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We explore quantum chaos diagnostics of variational circuit states at random parameters and
study their correlation with the circuit expressibility and the optimization of control parameters.
By measuring the operator spreading coefficient and the eigenvalue spectrum of the modular Hamil-
tonian of the reduced density matrix, we identify the universal structure of random matrix models in
high-depth circuit states. We construct different layer unitaries corresponding to the GOE and GUE
distributions and quantify their VQA performance. Our study also highlights a potential tension
between the OTOC and BGS-type diagnostics of quantum chaos.

I. INTRODUCTION

The random circuit model provides a framework of hy-
brid quantum/classical algorithms for solving optimiza-
tion and learning tasks, formulated as a search for the
ground state of k-local Hamiltonians [1–3]. Generic quan-
tum gates create an entanglement between qubits. En-
tanglement is a valuable resource for achieving quantum
advantage, but it also becomes a hurdle for successful op-
timization of circuit control parameters at the same time,
specifically when random circuit states are much more
highly entangled than the ground state of the Hamilto-
nian encoding the task [4–8]. Quantum information in
such highly entangled states is scrambled, and a success-
ful adjustment of circuit parameters via local gradient
search typically requires over-parametrization [9–12].

Quantum chaos [13] is correlated with information
scrambling [14–18] and is in general a feature of interact-
ing dynamical quantum systems [19]. One expects deep
random circuit states to be generically chaotic. While
the entanglement properties of a state can be quantified
by entanglement entropies constructed from the eigenval-
ues of its reduced density matrix, the quantum chaotic
structure of the state is largely diagnosed by measures
that depend on the level spacing of the reduced density
matrix. The aim of this work is to investigate the chaotic
properties of random circuit states, with focus on the re-
lationship between quantum chaos, circuit expressibility,
and optimization performance.

A common diagnostic of quantum chaos that charac-
terizes information scrambling is the operator spreading,
which can be quantified by the 4-point out-of-time-order
correlation function (OTOC) [16, 17, 20]. One considers
an operator at time t = 0, denoted by O(0), that acts on
a small number of qubits and evolves it to:

O(t) = U(t)†O(0)U(t) , (1)

supported on a larger number of qubits at time step t.
This growth is typically ballistic with a characteristic ve-
locity, known as the butterfly velocity, reminiscent of the

spread of classical chaotic trajectories. Considering a dis-
crete time evolution driven by the random circuit unitary,
this velocity depends on the circuit architecture, i.e., ar-
rangement and type of quantum gate unitaries. However,
the operator growth is associated with spectral values of
the circuit reduced density matrix themselves, much like
the entanglement entropy, but not their level spacings.
Let us denote the density matrix of the circuit state by
ρc and divide n qubits of the quantum register into two
subsets A and B of the equal size, nA = nB = n

2 . The
modular Hamiltonian H(ρA) of the reduced density ma-
trix ρA = TrBρc can be written as

ρA ≡
e−H(ρA)

ZA
, (2)

where ZA = TrA e
−H(ρA) is the partition function of the

modular Hamiltonian. It is indeed the eigenspectrum of
H(ρA) that encapsulates the entanglement and operator
spreading properties of the quantum circuit.

There are by now accumulated pieces of evidence that
chaotic properties of Hamiltonian systems reveal them-
selves in the level spacing distribution of the Hamilto-
nian energy spectrum [21]. This understanding can be
extended to the eigenspectrum of the modular Hamilto-
nian, diagnosing the chaotic nature of a quantum state
from its level spacing distribution [22]. We will explore
various quantum chaos diagnostics as a function of the
circuit depth and show that deep circuit states exhibit the
characteristics of random matrix models. Specifically, the
level spacing distribution of the modular Hamiltonian, r-
statistics, and spectral form factor will manifest the uni-
versal structure of the Gaussian Orthogonal Ensemble
(GOE) or Gaussian Unitary Ensemble (GUE), depend-
ing on types of quantum gates introduced in the random
entangling circuit.

The paper is organized as follows. In Section II, we will
describe the architecture of layered random circuits used
for numerical simulation and briefly review the relation-
ship between the number of circuit layers and VQA per-
formance. Section III will explore the connection between
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the operator spreading, a typical diagnostic of quantum
chaos, and the optimization efficiency of control vari-
ables. We will then study in Section IV the level spacing
distributions of the modular Hamiltonians, r-statistics,
and their spectral form factors at different circuit depths,
showing that all diagnostics match those of random ma-
trix ensembles in the high-depth regime. Section V will
conclude with discussion.

II. VQA PERFORMANCE

We begin with specifying the circuit architecture used
in this paper and briefly review the relation between the
entanglement made by random circuit unitaries and the
optimization efficiency of variational quantum algorithms
(VQAs) [4–8, 11].

A. Circuit Architecture

Figure 1 illustrates the variational circuit architecture
assumed throughout our discussion. The n quantum reg-
isters are arranged periodically, i ' i+n, and acted upon
by a chain of two-qubit unitaries. The unitaries are made
of single-qubit gates R(θ) acting on all n distinct qubits,
followed by two-qubit entanglers:

CZ = diag (+1,+1,+1,−1) or (3)

CP = diag (+1,+1,+1,+i) (4)

that operate on all adjacent pairs of qubits. Every layer
swaps the roles of odd/even qubits, alternating between
controlling/controlled and controlled/controlling pairs.

In our numerical simulation, we will consider only two
types of single-qubit gates. They are Pauli rotation gates
along the y-axis

Ry(θ) = exp(iσyθ) =

(
cos θ sin θ
− sin θ cos θ

)
, (5)

which are real and orthogonal, and those along the x-axis

Rx(θ) = exp(iσxθ) =

(
cos θ i sin θ
−i sin θ cos θ

)
, (6)

which are complex-valued unitary matrices. All the ro-
tation angles are randomly chosen from the uniform dis-
tribution U(0, 2π) at circuit initialization. We will use
the symbol θ`,i to denote a specific angle that rotates the
i’th qubit at the `’th layer, for 1 ≤ i ≤ n and 1 ≤ ` ≤ L.

We will consider four different types of layered circuits
for numerical experiment. If the single-qubit rotations
are all along the x or y axis, followed by the CZ en-
tangler actions, the corresponding circuits will be called
Rx + CZ or Ry + CZ. Two additional variants of circuit
structures, dubbed as Rx+CZ+Ry+CZ and Ry+CP, will
be examined, where one-qubit gates at odd/even layers
alternate between Rx/Ry and where all CZ’s are replaced
with CP’s, respectively. In general, different gate choices
will lead to different entanglement and chaos properties.
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(b) The quantum gates

FIG. 1: The variational quantum circuit used in this paper.
The n qubits are arranged periodically, initialized in the
state |0〉⊗n and acted upon by a chain of the two-qubit
unitary gates.

B. Optimization and Expressibility

Random circuit states with a large number L of lay-
ers are typically highly entangled. Circuit expressibility,
i.e., being able to represent generic states in the Hilbert
space, can be achieved for sufficiently deep circuits. How-
ever, as quantum typicality makes the energy landscape
of VQA Hamiltonians flattened [11, 23], the circuit pa-
rameter optimization via local gradient search becomes
more difficult with highly entangled circuits [4–8]. A
known remedy for the flattened energy landscape is over-
parametrization of variational ansatz [9, 10, 12, 24], de-
veloping multiple steep directions that lead to the robust
success of the gradient descent method [11]. This comes
with a classical computational cost for storing and ma-
nipulating variables.

If a k-local Hamiltonian encodes the task to be solved,
so that the corresponding ground state exhibits the area-
law entanglement scaling, VQA will perform better with
avoiding the region of quantum typicality [4, 5], including
the saturation of bipartite entanglement entropy near the
maximum value [6, 8]. A canonical example showing this
relation is VQA with the one-dimensional Ising Hamilto-
nian made of the nearest-neighbor spin interaction cou-
pled to a transverse magnetic field [25]. Specifically, we
will use two similar Hamiltonians that differ only in the
direction of the external magnetic field:

H =
n∑
i=1

σz,iσz,i+1 + g
n∑
i=1

σx,i or g
n∑
i=1

σy,i , (7)

and attempt to reach their ground states at g = 1 by
optimizing the circuit parameters at different L.

The search for optimal parameters that minimize the
energy function will be conducted locally via the Adam
optimization algorithm [26]. It is a variant of the plain
gradient descent that shows faster convergence in many
circumstances, adjusting the step size at each iteration
based on the moving average of gradients. We will choose
its hyperparameters to be (α, β1, β2) = (0.05, 0.9, 0.999)
in all numerical experiments. Per each run, we will allow
enough time for convergence towards the ground state by
waiting for 5000 steps of the parameter update.

From the collection of 10 independent, repeated runs
for each architecture and depth, the overall trend stands
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out: A high level of expressibility, measured through the
average Renyi entanglement entropy at random parame-
ters saturating around its maximum possible value, has
an adverse effect in reaching the ground state of the VQA
Hamiltonian. See Figures 2 and 3 for the outputs under
four different choices of quantum gates. The orange/blue
curves in their left panel display the energy gap from the
ground state before/after the circuit parameter optimiza-
tion as a function of L. Likewise, the orange/blue curves
in the right panels represent the Renyi-2 entropy of the
reduced density matrix

R2
A = − log trA ρ

2
A (8)

obtained through partially tracing out n/2 qubits, be-
fore/after running the VQA optimization.

It is notable that distinct gate choices lead to different
entanglement growth and saturation values. For a par-
ticular circuit architecture dubbed as Rx+CZ+Ry+CZ,
where one-qubit gate alternates between Rx and Ry at
each layer, the entanglement curve converges to half the
saturated value of other circuits. For Ry + CP model
that substitutes CZ entanglers with CP gates, the en-
tanglement growth becomes considerably slower. They
result in widening the depth window until approaching
the maximum level of entanglement, in which the circuit
parameter optimization can likely succeed. Also interest-
ingly, we observe that Rx + CZ/Ry + CZ models fail to
reach the ground state of the Ising Hamiltonian coupled
to the external field along the x/y-axis, respectively.

III. OPERATOR SPREADING

Operator spreading serves as a diagnostic of the chaotic
dynamics and information scrambling. It has been exten-
sively studied in the context of random unitary circuits,
starting from [27]. In this section, we will examine opera-
tor spreading as a function of the circuit depth L that can
be regarded as the time t in discrete quantum systems.

Any Hermitian operator O(t) acting on n qubit sys-
tems can be written in the Pauli string basis:

O(t) =
1

2n/2

∑
j1,··· ,jn

hj1,··· ,jn(t)σ
(1)
j1
⊗ · · · ⊗ σ(n)

jn
, (9)

where

hj1,··· ,jn(t) ≡ 1

2n/2
Tr(σ

(1)
j1
⊗ · · · ⊗ σ(n)

jn
· O(t)) . (10)

Under the unitary time evolution (1),

Tr (O(t)†O(t)) = Tr(O(0)†O(0)) =

=
1

2n

∑
j1,··· ,jn

|hj1,··· ,jn(t)|2 = constant . (11)

The size of the operator O(t) is defined as the size of the
region where O(t) does not commute with an operator

σ
(x)
a located at position 1 ≤ x ≤ n. It can be written as

Ca(x, t) =
1

2
Tr(ρ∞[O(t), σ(x)

a ]†[O(t), σ(x)
a ]) =

=
1

2
Tr([O(t), σ(x)

a ]†[O(t), σ(x)
a ])

=
∑

j1,··· ,jn
jx 6=0,a

2|hj1,··· ,jn(t)|2 . (12)

We numerically measure it with a = y, where the opera-
tor O(0) is the Pauli-x matrix located at x = n/2.

Figure 4 visualizes the operator spreading coefficient
Cy(x, t) at different times t = L and positions 1 ≤ x ≤ n,
averaged over 50 random circuit instances in a system of
n = 12 qubits. For comparison of the operator spreading
pattern across different quantum circuit architectures, we
also draw in Figure 5 the standard deviation of Cy(x, t)
over all 1 ≤ x ≤ n as a function of L. We observe that the
Rx + CZ and Ry + CZ unitaries reach saturation around
L & 30, while Ry+CP takes L & 60 for complete spread.
Furthermore, there is no complete spreading under the
Rx+CZ+Ry+CZ unitaries even with a large number of
circuit layers L. These behaviors are all consistent with
the entanglement growth pattern of random circuit states
illustrated in Figures 2 and 3, showing a clear correlation
between two distinct quantities.

1 10 100

0

0.2

0.4

0.6

0.8 Rx + CZ
Rx/y + CZ
Ry + CZ
Ry + CP

FIG. 5: Standard deviation of C(x, t) over all lattice sites x
as a function of the circuit depth t. We see that even at a
large number of layers, there is no complete spreading for
the Rx + CZ +Ry + CZ circuit. This is consistent with the
saturation behaviour of the circuit entanglement in Figure 2
(c) and in Figure 3 (c).

IV. SPECTRAL DIAGNOSTICS OF QUANTUM
CHAOS

The Bohigas-Giannoni-Schmit (BGS) conjecture [13,
28] associates the quantum chaotic properties of a system
with the correlations between its energy levels. Chaotic
Hamiltonians exhibit level correlations in agreement with
the predictions of random matrix theory (RMT) [29].
Adjacent eigenvalues show level repulsion and, at larger
energy scales, signals of spectral rigidity.
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(a) Rx + CZ
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(b) Ry + CZ
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(c) Rx + CZ+Ry + CZ
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(d) Ry + CP

FIG. 2: Optimization curves for the Ising model coupled to an external field aligned to x-axis (7) at g = 1. The plot on the
left shows the energy difference from the ground state before (blue curves) and after (orange curves) optimization of the
circuit parameters as a function of the number of circuit layers. We see that the entanglement velocity (the slope of the
curves) as well as the saturation plateau depend on the type of quantum gates. The plot on the right shows the Renyi-2
entropy before and after optimization of the circuit parameters as a function of the number of circuit layers. (a) Rx one-qubit
rotation gate followed by entangling two-qubit CZ gate. (b) Ry one-qubit gate followed by entangling two-qubit CZ gate (c)
A sequence of Rx one-qubit rotation gate, entangling two-qubit CZ gate, Ry and CZ. (d) Ry one-qubit gate followed by
entangling two-qubit CP gate.

In this section, we will apply three quantum chaos diag-
nostics, i.e., the level spacing distribution, the r-statistics
and the spectral form factor, to the modular Hamiltonian
(2) of quantum circuits at varying depth L. The first two
diagnoses focus on small energy scales and therefore can
determine the presence of level repulsion, one of the most
robust indications of quantum chaos [21]. On the other
hand, the spectral form factor probes larger energy scales
and is mostly a quantifier for spectral rigidity.

A particular care needs to be taken in analysing the
eigenvalues of the reduced density matrices ρA, since they
show unavoidable numerical errors. In order to control
the effect of the numerical errors, we have adopted a ro-
bust phenomenological procedure, which makes use of the
fact that all the eigenvalues of ρA must be non-vanishing
by definition. Let us denote by λmin the minimum nega-
tive eigenvalue among N ensemble realizations for a given
value of L. To make sure that we consider only eigen-
values of ρA(L) that are not affected by the numerical
precision, we impose a cutoff on the spectra by consider-
ing only the eigenvalues satisfying the bound:

λi ≥ 10|λmin| . (13)

Such cutoff, when applied at small values of L, removes

most of the eigenvalues of ρA(L) as most of the eigenval-
ues are zero at small L. However, this is not the case for
larger L, when the RMT structure is clearly visible. The
procedure ensures that the eigenvalues kept are robust
and not significantly affected by the numerical precision.
Out of the significant eigenvalues of ρA(L), we compute
energy levels Ei of the modular Hamiltonian H(ρA).

In the next subsections, we will consider only meaning-
ful energy levels, Ei, obtained from the above procedure.

A. Level Spacing Distribution

Roughly speaking, the level spacing distribution mea-
sures the probability density for two adjacent eigenvalues
to be in the energy distance s, in units of the mean level
spacing ∆. The procedure for normalizing all distances
in terms of the local mean level spacing is often referred
to as unfolding. We unfold the spectrum of the modular
Hamiltonian H(ρA) by using the following algorithm:

1. Arrange non-degenerate energy levels, Ei, of a
modular Hamiltonian H(ρa) in ascending order.

2. Compute the staircase function S(E) that enumer-
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FIG. 3: Optimization curves for the Ising model coupled to an external field aligned to y-axis at g = 1. In comparison to
Figure 2 we see that the circuit Ry + CZ does not optimize well. It shows that the Renyi entropy can be insufficient to
diagnose the optimization performance.

ates all eigenstates of H(ρa) whose eigenvalues are
smaller than or equal to E.

3. Fit a smooth curve that we denote by ρ̃(E) to the
staircase function. To be specific, we used a 12-th
order polynomial as the smooth approximation.

4. Rescale the energy levels Ei as follows:

Ei → ei = ρ̃(Ei) . (14)

5. By construction, the unfolded energy levels ei must
show an approximately uniform distribution with
mean level spacing 1. This can be used to ensure
if the above procedure has been successful, i.e., by
plotting the unfolded levels and checking the flat-
ness of the distribution.

Having obtained the unfolded spectrum, we compute
their level spacing, si = ei+1 − ei, and draw the proba-
bility density function p(s) for having two neighbouring
eigenvalues separated at a distance s. The level spacing
distribution serves as a diagnostic for quantum chaos in
Hamiltonian systems. It captures information about the
short-range spectral correlations. It thus demonstrates
the presence of level repulsion, i.e. whether p(s) → 0
as s → 0, which is a common characteristic of random
matrix ensembles and particularlly chaotic Hamiltonians.

The level spacing distribution p(s) for integrable sys-
tems follows the Poisson distribution

p(s) = e−s , (15)

while for chaotic systems it takes the following form

pβ(s) =
sβe−bβs

2

Γ( 1+β
2 )

, (16)

where β depends on which universality class of random
matrices the chaotic Hamiltonian belongs to [29]: β = 1
for the Gaussian Orthogonal Ensemble (GOE), β = 2 for
the Gaussian Unitary Ensemble (GUE), and β = 4 for
the Gaussian Symplectic Ensemble (GSE).

For different types of circuit unitaries defined in Sec-
tion II with L = 10, 30 and 250 layers, we collect 500 ran-
dom circuit states and draw the corresponding level spac-
ing distributions in Figures 6–8. The modular Hamilto-
nian of shallow circuit states at L = 10 displays a clear
departure from the RMT predictions, manifesting a lack
of level repulsion. Such distinction is particularly pro-
nounced for the Ry + CP unitary circuit. However, the
emergence of random matrix structure becomes evident
as stacking more circuit layers. The agreement between
empirical level spacing distributions of random circuit
states and RMT predictions (16) is already quite obvi-
ous at L = 30 and further improved at L = 250. Note
that different choices of unitary gates lead to the emer-
gence of different random matrix ensembles. We observe
GUE for the Rx + CZ + Ry + CZ and Ry + CP circuit
unitaries and GOE for Rx + CZ and Ry + CZ unitaries.
What universality class high-depth random circuit states
belong to can be traced from the characteristics of their
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FIG. 4: The operator spreading C(x, t) for a system of n = 12 qubits as a function of 1 ≤ x ≤ n = 12 for different number of
layers L. The different circuit architectures are: (a) Rx one-qubit rotation gate followed by entangling two-qubit CZ gate. (b)
Ry one-qubit gate followed by entangling two-qubit CZ gate (c) A sequence of Rx one-qubit rotation gate, entangling
two-qubit CZ gate, Ry and CZ. (d) Ry one-qubit gate followed by entangling two-qubit CP gate. We see a clear correlation
between the operator spreading and the entanglement measures of the circuit in Figures 2 and 3.
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modular Hamiltonians, or even primarily, from their full
density matrices.

We remark that, though the empirical level spacing dis-
tribution follows the random matrix theory and exhibits
chaotic properties at L = 30, the entanglement entropy
and operator spreading coefficient have not reached satu-
ration and the VQA optimization works smoothly. This
points out a difference between the information scram-
bling measures based on eigenvalues vs. their spacings of
modular Hamiltonians.

B. r-statistics

The previous analysis of the level spacing distribution
depends on unfolding the energy spectrum, which is only
heuristically defined and has some arbitrariness. There-
fore, it would be desirable to have additional diagnostics
of quantum chaos that bypass the unfolding procedure.
The r-statistics, first introduced in [30], is such a diag-
nostic tool for short-range correlations, defined without
the necessity to unfold the spectrum.

Given the level spacings si, defined as the differences
between adjacent eigenvalues · · · < Ei < Ei+1 < · · ·
without unfolding, one defines the following ratios:

ri =
Min(si, si+1)

Max(si, si+1)
, (17)

which are by definition positive numbers between 0 and
1. The ratios ri take very specific values if the energy
levels are the eigenvalues of random matrices: For matri-
ces in GOE, GUE and GSE, the ratios are ri ≈ 0.53590,
ri ≈ 0.60266 and ri ≈ 0.67617, respectively. The values
become typically smaller for integrable Hamiltonians, ap-
proaching ri ≈ 0.38629 for a pure Poisson process [31].

From their very definition, we see that the ratios (17)
do not require to unfold the spectrum since their depen-
dence on the local density of states is cancelled by taking
the ratio between spacings. Moreover, each ri depends on
just three adjacent energy levels, rendering it as a sharp
microscopic probe of the chaotic/integrable behavior in
a small cluster of spectral values.

Here we use the r-statistics to study the chaotic prop-
erties of the entanglement spectra as a function of the
number of circuit layers L. Under the equal partition-
ing of n = 12 qubits and with L = 10, 30, 250 layers,
the numerical values of {ri} are shown in Figure 9 where
we observe the transition from Poisson-like to RMT-like
values. The low-level eigenstates of the reduced density
matrix are more prone to keep their integrable behavior
until a sufficient number of entangling layers L & 30 is
reached, where we find the universal GOE/GUE chaotic
structure in agreement with the level spacing distribution
analysis.

C. Spectral Form Factor

The spectral form factor (SFF) is the Fourier transform
of the spectral two-point correlation function [29]. It can
be viewed as a long-range observable, since it probes the
agreement of a given unfolded spectrum with RMT at en-
ergy scales much larger than the mean level spacing. In
particular, SFF can detect the presence of spectral rigid-
ity, and is thus a complementary probe of quantum chaos
to the distribution of level spacing and the r-statistics
that are short-range observables. Formally, one defines
the analytically continued partition function

Z(τ) = Tr e−iτH(ρA) , (18)

and the spectral form factor is [32]

K(τ) = |Z(τ)|2/Z(0)2. (19)

For a concrete numerical evaluation, we will take the
following expression as a robust definition of the spectral
form factor [33]:

K(τ) ≡ 1

Z

〈∣∣∣∣∣∑
i

ρ(ei)e
−i2πeiτ

∣∣∣∣∣
2〉

. (20)

where ei is the unfolded spectrum of the modular Hamil-
tonian. The normalization factor Z =

∑
i |ρ(ei)|2 is cho-

sen to ensure that K(τ) ≈ 1 in the limit τ → ∞. The
bracket 〈· · · 〉 denotes the ensemble average over distinct
random circuit realizations. ρ(ei) is a Gaussian filter [34],

ρ(ei) ≡ exp

{
−2 (ei − ē)2

Γ2

}
, (21)

where ē and Γ2 denote the mean energy and the variance
for each unfolded spectrum. Its purpose is to guarantee
that the SFF is mainly affected by eigenvalues located
around the mean value of each unfolded spectrum.

The SFF can be computed analytically for the Gaus-
sian ensembles (GOE and GUE). It reads in the thermo-
dynamic limit as [29]

KGOE(τ) = 2τ − τ ln(1 + 2τ ) ,

KGUE(τ) = τ, (22)

when 0 < τ < 1 and K(τ) = 1 when τ ≥ 1. Its con-
stancy for τ ≥ 1 simply comes from the discreteness of
the spectrum and carries no information about spectral
correlations. In particular, since the mean level spacing
∆ is by construction equal to 1 in the unfolded spectrum,
the relevant time scale at which the discreteness of the
spectrum becomes relevant is accordingly τ ≈ 1/∆ ≈ 1.
This scale is usually called the Heisenberg time, τHeis.

The emergence of the random matrix structure in spec-
tral correlations must be investigated for times shorter
than the Heisenberg time, τ ≤ 1. The timescale that
characterizes the ergodicity of a dynamical system is
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FIG. 6: Level spacing distributions at L = 10 number of layers. The distributions differ from those of RMTs.
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FIG. 7: Level spacing distribution at L = 30 number of layers. We see clearly the agreement with the RMT distributions. Rx

+ CZ and Ry + CZ follow GOE, while Rx + CZ+Ry + CZ and Ry + CP follow GUE.

called the Thouless time, τThoul, defined as the time when
the SFF of the dynamical system converges to the univer-
sal RMT computation. More concretely, it is indicated
by the onset of the universal linear ramp as in (22). One
expects τThoul to decrease by increasing the system size,
in ergodic systems, to approach 0 in the thermodynamic
limit. In contrast, non-ergodic systems show the absence
of linear ramp, i.e. τThoul ∼ τHeis ∼ 1, or more generally,
unclear scaling of τThoul with respect to the system size.

Following the above discussion, we computed the em-
pirical SFF for different circuit architectures with L =
10, 30 and 250 layers, where the ensemble average is re-
placed with averaging over 50 random circuit samples.
See Figure 10. Inspecting the Thouless time as expand-
ing the system from n = 12 to 18 reveals clear indications
of ergodicity breaking at L = 10, but an expected ergodic
behavior for L = 30 and 250 layers. They are consistent
with the conclusion obtained through the short-range ob-
servables in previous subsections.

The circuit reduced density matrix is a random ma-
trix by construction. And thus, it may not be surprising
that the modular Hamiltonian eigenspectrum exhibits
chaotic properties of RMTs. It is interesting, however,
to trace the reasons for the GOE and GUE structures
to the form of the quantum gates. While random circuit
states should generically be in the GUE class, the choice
of the gates may generate a modular Hamiltonian whose

matrix elements are not complex-valued, but rather real
or pure imaginary. In such cases, e.g., for Rx + CZ and
Ry + CZ unitaries, the eigenspectrum of the correspond-
ing modular Hamiltonian must belong to GOE.

Note that although the level spacing diagnostics show
apparent RMT properties at L = 30, the local search of
optimal circuit parameters still operates well. It indicates
that unlike the diagnostic measures based on eigenvalues
of the modular Hamiltonian, e.g., entanglement entropies
and operator spreading coefficients, the quantum chaos
diagnostics constructed from the level spacing of eigen-
values are not precisely correlated with the efficiency of
optimizing control variables.

V. DISCUSSION AND OUTLOOK

We analyzed the universal chaotic properties of ran-
dom quantum circuits at different depths and how it cor-
relates to the optimization performance of control vari-
ables. Our main focus was on the operator spreading and
the level spacing distribution for the eigenspectrum of re-
duced density matrices. We found that the random cir-
cuit wavefunction exhibits the chaotic structure of Gaus-
sian matrix ensembles, which can be either GOE or GUE
depending on the type and arrangement of unitary gates.

By changing the direction of the magnetic field coupled
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FIG. 8: Level spacing distribution at L = 250 number of layers. We see a precise agreement with the RMT distributions. Rx
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FIG. 9: The r-statistics, for a system with 12 qubits, with equal partitions and with 10 (left), 30 (center) and 250 (right)
layers. We observe evident deviations from the expected RMT values for 10 layers, while a substantial agreement with the
RMT predictions is obtained at 30 layers. Interesting, the Ry+CP circuit stills show deviations from the RMT values in the
low lying modes which disappear at 250 layers.

to the Ising Hamiltonian used in the VQE experiments,
we observed the failure of specific GOE-type variational
circuits in reaching the ground state. It suggests the ex-
pressibility of variational circuits is not determined alone
by their capability of creating highly-entangled states.

Both chaos and entanglement follow from the eigen-
spectrum structure of the reduced density matrix. How-
ever, while entanglement and operator spreading are cap-
tured by quantities constructed from eigenvalues them-
selves, there are other measures of quantum chaos beyond
the operator spreading which instead relate to their level
spacings. We found that the quantum chaos diagnosed
by the eigenvalue spacings typically emerges with fewer
circuit layers than to come close to the maximum en-
tanglement of random circuit states, which hinders an
effective search of optimal circuit variables [4–8].

Such study points to some mismatch between two dis-
tinct definitions of quantum chaos, i.e., the BGS conjec-
ture vs. the operator spreading measured by OTOC. Note
that the random circuit exhibits the BGS-type chaotic
structure before reaching the complete spreading of oper-
ators in OTOC. To the best of our knowledge, this is the
first example of a genuine many-body setup in which such

discrepancy is observed. Previous studies dealt only with
single-body examples with classical counterparts [35–41].

As for future studies, it would be interesting to explore
the connection between the graph structure of variational
circuits, their effectiveness as the eigensolver of distinct
Hamiltonians, and the emergence of quantum chaos in
random circuit states. A popular measure of information
mixing is the k-design state that cannot be distinguished
from the Haar random state when considering averages
of polynomials of degree not higher than k. It would be
useful to investigate the relationship in the framework of
random quantum circuits between the k-design structure
and the quantum chaos measures that we analyzed. Some
results in this direction have been investigated in [42].

Another intriguing line of investigation is to study the
non-stabilizerness of variational circuits — often referred
to in the literature as magic and regarded to be the source
of quantum advantage in many computing problems [43,
44]. An explicit measure of magic was recently proposed
in [45]. Its relations with quantum chaos was studied in
[46]. It would be interesting to better investigate the role
of magic in the VQA problems, following [47].
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FIG. 10: SFF for 10 (left subfigures), 30 (central subfigures) and 250 (right subfigures) layers. In all cases, the SFFs are very
different from the RMT predictions at 10 layers, while starting from 30 layers the agreement is excellent. In particular, the
Thouless time, τThoul, clearly decreases while increasing the system size. As mentioned in the main text, such a behavior is a
signal of the ergodic character of the circuits under investigation.
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