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Abstract. We consider the participatory budgeting problem where each
of n voters specifies additive utilities over m candidate projects with
given sizes, and the goal is to choose a subset of projects (i.e., a commit-
tee) with total size at most k. Participatory budgeting mathematically
generalizes multiwinner elections, and both have received great attention
in computational social choice recently. A well-studied notion of group
fairness in this setting is core stability : Each voter is assigned an “entitle-
ment” of k

n
, so that a subset S of voters can pay for a committee of size

at most |S| · k
n
. A given committee is in the core if no subset of voters

can pay for another committee that provides each of them strictly larger
utility. This provides proportional representation to all voters in a strong
sense. In this paper, we study the following auditing question: Given a
committee computed by some preference aggregation method, how close
is it to the core? Concretely, how much does the entitlement of each voter
need to be scaled down by, so that the core property subsequently holds?
As our main contribution, we present computational hardness results for
this problem, as well as a logarithmic approximation algorithm via linear
program rounding. We show that our analysis is tight against the linear
programming bound. Additionally, we consider two related notions of
group fairness that have similar audit properties. The first is Lindahl
priceability, which audits the closeness of a committee to a market clear-
ing solution. We show that this is related to the linear programming
relaxation of auditing the core, leading to efficient exact and approxi-
mation algorithms for auditing. The second is a novel weakening of the
core that we term the sub-core, and we present computational results for
auditing this notion as well.
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1 Introduction

The participatory budgeting problem [1,6,12,19,24] is motivated by real-world
elections where voters decide which projects a city should fund subject to a
budget constraint on the total cost of these projects. In this problem, there
are m candidate projects forming a set C, and n voters. Each candidate j is
associated with a size/cost sj .

The multiwinner election problem [2,9,14,18,36] is commonly seen in prac-
tice, and has received significant research attention recently. Mathematically, it
is a specialization of the participatory budgeting problem, where each candidate
is of the same unit size.

In both settings, our goal is to pick a subset T ⊆ C of candidates – which we
call a committee – with total size at most a given value k, that is,

∑
j∈T sj ≤ k.

Each voter i has a utility function Ui(T ) over subsets T ⊆ C of candidates. In
this paper, we assume the utility functions {Ui} are additive across candidates.
For some of our results, we also look at the more restricted case of multiwinner
elections with approval (i.e. 0/1-additive) utilities: Each candidate is of unit size;
each voter i “approves” a subset Ai ⊆ C of candidates, and for any committee T ,
the utility function of voter i is simply Ui(T ) = |T ∩Ai|, the number of approved
candidates in the committee. We call this the Approval Election setting.

Core Stability. In both multiwinner elections and participatory budgeting, the
methods used to aggregate preferences of voters are typically very simple, for
instance, choosing the candidates who receive the most approval votes. This
leads to a tension of such rules with fairness of the resulting outcome in terms
of proportional representation of minority opinions, and a social planner may
want to quantify this tension for any given election.

A notion of fairness in this context, which has been studied for over a cen-
tury, is that of core stability [17,20,29,35,36]. This captures a strong notion of
proportional representation. Given a committee W of size k, think of k as a
budget, and split it equally among the n voters, so that each voter is entitled to
a budget of k

n . For any subset S ⊆ [n] of voters, their total entitlement is |S| · k
n .

If there is another committee T of size at most the entitlement |S| · k
n , such that

each voter i ∈ S strictly prefers T to W , i.e., Ui(T ) > Ui(W ) for all i ∈ S, then
these voters would have a justified complaint with W . A committee W where
no subset S ⊆ [n] of voters have a justified complaint is termed core stable.

The core has a “fair taxation” interpretation [23,29]. The quantity k
n can be

thought of as the tax contribution of a voter, and a committee in the core has
the property that no sub-group of voters could have spent their share of tax
money in a way that all of them were better off. It subsumes notions of fairness
such as Pareto-optimality, proportionality, and various forms of justified repre-
sentation [3,4,22] that have been extensively studied in multiwinner election and
fairness literature. Note that the core is oblivious to how the demographic slices
are defined – it attempts to be fair to all subsets of voters. This is a desirable fea-
ture in practice, since demographic slices are often not known upfront, and there
could be hidden sub-groups that can only be inferred from voter preferences.



294 K. Munagala et al.

Approximate Stability. The core is a very appealing group fairness notion; how-
ever, even in very simple settings, the core could be empty [20]. This motivates
approximation, where the entitlement k

n of each voter is scaled by a factor of θ.

Definition 1. For θ ≤ 1, a committee W of size at most k lies in the θ-
approximate core if for all S ⊆ [n], there is no deviating committee T with
size at most θ · |S| · k

n , such that for all i ∈ S, we have Ui(T ) > Ui(W ).

It is known [25] that a 1
32 -approximate core solution always exists for very

general utility functions of the voters.

Auditing for Approximate Stability. Though the existence of approximate core
solutions is a strong positive result, the algorithms for finding such solutions are
often complex. Indeed, even in settings where the core is known to be always
non-empty, for instance when candidates can be chosen fractionally [23], the non-
emptiness is an existence result that needs an expensive fixed point computation.
On the other hand, in practice, what are implemented are typically the simplest
and most explainable social choice methods such as Single Transferable Vote
(STV). Therefore, from the perspective of a societal decision maker, such as a
civic body running a participatory budgeting election, it becomes important to
answer the following auditing question for any given election:

Given a committee W of size at most k found by some implemented pref-
erence aggregation method, how close is it to being core stable, i.e., what
is the smallest value of θc such that W does not lie in the θc-approximate
core for that instance?

Note that if a committee W lies in the core, then θc > 1, else θc ≤ 1. Such an
auditing question is useful even if the decision maker themselves is not sensitive
for fairness because it allows for review of implemented decision rules via a third
party or government agency. Further, the set of deviating voters that correspond
to the θc-approximation yield a demographic that are unhappy with the current
outcome, and this can be analyzed further by policy makers.

We term the above question as the core auditing problem. In this paper, we
study the computational complexity of core auditing. In that process, we define
both stronger and weaker notions of fairness and audit these notions as well.

1.1 Our Results

Hardness and Approximation Algorithm. We show in Sect. 3 that for Approval
Elections, the value of θc in the core auditing problem is NP-Hard to approx-
imate to a factor better than 1 + 1

e > 1.367. We further show that this APX-
Hardness persists even when voters are allowed to choose a fractional deviating
committee. We also show that the problem remains NP-Hard when each voter
approves a constant number of candidates, and each candidate is approved by
a constant number of voters. These results significantly strengthen the NP-
Hardness result presented in [11].
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On the positive side, in Sect. 4, we design an O(min(logm, log n)) approxima-
tion algorithm for the value θc, where m and n are the number of candidates and
voters respectively. We do this via linear program rounding. Our program (and
indeed, our auditing question itself) is an interesting generalization of the densest
subgraph problem [15], where the goal is to choose a subgraph with maximum
average degree. Given a graph, treat voters as edges and candidates as vertices
that are approved by the incident edges; further assume any voter needs utility
2 (that is, both end-points) in a feasible deviation. Then, the value of θc is pre-
cisely the density of the densest subgraph (to scaling). We combine ideas from
the rounding for densest subgraph (where the rounding produces the integer
optimum without approximation) with that from maximum coverage to design
our rounding scheme. We further show that our linear program has an integral-
ity gap of Ω(min(logm, log n)), showing that we cannot do any better against
an LP lower bound. Our proof in Sect. 4 applies to the Approval Election
setting. We extend this to general candidate sizes and arbitrary additive utili-
ties via knapsack cover inequalities in Sect. 5, leading to an O(min(logm, log n))
approximation factor. In the full paper [31], we show that both our hardness
and approximation results easily extend to settings where candidates can be
fractionally chosen in the committees.

It is an interesting question to close the gap between our hardness result
(constant factor) and our approximation ratio. The difficulty lies with density
problems in general, where hardness of approximation results have been hard to
come by; see for instance, the k-densest subgraph problem [27].

Lindahl Priceability. A closely related notion of fairness, considered in [23,29,
32,33] is that of committees that can be supported by market clearing prices.
The notion of Lindahl equilibrium is a pricing scheme that strengthens the core,
meaning that if the former exists, it lies in the core. In this scheme, each voter
i is assigned price pij for candidate j, and these prices are such that for any
candidate, the total price is equal to its size. If a voter buys their optimal set
of candidates subject to the total price paid being at most their entitlement,
k/n, then all voters choose the same committee. This is therefore a market
clearing notion with per-voter prices such that the optimal voter action given
these prices and equal entitlements results in a common committee being chosen.
If committees could be chosen fractionally, it is known via a fixed point argument
that the Lindahl equilibrium always exists [23]. However, these need not exist
when considering integer committees.

In this paper, we consider an integer version of this concept that we term
Lindahl priceability. We show that this notion implies the core. As with the core,
in Sect. 6, we define the approximation factor θ� to which a given committee
satisfies Lindahl priceability, via scaling the entitlement k/n of each voter by
that factor. We show via LP duality not only that the quantity θ� can be audited
in polynomial time for approval elections, but also that this computation
coincides with the LP relaxation to the core auditing program. This results in
a novel and somewhat surprising connection between the Lindahl priceability
and the core for Approval elections, where the approximation factor θ� for
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Lindahl priceability is found via the LP relaxation to the program that computes
the approximation factor θc for the core. Further, our approach easily extends
to show computational results for general utilities and sizes.

Our notion is related to the cost efficient Lindahl equilibrium proposed
recently in [33] for Approval elections. However, there is a crucial difference:
While they translate the fractional Lindahl equilibrium to the integer case, we
translate the gradient optimality conditions implied by the fractional equilib-
rium to the integer case. To illustrate that our definition is different, note that
while there are simple instances of Approval elections on which the former
notion does not exist, we do not know such an instance for our definition.

Weak Priceability and Sub-core. In Sect. 7, we finally connect our work to another
notion of priceability first studied in [34]. This notion is a relaxation of Lindahl
priceability for Approval elections, where voters cannot greedily augment the
current committee given the prices and their entitlement. We term this “weak
priceability” and use this to define a new relaxation of the core, termed sub-core,
which only allows voters to deviate and gain utility from super-sets. We show
that weakly priceable committees lie in the sub-core. Further, though the sub-
core appears like a weak notion of fairness, we show that it remains NP-Hard to
audit. We finally present an O(min(logm, log n)) approximation to the auditing
question using same techniques as for auditing the core.

In practice, committees found by social choice rules are likely to be much
better approximations to the sub-core compared to the core. Hence, it is desirable
to show a practitioner closeness to weaker notions of fairness such as the sub-core
in addition to closeness to the core.

Omitted Proofs. For lack of space, all omitted proofs are in the full paper [31].

1.2 Related Work

Proportionality in Social Choice. The earliest work that considers propor-
tional representation dates back to the late 1800’s [17], and several voting rules
attempting to achieve it, such as PAV [36] and Phragmén [10] rules also date
back to then. There has been resurgence of interest in axiomatizing proportion-
ality [3,4,8,14,22,30] partly driven by real-world applications of such elections
to areas such as participatory budgeting [1,6,24], and partly due to local bodies
and countries implementing rules such as ranked choice voting that attempt to
achieve proportionality, in their elections. These advances have made auditing
fairness notions such as closeness to the core and weaker group fairness notions
imperative in these settings.

Notions of Approximate Core. In addition to the notion of approximation pre-
sented in Definition 1, a different notion allows deviating voters to use their entire
entitlement, but requires them to extract at least a factor θ > 1 larger utility on
deviation. Under this notion, it is shown in [34] that a classic voting rule called
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PAV [36] achieves a 2-approximation. This result was generalized to show a con-
stant approximate core for arbitrary submodular utility functions and general
candidate sizes in [32]. An analogous result for clustering was presented in [16].
Our work directly shows that this notion of approximation can be audited in a
bicriteria fashion as follows: If the given committee is a c-approximation without
violating entitlements, we can determine if it is a c-approximation had entitle-
ments been violated by a factor of O(logm). It is an interesting open question
to remove the bicriteria nature of this result.

Auditing for Fairness. The question of auditing has become salient given the
increasing democratization of societal decision making, for instance via pro-
cesses like participatory budgeting. In the context of social choice, there are
natural properties that are easy to achieve algorithmically but hard to audit. For
instance, checking if an arbitrary outcome is Pareto-optimal is computationally
hard [5], while achieving it via some algorithm is easy. We take a further step
in this direction by studying the approximate audit of arguably the strongest
possible group fairness notion, the core, as well as related fairness properties.

Going beyond social choice, the notion of auditing for group fairness has
gained prevalence in machine learning. Here, the “voters” are data points, and the
“committee” is a classifier. We wish to audit if the classifier provides comparable
accuracy for various demographic slices. The work of [26] formulates and presents
algorithms for this problem.

2 Mathematical Program for θc

For most of this paper, we consider the Approval Election setting. Recall that
in this setting, each voter i “approves” a set Ai ⊆ C of unit-sized candidates,
and its utility for a committee T ⊆ C is simply Ui(T ) = |Ai ∩ T |. Our hardness
results hold even for this simple setting, while our approximation algorithms
hold for general additive utilities and sizes (see Sect. 5).

We first present a mathematical program that computes θc given a committee
W ⊆ C of size at most k, as in Definition 1. In this program, there is a variable
zi ∈ {0, 1} that captures whether voter i deviates, and a variable xj ∈ {0, 1} that
captures whether candidate j is present in the deviating committee. If this is a
feasible deviation, then the utility of each voter for which zi = 1 must strictly
increase, which means ∀i ∈ [n],

∑
j∈Ai

xj ≥ (Ui(W ) + 1) · zi.
Next, let R = n

k . Then, the budget available to the deviating voters is
1
R

∑
i zi, while the size of the committee to which they deviate is

∑
j∈C xj .

This means the entitlement k/n of each voter must be scaled by a factor of
R ·

∑
j∈C xj

∑
i zi

, so that the voters with zi = 1 do not have enough entitlement to
pay for this deviating committee. Since the goal is to have no deviations at all,
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the value θc is simply the solution to the following mathematical program:

Minimize R ·
∑

j∈C xj
∑

i zi
, s.t.

∀i ∈ [n],
∑

j∈C∩Ai

xj ≥ zi · (Ui(W ) + 1);

∀i ∈ [n], ∀j ∈ [m], xj , zi ∈ {0, 1}.

The above program attempts to maximize the ratio of the number of con-
straints satisfied via setting zi to 1, to the number of xj variables set to 1.

3 Hardness of Auditing the Core

As mentioned before, all hardness results in this section apply to the Approval
election setting, where the utilities are binary, and candidate sizes are unit.
We first show that the core auditing problem, that is, the problem of computing
θc for a given committee W , is NP-Hard even in a “constant degree” setting.
This strengthens an NP-Hardness result for the core in [11].

Theorem 1. Deciding whether a committee W does not lie in the core (that is,
deciding whether its θc ≤ 1) is NP-Hard when each voter approves at most 6
candidates (that is, |Ai| ≤ 6 for all voters i ∈ [n]), and each candidate lies in at
most 2 of the sets Ai.

We now show that the core auditing problem is in fact APX-Hard.

Theorem 2. For any constant γ > 0, approximating θc to within a factor of
1 + 1

e − γ is NP-Hard.

We will reduce from the maximum set coverage problem on regular instances.

Lemma 1 (Regular Maximum Coverage [21]). The universe contains qd
elements. There are ξ sets, each with d elements. It is NP-Hard to distinguish
between the following two cases:

1. “YES” instances: There exist q sets that cover the universe.
2. “NO” instances: No collection of q sets can cover (1 − 1/e+ ε) · qd elements.

Proof (Proof of Theorem 2). For each instance of the regular Max Covering
Problem, there are qd elements and ξ sets. We construct the following instance
for auditing the core:

– There are ξ main candidates. Each candidate corresponds to a set. There are
1
e (q − 1)qd dummy candidates.

– There are two group of voters. The first group contains 1
e · qd voters. They

each approve q − 1 disjoint dummy candidates, and all the main candidates.
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– The second group contains qd voters. Each of these voters corresponds to an
element of the covering instance. She approves the main candidates whose
corresponding set contains her corresponding element. Therefore, there are
(1 + 1/e)qd voters. Add dummy voters who do not approve any candidates,
so that the total number of voters is n = q(q − 1)d2.

– The budget for committee selection is k = (q − 1)qd. The current committee
W contains all the dummy candidates. All voters in the first group have utility
q − 1 while all voters in the second group have utility 0 in W .

– Note that each voter is assigned a budget of 1
R = k

n = (q−1)qd
q(q−1)d2 = 1

d .

If the maximum coverage instance is a “YES” instance, choose as the deviating
committee the q main candidates whose corresponding sets cover the universe.
We call a voter “satisfied” if her utility has strictly increased compared to the
current committee W . From the program in Sect. 2, θc is R = d times the mini-
mum ratio of the total number of selected candidates to the number of satisfied
voters. Since we have selected q candidates, the voters in the first group receive
utility q and are therefore satisfied. Moreover, since the chosen candidates’ cor-
responding sets cover the universe of qd elements, the voters in the second group
receive utility at least one, and are therefore satisfied. Therefore,

θc ≤ R · q

qd · (1 + 1/e)
=

1
1 + 1/e

.

Suppose the maximum coverage instance is a “NO” instance. We will show
that θc ≥ 1 − o(1). First suppose a deviating committee is composed of s < q
main candidates. These candidates can cover at most ds voters from the second
group. For the first group, they provide utility s to each voter. If t of these voters
are satisfied, we must have chosen (q − s)t dummy candidates. This means the
scaling factor needed is at least

R · s + (q − s)t
ds + t

=
s + (q − s)t

s + t/d
> 1.

If the number of main candidates in the deviating committee is at least
q, the voters in the first group are all satisfied and we don’t need to choose
dummy candidates. Consider an arbitrary q-candidate subset of these selected
candidates. All voters in the first group are satisfied by these candidates, since
they receive utility q from them. Since the coverage instance is a “NO” instance,
no more than (1 − 1/e + ε) · kd voters in the second group are satisfied by this
subset. Suppose there are r remaining candidates in the deviation, each candidate
can only increase the number of satisfied voters by at most r · d. Therefore,

θc ≥ R · q + r

r · d + (1 − 1/e + ε) · q · d + (1/e) · q · d
=

R

d
· q + r

r · d + q · d · (1 + ε)
≥ 1

1 + ε
.

Since the gap of θc between the constructed auditing instance from “YES”
instances and from “NO” instances is at least 1+1/e

1+ε , approximating θc to within
this factor is NP-Hard.
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Hardness of Auditing Fractional Committees. One natural question is whether
the above hardness stems from the integrality requirement on the committee (the
xj variables in the program in Sect. 2) or the voters (the zi variables). In the
full paper [31], we show that the auditing problem remains hard to approximate
to constant factors even when the committees can be chosen fractionally. This
corresponds to allowing the variables {xj} to be fractional in [0, 1]. This shows
that the hardness of the problem stems mainly from insisting {zi} be integral.
The proof of this result is similar to the previous proof.

4 A Logarithmic Approximation for Auditing the Core

Our main result in this section is the following theorem, which we prove for the
Approval Election setting. The proof for general candidate sizes and general
additive utilities is presented in Sect. 5.

Theorem 3. Given a committee W of size at most k, its θc value can be com-
puted within O(min(logm, log n)) factor in polynomial time, where m,n are the
total number of candidates and voters respectively.

4.1 LP Relaxation

Given a committee W , we start with the mathematical program from Sect. 2
and relax the variables to be fractional. This yields the following program. To
see that this is a relaxation, if zi = 0 for some i, then the first constraint is
trivially satisfied. On the other hand, if zi = 1, then we can increase all yij so
that yij = xj , thereby recovering the constraint in the integer program from
Sect. 2. Therefore, any solution to the integer program is a feasible solution to
the program below.

Minimize R ·
∑m

j=1 xj
∑n

i=1 zi
, s.t.

∀i ∈ [n],
∑

j∈Ai

yij ≥ zi · (Ui(W ) + 1);

∀i ∈ [n], ∀j ∈ Ai, yij ≤ xj ;
∀i ∈ [n], ∀j ∈ Ai, yij ≤ zi;

∀i ∈ [n], j ∈ [m], xj , zi, yij ≥ 0.

This can be written as a LP if we omit the denominator from the objective and
add the constraint

∑
i zi ≥ 1, and hence can be solved in polynomial time.

Denote ui = Ui(W ). For the committee W , we further denote

θp = R ·
∑m

j=1 xj
∑n

i=1 zi
(1)

where the variables are set based on the optimal solution to the linear relaxation.
Therefore, θp ≤ θc.
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4.2 Proof of Theorem 3

We will show that θp is an O(logm) approximation to θc. The proof of the
O(log n) approximation is similar and presented in the full paper [31].

By scaling the LP, we can assume that maxi{zi} = 1. Therefore, all yij ≤
zi ≤ 1 and xj = mini:j∈Ai

{yij} ≤ 1: all the variables are in the range [0, 1].

O(logm) Approximation. Given the fractional solution, we note that yij =
min(xj , zi). We now construct an integral solution by the following steps:

1. Pick α ∈ [0, 1] uniformly at random. If zi > α, set ẑi = 1; else ẑi = 0.
2. Let x′

j = max{ 1
2m2 , xj}.

3. If 2x′
j > α, then set x̂j = 1; else set x̂j = 1 with probability 2x′

j/α. We round
each x̂j independently.

4. If ẑi = 1, check if
∑

j∈Ai
min{x̂j , ẑi} ≥ ui. If so, set ˆ̂zi = 1; else set ˆ̂zi = 0.

Suppose the largest zi is zi∗ = 1, we have
∑

j∈Ai∗
yij ≥ 1. Therefore, for

some j, yi∗j ≥ 1/m. Therefore
∑m

j=1 xj ≥ 1
m . Since Step 2 increases

∑
j xj by

at most 1
2m , we have

∑
j x′

j∑
j xj

≤ 3/2.

We first bound the expectation of x̂j . If x′
j < 1/2, since x′

j ≥ 1
2m2 , we have:

E[x̂j ] =
∫ 2x′

j

α=0

1 dα +
∫ 1

α=2x′
j

2x′
j/α dα = 2x′

j + 2x′
j · lnα

∣
∣
∣
1

2x′
j

≤ 2x′
j · (1 + 2 lnm).

Therefore, we have

E

[ ∑

j

x̂j

]
≤ 2(1 + 2 lnm)

∑

j

x′
j ≤ 3(1 + 2 lnm)

∑

j

xj .

We now bound E

[∑
i
ˆ̂zi

]
. Let Pi � {j ∈ Ai : 2x′

j < α}, Qi � {j ∈ Ai : 2x′
j ≥

α}. Since x̂j = 1 for j ∈ Qi, conditioned on ẑi = 1, we have:

Pr
(
ˆ̂zi = 0

)
= Pr

⎛

⎝
∑

j∈Ai

min{x̂j , ẑi} < ui + 1

⎞

⎠ = Pr

⎛

⎝
∑

j∈Pi

x̂j < ui + 1 − |Qi|
⎞

⎠ .

By the constraints in the optimization and since yij = min(xj , zi), we have
∑

j∈Pi

min{xj , zi} +
∑

j∈Qi

min{xj , zi} ≥ zi · (ui + 1).

Since the second term is capped by zi · |Qi|, we have
∑

j∈Pi
xj ≥ zi · ((ui + 1)−

|Qi|
)
. When ẑi = 1, we have α < zi, and thus

E

⎡

⎣
∑

j∈Pi

x̂j

⎤

⎦ ≥ 2 ·
⎛

⎝
∑

j∈Pi

x′
j

⎞

⎠
/
α ≥ 2 ·((ui+1)−|Qi|

) ·zi/α ≥ 2 ·((ui+1)−|Qi|
)
.
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By Chernoff Bounds on the independent binary random variables {x̂j}, we have

Pr

⎛

⎝
∑

j∈Pi

x̂j < ui + 1 − |Qi|
∣
∣
∣ ẑi = 1

⎞

⎠ <

(
e−1/2

√
1/2

)2

= 2/e.

Therefore, we have

E

[
∑

i

ˆ̂zi

]

=
∑

i

E

[
ẑi · (

1 − Pr(ˆ̂zi = 0
)] ≥

∑

i

E

[
ẑi · (1 − 2

e
)
]

≥ (1 − 2
e
) ·

∑

i

zi.

Since {x̂j} and {ˆ̂zi} form a valid solution to the program in Sect. 2, there
exists a setting of these variables such that

∑
j x̂j

∑
i
ˆ̂zi

≤ E[
∑

j x̂j ]

E[
∑

i
ˆ̂zi]

≤ 3(1 + 2 lnm)
1 − 2/e

·
∑

j xj
∑

i zi
=

3(1 + 2 lnm)
1 − 2/e

· θp.

Therefore, we have θp ≤ θc ≤ 3(1+2 lnm)
1−2/e ·θp, completing the proof of the O(logm)

approximation. The proof of the O(log n) approximation is in the full paper [31].

4.3 Integrality Gap Instance

In the full paper [31], we prove the following theorem, which shows the analysis
in Sect. 4.2 is tight.

Theorem 4. There exists a committee s.t. θp = O
(

1
logmin(m,n)

)
and θc = Θ(1).

5 Extension to Arbitrary Utilities and Sizes

We now extend the result in the previous section to the setting where the can-
didates have general sizes sj , and voters have arbitrary additive utilities over
candidates. We assume voter i has utility uij ∈ Z

+ ∪ {0} for candidate j.
Given a committee W of size at most k, the utility of voter i for the com-
mittee is Ui(W ) =

∑
j∈W uij . We restrict the utilities to be integral, so that if

Ui(T ) > Ui(W ), then Ui(T ) ≥ Ui(W ) + 1. Let Ai = {j ∈ C | uij > 0}.

LP Formulation. A natural modification to the program in Sect. 2 for θc has
unbounded integrality gap. We make two modifications to the linear program.
First, in the optimal integer solution, we guess the candidate j∗ with largest size.
This means we set xj = 0 for all j such that sj > sj∗ , and delete these items.
Since the numerator in the objective is at least sj∗ , we can set xj = 1 for all j
with sj <

sj∗
m , and this only increases the numerator by a constant factor. Let

S denote the set of these “small” items; we ignore these items, and set Ui(W ) to
be Ui(W ) − Ui(S ∩ Ai). If the latter quantity is smaller than zero, then we can
set zi = 1 and delete this voter from further consideration; this only lowers the
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objective. We let m denote the number of candidates and n denote the number
of voters in the residual instance. We now scale the sizes so that the remaining
items have sizes in

[
1
m , 1

]
. Let R = n

k .
Next, we add knapsack cover constraints [13,28]. Let Ûi(S) =

max(0, Ui(W ) + 1 − Ui(S)), and let uijS = min(uij , Ûi(S)) The resulting LP
is presented below. In this LP, first set of constraints can be interpreted as fol-
lows: Even if the xj for j ∈ S are all set to 1, so that voter i already has utility
Ui(S), if voter i is chosen by the integer program, the remaining {yij} must push
the total utility above Ui(W ). Further, any utility value uij on the LHS can be
truncated at Ûi(S) and the constraint should still hold. This constraint is clearly
true for any S in the integer program; the LP encodes the fractional version of
all of them.

Minimize R ·
∑m

j=1 sjxj
∑n

i=1 zi
, s.t.

∀i ∈ [n], S ⊆ [m],
∑

j∈Ai\S

uijSyij ≥ zi · Ûi(S);

∀i ∈ [n], ∀j ∈ Ai, yij ≤ min(xj , zi);
∀i ∈ [n], j ∈ [m], xj , zi, yij ≥ 0.

This LP has exponentially many constraints. For any given solution (x, y, z)
and fixed voter i, we divide the first set of constraints by zi and use the
polynomial-time dynamic programming procedure exactly as in [13] to find the
most violated constraint to a (1+ε) approximation, for constant ε > 0. Omitting
standard details, this implies the LP can be solved to a (1 + ε) approximation
in polynomial time via the Ellipsoid algorithm.

Rounding. The rounding is similar to Sect. 4.2, leading to the following theorem,
whose proof is presented in the full paper [31].

Theorem 5. For the setting with arbitrary additive utilities and sizes, θc can
be approximated to an O(min(logm, log n)) factor in polynomial time.

6 Auditing Lindahl Priceability

In this section, we study fairness of a committee in terms of closeness to market
clearing. The concept is motivated by Lindahl equilibrium [23,29], a market
clearing concept for public goods. Such market clearing notions have been widely
studied as fairness concepts in Economics [7,37]. Our main result is the following
novel connection to the core – auditing the approximation of a committee to
Lindahl priceability reduces to the LP relaxation for auditing for core stability,
hence leading to a polynomial time auditing algorithm.

We consider the Approval Election setting below. The extension to arbi-
trary utilities and sizes is presented in the full paper [31].
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6.1 Lindahl Priceability

As in the definition of core stability, we first scale the entitlements so that the
entitlement of each voter is set to 1 instead of k/n. Each candidate now requires
R = n/k entitlement to be paid for. A feasible committee of size k corresponds
to a total entitlement of n in this scaling.

A committee W of size at most k is Lindahl priceable if there exists a price
system {pij} from voters to candidates, such that the following hold:

1. ∀j ∈ [m],
∑

i pij ≤ R, and
2. ∀i ∈ [n], T ⊆ C, if |T ∩ Ai| ≥ |W ∩ Ai| + 1, then

∑
j∈T pij > 1.

The first condition above means that for each candidate, the prices from all
voters sum up to at most R = n/k, so that each candidate is not “over-paid”.
Note that the first set of constraints can be made equalities by raising the prices
{pij}, so the candidates are exactly paid for. The second condition means a voter
cannot afford any committee that she strictly prefers to W .

Lindahl priceability can be viewed as an integral version of the gradient
optimality conditions in the fractional Lindahl equilibrium [23]. As mentioned
before, this makes our definition subtly different from a related concept in [33].
Analogous to the fractional Lindahl equilibrium, the following proposition holds,
and we present a proof later in this section.

Proposition 1. If a committee is Lindahl priceable, it lies in the core.

6.2 Auditing via Duality

As with core stability, we now define the best approximation to Lindahl price-
ability achievable by a committee W . Formally, we only allow a voter to use
θp < 1 endowment if they want to deviate to a committee with larger utility.

Definition 2 (θ-Approximate Lindahl Priceability). A committee W of
size at most k is θ-approximate Lindahl priceable if there exists a price system
{pij} from voters to candidates, such that the following conditions hold:

1. ∀j ∈ [m],
∑

i pij ≤ R, and
2. ∀i ∈ [n], T ⊆ C, if |T ∩ Ai| ≥ |W ∩ Ai| + 1, then

∑
j∈T pij > θ.

The Lindahl priceability ratio of a committee W is the smallest θ for which
the committee is not θ-approximate Lindahl priceable. Our main result is the
following theorem that ties Lindahl priceability ratio to the fractional relaxation
of θc. As a corollary, this shows that determining if a committee W is Lindahl
priceable is polynomial time solvable.

Theorem 6. For a committee W , its Lindahl priceability ratio is θp from Eq.
(1).



Auditing for Core Stability in Participatory Budgeting 305

Proof. For simplicity, let ui = Ui(W ). Let the Lindahl priceability ratio of the
instance be θ�. Fix the prices {pij} achieving this. Then the minimum entitlement
needed for a voter i to deviate to a committee of utility larger than ui is captured
by the following linear program:

Minimize
∑

j∈Ai

pijγij , s.t.

∑

j∈Ai

γij ≥ ui + 1;

∀j ∈ Ai, γij ≤ 1;
∀j ∈ Ai, γij ≥ 0.

Here, the variable γij corresponds to the fraction to which this voter chooses
candidate j. In the optimal solution, these variables will be integers. Since the
Lindahl priceability ratio is θ�, Condition (2) of Definition 2 implies objective of
the above LP is at least θ� for any i ∈ [n].

Now take the dual of the above, where the dual variable for the first constraint
is λi and the dual variable for the second constraint is αij . We obtain:

Maximize θi, s.t.
∀j ∈ Ai, λi − αij ≤ pij ;

(ui + 1)λi −
∑

j∈Ai

αij ≥ θi;

∀j ∈ [m], λi, αij ≥ 0.

Since the optimal θi ≥ θ�, this solution satisfies (ui + 1)λi − ∑
j∈Ai

αij ≥ θ�.
Since {pij} satisfy Condition (1) in Definition 2, {pij}, {αij}, {λi} and θ = θ�

are feasible for the following program:

Maximize θ, s.t.
∀i ∈ [n], j ∈ Ai, λi − αij ≤ pij ;

∀i ∈ [n], (ui + 1)λi −
∑

j∈Ai

αij ≥ θ;

∀j ∈ [m],
∑

i∈Tj

pij ≤ R;

∀i ∈ [n], j ∈ [m], λi, αij , pij ≥ 0.

We now claim that the optimal solution to the above program must be exactly θ�.
If it is larger, this larger value θ′ must be feasible for the per-voter duals, which
means the per-voter primals have value at least θ′. Then the Lindahl priceability
is at least θ′, contradicting the definition of θ�.
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Finally, take the dual for the LP above, let yij , zi, xj respectively be the dual
variable of the three constraints. The dual is the following:

MinimizeR ·
m∑

j=1

xj , s.t.

∀i ∈ [n],
∑

j∈Ai

yij ≥ zi · (ui + 1);

∀i ∈ [n], ∀j ∈ Ai, yij ≤ xj ;
∀i ∈ [n], ∀j ∈ Ai, yij ≤ zi;

∑

i

zi ≥ 1;

∀i ∈ [n], j ∈ [m], zi, xj , yij ≥ 0.

This optimal value (which is θ�) is also the definition of θp, completing the proof.

Note that if θ� > 1, then since θc ≥ θp = θ� > 1, we have θc > 1. Therefore,
if a committee is Lindahl priceable, it lies in the core, showing Proposition 1.

7 Sub-core for Approval Elections

Given our approximation results for auditing the core, we can ask if such results
can also be derived for weaker fairness notions. Such an auditing notion would
be interesting to a practitioner in addition to auditing the core, since it is quite
likely an implemented rule and resulting committee would be closer to satisfying
a weaker but still reasonable notion of fairness compared to the core. We present
a new weakening of the core for Approval elections, that we term the sub-
core, that we show also admits approximate auditing. Note that this result is
not implied by our results for the core; indeed, there are weakenings of the core,
such as EJR, that we do not know how to efficiently audit.

7.1 Weak Priceability

In the multiwinner election setting, suppose the final condition in Lindahl price-
ability is relaxed so that each voter is only allowed to add candidates to its
deviating committee, we get the following relaxed version of priceability. Recall
that R = n/k, where n is the total number of voters.

Definition 3 (Weak Priceability). A committee W of size at most k is
weakly priceable if there exists a set of prices {pij} from each voter vi to each
candidate cj, such that the following two conditions hold:

1. ∀j ∈ [m],
∑

i pij ≤ R.
2. ∀i ∈ [n], d ∈ Ai \ W,pid +

∑
j∈Ai∩W pij > 1.

This notion is equivalent to “priceability” as proposed in [34]. Unlike Lindahl
priceability, there are many natural and greedy voting rules, such as the Phrag-
mén rule [10], that satisfy weak priceability, making it a desirable property to
study in practice.
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7.2 Sub-core

If we proceed as in the proof of Theorem 6 and take the dual of the weak
priceability ratio, we obtain a new concept of fairness that we call the sub-core.

Definition 4 (Sub-core). A committee W lies in the sub-core if there is no
S ⊆ V and committee T with |T | ≤ |S|

n · k, s.t. Ai ∩ W � Ai ∩ T for all i ∈ S.

The sub-core prevents any group of voters from deviating to a new committee in
which each voter’s approved candidates forms a proper superset of the approved
candidates in the original committee.

Clearly, any committee that lies in the core also lies in the sub-core. The
following proposition shows the sub-core is a weakening of weak priceability.

Proposition 2. If a committee is weakly priceable, then it lies in the sub-core.

Since weakly priceable committees can be easily found by greedy proce-
dures [34], this shows that the sub-core is always non-empty.

Hardness of Auditing Sub-core. Though the sub-core seems like a weak and
satisfiable fairness condition (it insists voters have no greedy deviation to a
better committee), we show that deciding if a given committee W lies in the
sub-core is actually NP-Hard. Towards this end, we observe that the core and
sub-core coincide when each voter approves at most 2 candidates (i.e., for all
voters i, we have |Ai| ≤ 2). To see this, suppose the original committee was W
and a subset of voters deviate to T . If a deviating voter had original utility zero,
then Ai ∩ W = ∅, so that Ai ∩ T � Ai ∩ W . Similarly, if |Ai ∩ W | = 1 and
|Ai ∩ T | = 2, then Ai ∩ T = Ai � Ai ∩ W . This shows any deviation satisfies the
sub-core property, so that the core coincides with the sub-core.

Theorem 7. If each voter only approves at most two candidates, deciding
whether a committee W does not lie in the sub-core (or core) is NP-Complete.

Approximately Auditing Sub-core Property. Similar to θc, we can now define a
parameter θsc showing how close a committee is to the sub-core.

Definition 5. For θ ≤ 1, a committee W of size k lies in the θ-approximate
sub-core if for all subsets of voters T ⊆ [n], there is no deviating committee T ′

with size at most θ · |T | · k
n , such that for all i ∈ T , we have Ai ∩ W � Ai ∩ T ′.

Given a committee W , θsc is defined as the smallest θ such that W is not
in the θ-approximate sub-core. The following theorem shows the sub-core can
be approximately audited. This positive result on auditing makes the sub-core
a desirable weakening of the core property.

Theorem 8. Given any committee W , θsc has an O(min(logm, log n)) approx-
imation in polynomial time, where m,n are the total number of candidates and
voters respectively.
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8 Conclusion

Note that our theoretical approximation results for auditing are worst case guar-
antees. In practice, the linear program value θp will provide a lower bound on
θc, and if this can be rounded so that the integer solution has value αθp for some
small α ≥ 1, then this sandwiches θc ∈ [θp, αθp]. Further, the rounding outputs
a deviating set of voters and their chosen committee, which will be of interest
as a demographic that is not well-represented by the current committee.

The main open question arising from this work is closing the gap between
the positive and hardness results for auditing the core. As mentioned before,
showing such results for density objectives is challenging [27]. A related question
is existence results: A major open question in social choice is whether there is
a committee in the core for Approval Elections. Though there are voting
rules that find committees in the approximate core [16,25,34], these results do
not translate to the exact core. Even more specifically, it is an open question
whether there is always a committee that is Lindahl priceable.

Finally, it would be interesting to use the techniques in this paper to approx-
imately audit other notions of fairness or efficiency in social choice. For instance,
consider the notion of extended justified representation (or EJR, [5]), where a
group of t · n/k voters can only deviate if they all approve at least t candi-
dates in common. Since this notion is weaker than the core, it is easier to show
existence – indeed the PAV rule [36] satisfies EJR but fails the core. However,
imposing restrictions on the deviation does not necessarily make it easier to
audit such notions [33], and we do not know how to audit EJR approximately.
We showed a particular weakening of the core, the sub-core, that can be approx-
imately audited, and it would be interesting to study the landscape of efficient
auditing more systematically.
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