2 (𝑑 |𝑠 )
𝜑1 (𝑎 |𝑠 )

𝜑2 (𝑐 |𝑠 )

0 𝜑 (𝑣)

𝜑1 (𝑏 |𝑠 )

𝜑2 (𝑑 |𝑠 ) 𝜑1 (𝑎 |𝑠 )

𝜑2 (𝑐 |𝑠 )

𝑠

Fig. 2. Illustrating the setting for Theorems 1.1 and 1.2: On the left (below the axis) we show the setting without

signaling, where buyer 1 (blue) has values (𝑎, 𝑏) and buyer 2 (red) has values (𝑐, 𝑑); we also show the corresponding

virtual values (above the axis). On the right, we show the two settings characterized by Theorem 3.2 under which

a signal 𝑠 has non-zero consumer surplus (the changed virtual values are highlighted).

same lower bounds hold even when the seller runs ex-post IC and IR mechanisms, provided we
restrict the intermediary’s signals to induce posteriors that are product distributions.

Our lower bounds are based on a 2-buyer instance illustrated in Fig. 2: given values 𝑎 > 𝑏 > 𝑐 > 𝑑 ,
buyer 1 has value 𝑉1 ∈ {𝑎, 𝑏} with probabilities 𝛼 and 1 − 𝛼 respectively, while buyer 2 has value
𝑉2 ∈ {𝑐, 𝑑} with probabilities 𝛽 and 1 − 𝛽 respectively. We choose 𝛼𝑎 = 𝑏 and 𝛽𝑐 = 𝑑 ; thus, the
virtual values satisfy: 𝜑1 (𝑎) = 𝑎, 𝜑2 (𝑐) = 𝑐 , and 𝜑1 (𝑏) = 𝜑2 (𝑑) = 0. Call this distribution D.

Characterization of optimal signaling. By Theorem 2.1, we know any signal that correlates the
buyers raises zero consumer surplus. Therefore, the only signals S of interest are those under
which buyer values are independent. Abusing notation we denote such a signal as 𝑠 = (𝛼 ′, 𝛽 ′),
where Pr[𝑣1 = 𝑎] = 𝛼 ′ and Pr[𝑣2 = 𝑐] = 𝛽 ′. Note that in this instance, for a signal to get maximum
welfare the resulting optimal mechanism must always award buyer 1, and for non-zero consumer
surplus it must award the item to buyer 1 at price 𝑏, or buyer 2 at price 𝑑 .

Let CS(𝑠) denote the consumer surplus under any such a signal 𝑠 , and 𝜑1 (𝑏 |𝑠) and 𝜑2 (𝑑 |𝑠) denote
the new virtual values (note that by definition, 𝜑1 (𝑎 |𝑠) = 𝑎 and 𝜑2 (𝑐 |𝑠) = 𝑐 under any signal 𝑠 with
𝛼 ′, 𝛽 ′ > 0). We can use Myerson’s characterization (Section 2.1) to exhaustively characterize the
resulting optimal mechanisms as a function of (𝜑1 (𝑏 |𝑠), 𝜑2 (𝑑 |𝑠)):

Proposition 3.1. Conditioned on receiving a signal 𝑠 , we have the following cases:

(1) If 𝜑1 (𝑏) ≥ 𝑐 , then the optimal mechanism is to sell to Buyer 1 at price 𝑏. CS(𝑠) = (𝑎 − 𝑏)𝛼 ′.

(2) If 𝜑2 (𝑑) ≥ max(0, 𝜑1 (𝑏)), then the optimal mechanism is to try selling to Buyer 1 at price 𝑎

then to Buyer 2 at price 𝑑 . CS(𝑠) = (1 − 𝛼 ′)𝛽 ′ (𝑐 − 𝑑).

(3) If 𝜑1 (𝑏) ≤ 0 and 𝜑2 (𝑑) ≤ 0, then the optimal mechanism is to try selling to Buyer 1 at price 𝑎

then to Buyer 2 at price 𝑐 . CS(𝑠) = 0.

(4) If 0 ≤ 𝜑1 (𝑏) ≤ 𝑐 and 𝜑2 (𝑑) ≤ 𝜑1 (𝑏), then the optimal mechanism is to sell to Buyer 1 at price 𝑏

if Buyer 2 has valuation 𝑑 ; otherwise, it tries selling to Buyer 1 at price 𝑎 then to Buyer 2 at price

𝑐 . CS(𝑠) = 𝛼 ′ (1 − 𝛽 ′) (𝑎 − 𝑏).

Our main insight, however, is that the setting can be further simplified to get the following
structural property for the optimal signaling scheme.

Theorem 3.2 (Structural Theorem). In an optimal signaling scheme, the only signals 𝑠 = (𝛼 ′, 𝛽 ′)
that raise non-zero consumer surplus have the following form:

(1’) Under signal 𝑠 , 𝜑1 (𝑏 |𝑠) = 𝜑2 (𝑐 |𝑠) = 𝑐 and CS(𝑠) = 𝛼 ′ (𝑎 − 𝑏).
(2’) Under signal 𝑠 , 𝜑2 (𝑑 |𝑠) = 𝜑1 (𝑏 |𝑠) ≥ 0 and CS(𝑠) = 𝛼 ′ (1 − 𝛽 ′) (𝑎 − 𝑏).

Proof. Recall that we restrict ourselves to signals S under which the buyer valuations remain
independent. Any such signal can be alternately written as 𝑠 = (𝛼 ′, 𝛽 ′) where 𝛼 ′ = Pr[𝑣1 = 𝑎] and
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𝛽 ′ = Pr[𝑣2 = 𝑐]. For ease of notation, we henceforth drop the conditioning of virtual valuations on
signal 𝑠 (i.e., write 𝜑 (·) for 𝜑 (·|𝑠)) when clear from context.
Next, let 𝛾𝑠 denote the weight of any signal 𝑠 = (𝛼 ′, 𝛽 ′). The signaling scheme that maximizes

consumer surplus is the solution to the following linear program written over signals 𝑠 = (𝛼 ′, 𝛽 ′):

Maximize
∑︁
𝑠

𝛾𝑠CS(𝑠)

Subject to
∑

𝑠=(𝛼 ′,𝛽 ′ ) 𝛾𝑠𝛼
′𝛽 ′ ≤ 𝛼𝛽∑

𝑠=(𝛼 ′,𝛽 ′ ) 𝛾𝑠𝛼
′ (1 − 𝛽 ′) ≤ 𝛼 (1 − 𝛽)∑

𝑠=(𝛼 ′,𝛽 ′ ) 𝛾𝑠 (1 − 𝛼
′)𝛽 ′ ≤ (1 − 𝛼)𝛽∑

𝑠=(𝛼 ′,𝛽 ′ ) 𝛾𝑠 (1 − 𝛼
′) (1 − 𝛽 ′) ≤ (1 − 𝛼) (1 − 𝛽)

𝛾𝑠 ≥ 0 ∀𝑠

(2)

We examine the cases in Proposition 3.1 with positive consumer surplus, and characterize the
optimal solution:

• In Case (1), we have 𝜑1 (𝑏) = 𝑐 . To see this, consider any signal 𝑠 with 𝜑1 (𝑏) > 𝑐 . Suppose we
increase 𝛼 ′ and decrease 𝛾𝑠 while preserving the product 𝛼

′𝛾𝑠 . Since 𝛾𝑠CS(𝑠) = 𝛾𝑠𝛼
′ (𝑎 − 𝑏),

this is preserved by the change. Therefore, the objective of LP (2) is preserved, and so are the
first two constraints. Further, since (1 − 𝛼 ′) and 𝛾𝑠 decrease, this only makes the third and
fourth constraints more feasible. This transformation decreases 𝜑1 (𝑏).

• In Case (2) and (4), we have 𝜑2 (𝑑) = 𝜑1 (𝑏). It does not help to make them unequal by a similar
argument as above: In case (2), if 𝜑2 (𝑑) > 𝜑1 (𝑏), we can increase 𝛽 ′ while preserving 𝛾𝑠𝛽

′.
Since 𝛾𝑠CS(𝑠) = 𝛾𝑠 (1 − 𝛼

′)𝛽 ′ (𝑐 − 𝑑), this does not change the contribution to the objective
of LP (2), and preserves all constraints. This transformation decreases 𝜑2 (𝑑). In case (4), if
𝜑2 (𝑑) < 𝜑1 (𝑏), we can increase 𝛼 ′ while preserving 𝛾𝑠𝛼

′. Since 𝛾𝑠CS(𝑠) = 𝛾𝑠𝛼
′ (1− 𝛽 ′) (𝑎 −𝑏),

this does not change the contribution to the objective of LP (2), and preserves all constraints.
This transformation decreases 𝜑1 (𝑏).

Therefore, the only two types of signals 𝑠 that give positive CS are

(1’) If 𝜑1 (𝑏) = 𝑐 , then CS(𝑠) = 𝛼 ′ (𝑎 − 𝑏).
(2’) If 𝜑2 (𝑑) = 𝜑1 (𝑏) ≥ 0, then CS(𝑠) = max((1 − 𝛼 ′)𝛽 ′ (𝑐 − 𝑑), 𝛼 ′ (1 − 𝛽 ′) (𝑎 − 𝑏)).

As (1 − 𝛽 ′) (𝑏 − 𝑑) ≥ 0, we have(
𝑏 − 𝑑 +

𝛽 ′

1 − 𝛽 ′
(𝑐 − 𝑑)

)
(1 − 𝛽 ′) ≥ 𝛽 ′ (𝑐 − 𝑑).

Notice that in Case (2’), we have 𝜑1 (𝑏) = 𝑏 − 𝛼 ′

1−𝛼 ′ (𝑎 − 𝑏) = 𝑑 −
𝛽 ′

1−𝛽 ′ (𝑐 − 𝑑) = 𝜑2 (𝑑). This gives

𝛼 ′ (1 − 𝛽 ′) (𝑎 − 𝑏) ≥ (1 − 𝛼 ′)𝛽 ′ (𝑐 − 𝑑).

Thus, the two types of signals 𝑠 that give positive CS become

(1’) If 𝜑1 (𝑏) = 𝑐 , then CS(𝑠) = 𝛼 ′ (𝑎 − 𝑏).
(2’) If 𝜑2 (𝑑) = 𝜑1 (𝑏) ≥ 0, then CS(𝑠) = 𝛼 ′ (1 − 𝛽 ′) (𝑎 − 𝑏). □

Using the above structural theorem, the proofs of Theorems 1.1 and 1.2 follow by different
choices of the parameters (𝑎, 𝑏, 𝑐, 𝑑). Suppose the virtual values of 𝑏 and 𝑑 are slightly above zero
with 𝜑1 (𝑏) > 𝜑2 (𝑑) so that Case (4) in Proposition 3.1 is uniquely optimal for the seller. The optimal

auction generates consumer surplus CS(D) = 𝛼 (1 − 𝛽) (𝑎 − 𝑏) = 𝑏
𝑐
· 𝑐−𝑑

𝑎
· (𝑎 − 𝑏) according to

Proposition 3.1.
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3.1 Proof of Theorem 1.1

To prove Theorem 1.1, we set 𝑏 → 𝑐+.2 Now in Proposition 3.1, in Case (1), we must have 𝛼 ′ → 0+

since 𝑏 → 𝑐+, so that CS→ 0. Also if 𝛼 ′ = 1 in a signal then CS = 0 here. The only other signal
where the item is allocated to the higher bidder is in Case (4) when 𝛽 ′ = 0. Let 𝛾 denote the
probability of the signal of this type 𝑠 = (𝛼 ′, 0). (Having multiple signals of this form gives the

same CS as having a single signal as their average.) Since 𝜑1 (𝑏) ≥ 𝜑2 (𝑑), we have 𝛼
′ ≤ 𝑏−𝑑

𝑎−𝑑 .
By the constraints of LP (2), we have:

Pr[𝑣1 = 𝑏 ∧ 𝑣2 = 𝑑] = 𝛾 (1 − 𝛼 ′) ≤ (1 − 𝛼) (1 − 𝛽),

which simplifies to 𝛾 ≤ (𝑎−𝑑 ) · (𝑐−𝑑 )
𝑎𝑐

. The consumer surplus in this case is therefore:

CS = 𝛾CS(𝑠) = 𝛾𝛼 ′ (𝑎 − 𝑏) ≤
(𝑏 − 𝑑) · (𝑐 − 𝑑)

𝑎𝑐
· (𝑎 − 𝑏) ≤

𝑏 − 𝑑

𝑏
· CS(D).

Setting 𝑑 =
(
1 − 𝜀

2

)
𝑏 and combining with the fact that CS→ 0 in Case (1), we have the consumer

surplus of any efficient signaling, CS→ 𝜀
2
· CS(D) so CS < 𝜀 · CS(D).

3.2 Proof of Theorem 1.2

Without signaling, E[max 𝑣𝑖 ] = 𝛼𝑎 + (1 − 𝛼)𝑏 and R(D) = 𝛼𝑎 + (1 − 𝛼)𝛽𝑐 . (Case (2), (3) and (4) in
Proposition 3.1 give the same revenue R(D).) Therefore

Opt = E[max 𝑣𝑖 ] − R(D) = (1 − 𝛼) (𝑏 − 𝛽𝑐) .

Now we assign the values as: 𝛼 = 𝛽 = 1 − 𝛿 ; 𝑎 =
1

(1−𝛿 )2
, 𝑏 =

1
1−𝛿 , 𝑐 = 1, 𝑑 = 1 − 𝛿 with 𝛿 → 0+.

Then we plug in the values and the two possible types of signals 𝑠 in Theorem 3.2 become

(1’) If 𝛼 ′ = 1−𝛿
2−𝛿 <

1
2
, then CS(𝑠) ≤ 1

2
𝛿 (1 + 𝑜 (1)).

(2’) If 𝛼 ′ ≤ 1−𝛿 ; 𝛽 ′ = 1−3(1−𝛼 ′ )+3𝛿 (1−𝛼 ′ )−𝛿2 (1−𝛼 ′ )
1−2(1−𝛼 ′ )+𝛿 (1−𝛼 ′ ) >

1−3(1−𝛼 ′ )
1−2(1−𝛼 ′ ) , then CS(𝑠) ≤ 𝛼 ′ (1− 𝛽 ′)𝛿 (1+𝑜 (1)).

The consumer surplus maximizing signaling scheme should use 𝑡 signals 𝑆2,𝑖 of type (2’), with
𝛼 ′2,𝑖 , 𝛽

′
2,𝑖 and weight𝑤 (𝑆2,𝑖 ). There is an additional signal 𝑆1 (with weight𝑤 (𝑆1)) of type (1’) with

𝛼 ′1 and 𝛽 ′1. (Having multiple signals of type (1’) gives the same CS as having a single signal as their
average.) Denoting the valuation of the first buyer by 𝑣1 and the second buyer by 𝑣2, the constraints
in LP (2) imply the two constraints:

Pr[𝑣1 = 𝑏] = (1 − 𝛼 ′1)𝑤 (𝑆1) +

𝑡∑︁
𝑖=1

(1 − 𝛼 ′2,𝑖 ) ·𝑤 (𝑆2,𝑖 ) ≤ 1 − 𝛼 = 𝛿, (Constraint (I))

Pr[𝑣1 = 𝑏 ∧ 𝑣2 = 𝑑] =

𝑡∑︁
𝑖=1

(1 − 𝛼 ′2,𝑖 ) (1 − 𝛽
′
2,𝑖 ) ·𝑤 (𝑆2,𝑖 ) ≤ (1 − 𝛼) (1 − 𝛽) = 𝛿2 . (Constraint (II))

Note that Opt = (1 − 𝛼) (𝑏 − 𝛽𝑐) = 2𝛿2 (1 + 𝑜 (1)).

2𝜑1 (𝑏 ) − 𝜑2 (𝑑 ) and 𝜑2 (𝑑 ) can be arbitrarily small as long as positive, so we take the limits for them first, i.e., we are

calculating lim𝑏→𝑐+ lim𝜑2 (𝑑 )→0+,𝜑1 (𝑏)→𝜑2 (𝑑 )
+ CS in the following part of the proof. This allows us to treat 𝛼 =

𝑏
𝑎 and

𝛽 =
𝑑
𝑐 in calculating (1 − 𝛼 ) (1 − 𝛽 ) , as 𝛼 and 𝛽 are not infinitesimally close to 1 for any fixed 𝜀 . (We will define

𝑑 = (1 − 𝜀/2)𝑏.)
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The total consumer surplus therefore is:

CS ≤
1

2
𝛿 (1 + 𝑜 (1)) ·𝑤 (𝑆1) +

𝑡∑︁
𝑖=1

𝛼 ′2,𝑖 (1 − 𝛽
′
2,𝑖 )𝛿 (1 + 𝑜 (1)) ·𝑤 (𝑆2,𝑖 )

≤
1

2
𝛿 (1 + 𝑜 (1)) · 2

(
𝛿 −

𝑡∑︁
𝑖=1

(1 − 𝛼 ′2,𝑖 ) ·𝑤 (𝑆2,𝑖 )

)
+ 𝛿 (1 + 𝑜 (1))

𝑡∑︁
𝑖=1

𝛼 ′2,𝑖 (1 − 𝛽
′
2,𝑖 ) ·𝑤 (𝑆2,𝑖 )

=𝛿2 (1 + 𝑜 (1)) + 𝛿 (1 + 𝑜 (1))

𝑡∑︁
𝑖=1

(𝛼 ′2,𝑖 (1 − 𝛽
′
2,𝑖 ) − (1 − 𝛼

′
2,𝑖 )) ·𝑤 (𝑆2,𝑖 )

≤𝛿2 (1 + 𝑜 (1)) + 𝛿 (1 + 𝑜 (1))

𝑡∑︁
𝑖=1

(1 − 𝛼 ′2,𝑖 ) (1 − 𝛽
′
2,𝑖 ) ·𝑤 (𝑆2,𝑖 )

≤𝛿2 (1 + 𝑜 (1)) + 𝛿 (1 + 𝑜 (1)) · 𝛿2 = 𝛿2 (1 + 𝑜 (1)).

Here the second inequality follows from Constraint (I), and 𝛼 ′1 <
1
2
by the condition of (1’). The

third inequality uses the implication of 𝜑2 (𝑑) = 𝜑1 (𝑏) that 𝛽
′
2,𝑖 >

1−3(1−𝛼 ′2,𝑖 )

1−2(1−𝛼 ′2,𝑖 )
. The fourth inequality

uses Constraint (II). This establishes a lower bound of 2, since Opt = 2𝛿2 (1 + 𝑜 (1)).

3.3 Achieving the Pareto-Frontier in the I.I.D. Case

We now ask if there are cases where we can circumvent Theorem 1.1 and maximize welfare while
ensuring at least as much surplus as Myerson’s auction (that is, achieve a point on the line 𝐵𝑂 in
Fig. 1b). Note that Theorem 1.1 rules this out for non-i.i.d. distributions. Surprisingly, however, for
i.i.d. regular distributions D𝑖 , the following simple signaling scheme turns out to be sufficient for
achieving point 𝐵 in Fig. 1b. Morally this shows why our lower bound constructions are delicate.
Suppose the common reserve price of D𝑖 is 𝑟 , and the maximum value of any buyer is 𝑣𝑚 .

(1) If 𝑣𝑚 < 𝑟 , then the intermediary reveals 𝑣𝑚 and the identity of the highest buyer to the seller,
who then sells to this bidder at price 𝑣𝑚 .

(2) If 𝑣𝑚 ≥ 𝑟 , the intermediary only reveals the information that some buyer has value ≥ 𝑟

(but does not reveal either 𝑣𝑚 or the identity of the highest bidder). In this case, though the
posterior is not a product distribution anymore, it can be shown that the seller’s optimal
auction remains the second price auction with reserve 𝑟 .3

It is easy to check that the item always sells to the highest buyer, and the CS is exactly the same as
in Myerson’s auction without signaling, thereby achieving point 𝐵. Note however that this scheme
does not give any guarantees on approximating CS itself, since the surplus of Myerson’s auction is
not an approximation to Opt. The question of approximating Opt is much more challenging even
for the i.i.d. regular setting, and this is what we focus on in the next section.

4 APPROXIMATING CONSUMER SURPLUS: THE I.I.D. CASE

In this section, we present our main result (Theorem 1.3): An 𝑂 (1)-approximation to Opt when
the buyers’ valuation distributions D𝑖 are identical and regular.

Recall we start with a product distribution D = D1 × D2 × · · · × D𝑛 . Let 𝑥1 < 𝑥2 < · · · < 𝑥K be
the supports of value distributions. R(D) denotes the revenue of the optimal auction (Algorithm 1)
on D, and Opt = E®𝑣∼D [max𝑖 𝑣𝑖 ] − R(D).

3Note this is the only case when the seller gets non-zero revenue in the optimal auction for the original product distribution.

Suppose for the purpose of contradiction that the seller can do better for this posterior, she can also do better than the

optimal auction for the original distribution.
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When D𝑖 ’s are identical and regular, since the highest virtual-value and highest value buyers
coincide, the optimal auction (Algorithm 1) assigns the item to the buyer with highest value if this
value is above the common reserve price. Therefore, we decompose Opt into two components:

• Myerson’s surplus: The CS generated by Myerson’s auction, denoted by CS(D).
• Non-allocation surplus: The loss in CS due to Myerson’s auction not allocating the item,
denoted by CS0.

We therefore have Opt = CS(D) +CS0. In the remainder, we will present an𝑂 (1)-approximation
for the non-allocation surplus CS0, which will imply Theorem 1.3 when CS0 ≥ CS(D). (When
CS(D) > CS0, sending no signal is already a 2-approximation.)

4.1 Preliminaries and Intuition

Our approximation bound for the non-allocation surplus will also apply when D𝑖 are independent
but not necessarily identical, which will be required for showing Theorem 1.4. Therefore, in the
sequel, we will proceed assuming the more general case that D𝑖 ’s are not necessarily identical, and
derive signaling schemes that approximate the non-allocation surplus CS0 for this case.
We denote a realization from D by ®𝑣 = {𝑣𝑖 }. Let 𝑝𝑖 = Pr𝑣𝑖∼D𝑖

[𝑣𝑖 < 𝑟D𝑖
] for any buyer 𝑖 , where

𝑟D𝑖
is the reserve price of D𝑖 . Let 𝑌𝑖 = D𝑖 |<𝑟D𝑖

denote the distribution of D𝑖 conditioned on being
smaller than 𝑟D𝑖

. Suppose we draw a sample independently from each distribution 𝑌𝑖 . Let 𝑍ℓ denote

the distribution for the ℓ th largest value among these 𝑛 draws.
We first derive an expression for CS0.

Lemma 4.1. Let 𝑃 =
∏𝑛

𝑖=1 𝑝𝑖 . Then, CS0 = 𝑃 · E[𝑍1].

Proof. Note that CS0 is the expected surplus lost due to not allocating the item in Myerson’s
mechanism. This happens only when all realized values are below their corresponding reserve
price. In this case, the value lost is the maximum valuation, since this value contributes to the
welfare, and the revenue raised is zero. Therefore, we have:

CS0 =

(
𝑛∏
𝑖=1

𝑝𝑖

)
· E

[
max

𝑖=1,2,...,𝑛
𝑣𝑖

���� ∀𝑖, 𝑣𝑖 < 𝑟D𝑖

]

where the expectation is over ®𝑣 ∼ D. This is equal to 𝑃 · E[𝑍1]. □

Vanilla Signaling Schemes. Before presenting our general signaling scheme, it is instructive to
first consider simpler schemes to understand the challenges posed by this problem. One possible
scheme is to pick a random buyer and apply the single-buyer BBM signaling scheme defined in
Section 2 to it. Denote this buyer by 𝑖 . Such a single-buyer signaling scheme will construct the
set of BBM signals for buyer 𝑖 by decomposing D𝑖 and pretending the other buyers don’t exist.
Given the valuation 𝑣𝑖 ∼ D𝑖 of this buyer, the scheme will send a signal BBM(𝑣𝑖 ,D𝑖 ) just as in
single-buyer case, and reveal the identity of this buyer. There is no signal sent for the other buyers,
so that the seller’s information for 𝑗 ≠ 𝑖 is their prior D𝑗 .

The nice property of the BBM signaling scheme is that the virtual value of buyer 𝑖 is always non-
negative (Lemma 2.3). Therefore, in the event when all buyers 𝑗 ≠ 𝑖 have values 𝑣 𝑗 < 𝑟D𝑗

(so that
their virtual values are negative), the seller allocates the item to 𝑖 . Since 𝑣𝑖 is independent of other
buyers’ values, the mechanism therefore behaves exactly as BBM(𝑣𝑖 ,D𝑖 ) from the perspective of
buyer 𝑖 . In other words, with probability

∏
𝑗≠𝑖 𝑝 𝑗 , we generate the single-buyer CS from Lemma 2.3,

which is at least:

CS(BBM) from buyer 𝑖 ≥ Pr[𝑣𝑖 < 𝑟D𝑖
] E[𝑣𝑖 | 𝑣𝑖 < 𝑟D𝑖

] = 𝑝𝑖 E[𝑌𝑖 ] .
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Since buyer 𝑖 is a randomly chosen buyer, the overall CS generated is:

Overall CS ≥
1

𝑛

𝑛∑︁
𝑖=1

(∏
𝑗≠𝑖

𝑝 𝑗

)
𝑝𝑖 E[𝑌𝑖 ] =

(
𝑛∏
𝑗=1

𝑝 𝑗

) ∑𝑛
𝑖=1 E[𝑌𝑖 ]

𝑛
= 𝑃

∑𝑛
ℓ=1 E[𝑍ℓ ]

𝑛
≥ 𝑃

E[𝑍1]

𝑛

where 𝑃 =
∏𝑛

𝑗=1 𝑝 𝑗 . Therefore, comparing the expression above with that in Lemma 4.1, this
scheme yields an 𝑛-approximation to CS0. Further, we can construct identical regular distributions
for which the expected value of the max is comparable to the expected value of the sum, that is,∑𝑛

ℓ=1 E[𝑍ℓ ] = 𝑂 (E[𝑍1]). Therefore, this analysis cannot be improved.
On the other hand, the above scheme does achieve CS = Opt for two-valued i.i.d. distributions

(K = 2 and arbitrary 𝑛). To see this, assume the support is 𝑎 < 𝑏, and let 𝑞 = Pr[D𝑖 = 𝑎]. If the
reserve price is 𝑎, Myerson’s auction is already efficient, that is, CS(D) = Opt; else Myerson’s
auction has CS(D) = 0. We now have 𝑍𝑖 = 𝑎 for all 𝑖 and 𝑝𝑖 = 𝑞, so that the above scheme has
surplus 𝑞𝑛𝑎 = 𝑞𝑛 E[𝑍1] = CS0 = Opt. Therefore, in either case, we extract CS = Opt. Interestingly,
this also shows that our lower bounds in Theorems 1.1 and 1.2 do require non-i.i.d. distributions
when each K𝑖 = 2 regardless of the number 𝑛 of buyers.

Moving beyond the K = 2 setting to general K and 𝑛, it is tempting to run the BBM signaling
scheme directly on the buyer with highest value, hoping to extract surplus 𝑃 E[𝑍1]. However, this
requires revealing the identity of the highest buyer to the seller, since the signaling scheme itself is
public knowledge. But if the seller knows the identity of the highest buyer, she can always increase
the reserve price to be the second highest bid. In other words, the posterior of the highest buyer
is truncated at 𝑍2. This case needs a more careful construction of the signal and analysis, since
the event of a buyer being the largest and hence BBM being applied to it is now correlated with
the surplus this buyer generates in BBM. We perform this construction and analysis in Lemma 4.3.
Intuitively, signaling using BBM on the largest buyer will only yield CS ≥ 𝑃 E[𝑍1 − 𝑍2], which is
again an Ω(𝑛)-approximation to 𝑃 E[𝑍1].

Our signaling scheme in the next section chooses a middle ground between these extremes ś we
will choose a rank 𝑡 ∈ {1, 2, . . . , 𝑛} carefully, and choose a buyer whose value lies in the top 𝑡 ranks
at random. We will then perform the single-buyer BBM scheme on this buyer as we describe below.
Surprisingly, this improves the naïve 𝑛-approximation to an 𝑂 (1)-approximation!

4.2 Ranking-Based Multi-Buyer Signaling Scheme

We now introduce the family of signaling schemes Rank𝑡 . We will derive a lower bound for the CS
obtained by these schemes in our key lemma, Lemma 4.3. As mentioned before, since this scheme
will also form the basic subroutine for the non-i.i.d. case (Theorem 1.4), we present this scheme
assuming D𝑖 can be non-identical.
Recall the definitions of 𝑝𝑖 , 𝑟D𝑖

, 𝑌𝑖 , 𝑍ℓ from above. In order to define the signaling scheme, we
need an additional definition. For agent 𝑖 with 𝑉𝑖 ∼ D𝑖 , we use D𝑖 |>𝑎 to denote the conditional
distribution of 𝑉𝑖 given 𝑉𝑖 > 𝑎, and D𝑖 |<𝑎 to denote the conditional distribution of 𝑉𝑖 given 𝑉𝑖 < 𝑎.
Moreover, we use D𝑖 |>𝑎 − 𝑏 to denote the distribution of 𝑉𝑖 − 𝑏 given 𝑉𝑖 > 𝑎; we refer to it as the
distribution of 𝑉𝑖 truncated at 𝑎 and reduced by 𝑏.
The following result relates the reserve price of the truncated and the original distributions.

Lemma 4.2 (Proved in full paper [1]). Let D′𝑖 = D𝑖 |>𝑣◦ − 𝑣
◦ for any 𝑣◦. Then we have 𝑟D′𝑖 ≥

𝑟D𝑖
− 𝑣◦, and moreover, for any 𝑣 > 𝑣◦, we have 𝜑D′𝑖 (𝑣 − 𝑣

◦) = 𝜑D𝑖
(𝑣) − 𝑣◦.

Note that D′𝑖 = D𝑖 |>𝑣◦ − 𝑣
◦ represents buyer 𝑖’s excess value compared to 𝑣◦. Lemma 4.2 shows

that for any threshold 𝑣◦ and any buyer 𝑖 , given the side-information that 𝑉𝑖 > 𝑣◦, her new reserve
price is greater than her original reserve price.

Session 7A: Information Design ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

862



The Rank𝑡 signaling scheme. We now present the family of signaling schemes Rank𝑡 parameter-
ized by the rank 𝑡 ∈ {1, . . . , 𝑛}. For any realized joint valuation profile ®𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛), the signal
sent by Rank𝑡 consists of two parts. In the first part, Rank𝑡 observes ®𝑣 and outputs (𝑣◦,𝑇 ), where
𝑣◦ is the value of (𝑡 + 1)st largest realized value (or 0 when 𝑡 = 𝑛), and𝑇 is the subset of buyers with
realized value strictly greater than 𝑣◦. For the second part of the signal, Rank𝑡 chooses a buyer 𝑗
uniformly at random from𝑇 , and computes her excess distributionD𝑗 |>𝑣◦ − 𝑣

◦. It then reveals both
the identity of 𝑗 , as well as the signal BBM(𝑣 𝑗 − 𝑣

◦,D𝑗 |>𝑣◦ − 𝑣
◦) generated by the single-buyer BBM

scheme on a buyer with value distribution D𝑗 |>𝑣◦ − 𝑣
◦. The scheme is formalized in Algorithm 2.

Optimal mechanism under Rank𝑡 . Conditioned on receiving the signal generated by Rank𝑡 , the
seller is guaranteed a revenue of 𝑣◦ from the (𝑡 + 1)st largest buyer, and knows that only buyers in
𝑇 can pay more than 𝑣◦. The seller can now charge at least 𝑣◦ to any buyer in 𝑇 , and can further
run an auction over the excess value of buyers in 𝑇 , where for buyer 𝑖 ∈ 𝑇 , her excess value has
distribution D′𝑖 = D𝑖 |>𝑣◦ − 𝑣

◦. Note that for any buyer 𝑖 ∈ 𝑇 except the randomly chosen buyer
𝑗 , a value drawn from D′𝑖 represents how much more than 𝑣◦ she is willing to pay. Moreover,
distributions D′𝑖 are independent, and also, since the identity of 𝑗 is chosen uniformly at random,
the BBM scheme modifies the distribution of buyer 𝑗 in a fashion that is independent of D′𝑖 .
By Lemma 2.3, we know that the BBM scheme ensures the virtual value of buyer 𝑗 is always

non-negative. From the characterization of the optimal auction [13, 19], since the item is always
allocated to the highest virtual value buyer as long as this value is non-negative, the item will
always be allocated to buyer 𝑗 if all other buyers 𝑖 ∈ 𝑇, 𝑖 ≠ 𝑗 have excess values 𝑣𝑖 − 𝑣

◦
< 𝑟D′𝑖 (and

hence, negative virtual values).

ALGORITHM 2: Rank𝑡 (®𝑣,D)

𝑣◦ ← (𝑡 + 1)st largest value in ®𝑣

𝑇 ← {𝑖 : 𝑣𝑖 > 𝑣◦}

if 𝑇 ≠ 𝜙 then

𝑗 ← Buyer chosen uniformly at random from 𝑇

𝑠 ← BBM(𝑣 𝑗 − 𝑣
◦,D𝑗 |>𝑣◦ − 𝑣

◦)

return 𝑣◦, 𝑇 , 𝑗 , and 𝑠

end

else

return 𝑣◦, and 𝑇 = 𝜙

end

Consumer surplus under Rank𝑡 . We require the following key lemma, that gives a lower bound
for the consumer surplus generated under Rank𝑡 . This lemma forms the crux of our subsequent
analysis, helping us quantify how the BBM signal recovers much of CS lost by Myerson’s auction.
The difficulty in proving it arises because the random choice of buyer 𝑗 in Algorithm 2 is correlated
with its rank, which in turn is correlated with its winning the auction and the surplus it generates
in BBM. We get around this correlation by carefully coupling the surplus generated when buyer
values are above the reserve with the order statistics of buyer valuations below the reserve.

Lemma 4.3. For 1 ≤ 𝑡 ≤ 𝑛, the consumer surplus of Rank𝑡 satisfies:

CS(Rank𝑡 ) ≥

(
𝑛∏
𝑖=1

𝑝𝑖

)
·

((
1

𝑡
·

𝑡∑︁
ℓ=1

E[𝑍ℓ ]

)
− E[𝑍𝑡+1]

)
.
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Proof. For convenience, denote 𝑟𝑖 = 𝑟D𝑖
. Fix a buyer𝑏, and any valuation profile ®𝑣−𝑏 = {𝑣𝑖 , 𝑖 ≠ 𝑏}

such that 𝑣𝑖 < 𝑟𝑖 ∀ 𝑖 ≠ 𝑏. Define 𝑣𝑡
𝑏
as the 𝑡 th largest value in {𝑣𝑖 , 𝑖 ≠ 𝑏}. Now consider the event

𝑄 (®𝑣−𝑏, 𝑏, 𝑡) = {𝑉𝑏 > 𝑣𝑡𝑏 AND 𝑏 selected for BBM signaling}.

Conditioned on 𝑄 (®𝑣−𝑏, 𝑏, 𝑡), we have that the Rank𝑡 scheme (Algorithm 2) with parameter 𝑡 sets
threshold value as 𝑣◦ = 𝑣𝑡

𝑏
. By Lemma 4.2, we have that for every 𝑖 ∈ 𝑇, 𝑖 ≠ 𝑏, their value 𝑣𝑖 is

smaller than their new reserve price 𝑣◦ + 𝑟D′𝑖 , since 𝑣𝑖 < 𝑟D𝑖
, and modifyingD𝑖 toD

′
𝑖 = D𝑖 |>𝑣◦ − 𝑣

◦

does not decrease the reserve price. Therefore, conditioned on𝑄 (®𝑣−𝑏, 𝑏, 𝑡), the auction behaves like
the single item mechanism BBM(𝑣 ′

𝑏
,D′

𝑏
), where 𝑣 ′

𝑏
= 𝑣𝑏 − 𝑣

𝑡
𝑏
, D′

𝑏
= D𝑏 |>𝑣𝑡

𝑏
− 𝑣𝑡

𝑏
. Let 𝑟 ′

𝑏
denote the

reserve price of D′
𝑏
; again using Lemma 4.2 we have 𝑟 ′

𝑏
≥ 𝑟𝑏 − 𝑣

𝑡
𝑏
. Now, using Lemma 2.3, we get

that the expected consumer surplus generated by Rank𝑡 under 𝑄 (®𝑣−𝑏, 𝑏, 𝑡) is at least:

E[CS(Rank𝑡 ) | 𝑄 (®𝑣−𝑏, 𝑏, 𝑡)] ≥
∑︁
𝑣′
𝑏
<𝑟 ′

𝑏

𝑣 ′𝑏 Pr[D
′
𝑏 = 𝑣 ′𝑏] ≥

∑︁
𝑣𝑡
𝑏
<𝑣𝑏<𝑟𝑏

(𝑣𝑏 − 𝑣
𝑡
𝑏)

𝑓D𝑏
(𝑣𝑏)

𝑆D𝑏
(𝑣𝑡

𝑏
)
.

Note also that Pr[𝑄 (®𝑣−𝑏, 𝑏, 𝑡)] =
1
𝑡
·
(∏

𝑖≠𝑏 𝑓D𝑖
(𝑣𝑖 )1{𝑣𝑖<𝑟D𝑖 }

)
·𝑆D𝑏

(𝑣𝑡
𝑏
). Thus for any buyer 𝑏, and

any valuation profile ®𝑣−𝑏 with 𝑣𝑖 < 𝑟𝑖 for all 𝑖 ≠ 𝑏, we have

E[CS(Rank𝑡 ) · 1𝑄 (®𝑣−𝑏 ,𝑏,𝑡 ) ] = Pr[𝑄 (®𝑣−𝑏, 𝑏, 𝑡)] · E[CS(Rank𝑡 ) | 𝑄 (®𝑣−𝑏, 𝑏, 𝑡)]

≥
1

𝑡

(∏
𝑖≠𝑏

𝑓D𝑖
(𝑣𝑖 )

) ∑︁
𝑣𝑡
𝑏
<𝑣𝑏<𝑟𝑏

(𝑣𝑏 − 𝑣
𝑡
𝑏) 𝑓D𝑏

(𝑣𝑏)

=
1

𝑡

∑︁
𝑣𝑏<𝑟𝑏

(∏
𝑖

𝑓D𝑖
(𝑣𝑖 )

)
max{(𝑣𝑏 − 𝑣

𝑡
𝑏), 0}.

For any ®𝑣 let 𝑣 (𝑡 ) denote the 𝑡 th largest value, and 𝐼𝑡 (®𝑣) to be the indices corresponding to the top 𝑡
values in ®𝑣 . Summing up over all 𝑏, and all ®𝑣−𝑏 such that 𝑣𝑖 < 𝑟𝑖 ∀ 𝑖 ≠ 𝑏, we have

∑︁
𝑏

∑︁
®𝑣−𝑏

E[CS(Rank𝑡 ) · 1𝑄 (®𝑣−𝑏 ,𝑏,𝑡 ) ] ≥
∑︁
®𝑣 |𝑣𝑖<𝑟𝑖

1

𝑡
·

(∏
𝑖

𝑓D𝑖
(𝑣𝑖 )

)
·

(∑︁
𝑏

max{(𝑣𝑏 − 𝑣
𝑡
𝑏), 0}

)

=

∑︁
®𝑣 |𝑣𝑖<𝑟𝑖

(∏
𝑖

𝑓D𝑖
(𝑣𝑖 )

) ©­«
∑︁

𝑖∈𝐼𝑡 (®𝑣)

1

𝑡

(
𝑣𝑖 − 𝑣

(𝑡+1)
)ª®¬

=

∑︁
®𝑣 |𝑣𝑖<𝑟𝑖

(∏
𝑖

𝑓D𝑖
(𝑣𝑖 )

) ©­«
©­«

∑︁
𝑖∈𝐼𝑡 (®𝑣)

𝑣𝑖

𝑡

ª®¬
− 𝑣 (𝑡+1)

ª®¬
. (3)

LetD′′𝑖 = D𝑖 |<𝑟D𝑖
be the distribution of buyer 𝑖’s value conditioned on𝑉𝑖 < 𝑟D𝑖

. Recall we define

𝑝𝑖 = Pr𝑣𝑖∼D𝑖
[𝑣𝑖 < 𝑟D𝑖

]; thus 𝑓D′′𝑖 (𝑣) = 𝑓D𝑖
(𝑣)/𝑝𝑖 . Suppose we independently sample 𝑌𝑖 ∼ D𝑖 |<𝑟D𝑖

for each 𝑖 , and define 𝑍ℓ as the ℓ
th largest value in {𝑌𝑖 }. Then Eq. (3) can be written as

∑︁
𝑏

∑︁
®𝑣−𝑏 |𝑣𝑖<𝑟𝑖 ∀ 𝑖≠𝑏

E[CS(Rank𝑡 ) · 1𝑄 (®𝑣−𝑏 ,𝑏,𝑡 ) ] ≥
∑︁
®𝑣 |𝑣𝑖<𝑟𝑖

(∏
𝑖

𝑝𝑖

)
𝑓D′′ (®𝑣)

©­«
©­«

∑︁
𝑖∈𝐼𝑡 (®𝑣)

𝑣𝑖

𝑡

ª®¬
− 𝑣 (𝑡+1)

ª®¬
=

(∏
𝑖

𝑝𝑖

) ((
𝑡∑︁
ℓ=1

E[𝑍ℓ ]

𝑡

)
− E[𝑍𝑡+1]

)
.
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Finally, noting that the 𝑄 (®𝑣−𝑏, 𝑏, 𝑡) events are all non-overlapping, we can write

CS(Rank𝑡 ) ≥
∑︁
𝑏

∑︁
®𝑣−𝑏 |𝑣𝑖<𝑟𝑖 ∀ 𝑖≠𝑏

E[CS(Rank𝑡 ) · 1𝑄 (®𝑣−𝑏 ,𝑏,𝑡 ) ],

thereby completing the proof. □

4.3 Approximating Non-allocation Surplus CS0 and Proof of Theorem 1.3

Given the above signaling scheme, approximating CS0 (and hence showing Theorem 1.3) is now
simple: We choose the parameter 𝑡 ∈ {1, 2, . . . , 𝑛} that maximizes CS(Rank𝑡 ) and run Rank𝑡 . We
denote this scheme as {S0 (®𝑣,D)}®𝑣 , and present it in Algorithm 3.

ALGORITHM 3: S0 (®𝑣,D)

Choose 𝑡 = argmax𝑛𝑡 ′=1CS(Rank𝑡 ′ ). return Rank𝑡 (®𝑣,D)

The following theorem shows that this scheme approximates CS0 when the D𝑖 are a common
regular distribution Θ. Since Opt = CS(D) + CS0 when D𝑖 are regular and identical, Theorem 4.4
shows the better of no signaling and Algorithm 3 is an𝑂 (1)-approximation to Opt, completing the
proof of Theorem 1.3.

Theorem 4.4. The consumer surplus of the signaling scheme S0 (®𝑣,D) is an 𝑂 (1)-approximation

to the non-allocation surplus, CS0.

Let Alg denote the CS of S0 (®𝑣,D). The above theorem will follow from the following, since Alg
is at least the LHS by Lemma 4.3 and CS0 is equal to 𝑃 · E[𝑍1] by Lemma 4.1.

Theorem 4.5. When each D𝑖 is i.i.d. and regular with common distribution Θ, then we have:

𝑃 ·max
𝑡

((
1

𝑡

𝑡∑︁
𝑖=1

E[𝑍𝑖 ]

)
− E[𝑍𝑡+1]

)
≥

1

1900
· 𝑃 · E[𝑍1] .

The rest of this section is devoted to proving Theorem 4.5. Note that the above theorem is
not true if the distribution 𝑌 (the conditional distribution of Θ below its reserve) on which the
order statistics 𝑍𝑖 are defined, is a generic regular distribution such as an Exponential distribution.
Consider the following example:

Example 4.6. Suppose 𝑌 is Exponential(1). Then E[𝑍𝑖 ] =
∑𝑛

𝑗=𝑖
1
𝑗
= 𝐻𝑛 − 𝐻𝑖−1, where 𝐻𝑖 =∑𝑖

𝑗=1
1
𝑗
. Therefore CS0 = E[𝑍𝑖 ] = 𝐻𝑛 . It is easy to check that

(
1
𝑡

∑𝑡
𝑖=1 E[𝑍𝑖 ]

)
− E[𝑍𝑡+1] = 1 + 𝐻𝑛 −

𝐻𝑡 − (𝐻𝑛 − 𝐻𝑡 ) = 1. Therefore, CS0 = Ω(log𝑛) · Alg.

Note however that 𝑌 is of a more specific form: It is the conditional distribution of a regular
distribution Θ below its reserve 𝑟 . This means in particular that 𝑌 cannot be an Exponential
distribution (or its discrete counterpart, the Geometric distribution). We will crucially use the
property that the revenue of Θ when the price is set below the reserve 𝑟 is a concave function of the
quantile of the price, and further, this function is non-decreasing. Formally, we use the following.

Lemma 4.7 (Proved in the full paper [1]). For any regular distributionΘ with 𝑆 (𝑣) = Pr[Θ ≥ 𝑣]

and reserve 𝑟 , and for any 𝑢 ≤ 𝑣 < 𝑟 in the support of Θ, we have: (1) 𝑢 · 𝑆 (𝑢) ≥
1−𝑆 (𝑢 )
1−𝑆 (𝑣) · 𝑣 · 𝑆 (𝑣), and

(2) 𝑢 · 𝑆 (𝑢) ≤ 𝑣 · 𝑆 (𝑣).

The next idea in the analysis is to decompose the distribution 𝑌 into the łcorež and łtailž, so that
values 𝑣 with Pr[𝑌 ≥ 𝑣] = 𝑂 (1/𝑛) lie in the tail, and the rest lie in the core. Roughly speaking, we
will show that the expected value of 𝑌 in either the core or the tail is upper bounded by CS(Rank𝑡 )
for suitable choices of 𝑡 . Such choices are non-trivial and form the crux of our analysis.
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4.3.1 Core-Tail Decomposition. To fix notation, recall that everyD𝑖 is the same regular distribution
Θ. The values 𝑥1 < 𝑥2 < · · · < 𝑥K form the support of Θ and its reserve price is 𝑟 . Recall
𝑆 (𝑥) = Pr[Θ ≥ 𝑥] and 𝑌 is the conditional distribution of Θ strictly below 𝑟 .

First, if 𝑛 ≤ 1000, Alg ≥ 1
1000

E[𝑍1] =
1

1000
CS0. Therefore, we assume 𝑛 > 1000 in the following

analysis. We further assume 𝑟 > 𝑥1 since otherwise CS0 = 0 and Myerson’s auction itself raises
optimal CS. Suppose 𝑟 = 𝑥𝑖 with 𝑖 > 1, then {𝑥1, . . . , 𝑥𝑖−1} is the support of 𝑌 .
Let 𝑢+ be the smallest value in the support of 𝑌 with Pr[𝑌 ≥ 𝑢+] ≤ 4

𝑛
and let 𝑢− be the largest

value in the support of 𝑌 with Pr[𝑌 ≥ 𝑢−] > 4
𝑛
. Both of these values exist since Pr[𝑌 ≥ 𝑥1] = 1 (we

assumed 𝑟 > 𝑥1) and Pr[𝑌 ≥ 𝑟 ] = 0. Further, 𝑢− and 𝑢+ are consecutive values in the support of 𝑌 .
We divide CS0 into Core and Tail, based on whether there is a realized value at least 𝑢+.

Definition 4.8. Core := 𝑃 · 𝑢− , and Tail := 𝑃 · 𝑛 · E[𝑌 · 1(𝑌 ≥ 𝑢+)].

Lemma 4.9. CS0 ≤ Core + Tail.

Proof. This comes immediately from

CS0 = 𝑃 · (E[𝑍1 · 1(𝑍1 ≤ 𝑢−)] + E[𝑍1 · 1(𝑍1 ≥ 𝑢+)])

≤ 𝑃 · (𝑢− · Pr[𝑍1 ≤ 𝑢−] + 𝑛 · E[𝑌 · 1(𝑌 ≥ 𝑢+)])

≤ Core + Tail.

where the first inequality upper bounds the max of 𝑛 i.i.d. samples from 1(𝑌 ≥ 𝑢+) by their sum. □

4.3.2 Upper Bound on Core and Tail. We will separately bound Core and Tail −𝑂 (1) · Core in
terms of Alg. We first bound Tail using the following lemma.

Lemma 4.10. Alg ≥ 1
250
· (Tail − 4 · Core).

Proof. If Pr[𝑌 ≥ 𝑢+] = 0, then the inequality trivially holds since Tail = 0. Otherwise,

Alg ≥ CS(Rank1) = 𝑃 · E[𝑍1 − 𝑍2]

≥ 𝑃 · Pr[𝑍1 ≥ 𝑢+ ∧ 𝑍2 ≤ 𝑢−] · E[𝑍1 − 𝑍2 | 𝑍1 ≥ 𝑢+ ∧ 𝑍2 ≤ 𝑢−]

≥ 𝑃 · Pr[𝑍1 ≥ 𝑢+ ∧ 𝑍2 ≤ 𝑢−] · (E[𝑍1 | 𝑍1 ≥ 𝑢+ ∧ 𝑍2 ≤ 𝑢−] − 𝑢−).

Now, to bound the term Pr[𝑍1 ≥ 𝑢+ ∧ 𝑍2 ≤ 𝑢−], we have the following. Note here 𝑢− and 𝑢+ are
consecutive values in the support of 𝑌 .

Pr[𝑍1 ≥ 𝑢+ ∧ 𝑍2 ≤ 𝑢−] = Pr[𝑍1 ≥ 𝑢+] ·
Pr[𝑍1 ≥ 𝑢+ ∧ 𝑍2 ≤ 𝑢−]

Pr[𝑍1 ≥ 𝑢+]

= Pr[𝑍1 ≥ 𝑢+] ·
𝑛 · (1 − Pr[𝑌 ≤ 𝑢−]) · Pr[𝑌 ≤ 𝑢−]𝑛−1

1 − Pr[𝑌 ≤ 𝑢−]𝑛

= Pr[𝑍1 ≥ 𝑢+] ·
𝑛∑𝑛−1

𝑖=0 Pr[𝑌 ≤ 𝑢−]𝑖
· Pr[𝑌 ≤ 𝑢−]𝑛−1

≥ Pr[𝑍1 ≥ 𝑢+] · Pr[𝑌 ≤ 𝑢−]𝑛−1

≥ Pr[𝑌 ≤ 𝑢−]𝑛 = Pr[𝑍1 ≥ 𝑢+] · Pr[𝑍1 ≤ 𝑢−] .

We now bound Pr[𝑍1 ≥ 𝑢+] and Pr[𝑍1 ≤ 𝑢−] separately. To bound Pr[𝑍1 ≥ 𝑢+], note that

Pr[𝑍1 ≥ 𝑢+] = 1 − (1 − Pr[𝑌 ≥ 𝑢+])𝑛 ≥ 1 − exp(−𝑛 · Pr[𝑌 ≥ 𝑢+]) ≥
1 − 𝑒−4

4
· 𝑛 · Pr[𝑌 ≥ 𝑢+]

where the final inequality follows since the function𝜓 (𝑥) = 1−𝑒−4𝑥

(1−𝑒−4 )𝑥
≥ 1 when 𝑥 =

1
4
· 𝑛 · Pr[𝑌 ≥

𝑢+] ≤ 1. To bound Pr[𝑍1 ≤ 𝑢−], note that:

Pr[𝑍1 ≤ 𝑢−] = (1 − Pr[𝑌 ≥ 𝑢+])𝑛 ≥ (1 − 4/𝑛)𝑛 ≥ 0.018
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where we have used 𝑛 ≥ 1000 in the last inequality. Therefore, we have

Pr[𝑍1 ≥ 𝑢+ ∧ 𝑍2 ≤ 𝑢−] ≥ Pr[𝑍1 ≥ 𝑢+] · Pr[𝑍1 ≤ 𝑢−] ≥ 0.004 · 𝑛 · Pr[𝑌 ≥ 𝑢+] .

To bound Alg, we also need to simplify the term E[𝑍1 | 𝑍1 ≥ 𝑢+ ∧ 𝑍2 ≤ 𝑢−]. For this, let
𝑌1, . . . , 𝑌𝑛 be independent draws from 𝑌 . We have:

E[𝑍1 | 𝑍1 ≥ 𝑢+ ∧ 𝑍2 ≤ 𝑢−] =

𝑛∑︁
𝑖=1

1

𝑛
· E[𝑌𝑖 | 𝑌𝑖 ≥ 𝑢+ ∧ 𝑌𝑗 ≤ 𝑢−, ∀𝑗 ≠ 𝑖]

= E[𝑌1 | 𝑌1 ≥ 𝑢+ ∧ 𝑌𝑗 ≤ 𝑢−, ∀𝑗 ≠ 1]

= E[𝑌1 | 𝑌1 ≥ 𝑢+] = E[𝑌 | 𝑌 ≥ 𝑢+] .

Here, the first equality follows since any 𝑌𝑖 is equally likely to be the maximum value, and the third
equality follows by the independence of 𝑌𝑖 ’s. Putting all this together, we bound Alg as:

Alg ≥ 𝑃 · Pr[𝑍1 ≥ 𝑢+ ∧ 𝑍2 ≤ 𝑢−] · (E[𝑍1 | 𝑍1 ≥ 𝑢+ ∧ 𝑍2 ≤ 𝑢−] − 𝑢−)

≥ 0.004𝑃 · 𝑛 · Pr[𝑌 ≥ 𝑢+] · (E[𝑌 | 𝑌 ≥ 𝑢+] − 𝑢−)

= 0.004𝑃 · (𝑛 · E[𝑌 · 1(𝑌 ≥ 𝑢+)] − 𝑛 · Pr[𝑌 ≥ 𝑢+] · 𝑢−)

≥ 0.004 · (Tail − 4 · Core).

where the last inequality uses 𝑛 · Pr[𝑌 ≥ 𝑢+] ≤ 4. □

We next bound Core and the proof is relegated to the full paper [1]. This proof will crucially use
the regularity of Θ (via Lemma 4.7).

Lemma 4.11 (Proved in full paper [1]). Alg ≥ 1
330
· Core.

4.3.3 Completing Proof of Theorem 4.5. Using Lemma 4.9, Lemma 4.11, and Lemma 4.10 we obtain:

CS0 ≤ Core + Tail = 5 · Core + (Tail − 4 · Core) ≤ 1650 · Alg + 250 · Alg = 1900 · Alg.

This completes the proof of Theorem 4.5 and hence, Theorem 4.4 and Theorem 1.3.

5 CONCLUSION AND OPEN QUESTIONS

Note that our Rank𝑡 mechanism can be viewed as a screening procedure ś the intermediary only
allows a fixed number of high-value bidders to bid. When the intermediary is an independent
(typically, governmental) agency, such screening would map to łpre-certifyingž bidders entering
into private auctions. Similarly, when real-estate agencies have agents representing both sellers
and buyers, they could (and often do) recommend a particular listing only to a chosen set of buyers
based on better knowing their utilities. Therefore, as a side-effect, our procedures yield realistic
mechanisms for an intermediary to increase surplus for both buyers and the seller.

In terms of open questions, beyond improving the lower and upper bounds in our specific setting
(both existence and computational), it would be interesting to explore the equilibria in optimal
auctions when the intermediary can send different signals to the seller and to the buyers, much
like in [3, 21]. At an even higher level, our work can be considered a special case of a larger
problem of information intermediaries for multi-agent mechanisms. As mentioned before, in our
case, the optimal auction is the mechanism, and the intermediary can change the information to
this mechanism in order to achieve łfairnessž between producer and consumer surplus. It would be
interesting to explore the question of achieving fairness by selectively regulating information to a
black-box optimizer or mechanism in more general settings.
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