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We present a correspondence between two-dimensional N = (2,2) supersymmetric gauge
theories and rational integrable gl(m|n) spin chains with spin variables taking values in
Verma modules. To explain this correspondence, we realize the gauge theories as configu-
rations of branes in string theory and map them by dualities to brane configurations that re-
alize line defects in four-dimensional Chern-Simons theory with gauge group GL(m|n). The
latter configurations embed the superspin chains into superstring theory. We also provide
a string theory derivation of a similar correspondence, proposed by Nekrasov, for rational
gl(m|n) spin chains with spins valued in finite-dimensional representations.
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1 Introduction

The Bethe/gauge correspondence, discovered by Nekrasov and Shatashvili[1,2] in 2009, connects
two seemingly unrelated areas of physics. The Bethe side of the correspondence refers to one-
dimensional integrable quantum spin chains. The gauge side is supersymmetric gauge theories.
Arguably the most prominent example of the Bethe/gauge correspondence involves Heisen-
berg’s XXX spin chain and its generalizations. In this example, the eigenvectors of commuting
conserved charges of a rational gl(m) spin chain are identified with the vacua of a family of gauge
theories whose gauge group is the product of m — 1 unitary gauge groups. The gauge theories
have N = (4,4) supersymmetry broken to A/ = (2,2) subgroup by mass deformations, and their
gauge and matter contents are encoded in quiver diagrams whose underlying graphs contain the
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Dynkin diagram of type A,,_; as a subgraph.

In 2018, Nekrasov [3] presented a generalization of the above correspondence where the
relevant spin chains carry superspins, namely rational gl(m|n) spin chains. The corresponding
gauge theories are essentially NV = (2,2) supersymmetric, as opposed to having softly broken
N = (4,4) supersymmetry. One of the main results of this paper is an explanation of the origin of
this correspondence using superstring theory.

In fact, the goal of the present work is much more ambitious: we wish to place the Bethe/gauge
correspondence for superspin chains into a large web of dualities that relate diverse phenomena
in which the same superspin chains arise from different supersymmetric gauge theories in various
spacetime dimensions.

Many of the phenomena that are expected to constitute this web of dualities are yet to be
uncovered, but their specializations to the case of gl(m|0) = gl(m) are known and have been
studied in recent years. Besides the Bethe/gauge correspondence already described, the structures
of rational gl(m) spin chains (and their trigonometric and elliptic generalizations) have appeared
in quantization of the Seiberg-Witten geometries of four-dimensional N' = 2 supersymmetric
gauge theories [4-6], the action of surface and line defects on supersymmetric indices of four-
dimensional supersymmetric gauge theories [7-12], quantization of the Coulomb branches of
three-dimensional A" = 4 supersymmetric gauge theories [13, 14], and correlation functions of
local operators on interfaces in four-dimensional A" = 4 super Yang-Mills theory [15], to name a
few.

All of these gauge theory setups have realization in string theory, and one suspects that they
are related to each other in one way or another via string dualities. This idea has turned out to
be true. It was argued in [16] that brane constructions of these setups (except for the last one
which we expect is also related) are all dual to brane configurations that realize line defects in a
four-dimensional analog of Chern-Simons theory [17-19] with gauge group GL(m). This theory
only has a bosonic gauge field, but it is secretly supersymmetric. Indeed, it is equivalent to a
holomorphic-topological twist of six-dimensional A" = (1, 1) super Yang-Mills theory with gauge
group U(m) in the presence of Q-deformation [20-24]. The six-dimensional theory describes the
low-energy dynamics of a stack of m D5-branes, which comprise part of the brane configurations.

Four-dimensional Chern-Simons theory placed on R? x C is topological on the plane R? and
holomorphic on the complex plane C. Due to this holomorphic—-topological property, line defects
extending along R? automatically satisfy the Yang-Baxter relation. Moreover, each line defect
carries one complex parameter, its position in C. These facts imply that line defects making up a
square lattice in R? defines a two-dimensional classical integrable lattice model; their correlation
function equals the partition function of the lattice model.

Equivalently, with one of the lattice directions regarded as a time direction, a lattice of line
defects in four-dimensional Chern-Simons theory defines a one-dimensional quantum integrable
spin chain. For Wilson lines, this spin chain is a rational gl(m) spin chain [17-19]. (If one replaces
C in spacetime with C\ {0} or an elliptic curve, then one obtains trigonometric or elliptic gl(m)
spin chain, respectively.) Thus, the fact that the gauge theory setups mentioned above are all dual
to line defects in four-dimensional Chern-Simons theory explains the appearance of gl(m) spin
chains in these setups.

Now, in view of the Bethe/gauge correspondence for rational gl(m|n) spin chains, one wonders
how one can incorporate it into the picture just described. If one could generalize the string theory
realization of the Bethe/gauge correspondence for bosonic spin chains to the superspin chain case,
one would generalize, implicitly by string dualities, all of the gauge theory phenomena mentioned
above to their gl(m|n) versions. This is what we aim to achieve.
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In this paper, we provide brane constructions of the gauge theories pertinent to the Bethe/gauge
correspondence for rational gl(m|n) spin chains, and show that they are related by dualities to line
defects in four-dimensional Chern-Simons theory with gauge group GL(m|n). The latter theory is
obtained from two copies of Q-deformed six-dimensional " = (1, 1) super Yang-Mills theory, with
gauge groups U(m) and U(n), coupled by a four-dimensional hypermultiplet in the bifundamental
representation of U(m) x U(n). In turn, this gauge theory setup arises from a stack of m D5-branes
intersecting a stack of n D5-branes. This brane construction is another main result of the paper.

Actually, we present two versions of the Bethe/gauge correspondence, one for compact spin
chains and one for noncompact spin chains. The difference is whether spin variables are valued
in finite-dimensional or infinite-dimensional representations.

We introduce the Bethe/gauge correspondence for noncompact rational gl(m|n) spin chains
in section 2. The brane constructions of the corresponding gauge theories, as well as the duality
relating these theories to line defects in four-dimensional Chern—-Simons theory with gauge group
GL(m|n), are discussed in section 3. Discussions in this section provide a string theory explanation
for the Bethe/gauge correspondence. The case of compact spin chains is treated in section 4, where
we reproduce the correspondence proposed in [3].

It should be remarked that in an inspiring paper [25] in 2010, Orlando and Reffert found the
Bethe/gauge correspondence for the rational gl(1|2) spin chain with spins taking values in the
natural (1]2)-dimensional representation C!'?. Furthermore, they gave a string theory argument
to explain dualities between different families of gauge theories corresponding to different choices
of Dynkin diagrams of gl(1]|2). On the spin chain side, these dualities are known as fermionic
dualities. In section 3.4 we discuss the fermionic dualities for rational gl(m|n) spin chains from a
similar point of view.

As we mentioned above, four-dimensional Chern—Simons theory with gauge supergroup can be
constructed from two copies of six-dimensional super Yang-Mills theory coupled by four-dimensional
matter fields. There is a related construction in topological string theory, which may prove use-
ful in future attempts to put some of the physical arguments given in this work on a rigorous
mathematical footing. We describe the topological string construction in appendix A.

The present work unveils only a small part of a collection of phenomena in which superspin
chains emerge from supersymmetric gauge theories. It will be extremely interesting to study
other, but ultimately related, phenomena whose existence is predicted by string dualities and
other tools. We conclude this introduction by stating mathematical conjectures as examples of
such phenomena.

In section 2, we define a family of N = (2, 2) supersymmetric gauge theories labeled by the set
of (m + n— 1)-tuples of nonnegative integers Zga’ n=1 " corresponding to a closed rational gl(m|n)
spin chain of length L with spins valued in Verma modules. If we turn off all mass parameters and
turn on appropriate Fayet-Iliopoulos (FI) parameters, these theories are described in the infrared
by effective sigma models. The target space of the sigma model with label M = (M, ..., M;n—1)
is a Calabi-Yau manifold M (M) with an action of GL(L)™*" x GL(1). The topological A-twist of
this sigma model, with mass parameters associated with the maximal torus T of GL(L)™"" x GL(1)
turned on, is equivalent to the sector of the spin chain in which there are M, magnons of type r.
The highest weights of the Verma modules are determined by the mass parameters.

Conjecture 1. The direct sum of equivariant cohomology groups

@D Hy (M) )

m+n—1
MeZT}
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is a module over Y (gl(m|n)), isomorphic to the tensor product of L evaluation modules obtained
from the Verma modules.

Conjecture 2. There is a homomorphism from the Bethe algebra of the Yangian Y (gl(m|n)) to the
direct sum of equivariant quantum cohomology rings

P (Mw). ()

m+n—1
MezZ™s

The first conjecture says that the Hilbert space of states of the A-model is the same as that of
the spin chain. For n = 0 and L = 1, the conjecture is proved in [26]. The second conjecture
means that the algebra of local operators of the A-model includes the algebra generated by the
commuting conserved charges of the spin chain. For n = 0, this conjecture follows from a result
of [27].

Similar conjectures can be made for the target spaces of effective sigma models corresponding
to compact rational gl(m|n) spin chains. The brane configurations in the compact case have been
recently considered by Rimanyi and Rozansky [28] from the perspective of geometric construction
of R-matrices [27], so we expect that the above conjectures also hold if the target spaces are
varieties defined in [28].

2 Bethe/gauge correspondence for noncompact superspin chains

The Bethe/gauge correspondence for superspin chains relates a closed spin chain with GL(m|n)
symmetry and two-dimensional gauge theories with A/ = (2, 2) supersymmetry. In this section we
present a version of the correspondence in which the spin chain consists of spins taking values in
infinite-dimensional highest-weight representations of gl(m|n). After reviewing some basic facts
about gl(m|n) and its Verma modules, we introduce the spin chain and its Bethe equations. Then,
we introduce the gauge theories and their vacuum equations, and explain in what sense the two
sides are equivalent.

2.1 gl(m|n) and its Verma modules

To begin with, let us review the structures of gl(m|n) and its Verma modules, with emphasis on
aspects that are important for the Bethe/gauge correspondence.

2.1.1 Lie superalgebra gl(m|n)

Let C™" be the vector space graded by Z, = {0,1} whose even subspace C?;'n = C™ and odd

subspace (C'inln =C". Let (by,...,by) and (fy,..., f,) be the standard basis of C" and that of C",
respectively. Throughout this section and the next section except section 3.4, we fix an ordered
basis (eq,...,emnsn) of C™M that is a permutation of (bq,..., by, f1,...,f,). The corresponding
Z,-grading [—]: {1,...,m +n} — Z, is defined by
my.
[ﬂ={?(qec)’ 3
1 (e; €CM).
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The space of endomorphisms End(C™") of C™" is also a Z,-graded vector space, with the
even subspace

End(C™"); = Hom(C™,C™) ® Hom(C",C") @)

and the odd subspace
End(C™"); = Hom(C™,C") ® Hom(C",C™). (5)

The elementary matrix E;;, which has 1 in the (i, j)th entry and O elsewhere, has grading [E;;] = [i]+[j].

The Lie superalgebra gl(m|n) is the Z,-graded vector space End(C™™), endowed with the
graded commutator [—,—]: End(C™") ® End(C™") — End(C™"): for elements a, b with homo-
geneous Z,-grading,

[a,b] = ab—(—1)lP]pq. (6)

We will distinguish the elements of gl(m|n) from those of End(C™m) by writing them as &;; rather
than E;;. They satisfy the commutation relations

(€ Ea] = 8 xEi — (_1)([i]+[j])([k]+[l])5ligkj_ (7)

Jj>
The Cartan subalgebra of gl(m|n) is generated by
H. =DM, — D *e 1y, r=1,...,m+n—1, (8)
and one more diagonal matrix, say £;;. The elementary matrix &;; has the root ¢; — ¢;, with

being the weight of e; in the natural (m + n)-dimensional representation. The positive roots are
¢; —¢; with i < j. The simple roots are

o, =€ —€,41, r=1,....m+n—1. (10)

The elements having the roots a, and —a, are E, = &, and F, = &£, ,, respectively. They
satisfy

[H,,E]=a,E,, an
[Hr’Fs] :_arst’ (12)
[Eraps] = 5r5(_1)[r]Hr: (13)
where
ars = as(Hr) = 5rs((_1)[r] + (_1)[r+1]) - 5r+1,s(_1)[r+1] - 5r,s+1(_1)[r] (14)

is the (r,s)th entry of the Cartan matrix.

The structure of gl(m|n) can be encoded in a Dynkin diagram, in which a simple root a, is
represented by a blank node if a,, = £2 and a crossed node if a,., = 0, and two nodes a,, a;
are connected by an edge if a,; # 0. As an example, consider the case with (m|n) = (3]2) and
(eq,eq,€3,€4,e5) = (by, by, f1, f2, b3). The associated Dynkin diagram is

O & O &

e1—€  e—8, 6,—0, Oy,—e; (15)
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where €; and §; are the weights of b; and f;, respectively.

Let us give a different presentation of the content of the Dynkin diagram in terms of a quiver
diagram, which makes the connection to gauge theory transparent.

First, we represent ¢; by a vertical line, of one of two colors depending on its grading:

. — (_) ;
- {I ({1=0) a6
({il=1).
The ordered set (€q,..., &,45,) is then represented graphically as m vertical lines of one color and

n vertical lines of the other color, placed in the order specified by the choice of the Z,-grading:

SRR

Next, we put a circle node between each pair of adjacent vertical lines:

|lo|o|o]|o] 18

The rth node represents the simple root a,.
Finally, for each pair (r,s) with a,, # 0, we draw an arrow from the rth node to the sth node
and write the number a,, on the side. We can erase the vertical lines at this stage:

+2

—2
8 -1 e +1 8 +1 (O (19)

-1 +1 +1

This quiver has the same content as the Dynkin diagram (15) modulo the action of the Weyl
group &,, x G,, which permutes the basis vectors (e, ..., €,,,,) without changing the Z,-grading.

2.1.2 Verma modules of gl(m|n)

A representation of gl(m|n) in a Z,-graded vector space V is a Lie superalgebra homomorphism
7 gl(m|n) — End(V), where End(V) is given the structure of a Lie superalgebra by the graded
commutator.

The Verma module M(A): gl(m|n) — End(V, ), with highest weight

m+n

A= e, AEC, (20)
i=1

is a representation of gl(m|n) constructed from a highest-weight vector |2, ) that is an eigenstate
of the diagonal matrices:

Eil ) = Ai194), (21)

The other vectors in V, are created by the action of lowering operators {£;; | i > j} on [Q2,), and
two vectors are identified if they are related by the commutation relations (7).
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More explicitly, the Fock space V), can be described as follows. Let us introduce an ordering
among all lowering operators and name them xy, ..., x,. Then, by the Poincaré-Birkhoff-Witt
(PBW) theorem, an element of V; is a linear combination of states of the form

M . Lxq ([ai]:6)§
x X" 1924), nle{{O,l} (a]=1). (23)

Verma modules are infinite-dimensional unless (m|n) = (1]|1), in which case there is only one
lowering operator and it is odd.

Since the lowering operator &;; changes the weight by ¢;—¢; = —a;—a

j j 1 a;_1, a state
of M(A) has a weight of the form
m+n—1
A= D> Ma,, M, €Zs,. (24)
r=1

We can also represent this weight graphically. To represent the highest weight A, for each vertical
line we draw a diagonal line ending on it and write A; next to the ith diagonal line; and to represent
the weight (24), we draw M, horizontal line segments between the rth and (r + 1)st vertical lines.
Here is an example for (M, My, M3, My) =(2,3,2,1):

A/ .
A A s Ay s

We convert this diagram into a quiver by replacing the diagonal lines with square nodes and
writing M, inside the rth circle node and 1 inside the square nodes:

-1 +1 +1
MlL 1M2J ’(MgL
+ (26)

To fix the horizontal positions of the square nodes, we have added arrows connecting circle and
square nodes.

2.1.3 Tensor products of Verma modules

If V; and V, are Z,-graded vector spaces, the tensor product V; ® V, is naturally Z,-graded. Given
two representations 7 : gl(m|n) — End(V;) and 7, : gl(m|n) — End(V;), the tensor product rep-
resentation 1, ® 7y : gl(m|n) — End(V; ® V;) is defined by

(11 ® o) (x)(v; ® Vo) = w1 (x)v; ® vy + (—1)["][V1]v1 ® To(x)Vv,, 27

where v;, v, and x are homogeneous in Z,-grading. The tensor products of more than two rep-
resentations can be defined recursively.
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The tensor product of L Verma modules M (A1), ..., M(AF) has a highest-weight vector |[€2;1)®- - -®|Q;.)
with highest weight A' 4+ --- + AL, A weight of M(A!) ® - -- ® M(A!) takes the form

L m+n—1
A= > Mea,, M, €Zs,. (28)
{=1 r=1

Graphically, we represented it by a diagram similar to the diagram (25) for a weight of a single
Verma module, but with L diagonal lines ending on each vertical line. For example, the diagram

/ y e D —
noA wo A n " a

2 2 2 2
iy / 2 / A3 A4 A5

PE 23 PE 23 PE

(29)

AN

represents a weight with (M;, My, M3, M,) = (2,1,0,2) in the representation M(A})®M(A2)®M (1)
of gl(3]2).

The corresponding quiver diagram is the same as before, except that the ith square node is
now labeled I and accompanied by the L-tuple ii = (Ail, ... ,AI.L):

(30)

The above quiver diagram will be identified with a quiver describing a two-dimensional V' = (2, 2)
supersymmetric gauge theory that appears on the gauge theory side of the Bethe/gauge correspon-
dence. The graphical representation using lines will be interpreted as a diagram depicting a brane
configuration in string theory.

2.2 Bethe side

Now we explain the Bethe side of the Bethe/gauge correspondence. The spin chains we consider
in this paper are rational gl(m|n) spin chains, for which spins take values in representations of
gl(m|n). More generally, spins in rational gl(m|n) spin chains are valued in representations of the
Yangian Y (gl(m|n)) of gl(m|n).

2.2.1 Yangian

The Yangian Y (gl(m|n)) is a Z,-graded Hopf algebra, which in particular is a unital associative
Zy-graded algebra. It is generated by elements

TV

T i,j=1,...,m+n, le€Zy, (31)

with grading [Ti(].l)] = [i] + [j]. The level-1 generators Ti(jl) span a subalgebra isomorphic to
gl(m|n), with the identification of generators being &;; = (—=DUlT ].(il).
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To describe the algebra relations for all generators in a compact form, let us introduce a formal
variable o and combine the generators into a single End(C™") ® Y (gl(m|n))-valued power series
P |
ino

m+n m+n OQ
T(o)= Y E;®Ty(0)= >, Z —E ®T . (32)
i,j=1 i,j=11= 0

Here T(O) = 6;; and H is a complex parameter. We can think of T(c’) as an (m + n) x (m + n)
matrix Whose entrles are elements of Y (gl(m|n))[[o~']]; it is called the monodromy matrix and

is a function of spectral parameter o. In terms of the monodromy matrix, the algebra relations for
Y (gl(m|n)) are encoded in the RTT relation

Ry3(01—03)T1(01)T2(03) = To(02)T1(01)R12(01 — 03) . (33)

This is a relation between elements in End(C™") ® End(C™"™) ® Y (gl(m|n))[[c~"]], and the sub-
script(s) on an operator indicate which factor(s) of cmin the operator acts on.

The operator R1,(0) € End(C™") ® End(C™") that appears in the RTT relation is the rational
gl(m|n) R-matrix. It is given by

Rlz(o'):O'I®I+hP12, (34)
where I is the identity matrix and
m+n i
i,j=1

The permutation operator P;, swaps tensor factors as
Pyy(e; ®ej) =(— 1)u] ej®e;. (36)
The R-matrix commutes with the automorphism group GL(m|n) of C™":
[g®g,Ri5(0)]=0, geGL(m|n). (37)

The dynamics of a closed rational gl(m|n) spin chain is generated by the transfer matrix

m+n

t(g,0) = strcm|n(gT(o)) = Z(—l)[i]gijTﬁ(a), g € GL(m|n). (38)

The supertrace taken over C™" corresponds to the topology of the spin chain which is closed, and
g twists the periodic boundary condition.

Multiplying both sides of the RTT relation (33) by ¢ ® g ® 1 from the left and Ry5(0; —05) ™"
from the right, then using the symmetry (37) of the R-matrix and taking the supertrace over
C™" @ ™" we see that transfer matrices for a fixed g commute with each other:

[t(gao-l): t(g:O-Z)] =0. (39)

Therefore, if we expand t(g, o) in powers of o™}, the coefficients are mutually commuting ele-
ments of Y (gl(m|n)). They generate a commutative subalgebra called the Bethe algebra (or the
Baxter algebra) of Y (gl(m|n)).

10
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2.2.2 Representations of Y (gl(m|n))

While the Yangian Y (gl(m|n)) and its Bethe algebra are the algebraic structures underlying rational
gl(m|n) spin chains, to get a concrete physical realization of a spin chain we need to specify a
representation of Y (gl(m|n)).

A representation p: Y (gl(m|n)) — End(V) of Y (gl(m|n)) maps the monodromy matrix to an
End(V)-valued matrix

m+n 0O

p(T(@)=>] Z —El] ®p(1). (40)

i,j= 110

Conversely, an End(V)-valued matrix satisfying the RTT relation determines a representation of
Y (gl(m|n)).

Given a representation 7 : gl(m|n) — End(V) of gl(m|n), we obtain a one-parameter family of
representations 7, : Y (gl(m|n)) — End(V), ¢ € C, of Y(gl(m|n)) by

m+n

(T(o))_lez>1dv+L > DVIE; @ (). (41)

1)1

This is known as the evaluation module for 1, and { is called the inhomogeneity parameter. Note
that we have

m (DUITY) = n(Ey). (42)

For a representation 7: gl(m|n) — End(V) of gl(m|n), let us define a one-parameter family of
representations n¢: gl(m|n) — End(V), c € C, by

nc(gl'j) = ﬂ(511)+(—1)[l]c5l] ldV . (43)

In the associated Yangian representations, the parameter c is related to a shift in the inhomogene-
ity parameter. Suppose that p: Y(gl(m|n)) — End(V) is a representation of Y (gl(m|n)). Then,
p(T (o)) satisfies the RTT equation, and for any function f of o, the RTT equation is still satisfied
when p(T (o)) is replaced by f(0)p(T(0)). Therefore, if f (o) can be expanded in a power series
in 0! starting from 1, then f(o)p(T (o)) defines a new representation of Y (gl(m|n)). Since

w5 (1(0)) =m0 + 2t 0idy = T P (1)), (@4)

¢ o—¢
we see that 7'[2 and 1,_; are related in this manner.

To construct tensor product representations of Y (gl(m|n)), we use the coproduct A: Y (gl(m|n))
— Y (gl(m|n)) ® Y (gl(m|n)). The map A is defined by the formula

m+n
A(T(0) = D) () HDIHIDE, @ Ty (o) ® Tyj(0). (45)
i,j,k=1

Given two representations p;: Y (gl(m|n)) — End(V;) and p,: Y(gl(m|n)) — End(V;), the tensor
product representation p;®p,: Y(gl(m|n)) — End(V; ® V,) is defined by

P1®p2 =(p1®pz)oA. (46)

A calculation shows that (p;®p,)(T (o)) satisfies the RTT relation.

11
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2.2.3 The spin chain

Now, fix a positive integer L, and choose L highest weights
A=Y ah) (47)
of gl(m|n) and L inhomogeneity parameters
E=(".. 0. 48)
Also, choose a diagonal element! of GL(m|n):
g= diag(e"”, ..., ePmen) ¢p;,eC. (49)

We consider the closed rational gl(m|n) spin chain of length L, with the spin at the £th site valued in
the evaluation module M (Af )¢ for the Verma module M (AY) and the periodic boundary condition
twisted by g.

The Hilbert space of states of this spin chain is the tensor product

L
Vi = ® Vo, (50)
(=1

and the L spins can be thought of as a single spin in the tensor product representation
M(A); =M(A)®- - @M(A) . (51)
The transfer matrix of the spin chain
MA)(t(g,0)) (52)

generates commuting conserved charges acting on V3, making the spin chain integrable. The
Hamiltonian is a linear combination of these charges.

2.2.4 Bethe equations

The Hilbert space of the spin chain is spanned by vectors that simultaneously diagonalize the com-
muting conserved charges, or equivalently, diagonalize the transfer matrix (52) for all values of
the spectral parameter o. These eigenvectors, referred to as Bethe vectors, are the main characters
from the Bethe side of the Bethe/gauge correspondence.

The Bethe vectors for the rational gl(m|n) spin chain have been constructed by Bethe ansatz
methods [29,30]. The construction starts with the highest-weight vector |Q3) of the tensor product
representation

L
M) =QRMMY. (53)

(=1
This state is called the pseudovacuum and satisfies
. Loo—¢+(=DHAlk
M(A)(Ty:(0))195) = (l_[ p— l )l

(=1
M(A);(Ti(0))I03) =0, i>j. (55)

Q3), (54)

!The spin chain can be defined for any choice of g, not necessarily diagonal ones. However, nondiagonalizable
choices of g do not appear to have a clear interpretation on the gauge theory side of the Bethe/gauge correspondence.
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According to our graphical notation, the pseudovacuum is represented by a diagram with no hor-
izontal segments:

1 1 1 1 1
|Q7L) - Aé Ag Ag kg Ag (56)
A A; A3 Ag As

3 3 3 3
A A A5 A AZ

Excited states are obtained from the pseudovacuum by the action of creation operators M (i) 5(
i < j. The operator M(X)E(Tij(a)) contains M(i)(é’ﬁ) and changes the gl(m|n) weight by ¢;—¢
Roughly speaking, we can interpret this action as creating a single quasi-particle, or a magnon,
of rapidity o and type r for each r =i,i+41, ..., j —1. Graphically, we think of it as creating a
horizontal line connecting the ith and jth vertical lines:

o, 4 o, Vi

T13(01)T25(02) Tus(05)1923) "’/I / o / /] (57)
7 %

This is, however, not a precise correspondence because the left-hand side depends on the ordering
of creation operators.

The operator Tj;(0), i < j, changes the weight by a;+a;,,+- - *+a;_;, so annihilates magnons
oftypem=1i,i+1, ..., j—1. It removes one horizontal line from each of the intervals between
the ith and jth vertical lines. If there is no horizontal line to remove, then the state is annihilated.

Eigenvectors of the transfer matrix are excited states constructed by certain linear combina-
tions of creation operators. It turns out that a Bethe vector with the gl(m|n) weight (28) is specified
by a Bethe root

1 M 1 men
RN W 123 SOOI WOUUS (<RI e O (58)
which is a solution of the Bethe equations
m+n—1 M

l—[ l—[or —05 + arsh

s=1 b=10r 2arsh

{4 [rlgly 1
_( 1)5[r][r+1]l_[ C+( 1) Ah Ch ,
“r—gf+( DAL, =1,k

a.=1....M,., r=1,...m+n—1. (59)

Here we have defined

Tr = (_1)[r+1]¢r+1 - (_1)[r]¢r (60)
and '
¢ =y (—1l. (61)
j=1
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We represent this Bethe vector by a diagram with M, horizontal lines between the rth and

r + 1)st vertical lines, with labels {c'}, ..., oMy, Therefore, the diagram
r r &
1
1 ol %
0 2 4 o,
i —_— 2
’// ot /) %/
% z / X 2 z / (62)
A2 A2 A2 22 A2
23 A3 22 A2 22

represents a Bethe vector of the closed gl(3]|2) rational spin chain of length L = 3 that be-
longs to the magnon sector (M;, My, M3,M,) = (1,2,1,2) and corresponds to the Bethe root
({01}, {0}, 02}, (o1}, (o}, o2)).

Note that the Bethe equations are invariant under the shift

(o gtacth, Ao b+ (DS, fec. (63)

This is a consequence of the relation (44) between a representation with shifted highest weight
and a representation with shifted inhomogeneity parameter. Since multiplying the transfer matrix
by a function of the spectral parameter does not change its eigenvectors, the Bethe equations
remain the same if we shift the highest weights and inhomogeneity parameters as above.

2.3 Gauge side

Now we turn to the gauge side of the Bethe/gauge correspondence. The closed rational gl(m|n)
spin chain discussed above corresponds to a family of two-dimensional N = (2, 2) supersymmetric
gauge theories whose field contents are described by quivers. These theories have supersymmetric
vacua that are in one-to-one correspondence with the Bethe vectors of the spin chain. For back-
ground knowledge on N = (2,2) supersymmetric gauge theories, we refer the reader to [31].

2.3.1 The gauge theories

The magnon sectors of the spin chain (the weight spaces of the Hilbert space (50)) are labeled by
(m 4+ n—1)-tuples of nonnegative integers. The sector with magnon numbers (My,...,M;,1n—1)
corresponds to a theory with the product gauge group

U(M;) % -+ x UMpqn—-1) - (64)

Correspondingly, the theory has vector multiplets V., r =1, ..., m+n—1, one for each unitary
gauge group factor.

In addition, the theory has various chiral multiplets. If [r] = [r + 1], then there is one chiral
multiplet transforming in the adjoint representation of U(M,.):?

¢, € Hom(CM,c™), [rl=[r+1], r=1,...,m+n—1. (65)

2Here and thereafter, statements about fields such as the one that follows only indicate the representations in which
they are valued.

14
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There are also chiral multiplets

P, e Hom(CM—,cM), i=2,....m+n—1, (66)
5l~€Hom((CMi,(CMi—1), i=2,....m+n—1, (67)
Q; € Hom(Ct,cM—1), i=2,...,m+n, (68)
C)ieHom(CMi,(CL), i=1,....m+n—1. (69)
It is convenient to introduce the notations
¢, =0, [r]#[r+1], (70)
and 5 _ _
Pl = Pl = Pm+n = I:)m+n = Ql = Qm+n =0. (71)

These chiral multiplets are coupled by the superpotential

m+n—1

W= Z trem, (¢rﬁr+1pr+1 - d)rPriSr + PrQrQr

r=1

+ (DM = (=DI+)B PP P ). (72)

The terms involving adjoint chiral multiplets are the cubic superpotentials required for N' = (4,4)
supersymmetry, which the theory possesses if either m = 0 or n = 0. The last quartic terms are
present only for the gauge group factors without adjoint chiral multiplets [32].3
The field content of the theory can be encoded in a quiver diagram. This is the same quiver
as the one that specifies a weight in the tensor product of L Verma modules of gl(m|n). Here is
the quiver for the now-familiar gl(3|2) example, with the arrows labeled with the corresponding
chiral multiplets:
[l

B

b3
2 i ﬁ3 i i54 W
B ) P ) Py ) (73)
(5 Q2 CNQ Q3 (53 Qs CN) Qs
A circle node labeled M is a U(M) gauge group. The theory has m+n copies of U(L) flavor groups,
denoted here by square nodes. We name them U(L);, U(L),, ..., U(L),,4, from left to right. The
terms in the superpotential (72) correspond to closed paths of length three and four in the quiver.

Apart from the U(L)™"" flavor symmetry, the theory has an important U(1) global symmetry
preserved by the superpotential. We call it U(1). The charges of the chiral multiplets under U(1);

3The quartic terms can be understood as follows. Suppose that [r] # [r+ 1], say [r]=0and [r +1] = 1, and
introduce a pair of chiral multiplets c])ri in the adjoint representation of U(M,.). These multiplets are massive and couple
with bifundamental chiral multiplets via superpotential terms of the form trem, (¢:5r+1pr+1 - d):rPrﬁr + mdl o).
Integrating out d)ri, we get the quartic term. From the point of view of the brane construction discussed in section 3.1,
we imagine the situation in which NS5, and NS5, ,; are almost orthogonal but not quite. The adjoint chiral multiplets
d)ri correspond to the positions of D2-branes along Riﬁ.
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are

b, 2(—1), (74)

P;: — (=1, (75)

ﬁi: _(_1)[i], (76)
1 .

Q;: 5(—1)[”, (77)

~ 1 .

Q;: 5(—1)[‘]. (78)

For ¢, and P;, Isi, their charges coincide with the corresponding Cartan matrix elements.

Most parameters of the spin chain correspond in the gauge theory to the twisted masses with
respect to the global symmetry U(L)™*" x U(1);. We can turn on the twisted masses as follows.
First, we couple vector multiplets for U(L)™*" x U(1); to the chiral multiplets and gauge the global
symmetry. Then, we give vacuum expectation values to the adjoint scalar fields in these vector
multiplets. Finally, we take the limit in which the gauge couplings for U(L)™"" x U(1) go to zero,
thereby freezing the vector multiplets just added. The vacuum expectation values of the scalar
fields appear as complex mass parameters for the chiral multiplets, which are the twisted masses
in question.

To the scalar field for U(L);, we give the vacuum expectation value

diag(ul.l, o H). (79)

This yields twisted masses —uf to Q; and +uf to Qi. To the scalar field for U(1);, we give the
vacuum expectation value fi/2. This yields a twisted mass gfi/2 to a chiral multiplet that has
charge q under U(1);. To summarize, the twisted masses of the chiral multiplets are

(b))%, : (=D, (80)
(P, =51, 51)
By, — 51, (82)
Q)% —pb+ %(—1)[”?1, (83)

(Q)fq,: +ué+ %(—1)“1;1. (84)

Lastly, we need FI parameters and theta angles in order to account for the twist parameters
for the periodic boundary condition of the spin chain. To do so, from each vector multiplet V, we
construct an adjoint twisted chiral multiplet X, whose lowest component is the vector multiplet
scalar o,. Then, we choose complexified FI parameters

b0 s tmin—1 € (C/ZTEIZ, (85)
and turn on the twisted superpotential
m+n—1
W=—> tug,. (86)
r=1

The real and imaginary parts of ¢, are related to the FI parameter r, and the theta angle 6, for
UM,) ast, =r,—i0,.
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2.3.2 Vacuum equations

We are interested in the vacua of this theory when it is defined on a periodic space. For A" = (2, 2)
supersymmetric gauge theories, the exact low-energy effective descriptions are known and we can
use these descriptions to determine their vacua. See [31] for detailed discussions in the abelian
case. Nonabelian examples are treated in [33].

Let ", a, =1, ..., M,, be the diagonal components of ¥, and let £ and o collectively denote
{Z7"} and their scalar components {0}’ }, respectively.

If the fields o take generic large values and are slowly varying, the chiral multiplets and the
off-diagonal components of the vector multiplets (or equivalently the corresponding twisted chiral
multiplets) can be considered as having large masses due to higgsing. Their masses are

(5,)%, : 0% —abr, (87)
()7, : 0% —olr + (=D h, (88)
(P, o =05 — (-1, (59)
(P)1y,: o — o) — %(—1)“]71, (90)
Qs 0% —pl + i(—l)mh, 1)

Q) wl—ofi+= ( Dia, (92)

where a,, b, are indices for the U(M,.) gauge group factor. After integrating out these heavy fields,
we are left with an effective description of the theory that involves only .

The effective theory is determined solely by a single holomorphic function of o, the effective
twisted superpotential W, and it can be calculated exactly at one-loop order. Integrating out a
chiral multiplet whose mass due to the higgsing is m(c’) contributes to W,(co) by the term

—m(o)(log m(o)— 1) . (93)

An off-diagonal component of a vector multiplet also contributes in the same way [34]. Integrating
out high-energy modes of X does not alter the form of Wg [31].
The vacua of the theory are the solutions of the vacuum equations

(aWeff(o)
Xp _—

« )zl, a=1,...,.M,, r=1,....m+n—1. (94)
oo,

These equations are invariant under shifts of the exponent by integer multiples of 27i, reflecting
the fact that the imaginary part of the exponent is the effective theta angle. In the case at hand,
the vacuum equations read

b=1 0y —O r+(—1)[r]h =1 Mﬁ +z(=DlA
) ’l”_[ o—; —olr = L)l Mea Gi’—ofjif—i(—l) p
b2 00 — ol — DU 2 o — o — A=

a=1....M,, r=1,....m+n—1, (95)
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with My = M,,,, = 0. The factor e’ comes from the tree-level twisted superpotential (86), and
the factor (—1)" ™! comes from the off-diagonal components of the vector multiplets. Using the
Cartan matrix (14), we can rewrite these equations as

m+n—1 M ﬂ

r _ a, _ Vi l _ [r+1]
l_[ l_[ cr S+ arsh l_[ oy =g +3(=1) h = (=1)%rr1 (96)
ar bs ar —‘U£ — %(_1)[1‘]7«1

by=10; — O Earsh ¢=1 Or

where
7, =t, +in((1—6p 1) (M, + 1)+ M, + M, +L). 97)

2.3.3 Twisted chiral ring

The above two-dimensional gauge theory has A = (2,2) supersymmetry, generated by four su-
percharges Q., Q.. Under a vector U(1) R-symmetry, Q. and Q. have charges +1 and —1, while
under an axial U(1) R-symmetry, Q,, Q_ have charge +1 and Q_, Q,, have charge —1. The theory
is unitary and the supercharges satisfy the reality conditions Q} = Q.. It turns out that the the-
ory has unbroken vector U(1) R-symmetries, and this fact implies the absence of certain central
charges Z, Z* in the N = (2,2) supersymmetry algebra.

The linear combination Q = 6+ + Q_ satisfies

=2, 98)
with Z being another central charge. In the gauge theory that we are considering,
m+n

Z= hFh+ZZ,ul ‘ (99)

i=1 (=1

where Fj, is the generator of U(1); and Ff, ¢=1,..., L, are the generators of the maximal torus
of U(L);. Since Q squares to zero in the sector in which Z = 0, we can define the Q-cohomology
in the space of Z-invariant states and in the algebra of Z-invariant operators. The subalgebra of
the latter consisting of the elements represented by local operators is the twisted chiral ring of the
theory.

The N = (2,2) supersymmetry algebra with Z = Z* = 0 says that the Hamiltonian H satisfies
{Q,Q*} = 2H. Therefore, H is positive semidefinite and vacuum states are annihilated by Q and
Q*. In particular, vacua have Z = 0. According to Hodge theory, the Q-cohomology of states is
isomorphic to the space of vacua.

Besides the Hamiltonian, the momentum P is also Q-exact: {Q,Q., —6_} = 2P. It follows that
translations act trivially in the Q-cohomology. In particular, the twisted chiral ring is commutative
since we can switch the order of two local Q-cohomology classes along the time axis by moving
them around continuously inside the two-dimensional spacetime.

In fact, for the theory considered here, not just the Hamiltonian and the momentum but the
entire stress tensor is Q-exact. As a consequence, the Q-cohomology of states and the twisted
chiral ring are topological, and there is a state—operator correspondence between them: the two
are isomorphic as vector spaces.

Being topological, the twisted chiral ring can be computed in the effective theory. As a vector
space, it is the space of polynomials in the scalar fields {o';" } modulo the action of the Weyl group
of the gauge group and the relations imposed by the vacuum equations (96). On a vacuum state,
specified by a solution of the vacuum equations, an element of the twisted chiral ring acts by
evaluation on the solution. Therefore, a vacuum is a simultaneous eigenstate of the elements of
the twisted chiral ring.
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2.4 The correspondence

The Bethe equations (59) and the vacuum equations (96) coincide under the identification

pt={¢t —(—1)[i1(xf + %)m %cih, (100)
together with the obvious identification between parameters for which we have been using the
same symbols. (We are measuring twisted masses in an appropriate unit so that they are numbers
here.)

Thus, the vacua of the gauge theory are identified with the Bethe vectors of the corresponding
magnon sector of the spin chain. Under this identification, the elements of the twisted chiral ring
are identified with the commuting conserved charges of the spin chain. This is the statement of
the Bethe/gauge correspondence.

One conclusion we can immediately draw from the Bethe/gauge correspondence is that the
gauge theory has no supersymmetric vacuum unless the assignment (Mg, ..., M,,,,_; ) of the ranks
of the unitary gauge groups corresponds to a weight of M(A!) ® --- ® M(AL). For example, for
(m|n) = (1]1), supersymmetry is broken if and only if

M;>1L (101)

because the fermionic lowering operator can be applied at most L times, at which point all
spin sites are occupied by fermionic excitations. This is consistent with the known result that
supersymmetry is broken in a two-dimensional N = (2,2) supersymmetric gauge theory with
gauge group U(M), Ly fundamental chiral multiplets and L, antifundamental chiral multiplets if
M > max(Ly, L,) [35].

3 String theory realization of the Bethe/gauge correspondence

Although we have presented the Bethe/gauge correspondence for noncompact rational gl(m|n)
superspin chains, we have not yet explained why such a correspondence should exist. In this
section we provide an explanation using string theory.

We will discuss how to construct the vacua of the relevant gauge theories using branes, and
how to map these brane configurations to other ones that realize configurations of line defects
in four-dimensional Chern-Simons theory with gauge group G = GL(m|n). The emergence of
integrable spin chains is understood naturally in the latter setup.

Moreover, we will give an explanation of fermionic dualities known in the literature of inte-
grable superspin chains.

3.1 Brane construction of the gauge theory vacua

The gauge theory and its vacua described in sections 2.3 can be constructed with branes in string
theory. In fact, we have already represented the corresponding Bethe vectors graphically in a way
that makes the connection to the brane construction transparent.

3.1.1 Semiclassical type IIA configuration

The construction uses NS5-branes

NS5;, i=1,...,m+n, (102)
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D4-branes

D4, i=1,...,m+n, £=1,...,L, (103)

and D2-branes
p2%, r=1,....m+n—1, a,=1,...,M,, (104)

in type IIA superstring theory. The indices i and r are Z,-graded as before.
First, let us consider the case in which all FI parameters are zero. In this case, a semiclassical
brane configuration for a vacuum state of the gauge theory is summarized as follows:

D4 ([(]=0): Rx§ x () x (X} x[fo0) xR, x {0} (O

D4; ([(1=1): Rx &' x {u} x {X} x[¥,00)x {0} xR?,
D2/ R x 8" x {077} x [X,, X, 1] x {V;} x {0} x {0}

Spacetime: R x S! C x Ry x Ry xR xR%
NS5, ([i]=0): R x §! C x X} x {ri} xR% x {0}
x X} x v} x {0} xR?,

X

X

X
X
NS5; ([i]=1): RxS8'x C
X
X
X

In the spacetime, S is a circle, Ry and Ry are lines, and Rih and R? » are planes. Corresponding
to the vanishing FI parameters, we have

v, =7,=0 (106)

foralli and r.
All of these branes wrap the cylinder R x $', which is the spacetime of the gauge theory. The

¢ 2 o 2
branes NS5; and D4; extend over Ry and are located at the origin of R 1) in Moreover,

NS5; extends over C, whereas D4f extends along Ry and ends on NS5;. Along Ry, the NS5-branes
are ordered according to the ordered basis of C™/" specifying the Dynkin diagram of gl(m|n):

X1 <Xg< < Xpin- (107)

The graphical representation (62) for a Bethe vector can be reinterpreted as the above brane
configuration. In that picture, the vertical direction is the direction of C and the horizontal direc-
tion is Ry; the vertical lines are the NS5-branes. The diagonal lines ending on the vertical ones
are the D4-branes. The horizontal line segments between the rth and (r + 1)st vertical lines are
the D2-branes D2;", a, = 1, ..., M,, suspended between the two NS5-branes:

C 1

) D2}

. D2} 1 b2 )

R D22 D2;

Y —— e (108)

% 2 A 2 2 /

22 22 22 22 22

23 A3 23 23 22

Strings stretched between D2;" and D2,l?r produce the components (V,)*;, and (V,)Pr q, of the
vector multiplet V, for the gauge group factor U(M,.). The D2-branes can move along C, and the
position of D27 in C determines the scalar field o, of the twisted chiral multiplet X;".

If [r] = [r + 1], the D2-branes suspended between NS5, and NS5,,; can also move along

R over which the two NS5-branes extend. Accordingly, in this case strings with both ends

2
)i
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attached on these D2-branes give rise to an additional chiral multiplet, namely the adjoint chiral
multiplet ¢,.. The positions of the D2-branes in R?—l)[f]h are the diagonal components of the scalar
field in ¢,.

Strings stretched between DZ‘:fll and D2}rJr yield the components (P, ), | b and (P, ) a,, Of
the bifundamental chiral multiplets between U(M,_;) and U(M,). Strings from D2?i to D4f are

responsible for (Q;)¢ o, and those from D4f to D2?f11 give (Q;)%-1,.

Various parameters of the gauge theory are identified as follows. The gauge coupling for U(M,.)
is v/ g,/I,(X,41 —X,), where g, is the string coupling and [ is the string length. The position of
D4f in C determines the twisted mass uf. The FI parameter for U(M,) is (Y, —Y,)/gl;, while
the theta angle is given by the difference in the periodic scalars on NS5, and NS5, (up to a shift
by i which we will explain shortly). Since we are taking Y; = O for all i, all FI parameters are
zero. Introducing the twisted masses proportional to # requires turning on a nontrivial B-field.
For the moment we take i = 0.

The rotation symmetry of the directions orthogonal to the D2-brane worldvolumes becomes a
global symmetry of the gauge theory. The rotation symmetry U(1)c of C is an axial R-symmetry,

under which the vector multiplet scalars have charge 2. The rotation symmetries U(l)Riﬁ of

Rih are vector R-symmetries. The adjoint chiral multiplet ¢, has charge (2,0) or (0,2) under
U(l)Rih’ X U(1)R3ﬁ, depending on whether [r] =0 or 1.

Now, let us turn on FI parameters by displacing the NS5-branes along Ry by different amounts.
As we vary their positions, the D2-branes suspended between them get rotated in Ry x Ry by
various angles. Such a configuration no longer preserves supersymmetry. If the twisted masses
are generic, the D2-branes cannot stretch between D4-branes without breaking supersymmetry
either. Moreover, if M, > L and [r] # [r + 1], suspending M, D2-branes between NS5, and the
L D4-branes ending on NS5, ; (or between NS5, ; and the L D4-branes ending on NS5, ) breaks
supersymmetry by the s-rule. It appears that there are no supersymmetric vacua for generic FI
parameters, twisted masses and magnon numbers.

This analysis is semiclassical, however. Quantum mechanically, D4-branes bend NS5-branes
on which they end and the conclusion is altered.

3.1.2 Lift to M-theory

Important aspects of the quantum corrections to the above brane configuration can be understood
by uplift to M-theory. The M-theory spacetime contains an additional compact direction SI}A. Let
7 be its coordinate with period 27, and introduce a complex coordinate Y + i for the cylinder
Ry X SI}A. Further introducing w = e~ *%) we map the cylinder to the punctured complex plane
Cc*.

All NS5-branes and D4-branes are lifted to M5-branes in M-theory. For each i, NS5; and D4f,
¢=1,..., L, merge into a single M5-brane M5;, wrapping a Riemann surface ¥; in C x C*. The
D2-brane D2;" is lifted to an M2-brane M2;" stretched between M5, and M5, ;. Hence, the brane
configuration in M-theory is as follows:

Spacetime: R x ' x  CxC* x Ry xR xR?
M5; ([i(1=0): R x S! x % x  {X;} x Rih x {0}
M5; ([i]=1): R x 8! x % {x;} x {0} xR?,

M2i: R x St x {(oF, Wi} x [X,,X,41] x {0} x {0}

(109)

X
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In terms of the coordinates (z, w) of C x C*, the Riemann surface ¥; is defined by the equation

L
w=q;] JG—ud, (110)
(=1

where q; is a constant. The zero of w at z = ,uf describes D4f, which extends to +00 in Ry.
If ¥, and %,,, intersect in C x C*, then M2;" can be placed at an intersection point so that its
worldvolume is orthogonal to the M5-branes.

Therefore, the M2-branes can be suspended between the M5-branes in a manner that preserves
supersymmetry if M2," is placed at z = o, and the coordinate o, for each r and a,, satisfies
the condition

L L
0] [0 =) =w, =g [ Jlor—ut,)). (111)
(=1 (=1
Comparing these equations with the vacuum equations (96) for =0,
L a !
eTr —Ura M"Zl = (=1)%rr+1 (112)
(=1 Or ~Hy
we see that they coincide if we identify
(_1)5[r],[r+1]efr — I+ . (113)
qr

Since 9; = (—1)[largq; is the classical value of the periodic scalar field on NS5;, the difference
(=D, ; — (=119, is indeed equal to 6,, up to a shift by ir.

3.1.3 Turning on i

Finally, we explain how to make f1 # 0. The global symmetry U(1)y is the antidiagonal subgroup
of U(l)Riﬁ X U(l)Riﬁ' To turn on the twisted masses for U(1);, we follow the fluxtrap procedure
[36,37]. This is done as follows.

First, we compactify C to a torus T2 = C/(R,Z + iR,Z) in the type IIA setup and apply T-
duality on both directions of T2. The D2-branes become D4-branes wrapping the dual torus
T2 = C/(RZ + iR,Z). Next, we twist the product between T2 and ]R_Zm X Rih by the action
of U(1),. (More precisely, we replace T2 x ]R_zm x R? » with the quotient of C x Rih x R? 5 such
that translations on C by R; and iR, are accompanied by the action of the elements exp(Re /1) and
exp(Im#) of U(1),, respectively.) Last, we apply T-duality on T2 and decompactify T2 to C by
taking R, R, — ©0. This last T-duality yields a certain B-field due to the twist in the product
between T2 and Rih x R% 5 introduced earlier.

From the point of view of the gauge theory, the first step amounts to lifting the two-dimensional
theory on R x S! to a four-dimensional theory on R x $! x T2, Then, the second step turns on a
holonomy for the background gauge field for U(1);. The last step dimensionally reduces the four-
dimensional theory back to two dimensions. Since the components of a four-dimensional gauge
field along T2 become the complex scalar field for the corresponding two-dimensional gauge field,
this procedure induces the twisted masses for U(1).
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3.2 Four-dimensional Chern-Simons theory

We can convert the brane configuration (105) to a configuration realizing line defects in four-
dimensional Chern-Simons theory with gauge group GL(m|n). To do so, we apply T-duality along
S! and then S-duality:

Under these dualities, $' is mapped to the dual circle S?, the NS5-branes are mapped to D5-
branes, the D4-branes are mapped to D3-branes, and the D2-branes are mapped to F1l-branes
(fundamental strings). Thus we obtain the following type IIB setup:

Spacetime: Rx S! x C x Ry x Ry xR% xR?
D5; ([i(]=0): Rx S' x C x {X} x {v;} xR% x {0}
D5 ([i]=1): Rx S' x C x {X;} x {1V} x {0} x]REh

D3l ([(]=0): Rx {y} x (W} x (X} x[V,00)xRZx {0} ¥
D3! ([i]1=1): Rx {y'} x {uj} x {X;} x[V;,00)x {0} xR?,
F177: R x {5} x {07} x [X., X, 11 {¥,} x {0} x {0}

The positions of the D3-branes and the F1-branes on S! are given by the holonomies around S*
of the gauge fields on their counterparts in the type IIA setup. The B-field inducing the twisted
masses for U(1); becomes a Ramond-Ramond (RR) two-form field in the new setup.

As in the two-dimensional theory discussed before, the vacuum sector of the theory on the
D5-branes, with R taken to be the time direction, is captured by the cohomology with respect to a
certain supercharge. This supercharge is dual to the supercharge Q of the two-dimensional theory,
and we will use the same symbol to denote it.

We claim that the Q-invariant sector of the theory, which governs the Q-cohomology, is equiv-
alent to four-dimensional Chern-Simons theory with gauge group GL(m|n).

Before demonstrating this equivalence, let us remark that related brane constructions have
appeared in the literature.* In [41], Mikhaylov and Witten gave a brane construction of three-
dimensional Chern-Simons theory with gauge group GL(m|n), extending the construction for
gauge group GL(m) given in [43]. Their construction uses m D4-branes and n D4-branes end-
ing on an NS5-brane from opposite sides. The supergroup Chern-Simons theory appears at the
intersection of the three kinds of branes. In [39], a construction of four-dimensional Chern—
Simons theory with gauge group GL(m) was proposed. In this construction, m D4-branes end on
an NS5-brane.

3.2.1 Casewithm=0orn=0

In the case in which all D5-branes are of even type (n = 0) or of odd type (m = 0), the result just
described was derived in [16]. Let us briefly review the derivation in [16].

“To relate these brane constructions to ours, we endow Riﬁ x R? » with a Taub-NUT metric. (The Q-invariant sector
is independent of the choice of metric as long as it preserves the rotational symmetries of Rih and R? »-) If we regard
the Taub-NUT space as a circle fibration over R?, then Riﬁ x {0} and {0} x th are two semi-infinite cigar-shaped
subspaces extending in the opposite directions such that their tips touch at the origin of R®; see [38], appendix B.
T-duality in the direction of the circle fibers produces an NS5-brane which sits at the origin of R® and extends in the
directions transverse to the Taub-NUT space. The D5-branes wrapping the two cigars are turned into D4-branes ending
on the NS5-brane from two sides. Considering the case with n = 0, we reproduce the construction of [39]. The field
theory counterpart of this T-duality was analyzed in [40]. From the D4-NS5 brane configuration we obtain the brane
configuration of [41], roughly speaking, by further replacing C with a cylinder, taking T-duality in the circumferential
direction of the cylinder, and decompactifying the dual cylinder. (Such T-duality was considered in [42].)
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For n = 0, the worldvolume theory on the D5-branes is a deformation of six-dimensional
_ . . 1 2
N = (1,1) super Yang-Mills theory with gauge group U(m), placed on R x §* x C x R%,. The
deformation is what is often called an Q-deformation and controlled by fi: we have

Q? = hFy, (115)

where Fj is the generator of U(1),. (Here we are considering the situation in which there are
no D3-branes, hence no U(L) flavor symmetries.) In the six-dimensional theory, U(1); is the
antidiagonal subgroup of the rotation group U(l)Riﬁ on ]R_Zm and the subgroup U(1)R377 of the
R-symmetry group Spin(4) coming from the rotation symmetry of R? e

Six-dimensional (Euclidean) A = (1, 1) super Yang-Mills theory on R x S x C x ]R_zm reduces
to two-dimensional N' = (8,8) super Yang-Mills theory on Rih by dimensional reduction. In
the undeformed case (when i = 0), the supercharge Q belongs to an N' = (2,2) subalgebra
of the N' = (8,8) supersymmetry algebra. Accordingly, N’ = (1,1) super Yang-Mills theory on
RxS! xC x Rih may be thought of as an N = (2, 2) supersymmetric gauge theory on ]R_zm, with
infinite-dimensional target space and gauge group. The Q-deformation of the six-dimensional
theory induces an Q2-deformation of the two-dimensional theory.

In general, the Q-invariant sector of an Q-deformed A = (2,2) supersymmetric gauge theory
on R? is equivalent to a zero-dimensional theory [16,23,24]. Let G be the gauge group of the
theory and G be its complexification. By N' = (2,2) supersymmetry, the chiral multiplets take
values in a Kdhler manifold X with Gi-action. The superpotential is a G¢-invariant holomorphic
function W on X'. The path integral with insertion of Q-invariant observables localizes to a G-
invariant submanifold y of X'. This submanifold is essentially a Lefschetz thimble: y is the union
of all gradient flows generated by the real part of W/h, terminating on the Gg-orbit of a chosen
critical point of W. (For simplicity, we assume that the critical points of JV are nondegenerate up
to the Gg-action.) The localized path integral takes the form

f exp(z?ﬂW)O, (116)
Y/Gc

where O descends from the Q-invariant observables inserted in the path integral. This is the path
integral for a zero-dimensional gauge theory with gauge group G and target space y. The action
functional is —2mW/h.

The remarkable aspect of this localization phenomenon is that the gauge group gets complexi-
fied. In the localization process, some fermionic fields have zero modes. They may be regarded as
ghost fields for partial gauge fixing that breaks G- down to G. Even though the action functional
is holomorphic and its real part is not bounded from below, the integral (116) can converge since
Re(W/h) gets smaller and smaller along the backward gradient flows in y.

For the six-dimensional A" = (1, 1) super Yang-Mills theory on R x S! x C x ]R_zm, the gauge
group G is the space of maps from RxS* xC to U(m). In addition to the vector multiplet, the theory
has three chiral multiplets in the adjoint representation of G. Their scalar fields are Q-invariant
and can be combined into a one-form on R x S! x C:

A=A, +iX)dx + (A, +iY)dy +A;dz. (117)

Here, A, A, are the components of the gauge field along R x S 1  A; is the antiholomorphic com-
ponent of the gauge field along C, and X, Y are two of the four scalar fields of the six-dimensional
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theory associated to motions along Ry and Ry, respectively. The superpotential is given by

W=—— dz/\tr(.A/\d.A+§A/\A/\A), (118)

2
€% JrxSixC

where e is the gauge coupling and tr is an invariant symmetric bilinear form on the Lie algebra of
U(m), which we can take to be the trace in the defining representation.

According to the localization argument, the Q2-deformation of the six-dimensional theory is
equivalent to a zero-dimensional gauge theory. This zero-dimensional theory has infinite-dimensional
target space and gauge group, and can be more naturally interpreted as a four-dimensional gauge
theory. Its action is

2mi 2
—gnzl dz Atrem (.AOO AdA% + ngo A A A AOO) . (119)
xC

Here, we have written the partial gl(m) connection (117) as A% to emphasize its place in the
Lie superalgebra gl(m|n) that will arise later. This is the action for four-dimensional Chern—
Simons theory. Thus we conclude that the Q-invariant sector of the Q-deformed six-dimensional
N = (1,1) super Yang-Mills theory on R x S x C x ]R_zm with gauge group U(m) is equivalent
to four-dimensional Chern-Simons theory on R x §! x C with gauge group GL(m) and coupling
given by #.

Similarly, if we consider the case m = 0, the worldvolume theory on the D5-branes is an Q-
deformed six-dimensional V' = (1, 1) super Yang-Mills theory on RxS! x C xRR? » with gauge group
U(n). Its Q-invariant sector is equivalent to four-dimensional Chern—-Simons theory on R x S! x C
with gauge group GL(n) and action

2mi

2
+— dz A tren (A” AdAMN + gA” A AN A A”), (120)
e

RxS1xC

with the partial gl(n) connection A'! defined in the same way as .A4%.

3.2.2 Case with nonzero m and n

Let us turn to the case in which m and n are both nonzero. In this case, the two sets of D5-branes
lead to two copies of four-dimensional Chern-Simons theory on R x S x C, one with gauge group
GL(m) and the other with gauge group GL(n), with opposite couplings. Arranging A% and A'!

into a matrix 00
A 0
Al = ( 0 A”) , (121)

we can write the sum of their action functionals as

2mi

— dz A strCm|n(A° AdA° + %AO AA° A AO) : (122)

RxS1xC

The two copies are coupled through strings stretched between the two sets of D5-branes. These
strings produce a four-dimensional ' = 2 hypermultiplet on R x S! x C in the bifundamental
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representation of GL(m) x GL(n). It consists of bosonic complex scalars

q € Hom(C™,C"), (123)
4" € Hom(C™,C"), (124)
q' € Hom(C",C™), (125)
G € Hom(C",C™), (126)
and fermionic Weyl spinors
Y € Hom(C™,C"), 27
" € Hom(C™,C"), (128)
y' € Hom(C",C™), (129)
1) € Hom(C",C™). (130)

In the absence of coupling to the two copies of four-dimensional Chern-Simons theory, the
bifundamental hypermultiplet preserves eight supercharges. The supercharge Q is a linear com-
bination of these supercharges such that the generators of translations on R x S and antiholo-
morphic translations on C are Q-exact. By redefining fields if necessary, we can take Q to be the
supercharge used in the holomorphic-topological twist studied in [44], with the parameter t = 1.

It turns out that most of the action for the hypermultiplet is Q-exact. The remaining part of
the action can be expressed in a suggestive form. Endow the cylinder R x S! with a complex
coordinate w, and define

o 1 -
A = )T dw +4p_dw — 5(1/;; —),)dz, (131)
, N 1 .. ,
A% = dw +)_dw + 5(1/)1 +1pl)dz (132)
and
!0 = 4iq", (133)
Ol =44", (134)
b0 =g, (135)
bl = —iq, (136)
B =i(p, — ), (137)
B = —i(yp, +91). (138)
We introduce a matrix
1 0 AOl
A= A0 9 (139)
and matrices ¢!, b!, B! defined likewise. On these matrices Q acts by
Q- Al =—dct, (140)
Q-cl=o0, (141)
Q-b'=B!, (142)
Q-B'=0, (143)
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where

d=d—dz8, =dwd, +dwd, +dz d,. (144)

The non-Q-exact part of the action is

2mi

i dz A strema (AT AdAY). (145)

RxS1xC

(Since this is quadratic in fermions, the prefactor is inessential.)

To describe the intersecting D5-branes, we couple this bifundamental hypermultiplet to the
two copies of four-dimensional Chern-Simons theory by identifying the flavor groups GL(m) and
GL(n) with the gauge groups of the latter. Concretely, we replace the de Rham differential that
appears in the above formulas with the gauge-covariant differential

dp=d+A°. (146)

Thus, the action of Q on the fields is modified to

Q- Al =—d'jc', (147)
Q-cl=o0, (148)
Q-b'=B!, (149)
Q-B'=0, (150)

and the action functional for the bifundamental hypermultiplet becomes

2mi

—@ dz A Stl’(cm\n(.Al A dAo.Al) . (151)

RxS1xC

Combining .A° and A! into a single matrix

./400 AOl
A= AO + Al = (Alo All > (152)
we can write the total action, which is the sum of the actions (122) and (151), as
2mi 2
—— dz/\strcmn(A/\dA+ —A/\A/\A). (153)
he? | e sixe 3

This is the action for four-dimensional Chern-Simons theory with gauge group GL(m|n).

Before concluding that we have obtained the desired theory, we need to solve two problems.
First, although the above action is invariant under GL(m|n) gauge transformation, the gauge group
of the theory is still GL(m) x GL(n), not GL(m|n). Second, the gauge-invariant action (151) for the
bifundamental hypermultiplet is not Q-invariant due to the coupling to A°. Its Q-variation gives

4mi

3 dz A stremn (A ALFO,c1]), (154)

RxS1xC

where F? is the curvature of A°.
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The two problems are solved simultaneously if we correct the Q-action on .A° and B! to
Q- A%={Alc'}, (155)
1
Q-B'=Z[{c!,c'},b']. (156)

With this modification, the Q-variation of the bosonic action (122) cancels that of the fermionic
action (151). At the same time, ¢!, b! and B! can now be interpreted as a ghost, an antighost
and an auxiliary field used in the Becchi-Rouet-Stora-Tyutin (BRST) procedure for partial gauge
fixing of GL(m|n) down to GL(m) x GL(n) [45].

To make the last point more explicit, let us introduce a ghost c°, an antighost b° and an
auxiliary field B? for gauge fixing of GL(m) x GL(n). The BRST charge Qy acts on the fields by

Qp- A’ =—d, ¢, (157)
Qp-c’= %{co,co}, (158)
Qp-b°=B°, (159)
Qs-B°=0 (160)
and
Qp- A" ={c% A}, (161)
Qp-ct=[c%¢c!], (162)
Qp-b'=[c%b'], (163)
Qp-B' ={c° B'}. (164)
Let us postulate that
Q-c%= —%{cl,cl}, (165)
Q-b’=0, (166)
Q-B°=0. (167)
Then, the modified BRST charge R
Q=Qp+Q (168)
satisfies Qz =0and
Q- A=—dc, (169)
Q-cz%{co,co}—%{cl,cl}+[c0,c1], (170)
Q-b=B, (171)
Q-B=0, (172)
where
c=c+ct, (173)
b=0b"+bl, (174)
B=B+B'+[c° b']. (175)
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The Q-cohomology computes the mixed Lie superalgebra cohomology defined in [46].
Thus, we conclude that the Q-invariant sector of the theory on the intersecting D5-branes is
four-dimensional Chern-Simons theory with gauge group GL(m|n).

3.3 Emergence of the spin chain

The D3-branes and the F1-branes in the type IIB setup (114) intersect the D5-branes along lines
in R x S x C. As such, they create line defects in the four-dimensional Chern-Simons theory on
R x S! x C, extending along R and supported at points in C. Such a configuration of line defects
in four-dimensional Chern-Simons theory is naturally identified with an integrable spin chain
[17-19]. We now show that this spin chain is precisely the one that appears in the Bethe/gauge
correspondence.

3.3.1 Line defects and spin chains

Let us first explain the relation between line defects in four-dimensional Chern-Simons theory
and integrable spin chains.

Consider four-dimensional Chern-Simons theory on R x R x C, with gauge group G which we
take to be a complex simple Lie supergroup. Its field is a partial G-connection of the form

A=A, dx+ A, dy + A; dz. (176)

We insert line defects
ct, ¢=1,...,L, (177)

extending in the x-direction, which we regard as the time direction. Along the y-axis, we arrange
£, ..., £F in the ascending order. They are supported at points %, ..., % in C.

Solutions of the equation of motion for four-dimensional Chern-Simons theory, away from
the line defects, are flat connections. Away from the line defects, flat connections can be gauged
away. Then, all information about the state of the theory is localized in the neighborhoods of the
line defects, and the Hilbert space V factorises into the tensor product of the spaces attached to
the line defects:

V=vle® eV (178)

This is identified with the Hilbert space of an open spin chain with L sites. The space V! supported
on L' is the state space for the (th spin.

The four-dimensional Chern-Simons theory is topological on R x R and holomorphic on C.
Due to the topological invariance on R x R, the Hamiltonian is zero. To change the state, we can
insert a Wilson line extending in the y-direction, crossing the L line defects introduced earlier.
This Wilson line is a non-gauge-invariant operator acting on V and interpreted as a monodromy
matrix T(o) in the spin chain. The spectral parameter o is the position of the Wilson line in C,
and the holomorphy on C implies that T (o) is holomorphic in o.

If we introduce two Wilson lines and make them intersect in R x R, we get an R-matrix at the
intersection. The two sides of the RTT relation (33) correspond to two different configurations
of two open Wilson lines crossing each other and the line defects £}, ..., £L. The topological
invariance on R x R and the existence of the extra dimensions C imply the equivalence of the two
configurations.

This R-matrix can be computed by perturbation theory [19], and it was found to be the R-
matrix for the rational spin chain with G symmetry. Therefore, this setup produces an open rational
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spin chain. For G = GL(m|n), the R-matrix is the one given in (34), up to some equivalence
relations.

To obtain a closed spin chain, we simply compactify the y-axis R to S'. Now, flat connections
have global gauge-invariant information, namely the holonomy around S*. The holonomy is fixed
by the boundary condition at infinity and becomes a parameter of the spin chain. Flat connections
can still be gauged away almost everywhere. Away from the line defects, we can make them
vanish except on a single line parallel to the line defects and placed between £ and £!, say. The
holonomy is then identified with the twist parameter g of the periodic boundary condition in the
spin chain. A Wilson loop winding around S' gives a transfer matrix t(g,o) evaluated in the
representation of the Wilson loop.

3.3.2 Line defects created by D3-branes

Let us return to the setup for the Bethe/gauge correspondence.

By the topological invariance on R x S, the positions of the D3-branes on S! do not matter.

For each £, we gather the m + n D3-branes D3f, i=1,..., m+n, to the same position ye on S

yf=-~-=y£1+n=ye. 179)
Since they are also located at the same point ¢ in C up to first order in /1, we can regard them as
creating a single line defect £¢ supported on the line R x {y*} x {¢‘} in R x §! x C, treating the
differences ,uf —C ti=1,...,m+n, in the positions in C as parameters of the line defect. The
D3-branes thus create L line defects £, ..., £L.

From the Bethe/gauge correspondence we know what the Hilbert space V¢ of £¢ must be: it
is the evaluation module of the Yangian Y (gl(m|n)) with spectral parameter (¢, obtained from the
Verma module V¢ of gl(m|n). The F1-branes represent excitations in this Hilbert space.

Let us derive this Hilbert space from the point of view of brane dynamics. In the four-dimensional
Chern-Simons theory on R x S! x C, the positions of the D5-branes in Ry and Ry parametrize
the vacuum expectation values of the gauge fields along the topological directions. For the pur-
pose of identifying the Hilbert space of the line defect, we can consider the situation in which all
D5-branes are coincident, say X; =Y; = 0 for all i.

The Q-invariant sector of the theory living on the D3-branes that create £¢ is the BF theory
with gauge group G = GL(m|n), defined on R x [0, 00). This theory can be obtained from four-
dimensional Chern-Simons theory on R x [0, 00) x C by dimensional reduction on C. It has the

action
1
—J o(dn+nAn), (180)
Rx[0,00)

h
where 1) is the gauge field and o is a scalar field valued in g*, the dual of the Lie algebra g = gl(m|n).
The field o comes from the reduction of the antiholomorphic component A; of the four-dimensional
gauge field on C.

One way to see that this is the right theory is to note that upon exchanging the directions of
S! and Ry, the D3-branes are T-dual to D5-branes on R x S* x C x Rih (after compactifying C to a
torus). Since the D5-branes are described by four-dimensional Chern-Simons theory with gauge
group GL(m|n), the D3-branes are described by the BF theory. The exchange of two directions
amounts to swapping the role of the real and imaginary parts of A, and does not alter the analysis
in any essential way.
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We view the BF theory as a Poisson sigma model [47,48] with target space g*. The space of
functions on g* is the symmetric algebra S(g) of g. Linear functions are elements of g, and the
Poisson bracket between them is given by the Lie bracket. Extending the Poisson bracket to S(g)
by the Leibniz rule, we endow g* with the Poisson structure. The action (180) of the BF theory is
related to the action of the Poisson sigma model by integration by parts.

There are two boundaries in the spacetime R x [0,00) C R x Ry, one at Y = 0 and the other
at Y = oo. It is more convenient to think of the spacetime of the theory as the limit of

R x[0,r] (181)

as r — o0. Physically, we can realize this setup by making the D3-brane D3f end on an NS5-brane
NSSf with worldvolume

]Rx{ye}x{‘uf}xRXx{r}xRithEhCRxSlx(Cx]RXx]RYx]Rihx]REh. (182)

Since the BF theory is topological, the value of r does not matter. In particular, we can take the
limit r — 0. In this limit the theory reduces to a one-dimensional quantum mechanical system.
This quantum mechanical system describes the line defect after coupling to the four-dimensional
Chern-Simons theory.

The Hilbert space of the BF theory depends on the boundary conditions imposed on the two
boundaries R x {0} and R x {r}. On each boundary, we impose a boundary condition that defines
what is known as a coisotropic brane in the context of Poisson sigma models [49].

The boundary condition on R x {0} is simple. The imaginary part of the component 7, of the
gauge field along R parametrizes the positions of the D3-branes in Ry. These are necessarily fixed
to the positions of the D5-branes on the boundary where the D3-branes end on the D5-branes. By
holomorphy, the real part must also obey the Dirichlet boundary condition. Thus we have

The field o is unconstrained on the boundary. This boundary condition completely breaks the
gauge symmetry. The global symmetry G on the boundary is used for coupling to the four-
dimensional Chern-Simons theory by gauging.

We propose that the boundary condition on R x {r} is determined by the positions of the
NS5-branes in C as follows. The diagonal part of o parametrizes these positions. Let

g=n_ohoén, (184)

be the triangular decomposition of g with respect to the chosen basis; thus § is spanned by diag-
onal matrices, and n, and n_ are spanned by strictly upper triangular matrices and strictly lower
triangular matrices, respectively. Then, the boundary condition is

Nlrx{ry €6, (185)
Olrxiy €0 + AL, (186)

where b = b @ n, is the Borel subalgebra and A’ is an element of h*. This condition breaks the
gauge group on the boundary to the Borel subgroup B whose Lie algebra is b.”

>The choice of Borel subgroup is determined by the positions of the D5-branes in Ry, which are in turn given by
the vacuum expectation value of the time component A, = A, + iX of the gauge field; the u(m|n)-valued field X has
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By the state—operator correspondence, the Hilbert space is isomorphic to the space of observ-
ables supported at the junction of the above two coisotropic branes. This is a bimodule over the
algebras of local observables on the two boundaries.

Let {T, }Gllm "~ be a basis of n_ and extend it a basis {T, }Gllmg of g. Let o, = (T,,0). Classically,
the algebra of local observables is the algebra of gauge-invariant polynomials in {o,}.

On the boundary R x {0}, local observables are simply polynomials in {o,} since there is no
gauge symmetry there. The algebra of local observables on the boundary is therefore S(g) at the
classical level. Quantum corrections lead to a noncommutative deformation of S(g). At the quan-
tum level, the algebra is isomorphic to the universal enveloping algebra of g with bracket A[—, —1;
if [T,,T,] = Zdlmgfab , then [0,,0,] = hzdlmgfab 0, quantum mechanically [50,51]. In
our setup f is a complex parameter rather than a formal parameter, so the algebra is isomorphic
to U(g), with o, mapped to iT,. (The quantization map from S(g) to U(g) is complicated for
polynomials of higher degree.)

On the boundary R x {r}, the algebra of local observables is trivial. The boundary condition
says that local operators are constructed entirely from {o,}. Nontrivial polynomials cannot com-
mute with b and, in particular, cannot be B-invariant. The only local observables are multiples of
the identity operator.

At the junction, the two boundary conditions combined imply that observables are polynomials
in {o,}. As a vector space, the space of observables is generated from the “highest-weight vector”
1 by the action of “creation operators” {o,}. On this vector space the algebra U(g) acts. Thus,
the Hilbert space is a Verma module of U(g), as expected.

It remains to show that the highest weight of the Verma module is determined by the positions
of the D3-branes. Classically, the boundary condition on R x {r} implies that the highest weight
of the module is &e. There is, however, a quantum correction which shifts the highest weight.®
The highest weight is actually

A=A —p, (187)

where p is the Weyl vector defined in terms of the character of the b-module g/b as

1
p(—)= —3 strgp ad(—). (188)

Since p(n,) = p([b,b6]) =0, p can be regarded as an element of h*. This is the graded half sum
of positive roots. When g is an ordinary Lie algebra, p is the ordinary Weyl vector and the above
shift was derived in [52] based on results from [53,54].

For g = gl(m|n), we have

m+n1 m+n1
= > (DG —e) = > Z(=DHm—n+ (1) —2¢)s;. 189
P %2( N —e) = 2 ZCDm =t (D -2 (189)
k<l

the vacuum expectation value (X) = Zm+n iX;&;. In this background, a state evolving for duration T is scaled by the
factor exp(T(A,)) = exp(—T Zm+nX E;1). (We have set (A, ) = 0 for simplicity.) Therefore, if we compactify the time
direction to a circle (say, of radius 1), as one does when computing the partition function of the lattice model equivalent
to the spin chain, then the periodic boundary condition is twisted by the action of exp(— Zm+"X &;;). In the magnon
sector (M, ..., My,._,), this action is multiplication by exp(— 3.7 =1 S Y "M, (X,—X,,,)). We must have
the ordering (107) for the partition function to be a power series in small Varlables

SThis shift can be understood as originating from normal ordering of creation and annihilation operators, which
correspond to the positive and negative roots. We will see a similar shift in section 4.1.
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Comparing the relations (187) and (306), we find

U2 -3 ) = 3@~ + Son—n—c), (190)

3.3.3 Line defects for parabolic Verma modules of scalar type

There is a generalization of the above brane construction which produces line defects in parabolic
Verma modules of scalar type.

Let (I4,...,[;) be an ordered partition of m + n: 2221 [, = m+n. The partition specifies a
parabolic subalgebra p of gl(m|n), namely the subalgebra consisting of upper-triangular block-
diagonal matrices with diagonal blocks of orders [, ..., [;. A character y of p is determined by

an s-tuple of complex numbers (y,..., xs) as

x(=) =st(x’-), (191)

where the matrix yV is given by

XV=diag(xl,...,xl,...,xa,...,xa,...,xs,...,)(s). (192)
—

1, times

For each a, we take [, D3-branes and make them end on a single NS5-brane on one side. On
the other side, they end on separate D5-branes as in the previous construction. In total, we have
m + n D3-branes suspended between m + n D5-branes and s NS5-branes.

On the D3-branes we get the BF theory with gauge group GL(m|n). The boundary condition
on the D5-brane side is the same as before. On the NS5-brane side, the boundary condition is

Nrxr} €P, (193)
Olrxiry €T+ AL, (194)

where p' is the annihilator of p in g* and &e is a character of p. Classically (that is to say, when &e
is of order 1! and quantities of order #° are ignored), the value of &fx is the position of the ath
NS5-brane in C.
We expect that the Hilbert space of the BF theory with these boundary conditions is a parabolic
Verma module of scalar type
U(g) ®U(p) (C&Z—P . (195)

The character p of p is defined by
1
p= —3 Stry/p adp (196)

and Cyc_ o 18 the one-dimensional U(p)-module determined by the character ﬁ —p.

3.4 Fermionic Dualities

As we have emphasized in our discussions, the Lie superalgebra gl(m|n) does not possess a unique
Dynkin diagram. A Dynkin diagram is specified by a choice of ordered basis of C™" (or a choice of
Z4-grading if we identify Dynkin diagrams related by the action of the Weyl group), and different
choices are related by a series of certain adjacent transpositions, called odd reflections. Under odd
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reflections, a highest-weight representation is mapped to a highest-weight representation, but the
highest weight is not preserved because the definition of raising and lowering operators is altered.

Odd reflections change how we describe representations of gl(m|n), and the description of the
Bethe vectors of the superspin chain is changed accordingly. The map from the Bethe vectors for
one choice of ordered basis to another is known as a fermionic duality.

Fermionic dualities have been studied before purely from an algebraic perspective [55-60],
with a notable exception of the work by Orlando and Reffert [25] where they employed the point
of view of string theory to discuss the fermionic dualities for the supersymmetric t-J model, which
is the rational gl(1|2) spin chain with spins valued in the natural representation C!/*. Here we offer
a string theory explanation for important aspects of fermionic dualities for the rational gl(m|n)
spin chain with Verma modules, namely their action on highest weights and magnon numbers.

3.4.1 0Odd reflections and fermionic dualities

Recall from section 2.1 that the definitions of positive and simple roots depend on a choice of
ordered basis (eq,...,emn4n) Of C™ which is a permutation of (by,.--, by, f1,--+,fn) such that
(by,...,by) and (fy, ..., f,) are the standard bases of C™ and C", respectively. There is a natural
identification between these basis vectors and their weights:

(e1,--semen) <> (€155 Eman)» (197)
(by,.--, b)) = (€1, -5 €6m), (198)
(fl:"':fn)(_)(51)'-->5n)' (199)

In the following discussion we will consider permutations of (&4,..., &,,,) induced by those of

(e15--+s€men)-
For a given choice of ordered basis (&q,...,&,.,) Of the dual of the Cartan subalgebra of
gl(m|n), the set of positive roots is

and the set of simple roots is
N={¢e,—¢e,41|r=1,...,m+n—1}. (201)

A root g; —¢; is said to be even if [i] =[j] and odd if [i] # [j].

Pick an odd simple root a; = ¢,—¢,,; and apply to the ordered basis the adjacent transposition
o,:{1,...,m+n}—{1,...,m+n} interchanging ¢, and &, ;:

(805(1)’ -5 €5 (s—1)> Eay(s)> Eoy(s+1)s Eoy(s4+2)> - - > gas(m+n))
= (€15 €515 €541 Ess Ests s Eman) - (202)

The adjacent transposition alters the notion of positive and simple roots. For the new ordered
basis (&4,(1), - - -» €5, (m+n))» the set of positive roots is

¢, = oo =0, 1<} = {—a U2\ {ag) (203)
and the set of simple roots is

M, ={eon—Eo,crplr=1,....m+n—1} 204)
= {Es—l 415541 — &5, €5 €s+2} Ull \ {as—la A, a5+1} .
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This automorphism of the root system which transforms the positive and simple roots is called the
odd reflection with respect to the odd simple root .

As an example, take (m|n) = (3]2) and (&1, &5, €3, €4, €5) = (€1, €9,01, 02, €3). This choice of
ordered basis gives the Dynkin diagram (15). There are two odd simple roots, a, = €5 — &1 and
a4 = 0, — €3, represented by the crossed nodes. Reflection with respect to a, swaps €, and 64,
leading to the new ordered basis (€1,01,€4,05,€3). The Dynkin diagram corresponding to the

reflected simple roots is
& &) & &)

€,— 04 01— € €,— 0y 0, — €3

(205)

We see that all simple roots are now odd. Reflection of the original ordered basis with respect to
ay results in the ordered basis (e, €5, 61, €3, 05) and the Dynkin diagram

O & & &

€1—€ €,—0, 0O0,—€ €3—0,

(206)

Odd reflections change the characterization of highest weights. Let us see how Verma modules
are transformed. Fix an ordered basis of C™" and consider the Verma module M()), with the
highest-weight vector |Q2;). Let a, be an odd root. After the odd reflection about a;, the roles of
the raising operator & ;,; and the lowering operator &, ; ; are exchanged, while all other lowering
operators remain unchanged. Consequently, the state

|QQV) = gs+1,s|97t) (207)

is annihilated by all elements of the new set of raising operators, that is, it is a highest-weight
state with respect to the new ordered basis. According to the PBW theorem (23), the states of the
form

n,_1 N n,_1 -1—n
Xy PER (9,) = XTI, (208)
form a basis of the Fock space V, for M(4), where (xy,...,x,_1,& 1) is an ordered set of lowering

operators in the original ordered basis. (Note that n,, is either 0 or 1.) By the PBW theorem, we
see that M (1) is the Verma module M(A”) with respect to the new ordered basis, with

A=A—a,. (209)

In the spin chain, the highest weights of the Verma modules placed at the spin sites are trans-
formed by an odd reflection. The weight of each state of the spin chain remains the same, so the
magnon numbers must be transformed as

L m+n—1 L m+n—1
Z(ﬂ)’— Z M;a’r=ZAe— Z M,a,, @, =¢€5 ()= Eq (r+1)> (210)
=1 r=1 =1 r=1

or more explicitly,

= (211)

r

’ L+Ms_1+Ms+1_M5 (r=$);
M, (r #s).

The transformations of the highest weights and magnon numbers change the Bethe equations.

Of course, this is merely a change in the description of the spin chain states, so the solutions of the

new Bethe equations are in one-to-one correspondence with the solutions of the original Bethe
equations. This correspondence is called the fermionic duality generated by the odd reflection.
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3.4.2 Fermionic duality from string theory

In the D1-D3-NS5 duality frame that is S-dual to (114), the choice of ordered basis of cmin jg
reflected in the ordering of NS5-branes along Ry; they are ordered as NS5;, NS5,, ..., NS5,,,,
from left to right. Therefore, the string theory interpretation of the reflection about an odd root
a, is clear: it swaps the positions of NS5, and NS5, ;. We wish to understand the effect of the
exchange of positions on the highest weights and magnon numbers.

Recall that one of the boundary conditions for the BF theory that emerges on the D3-branes
creating the line defect £¢ is specified by the parameters &f, i=1,..., m+n. The position of DSf
in C is given by

¢t — (=D)AL (212)

Indeed, if we take &f to be of order i}, by the relation (190) this quantity coincides to order
#° with the twisted mass ,uf, which is identified with the classical location of D3f . Swapping the
positions of NS5, and NS5, ; also exchanges D3, and NS5,,; while keeping their locations in C
: ¢ 4 1 1 14 1
fixed. Thus, {A;} are transformed to new values {(A;)’} such that (1)) =A.,; and (A.,,) = A,
in the new ordered basis. This simply means that we have

m+n

A = A enm=2" 213)
i=1

Although &e is invariant under the odd reflection, the Weyl vector p is transformed to a new
Weyl vector p’. Since p is the half sum of even positive roots minus the half sum of odd positive
roots, from the relation (203) between $* and ¢ we see

p'=p+a. (214)

Then, the relation (187) between &e and the highest weight A’ shows that A’ is transformed to
(A% according to the formula (209).

Exchanging the pairs (NS5;,D3,) and (NS5,,1,D3,,;) does not only transform the highest
weights, but also change the magnon numbers. In the brane picture, we can understand this
phenomenon as creation and annihilation of D1-branes due to the Hanany-Witten effect [61].”
In order to exchange the positions of the brane pairs, we first need to move each D1-brane between
NS5, and NS5, ; so that one of its end is attached to one of the NS5-branes, say NS5, ;. Then, we
displace NS5, ; into the page and start moving it to the left. At one point the D3-branes ending on
NS5, pass through NS5;. As a result, the D1-branes ending on these D3-branes are annihilated
and a new D1-brane is created on each of those D3-branes that did not have D1-brane ending on
it. In the case in which [s] =0, [s + 1] =1 and (M,_;, M,, M,,1) = (1,2, 1), the process looks as
follows:

(215)

v, s I s
/ 7

’In general, Hanany-Witten processes for type ITA brane configurations for two-dimensional A/ = (2,2) super-
symmetric gauge theories classically suffer from ambiguities, which are only resolved if one takes brane bending into
account or lifts the configurations to M-theory. [33]. In the present case, such ambiguities do not arise because the
relevant gauge group has the same number of fundamental and antifundamental chiral multiplets.
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The dotted lines indicate the annihilation of D1-branes. We see that the numbers of D1-branes
between NS5-branes transform as in the formula (211).

In the D2-D4-NS5 duality frame, the above manipulation is expected to lead to an infrared
duality of N/ = (2,2) supersymmetric gauge theories. Indeed, there is a known duality trans-
formation that sends a theory with U(N,) gauge group, N; fundamental chiral multiplets and
N, antifundamental chiral multiplets to a theory with U(N/) gauge group, N, fundamental chi-
ral multiplets and Ny antifundamental chiral multiplets, plus mesons transforming in the bifun-
damental representation of the flavor group U(N,) x U(Nf) [62]. The rank of the dual gauge
group is N/ = max(N;,N,) — N,. This is consistent with what we have found since N, = M, and
N¢ =Ng =L+ M,_;+ M, in our case. However, it appears that the mesons are absent from our
final brane configuration. Fortunately, the mesons, being neutral under the gauge symmetry, do
not affect the Bethe equations.

4 Bethe/gauge correspondence for compact superspin chains

The superspin chains that appear in the Bethe/gauge correspondence discussed in the previous
sections are noncompact, meaning that they carry spins valued in infinite-dimensional represen-
tations of the Yangian Y (gl(m|n)). Spin chains whose spins are valued in finite-dimensional rep-
resentations are said to be compact.

In this section we discuss the Bethe/gauge correspondence for compact rational gl(m|n) spin
chains. We will follow a line of reasoning similar to our treatment of the noncompact case, but
in the reverse direction: we start with the construction of line defects for finite-dimensional rep-
resentations in four-dimensional Chern—-Simons theory, then identify their brane realization and
apply dualities to deduce the corresponding two-dimensional quiver gauge theories.

4.1 Covariant and contravariant representations of gl(m|n)

Finite-dimensional representations of gl(m|n) are most easily discussed in the distinguished grad-

ing, in which
L_Jo G<m);
= {i (i>m). (216)

For this reason, in this section we exclusively use the distinguished grading. We will write a weight

A=Y e as Ay ey Al Amsts -+ os Apn)-

The Verma module M(A) with highest weight A contains a unique maximal submodule. In
the distinguished grading, the corresponding simple quotient module L(A) is finite-dimensional if
and only if

Ai—AH_lEZZO, i:1,...,...,m+n—1, l#m, (217)

in other words, if and only if (44,...,4,) and (A,41,--.,A4n) are highest weights of finite-
dimensional irreducible representations of gl(m) and gl(n), respectively. Any finite-dimensional
irreducible representation of gl(m|n) is isomorphic to L(A) for some A.

We will consider two classes of finite-dimensional irreducible representations of gl(m|n), called
covariant representations and contravariant representations. Covariant representations appear in
tensor products of copies of the natural representation

(len:L((l,o,...,0|0,---,0)), (218)
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whereas contravariant representations arise from tensor products of copies of the dual represen-
.8
tation

(cminy = L((o,...,00,...,0,—1)). (219)

Both covariant and contravariant representations are indexed by the so-called (m|n)-hook parti-
tions.

A partition Y = (Y3,...,Y)y)) of size |Y| and length [(Y) is an [(Y)-tuple of positive integers
such that Y7 > -+ > Yj(y) and Y; +--- + Yy(y) = |Y]. It can be represented by a Young diagram
with [(Y) rows, with the ath row consisting of Y, boxes. The conjugate partition Y’ has the Young
diagram that is the transpose of the Young diagram for Y.

A partition Y is said to be (m|n)-hook if Y,,,; < n. If Y is an (m|n)-hook partition, then Y’ is
an (n|m)-hook partition, Y. ; < m. We let Hm|n denote the set of all (m|n)-hook partitions.

For an (m|n)-hook partition Y, we define the integral weight

Yi=(Yy,..., Yl (Y] —=m),..., (Y, —m)), (220)

where (a) = max(0,a). The even part of Y is represented by the Young diagram formed by the
first m rows of Y. The Young diagram for the odd part of Y” is the transpose of the remainder of
Y, and its length is less than or equal to n by the (m|n)-hook condition.

Let Y be an (m|n)-hook partition. The covariant representation labeled by Y is the highest-
weight representation L(Y"). The contravariant representation labeled by Y is the dual represen-
tation L(Y?)* = L(Y"). Its highest weight Y% equals the minus of the lowest weight of L(Y") and
is given by

Vi=(—(Yp—n),....,— (Y1 —n)| = Y/,...,=Y]). (221)

n’* 1

4.2 Line defects in covariant and contravariant representations

Now we construct quantum mechanical systems whose Hilbert spaces are covariant and con-
travariant representations of gl(m|n). Coupled to four-dimensional Chern-Simons theory with
gauge group GL(m|n), they describe line defects valued in these finite-dimensional irreducible
representations.

Let K, K be nonnegative integers and consider a pair of fields

¢ € Hom(CKIK, cminy, (222)

¢ € Hom(C™n, CKIK) (223)
transforming in the bifundamental representations of GL(m|n) x GL(K|K). Their components are
Z,-graded, with the grading given by

(e, 1= 1=T[i]+[al. (224)
where i and a are indices for C™" and CK W, respectively. The even components are bosonic and
the odd ones are fermionic. The action of the theory is

1
— J Stremn (@ d@). (225)
n g

8The dual 7* of a representation 7 is given by 7* = 7 o 7, where 7(X) = —X*' is the Chevalley automorphism. The
supertranspose X* of X is defined by Xf]t = (=)Dl Y ;i- Our definition of supertranspose differs from a commonly

used definition by a factor of (—l)mml With this definition, the quantum mechanical action (225) is invariant under
the natural action of GL(m|n) x GL(K|K).
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We will find it convenient to define

n = % ol (226)
x = (=1, @27
and
7L = (—1)iillaltalyi (228)
% = (_1)[i][a]+[a]%xia. (229)

Then, the canonical commutation relations read
[nt 2l 1= 17577 1= 606 (230)

The theory has a GL(m|n) x GL(K|K) global symmetry. The associated conserved charges are

K+K
= > xfnl + (D) esy, (231)
a=1
m+n
Qup =— > (~)MBNa B 1 1)felcs,, (232)

i=1

and satisfy the gl(m|n) @ gl(K|K) commutation relations:

(9> @] = 6 xqy — (1) UHUNTIHD s, g, (233)
[Qaﬁ’ QY5] = 6/5}’Qa5 — (_1)([a]+[ﬁ])([Y]+[5])55aQ}fﬂ , (234)
[4ij,Qapl=0. (235)

The constants ¢ and C account for the ambiguity in operator ordering and will be fixed in a mo-
ment. Under GL(m|n) x GL(K|K), the sets of fields {x*} and { )Z(i} transform as the standard basis

vectors for C™" @ (CKK)* and (C™I")* @ CKIK | respectively:

m+n

[qU’Xk ]kxl Z(Elj)lk)(l 5 (236)

K+K
[Qup. 2] 1=—(-1)eTPDlals P Z( ESe)s xl - 237)
m+n
[q, 751 = —(—1)THIDLs Z( —ESAL (238)
) ) K+K .

[Qups 721 =8p, 7 = D (Eap)sy 75 (239)

6=1

For the construction of line defects we actually break the GL(K |K) symmetry. Let us gauge the
Borel subgroup of GL(K|K). We introduce an associated gauge field

K+K
B= > B*E. (240)
a,f=1

a<p
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and couple it to the theory by replacing the de Rham differential d with d 4+ B. For the moment
we treat B as a background field and give it a diagonal value

B = diag(by,...,bg,z)- (241)

In this background, the action becomes

1 m+nK+K . . .
P JR DDl dGE + bl 5, (242)

i=1 a=1

and the GL(K|K) symmetry is broken to the stabilizer of the gauge field, which is generically the
maximal torus.

The coupling to the gauge field does not affect the canonical commutation relations, but mod-
ifies the Hamiltonian. Before the introduction of the gauge field, the theory was topological and
the Hamiltonian was zero. It is now given by

K+K
H=il )" byQqq- (243)
a=1

The Hilbert space of the theory is a Z,-graded Fock space constructed from a vacuum state |0)
by the action of the creation operators. The action of (p(il changes H by ifib, while ¢;* changes H
by —ifiib,. Those component fields that increase Re(iH /i) are creation operators, and those that
decrease it are annihilation operators.” We can think of Re(iH /k) as energy.

Suppose that we give the background value such that

O0<Reb,,=<Reb <.+ <Reb;. (244)

K+K K+K—1

Then, y* is a creation operator and 772( is an annihilation operator. Requiring the vacuum to be
invariant under (the maximal torus of) GL(K|K), we find ¢ = C = 0. Let F be the corresponding
Fock space.

The Fock space F decomposes into tensor products of covariant representations of gl(m|n)
and contravariant representations of gl(K|K) [63,64]:

F= D el (245)

YGHm‘n OHK\E

(We use subscripts to distinguish weights for gl(m|n) and gl(K|K).) For example, the first excited
states take the form

m+nK+K
D> o) (246)
i=1 a=1
and span a subspace isomorphic to
cmin @ (CKIKy, (247)

as can be seen from the commutation relations (236) and (237).

°If the time axis is compactified to a circle of radius 1, then the partition function involves trace twisted by
exp(—iH /h). Creation operators should make this factor smaller.
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This Hilbert space is too large, and we need to reduce it to a single covariant representation
L(Yriln) of gl(m|n). To do so, we impose constraints that singles out the summand L(Ynuﬂn)@L(YIg'f)*

and further projects it to the subspace of lowest-energy states. Since the raising operator Q,g,
a < [, changes the energy Re(iH /l) by —Re b, + Rebg < 0, the lowest-energy states have the
highest weight with respect to gl(K|K).

We implement this projection by making B dynamical. The vacuum expectation value of 5 is
given by the diagonal matrix (241). Let us add to the action the Chern-Simons term

o
—1J KKW(B)' (248)
R
Then, the equations of motion for B are
Qup =0, a<p (249)
and'®
b m—n

Qua = Cypda+— (250)

The former equations restrict the Fock space to the subspace of states that contains highest-weight
vectors of covariant representations of gl(K|K):

D vl elen). (251)
YEHmlanK\E KIK
With the choice
h , m—n K+K
=TS 52
a=

the second equation selects the highest weight ?IEIE’ thereby reducing the Hilbert space to the
covariant representation L(Yrim) ® [y ) of gl(m|n).
KK

In order to construct line defects in contravariant representations, we take

Reb <Reb <---<Reb; <0. (253)

K+K K+K—1

In this case, 7 is a creation operator and ﬁz is an annihilation operator. The corresponding Fock

space F decomposes as

T _ N i
F= & L(Y,, ) ® LY, ). (254)
YG'Hm‘nﬂHK‘E

Making B dynamical and adding the Chern-Simons term

i JR Y3 2B (255)
to the action, we can reduce the Hilbert space to the contravariant representation L(Y")*, with
__K+K
V=Y mz L Z; £y (256)
a=

19The Weyl quantization of the classical expression of Q,, equals Q,, + (—1)!*)(m —n)/2.
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4.3 Brane construction of line defects

The quantum mechanical system discussed above can be constructed with D3-branes and D5-
branes. Let us remove from the brane system (114) the semi-infinite D3-branes and the F1-branes
stretched between the D5-branes, and instead introduce infinite D3-branes D3,, a =1, ..., K+K:

Spacetime: R x S' x C x Ry x Ry xR2, xR?,
D5, (i<m): Rx S! x C x {X;} x{v;} xR%h x {0}
D5; (i>m): Rx S' x C x {X;} x{V;}x {0} xR?, (257)
D3, (@ <K): Rx {y} x {¢} x {=Reb,} x Ry x RZ, x {0}
D3, (@a>K): Rx {y} x {¢} x {—Reb,} x Ry x {0} x R?,

We claim that strings stretched between the D3-branes and the D5-branes give rise to the quantum
mechanical system in question.

The K D3-branes D3,, a < K, and the m D5-branes D5;, i < m, share the three-dimensional
spacetime R X Rih. Strings stretched between them produce an N/ = 4 hypermultiplet in the
bifundamental representation of U(K) x U(m). Let

¢ € Hom(CX,Cc™), (258)
% € Hom(C™, CX) (259)

be the scalar fields of this multiplet. We are looking at the sector of this theory that is invariant
under the supercharge Q for the holomorphic-topological twist. There is an Q-deformation in-
duced by the background RR two-form, and it has the effect of localizing the hypermultiplet to
the quantum mechanical model with action [23]

1 5
P f trem(02° d@?0). (260)
R

Here we are using ¢%°, ¢% to denote the one-dimensional fields that descend from the three-
dimensional scalar fields.

Similarly, from strings stretched between the K D3-branes D3,, a > K, and the n D5-branes
D5;,i > m, we get an N = 4 hypermultiplet in the bifundamental representation of U(K)x U(n) on
the three-dimensional spacetime R x R? 4+ By an Q-deformation, the theory localizes to a quantum
mechanical system with action

1
4 | wetoagm, (261
R
where
plle Hom((CE,(C”), (262)
¢! € Hom(C", CK). (263)

The branes D3,, a < K, and D5;, i > m, intersect along the time axis R, and from strings
stretched between them we get fermions

cplo € Hom(CK, M), (264)
@19 € Hom(C", CK). (265)
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They are described by the action

h
This is the dimensional reduction of the two-dimensional chiral fermions that arise from an inter-
section of D4-branes and D6-branes [65,66].

In the same way, from strings stretched between D3, a > K, and D5;, i < m, we get fermionic
fields

1
- J tren(@t0d@lo). (266)
R

0% e Hom((Cf,(Cm), (267)

¢°! € Hom(C™,CK), (268)
described by the action

—% JR trem (@91 d@l). (269)

These four quantum mechanical systems can be combined into the single quantum mechanical
system described by the action (225), with the fields

00 01
' '
= s (270)
' (9010 (‘011)
~00 =01
~ ' '
=1 " . (271)
' ((plo (pll)

The creation operator y;* adds a string stretched between D3, and D5;. The annihilation operator
7, removes a string between them.

This quantum mechanical system is coupled to the four-dimensional Chern—-Simons theory that
arises from the D5-branes and to the BF theory that arises on the D3-branes. As in the construction
of line defects valued in Verma modules, the boundary conditions on the BF theory (at infinity,
or at finite distance if we make the D3-branes end on NS5-branes) breaks the GL(K|K) gauge
symmetry to a Borel subgroup. Which Borel subgroup is selected is determined by the ordering of
the D3-branes on Ry. For the ordering (244) for {Re b, }, it is the standard Borel subgroup.

The situation in which there are no strings stretched between the D3-branes and the D5-
branes corresponds to the vacuum of the Fock space F. Here is how the vacuum looks like for
(m[n) = (1]2) and (K|K) = (2]1):

10) = // (272)

D3, D3, D3, D5, D5, D5,

To project to a covariant representation L(Yrim) of gl(m|n), we fix the number of strings ending
on each D3-brane. Let us illustrate how this works with an example in which ¥ = (5,1,1). For
this choice of Y, we have Y’ = (3,1,1,1,1), Yriln = (5|2,0) and ?Iglf = (0,—4| — 3). The brane

configuration for the highest-weight state of L(Yriln) ® L(f/ﬁ'?) is the following:

v ) ® |Qynl_) = //52—: 273)

D3, D3, D3, FlS D5 D5, D5,
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A string ending on D5; from the left contributes ¢; to the gl(m|n) weight, and a string ending on
D3, from the right contributes —e,, to the gl(K|K) weight. This configuration is the tensor product
of two highest-weight vectors because we cannot shorten any of the strings and stretch it between
another pair of D3-brane and D5-brane; by doing so we would get more than one strings between
D35 and D54, but that is prohibited as such strings have necessarily coincident worldsheets and
are fermionic. This brane diagram shows

2y ) @10 )=(x§’)2xf(x12 *|0). (274)

The other vectors in L(Y ) ® | ) can also be represented by brane configurations. For
KIK
example,

Q Q 410
42110y ) ®] Zx URCATH M) 275)

= —4(x§)2x1 x2(2)%10) + (x3)* (x2)0)

is a linear combination of two states, which one obtains from the highest-weight vector by extend-
ing one of the strings to the right:

021190 ) ® Q4 ) =—4 //§::
min 1<|1< E—

D3, D3, D3, D5, D5, D5,

+ //52 — (276)

D3, D3, D3, D5, D5, D5,

The construction of a line defect in a contravariant representation of gl(m|n) is analogous. For
a contravariant representation, the D3-branes are placed to the right of the D5-branes. For exam-
ple, for the same choice (m|n) = (1|2), (K|K) = (2|]1)and Y = (5,1, 1), we have ?riln =(-3|-1,-3)

and YIE|E = (5, 1|1), and the highest-weight vector is represented by the configuration

= == 7 277)

D5, D5, D5, D3, D3, D3,

4.4 Two-dimensional N = (2,2) supersymmetric gauge theories

Applying S-duality and T-duality on S! to the brane configurations for a line defect, we obtain D2-
D4-NS5 brane configurations which describe two-dimensional N = (2,2) supersymmetric field
theories. For a general choice of (K|K) and Y, the resulting theory does not seem to admit a simple
gauge theory description.
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If we restrict to covariant representations with K = 0 and Y,,,; = 0 and contravariant repre-
sentations with K = 0 and Y' . = 0, the two-dimensional theories are particularly nice. Let us
consider these cases.

For a covariant representation with K = 0 and Y,,,; = 0, the relevant highest weights are
YrElln =(Yy,...,Y,]0,...,0) and ?IE'W = (_YE/’ ...,—Y]). The brane configuration for the highest-

weight vector of L(Yriln) ® L(?Iilf) has one string stretched between NS5; and D3%_ ., for each
a =1, ..., Y. The following diagram depicts the highest-weight vector for (m|n) = (3]2),

(K|K) = (0]4)and Y = (4,2, 1), forwhich Y/ = (3,2,1,1), Yn”ﬂn =(4,2,1/0,0)and ?ﬁlf =(-1,-1,—2,—3):

| (278)
D3, D3, D3, D3, D5, D5, D5, D5, D5g

By moving the D3-branes past D5-branes, we can bring this configuration to another config-
uration in which the D3-branes are located between D5-branes and have no strings attached:'!

D3,D3, | D3, D3,
(279)
D5, D5, D5, D5, D5,

The strings that were initially present get annihilated by the Hanany-Witten transition. The num-
ber of D3-branes between D5; and D5, is equal to Y; —Y; ;.
If we stretch strings between D5-branes in this configuration, then by the reverse Hanany-

Witten moves we get a configuration for excited states in L(Yriln) ® |2 ). For example, the
KK
configuration

(280)

represents an excited state with weight (4,2,1]0,0) —3a; —2a, —2a3 —2a4 =(1,3,1]0,2). One
such state is represented by the configuration

(281)

Similarly, for a contravariant representation with K = 0 and Y' ,=0,wehave ?ri =(0,...,0|-Y,

|n

and YIE|E = (Y3,..., Yx), and the brane configuration for the highest-weight vector of L(?riln)®L(YI§|E)

can be brought to a configuration without any strings. Take an example with (K|K) = (3|0) and

1 An obstruction to generalize the present argument to more general covariant and contravariant representations is
that we do not understand what happens when a D3-brane passes through a D5-brane of the same color in the presence
of the RR two-form for Q-deformation.
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Y =(2,2,1), for which Y’ = (3,2), ?rim =(0,0,0|—2,—3) and Yﬁli =(2,2,1):

)| ® (282)

This configuration represents an excited state with weight (0,0,0| —2,—3) —a; —a, — a3 —ay
=(—1,0,0|—2,0). The number of D3-branes between an adjacent pair of D5-branes can be read
off from Y’.

The dual D2-D4-NS5 brane configurations are of the type studied by Hanany and Hori [33]
and realize quiver gauge theories. The quiver for the configuration (280) is

3 @ (2) 2
i
and the quiver for the configuration (281) is

8 8 \@’ T (284)

The ranks of the gauge nodes are given by the numbers of F1-branes, and the ranks of the flavor
nodes are given by the numbers of D3-branes. There are N = (4,4) cubic superpotential terms
involving adjoint chiral multiplets.

The flavor symmetry for the chiral multiplets charged under the mth gauge node is doubled
due to the lack of cubic superpotential term. From the brane point of view, this is because a D4-
brane between NS5, and NS5,,,; can be broken into half on one of the NS5-branes which has
the same color as the D4-brane:

— k — (285)

Strings stretched between D2, a,, = 1, ..., M,,, and one half of the D4-brane produce a funda-
mental chiral multiplet for U(M,,), while strings between those D2-branes and the other half of
the D4-brane produce an antifundamental chiral multiplet.

4.5 Bethe/gauge correspondence for finite-dimensional representations

Generalizing the above brane construction, we can obtain the Bethe/gauge correspondence for
spins valued in arbitrary finite-dimensional representations of gl(m|n). This is essentially the
correspondence proposed by Nekrasov [3].

Consider the rational gl(m|n) spin chain of length L, with the £th spin takes values in finite-
dimensional highest-weight representations L(A%). For the moment, let us assume that the highest
weights are all integral and satisfy

A=l 02l > =2

m+n*

(286)
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This is the case if all of the representations are of the type studied in section 4.4. We define
nonnegative integers

Ki=at—AL,,, r=1,...,m—1, (287)
K =L, (288)
Eﬁ=)\f—kf+1, r=m+1,...,m+n—1, (289)
K =—2 .. (290)

We look at a sector of fix magnon numbers (My, ..., M,,,,—1).- The Bethe equations depend only
on the highest weights and the magnon numbers, so their form remain the same as in the case of
Verma modules.

The gauge theory corresponding to this magnon sector is similar to the theory discussed in
section 2.3 and has the same gauge symmetry. The difference is that the chiral multiplets Q;, CNQi,

i=1,..., m+n, are replaced by chiral multiplets
RfeHom((CKf,(CMf), r=1,...,m, (291)
ﬁfeHom(CM',CKf), r=1,...,m, (292)
SfeHom((CKf,(CMf), r=m+1,....m+n—1, (293)
gfeHom(CM',CKf), r=m+1,....m+n—1. (294)
Letting
L
K, => KL, (295)
(=1
L {
K, =>K,, (296)
(=1

we can combine them into chiral multiplets R, € Hom(C*r, CM), R, € Hom(CM,CK), r=1, ...,
m—1,and S, € Hom(CX,c*), S, € Hom(C*,CX), r=m+1,..., m+n—1.

For r < m, the theory has the N = (4,4) superpotential term trcxr(ﬁrd)rRr), and a flavor
symmetry U(K,) act on R, and R,. For r = m, the cubic superpotential is absent and two copies
of U(K,,) act separately on R, and Em' Similar statements hold for S, and S,. Under U(1);, R,
and R, have charge —1 and S, and S, have charge +1.

The gauge and matter contents of the theory can be encoded in a quiver. For (m|n) = (3, 2),
the quiver is

¢1 [P ~ ~
_ _ Sg SS S4 S4
P, P, P,
M, M, M, (297)
P, P, P,
ﬁl Rl Rz R2 ﬁ3 R3 d)
4
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Furthermore, the theory admits a brane construction. For example, for (M, My, M3, M,) = (3,2,2,2)
and (K;,K,,K5|K3,K4) =(2,1,1]1,1), the brane configuration for the above quiver is

(298)

-
®

Note that in order to realize the flavor symmetry U(K,,)? x U(K ,)?, each D4-brane between NS5,,
and NS5,,, 1 needs to be brought to the NS5-brane of the same color and broken into half.

We turn on mass parameters for the global symmetries in such a way that higgsing give the
following masses:

(RO“: 0% — it — %h, (299)
(RY', ol — o — %h, (300)
(S ol =t + %h, (301)
SOy, : 3t — o + ;h (302)

We necessarily have uf = ﬂf ; and vf | = i/f , for r #m.

From these expressions for the masses, we see that for r < m, the pair (Rf, Rf) contributes to
the vacuum equations the factor

K! ¢ _ 1

l_[ or — Wy =2l 303
a sl lh > ( )

1=19r M T3

and for r > m, the pair (Sf, Sf) contributes the factor

—t

oy =+ g

—_— (304)
D o = ”ﬁ,z - %h
For the Bethe/gauge correspondence to exist, the above factors should reproduce the factor
¢ ¢ 1
DT A g h (305)
af' =L+ (DA — 3,k
in the Bethe equations. This is indeed possible if we identify the parameters as
pl, = gf,l f—b+ —c += )h+ I, (306)
=3 = L, +me — 2+ I (307)
rnl r+1 2 2 :
We have , . .
KL _ar e_; ar —=zh a _ ol 0 _ gt 1
l—[O-r zh_o-r 'ur,Kf 27 Oy - +(Ar—Kr)h—§Cr (308)

ar~e1_arzl_ a, 1
1=1 —fi, +3h o~ + 3R o, =+ Al —5c,h
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forr <m and

—¢
Kr ar { l ar l a, 1
o = v, +3h _ o V£,1 + 5 o — ¢t —Af+1h— 5¢h (309)
I | a,  ~¢ 1z~ _a, 1z —t
1=19r _vnl_fh Or _Vfil_fh O',(«Ir—Ce—(X£+1+Kr)ﬁ—%crﬁ

>tr

for r = m, so we obtain the factor (305) using the definitions of Kf and Eﬁ.

Now, let us consider the case in which the representations of the spin variables are arbitrary
finite-dimensional ones. Even in this general case, most of the above argument actually goes
through, with the same definitions of Kf and Eﬁ for r # m and the identifications (306) and (307).

==
The only place that fails is where we set r = m: if we choose nonnegative integers Kﬁv K, and
write down the product of the factors (303) and (304) for r = m, we get

o;m—cf—xﬁ+lh—%cmh( o =L+ (hy, — Ky — Gent )

Am _ 70 4 )L 1 a el 1 (310)
Om' = A= gemll Nopm —¢t— (AL, +K, h— i,k
whereas the Bethe equations do not contain the second fraction in the parenthesis.
We can cancel this unwanted factor if we introduce additional chiral multiplets
R! € Hom(CMn,CKn), (311)
—t
S¢ € Hom(CKn, CcMn) (312)

and give them appropriate masses. These chiral multiplets are produced by semi-infinite D4-
branes ending on NS5, and NS5, ;.
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A Four-dimensional Chern-Simons theory with gauge supergroup from
twisted string theory

In this appendix we present an alternative construction of four-dimensional Chern-Simons theory
with gauge group GL(m|n), using the framework of twists of superstring theory as developed in
[67]. Twisted superstring theory refers to superstring theory in a particular RR background where
the bosonic ghost for local supersymmetries may take a nonzero nilpotent vacuum expectation
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value Q. When one considers D-branes in such backgrounds, the coupling between D-branes and
the bosonic ghost dictates that Q is added to the BRST differential of the worldvolume theory [67].
Therefore, the field content of worldvolume theories of branes in twisted superstrings are naturally
Q-cohomology of that of the supersymmetric gauge theories one would find in the absence of the
additional RR background. As such, twisted superstrings affords a useful framework for studying
protected sectors of supersymmetric gauge theories.

Costello and Li [67] give conjectural descriptions of such twists of superstrings in terms of
topological strings. These conjectures have passed several consistency checks [67-69] and have
been proven at the level of the free limit of the supergravity approximation [70]. Taking these
conjectures as a starting point, one can derive simple descriptions of twists of worldvolume the-
ories of D-branes using mathematical tools from the study of topological strings. Though such
calculations require machinery from homological algebra, they have the benefit of calculational
ease. Tractable models of twisted worldvolume theories can be determined from an Ext-algebra
computation, and the action functional can be read off from an algebraic structure and trace on the
Ext-algebra; no term-matching arguments involving the Dirac-Born-Infeld action are required.

In this appendix, we work with field theory in the Batalin—Vilkovisky (BV) formalism as artic-
ulated by [71,72]. In particular, we freely make use of the language of L, -algebras. Much of the
below is exposited elsewhere in the literature. The construction of twisted supergravity and the
conjectural descriptions of twists of superstrings in terms of topological strings are given in [67].
Many of the examples below are worked out in [73] where more formal aspects of the framework
are articulated and some mathematical applications are discussed. We hope the exposition of
this appendix will have the simultaneous benefit of illustrating the calculational utility of twisted
superstrings, and making our constructions parseable to more mathematically minded readers.

A.1 Topological strings

We begin with some recollections on topological strings. The worldsheet theory of a topological
string theory is a two-dimensional oriented topological quantum field theory. Treating such theo-
ries via the language of functorial field theory, the results of [74,75] tell us that such theories are
determined by the data of a Calabi-Yau category. Physically, we think of objects of this category as
D-branes in our topological string theory, and the space of homomorphisms between two objects
as the complex computing BRST cohomology of the states of open strings stretched between the
branes. It is known that spaces of open string states have an algebra structure, with respect to
which the action for open string field theory takes a simple form [76]. The data of a Calabi-Yau
category is exactly what is needed to make precise this algebraic structure; this will be elaborated
more on subsection A.2 below.

Example A.1. Let M be a symplectic four-manifold and X a Calabi-Yau three-fold. The SU(3)-
invariant twist of type IIB string theory is given by the Calabi-Yau 5-category Fuk(M) ® Coh(X).
Here, Fuk(M) refers to the Fukaya category of M and Coh(X) refers to the category of coherent
sheaves on X. This describes a topological string theory that looks like a combination of the A-
model into M and the B-model into X.

Here the terminology is meant to indicate that the above mixed A-B model conjecturally arises
from type IIB string theory in an RR background in which the bosonic ghost takes a vacuum
expectation value given by an SU(3)-invariant nilpotent element of the ten-dimensional V' = (2, 0)
supersymmetry algebra.
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Remark A.2. Let us elaborate on our description of the A-model directions. For us the main
relevant example will be when M = R?N. In this case, we will use a version of the Fukaya category
that we will denote Fuk® where we discard counts of pseudo-holomorphic discs with nonzero area.
Explicitly, the objects in the category will consist of Lagrangians in M, and for two Lagrangians L;,
L, c R?N with clean intersection, we have that Homg,,0(Lq, Ly) = Q°(L; N L,). This will suffice for
our purposes as we will primarily care about perturbative phenomena on worldvolume theories
of branes, so we may neglect worldsheet instantons.

In addition to this restriction on the space of homomorphisms, this category does not include
as objects, coisotropic A-branes. To the authors’ knowledge, it is an open mathematical problem
to construct a version of the Fukaya category that includes as objects such branes. Fortunately, we
will not need to consider such branes in our analysis.

To a topological string theory, we may associate two field theories which are versions of open
string field theory and closed string field theory respectively. The former recovers twists of world-
volume theories of branes in the physical string while the latter contains twists of supergravity.

A.2 Topological open string field theory

Let C be an A, -category and let F € C be an object. Then Hom.(F, F) is an A,-algebra, and
skew-symmetrizing the A,,-operations yields an L.,-algebra. Now suppose our C is in fact a
Calabi-Yau N-category, and as such can be thought of as determining a topological string theory.
Then for any object F € C, we have an invariant pairing tr: Hom.(F, F) — C[N].

In examples of interest, where C is attached to a 2N-manifold thought of the target spacetime
of our topological string, Hom.(F, F) will arise as sections of a natural graded vector bundle over
the support of F, the L, -structure maps will be given by polydifferential operators, and the trace
map will factor through integration over the support of F. In such instances, the data of this
L,-algebra and the trace pairing then determine the data of a perturbative Z,-graded BV theory
— the space of fields of the theory is IIHom.(F, F) and the action is given by

S(a)=Z (k—il)! tr(a ® £ (a®")), (313)

k=1

where {;.: Homg(F, F)® — Homg(F, F) are the Loo-structure maps. This theory is the world-
volume theory of the D-brane F in the topological string theory determined by C. The conjectural
descriptions of twists of superstrings in terms of topological strings imply that for C coming from
a twist of a superstring theory, the worldvolume theory of F is a twist of the worldvolume theory
of the corresponding brane in the physical string theory.

Example A.3. Consider the SU(3)-invariant twist of type IIB string theory on R* x C® from example
A.1, and consider a stack of n D5-branes wrapping R? x C2. As explained in the above example,
this twist of type IIB string theory is described by the Calabi-Yau category C = Fuk?(R*)®Coh(C?).
The object describing our stack of branes is given by (R?, ng). We have that

Exto((R?, OF,), (R?, OF,)) = Homy,0(R?, R?) ® Extegn(csy(O, O,)
= Q°(R?) ® Exteopn(cs)(Ocz, Oc2) ® gl(n) (314)
=Q°(R?) ® Q%*(C?)[e] ® gl(n).

In the last step, we have used the following general result:
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Lemma A.4. Let X be a Calabi-Yau manifold and let Y C X be holomorphic. Then Extcopx)(Oy, Oy)
= QO’.(Y, /\.Nx/y).

We can describe the L -structure as follows. There is an L o, -structure on Q2°*(R2)®0Q%*(C?)®gl(n)
given by

Kl =de® 190,.(@2) ® 19[(,1) + 1Qo(R2) ® é ® 19[(,1) , (315)
Z2 =/\®/\®[_:_]g[(n)z (316)
£k=0, k>=3. (317)

The Lo, -structure on Q°(R*) ® Q%*(C?)[e] ® gl(n) is given by the semidirect product
(2°(R*) ® 0%*(C?) ® gl(n)) x £(Q2°(RY) ® 2%°(C?) ® gl(n)) (318)
The trace pairing induced from the Calabi-Yau structure on C is given
tr: a— Tr(a) A 92, (319)
R2XC2\1

where Q denotes the holomorphic volume form on C? and Tr is the Killing form on gl(n). Thus,
we find that the action of the theory is exactly

S(a,/o’)zJ Tr(lfs(d+é)a+ 1/5/\[a,a])m (320)
R \2 6
for
a e Q°(R?) e 0% (C?)egl(n), (321)
B € Q°(R?) ® Q% (CHe ® gl(n). (322)

This is exactly the holomorphic—topological twist of six-dimensional N' = (1, 1) super Yang-Mills
theory, dubbed the rank (1, 1) partially holomorphic topological twist in [77].

A.3 Topological closed string field theory

Let Z be the worldsheet theory determined by the Calabi-Yau category C. Naively, the closed
string states of the theory should be given by the local operators of the worldsheet theory, Z(S').
However, the worldsheet theory in the physical string is coupled to two-dimensional gravity —
closed string states should be those local operators invariant under reparametrizations of the
worldsheet. Since the worldsheet theory is topological, Cartan’s magic formula tells us that small
reparametrizations will act homotopically trivially on the space of local operators. In the setting
of topological strings, there is a natural homotopy action of S! on Z(S!) — the closed string states
will be the invariants Z(S')" " In terms of categorical data, this is computed by the cyclic cochains
of the category C, HC*(C). There is a natural way to equip a shift of HC*(C) with an odd Poisson
tensor and an L, -structure. In examples in which the graded vector space underlying HC*(C)
arises as the space of sections of some graded vector bundle, this gives HC*(C) the structure of a
Z,-graded Poisson BV theory. The constructions of the L.,- and shifted Poisson structures in this
generality are extraneous for our purposes — we will be focused on the following examples.
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Example A.5. Suppose C = Coh(X) with X Calabi-Yau. Then the cyclic formality theorem [78]
tells us that there is an equivalence of L, -algebras

HC*(C) = (PV**(X)[t]], ¢, =3 +t0 4y ={—,—}), (323)

where t is a parameter of degree 2, & denotes the divergence operator, and {—,—} denotes
the Schouten bracket of polyvector fields. The Poisson tensor has Poisson kernel (3 ® 1)0z(x),
where A(X) C X x X denotes the diagonal. This theory is Kodaira-Spencer gravity articulated as
Bershadsky-Cecotti-Ooguri-Vafa theory studied by [79-81].

Example A.6. Suppose C = Fuk(M) with M being a symplectic manifold. The Hochschild (co)chains
admit a description in terms of the quantum cohomology of the target. Together with the abstract
Loo-structure and the Z,-graded Poisson structure, we expect that the result will be a version of
the Kéhler gravity [82]. We will discard worldsheet instantons coming from the A-model direc-
tions of the twists of string theory we consider. Therefore, our ansatz will be that the closed string
field theory for the A-model directions is described by the L, -algebra Q°*(M) with L -structure
given by £; = d, ¢, = A and Poisson structure given by the wedge and integrate pairing. We
will abusively continue to denote the closed string field theory in the A-model sans worldsheet
instantons by HC®(Fuk(M)).

Example A.7. Putting the above two examples together, we can describe the closed string field
theories for the twists of type IIB string theory we are interested in. The closed string field theory
for the SU(3)-invariant twist of type IIB string theory on R* x C3 is given by the L .,-algebra
Q°(R*) ® PV**(C3)[[t]] with

61 =de® 1pv°,'(c3)[[t]] + 19'(R4) ® (é + ta), (324)
ly=A&®{——}, (325)
(=0, k=>3. (326)

The Poisson tensor is given by the Poisson kernel (3 ® 1)6 a(c3)0 a(r4)-

A.4 Closed-open map

Given a Calabi-Yau category C and an object F € C, there is always an L,-map
HC*(C) — CE*(Hom¢(F, F)). (327)

Here, the target denotes Chevalley-Eilenberg cochains on the L.,-algebra Hom(F, F); this is
a model for Hamiltonian vector fields on the formal moduli space describing fluctuations of the
brane F. This map takes a closed string field and produces a single trace-operator on the world-
volume theory of F, which describes how the closed string field couples to the worldvolume
theory of F. We will wish to apply this to examples where C = Fuk®(R!°*=2") ® Coh(CV), and
F=(R>N, O('ék) for k < N. Then we have that

HC*(C) = Q*(R'*2M) @ PVO*(CM)[[t]], (328)
Hom.(F, F) = Q" (R ™) ® Q% (CO)[eri1, ..., en] @ gl(n). (329)

This map should be thought of as given by a sum of disk amplitudes with boundary on the brane
F and with an arbitrary number of marked points on the interior labeling closed string insertions.
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We will only consider single closed string insertions of the form 1®u € Q*(R1°2")®pPVv%*(CY). In
particular the field does not depend on the A-twisted directions of spacetime, or the parameter t.
For such fields we have the following explicit formula for the linear component of the closed—open
map

a ay 4b b
1®W11---WNN8W11---8W11VV-—>I(a), (330)
where
b b
I(a) = Tr(wi' - wNg ko gV
(n+1)! JRS—NxckN—k ! N Tkt N

by ...nQb b L
xagk:lla/\ /\agNNa/\awlla/\ /\awka)/\ﬂ, (331)

A version of this result including formulas for the deformation to all orders in open string
insertions is proved in [81]. It is worth emphasizing that deriving formulas for this map at all
orders is an extremely nontrivial problem — for u € PV this is the content of the holomorphic
analogue of Kontsevich’s theorem on deformation quantization.

Example A.8. Consider the SU(3)-invariant twist of type IIB string theory on R* x C2. We fix once
and for all coordinates z, w;, w, on C3. We saw in the example above that a stack of n D5-branes
wrapping R? x (Ciw1 gives rise to a holomorphic-topological twist of six-dimensional N = (1, 1)
super Yang-Mills theory with gauge group U(n). Let us now consider what happens when we
turn on a field 1 ® wyw, € Q*(R*) ® PV®*(C®). Recall that the fields of the relevant twist of six-
dimensional A" = (1, 1) super Yang-Mills theory were given by Q°*(R?) ® Qo"((Cin)[s] ® gl(n).
The image of the closed string field w;w, under the closed open map becomes the functional

I(a) = f Tr(aw,0,a A Q). (332)
R2xC21

Equivalently, this deforms the L, -structure on Q°*(R?)®Q%*(C?)[¢]®gl(n) so that £; = d® Tooe(c2ren®Lgin)
+ 1Q'(R2) ® (é + Wlas) ®1

gi(n)- The differential w3, has the effect of deforming the complex of
fields of the theory into
w10,
2'(R?) ® (2°*(CH)e — %*(C?)) @ gl(n). (333)

This is the Koszul resolution of the locus w; = 0, so is quasi-isomorphic to Q*(R?)®0Q%*(C)®gl(n).
This is exactly four-dimensional Chern—-Simons theory as a Z,-graded BV theory.

Remark A.9. Note that the above construction differs slightly from the construction of four-
dimensional Chern-Simons theory via Q2-deformation in [16]. Conjecturally, the quadratic super-
potential we have introduced should describe those components of the RR two-form used in [16]
that are not exact for the twist we are performing. However, checking this explicitly is a diffi-
cult task. Moreover, at the level of field theory, the construction in [16] came from subjecting
the holomorphic-topological twist of six-dimensional A = (1, 1) super Yang-Mills theory with BV
fields given by Q*(R*)®Q%*(C)®gl(n) to a B-type Q-background along R? ¢ R*. Such a construc-
tion involves replacing a factor of Q°*(R?) with the Cartan model for S!-equivariant cohomology of
R2, which is given by the abelian dg Lie algebra (Q°(R2)[u]5',d+ut 3,)» Where u is an equivariant
parameter, and Jy is the infinitesimal action of rotations. The localization theorem for equivariant
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cohomology tells us that for generic values of the equivariant parameter, the complex of fields of
our theory is quasi-isomorphic to Q°(R?) ® Q%*(C) ® gl(n). Note that the relation uly, =[d,utg, ]
coming from Cartan’s magic formula tells us that the infinitesimal action of rotations on the fields
of our theory is homotopically trivial.

However, in the above construction we instead work with a more minimal twist of six-dimensional
N =(1,1) super Yang-Mills theory; the twist of the previous paragraph is gotten from deforming
the differential on Q°(R?)®Q%*(C?)[e]®gl(n) so that £, = d®190,.(@[8]®1g[(n)+19.(Rz)®(5’ +€0,,)®14(n)-
Instead of taking this further twist and working equivariantly along the topological plane that the
w;-plane becomes, we turned on a deformation coming from a quadratic superpotential. It is
worth noting that there is a map from a twist of the four-dimensional V' = 4 superconformal alge-
bra to the closed string sector of the SU(3)-invariant twist of type IIB string theory — the quadratic
superpotential deformation considered above lies in the image of this map. Moreover, note that
we have that £, 8 = [£d,,,, w10, ]; we see that the superconformal deformation also makes the
complexified action of rotations exact for the B-twist supercharge. This appears to be part of a
general pattern where a superconformal deformation of a holomorphic theory is equivalent to an
Q-deformation of a further topological twist [73,83,84].

Remark A.10. It is also interesting to consider the superpotential w,w, as a deformation of the
entire topological string theory, that is, as a deformation of the category of branes. Morally, it
should deform the category of coherent sheaves on C3 to the category of matrix factorizations
for the superpotential w;w,; the B-model directions of the topological string are turned into a
Landau-Ginzburg B-model. The category of matrix factorizations in this case can be described as
the category of modules for the Jacobi algebra of the superpotential w,w,, which in this case is
just the algebra C[z]. Thus, we see that the SU(3)-invariant twist of type IIB string theory localizes
to a six-dimensional topological string theory on R* x C; this makes contact with the work of [85].

A.5 Four-dimensional Chern-Simons theory with gauge supergroup from the SU(3)-
invariant twist of type IIB string theory

In this section we will arrive at four-dimensional Chern—-Simons theory with gauge supergroup
using the formalism developed in the previous subsections. The calculation is essentially an easy
corollary of the examples therein.

We consider the SU(3)-invariant twist of type IIB string theory on R* x C* with a configuration
of D-branes as in the following table:

R* R* C, C, C,,
nD5 o x X X ° (334)
mD5 o X X o X

A cross mark means that the D5-brane extends in that direction. We also turn on a closed string
field given by the quadratic superpotential w,w,. We arrive at a field theory description for this
system by first computing the open string field theory using the techniques above, and then ap-
plying the closed—open map.
Let F; = (R?, Og: ) Fa= (R?, Og, ) denote the objects in the categories of D-branes corre-
Zw1 w

W2
sponding to the stacks of n and m D5-branes, respectively. We first wish to compute Hom.(F; ® F5, F; ©F5).
Since Hom commutes with direct sums, we have four summands:
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* From example A.8, we have that

Home (F, F1) = Q°(R*) ® 2%°(C7 , Ne,] @ gl(m), (335)
Homg (F, F2) = Q°(R*) ® Q%*(C? , Yer] @ gl(n). (336)
Our convention above is that €; denotes a section of the normal bundle of (Cf w. C C3, where
Wi
i#].

The trace pairing is given by
tr(a) = J dzdw; tr(a). (337)
R2xC2I1

* We can compute, using free resolutions of the structure sheaves of the w;-planes, that

Hom.(Fy, F») = Q°(R?) ® 0%*(C,) ® Hom(C™,C")[-1], (338)
Hom¢(F,, F1) = Q°(R?) ® Q%*(C,) ® Hom(C",C™)[—1]. (339)

Each of these are abelian L, -algebras, with £; = d ® 1goec,) ® liom + las(r2) ® 3 ® 1ggom-
There is a natural trace pairing on the direct sum

Q°(R?) ® 2%°(C,) ® T*Hom(C™,C")[—1]. (340)
Letting X's denote fields valued in Hom(C™,C") and Y's fields valued in the cotangent direc-
tion, the pairing is given by

tr(X, + Yy, X, +Yy) = f dw(Tren(X1Ys) — Tren (Y1X5)) - (341)

The action functional induced by this pairing and abelian L, -structure is exactly the BV
action for a free hypermultiplet in the Kapustin twist. Restricted to fields of ghost number
1, this recovers exactly the action (145).

Thus we see that the entire space of open string states is given by
Q0*(C,,, )] @ gl(n)
@
E=0"R) 0% (C,)® | % (C,, e ]®gl(m) |. (342)

@
T*Hom(C™,C")[—1]

We now determine the L, -structure. This is as usual gotten by skew-symmetrizing the natural
Ago-structure on Hom(F; & F,, F; ® F,). In terms of the above direct summands, the Ag.-
structure is given in terms of the following operations:

* HomC(]:l’]:l)®H0m6(]:l’]:l)_)HomC(]:l’]:l) > A®B— AB 5

¢ HOHIC(.E,.F})@HOHIC(.F},E)—)Homc(f],ﬁ) 5 YeX—»YX 5
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* Hom(F;, F;) ® Hom(Fj, F;) = Home(Fj, F;) , A®X —AX

wherei, j=1,2,i #]j.
This induces the following L., -structure:

* The first kind of A,,-operation above gives L, -structures on Hom.(F;, F;) with

€1 =d® Looecoye) ® 1y + loer2) ® 9 ® 1y, (343)
by=A[—,—];, (344)
where g = gl(m) for i = 1 and g = gl(n) for i = 2. As explained in example A.3 these are

precisely holomorphic-topological twists of the six-dimensional A" = (1, 1) vector multiplets
for gl(m) and gl(n).

e There is a bracket

(2°(R?) ® 2%°(C,) ® T* Hom(C™, C")[—1])**
Q% (Cy,,)e2] ® gl(m)
- (RHeQ%(C)e ® , (345)
Q% (c,,)er] @ gl(n)

explicitly given by wedging the form factors and taking the commutator of the matrices in
T*Hom(C™,C").

* Finally, there is a bracket

Q%*(C,,)lex] ® gl(m)
Q2°(RH ® 0% (C,) ® ®
Q%*(Cy,)ler] @ gl(n)
®
Q°(R?) ® 0%°(C,) ® T*Hom(C™,C")
— Q°(R?) ® 0%°(C,) ® T*Hom(C™,C") (346)

explicitly given by wedge product of forms and the natural action of gl(m)®g((n) on T* Hom(C™, C").

The last of these brackets encodes the coupling between the hypermultiplets in the Kapustin
twist and the twist of the six-dimensional N = (1, 1) vector multiplet. The second bracket, which
breaks the Z-grading down to a Z,-grading, encodes an extra gauge symmetry.

The open string field theory we have found can formally be regarded as four-dimensional
Chern-Simons theory on R? x C, for a dg Lie superalgebra. We may schematically encode the
above brackets by writing the above dg Lie algebra as

0*(C,,)lez] @ gl(m) | Hom(C™”,CM[1]
Hom(C",CM[-1] | 2°°(C,,, e ®ol(n) )

(347)

Let us now analyze the effect of the closed string field w,w,. As we saw before, the image of
this closed string field under the closed open map only affects the differential on the above dg Lie
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superalgebra. Explicitly, the deformation looks like

(Q%*(c, e, 0, Q% (c,,)) ® gl(m) ‘ Hom(C™,C")[—1]
Hom(C", C™)[—1] ‘ (204, )e1 2 90%(C,,.)) @ gi(n)
~ gl(m) | Hom(C™,C™")[—1]
= ( Hom(C",CM[—1]|  ol(n) ) - (348)

The remaining Lie brackets equip the above with with the structure of the Lie superalgebra
gl(m|n). Thus, we have found exactly four-dimensional Chern-Simons theory for the Lie algebra
gl(m|n) as claimed.

We note that the BRST transformations induced by the above Lie brackets are slightly different
from those identified in the main body of the paper. This is an artifact of working with a particular
model for the underlying L., algebra. For comparison, we explicate the BRST transformations
below.

Note that the cochain complex underlying our L, algebra arises naturally as the totalization
of a Zx 7/ 2-graded cochain complex, where the fields valued in Hom(C™, C")®@Hom(C"&C™) are
placed in bidegree (e, 1). Though the lie brackets arising from the coupling of the hypermultiplets
to the vector multiplets broke the Z-grading down to a Z/2-grading, these brackets are easily seen
to preserve the above grading Z x Z/2 grading.

We fix the following notation for components of our fields

a;; € Q(R) ® Q% @ (gl(m) @ gl(n)), Bij € Q(R)® Q% @ (Hom(C™,C")®Hom(C",C™)) (349)

and denote the corresponding linear operators the same way. The BRST variations determined by
the then take the form

Qa;j =dag_1y; + da;j_1) + Z [agp, acql+ Z [Bab>Beal (350)

a+c=i,b+d=j a+c=i,b+d=j

QPBij = dPB(i—1); + 9 Bij—1) + Z [aapsBed] (351)
a+c=i,b+d=j
The brackets in these equations are the relevant brackets on the L, algebra we’ve identified.
It would be interesting to construct an explicit L, equivalence between the BV complex we have
identified and the L., algebra consisting of the fields A, c, b, B and BRST transformations from
section 169.

Remark A.11. As in remark A.10, we can consider the effect of the quadratic superpotential as
a deformation of the entire category. The result is a six-dimensional topological string theory on
R* x C. The two stacks of D5-branes we have considered will localize to a stack of D4- and anti-
D4-branes wrapping R? x C. This set up is very reminiscent of the topological strings construction
of three-dimensional Chern-Simons theory with gauge supergroup of [86] and should lend itself
to a holographic realization of the Yangian of gl(m|n) generalizing the analysis of [85]
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