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Abstract

We present a correspondence between two-dimensional N = (2,2) supersymmetric gauge

theories and rational integrable gl(m|n) spin chains with spin variables taking values in

Verma modules. To explain this correspondence, we realize the gauge theories as configu-

rations of branes in string theory and map them by dualities to brane configurations that re-

alize line defects in four-dimensional Chern–Simons theory with gauge group GL(m|n). The

latter configurations embed the superspin chains into superstring theory. We also provide

a string theory derivation of a similar correspondence, proposed by Nekrasov, for rational

gl(m|n) spin chains with spins valued in finite-dimensional representations.

Contents

1 Introduction 2

2 Bethe/gauge correspondence for noncompact superspin chains 5

2.1 gl(m|n) and its Verma modules 5

2.1.1 Lie superalgebra gl(m|n) 5

2.1.2 Verma modules of gl(m|n) 7

2.1.3 Tensor products of Verma modules 8

2.2 Bethe side 9

2.2.1 Yangian 9

2.2.2 Representations of Y (gl(m|n)) 11

2.2.3 The spin chain 12

2.2.4 Bethe equations 12

2.3 Gauge side 14

2.3.1 The gauge theories 14

2.3.2 Vacuum equations 17

2.3.3 Twisted chiral ring 18

2.4 The correspondence 19

3 String theory realization of the Bethe/gauge correspondence 19

3.1 Brane construction of the gauge theory vacua 19

1

http://arxiv.org/abs/2110.15112v2


SciPost Physics Submission

3.1.1 Semiclassical type IIA configuration 19

3.1.2 Lift to M-theory 21

3.1.3 Turning on ħh 22

3.2 Four-dimensional Chern–Simons theory 23

3.2.1 Case with m = 0 or n= 0 23

3.2.2 Case with nonzero m and n 25

3.3 Emergence of the spin chain 29

3.3.1 Line defects and spin chains 29

3.3.2 Line defects created by D3-branes 30

3.3.3 Line defects for parabolic Verma modules of scalar type 33

3.4 Fermionic Dualities 33

3.4.1 Odd reflections and fermionic dualities 34

3.4.2 Fermionic duality from string theory 36

4 Bethe/gauge correspondence for compact superspin chains 37

4.1 Covariant and contravariant representations of gl(m|n) 37

4.2 Line defects in covariant and contravariant representations 38

4.3 Brane construction of line defects 42

4.4 Two-dimensional N = (2,2) supersymmetric gauge theories 44

4.5 Bethe/gauge correspondence for finite-dimensional representations 46

A Four-dimensional Chern–Simons theory with gauge supergroup from twisted string

theory 49

A.1 Topological strings 50

A.2 Topological open string field theory 51

A.3 Topological closed string field theory 52

A.4 Closed–open map 53

A.5 Four-dimensional Chern–Simons theory with gauge supergroup from the SU(3)-

invariant twist of type IIB string theory 55

References 58

1 Introduction

The Bethe/gauge correspondence, discovered by Nekrasov and Shatashvili [1,2] in 2009, connects

two seemingly unrelated areas of physics. The Bethe side of the correspondence refers to one-

dimensional integrable quantum spin chains. The gauge side is supersymmetric gauge theories.

Arguably the most prominent example of the Bethe/gauge correspondence involves Heisen-

berg’s XXX spin chain and its generalizations. In this example, the eigenvectors of commuting

conserved charges of a rational gl(m) spin chain are identified with the vacua of a family of gauge

theories whose gauge group is the product of m − 1 unitary gauge groups. The gauge theories

have N = (4,4) supersymmetry broken to N = (2,2) subgroup by mass deformations, and their

gauge and matter contents are encoded in quiver diagrams whose underlying graphs contain the
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Dynkin diagram of type Am−1 as a subgraph.

In 2018, Nekrasov [3] presented a generalization of the above correspondence where the

relevant spin chains carry superspins, namely rational gl(m|n) spin chains. The corresponding

gauge theories are essentially N = (2,2) supersymmetric, as opposed to having softly broken

N = (4,4) supersymmetry. One of the main results of this paper is an explanation of the origin of

this correspondence using superstring theory.

In fact, the goal of the present work is much more ambitious: we wish to place the Bethe/gauge

correspondence for superspin chains into a large web of dualities that relate diverse phenomena

in which the same superspin chains arise from different supersymmetric gauge theories in various

spacetime dimensions.

Many of the phenomena that are expected to constitute this web of dualities are yet to be

uncovered, but their specializations to the case of gl(m|0) = gl(m) are known and have been

studied in recent years. Besides the Bethe/gauge correspondence already described, the structures

of rational gl(m) spin chains (and their trigonometric and elliptic generalizations) have appeared

in quantization of the Seiberg–Witten geometries of four-dimensional N = 2 supersymmetric

gauge theories [4–6], the action of surface and line defects on supersymmetric indices of four-

dimensional supersymmetric gauge theories [7–12], quantization of the Coulomb branches of

three-dimensional N = 4 supersymmetric gauge theories [13, 14], and correlation functions of

local operators on interfaces in four-dimensional N = 4 super Yang–Mills theory [15], to name a

few.

All of these gauge theory setups have realization in string theory, and one suspects that they

are related to each other in one way or another via string dualities. This idea has turned out to

be true. It was argued in [16] that brane constructions of these setups (except for the last one

which we expect is also related) are all dual to brane configurations that realize line defects in a

four-dimensional analog of Chern–Simons theory [17–19] with gauge group GL(m). This theory

only has a bosonic gauge field, but it is secretly supersymmetric. Indeed, it is equivalent to a

holomorphic–topological twist of six-dimensional N = (1,1) super Yang–Mills theory with gauge

group U(m) in the presence of Ω-deformation [20–24]. The six-dimensional theory describes the

low-energy dynamics of a stack of m D5-branes, which comprise part of the brane configurations.

Four-dimensional Chern–Simons theory placed on R2 ×C is topological on the plane R2 and

holomorphic on the complex plane C. Due to this holomorphic–topological property, line defects

extending along R2 automatically satisfy the Yang–Baxter relation. Moreover, each line defect

carries one complex parameter, its position in C. These facts imply that line defects making up a

square lattice in R2 defines a two-dimensional classical integrable lattice model; their correlation

function equals the partition function of the lattice model.

Equivalently, with one of the lattice directions regarded as a time direction, a lattice of line

defects in four-dimensional Chern–Simons theory defines a one-dimensional quantum integrable

spin chain. For Wilson lines, this spin chain is a rational gl(m) spin chain [17–19]. (If one replaces

C in spacetime with C \ {0} or an elliptic curve, then one obtains trigonometric or elliptic gl(m)
spin chain, respectively.) Thus, the fact that the gauge theory setups mentioned above are all dual

to line defects in four-dimensional Chern–Simons theory explains the appearance of gl(m) spin

chains in these setups.

Now, in view of the Bethe/gauge correspondence for rational gl(m|n) spin chains, one wonders

how one can incorporate it into the picture just described. If one could generalize the string theory

realization of the Bethe/gauge correspondence for bosonic spin chains to the superspin chain case,

one would generalize, implicitly by string dualities, all of the gauge theory phenomena mentioned

above to their gl(m|n) versions. This is what we aim to achieve.
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In this paper, we provide brane constructions of the gauge theories pertinent to the Bethe/gauge

correspondence for rational gl(m|n) spin chains, and show that they are related by dualities to line

defects in four-dimensional Chern–Simons theory with gauge group GL(m|n). The latter theory is

obtained from two copies ofΩ-deformed six-dimensional N = (1,1) super Yang–Mills theory, with

gauge groups U(m) and U(n), coupled by a four-dimensional hypermultiplet in the bifundamental

representation of U(m)×U(n). In turn, this gauge theory setup arises from a stack of m D5-branes

intersecting a stack of n D5-branes. This brane construction is another main result of the paper.

Actually, we present two versions of the Bethe/gauge correspondence, one for compact spin

chains and one for noncompact spin chains. The difference is whether spin variables are valued

in finite-dimensional or infinite-dimensional representations.

We introduce the Bethe/gauge correspondence for noncompact rational gl(m|n) spin chains

in section 2. The brane constructions of the corresponding gauge theories, as well as the duality

relating these theories to line defects in four-dimensional Chern–Simons theory with gauge group

GL(m|n), are discussed in section 3. Discussions in this section provide a string theory explanation

for the Bethe/gauge correspondence. The case of compact spin chains is treated in section 4, where

we reproduce the correspondence proposed in [3].

It should be remarked that in an inspiring paper [25] in 2010, Orlando and Reffert found the

Bethe/gauge correspondence for the rational gl(1|2) spin chain with spins taking values in the

natural (1|2)-dimensional representation C1|2. Furthermore, they gave a string theory argument

to explain dualities between different families of gauge theories corresponding to different choices

of Dynkin diagrams of gl(1|2). On the spin chain side, these dualities are known as fermionic

dualities. In section 3.4 we discuss the fermionic dualities for rational gl(m|n) spin chains from a

similar point of view.

As we mentioned above, four-dimensional Chern–Simons theory with gauge supergroup can be

constructed from two copies of six-dimensional super Yang–Mills theory coupled by four-dimensional

matter fields. There is a related construction in topological string theory, which may prove use-

ful in future attempts to put some of the physical arguments given in this work on a rigorous

mathematical footing. We describe the topological string construction in appendix A.

The present work unveils only a small part of a collection of phenomena in which superspin

chains emerge from supersymmetric gauge theories. It will be extremely interesting to study

other, but ultimately related, phenomena whose existence is predicted by string dualities and

other tools. We conclude this introduction by stating mathematical conjectures as examples of

such phenomena.

In section 2, we define a family of N = (2,2) supersymmetric gauge theories labeled by the set

of (m+ n− 1)-tuples of nonnegative integers Zm+n−1
≥0

, corresponding to a closed rational gl(m|n)
spin chain of length L with spins valued in Verma modules. If we turn off all mass parameters and

turn on appropriate Fayet–Iliopoulos (FI) parameters, these theories are described in the infrared

by effective sigma models. The target space of the sigma model with label M= (M1, . . . , Mm+n−1)

is a Calabi–Yau manifold M(M) with an action of GL(L)m+n × GL(1). The topological A-twist of

this sigma model, with mass parameters associated with the maximal torus T of GL(L)m+n×GL(1)

turned on, is equivalent to the sector of the spin chain in which there are Mr magnons of type r.

The highest weights of the Verma modules are determined by the mass parameters.

Conjecture 1. The direct sum of equivariant cohomology groups

⊕

M∈Zm+n−1
≥0

HT

�
M(M)
�

(1)
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is a module over Y (gl(m|n)), isomorphic to the tensor product of L evaluation modules obtained

from the Verma modules.

Conjecture 2. There is a homomorphism from the Bethe algebra of the Yangian Y (gl(m|n)) to the

direct sum of equivariant quantum cohomology rings

⊕

M∈Zm+n−1
≥0

QHT

�
M(M)
�

. (2)

The first conjecture says that the Hilbert space of states of the A-model is the same as that of

the spin chain. For n = 0 and L = 1, the conjecture is proved in [26]. The second conjecture

means that the algebra of local operators of the A-model includes the algebra generated by the

commuting conserved charges of the spin chain. For n = 0, this conjecture follows from a result

of [27].

Similar conjectures can be made for the target spaces of effective sigma models corresponding

to compact rational gl(m|n) spin chains. The brane configurations in the compact case have been

recently considered by Rimanyi and Rozansky [28] from the perspective of geometric construction

of R-matrices [27], so we expect that the above conjectures also hold if the target spaces are

varieties defined in [28].

2 Bethe/gauge correspondence for noncompact superspin chains

The Bethe/gauge correspondence for superspin chains relates a closed spin chain with GL(m|n)
symmetry and two-dimensional gauge theories with N = (2,2) supersymmetry. In this section we

present a version of the correspondence in which the spin chain consists of spins taking values in

infinite-dimensional highest-weight representations of gl(m|n). After reviewing some basic facts

about gl(m|n) and its Verma modules, we introduce the spin chain and its Bethe equations. Then,

we introduce the gauge theories and their vacuum equations, and explain in what sense the two

sides are equivalent.

2.1 gl(m|n) and its Verma modules

To begin with, let us review the structures of gl(m|n) and its Verma modules, with emphasis on

aspects that are important for the Bethe/gauge correspondence.

2.1.1 Lie superalgebra gl(m|n)

Let Cm|n be the vector space graded by Z2 = {0̄, 1̄} whose even subspace C
m|n
0̄
= Cm and odd

subspace C
m|n
1̄
= Cn. Let (b1, . . . , bm) and ( f1, . . . , fn) be the standard basis of Cm and that of Cn,

respectively. Throughout this section and the next section except section 3.4, we fix an ordered

basis (e1, . . . , em+n) of Cm|n that is a permutation of (b1, . . . , bm, f1, . . . , fn). The corresponding

Z2-grading [−]: {1, . . . , m+ n} → Z2 is defined by

[i] =

¨
0̄ (ei ∈ C

m) ;

1̄ (ei ∈ C
n) .

(3)
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The space of endomorphisms End(Cm|n) of Cm|n is also a Z2-graded vector space, with the

even subspace

End(Cm|n)0̄ = Hom(Cm,Cm)⊕Hom(Cn,Cn) (4)

and the odd subspace

End(Cm|n)1̄ = Hom(Cm,Cn)⊕Hom(Cn,Cm) . (5)

The elementary matrix Ei j, which has 1 in the (i, j)th entry and 0 elsewhere, has grading [Ei j] = [i]+[ j].

The Lie superalgebra gl(m|n) is the Z2-graded vector space End(Cm|n), endowed with the

graded commutator [−,−]: End(Cm|n)⊗ End(Cm|n)→ End(Cm|n): for elements a, b with homo-

geneous Z2-grading,

[a, b] = ab− (−1)[a][b]ba . (6)

We will distinguish the elements of gl(m|n) from those of End(Cm|n) by writing them as Ei j rather

than Ei j . They satisfy the commutation relations

[Ei j ,Ekl] = δ jkEil − (−1)([i]+[ j])([k]+[l])δl iEk j . (7)

The Cartan subalgebra of gl(m|n) is generated by

Hr = (−1)[r]Er r − (−1)[r+1]Er+1,r+1 , r = 1 , . . . , m+ n− 1 , (8)

and one more diagonal matrix, say E11. The elementary matrix Ei j has the root ǫi − ǫ j, with

ǫi = E∨ii (9)

being the weight of ei in the natural (m+ n)-dimensional representation. The positive roots are

ǫi − ǫ j with i < j. The simple roots are

αr = ǫr − ǫr+1 , r = 1 , . . . , m+ n− 1 . (10)

The elements having the roots αr and −αr are Er = Er,r+1 and Fr = Er+1,r , respectively. They

satisfy

[Hr , Es] = arsEs , (11)

[Hr , Fs] = −arsFs , (12)

[Er , Fs] = δrs(−1)[r]Hr , (13)

where

ars = αs(Hr ) = δrs

�
(−1)[r] + (−1)[r+1]

�
−δr+1,s(−1)[r+1] −δr,s+1(−1)[r] (14)

is the (r, s)th entry of the Cartan matrix.

The structure of gl(m|n) can be encoded in a Dynkin diagram, in which a simple root αr is

represented by a blank node if ar r = ±2 and a crossed node if ar r = 0, and two nodes αr , αs

are connected by an edge if ars 6= 0. As an example, consider the case with (m|n) = (3|2) and

(e1, e2, e3, e4, e5) = (b1, b2, f1, f2, b3). The associated Dynkin diagram is

ε1 − ε2 ε2 −δ1 δ1 − δ2 δ2 − ε3
(15)

6
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where εi and δi are the weights of bi and fi , respectively.

Let us give a different presentation of the content of the Dynkin diagram in terms of a quiver

diagram, which makes the connection to gauge theory transparent.

First, we represent ǫi by a vertical line, of one of two colors depending on its grading:

ǫi =

¨
([i] = 0̄) ;

([i] = 1̄) .
(16)

The ordered set (ǫ1, . . . ,ǫm+n) is then represented graphically as m vertical lines of one color and

n vertical lines of the other color, placed in the order specified by the choice of the Z2-grading:

(17)

Next, we put a circle node between each pair of adjacent vertical lines:

(18)

The rth node represents the simple root αr .

Finally, for each pair (r, s) with ars 6= 0, we draw an arrow from the rth node to the sth node

and write the number ars on the side. We can erase the vertical lines at this stage:

−1

−1

+1

+1

+1

+1

+2 −2

(19)

This quiver has the same content as the Dynkin diagram (15) modulo the action of the Weyl

group Sm×Sn which permutes the basis vectors (e1, . . . , em+n) without changing the Z2-grading.

2.1.2 Verma modules of gl(m|n)

A representation of gl(m|n) in a Z2-graded vector space V is a Lie superalgebra homomorphism

π: gl(m|n) → End(V ), where End(V ) is given the structure of a Lie superalgebra by the graded

commutator.

The Verma module M(λ): gl(m|n)→ End(Vλ), with highest weight

λ=

m+n∑

i=1

λiǫi , λi ∈ C , (20)

is a representation of gl(m|n) constructed from a highest-weight vector |Ωλ〉 that is an eigenstate

of the diagonal matrices:

Eii |Ωλ〉= λi|Ωλ〉 , (21)

Ei j |Ωλ〉= 0 , i < j . (22)

The other vectors in Vλ are created by the action of lowering operators {Ei j | i > j} on |Ωλ〉, and

two vectors are identified if they are related by the commutation relations (7).

7
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More explicitly, the Fock space Vλ can be described as follows. Let us introduce an ordering

among all lowering operators and name them x1, . . . , xp. Then, by the Poincaré–Birkhoff–Witt

(PBW) theorem, an element of Vλ is a linear combination of states of the form

xn1

1
· · · x

np
p |Ωλ〉 , ni ∈

¨
Z≥0 ([ai] = 0̄) ;

{0,1} ([ai] = 1̄) .
(23)

Verma modules are infinite-dimensional unless (m|n) = (1|1), in which case there is only one

lowering operator and it is odd.

Since the lowering operator Ei j changes the weight by ǫi−ǫ j = −α j−α j+1−· · ·−αi−1, a state

of M(λ) has a weight of the form

λ−

m+n−1∑

r=1

Mrαr , Mr ∈ Z≥0 . (24)

We can also represent this weight graphically. To represent the highest weight λ, for each vertical

line we draw a diagonal line ending on it and write λi next to the ith diagonal line; and to represent

the weight (24), we draw Mr horizontal line segments between the rth and (r+1)st vertical lines.

Here is an example for (M1, M2, M3, M4) = (2,3,2,1):

λ1 λ2 λ3 λ4 λ5

(25)

We convert this diagram into a quiver by replacing the diagonal lines with square nodes and

writing Mr inside the rth circle node and 1 inside the square nodes:

−1

−1

+1

+1

+1

+1

+2 −2

M1 M2 M3 M4

1 1 1 1 1

λ1 λ2 λ3 λ4 λ5

(26)

To fix the horizontal positions of the square nodes, we have added arrows connecting circle and

square nodes.

2.1.3 Tensor products of Verma modules

If V1 and V2 are Z2-graded vector spaces, the tensor product V1⊗V2 is naturally Z2-graded. Given

two representations π1 : gl(m|n)→ End(V1) and π2 : gl(m|n)→ End(V2), the tensor product rep-

resentation π1 ⊗π2 : gl(m|n)→ End(V1 ⊗ V2) is defined by

(π1 ⊗π2)(x)(v1 ⊗ v2) = π1(x)v1 ⊗ v2 + (−1)[x][v1]v1 ⊗π2(x)v2 , (27)

where v1, v2 and x are homogeneous in Z2-grading. The tensor products of more than two rep-

resentations can be defined recursively.

8
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The tensor product of L Verma modules M(λ1), . . . , M(λL) has a highest-weight vector |Ωλ1〉⊗· · ·⊗|ΩλL〉

with highest weight λ1 + · · ·+λL. A weight of M(λ1)⊗ · · · ⊗M(λL) takes the form

L∑

ℓ=1

λℓ −

m+n−1∑

r=1

Mrαr , Mr ∈ Z≥0 . (28)

Graphically, we represented it by a diagram similar to the diagram (25) for a weight of a single

Verma module, but with L diagonal lines ending on each vertical line. For example, the diagram

λ3
1

λ3
2

λ3
3

λ3
4

λ3
5

λ2
1

λ2
2

λ2
3

λ2
4

λ2
5

λ1
1

λ1
2

λ1
3

λ1
4

λ1
5 (29)

represents a weight with (M1, M2, M3, M4) = (2,1,0,2) in the representation M(λ1)⊗M(λ2)⊗M(λ3)

of gl(3|2).

The corresponding quiver diagram is the same as before, except that the ith square node is

now labeled L and accompanied by the L-tuple ~λi = (λ
1
i , . . . ,λL

i ):

−1

−1

+1

+1

+1

+1

+2 −2

M1 M2 M3 M4

L L L L L
~λ1

~λ2
~λ3

~λ4
~λ5

(30)

The above quiver diagram will be identified with a quiver describing a two-dimensionalN = (2,2)

supersymmetric gauge theory that appears on the gauge theory side of the Bethe/gauge correspon-

dence. The graphical representation using lines will be interpreted as a diagram depicting a brane

configuration in string theory.

2.2 Bethe side

Now we explain the Bethe side of the Bethe/gauge correspondence. The spin chains we consider

in this paper are rational gl(m|n) spin chains, for which spins take values in representations of

gl(m|n). More generally, spins in rational gl(m|n) spin chains are valued in representations of the

Yangian Y (gl(m|n)) of gl(m|n).

2.2.1 Yangian

The Yangian Y (gl(m|n)) is a Z2-graded Hopf algebra, which in particular is a unital associative

Z2-graded algebra. It is generated by elements

T (l)i j , i, j = 1, . . . , m+ n , l ∈ Z>0 , (31)

with grading [T (l)i j ] = [i] + [ j]. The level-1 generators T (1)i j span a subalgebra isomorphic to

gl(m|n), with the identification of generators being Ei j = (−1)[ j]T (1)ji .

9
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To describe the algebra relations for all generators in a compact form, let us introduce a formal

variable σ and combine the generators into a single End(Cm|n)⊗ Y (gl(m|n))-valued power series

in σ−1:

T (σ) =
m+n∑

i, j=1

Ei j ⊗ Ti j(σ) =

m+n∑

i, j=1

∞∑

l=0

ħhl

σl
Ei j ⊗ T (l)i j . (32)

Here T (0)i j = δi j and ħh is a complex parameter. We can think of T (σ) as an (m + n) × (m + n)

matrix whose entries are elements of Y (gl(m|n))[[σ−1]]; it is called the monodromy matrix and

is a function of spectral parameter σ. In terms of the monodromy matrix, the algebra relations for

Y (gl(m|n)) are encoded in the RTT relation

R12(σ1 −σ2)T1(σ1)T2(σ2) = T2(σ2)T1(σ1)R12(σ1 −σ2) . (33)

This is a relation between elements in End(Cm|n)⊗ End(Cm|n)⊗ Y (gl(m|n))[[σ−1]], and the sub-

script(s) on an operator indicate which factor(s) of Cm|n the operator acts on.

The operator R12(σ) ∈ End(Cm|n)⊗End(Cm|n) that appears in the RTT relation is the rational
gl(m|n) R-matrix. It is given by

R12(σ) = σI ⊗ I + ħhP12 , (34)

where I is the identity matrix and

P12 =

m+n∑

i, j=1

(−1)[ j]Ei j ⊗ E ji . (35)

The permutation operator P12 swaps tensor factors as

P12(ei ⊗ e j) = (−1)[i][ j]e j ⊗ ei . (36)

The R-matrix commutes with the automorphism group GL(m|n) of Cm|n:

[g ⊗ g,R12(σ)] = 0 , g ∈ GL(m|n) . (37)

The dynamics of a closed rational gl(m|n) spin chain is generated by the transfer matrix

t(g,σ) = strCm|n

�
gT (σ)
�
=

m+n∑

i=1

(−1)[i]gi j T ji(σ) , g ∈ GL(m|n) . (38)

The supertrace taken over Cm|n corresponds to the topology of the spin chain which is closed, and

g twists the periodic boundary condition.

Multiplying both sides of the RTT relation (33) by g ⊗ g ⊗ 1 from the left and R12(σ1 −σ2)
−1

from the right, then using the symmetry (37) of the R-matrix and taking the supertrace over

C
m|n⊗Cm|n, we see that transfer matrices for a fixed g commute with each other:

[t(g,σ1), t(g,σ2)] = 0 . (39)

Therefore, if we expand t(g,σ) in powers of σ−1, the coefficients are mutually commuting ele-

ments of Y (gl(m|n)). They generate a commutative subalgebra called the Bethe algebra (or the

Baxter algebra) of Y (gl(m|n)).

10
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2.2.2 Representations of Y (gl(m|n))

While the Yangian Y (gl(m|n)) and its Bethe algebra are the algebraic structures underlying rational

gl(m|n) spin chains, to get a concrete physical realization of a spin chain we need to specify a

representation of Y (gl(m|n)).
A representation ρ : Y (gl(m|n))→ End(V ) of Y (gl(m|n)) maps the monodromy matrix to an

End(V )-valued matrix

ρ
�
T (σ)
�
=

m+n∑

i, j=1

∞∑

l=0

ħhl

σl
Ei j ⊗ρ(T

(l)
i j ) . (40)

Conversely, an End(V )-valued matrix satisfying the RTT relation determines a representation of

Y (gl(m|n)).
Given a representation π: gl(m|n)→ End(V ) of gl(m|n), we obtain a one-parameter family of

representations πζ : Y (gl(m|n))→ End(V ), ζ ∈ C, of Y (gl(m|n)) by

πζ
�
T (σ)
�
= I ⊗ idV +

ħh

σ− ζ

m+n∑

i, j=1

(−1)[ j]Ei j ⊗π(E ji) . (41)

This is known as the evaluation module for π, and ζ is called the inhomogeneity parameter. Note

that we have

πζ
�
(−1)[ j]T (1)ji

�
= π(Ei j) . (42)

For a representation π: gl(m|n)→ End(V ) of gl(m|n), let us define a one-parameter family of

representations πc : gl(m|n)→ End(V ), c ∈ C, by

πc(Ei j) = π(Ei j) + (−1)[i]cδi j idV . (43)

In the associated Yangian representations, the parameter c is related to a shift in the inhomogene-

ity parameter. Suppose that ρ : Y (gl(m|n)) → End(V ) is a representation of Y (gl(m|n)). Then,

ρ(T (σ)) satisfies the RTT equation, and for any function f of σ, the RTT equation is still satisfied

when ρ(T (σ)) is replaced by f (σ)ρ(T (σ)). Therefore, if f (σ) can be expanded in a power series

in σ−1 starting from 1, then f (σ)ρ(T (σ)) defines a new representation of Y (gl(m|n)). Since

πc
ζ

�
T (σ)
�
= πζ(T (σ)) +

cħh

σ− ζ
I ⊗ idV =

σ− ζ+ cħh

σ− ζ
πζ−cħh

�
T (σ)
�

, (44)

we see that πc
ζ

and πζ−cħh are related in this manner.

To construct tensor product representations of Y (gl(m|n)), we use the coproduct∆ : Y (gl(m|n))
→ Y (gl(m|n))⊗ Y (gl(m|n)). The map ∆ is defined by the formula

∆

�
T (σ)
�
=

m+n∑

i, j,k=1

(−1)([i]+[k])([k]+[ j])Ei j ⊗ Tik(σ)⊗ Tk j(σ) . (45)

Given two representations ρ1 : Y (gl(m|n))→ End(V1) and ρ2 : Y (gl(m|n))→ End(V2), the tensor

product representation ρ1⊗̇ρ2 : Y (gl(m|n))→ End(V1 ⊗ V2) is defined by

ρ1⊗̇ρ2 = (ρ1 ⊗ρ2) ◦∆ . (46)

A calculation shows that (ρ1⊗̇ρ2)(T (σ)) satisfies the RTT relation.

11
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2.2.3 The spin chain

Now, fix a positive integer L, and choose L highest weights

~λ= (λ1, . . . ,λL) (47)

of gl(m|n) and L inhomogeneity parameters

~ζ = (ζ1, . . . ,ζL) . (48)

Also, choose a diagonal element1 of GL(m|n):

g = diag(eφ1 , . . . , eφm+n) , φi ∈ C . (49)

We consider the closed rational gl(m|n) spin chain of length L, with the spin at the ℓth site valued in

the evaluation module M(λℓ)ζℓ for the Verma module M(λℓ) and the periodic boundary condition

twisted by g.

The Hilbert space of states of this spin chain is the tensor product

V~λ =
L⊗

ℓ=1

Vλℓ , (50)

and the L spins can be thought of as a single spin in the tensor product representation

M(~λ)~ζ = M(λ1)ζ1⊗̇ · · · ⊗̇M(λL)ζL . (51)

The transfer matrix of the spin chain

M(~λ)~ζ
�
t(g,σ)
�

(52)

generates commuting conserved charges acting on V~λ, making the spin chain integrable. The

Hamiltonian is a linear combination of these charges.

2.2.4 Bethe equations

The Hilbert space of the spin chain is spanned by vectors that simultaneously diagonalize the com-

muting conserved charges, or equivalently, diagonalize the transfer matrix (52) for all values of

the spectral parameter σ. These eigenvectors, referred to as Bethe vectors, are the main characters

from the Bethe side of the Bethe/gauge correspondence.

The Bethe vectors for the rational gl(m|n) spin chain have been constructed by Bethe ansatz

methods [29,30]. The construction starts with the highest-weight vector |Ω~λ〉 of the tensor product

representation

M(~λ) =
L⊗

ℓ=1

M(λℓ) . (53)

This state is called the pseudovacuum and satisfies

M(~λ)~ζ
�
Tii(σ)
�
|Ω~λ〉 =

� L∏

ℓ=1

σ− ζℓ + (−1)[i]λℓiħh

σ− ζℓ

�
|Ω~λ〉 , (54)

M(~λ)~ζ
�
Ti j(σ)
�
|Ω~λ〉 = 0 , i > j . (55)

1The spin chain can be defined for any choice of g , not necessarily diagonal ones. However, nondiagonalizable

choices of g do not appear to have a clear interpretation on the gauge theory side of the Bethe/gauge correspondence.

12
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According to our graphical notation, the pseudovacuum is represented by a diagram with no hor-

izontal segments:

|Ω~λ〉 =

λ3
1

λ3
2

λ3
3

λ3
4

λ3
5

λ2
1

λ2
2

λ2
3

λ2
4

λ2
5

λ1
1

λ1
2

λ1
3

λ1
4

λ1
5 (56)

Excited states are obtained from the pseudovacuum by the action of creation operators M(~λ)~ζ(Ti j(σ)),

i < j. The operator M(~λ)~ζ(Ti j(σ)) contains M(~λ)(E ji) and changes the gl(m|n)weight by ǫ j−ǫi = −αi−αi+1−· · ·−α j−1.

Roughly speaking, we can interpret this action as creating a single quasi-particle, or a magnon,

of rapidity σ and type r for each r = i, i + 1, . . . , j − 1. Graphically, we think of it as creating a

horizontal line connecting the ith and jth vertical lines:

T13(σ1)T25(σ2)T45(σ3)|Ω~λ〉 ∼

σ1 σ2

σ3 (57)

This is, however, not a precise correspondence because the left-hand side depends on the ordering

of creation operators.

The operator T ji(σ), i < j, changes the weight by αi+αi+1+· · ·+α j−1, so annihilates magnons

of type m = i, i + 1, . . . , j − 1. It removes one horizontal line from each of the intervals between

the ith and jth vertical lines. If there is no horizontal line to remove, then the state is annihilated.

Eigenvectors of the transfer matrix are excited states constructed by certain linear combina-

tions of creation operators. It turns out that a Bethe vector with the gl(m|n)weight (28) is specified

by a Bethe root

({σ1
1
, . . . ,σ

M1

1
}, {σ1

2
, . . . ,σ

M2

2
}, . . . , {σ1

m+n−1
, . . . ,σ

Mm+n−1

m+n−1
}) , (58)

which is a solution of the Bethe equations

eτr

m+n−1∏

s=1

Ms∏

bs=1

σ
ar
r −σ

bs
s +

1
2 arsħh

σ
ar
r −σ

bs
s −

1
2 arsħh

= (−1)δ[r],[r+1]

L∏

ℓ=1

σ
ar
r − ζ

ℓ + (−1)[r]λℓrħh−
1
2 crħh

σ
ar
r − ζℓ + (−1)[r+1]λℓr+1

ħh− 1
2 crħh

,

ar = 1, . . . , Mr , r = 1, . . . , m+ n− 1 . (59)

Here we have defined

τr = (−1)[r+1]φr+1 − (−1)[r]φr (60)

and

ci =

i∑

j=1

(−1)[ j] . (61)

13
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We represent this Bethe vector by a diagram with Mr horizontal lines between the rth and

(r + 1)st vertical lines, with labels {σ1
r , . . . ,σ

Mr
r }. Therefore, the diagram

σ1
1 σ1

3

σ2
4

σ1
4

σ1
2

σ2
2

λ3
1

λ3
2

λ3
3

λ3
4

λ3
5

λ2
1

λ2
2

λ2
3

λ2
4

λ2
5

λ1
1

λ1
2

λ1
3

λ1
4

λ1
5

(62)

represents a Bethe vector of the closed gl(3|2) rational spin chain of length L = 3 that be-

longs to the magnon sector (M1, M2, M3, M4) = (1,2,1,2) and corresponds to the Bethe root

({σ1
1}, {σ

1
2,σ2

2}, {σ
1
3}, {σ

1
4,σ2

4}).

Note that the Bethe equations are invariant under the shift

ζℓ 7→ ζℓ + cℓħh , λℓi 7→ λ
ℓ
i + (−1)[i]cℓ , cℓ ∈ C . (63)

This is a consequence of the relation (44) between a representation with shifted highest weight

and a representation with shifted inhomogeneity parameter. Since multiplying the transfer matrix

by a function of the spectral parameter does not change its eigenvectors, the Bethe equations

remain the same if we shift the highest weights and inhomogeneity parameters as above.

2.3 Gauge side

Now we turn to the gauge side of the Bethe/gauge correspondence. The closed rational gl(m|n)
spin chain discussed above corresponds to a family of two-dimensional N = (2,2) supersymmetric

gauge theories whose field contents are described by quivers. These theories have supersymmetric

vacua that are in one-to-one correspondence with the Bethe vectors of the spin chain. For back-

ground knowledge on N = (2,2) supersymmetric gauge theories, we refer the reader to [31].

2.3.1 The gauge theories

The magnon sectors of the spin chain (the weight spaces of the Hilbert space (50)) are labeled by

(m+ n− 1)-tuples of nonnegative integers. The sector with magnon numbers (M1, . . . , Mm+n−1)

corresponds to a theory with the product gauge group

U(M1)× · · · ×U(Mm+n−1) . (64)

Correspondingly, the theory has vector multiplets Vr , r = 1, . . . , m+ n− 1, one for each unitary

gauge group factor.

In addition, the theory has various chiral multiplets. If [r] = [r + 1], then there is one chiral

multiplet transforming in the adjoint representation of U(Mr):
2

φr ∈ Hom(CMr ,CMr ) , [r] = [r + 1] , r = 1, . . . , m+ n− 1 . (65)

2Here and thereafter, statements about fields such as the one that follows only indicate the representations in which

they are valued.
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There are also chiral multiplets

Pi ∈ Hom(CMi−1 ,CMi ) , i = 2, . . . , m+ n− 1 , (66)

ePi ∈ Hom(CMi ,CMi−1) , i = 2, . . . , m+ n− 1 , (67)

Qi ∈ Hom(CL,CMi−1) , i = 2, . . . , m+ n , (68)

eQi ∈ Hom(CMi ,CL) , i = 1, . . . , m+ n− 1 . (69)

It is convenient to introduce the notations

φr = 0 , [r] 6= [r + 1] , (70)

and

P1 =
eP1 = Pm+n =
ePm+n =Q1 =
eQm+n = 0 . (71)

These chiral multiplets are coupled by the superpotential

W =
m+n−1∑

r=1

trCMr

�
φr
ePr+1Pr+1 −φrPr

ePr +PrQr
eQr

+
�
(−1)[r] − (−1)[r+1]

�ePr+1Pr+1Pr
ePr

�
. (72)

The terms involving adjoint chiral multiplets are the cubic superpotentials required for N = (4,4)

supersymmetry, which the theory possesses if either m = 0 or n = 0. The last quartic terms are

present only for the gauge group factors without adjoint chiral multiplets [32].3

The field content of the theory can be encoded in a quiver diagram. This is the same quiver

as the one that specifies a weight in the tensor product of L Verma modules of gl(m|n). Here is

the quiver for the now-familiar gl(3|2) example, with the arrows labeled with the corresponding

chiral multiplets:

eP2

P2

eP3

P3

eP4

P4

φ1 φ3

eQ1 Q2 eQ2
Q3 eQ3

Q4 eQ4 Q5

M1 M2 M3 M4

L L L L L

(73)

A circle node labeled M is a U(M) gauge group. The theory has m+n copies of U(L) flavor groups,

denoted here by square nodes. We name them U(L)1, U(L)2, . . . , U(L)m+n from left to right. The

terms in the superpotential (72) correspond to closed paths of length three and four in the quiver.

Apart from the U(L)m+n flavor symmetry, the theory has an important U(1) global symmetry

preserved by the superpotential. We call it U(1)ħh. The charges of the chiral multiplets under U(1)ħh

3The quartic terms can be understood as follows. Suppose that [r] 6= [r + 1], say [r] = 0 and [r + 1] = 1, and

introduce a pair of chiral multiplets φ±r in the adjoint representation of U(Mr). These multiplets are massive and couple

with bifundamental chiral multiplets via superpotential terms of the form trCMr (φ
−
r
ePr+1Pr+1 − φ+r Pr

ePr + mφ+r φ
−
r ).

Integrating out φ±r , we get the quartic term. From the point of view of the brane construction discussed in section 3.1,

we imagine the situation in which NS5r and NS5r+1 are almost orthogonal but not quite. The adjoint chiral multiplets

φ±r correspond to the positions of D2-branes along R2
±ħh.
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are

φr : 2(−1)[r] , (74)

Pi : − (−1)[i] , (75)

ePi : − (−1)[i] , (76)

Qi :
1

2
(−1)[i] , (77)

eQi :
1

2
(−1)[i] . (78)

For φr and Pi ,
ePi , their charges coincide with the corresponding Cartan matrix elements.

Most parameters of the spin chain correspond in the gauge theory to the twisted masses with

respect to the global symmetry U(L)m+n ×U(1)ħh. We can turn on the twisted masses as follows.

First, we couple vector multiplets for U(L)m+n×U(1)ħh to the chiral multiplets and gauge the global

symmetry. Then, we give vacuum expectation values to the adjoint scalar fields in these vector

multiplets. Finally, we take the limit in which the gauge couplings for U(L)m+n×U(1)ħh go to zero,

thereby freezing the vector multiplets just added. The vacuum expectation values of the scalar

fields appear as complex mass parameters for the chiral multiplets, which are the twisted masses

in question.

To the scalar field for U(L)i , we give the vacuum expectation value

diag(µ1
i , . . . ,µL

i ) . (79)

This yields twisted masses −µℓi to Qi and +µℓi to eQi. To the scalar field for U(1)ħh, we give the

vacuum expectation value ħh/2. This yields a twisted mass qħh/2 to a chiral multiplet that has

charge q under U(1)ħh. To summarize, the twisted masses of the chiral multiplets are

(φr)
ar

br
: (−1)[r]ħh , (80)

(Pi)
ai

bi−1
: −

1

2
(−1)[i]ħh , (81)

(ePi)
ai−1

bi
: −

1

2
(−1)[i]ħh , (82)

(Qi)
ai−1
ℓ : −µ

ℓ
i +

1

4
(−1)[i]ħh , (83)

(eQi)
ℓ

ai
: +µℓi +

1

4
(−1)[i]ħh . (84)

Lastly, we need FI parameters and theta angles in order to account for the twist parameters

for the periodic boundary condition of the spin chain. To do so, from each vector multiplet Vr we

construct an adjoint twisted chiral multiplet Σr whose lowest component is the vector multiplet

scalar σr . Then, we choose complexified FI parameters

t1, . . . , tm+n−1 ∈ C/2πiZ , (85)

and turn on the twisted superpotential

fW = −
m+n−1∑

r=1

tr trΣr . (86)

The real and imaginary parts of tr are related to the FI parameter rr and the theta angle θr for

U(Mr) as tr = rr − iθr .
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2.3.2 Vacuum equations

We are interested in the vacua of this theory when it is defined on a periodic space. For N = (2,2)

supersymmetric gauge theories, the exact low-energy effective descriptions are known and we can

use these descriptions to determine their vacua. See [31] for detailed discussions in the abelian

case. Nonabelian examples are treated in [33].

Let Σ
ar
r , ar = 1, . . . , Mr , be the diagonal components of Σr , and let Σ and σ collectively denote

{Σ
ar
r } and their scalar components {σ

ar
r }, respectively.

If the fields σ take generic large values and are slowly varying, the chiral multiplets and the

off-diagonal components of the vector multiplets (or equivalently the corresponding twisted chiral

multiplets) can be considered as having large masses due to higgsing. Their masses are

(Σr)
ar

br
: σar

r −σ
br
r , (87)

(φr)
ar

br
: σar

r −σ
br
r + (−1)[r]ħh , (88)

(Pi)
ai

bi−1
: σ

ai
i −σ

bi−1

i−1
−

1

2
(−1)[i]ħh , (89)

(ePi)
ai−1

bi
: σ

ai−1

i−1
−σ

bi
i −

1

2
(−1)[i]ħh , (90)

(Qi)
ai−1
ℓ : σ

ai−1

i−1
−µℓi +

1

4
(−1)[i]ħh , (91)

(eQi)
ℓ

ai
: µℓi −σ

ai
i +

1

4
(−1)[i]ħh , (92)

where ar , br are indices for the U(Mr) gauge group factor. After integrating out these heavy fields,

we are left with an effective description of the theory that involves only Σ.

The effective theory is determined solely by a single holomorphic function of σ, the effective
twisted superpotential fWeff, and it can be calculated exactly at one-loop order. Integrating out a

chiral multiplet whose mass due to the higgsing is m(σ) contributes to fWeff(σ) by the term

−m(σ)
�
log m(σ)− 1
�

. (93)

An off-diagonal component of a vector multiplet also contributes in the same way [34]. Integrating

out high-energy modes of Σ does not alter the form of fWeff [31].

The vacua of the theory are the solutions of the vacuum equations

exp

�
∂fWeff(σ)

∂ σ
ar
r

�
= 1 , ar = 1, . . . , Mr , r = 1, . . . , m+ n− 1 . (94)

These equations are invariant under shifts of the exponent by integer multiples of 2πi, reflecting

the fact that the imaginary part of the exponent is the effective theta angle. In the case at hand,

the vacuum equations read

etr (−1)Mr+1

� Mr∏

br=1

σ
ar
r −σ

br
r + (−1)[r]ħh

σ
br
r −σ

ar
r + (−1)[r]ħh

�δ[r],[r+1] L∏

ℓ=1

σ
ar
r −µ

ℓ
r+1 +

1
4 (−1)[r+1]

ħh

µℓr −σ
ar
r +

1
4 (−1)[r]ħh

×

Mr−1∏

br−1=1

σ
ar
r −σ

br−1

r−1
− 1

2(−1)[r]ħh

σ
br−1

r−1
−σ

ar
r −

1
2(−1)[r]ħh

Mr+1∏

br+1=1

σ
ar
r −σ

br+1

r+1
− 1

2 (−1)[r+1]
ħh

σ
br+1

r+1
−σ

ar
r −

1
2 (−1)[r+1]ħh

= 1 ,

ar = 1, . . . , Mr , r = 1, . . . , m+ n− 1 , (95)
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with M0 = Mm+n = 0. The factor etr comes from the tree-level twisted superpotential (86), and

the factor (−1)Mr+1 comes from the off-diagonal components of the vector multiplets. Using the

Cartan matrix (14), we can rewrite these equations as

eτr

m+n−1∏

s=1

Ms∏

bs=1

σ
ar
r −σ

bs
s +

1
2 arsħh

σ
ar
r −σ

bs
s −

1
2 arsħh

L∏

ℓ=1

σ
ar
r − µ

ℓ
r+1 +

1
4(−1)[r+1]

ħh

σ
ar
r −µℓr −

1
4(−1)[r]ħh

= (−1)δ[r],[r+1] , (96)

where

τr = tr + iπ
�
(1−δ[r],[r+1])(Mr + 1) +Mr−1 +Mr+1 + L

�
. (97)

2.3.3 Twisted chiral ring

The above two-dimensional gauge theory has N = (2,2) supersymmetry, generated by four su-

percharges Q±, Q±. Under a vector U(1) R-symmetry, Q± and Q± have charges +1 and −1, while

under an axial U(1) R-symmetry, Q+, Q− have charge +1 and Q−, Q+ have charge −1. The theory

is unitary and the supercharges satisfy the reality conditions Q∗± = Q±. It turns out that the the-

ory has unbroken vector U(1) R-symmetries, and this fact implies the absence of certain central

charges Z , Z∗ in the N = (2,2) supersymmetry algebra.

The linear combination Q = Q+ +Q− satisfies

Q2 = eZ , (98)

with eZ being another central charge. In the gauge theory that we are considering,

eZ = ħhFħh +
m+n∑

i=1

L∑

ℓ=1

µℓi Fℓi , (99)

where Fħh is the generator of U(1)ħh and Fℓi , ℓ = 1, . . . , L, are the generators of the maximal torus

of U(L)i . Since Q squares to zero in the sector in which eZ = 0, we can define the Q-cohomology

in the space of eZ -invariant states and in the algebra of eZ-invariant operators. The subalgebra of

the latter consisting of the elements represented by local operators is the twisted chiral ring of the

theory.

The N = (2,2) supersymmetry algebra with Z = Z∗ = 0 says that the Hamiltonian H satisfies

{Q,Q∗} = 2H. Therefore, H is positive semidefinite and vacuum states are annihilated by Q and

Q∗. In particular, vacua have eZ = 0. According to Hodge theory, the Q-cohomology of states is

isomorphic to the space of vacua.

Besides the Hamiltonian, the momentum P is also Q-exact: {Q,Q+−Q−} = 2P. It follows that

translations act trivially in the Q-cohomology. In particular, the twisted chiral ring is commutative

since we can switch the order of two local Q-cohomology classes along the time axis by moving

them around continuously inside the two-dimensional spacetime.

In fact, for the theory considered here, not just the Hamiltonian and the momentum but the

entire stress tensor is Q-exact. As a consequence, the Q-cohomology of states and the twisted

chiral ring are topological, and there is a state–operator correspondence between them: the two

are isomorphic as vector spaces.

Being topological, the twisted chiral ring can be computed in the effective theory. As a vector

space, it is the space of polynomials in the scalar fields {σ
ar
r }modulo the action of the Weyl group

of the gauge group and the relations imposed by the vacuum equations (96). On a vacuum state,

specified by a solution of the vacuum equations, an element of the twisted chiral ring acts by

evaluation on the solution. Therefore, a vacuum is a simultaneous eigenstate of the elements of

the twisted chiral ring.
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2.4 The correspondence

The Bethe equations (59) and the vacuum equations (96) coincide under the identification

µℓi = ζ
ℓ − (−1)[i]
�
λℓi +

1

4

�
ħh+

1

2
ciħh , (100)

together with the obvious identification between parameters for which we have been using the

same symbols. (We are measuring twisted masses in an appropriate unit so that they are numbers

here.)

Thus, the vacua of the gauge theory are identified with the Bethe vectors of the corresponding

magnon sector of the spin chain. Under this identification, the elements of the twisted chiral ring

are identified with the commuting conserved charges of the spin chain. This is the statement of

the Bethe/gauge correspondence.

One conclusion we can immediately draw from the Bethe/gauge correspondence is that the

gauge theory has no supersymmetric vacuum unless the assignment (M1, . . . , Mm+n−1) of the ranks

of the unitary gauge groups corresponds to a weight of M(λ1) ⊗ · · · ⊗ M(λL). For example, for

(m|n) = (1|1), supersymmetry is broken if and only if

M1 > L (101)

because the fermionic lowering operator can be applied at most L times, at which point all

spin sites are occupied by fermionic excitations. This is consistent with the known result that

supersymmetry is broken in a two-dimensional N = (2,2) supersymmetric gauge theory with

gauge group U(M), L f fundamental chiral multiplets and La antifundamental chiral multiplets if

M >max(L f , La) [35].

3 String theory realization of the Bethe/gauge correspondence

Although we have presented the Bethe/gauge correspondence for noncompact rational gl(m|n)
superspin chains, we have not yet explained why such a correspondence should exist. In this

section we provide an explanation using string theory.

We will discuss how to construct the vacua of the relevant gauge theories using branes, and

how to map these brane configurations to other ones that realize configurations of line defects

in four-dimensional Chern–Simons theory with gauge group G = GL(m|n). The emergence of

integrable spin chains is understood naturally in the latter setup.

Moreover, we will give an explanation of fermionic dualities known in the literature of inte-

grable superspin chains.

3.1 Brane construction of the gauge theory vacua

The gauge theory and its vacua described in sections 2.3 can be constructed with branes in string

theory. In fact, we have already represented the corresponding Bethe vectors graphically in a way

that makes the connection to the brane construction transparent.

3.1.1 Semiclassical type IIA configuration

The construction uses NS5-branes

NS5i , i = 1, . . . , m+ n , (102)
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D4-branes

D4ℓi , i = 1, . . . , m+ n, ℓ = 1, . . . , L , (103)

and D2-branes

D2ar
r , r = 1, . . . , m+ n− 1, ar = 1, . . . , Mr , (104)

in type IIA superstring theory. The indices i and r are Z2-graded as before.

First, let us consider the case in which all FI parameters are zero. In this case, a semiclassical

brane configuration for a vacuum state of the gauge theory is summarized as follows:

Spacetime: R × Š1 × C × RX × RY × R2
+ħh × R

2
−ħh

NS5i ([i] = 0̄): R × Š1 × C × {X i} × {Yi} × R
2
+ħh × {0}

NS5i ([i] = 1̄): R × Š1 × C × {X i} × {Yi} × {0} × R
2
−ħh

D4ℓi ([i] = 0̄): R × Š1 × {µℓi } × {X i} × [Yi ,∞) × R
2
+ħh × {0}

D4ℓi ([i] = 1̄): R × Š1 × {µℓi } × {X i} × [Yi ,∞) × {0} × R
2
−ħh

D2
ar
r : R × Š1 × {σ

ar
r } × [X r , X r+1] × {eYr} × {0} × {0}

(105)

In the spacetime, Š1 is a circle, RX and RY are lines, and R2
+ħh and R2

−ħh are planes. Corresponding

to the vanishing FI parameters, we have

Yi = eYr = 0 (106)

for all i and r.

All of these branes wrap the cylinder R× Š1, which is the spacetime of the gauge theory. The

branes NS5i and D4ℓi extend over R2
(−1)[i]ħh

and are located at the origin of R2

(−1)[i]+1̄ħh
. Moreover,

NS5i extends overC, whereas D4ℓi extends alongRX and ends on NS5i. AlongRX , the NS5-branes

are ordered according to the ordered basis of Cm|n specifying the Dynkin diagram of gl(m|n):

X1 < X2 < · · ·< Xm+n . (107)

The graphical representation (62) for a Bethe vector can be reinterpreted as the above brane

configuration. In that picture, the vertical direction is the direction of C and the horizontal direc-

tion is RX ; the vertical lines are the NS5-branes. The diagonal lines ending on the vertical ones

are the D4-branes. The horizontal line segments between the rth and (r + 1)st vertical lines are

the D2-branes D2
ar
r , ar = 1, . . . , Mr , suspended between the two NS5-branes:

RX

C

RY

D21
1 D21

3

D22
4

D21
4

D21
2

D22
2

λ3
1

λ3
2

λ3
3

λ3
4

λ3
5

λ2
1

λ2
2

λ2
3

λ2
4

λ2
5

λ1
1

λ1
2

λ1
3

λ1
4

λ1
5

(108)

Strings stretched between D2
ar
r and D2

br
r produce the components (Vr)

ar
br

and (Vr)
br

ar
of the

vector multiplet Vr for the gauge group factor U(Mr). The D2-branes can move along C, and the

position of D2
ar
r in C determines the scalar field σ

ar
r of the twisted chiral multiplet Σ

ar
r .

If [r] = [r + 1], the D2-branes suspended between NS5r and NS5r+1 can also move along

R
2
(−1)[r]ħh

, over which the two NS5-branes extend. Accordingly, in this case strings with both ends
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attached on these D2-branes give rise to an additional chiral multiplet, namely the adjoint chiral

multiplet φr . The positions of the D2-branes in R2
(−1)[r]ħh

are the diagonal components of the scalar

field in φr .

Strings stretched between D2
ar−1

r−1
and D2

br
r yield the components (Pr)ar−1

br and (ePr)
br

ar−1
of

the bifundamental chiral multiplets between U(Mr−1) and U(Mr). Strings from D2
ai
i to D4ℓi are

responsible for (eQi)
ℓ

ai
and those from D4ℓi to D2

ai−1

i−1
give (Qi)

ai−1
ℓ.

Various parameters of the gauge theory are identified as follows. The gauge coupling for U(Mr)

is
p

gs/ls(X r+1 − X r), where gs is the string coupling and ls is the string length. The position of

D4ℓi in C determines the twisted mass µℓi . The FI parameter for U(Mr ) is (Yr+1 − Yr)/gs ls, while

the theta angle is given by the difference in the periodic scalars on NS5r and NS5r+1 (up to a shift

by iπ which we will explain shortly). Since we are taking Yi = 0 for all i, all FI parameters are

zero. Introducing the twisted masses proportional to ħh requires turning on a nontrivial B-field.

For the moment we take ħh = 0.

The rotation symmetry of the directions orthogonal to the D2-brane worldvolumes becomes a

global symmetry of the gauge theory. The rotation symmetry U(1)C of C is an axial R-symmetry,

under which the vector multiplet scalars have charge 2. The rotation symmetries U(1)
R

2
±ħh

of

R
2
±ħh are vector R-symmetries. The adjoint chiral multiplet φr has charge (2,0) or (0,2) under

U(1)
R

2
+ħh
×U(1)

R
2
−ħh

, depending on whether [r] = 0̄ or 1̄.

Now, let us turn on FI parameters by displacing the NS5-branes alongRY by different amounts.

As we vary their positions, the D2-branes suspended between them get rotated in RX × RY by

various angles. Such a configuration no longer preserves supersymmetry. If the twisted masses

are generic, the D2-branes cannot stretch between D4-branes without breaking supersymmetry

either. Moreover, if Mr > L and [r] 6= [r + 1], suspending Mr D2-branes between NS5r and the

L D4-branes ending on NS5r+1 (or between NS5r+1 and the L D4-branes ending on NS5r) breaks

supersymmetry by the s-rule. It appears that there are no supersymmetric vacua for generic FI

parameters, twisted masses and magnon numbers.

This analysis is semiclassical, however. Quantum mechanically, D4-branes bend NS5-branes

on which they end and the conclusion is altered.

3.1.2 Lift to M-theory

Important aspects of the quantum corrections to the above brane configuration can be understood

by uplift to M-theory. The M-theory spacetime contains an additional compact direction S1
M. Let

ϑ be its coordinate with period 2π, and introduce a complex coordinate Y + iϑ for the cylinder

RY × S1
M. Further introducing w = e−(Y+iϑ), we map the cylinder to the punctured complex plane

C
×.

All NS5-branes and D4-branes are lifted to M5-branes in M-theory. For each i, NS5i and D4ℓi ,

ℓ = 1, . . . , L, merge into a single M5-brane M5i, wrapping a Riemann surface Σi in C×C×. The

D2-brane D2
ar
r is lifted to an M2-brane M2

ar
r stretched between M5r and M5r+1. Hence, the brane

configuration in M-theory is as follows:

Spacetime: R × Š1 × C×C× × RX × R2
+ħh × R

2
−ħh

M5i ([i] = 0̄): R × Š1 × Σi × {X i} × R2
+ħh × {0}

M5i ([i] = 1̄): R × Š1 × Σi × {X i} × {0} × R2
−ħh

M2
ar
r : R × Š1 × {(σ

ar
r , war

r )} × [X r , X r+1] × {0} × {0}

(109)
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In terms of the coordinates (z, w) of C×C×, the Riemann surface Σi is defined by the equation

w= qi

L∏

ℓ=1

(z −µℓi ) , (110)

where qi is a constant. The zero of w at z = µℓi describes D4ℓi , which extends to +∞ in RY .

If Σr and Σr+1 intersect in C × C×, then M2
ar
r can be placed at an intersection point so that its

worldvolume is orthogonal to the M5-branes.

Therefore, the M2-branes can be suspended between the M5-branes in a manner that preserves

supersymmetry if M2
ar
r is placed at z = σar

r and the coordinate σ
ar
r , for each r and ar , satisfies

the condition

qr

L∏

ℓ=1

(σar
r −µ

ℓ
r) = wr = qr+1

L∏

ℓ=1

(σar
r −µ

ℓ
r+1
) . (111)

Comparing these equations with the vacuum equations (96) for ħh= 0,

eτr

L∏

ℓ=1

σ
ar
r −µ

ℓ
r+1

σ
ar
r −µℓr

= (−1)δ[r],[r+1] , (112)

we see that they coincide if we identify

(−1)δ[r],[r+1] eτr =
qr+1

qr
. (113)

Since ϑi = (−1)[i] arg qi is the classical value of the periodic scalar field on NS5i , the difference

(−1)[r+1]ϑr+1 − (−1)[r]ϑr is indeed equal to θr , up to a shift by iπ.

3.1.3 Turning on ħh

Finally, we explain how to make ħh 6= 0. The global symmetry U(1)ħh is the antidiagonal subgroup

of U(1)
R

2
+ħh
×U(1)

R
2
−ħh

. To turn on the twisted masses for U(1)ħh, we follow the fluxtrap procedure

[36,37]. This is done as follows.

First, we compactify C to a torus T 2 ∼= C/(R1Z + iR2Z) in the type IIA setup and apply T-

duality on both directions of T 2. The D2-branes become D4-branes wrapping the dual torus

Ť 2 ∼= C/(Ř1Z + iŘ2Z). Next, we twist the product between Ť 2 and R2
+ħh × R

2
−ħh by the action

of U(1)ħh. (More precisely, we replace Ť 2 × R2
+ħh × R

2
−ħh with the quotient of C × R2

+ħh × R
2
−ħh such

that translations on C by Ř1 and iŘ2 are accompanied by the action of the elements exp(Reħh) and

exp(Imħh) of U(1)ħh, respectively.) Last, we apply T-duality on Ť 2 and decompactify T 2 to C by

taking R1, R2 → ∞. This last T-duality yields a certain B-field due to the twist in the product

between Ť 2 and R2
+ħh ×R

2
−ħh introduced earlier.

From the point of view of the gauge theory, the first step amounts to lifting the two-dimensional

theory on R× Š1 to a four-dimensional theory on R× Š1 × Ť 2. Then, the second step turns on a

holonomy for the background gauge field for U(1)ħh. The last step dimensionally reduces the four-

dimensional theory back to two dimensions. Since the components of a four-dimensional gauge

field along Ť 2 become the complex scalar field for the corresponding two-dimensional gauge field,

this procedure induces the twisted masses for U(1)ħh.
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3.2 Four-dimensional Chern–Simons theory

We can convert the brane configuration (105) to a configuration realizing line defects in four-

dimensional Chern–Simons theory with gauge group GL(m|n). To do so, we apply T-duality along

Š1 and then S-duality.

Under these dualities, Š1 is mapped to the dual circle S1, the NS5-branes are mapped to D5-

branes, the D4-branes are mapped to D3-branes, and the D2-branes are mapped to F1-branes

(fundamental strings). Thus we obtain the following type IIB setup:

Spacetime: R × S1 × C × RX × RY × R2
+ħh × R

2
−ħh

D5i ([i] = 0̄): R × S1 × C × {X i} × {Yi} × R
2
+ħh × {0}

D5i ([i] = 1̄): R × S1 × C × {X i} × {Yi} × {0} × R
2
−ħh

D3ℓi ([i] = 0̄): R × {yℓi } × {µ
ℓ
i } × {X i} × [Yi,∞) × R

2
+ħh × {0}

D3ℓi ([i] = 1̄): R × {yℓi } × {µ
ℓ
i } × {X i} × [Yi,∞) × {0} × R

2
−ħh

F1
ar
r : R × { ỹar

r } × {σ
ar
r } × [X r , X r+1] × {eYr} × {0} × {0}

(114)

The positions of the D3-branes and the F1-branes on S1 are given by the holonomies around Š1

of the gauge fields on their counterparts in the type IIA setup. The B-field inducing the twisted

masses for U(1)ħh becomes a Ramond–Ramond (RR) two-form field in the new setup.

As in the two-dimensional theory discussed before, the vacuum sector of the theory on the

D5-branes, with R taken to be the time direction, is captured by the cohomology with respect to a

certain supercharge. This supercharge is dual to the supercharge Q of the two-dimensional theory,

and we will use the same symbol to denote it.

We claim that the Q-invariant sector of the theory, which governs the Q-cohomology, is equiv-

alent to four-dimensional Chern–Simons theory with gauge group GL(m|n).
Before demonstrating this equivalence, let us remark that related brane constructions have

appeared in the literature.4 In [41], Mikhaylov and Witten gave a brane construction of three-

dimensional Chern–Simons theory with gauge group GL(m|n), extending the construction for

gauge group GL(m) given in [43]. Their construction uses m D4-branes and n D4-branes end-

ing on an NS5-brane from opposite sides. The supergroup Chern–Simons theory appears at the

intersection of the three kinds of branes. In [39], a construction of four-dimensional Chern–

Simons theory with gauge group GL(m) was proposed. In this construction, m D4-branes end on

an NS5-brane.

3.2.1 Case with m = 0 or n= 0

In the case in which all D5-branes are of even type (n= 0) or of odd type (m = 0), the result just

described was derived in [16]. Let us briefly review the derivation in [16].

4To relate these brane constructions to ours, we endow R2
+ħh×R

2
−ħh with a Taub–NUT metric. (The Q-invariant sector

is independent of the choice of metric as long as it preserves the rotational symmetries of R2
+ħh and R2

−ħh.) If we regard

the Taub–NUT space as a circle fibration over R3, then R2
+ħh × {0} and {0} × R2

−ħh are two semi-infinite cigar-shaped

subspaces extending in the opposite directions such that their tips touch at the origin of R3; see [38], appendix B.

T-duality in the direction of the circle fibers produces an NS5-brane which sits at the origin of R3 and extends in the

directions transverse to the Taub–NUT space. The D5-branes wrapping the two cigars are turned into D4-branes ending

on the NS5-brane from two sides. Considering the case with n = 0, we reproduce the construction of [39]. The field

theory counterpart of this T-duality was analyzed in [40]. From the D4–NS5 brane configuration we obtain the brane

configuration of [41], roughly speaking, by further replacing C with a cylinder, taking T-duality in the circumferential

direction of the cylinder, and decompactifying the dual cylinder. (Such T-duality was considered in [42].)

23



SciPost Physics Submission

For n = 0, the worldvolume theory on the D5-branes is a deformation of six-dimensional

N = (1,1) super Yang–Mills theory with gauge group U(m), placed on R × S1 × C × R2
+ħh. The

deformation is what is often called an Ω-deformation and controlled by ħh: we have

Q2 = ħhFħh , (115)

where Fħh is the generator of U(1)ħh. (Here we are considering the situation in which there are

no D3-branes, hence no U(L) flavor symmetries.) In the six-dimensional theory, U(1)ħh is the

antidiagonal subgroup of the rotation group U(1)
R

2
+ħh

on R2
+ħh and the subgroup U(1)

R
2
−ħh

of the

R-symmetry group Spin(4) coming from the rotation symmetry of R2
−ħh.

Six-dimensional (Euclidean) N = (1,1) super Yang–Mills theory on R× S1×C×R2
+ħh reduces

to two-dimensional N = (8,8) super Yang–Mills theory on R2
+ħh by dimensional reduction. In

the undeformed case (when ħh = 0), the supercharge Q belongs to an N = (2,2) subalgebra

of the N = (8,8) supersymmetry algebra. Accordingly, N = (1,1) super Yang–Mills theory on

R× S1 ×C×R2
+ħh may be thought of as an N = (2,2) supersymmetric gauge theory on R2

+ħh, with

infinite-dimensional target space and gauge group. The Ω-deformation of the six-dimensional

theory induces an Ω-deformation of the two-dimensional theory.

In general, the Q-invariant sector of an Ω-deformed N = (2,2) supersymmetric gauge theory

on R2 is equivalent to a zero-dimensional theory [16, 23, 24]. Let G be the gauge group of the

theory and GC be its complexification. By N = (2,2) supersymmetry, the chiral multiplets take

values in a Kähler manifold X with GC-action. The superpotential is a GC-invariant holomorphic

function W on X . The path integral with insertion of Q-invariant observables localizes to a GC-

invariant submanifold γ of X . This submanifold is essentially a Lefschetz thimble: γ is the union

of all gradient flows generated by the real part of W/ħh, terminating on the GC-orbit of a chosen

critical point of W. (For simplicity, we assume that the critical points of W are nondegenerate up

to the GC-action.) The localized path integral takes the form

∫

γ/GC

exp

�
2π

ħh
W

�
O , (116)

where O descends from the Q-invariant observables inserted in the path integral. This is the path

integral for a zero-dimensional gauge theory with gauge group GC and target space γ. The action

functional is −2πW/ħh.

The remarkable aspect of this localization phenomenon is that the gauge group gets complexi-

fied. In the localization process, some fermionic fields have zero modes. They may be regarded as

ghost fields for partial gauge fixing that breaks GC down to G. Even though the action functional

is holomorphic and its real part is not bounded from below, the integral (116) can converge since

Re(W/ħh) gets smaller and smaller along the backward gradient flows in γ.

For the six-dimensional N = (1,1) super Yang–Mills theory on R× S1 ×C × R2
+ħh, the gauge

group G is the space of maps fromR×S1×C to U(m). In addition to the vector multiplet, the theory

has three chiral multiplets in the adjoint representation of G. Their scalar fields are Q-invariant

and can be combined into a one-form on R× S1 ×C:

A= (Ax + iX )dx + (Ay + iY )dy + Az̄ dz̄ . (117)

Here, Ax , Ay are the components of the gauge field along R× S1, Az̄ is the antiholomorphic com-

ponent of the gauge field along C, and X , Y are two of the four scalar fields of the six-dimensional
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theory associated to motions along RX and RY , respectively. The superpotential is given by

W = −
i

e2

∫

R×S1×C

dz ∧ tr

�
A∧ dA+

2

3
A∧A∧A

�
, (118)

where e is the gauge coupling and tr is an invariant symmetric bilinear form on the Lie algebra of

U(m), which we can take to be the trace in the defining representation.

According to the localization argument, the Ω-deformation of the six-dimensional theory is

equivalent to a zero-dimensional gauge theory. This zero-dimensional theory has infinite-dimensional

target space and gauge group, and can be more naturally interpreted as a four-dimensional gauge

theory. Its action is

−
2πi

ħhe2

∫

Σ×C

dz ∧ trCm

�
A00 ∧ dA00 +

2

3
A00 ∧A00 ∧A00

�
. (119)

Here, we have written the partial gl(m) connection (117) as A00 to emphasize its place in the

Lie superalgebra gl(m|n) that will arise later. This is the action for four-dimensional Chern–

Simons theory. Thus we conclude that the Q-invariant sector of the Ω-deformed six-dimensional

N = (1,1) super Yang–Mills theory on R × S1 × C × R2
+ħh with gauge group U(m) is equivalent

to four-dimensional Chern–Simons theory on R× S1 ×C with gauge group GL(m) and coupling

given by ħh.

Similarly, if we consider the case m = 0, the worldvolume theory on the D5-branes is an Ω-

deformed six-dimensionalN = (1,1) super Yang–Mills theory onR×S1×C×R2
−ħh with gauge group

U(n). Its Q-invariant sector is equivalent to four-dimensional Chern–Simons theory on R×S1×C

with gauge group GL(n) and action

+
2πi

ħhe2

∫

R×S1×C

dz ∧ trCn

�
A11 ∧ dA11 +

2

3
A11 ∧A11 ∧A11

�
, (120)

with the partial gl(n) connection A11 defined in the same way as A00.

3.2.2 Case with nonzero m and n

Let us turn to the case in which m and n are both nonzero. In this case, the two sets of D5-branes

lead to two copies of four-dimensional Chern–Simons theory on R×S1×C, one with gauge group

GL(m) and the other with gauge group GL(n), with opposite couplings. Arranging A00 and A11

into a matrix

A0 =

�
A00 0

0 A11

�
, (121)

we can write the sum of their action functionals as

−
2πi

ħhe2

∫

R×S1×C

dz ∧ strCm|n

�
A0 ∧ dA0 +

2

3
A0 ∧A0 ∧A0

�
. (122)

The two copies are coupled through strings stretched between the two sets of D5-branes. These

strings produce a four-dimensional N = 2 hypermultiplet on R × S1 × C in the bifundamental
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representation of GL(m)×GL(n). It consists of bosonic complex scalars

q ∈ Hom(Cm,Cn) , (123)

q̃† ∈ Hom(Cm,Cn) , (124)

q† ∈ Hom(Cn,Cm) , (125)

q̃ ∈ Hom(Cn,Cm) , (126)

and fermionic Weyl spinors

ψ ∈ Hom(Cm,Cn) , (127)

ψ̃† ∈ Hom(Cm,Cn) , (128)

ψ† ∈ Hom(Cn,Cm) , (129)

ψ̃ ∈ Hom(Cn,Cm) . (130)

In the absence of coupling to the two copies of four-dimensional Chern–Simons theory, the

bifundamental hypermultiplet preserves eight supercharges. The supercharge Q is a linear com-

bination of these supercharges such that the generators of translations on R × S1 and antiholo-

morphic translations on C are Q-exact. By redefining fields if necessary, we can take Q to be the

supercharge used in the holomorphic–topological twist studied in [44], with the parameter t = i.
It turns out that most of the action for the hypermultiplet is Q-exact. The remaining part of

the action can be expressed in a suggestive form. Endow the cylinder R × S1 with a complex

coordinate w, and define

A10 = −ψ̃†
−dw+ψ−dw̄−

1

2
(ψ̃†
+ −ψ+)dz̄ , (131)

A01 =ψ†
−dw+ ψ̃−dw̄+

1

2
(ψ̃†
+ +ψ

†
+)dz̄ (132)

and

c10 = 4iq† , (133)

c01 = 4q̃† , (134)

b10 = q̃ , (135)

b01 = −iq , (136)

B10 = i(ψ̃+ −ψ
†
+) , (137)

B01 = −i(ψ+ + ψ̃
†
+) . (138)

We introduce a matrix

A1 =

�
0 A01

A10 0

�
(139)

and matrices c1, b1, B1 defined likewise. On these matrices Q acts by

Q ·A1 = −d′c1 , (140)

Q · c1 = 0 , (141)

Q · b1 = B1 , (142)

Q · B1 = 0 , (143)
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where

d′ = d− dz ∂z = dw∂w + dw̄∂w̄ + dz̄ ∂z̄ . (144)

The non-Q-exact part of the action is

−
2πi

ħhe2

∫

R×S1×C

dz ∧ strCm|n(A1 ∧ dA1) . (145)

(Since this is quadratic in fermions, the prefactor is inessential.)

To describe the intersecting D5-branes, we couple this bifundamental hypermultiplet to the

two copies of four-dimensional Chern–Simons theory by identifying the flavor groups GL(m) and

GL(n) with the gauge groups of the latter. Concretely, we replace the de Rham differential that

appears in the above formulas with the gauge-covariant differential

dA0 = d+A0 . (146)

Thus, the action of Q on the fields is modified to

Q ·A1 = −d′
A0 c1 , (147)

Q · c1 = 0 , (148)

Q · b1 = B1 , (149)

Q · B1 = 0 , (150)

and the action functional for the bifundamental hypermultiplet becomes

−
2πi

ħhe2

∫

R×S1×C

dz ∧ strCm|n(A1 ∧ dA0A1) . (151)

Combining A0 and A1 into a single matrix

A=A0 +A1 =

�
A00 A01

A10 A11

�
, (152)

we can write the total action, which is the sum of the actions (122) and (151), as

−
2πi

ħhe2

∫

R×S1×C

dz ∧ strCm|n

�
A∧ dA+

2

3
A∧A∧A

�
. (153)

This is the action for four-dimensional Chern–Simons theory with gauge group GL(m|n).
Before concluding that we have obtained the desired theory, we need to solve two problems.

First, although the above action is invariant under GL(m|n) gauge transformation, the gauge group

of the theory is still GL(m)×GL(n), not GL(m|n). Second, the gauge-invariant action (151) for the

bifundamental hypermultiplet is not Q-invariant due to the coupling to A0. Its Q-variation gives

−
4πi

ħhe2

∫

R×S1×C

dz ∧ strCm|n(A1 ∧ [F0, c1]) , (154)

where F0 is the curvature of A0.
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The two problems are solved simultaneously if we correct the Q-action on A0 and B1 to

Q ·A0 = {A1, c1} , (155)

Q · B1 =
1

2
[{c1, c1}, b1] . (156)

With this modification, the Q-variation of the bosonic action (122) cancels that of the fermionic

action (151). At the same time, c1, b1 and B1 can now be interpreted as a ghost, an antighost

and an auxiliary field used in the Becchi–Rouet–Stora–Tyutin (BRST) procedure for partial gauge

fixing of GL(m|n) down to GL(m)×GL(n) [45].

To make the last point more explicit, let us introduce a ghost c0, an antighost b0 and an

auxiliary field B0 for gauge fixing of GL(m)×GL(n). The BRST charge QB acts on the fields by

QB ·A
0 = −d′

A0
c0 , (157)

QB · c
0 =

1

2
{c0, c0} , (158)

QB · b
0 = B0 , (159)

QB · B
0 = 0 (160)

and

QB ·A
1 = {c0,A1} , (161)

QB · c
1 = [c0, c1] , (162)

QB · b
1 = [c0, b1] , (163)

QB · B
1 = {c0, B1} . (164)

Let us postulate that

Q · c0 = −
1

2
{c1, c1} , (165)

Q · b0 = 0 , (166)

Q · B0 = 0 . (167)

Then, the modified BRST charge
bQ = QB +Q (168)

satisfies bQ2 = 0 and

bQ ·A= −d′
A

c , (169)

bQ · c = 1

2
{c0, c0} −

1

2
{c1, c1}+ [c0, c1] , (170)

bQ · b = B , (171)

bQ · B = 0 , (172)

where

c = c0 + c1 , (173)

b = b0 + b1 , (174)

B = B0 + B1 + [c0, b1] . (175)
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The bQ-cohomology computes the mixed Lie superalgebra cohomology defined in [46].

Thus, we conclude that the Q-invariant sector of the theory on the intersecting D5-branes is

four-dimensional Chern–Simons theory with gauge group GL(m|n).

3.3 Emergence of the spin chain

The D3-branes and the F1-branes in the type IIB setup (114) intersect the D5-branes along lines

in R× S1 ×C. As such, they create line defects in the four-dimensional Chern–Simons theory on

R× S1 ×C, extending along R and supported at points in C. Such a configuration of line defects

in four-dimensional Chern–Simons theory is naturally identified with an integrable spin chain

[17–19]. We now show that this spin chain is precisely the one that appears in the Bethe/gauge

correspondence.

3.3.1 Line defects and spin chains

Let us first explain the relation between line defects in four-dimensional Chern–Simons theory

and integrable spin chains.

Consider four-dimensional Chern–Simons theory on R×R×C, with gauge group G which we

take to be a complex simple Lie supergroup. Its field is a partial G-connection of the form

A=Ax dx +Ay dy +Az̄ dz̄ . (176)

We insert line defects

Lℓ , ℓ = 1, . . . , L , (177)

extending in the x -direction, which we regard as the time direction. Along the y-axis, we arrange

L1, . . . , LL in the ascending order. They are supported at points ζ1, . . . , ζL in C.

Solutions of the equation of motion for four-dimensional Chern–Simons theory, away from

the line defects, are flat connections. Away from the line defects, flat connections can be gauged

away. Then, all information about the state of the theory is localized in the neighborhoods of the

line defects, and the Hilbert space V factorises into the tensor product of the spaces attached to

the line defects:

V = V 1 ⊗ · · · ⊗ V L . (178)

This is identified with the Hilbert space of an open spin chain with L sites. The space V ℓ supported

on Lℓ is the state space for the ℓth spin.

The four-dimensional Chern–Simons theory is topological on R × R and holomorphic on C.

Due to the topological invariance on R×R, the Hamiltonian is zero. To change the state, we can

insert a Wilson line extending in the y-direction, crossing the L line defects introduced earlier.

This Wilson line is a non-gauge-invariant operator acting on V and interpreted as a monodromy

matrix T (σ) in the spin chain. The spectral parameter σ is the position of the Wilson line in C,

and the holomorphy on C implies that T (σ) is holomorphic in σ.

If we introduce two Wilson lines and make them intersect in R×R, we get an R-matrix at the

intersection. The two sides of the RTT relation (33) correspond to two different configurations

of two open Wilson lines crossing each other and the line defects L1, . . . , LL. The topological

invariance on R×R and the existence of the extra dimensions C imply the equivalence of the two

configurations.

This R-matrix can be computed by perturbation theory [19], and it was found to be the R-

matrix for the rational spin chain with G symmetry. Therefore, this setup produces an open rational
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spin chain. For G = GL(m|n), the R-matrix is the one given in (34), up to some equivalence

relations.

To obtain a closed spin chain, we simply compactify the y-axis R to S1. Now, flat connections

have global gauge-invariant information, namely the holonomy around S1. The holonomy is fixed

by the boundary condition at infinity and becomes a parameter of the spin chain. Flat connections

can still be gauged away almost everywhere. Away from the line defects, we can make them

vanish except on a single line parallel to the line defects and placed between LL and L1, say. The

holonomy is then identified with the twist parameter g of the periodic boundary condition in the

spin chain. A Wilson loop winding around S1 gives a transfer matrix t(g,σ) evaluated in the

representation of the Wilson loop.

3.3.2 Line defects created by D3-branes

Let us return to the setup for the Bethe/gauge correspondence.

By the topological invariance on R× S1, the positions of the D3-branes on S1 do not matter.

For each ℓ, we gather the m+ n D3-branes D3ℓi , i = 1, . . . , m+ n, to the same position yℓ on S1:

yℓ1 = · · · = yℓm+n = yℓ . (179)

Since they are also located at the same point ζℓ in C up to first order in ħh, we can regard them as

creating a single line defect Lℓ supported on the line R× {yℓ} × {ζℓ} in R× S1 ×C, treating the

differences µℓi − ζ
ℓ, i = 1, . . . , m+ n, in the positions in C as parameters of the line defect. The

D3-branes thus create L line defects L1, . . . , LL.

From the Bethe/gauge correspondence we know what the Hilbert space V ℓ of Lℓ must be: it

is the evaluation module of the Yangian Y (gl(m|n)) with spectral parameter ζℓ, obtained from the

Verma module Vλℓ of gl(m|n). The F1-branes represent excitations in this Hilbert space.

Let us derive this Hilbert space from the point of view of brane dynamics. In the four-dimensional

Chern–Simons theory on R × S1 × C, the positions of the D5-branes in RX and RY parametrize

the vacuum expectation values of the gauge fields along the topological directions. For the pur-

pose of identifying the Hilbert space of the line defect, we can consider the situation in which all

D5-branes are coincident, say X i = Yi = 0 for all i.
The Q-invariant sector of the theory living on the D3-branes that create Lℓ is the BF theory

with gauge group G = GL(m|n), defined on R× [0,∞). This theory can be obtained from four-

dimensional Chern–Simons theory on R× [0,∞)×C by dimensional reduction on C. It has the

action
1

ħh

∫

R×[0,∞)

σ(dη+η∧η) , (180)

whereη is the gauge field andσ is a scalar field valued in g∗, the dual of the Lie algebra g = gl(m|n).
The fieldσ comes from the reduction of the antiholomorphic component Az̄ of the four-dimensional

gauge field on C.

One way to see that this is the right theory is to note that upon exchanging the directions of

S1 and RY , the D3-branes are T-dual to D5-branes on R×S1×C×R2
±ħh (after compactifying C to a

torus). Since the D5-branes are described by four-dimensional Chern–Simons theory with gauge

group GL(m|n), the D3-branes are described by the BF theory. The exchange of two directions

amounts to swapping the role of the real and imaginary parts of Ay , and does not alter the analysis

in any essential way.
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We view the BF theory as a Poisson sigma model [47, 48] with target space g∗. The space of

functions on g∗ is the symmetric algebra S(g) of g. Linear functions are elements of g, and the

Poisson bracket between them is given by the Lie bracket. Extending the Poisson bracket to S(g)
by the Leibniz rule, we endow g∗ with the Poisson structure. The action (180) of the BF theory is

related to the action of the Poisson sigma model by integration by parts.

There are two boundaries in the spacetime R× [0,∞) ⊂ R×RY , one at Y = 0 and the other

at Y =∞. It is more convenient to think of the spacetime of the theory as the limit of

R× [0, r] (181)

as r →∞. Physically, we can realize this setup by making the D3-brane D3ℓi end on an NS5-brane

NS5ℓi with worldvolume

R× {yℓ} × {µℓi } ×RX × {r} ×R
2
+ħh ×R

2
−ħh ⊂ R× S1 ×C×RX ×RY ×R

2
+ħh ×R

2
−ħh . (182)

Since the BF theory is topological, the value of r does not matter. In particular, we can take the

limit r → 0. In this limit the theory reduces to a one-dimensional quantum mechanical system.

This quantum mechanical system describes the line defect after coupling to the four-dimensional

Chern–Simons theory.

The Hilbert space of the BF theory depends on the boundary conditions imposed on the two

boundaries R×{0} and R×{r}. On each boundary, we impose a boundary condition that defines

what is known as a coisotropic brane in the context of Poisson sigma models [49].

The boundary condition on R×{0} is simple. The imaginary part of the component ηx of the

gauge field along R parametrizes the positions of the D3-branes in RX . These are necessarily fixed

to the positions of the D5-branes on the boundary where the D3-branes end on the D5-branes. By

holomorphy, the real part must also obey the Dirichlet boundary condition. Thus we have

η|R×{0} = 0 . (183)

The field σ is unconstrained on the boundary. This boundary condition completely breaks the

gauge symmetry. The global symmetry G on the boundary is used for coupling to the four-

dimensional Chern–Simons theory by gauging.

We propose that the boundary condition on R × {r} is determined by the positions of the

NS5-branes in C as follows. The diagonal part of σ parametrizes these positions. Let

g = n− ⊕ h⊕ n+ (184)

be the triangular decomposition of g with respect to the chosen basis; thus h is spanned by diag-

onal matrices, and n+ and n− are spanned by strictly upper triangular matrices and strictly lower

triangular matrices, respectively. Then, the boundary condition is

η|R×{r} ∈ b , (185)

σ|R×{r} ∈ n
∗
− +λ

ℓ , (186)

where b = h⊕ n+ is the Borel subalgebra and λℓ is an element of h∗. This condition breaks the

gauge group on the boundary to the Borel subgroup B whose Lie algebra is b.5

5The choice of Borel subgroup is determined by the positions of the D5-branes in RX , which are in turn given by

the vacuum expectation value of the time component Ax = Ax + iX of the gauge field; the u(m|n)-valued field X has
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By the state–operator correspondence, the Hilbert space is isomorphic to the space of observ-

ables supported at the junction of the above two coisotropic branes. This is a bimodule over the

algebras of local observables on the two boundaries.

Let {Tα}
dimn−
α=1

be a basis of n− and extend it a basis {Ta}
dimg

a=1
of g. Let σa = 〈Ta,σ〉. Classically,

the algebra of local observables is the algebra of gauge-invariant polynomials in {σa}.

On the boundary R× {0}, local observables are simply polynomials in {σa} since there is no

gauge symmetry there. The algebra of local observables on the boundary is therefore S(g) at the

classical level. Quantum corrections lead to a noncommutative deformation of S(g). At the quan-

tum level, the algebra is isomorphic to the universal enveloping algebra of g with bracket ħh[−,−];

if [Ta, Tb] =
∑dimg

c=1
fab

c Tc , then [σa,σb] = ħh
∑dimg

c=1
fab

cσc quantum mechanically [50, 51]. In

our setup ħh is a complex parameter rather than a formal parameter, so the algebra is isomorphic

to U(g), with σa mapped to ħhTa. (The quantization map from S(g) to U(g) is complicated for

polynomials of higher degree.)

On the boundary R× {r}, the algebra of local observables is trivial. The boundary condition

says that local operators are constructed entirely from {σα}. Nontrivial polynomials cannot com-

mute with h and, in particular, cannot be B-invariant. The only local observables are multiples of

the identity operator.

At the junction, the two boundary conditions combined imply that observables are polynomials

in {σα}. As a vector space, the space of observables is generated from the “highest-weight vector”

1 by the action of “creation operators” {σα}. On this vector space the algebra U(g) acts. Thus,

the Hilbert space is a Verma module of U(g), as expected.

It remains to show that the highest weight of the Verma module is determined by the positions

of the D3-branes. Classically, the boundary condition on R× {r} implies that the highest weight

of the module is λℓ. There is, however, a quantum correction which shifts the highest weight.6

The highest weight is actually

λℓ = λℓ −ρ , (187)

where ρ is the Weyl vector defined in terms of the character of the b-module g/b as

ρ(−) = −
1

2
strg/b ad(−) . (188)

Since ρ(n+) = ρ([b,b]) = 0, ρ can be regarded as an element of h∗. This is the graded half sum

of positive roots. When g is an ordinary Lie algebra, ρ is the ordinary Weyl vector and the above

shift was derived in [52] based on results from [53,54].

For g= gl(m|n), we have

ρ =

m+n∑

k,l=1
k<l

1

2
(−1)[k]+[l](ǫk − ǫl) =

m+n∑

i=1

1

2
(−1)[i](m− n+ (−1)[i] − 2ci)ǫi . (189)

the vacuum expectation value 〈X 〉 =
∑m+n

i=1
iX iEii . In this background, a state evolving for duration T is scaled by the

factor exp(T 〈Ax 〉) = exp(−T
∑m+n

i=1
X iEii). (We have set 〈Ax〉 = 0 for simplicity.) Therefore, if we compactify the time

direction to a circle (say, of radius 1), as one does when computing the partition function of the lattice model equivalent

to the spin chain, then the periodic boundary condition is twisted by the action of exp(−
∑m+n

i=1
X iEii). In the magnon

sector (M1, . . . , Mm+n−1), this action is multiplication by exp(−
∑L
ℓ=1

∑m+n
i=1
λℓi X i+
∑m+n−1

r=1
Mr(X r−X r+1)). We must have

the ordering (107) for the partition function to be a power series in small variables.
6This shift can be understood as originating from normal ordering of creation and annihilation operators, which

correspond to the positive and negative roots. We will see a similar shift in section 4.1.
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Comparing the relations (187) and (306), we find

(−1)[i]
�
λℓi −

1

4

�
=

1

ħh
(ζℓ −µℓi ) +

1

2
(m− n− ci) . (190)

3.3.3 Line defects for parabolic Verma modules of scalar type

There is a generalization of the above brane construction which produces line defects in parabolic

Verma modules of scalar type.

Let (l1, . . . , ls) be an ordered partition of m + n:
∑s
α=1

lα = m + n. The partition specifies a

parabolic subalgebra p of gl(m|n), namely the subalgebra consisting of upper-triangular block-

diagonal matrices with diagonal blocks of orders l1, . . . , ls. A character χ of p is determined by

an s-tuple of complex numbers (χ1, . . . ,χs) as

χ(−) = str(χ∨−) , (191)

where the matrix χ∨ is given by

χ∨ = diag(χ1, . . . ,χ1, . . . ,χα, . . . ,χα︸ ︷︷ ︸
lα times

, . . . ,χs, . . . ,χs) . (192)

For each α, we take lα D3-branes and make them end on a single NS5-brane on one side. On

the other side, they end on separate D5-branes as in the previous construction. In total, we have

m+ n D3-branes suspended between m+ n D5-branes and s NS5-branes.

On the D3-branes we get the BF theory with gauge group GL(m|n). The boundary condition

on the D5-brane side is the same as before. On the NS5-brane side, the boundary condition is

η|R×{r} ∈ p , (193)

σ|R×{r} ∈ p
⊥ +λℓ , (194)

where p⊥ is the annihilator of p in g∗ and λℓ is a character of p. Classically (that is to say, when λℓ

is of order ħh−1 and quantities of order ħh0 are ignored), the value of λℓα is the position of the αth

NS5-brane in C.

We expect that the Hilbert space of the BF theory with these boundary conditions is a parabolic

Verma module of scalar type

U(g)⊗U(p) Cλℓ−ρ . (195)

The character ρ of p is defined by

ρ = −
1

2
strg/p adp (196)

and Cλℓ−ρ is the one-dimensional U(p)-module determined by the character λℓ −ρ.

3.4 Fermionic Dualities

As we have emphasized in our discussions, the Lie superalgebra gl(m|n) does not possess a unique

Dynkin diagram. A Dynkin diagram is specified by a choice of ordered basis of Cm|n (or a choice of

Z2-grading if we identify Dynkin diagrams related by the action of the Weyl group), and different

choices are related by a series of certain adjacent transpositions, called odd reflections. Under odd
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reflections, a highest-weight representation is mapped to a highest-weight representation, but the

highest weight is not preserved because the definition of raising and lowering operators is altered.

Odd reflections change how we describe representations of gl(m|n), and the description of the

Bethe vectors of the superspin chain is changed accordingly. The map from the Bethe vectors for

one choice of ordered basis to another is known as a fermionic duality.

Fermionic dualities have been studied before purely from an algebraic perspective [55–60],

with a notable exception of the work by Orlando and Reffert [25] where they employed the point

of view of string theory to discuss the fermionic dualities for the supersymmetric t-J model, which

is the rational gl(1|2) spin chain with spins valued in the natural representationC1|2. Here we offer

a string theory explanation for important aspects of fermionic dualities for the rational gl(m|n)
spin chain with Verma modules, namely their action on highest weights and magnon numbers.

3.4.1 Odd reflections and fermionic dualities

Recall from section 2.1 that the definitions of positive and simple roots depend on a choice of

ordered basis (e1, . . . , em+n) of Cm|n, which is a permutation of (b1, . . . , bm, f1, . . . , fn) such that

(b1, . . . , bm) and ( f1, . . . , fn) are the standard bases of Cm and Cn, respectively. There is a natural

identification between these basis vectors and their weights:

(e1, . . . , em+n)↔ (ǫ1, . . . ,ǫm+n) , (197)

(b1, . . . , bm)↔ (ε1, . . . ,εm) , (198)

( f1, . . . , fn)↔ (δ1, . . . ,δn) . (199)

In the following discussion we will consider permutations of (ǫ1, . . . ,ǫm+n) induced by those of

(e1, . . . , em+n).

For a given choice of ordered basis (ǫ1, . . . ,ǫm+n) of the dual of the Cartan subalgebra of

gl(m|n), the set of positive roots is

Φ
+ = {ǫi − ǫ j | i < j} (200)

and the set of simple roots is

Π= {ǫr − ǫr+1 | r = 1, . . . , m+ n− 1} . (201)

A root ǫi − ǫ j is said to be even if [i] = [ j] and odd if [i] 6= [ j].
Pick an odd simple root αs = ǫs−ǫs+1 and apply to the ordered basis the adjacent transposition

σs : {1, . . . , m+ n} → {1, . . . , m+ n} interchanging ǫs and ǫs+1:

(ǫσs(1)
, . . . ,ǫσs(s−1),ǫσs(s),ǫσs(s+1),ǫσs(s+2), . . . ,ǫσs(m+n))

= (ǫ1, . . . ,ǫs−1,ǫs+1,ǫs,ǫs+2, . . . ,ǫm+n) . (202)

The adjacent transposition alters the notion of positive and simple roots. For the new ordered

basis (ǫσs(1)
, . . . ,ǫσs(m+n)), the set of positive roots is

Φ
+
αs
= {ǫσs(i) − ǫσs( j) | i < j}= {−αs} ∪Φ

+ \ {αs} (203)

and the set of simple roots is

Παs
= {ǫσs(r) − ǫσs(r+1) | r = 1, . . . , m+ n− 1}

= {ǫs−1− ǫs+1,ǫs+1 − ǫs,ǫs − ǫs+2} ∪Π \ {αs−1,αs,αs+1} .
(204)
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This automorphism of the root system which transforms the positive and simple roots is called the

odd reflection with respect to the odd simple root αs.

As an example, take (m|n) = (3|2) and (ǫ1,ǫ2,ǫ3,ǫ4,ǫ5) = (ε1,ε2,δ1,δ2,ε3). This choice of

ordered basis gives the Dynkin diagram (15). There are two odd simple roots, α2 = ε2 − δ1 and

α4 = δ2 − ε3, represented by the crossed nodes. Reflection with respect to α2 swaps ε2 and δ1,

leading to the new ordered basis (ε1,δ1,ε2,δ2,ε3). The Dynkin diagram corresponding to the

reflected simple roots is

ε1 − δ1 δ1 − ε2 ε2 − δ2 δ2 − ε3
(205)

We see that all simple roots are now odd. Reflection of the original ordered basis with respect to

α4 results in the ordered basis (ε1,ε2,δ1,ε3,δ2) and the Dynkin diagram

ε1 − ε2 ε2 −δ1 δ1 − ε3 ε3 −δ2
(206)

Odd reflections change the characterization of highest weights. Let us see how Verma modules

are transformed. Fix an ordered basis of Cm|n and consider the Verma module M(λ), with the

highest-weight vector |Ωλ〉. Let αs be an odd root. After the odd reflection about αs, the roles of

the raising operator Es,s+1 and the lowering operator Es+1,s are exchanged, while all other lowering

operators remain unchanged. Consequently, the state

|Ωλ′〉 = Es+1,s|Ωλ〉 (207)

is annihilated by all elements of the new set of raising operators, that is, it is a highest-weight

state with respect to the new ordered basis. According to the PBW theorem (23), the states of the

form

xn1

1
· · · x

np−1

p−1
E

np

s+1,s|Ωλ〉 = xn1

1
· · · x

np−1

p−1
E

1−np

s,s+1
|Ωλ′〉 , (208)

form a basis of the Fock space Vλ for M(λ), where (x1, . . . , xp−1,Es+1,s) is an ordered set of lowering

operators in the original ordered basis. (Note that np is either 0 or 1.) By the PBW theorem, we

see that M(λ) is the Verma module M(λ′) with respect to the new ordered basis, with

λ′ = λ−αs . (209)

In the spin chain, the highest weights of the Verma modules placed at the spin sites are trans-

formed by an odd reflection. The weight of each state of the spin chain remains the same, so the

magnon numbers must be transformed as

L∑

ℓ=1

(λℓ)′ −

m+n−1∑

r=1

M ′rα
′
r =

L∑

ℓ=1

λℓ −

m+n−1∑

r=1

Mrαr , α′r = ǫσs(r) − ǫσs(r+1) , (210)

or more explicitly,

M ′r =

¨
L +Ms−1 +Ms+1 −Ms (r = s) ;

Mr (r 6= s) .
(211)

The transformations of the highest weights and magnon numbers change the Bethe equations.

Of course, this is merely a change in the description of the spin chain states, so the solutions of the

new Bethe equations are in one-to-one correspondence with the solutions of the original Bethe

equations. This correspondence is called the fermionic duality generated by the odd reflection.
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3.4.2 Fermionic duality from string theory

In the D1–D3–NS5 duality frame that is S-dual to (114), the choice of ordered basis of Cm|n is

reflected in the ordering of NS5-branes along RX ; they are ordered as NS51, NS52, . . . , NS5m+n

from left to right. Therefore, the string theory interpretation of the reflection about an odd root

αs is clear: it swaps the positions of NS5s and NS5s+1. We wish to understand the effect of the

exchange of positions on the highest weights and magnon numbers.

Recall that one of the boundary conditions for the BF theory that emerges on the D3-branes

creating the line defect Lℓ is specified by the parameters λℓi , i = 1, . . . , m+n. The position of D3ℓi
in C is given by

ζℓ − (−1)[i]λℓi . (212)

Indeed, if we take λℓi to be of order ħh−1, by the relation (190) this quantity coincides to order

ħh0 with the twisted mass µℓi , which is identified with the classical location of D3ℓi . Swapping the

positions of NS5s and NS5s+1 also exchanges D3s and NS5s+1 while keeping their locations in C

fixed. Thus, {λℓi } are transformed to new values {(λℓi )
′} such that (λℓs )

′ = λℓs+1 and (λℓs+1)
′ = λℓs

in the new ordered basis. This simply means that we have

(λℓ)′ =

m+n∑

i=1

(λℓ)′iǫσs(i) = λ
ℓ . (213)

Although λℓ is invariant under the odd reflection, the Weyl vector ρ is transformed to a new

Weyl vector ρ′. Since ρ is the half sum of even positive roots minus the half sum of odd positive

roots, from the relation (203) between Φ+ and Φ+αs
we see

ρ′ = ρ +αs . (214)

Then, the relation (187) between λℓ and the highest weight λℓ shows that λℓ is transformed to

(λℓ)′ according to the formula (209).

Exchanging the pairs (NS5s,D3s) and (NS5s+1,D3s+1) does not only transform the highest

weights, but also change the magnon numbers. In the brane picture, we can understand this

phenomenon as creation and annihilation of D1-branes due to the Hanany–Witten effect [61].7

In order to exchange the positions of the brane pairs, we first need to move each D1-brane between

NS5s and NS5s+1 so that one of its end is attached to one of the NS5-branes, say NS5s+1. Then, we

displace NS5s+1 into the page and start moving it to the left. At one point the D3-branes ending on

NS5s+1 pass through NS5s. As a result, the D1-branes ending on these D3-branes are annihilated

and a new D1-brane is created on each of those D3-branes that did not have D1-brane ending on

it. In the case in which [s] = 0̄, [s + 1] = 1̄ and (Ms−1, Ms , Ms+1) = (1,2,1), the process looks as

follows:

→ → → (215)

7In general, Hanany–Witten processes for type IIA brane configurations for two-dimensional N = (2, 2) super-

symmetric gauge theories classically suffer from ambiguities, which are only resolved if one takes brane bending into

account or lifts the configurations to M-theory. [33]. In the present case, such ambiguities do not arise because the

relevant gauge group has the same number of fundamental and antifundamental chiral multiplets.
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The dotted lines indicate the annihilation of D1-branes. We see that the numbers of D1-branes

between NS5-branes transform as in the formula (211).

In the D2–D4–NS5 duality frame, the above manipulation is expected to lead to an infrared

duality of N = (2,2) supersymmetric gauge theories. Indeed, there is a known duality trans-

formation that sends a theory with U(Nc) gauge group, N f fundamental chiral multiplets and

Na antifundamental chiral multiplets to a theory with U(N ′c) gauge group, Na fundamental chi-

ral multiplets and N f antifundamental chiral multiplets, plus mesons transforming in the bifun-

damental representation of the flavor group U(Na) × U(N f ) [62]. The rank of the dual gauge

group is N ′c = max(N f , Na)− Nc. This is consistent with what we have found since Nc = Ms and

N f = Na = L+Ms−1+Ms+1 in our case. However, it appears that the mesons are absent from our

final brane configuration. Fortunately, the mesons, being neutral under the gauge symmetry, do

not affect the Bethe equations.

4 Bethe/gauge correspondence for compact superspin chains

The superspin chains that appear in the Bethe/gauge correspondence discussed in the previous

sections are noncompact, meaning that they carry spins valued in infinite-dimensional represen-

tations of the Yangian Y (gl(m|n)). Spin chains whose spins are valued in finite-dimensional rep-

resentations are said to be compact.
In this section we discuss the Bethe/gauge correspondence for compact rational gl(m|n) spin

chains. We will follow a line of reasoning similar to our treatment of the noncompact case, but

in the reverse direction: we start with the construction of line defects for finite-dimensional rep-

resentations in four-dimensional Chern–Simons theory, then identify their brane realization and

apply dualities to deduce the corresponding two-dimensional quiver gauge theories.

4.1 Covariant and contravariant representations of gl(m|n)

Finite-dimensional representations of gl(m|n) are most easily discussed in the distinguished grad-
ing, in which

[i] =

¨
0̄ (i ≤ m) ;

1̄ (i > m) .
(216)

For this reason, in this section we exclusively use the distinguished grading. We will write a weight

λ=
∑m+n

i=1 λiǫi as (λ1, . . . ,λm|λm+1, . . . ,λm+n).

The Verma module M(λ) with highest weight λ contains a unique maximal submodule. In

the distinguished grading, the corresponding simple quotient module L(λ) is finite-dimensional if

and only if

λi −λi+1 ∈ Z≥0 , i = 1, . . . , . . . , m+ n− 1 , i 6= m , (217)

in other words, if and only if (λ1, . . . ,λm) and (λm+1, . . . ,λm+n) are highest weights of finite-

dimensional irreducible representations of gl(m) and gl(n), respectively. Any finite-dimensional

irreducible representation of gl(m|n) is isomorphic to L(λ) for some λ.

We will consider two classes of finite-dimensional irreducible representations of gl(m|n), called

covariant representations and contravariant representations. Covariant representations appear in

tensor products of copies of the natural representation

C
m|n = L
�
(1,0, . . . , 0|0, . . . , 0)

�
, (218)
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whereas contravariant representations arise from tensor products of copies of the dual represen-

tation8

(Cm|n)∗ = L
�
(0, . . . , 0|0, . . . , 0,−1)

�
. (219)

Both covariant and contravariant representations are indexed by the so-called (m|n)-hook parti-

tions.

A partition Y = (Y1, . . . , Yl(Y )) of size |Y | and length l(Y ) is an l(Y )-tuple of positive integers

such that Y1 ≥ · · · ≥ Yl(Y ) and Y1 + · · ·+ Yl(Y ) = |Y |. It can be represented by a Young diagram

with l(Y ) rows, with the αth row consisting of Yα boxes. The conjugate partition Y ′ has the Young

diagram that is the transpose of the Young diagram for Y .

A partition Y is said to be (m|n)-hook if Ym+1 ≤ n. If Y is an (m|n)-hook partition, then Y ′ is

an (n|m)-hook partition, Y ′n+1 ≤ m. We let Hm|n denote the set of all (m|n)-hook partitions.

For an (m|n)-hook partition Y , we define the integral weight

Y ♮ = (Y1, . . . , Ym|〈Y
′

1 −m〉, . . . , 〈Y ′n −m〉) , (220)

where 〈a〉 = max(0, a). The even part of Y ♮ is represented by the Young diagram formed by the

first m rows of Y . The Young diagram for the odd part of Y ♮ is the transpose of the remainder of

Y , and its length is less than or equal to n by the (m|n)-hook condition.

Let Y be an (m|n)-hook partition. The covariant representation labeled by Y is the highest-

weight representation L(Y ♮). The contravariant representation labeled by Y is the dual represen-

tation L(Y ♮)∗ = L(eY ♮). Its highest weight eY ♮ equals the minus of the lowest weight of L(Y ♮) and

is given by
eY ♮ = (−〈Ym − n〉, . . . ,−〈Y1 − n〉| − Y ′n, . . . ,−Y ′1

�
. (221)

4.2 Line defects in covariant and contravariant representations

Now we construct quantum mechanical systems whose Hilbert spaces are covariant and con-

travariant representations of gl(m|n). Coupled to four-dimensional Chern–Simons theory with

gauge group GL(m|n), they describe line defects valued in these finite-dimensional irreducible

representations.

Let K , K be nonnegative integers and consider a pair of fields

ϕ ∈ Hom(CK|K ,Cm|n) , (222)

ϕ̃ ∈ Hom(Cm|n,CK|K) (223)

transforming in the bifundamental representations of GL(m|n)×GL(K |K). Their components are

Z2-graded, with the grading given by

[ϕi
α] = [ϕ̃

α
i ] = [i] + [α] . (224)

where i and α are indices for Cm|n and CK|K , respectively. The even components are bosonic and

the odd ones are fermionic. The action of the theory is

1

ħh

∫

R

strCm|n(ϕ dϕ̃) . (225)

8The dual π∗ of a representation π is given by π∗ = τ ◦π, where τ(X ) = −X st is the Chevalley automorphism. The

supertranspose X st of X is defined by X st
i j = (−1)([i]+[ j])[ j]X j i . Our definition of supertranspose differs from a commonly

used definition by a factor of (−1)[i]+[ j]. With this definition, the quantum mechanical action (225) is invariant under

the natural action of GL(m|n)×GL(K |K).
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We will find it convenient to define

ηi
α =

i

ħh
ϕi
α , (226)

χαi = (−1)[α]ϕ̃αi , (227)

and

χ̃ i
α = (−1)[i][α]+[α]ηi

α , (228)

η̃αi = (−1)[i][α]+[α]
i

ħh
χαi . (229)

Then, the canonical commutation relations read

[ηi
α,χ

β
j ] = [χ̃

i
α, η̃

β
j ] = δ

β
αδ

i
j . (230)

The theory has a GL(m|n)×GL(K |K) global symmetry. The associated conserved charges are

qi j =

K+K∑

α=1

χαi η
j
α + (−1)[i]cδi j , (231)

Qαβ = −
m+n∑

i=1

(−1)([α]+[β])[α]χ
β
i η

i
α + (−1)[α]Cδαβ (232)

and satisfy the gl(m|n)⊕ gl(K |K) commutation relations:

[qi j ,qkl] = δ jkqil − (−1)([i]+[ j])([k]+[l])δl iqk j , (233)

[Qαβ ,Qγδ] = δβγQαδ − (−1)([α]+[β])([γ]+[δ])δδαQγβ , (234)

[qi j ,Qαβ] = 0 . (235)

The constants c and C account for the ambiguity in operator ordering and will be fixed in a mo-

ment. Under GL(m|n)×GL(K |K), the sets of fields {χαi } and {χ̃ i
α} transform as the standard basis

vectors for Cm|n ⊗ (CK|K)∗ and (Cm|n)∗ ⊗CK|K , respectively:

[qi j,χ
α
k ] = δ jkχ

α
i =

m+n∑

l=1

(Ei j)lkχ
α
l , (236)

[Qαβ ,χ
γ
i ] = −(−1)([α]+[β])[α]δαγχ

β
i =

K+K∑

δ=1

(−Est
αβ)δγχ

δ
i . (237)

[qi j , χ̃
k
α] = −(−1)([i]+[ j])[i]δkiχ̃

j
α =

m+n∑

l=1

(−Est
i j)lkχ̃

l
α , (238)

[Qαβ , χ̃ i
γ] = δβγχ̃

i
α =

K+K∑

δ=1

(Eαβ)δγχ̃
i
δ . (239)

For the construction of line defects we actually break the GL(K |K) symmetry. Let us gauge the

Borel subgroup of GL(K |K). We introduce an associated gauge field

B =

K+K∑

α,β=1
α≤β

BαβEαβ (240)
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and couple it to the theory by replacing the de Rham differential d with d+ B. For the moment

we treat B as a background field and give it a diagonal value

B = diag(b1, . . . , bK+K) . (241)

In this background, the action becomes

1

ħh

∫

R

m+n∑

i=1

K+K∑

α=1

(−1)[i](ϕi
αdϕ̃αi + bαϕ

i
αϕ̃
α
i ) , (242)

and the GL(K |K) symmetry is broken to the stabilizer of the gauge field, which is generically the

maximal torus.

The coupling to the gauge field does not affect the canonical commutation relations, but mod-

ifies the Hamiltonian. Before the introduction of the gauge field, the theory was topological and

the Hamiltonian was zero. It is now given by

H = iħh
K+K∑

α=1

bαQαα . (243)

The Hilbert space of the theory is a Z2-graded Fock space constructed from a vacuum state |0〉

by the action of the creation operators. The action of ϕi
α changes H by iħhbα while ϕ̃αi changes H

by −iħhbα. Those component fields that increase Re(iH/ħh) are creation operators, and those that

decrease it are annihilation operators.9 We can think of Re(iH/ħh) as energy.

Suppose that we give the background value such that

0< Re bK+K < Re bK+K−1 < · · · < Re b1 . (244)

Then, χαi is a creation operator and ηi
α is an annihilation operator. Requiring the vacuum to be

invariant under (the maximal torus of) GL(K |K), we find c = C = 0. Let F be the corresponding

Fock space.

The Fock space F decomposes into tensor products of covariant representations of gl(m|n)
and contravariant representations of gl(K |K) [63,64]:

F =
⊕

Y∈Hm|n∩HK |K

L(Y ♮m|n)⊗ L(Y ♮
K|K
)∗ . (245)

(We use subscripts to distinguish weights for gl(m|n) and gl(K |K).) For example, the first excited

states take the form
m+n∑

i=1

K+K∑

α=1

c i
αχ
α
i |0〉 (246)

and span a subspace isomorphic to

C
m|n ⊗ (CK|K)∗ , (247)

as can be seen from the commutation relations (236) and (237).

9If the time axis is compactified to a circle of radius 1, then the partition function involves trace twisted by

exp(−iH/ħh). Creation operators should make this factor smaller.
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This Hilbert space is too large, and we need to reduce it to a single covariant representation

L(Y ♮m|n) of gl(m|n). To do so, we impose constraints that singles out the summand L(Y ♮m|n)⊗L(Y ♮
K|K
)∗

and further projects it to the subspace of lowest-energy states. Since the raising operator Qαβ ,

α < β , changes the energy Re(iH/ħh) by −Re bα + Re bβ < 0, the lowest-energy states have the

highest weight with respect to gl(K |K).
We implement this projection by making B dynamical. The vacuum expectation value of B is

given by the diagonal matrix (241). Let us add to the action the Chern–Simons term

−i

∫

R

eY ♮
K|K
(B) . (248)

Then, the equations of motion for B are

Qαβ = 0 , α < β (249)

and10

Qαα = (eY
♮

K|K
)α +

m− n

2
. (250)

The former equations restrict the Fock space to the subspace of states that contains highest-weight

vectors of covariant representations of gl(K |K):
⊕

Y∈Hm|n∩HK |K

L(Y ♮m|n)⊗ |ΩeY ♮
K |K

〉 . (251)

With the choice

eY ♮
K|K
= eY ♮

K|K
−

m− n

2

K+K∑

α=1

ǫα , (252)

the second equation selects the highest weight eY ♮
K|K

, thereby reducing the Hilbert space to the

covariant representation L(Y ♮m|n)⊗ |ΩeY ♮
K |K

〉 of gl(m|n).

In order to construct line defects in contravariant representations, we take

Re bK+K < Re bK+K−1 < · · ·< Re b1 < 0 . (253)

In this case, χ̃αi is a creation operator and η̃i
α is an annihilation operator. The corresponding Fock

space eF decomposes as
eF =
⊕

Y∈Hm|n∩HK |K

L(Y ♮m|n)
∗ ⊗ L(Y ♮

K|K
) . (254)

Making B dynamical and adding the Chern–Simons term

−i

∫

R

Y ♮
K|K
(B) (255)

to the action, we can reduce the Hilbert space to the contravariant representation L(Y ♮)∗, with

Y ♮
K|K
= Y ♮

K|K
−

m− n

2

K+K∑

α=1

ǫα . (256)

10The Weyl quantization of the classical expression of Qαα equals Qαα + (−1)[α](m− n)/2.
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4.3 Brane construction of line defects

The quantum mechanical system discussed above can be constructed with D3-branes and D5-

branes. Let us remove from the brane system (114) the semi-infinite D3-branes and the F1-branes

stretched between the D5-branes, and instead introduce infinite D3-branes D3α, α= 1, . . . , K+K:

Spacetime: R × S1 × C × RX × RY × R
2
+ħh × R

2
−ħh

D5i (i ≤ m): R × S1 × C × {X i} × {Yi} × R
2
+ħh × {0}

D5i (i > m): R × S1 × C × {X i} × {Yi} × {0} × R
2
−ħh

D3α (α ≤ K): R × {y} × {ζ} × {−Re bα} × RY × R
2
+ħh × {0}

D3α (α > K): R × {y} × {ζ} × {−Re bα} × RY × {0} × R
2
−ħh

(257)

We claim that strings stretched between the D3-branes and the D5-branes give rise to the quantum

mechanical system in question.

The K D3-branes D3α, α ≤ K , and the m D5-branes D5i , i ≤ m, share the three-dimensional

spacetime R × R2
+ħh. Strings stretched between them produce an N = 4 hypermultiplet in the

bifundamental representation of U(K)×U(m). Let

ϕ00 ∈ Hom(CK ,Cm) , (258)

ϕ̃00 ∈ Hom(Cm,CK) (259)

be the scalar fields of this multiplet. We are looking at the sector of this theory that is invariant

under the supercharge Q for the holomorphic–topological twist. There is an Ω-deformation in-

duced by the background RR two-form, and it has the effect of localizing the hypermultiplet to

the quantum mechanical model with action [23]

1

ħh

∫

R

trCm(ϕ00 dϕ̃00) . (260)

Here we are using ϕ00, ϕ̃00 to denote the one-dimensional fields that descend from the three-

dimensional scalar fields.

Similarly, from strings stretched between the K D3-branes D3α, α > K , and the n D5-branes

D5i, i > m, we get anN = 4 hypermultiplet in the bifundamental representation of U(K)×U(n) on

the three-dimensional spacetime R×R2
−ħh. By an Ω-deformation, the theory localizes to a quantum

mechanical system with action

−
1

ħh

∫

R

trCn(ϕ11 dϕ̃11) , (261)

where

ϕ11 ∈ Hom(CK ,Cn) , (262)

ϕ̃11 ∈ Hom(Cn,CK) . (263)

The branes D3α, α ≤ K , and D5i, i > m, intersect along the time axis R, and from strings

stretched between them we get fermions

ϕ10 ∈ Hom(CK ,Cn) , (264)

ϕ̃10 ∈ Hom(Cn,CK) . (265)
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They are described by the action

1

ħh

∫

R

trCn(ϕ10 dϕ̃10) . (266)

This is the dimensional reduction of the two-dimensional chiral fermions that arise from an inter-

section of D4-branes and D6-branes [65,66].

In the same way, from strings stretched between D3α, α > K , and D5i, i ≤ m, we get fermionic

fields

ϕ01 ∈ Hom(CK ,Cm) , (267)

ϕ̃01 ∈ Hom(Cm,CK) , (268)

described by the action

−
1

ħh

∫

R

trCm(ϕ01 dϕ̃01) . (269)

These four quantum mechanical systems can be combined into the single quantum mechanical

system described by the action (225), with the fields

ϕ =

�
ϕ00 ϕ01

ϕ10 ϕ11

�
, (270)

ϕ̃ =

�
ϕ̃00 ϕ̃01

ϕ̃10 ϕ̃11

�
. (271)

The creation operator χαi adds a string stretched between D3α and D5i. The annihilation operator

ηi
α removes a string between them.

This quantum mechanical system is coupled to the four-dimensional Chern–Simons theory that

arises from the D5-branes and to the BF theory that arises on the D3-branes. As in the construction

of line defects valued in Verma modules, the boundary conditions on the BF theory (at infinity,

or at finite distance if we make the D3-branes end on NS5-branes) breaks the GL(K |K) gauge

symmetry to a Borel subgroup. Which Borel subgroup is selected is determined by the ordering of

the D3-branes on RX . For the ordering (244) for {Re bα}, it is the standard Borel subgroup.

The situation in which there are no strings stretched between the D3-branes and the D5-

branes corresponds to the vacuum of the Fock space F . Here is how the vacuum looks like for

(m|n) = (1|2) and (K |K) = (2|1):

|0〉=

D31 D32 D33 D51 D52 D53

(272)

To project to a covariant representation L(Y ♮m|n) of gl(m|n), we fix the number of strings ending

on each D3-brane. Let us illustrate how this works with an example in which Y = (5,1,1). For

this choice of Y , we have Y ′ = (3,1,1,1,1), Y ♮m|n = (5|2,0) and eY ♮
K|K
= (0,−4| − 3). The brane

configuration for the highest-weight state of L(Y ♮
m|n
)⊗ L(eY ♮

K|K
) is the following:

|ΩY ♮
m|n
〉 ⊗ |ΩeY ♮

K |K

〉 =

D31 D32 D33 D51 D52 D53
F1s

(273)
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A string ending on D5i from the left contributes ǫi to the gl(m|n) weight, and a string ending on

D3α from the right contributes −ǫα to the gl(K |K)weight. This configuration is the tensor product

of two highest-weight vectors because we cannot shorten any of the strings and stretch it between

another pair of D3-brane and D5-brane; by doing so we would get more than one strings between

D33 and D51, but that is prohibited as such strings have necessarily coincident worldsheets and

are fermionic. This brane diagram shows

|ΩY ♮
m|n
〉 ⊗ |ΩeY ♮

K |K

〉= (χ3
2 )

2χ3
1 (χ

2
1 )

4|0〉 . (274)

The other vectors in L(Y ♮m|n) ⊗ |ΩeY ♮
K |K

〉 can also be represented by brane configurations. For

example,

q21|ΩY ♮m|n
〉 ⊗ |ΩeY ♮

K |K

〉 =

3∑

α=1

χα2 η
1
α(χ

3
2 )

2χ3
1 (χ

2
1 )

4|0〉

= −4(χ3
2 )

2χ3
1χ

2
2 (χ

2
1 )

3|0〉+ (χ3
2 )

3(χ2
1 )

4|0〉

(275)

is a linear combination of two states, which one obtains from the highest-weight vector by extend-

ing one of the strings to the right:

q21|ΩY ♮m|n
〉 ⊗ |ΩeY ♮

K |K

〉= −4

D31 D32 D33 D51 D52 D53

+

D31 D32 D33 D51 D52 D53

(276)

The construction of a line defect in a contravariant representation of gl(m|n) is analogous. For

a contravariant representation, the D3-branes are placed to the right of the D5-branes. For exam-

ple, for the same choice (m|n) = (1|2), (K |K) = (2|1) and Y = (5,1,1), we have eY ♮m|n = (−3|−1,−3)

and Y ♮
K|K
= (5,1|1), and the highest-weight vector is represented by the configuration

D31 D32 D33D51 D52 D53

(277)

4.4 Two-dimensional N = (2, 2) supersymmetric gauge theories

Applying S-duality and T-duality on S1 to the brane configurations for a line defect, we obtain D2–

D4–NS5 brane configurations which describe two-dimensional N = (2,2) supersymmetric field

theories. For a general choice of (K |K) and Y , the resulting theory does not seem to admit a simple

gauge theory description.
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If we restrict to covariant representations with K = 0 and Ym+1 = 0 and contravariant repre-

sentations with K = 0 and Y ′n+1 = 0, the two-dimensional theories are particularly nice. Let us

consider these cases.

For a covariant representation with K = 0 and Ym+1 = 0, the relevant highest weights are

Y ♮m|n = (Y1, . . . , Ym|0, . . . , 0) and eY ♮
K|K
= (−Y ′

K
, . . . ,−Y ′1). The brane configuration for the highest-

weight vector of L(Y ♮m|n)⊗ L(eY ♮
K|K
) has one string stretched between NS5i and D3K−α+1 for each

α = 1, . . . , Yi. The following diagram depicts the highest-weight vector for (m|n) = (3|2),
(K |K) = (0|4) and Y = (4,2,1), for which Y ′ = (3,2,1,1), Y ♮m|n = (4,2,1|0,0) and eY ♮

K|K
= (−1,−1,−2,−3):

D31 D32 D33 D34 D51 D52 D53 D54 D55

(278)

By moving the D3-branes past D5-branes, we can bring this configuration to another config-

uration in which the D3-branes are located between D5-branes and have no strings attached:11

D34D33D32D31

D51 D52 D53 D54 D55

(279)

The strings that were initially present get annihilated by the Hanany–Witten transition. The num-

ber of D3-branes between D5i and D5i+1 is equal to Yi − Yi+1.

If we stretch strings between D5-branes in this configuration, then by the reverse Hanany–

Witten moves we get a configuration for excited states in L(Y ♮m|n) ⊗ |ΩeY ♮
K |K

〉. For example, the

configuration

(280)

represents an excited state with weight (4,2,1|0,0)− 3α1− 2α2 − 2α3 − 2α4 = (1,3,1|0,2). One

such state is represented by the configuration

(281)

Similarly, for a contravariant representation with K = 0 and Y ′n+1
= 0, we have eY ♮m|n = (0, . . . , 0|−Y ′n, . . . ,−Y ′

1
)

and Y ♮
K|K
= (Y1, . . . , YK), and the brane configuration for the highest-weight vector of L(eY ♮

m|n
)⊗L(Y ♮

K|K
)

can be brought to a configuration without any strings. Take an example with (K |K) = (3|0) and

11An obstruction to generalize the present argument to more general covariant and contravariant representations is

that we do not understand what happens when a D3-brane passes through a D5-brane of the same color in the presence

of the RR two-form for Ω-deformation.
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Y = (2,2,1), for which Y ′ = (3,2), eY ♮m|n = (0,0,0| − 2,−3) and Y ♮
K|K
= (2,2,1):

(282)

This configuration represents an excited state with weight (0,0,0| − 2,−3) − α1 − α2 − α3 − α4

= (−1,0,0| − 2,0). The number of D3-branes between an adjacent pair of D5-branes can be read

off from Y ′.
The dual D2–D4–NS5 brane configurations are of the type studied by Hanany and Hori [33]

and realize quiver gauge theories. The quiver for the configuration (280) is

3 2 2 2

2 1 1 1

(283)

and the quiver for the configuration (281) is

1 1 1 1

2 1 1

(284)

The ranks of the gauge nodes are given by the numbers of F1-branes, and the ranks of the flavor

nodes are given by the numbers of D3-branes. There are N = (4,4) cubic superpotential terms

involving adjoint chiral multiplets.

The flavor symmetry for the chiral multiplets charged under the mth gauge node is doubled

due to the lack of cubic superpotential term. From the brane point of view, this is because a D4-

brane between NS5m and NS5m+1 can be broken into half on one of the NS5-branes which has

the same color as the D4-brane:

→ → (285)

Strings stretched between D2
am
m , am = 1, . . . , Mm, and one half of the D4-brane produce a funda-

mental chiral multiplet for U(Mm), while strings between those D2-branes and the other half of

the D4-brane produce an antifundamental chiral multiplet.

4.5 Bethe/gauge correspondence for finite-dimensional representations

Generalizing the above brane construction, we can obtain the Bethe/gauge correspondence for

spins valued in arbitrary finite-dimensional representations of gl(m|n). This is essentially the

correspondence proposed by Nekrasov [3].

Consider the rational gl(m|n) spin chain of length L, with the ℓth spin takes values in finite-

dimensional highest-weight representations L(λℓ). For the moment, let us assume that the highest

weights are all integral and satisfy

λℓ
1
≥ · · ·λℓm ≥ 0≥ λℓm+1

≥ · · · ≥ λℓm+n . (286)

46



SciPost Physics Submission

This is the case if all of the representations are of the type studied in section 4.4. We define

nonnegative integers

Kℓr = λ
ℓ
r − λ

ℓ
r+1 , r = 1, . . . , m− 1, (287)

Kℓm = λ
ℓ
m , (288)

K
ℓ

r = λ
ℓ
r − λ

ℓ
r+1 , r = m+ 1, . . . , m+ n− 1, (289)

K
ℓ

m = −λ
ℓ
m+1

. (290)

We look at a sector of fix magnon numbers (M1, . . . , Mm+n−1). The Bethe equations depend only

on the highest weights and the magnon numbers, so their form remain the same as in the case of

Verma modules.

The gauge theory corresponding to this magnon sector is similar to the theory discussed in

section 2.3 and has the same gauge symmetry. The difference is that the chiral multiplets Qi,
eQi,

i = 1, . . . , m+ n, are replaced by chiral multiplets

Rℓr ∈ Hom(CKℓr ,CMr ) , r = 1, . . . , m , (291)

eRℓr ∈ Hom(CMr ,CKℓr ) , r = 1, . . . , m , (292)

Sℓr ∈ Hom(CKℓr ,CMr ) , r = m+ 1, . . . , m+ n− 1 , (293)

eSℓr ∈ Hom(CMr ,CKℓr ) , r = m+ 1, . . . , m+ n− 1 . (294)

Letting

Kr =

L∑

ℓ=1

Kℓr , (295)

K r =

L∑

ℓ=1

K
ℓ

r , (296)

we can combine them into chiral multiplets Rr ∈ Hom(CKr ,CMr ), eRr ∈ Hom(CMr ,CKr ), r = 1, . . . ,

m− 1, and Sr ∈ Hom(CKr ,CMr ), eSr ∈ Hom(CMr ,CKr ), r = m+ 1, . . . , m+ n− 1.

For r < m, the theory has the N = (4,4) superpotential term trCKr (eRrφrRr), and a flavor

symmetry U(Kr) act on Rr and eRr . For r = m, the cubic superpotential is absent and two copies

of U(Km) act separately on Rm and eRm. Similar statements hold for Sr and eSr . Under U(1)ħh, Rr

and eRr have charge −1 and Sr and eSr have charge +1.

The gauge and matter contents of the theory can be encoded in a quiver. For (m|n) = (3,2),

the quiver is

eP2

P2

eP3

P3

eP4

P4

φ1 φ2

φ4

eR1
R1 eR2

R2 eR3
R3

eS3
S3 eS4

S4

M1 M2 M3 M4

K1 K2 K3 K3

K3 K3 K4

(297)

47



SciPost Physics Submission

Furthermore, the theory admits a brane construction. For example, for (M1, M2, M3, M4) = (3,2,2,2)

and (K1, K2, K3|K3, K4) = (2,1,1|1,1), the brane configuration for the above quiver is

(298)

Note that in order to realize the flavor symmetry U(Km)
2×U(Km)

2, each D4-brane between NS5m

and NS5m+1 needs to be brought to the NS5-brane of the same color and broken into half.

We turn on mass parameters for the global symmetries in such a way that higgsing give the

following masses:

(Rℓr)
ar

l : σ
ar
r −µ

ℓ
r,l −

1

2
ħh , (299)

(eRℓr)
l
ar

: µ̃ℓr,l −σ
ar
r −

1

2
ħh , (300)

(Sℓr)
ar

l : σ
ar
r − ν

ℓ
r,l +

1

2
ħh , (301)

(eSℓr)
l
ar

: ν̃ℓr,l −σ
ar
r +

1

2
ħh . (302)

We necessarily have µℓr,l = µ̃
ℓ
r,l and νℓr,l = ν̃

ℓ
r,l for r 6= m.

From these expressions for the masses, we see that for r ≤ m, the pair (Rℓr , eRℓr) contributes to

the vacuum equations the factor
Kℓr∏

l=1

σ
ar
r −µ

ℓ
r,l −

1
2ħh

σ
ar
r − µ̃

ℓ
r,l +

1
2ħh

, (303)

and for r ≥ m, the pair (Sℓr ,eSℓr ) contributes the factor

K
ℓ

r∏

l=1

σ
ar
r − ν

ℓ
r,l +

1
2ħh

σ
ar
r − ν̃

ℓ
r,l −

1
2ħh

. (304)

For the Bethe/gauge correspondence to exist, the above factors should reproduce the factor

σ
ar
r − ζ

ℓ + (−1)[r+1]λℓr+1ħh−
1
2 crħh

σ
ar
r − ζℓ + (−1)[r]λℓrħh−

1
2 crħh

(305)

in the Bethe equations. This is indeed possible if we identify the parameters as

µℓr,l = µ̃
ℓ
r,l = ζ

ℓ − (λℓr +
1

2
cr +

1

2
)ħh+ lħh , (306)

νℓr,l = ν̃
ℓ
r,l = ζ

ℓ + (λℓr+1 +
1

2
cr −

1

2
)ħh+ lħh . (307)

We have
Kℓr∏

l=1

σ
ar
r −µ

ℓ
r,l −

1
2ħh

σ
ar
r − µ̃

ℓ
r,l +

1
2ħh
=

σ
ar
r −µ

ℓ
r,Kℓr
− 1

2ħh

σ
ar
r −µ

ℓ
r,1 +

1
2ħh
=
σ

ar
r − ζ

ℓ + (λℓr − Kℓr )ħh−
1
2 crħh

σ
ar
r − ζℓ +λℓrħh−

1
2 crħh

(308)
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for r ≤ m and

K
ℓ

r∏

l=1

σ
ar
r − ν

ℓ
r,l +

1
2ħh

σ
ar
r − ν̃

ℓ
r,l −

1
2ħh
=
σ

ar
r − ν

ℓ
r,1 +

1
2ħh

σ
ar
r − ν

ℓ

r,K
ℓ

r

− 1
2ħh
=

σ
ar
r − ζ

ℓ −λℓr+1ħh−
1
2 crħh

σ
ar
r − ζℓ − (λ

ℓ
r+1
+ K

ℓ

r)ħh−
1
2 crħh

(309)

for r ≥ m, so we obtain the factor (305) using the definitions of Kℓr and K
ℓ

r .

Now, let us consider the case in which the representations of the spin variables are arbitrary

finite-dimensional ones. Even in this general case, most of the above argument actually goes

through, with the same definitions of Kℓr and K
ℓ

r for r 6= m and the identifications (306) and (307).

The only place that fails is where we set r = m: if we choose nonnegative integers Kℓm, K
ℓ

m and

write down the product of the factors (303) and (304) for r = m, we get

σ
am
m − ζ

ℓ −λℓm+1ħh−
1
2 cmħh

σ
am
m − ζℓ +λℓmħh−

1
2 cmħh

�
σ

am
m − ζ

ℓ + (λℓm − Kℓm)ħh−
1
2 cmħh

σ
am
m − ζℓ − (λ

ℓ
m+1
+ K

ℓ

m)ħh−
1
2 cmħh

�
, (310)

whereas the Bethe equations do not contain the second fraction in the parenthesis.

We can cancel this unwanted factor if we introduce additional chiral multiplets

eRℓm ∈ Hom(CMm ,CKℓm) , (311)

Sℓm ∈ Hom(CK
ℓ

m ,CMm) (312)

and give them appropriate masses. These chiral multiplets are produced by semi-infinite D4-

branes ending on NS5m and NS5m+1.
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A Four-dimensional Chern–Simons theory with gauge supergroup from

twisted string theory

In this appendix we present an alternative construction of four-dimensional Chern–Simons theory

with gauge group GL(m|n), using the framework of twists of superstring theory as developed in

[67]. Twisted superstring theory refers to superstring theory in a particular RR background where

the bosonic ghost for local supersymmetries may take a nonzero nilpotent vacuum expectation
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value Q. When one considers D-branes in such backgrounds, the coupling between D-branes and

the bosonic ghost dictates that Q is added to the BRST differential of the worldvolume theory [67].

Therefore, the field content of worldvolume theories of branes in twisted superstrings are naturally

Q-cohomology of that of the supersymmetric gauge theories one would find in the absence of the

additional RR background. As such, twisted superstrings affords a useful framework for studying

protected sectors of supersymmetric gauge theories.

Costello and Li [67] give conjectural descriptions of such twists of superstrings in terms of

topological strings. These conjectures have passed several consistency checks [67–69] and have

been proven at the level of the free limit of the supergravity approximation [70]. Taking these

conjectures as a starting point, one can derive simple descriptions of twists of worldvolume the-

ories of D-branes using mathematical tools from the study of topological strings. Though such

calculations require machinery from homological algebra, they have the benefit of calculational

ease. Tractable models of twisted worldvolume theories can be determined from an Ext-algebra

computation, and the action functional can be read off from an algebraic structure and trace on the

Ext-algebra; no term-matching arguments involving the Dirac–Born–Infeld action are required.

In this appendix, we work with field theory in the Batalin–Vilkovisky (BV) formalism as artic-

ulated by [71,72]. In particular, we freely make use of the language of L∞-algebras. Much of the

below is exposited elsewhere in the literature. The construction of twisted supergravity and the

conjectural descriptions of twists of superstrings in terms of topological strings are given in [67].

Many of the examples below are worked out in [73] where more formal aspects of the framework

are articulated and some mathematical applications are discussed. We hope the exposition of

this appendix will have the simultaneous benefit of illustrating the calculational utility of twisted

superstrings, and making our constructions parseable to more mathematically minded readers.

A.1 Topological strings

We begin with some recollections on topological strings. The worldsheet theory of a topological

string theory is a two-dimensional oriented topological quantum field theory. Treating such theo-

ries via the language of functorial field theory, the results of [74,75] tell us that such theories are

determined by the data of a Calabi–Yau category. Physically, we think of objects of this category as

D-branes in our topological string theory, and the space of homomorphisms between two objects

as the complex computing BRST cohomology of the states of open strings stretched between the

branes. It is known that spaces of open string states have an algebra structure, with respect to

which the action for open string field theory takes a simple form [76]. The data of a Calabi–Yau

category is exactly what is needed to make precise this algebraic structure; this will be elaborated

more on subsection A.2 below.

Example A.1. Let M be a symplectic four-manifold and X a Calabi–Yau three-fold. The SU(3)-

invariant twist of type IIB string theory is given by the Calabi–Yau 5-category Fuk(M)⊗ Coh(X ).
Here, Fuk(M) refers to the Fukaya category of M and Coh(X ) refers to the category of coherent

sheaves on X . This describes a topological string theory that looks like a combination of the A-

model into M and the B-model into X .

Here the terminology is meant to indicate that the above mixed A-B model conjecturally arises

from type IIB string theory in an RR background in which the bosonic ghost takes a vacuum

expectation value given by an SU(3)-invariant nilpotent element of the ten-dimensionalN = (2,0)

supersymmetry algebra.

50



SciPost Physics Submission

Remark A.2. Let us elaborate on our description of the A-model directions. For us the main

relevant example will be when M = R2N . In this case, we will use a version of the Fukaya category

that we will denote Fuk0 where we discard counts of pseudo-holomorphic discs with nonzero area.

Explicitly, the objects in the category will consist of Lagrangians in M , and for two Lagrangians L1,

L2 ⊂ R
2N with clean intersection, we have that HomFuk0(L1, L2) = Ω

•(L1∩ L2). This will suffice for

our purposes as we will primarily care about perturbative phenomena on worldvolume theories

of branes, so we may neglect worldsheet instantons.

In addition to this restriction on the space of homomorphisms, this category does not include

as objects, coisotropic A-branes. To the authors’ knowledge, it is an open mathematical problem

to construct a version of the Fukaya category that includes as objects such branes. Fortunately, we

will not need to consider such branes in our analysis.

To a topological string theory, we may associate two field theories which are versions of open

string field theory and closed string field theory respectively. The former recovers twists of world-

volume theories of branes in the physical string while the latter contains twists of supergravity.

A.2 Topological open string field theory

Let C be an A∞-category and let F ∈ C be an object. Then HomC(F ,F) is an A∞-algebra, and

skew-symmetrizing the A∞-operations yields an L∞-algebra. Now suppose our C is in fact a

Calabi–Yau N -category, and as such can be thought of as determining a topological string theory.

Then for any object F ∈ C, we have an invariant pairing tr: HomC(F ,F)→ C[N].
In examples of interest, where C is attached to a 2N -manifold thought of the target spacetime

of our topological string, HomC(F ,F) will arise as sections of a natural graded vector bundle over

the support of F , the L∞-structure maps will be given by polydifferential operators, and the trace

map will factor through integration over the support of F . In such instances, the data of this

L∞-algebra and the trace pairing then determine the data of a perturbative Z2-graded BV theory

– the space of fields of the theory is ΠHomC(F ,F) and the action is given by

S(α) =
∑

k≥1

1

(k + 1)!
tr
�
α⊗ ℓk(α

⊗k)
�

, (313)

where ℓk : HomC(F ,F)⊗k → HomC(F ,F) are the L∞-structure maps. This theory is the world-

volume theory of the D-brane F in the topological string theory determined by C. The conjectural

descriptions of twists of superstrings in terms of topological strings imply that for C coming from

a twist of a superstring theory, the worldvolume theory of F is a twist of the worldvolume theory

of the corresponding brane in the physical string theory.

Example A.3. Consider the SU(3)-invariant twist of type IIB string theory onR4×C3 from example

A.1, and consider a stack of n D5-branes wrapping R2 ×C2. As explained in the above example,

this twist of type IIB string theory is described by the Calabi–Yau category C = Fuk0(R4)⊗Coh(C3).

The object describing our stack of branes is given by (R2,On
C2). We have that

ExtC
�
(R2,On

C2), (R
2,On
C2)
�
= HomFuk0(R2,R2)⊗ ExtCoh(C3)(O

n
C2 ,On

C2)

= Ω•(R2)⊗ ExtCoh(C3)(OC2 ,OC2)⊗ gl(n)

= Ω•(R2)⊗Ω0,•(C2)[ǫ]⊗ gl(n).

(314)

In the last step, we have used the following general result:
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Lemma A.4. Let X be a Calabi–Yau manifold and let Y ⊂ X be holomorphic. Then ExtCoh(X )(OY ,OY )
∼= Ω0,•(Y,∧•NX/Y ).

We can describe the L∞-structure as follows. There is an L∞-structure onΩ•(R2)⊗Ω0,•(C2)⊗gl(n)
given by

ℓ1 = d⊗ 1Ω0,•(C2) ⊗ 1gl(n) + 1Ω•(R2) ⊗ ∂̄ ⊗ 1gl(n) , (315)

ℓ2 = ∧⊗∧⊗ [−,−]gl(n) , (316)

ℓk = 0 , k ≥ 3 . (317)

The L∞-structure on Ω•(R4)⊗Ω0,•(C2)[ǫ]⊗ gl(n) is given by the semidirect product

�
Ω
•(R4)⊗Ω0,•(C2)⊗ gl(n)

�
⋉ ǫ
�
Ω
•(R4)⊗Ω0,•(C2)⊗ gl(n)

�
(318)

The trace pairing induced from the Calabi–Yau structure on C is given

tr: α 7→

∫

R2×C2|1

Tr(α)∧Ω , (319)

where Ω denotes the holomorphic volume form on C2 and Tr is the Killing form on gl(n). Thus,

we find that the action of the theory is exactly

S(α,β) =

∫

R2×C2|1

Tr

�
1

2
β(d + ∂̄ )α+

1

6
β ∧ [α,α]

�
∧Ω (320)

for

α ∈ Ω•(R2)⊗Ω0,•(C2)⊗ gl(n) , (321)

β ∈ Ω•(R2)⊗Ω0,•(C2)ǫ ⊗ gl(n) . (322)

This is exactly the holomorphic–topological twist of six-dimensional N = (1,1) super Yang–Mills

theory, dubbed the rank (1,1) partially holomorphic topological twist in [77].

A.3 Topological closed string field theory

Let Z be the worldsheet theory determined by the Calabi–Yau category C. Naively, the closed

string states of the theory should be given by the local operators of the worldsheet theory, Z(S1).

However, the worldsheet theory in the physical string is coupled to two-dimensional gravity –

closed string states should be those local operators invariant under reparametrizations of the

worldsheet. Since the worldsheet theory is topological, Cartan’s magic formula tells us that small

reparametrizations will act homotopically trivially on the space of local operators. In the setting

of topological strings, there is a natural homotopy action of S1 on Z(S1) – the closed string states

will be the invariants Z(S1)S
1

. In terms of categorical data, this is computed by the cyclic cochains

of the category C, HC•(C). There is a natural way to equip a shift of HC•(C) with an odd Poisson

tensor and an L∞-structure. In examples in which the graded vector space underlying HC•(C)

arises as the space of sections of some graded vector bundle, this gives HC•(C) the structure of a

Z2-graded Poisson BV theory. The constructions of the L∞- and shifted Poisson structures in this

generality are extraneous for our purposes – we will be focused on the following examples.
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Example A.5. Suppose C = Coh(X ) with X Calabi–Yau. Then the cyclic formality theorem [78]

tells us that there is an equivalence of L∞-algebras

HC•(C) ∼=
�
PV•,•(X )[[t]] ,ℓ1 = ∂̄ + t∂ ,ℓ2 = {−,−}

�
, (323)

where t is a parameter of degree 2, ∂ denotes the divergence operator, and {−,−} denotes

the Schouten bracket of polyvector fields. The Poisson tensor has Poisson kernel (∂ ⊗ 1)δ∆(X ),

where ∆(X ) ⊂ X × X denotes the diagonal. This theory is Kodaira–Spencer gravity articulated as

Bershadsky–Cecotti–Ooguri–Vafa theory studied by [79–81].

Example A.6. Suppose C = Fuk(M)with M being a symplectic manifold. The Hochschild (co)chains

admit a description in terms of the quantum cohomology of the target. Together with the abstract

L∞-structure and the Z2-graded Poisson structure, we expect that the result will be a version of

the Kähler gravity [82]. We will discard worldsheet instantons coming from the A-model direc-

tions of the twists of string theory we consider. Therefore, our ansatz will be that the closed string

field theory for the A-model directions is described by the L∞-algebra Ω•(M) with L∞-structure

given by ℓ1 = d, ℓ2 = ∧ and Poisson structure given by the wedge and integrate pairing. We

will abusively continue to denote the closed string field theory in the A-model sans worldsheet

instantons by HC•(Fuk(M)).

Example A.7. Putting the above two examples together, we can describe the closed string field

theories for the twists of type IIB string theory we are interested in. The closed string field theory

for the SU(3)-invariant twist of type IIB string theory on R4 × C3 is given by the L∞-algebra

Ω
•(R4)⊗ PV•,•(C3)[[t]] with

ℓ1 = d⊗ 1PV•,•(C3)[[t]] + 1Ω•(R4) ⊗ (∂̄ + t∂ ) , (324)

ℓ2 = ∧⊗ {−,−} , (325)

ℓk = 0 , k ≥ 3 . (326)

The Poisson tensor is given by the Poisson kernel (∂ ⊗ 1)δ∆(C3)δ∆(R4).

A.4 Closed–open map

Given a Calabi–Yau category C and an object F ∈ C, there is always an L∞-map

HC•(C)→ CE•
�
HomC(F ,F)
�

. (327)

Here, the target denotes Chevalley–Eilenberg cochains on the L∞-algebra HomC(F ,F); this is

a model for Hamiltonian vector fields on the formal moduli space describing fluctuations of the

brane F . This map takes a closed string field and produces a single trace-operator on the world-

volume theory of F , which describes how the closed string field couples to the worldvolume

theory of F . We will wish to apply this to examples where C = Fuk0(R10−2N ) ⊗ Coh(CN ), and

F = (R5−N ,On
Ck) for k ≤ N . Then we have that

HC•(C) = Ω•(R10−2N )⊗ PV0,•(CN )[[t]] , (328)

HomC(F ,F) = Ω•(R5−N )⊗Ω0,•(Ck)[ǫk+1, . . . ,ǫN ]⊗ gl(n) . (329)

This map should be thought of as given by a sum of disk amplitudes with boundary on the brane

F and with an arbitrary number of marked points on the interior labeling closed string insertions.
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We will only consider single closed string insertions of the form 1⊗µ ∈ Ω•(R10−2n)⊗PV0,•(CN ). In

particular the field does not depend on the A-twisted directions of spacetime, or the parameter t.
For such fields we have the following explicit formula for the linear component of the closed–open

map

1⊗wa1

1
· · ·waN

N ∂
b1

w1
· · ·∂ bN

wN
7→ I(α) , (330)

where

I(α) =
1

(n+ 1)!

∫

R5−N×Ck|N−k

Tr(wa1

1
· · ·waN

N ǫ
bk+1

k+1
· · ·ǫ

bN
N

× ∂ bk+1
ǫk+1
α∧ · · · ∧ ∂ bN

ǫN
α∧ ∂ b1

w1
α∧ · · · ∧ ∂ bk

wk
α)∧Ω . (331)

A version of this result including formulas for the deformation to all orders in open string

insertions is proved in [81]. It is worth emphasizing that deriving formulas for this map at all

orders is an extremely nontrivial problem – for µ ∈ PV2,0 this is the content of the holomorphic

analogue of Kontsevich’s theorem on deformation quantization.

Example A.8. Consider the SU(3)-invariant twist of type IIB string theory on R4×C3. We fix once

and for all coordinates z, w1, w2 on C3. We saw in the example above that a stack of n D5-branes

wrapping R2 ×C2
z,w1

gives rise to a holomorphic–topological twist of six-dimensional N = (1,1)

super Yang–Mills theory with gauge group U(n). Let us now consider what happens when we

turn on a field 1⊗ w1w2 ∈ Ω
•(R4)⊗ PV0,•(C3). Recall that the fields of the relevant twist of six-

dimensional N = (1,1) super Yang–Mills theory were given by Ω•(R2)⊗Ω0,•(C2
z,w1
)[ǫ]⊗ gl(n).

The image of the closed string field w1w2 under the closed open map becomes the functional

I(α) =

∫

R2×C2|1

Tr(αw1∂ǫα∧Ω) . (332)

Equivalently, this deforms the L∞-structure onΩ•(R2)⊗Ω0,•(C2)[ǫ]⊗gl(n) so that ℓ1 = d⊗1Ω0,•(C2[ǫ])⊗1gl(n)

+ 1Ω•(R2) ⊗ (∂̄ + w1∂ǫ)⊗ 1gl(n). The differential w1∂ǫ has the effect of deforming the complex of

fields of the theory into

Ω
•(R2)⊗
�
Ω

0,•(C2)ǫ
w1∂ǫ
−−→ Ω0,•(C2)
�
⊗ gl(n) . (333)

This is the Koszul resolution of the locus w1 = 0, so is quasi-isomorphic toΩ•(R2)⊗Ω0,•(C)⊗gl(n).
This is exactly four-dimensional Chern–Simons theory as a Z2-graded BV theory.

Remark A.9. Note that the above construction differs slightly from the construction of four-

dimensional Chern–Simons theory via Ω-deformation in [16]. Conjecturally, the quadratic super-

potential we have introduced should describe those components of the RR two-form used in [16]

that are not exact for the twist we are performing. However, checking this explicitly is a diffi-

cult task. Moreover, at the level of field theory, the construction in [16] came from subjecting

the holomorphic–topological twist of six-dimensional N = (1,1) super Yang–Mills theory with BV

fields given by Ω•(R4)⊗Ω0,•(C)⊗gl(n) to a B-type Ω-background along R2 ⊂ R4. Such a construc-

tion involves replacing a factor of Ω•(R2)with the Cartan model for S1-equivariant cohomology of

R
2, which is given by the abelian dg Lie algebra (Ω•(R2)[u]S

1

, d+u ι∂θ ), where u is an equivariant

parameter, and ∂θ is the infinitesimal action of rotations. The localization theorem for equivariant
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cohomology tells us that for generic values of the equivariant parameter, the complex of fields of

our theory is quasi-isomorphic to Ω•(R2)⊗Ω0,•(C)⊗gl(n). Note that the relation uL∂θ = [d,u ι∂θ ]
coming from Cartan’s magic formula tells us that the infinitesimal action of rotations on the fields

of our theory is homotopically trivial.

However, in the above construction we instead work with a more minimal twist of six-dimensional

N = (1,1) super Yang–Mills theory; the twist of the previous paragraph is gotten from deforming

the differential onΩ•(R2)⊗Ω0,•(C2)[ǫ]⊗gl(n) so that ℓ1 = d⊗1Ω0,•(C)[ǫ]⊗1gl(n)+1Ω•(R2)⊗(∂̄+ǫ∂w1
)⊗1gl(n).

Instead of taking this further twist and working equivariantly along the topological plane that the

w1-plane becomes, we turned on a deformation coming from a quadratic superpotential. It is

worth noting that there is a map from a twist of the four-dimensional N = 4 superconformal alge-

bra to the closed string sector of the SU(3)-invariant twist of type IIB string theory – the quadratic

superpotential deformation considered above lies in the image of this map. Moreover, note that

we have that Lw1∂w1
= [ǫ∂w1

, w1∂ǫ]; we see that the superconformal deformation also makes the

complexified action of rotations exact for the B-twist supercharge. This appears to be part of a

general pattern where a superconformal deformation of a holomorphic theory is equivalent to an

Ω-deformation of a further topological twist [73,83,84].

Remark A.10. It is also interesting to consider the superpotential w1w2 as a deformation of the

entire topological string theory, that is, as a deformation of the category of branes. Morally, it

should deform the category of coherent sheaves on C3 to the category of matrix factorizations

for the superpotential w1w2; the B-model directions of the topological string are turned into a

Landau–Ginzburg B-model. The category of matrix factorizations in this case can be described as

the category of modules for the Jacobi algebra of the superpotential w1w2, which in this case is

just the algebraC[z]. Thus, we see that the SU(3)-invariant twist of type IIB string theory localizes

to a six-dimensional topological string theory on R4×C; this makes contact with the work of [85].

A.5 Four-dimensional Chern–Simons theory with gauge supergroup from the SU(3)-

invariant twist of type IIB string theory

In this section we will arrive at four-dimensional Chern–Simons theory with gauge supergroup

using the formalism developed in the previous subsections. The calculation is essentially an easy

corollary of the examples therein.

We consider the SU(3)-invariant twist of type IIB string theory on R4×C3 with a configuration

of D-branes as in the following table:

R
2
R

2
Cz Cw1

Cw2

n D5 ◦ × × × ◦

m D5 ◦ × × ◦ ×

(334)

A cross mark means that the D5-brane extends in that direction. We also turn on a closed string

field given by the quadratic superpotential w1w2. We arrive at a field theory description for this

system by first computing the open string field theory using the techniques above, and then ap-

plying the closed–open map.

Let F1 = (R
2,Om
C2

z,w1

), F2 = (R
2,On
C2

z,w2

) denote the objects in the categories of D-branes corre-

sponding to the stacks of n and m D5-branes, respectively. We first wish to compute HomC(F1⊕F2,F1⊕F2).

Since Hom commutes with direct sums, we have four summands:
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• From example A.8, we have that

HomC(F1,F1) = Ω
•(R2)⊗Ω0,•(C2

z,w1
)[ǫ2]⊗ gl(m) , (335)

HomC(F2,F2) = Ω
•(R2)⊗Ω0,•(C2

z,w2
)[ǫ1]⊗ gl(n) . (336)

Our convention above is that ǫi denotes a section of the normal bundle of C2
z,w j
⊂ C3, where

i 6= j.

The trace pairing is given by

tr(α) =

∫

R2×C2|1

dz dw j tr(α) . (337)

• We can compute, using free resolutions of the structure sheaves of the wi-planes, that

HomC(F1,F2) = Ω
•(R2)⊗Ω0,•(Cz)⊗Hom(Cm,Cn)[−1] , (338)

HomC(F2,F1) = Ω
•(R2)⊗Ω0,•(Cz)⊗Hom(Cn,Cm)[−1] . (339)

Each of these are abelian L∞-algebras, with ℓ1 = d ⊗ 1Ω0,•(Cz)
⊗ 1Hom + 1Ω•(R2) ⊗ ∂̄ ⊗ 1Hom.

There is a natural trace pairing on the direct sum

Ω
•(R2)⊗Ω0,•(Cz)⊗ T ∗Hom(Cm,Cn)[−1] . (340)

Letting X s denote fields valued in Hom(Cm,Cn) and Y s fields valued in the cotangent direc-

tion, the pairing is given by

tr(X1 + Y1, X2 + Y2) =

∫
dw
�
TrCn(X1Y2)− TrCm(Y1X2)

�
. (341)

The action functional induced by this pairing and abelian L∞-structure is exactly the BV

action for a free hypermultiplet in the Kapustin twist. Restricted to fields of ghost number

1, this recovers exactly the action (145).

Thus we see that the entire space of open string states is given by

E = Ω•(R2)⊗Ω0,•(Cz)⊗





Ω
0,•(Cw1

)[ǫ2]⊗ gl(n)

⊕

Ω
0,•(Cw2

)[ǫ1]⊗ gl(m)

⊕

T ∗Hom(Cm,Cn)[−1]




. (342)

We now determine the L∞-structure. This is as usual gotten by skew-symmetrizing the natural

A∞-structure on HomC(F1 ⊕ F2,F1 ⊕ F2). In terms of the above direct summands, the A∞-

structure is given in terms of the following operations:

• HomC(Fi ,Fi)⊗HomC(Fi,Fi)→ HomC(Fi ,Fi) , A⊗ B 7→ AB ;

• HomC(Fi ,F j)⊗HomC(F j ,Fi)→ HomC(F j ,Fi) , Y ⊗ X 7→ Y X ;
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• HomC(Fi ,Fi)⊗HomC(F j ,Fi)→ HomC(F j ,Fi) , A⊗ X 7→ AX ,

where i, j = 1,2, i 6= j.
This induces the following L∞-structure:

• The first kind of A∞-operation above gives L∞-structures on HomC(Fi ,Fi) with

ℓ1 = d⊗ 1Ω0,•(C2)[ǫ j]
⊗ 1g + 1Ω•(R2) ⊗ ∂̄ ⊗ 1g , (343)

ℓ2 = ∧⊗ [−,−]g , (344)

where g = gl(m) for i = 1 and g = gl(n) for i = 2. As explained in example A.3 these are

precisely holomorphic–topological twists of the six-dimensional N = (1,1) vector multiplets

for gl(m) and gl(n).

• There is a bracket

�
Ω
•(R2)⊗Ω0,•(Cz)⊗ T ∗Hom(Cm,Cn)[−1]

�⊗2

→ Ω•(R2)⊗Ω0,•(Cz)⊗




Ω

0,•(Cw1
)[ǫ2]⊗ gl(m)

⊕

Ω
0,•(Cw2

)[ǫ1]⊗ gl(n)



 , (345)

explicitly given by wedging the form factors and taking the commutator of the matrices in

T ∗Hom(Cm,Cn).

• Finally, there is a bracket

Ω
•(R2)⊗Ω0,•(Cz)⊗




Ω

0,•(Cw1
)[ǫ2]⊗ gl(m)

⊕

Ω
0,•(Cw2

)[ǫ1]⊗ gl(n)





⊗

Ω
•(R2)⊗Ω0,•(Cz)⊗ T ∗Hom(Cm,Cn)

→ Ω•(R2)⊗Ω0,•(Cz)⊗ T ∗Hom(Cm,Cn) (346)

explicitly given by wedge product of forms and the natural action of gl(m)⊕gl(n) on T ∗Hom(Cm,Cn).

The last of these brackets encodes the coupling between the hypermultiplets in the Kapustin

twist and the twist of the six-dimensional N = (1,1) vector multiplet. The second bracket, which

breaks the Z-grading down to a Z2-grading, encodes an extra gauge symmetry.

The open string field theory we have found can formally be regarded as four-dimensional

Chern–Simons theory on R2 × Cz for a dg Lie superalgebra. We may schematically encode the

above brackets by writing the above dg Lie algebra as

�
Ω

0,•(Cw1
)[ǫ2]⊗ gl(m) Hom(Cm,Cn)[−1]

Hom(Cn,Cm)[−1] Ω
0,•(Cw2

)[ǫ1]⊗ gl(n)

�
. (347)

Let us now analyze the effect of the closed string field w1w2. As we saw before, the image of

this closed string field under the closed open map only affects the differential on the above dg Lie

57



SciPost Physics Submission

superalgebra. Explicitly, the deformation looks like




�
Ω

0,•(Cw1
)ǫ2

w1∂ǫ2
−−−→ Ω0,•(Cw1

)
�
⊗ gl(m) Hom(Cm,Cn)[−1]

Hom(Cn,Cm)[−1]
�
Ω

0,•(Cw2
)ǫ1

w2∂ǫ1
−−−→ Ω0,•(Cw2

)
�
⊗ gl(n)





∼=

�
gl(m) Hom(Cm,Cn)[−1]

Hom(Cn,Cm)[−1] gl(n)

�
. (348)

The remaining Lie brackets equip the above with with the structure of the Lie superalgebra

gl(m|n). Thus, we have found exactly four-dimensional Chern–Simons theory for the Lie algebra

gl(m|n) as claimed.

We note that the BRST transformations induced by the above Lie brackets are slightly different

from those identified in the main body of the paper. This is an artifact of working with a particular

model for the underlying L∞ algebra. For comparison, we explicate the BRST transformations

below.

Note that the cochain complex underlying our L∞ algebra arises naturally as the totalization

of a Z×Z/2-graded cochain complex, where the fields valued in Hom(Cm,Cn)⊕Hom(Cn⊕Cm) are

placed in bidegree (•, 1). Though the lie brackets arising from the coupling of the hypermultiplets

to the vector multiplets broke the Z-grading down to a Z/2-grading, these brackets are easily seen

to preserve the above grading Z×Z/2 grading.

We fix the following notation for components of our fields

αi j ∈ Ω
i(R)⊗Ω0, j⊗ (gl(m)⊕gl(n)), βi j ∈ Ω

i(R)⊗Ω0, j⊗ (Hom(Cm,Cn)⊕Hom(Cn,Cm)) (349)

and denote the corresponding linear operators the same way. The BRST variations determined by

the then take the form

Qαi j = dα(i−1) j + ∂̄ αi( j−1) +
∑

a+c=i,b+d= j

[αab,αcd] +
∑

a+c=i,b+d= j

[βab,βcd] (350)

Qβi j = dβ(i−1) j + ∂̄ βi( j−1) +
∑

a+c=i,b+d= j

[αab,βcd] (351)

The brackets in these equations are the relevant brackets on the L∞ algebra we’ve identified.

It would be interesting to construct an explicit L∞ equivalence between the BV complex we have

identified and the L∞ algebra consisting of the fields A, c, b, B and BRST transformations from

section 169.

Remark A.11. As in remark A.10, we can consider the effect of the quadratic superpotential as

a deformation of the entire category. The result is a six-dimensional topological string theory on

R
4 ×C. The two stacks of D5-branes we have considered will localize to a stack of D4- and anti-

D4-branes wrapping R2×C. This set up is very reminiscent of the topological strings construction

of three-dimensional Chern–Simons theory with gauge supergroup of [86] and should lend itself

to a holographic realization of the Yangian of gl(m|n) generalizing the analysis of [85]
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