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Abstract. We derive asymptotic formulas for the number of integer partitions with given
sums of jth powers of the parts for j belonging to a finite, non-empty set J C N. The
method we use is based on the ‘principle of maximum entropy’ of Jaynes. This principle
leads to an intuitive variational formula for the asymptotics of the logarithm of the num-
ber of constrained partitions as the solution to a convex optimization problem over real-
valued functions. Finding the polynomial corrections and leading constant involves two
steps: quantifying the error in approximating a discrete optimization problem by a continu-
ous one and proving a multivariate local central limit theorem.

Keywords. Integer partitions, maximum entropy, asymptotic enumeration, local central
limit theorem, limit shape
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1. Introduction

An integer partition is a finite multiset A of positive integers. Itis a partition of nif ) | _, v = n.
The partition number p(n) counts the number of different partitions of n. A classical result
of Hardy and Ramanujan [HR18], obtained using Euler’s generating function and the Hardy-
Littlewood circle method, gives the asymptotics of p(n):

1 1 p
pn) = = erVi (1)
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as n — oo. Since then, partitions and partition numbers have been extensively studied, and
analytic, probabilistic, and combinatorial methods for analyzing partition numbers have been
developed and refined.

In this paper we prove asymptotic formulas for the number of partitions of a very general
type: those that prescribe the sums of the jth powers of the parts of the partition for j belonging
to some finite set of non-negative integers .J. In doing so we also provide an intuitive explanation
for three factors that lead to (1.1) and other asymptotic formulas.

In particular, given such a set .J, and a vector « € R7, and n € N, let () denote the
number of integer partitions A so that

ij = |a;nUtV2| forall j € J. (1.2)

TEA

The scaling by nU*1/2 is chosen to allow the existence of non-trivial limit shapes, as we will
see below in Section 1.4.

A special case of this problem is the classical Hardy—Ramanujan case of J = {1} (prescrib-
ing the sum of the parts). In the same paper they stated asymptotics for partitions of n into kth
powers for each fixed k; this is the case J = {k} in the general formulation. These asymptotic
formulas were proven rigorously by Wright in 1934 [Wri34]. The general problem also includes
that of partitioning n into a given number of parts [Sze53, Can97, Rom05] (obtained by taking
J =4{0,1}).

While including these long studied problems as special cases, the generalization we consider
here can also exhibit dramatically different behavior. When multiple sums of positive powers
are constrained several new wrinkles to the problem arise, and to the best of our knowledge
such cases have not been considered before. For one, a wide variety of exotic limit shapes can
be obtained, including those with multiple inflection points (Section 1.4). More broadly, the
generalization emphasizes and reveals connections with convex optimization and information
theory, in both the asymptotic formulas obtained and in the methods applied. In the next section
we outline the method we apply here, based on Jaynes’ ‘principle of maximum entropy’, and
discuss these connections.

1.1. Maximum entropy approach

Several different (and more elementary) proofs of the Hardy—Ramanujan formula have been
given since the original paper [Erd42, New62], but one can ask for an intuitive explanation of

2
3
an explanation here by following Jaynes’ principle of maximum entropy [Jay57]. Following this

approach cleanly separates partition numbers into three factors, each of which has an intuitive
explanation and whose asymptotics can be computed.

Jaynes’ principle of maximum entropy is a kind of axiom about probabilistic inference: given
some measurements of observed data, the best estimate for the generating distribution, in the
sense of making the fewest additional assumptions, is the distribution of maximum entropy con-
sistent with these measurements. More concretely, given the values of one or more statistics,

the formula: why is the exponent 7 n and why is the polynomial correction n~1? We give
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the best estimate for the unknown distribution generating the data is the distribution of max-
imum entropy whose expectations match the observed statistics. Beyond statistical inference,
maximum entropy can be used to derive many important probability distributions (Gaussian,
geometric, exponential, etc.) as well as the probabilistic models that arise in statistical mechan-
ics. Due to its connection to convex optimization, maximum entropy has also proved very useful
in algorithmic settings.

Applied to our main topic, moment constrained integer partitions, the principle suggests one
should consider probability distributions on the countably infinite set of all integer partitions,
and in particular, one should consider the unique probability distribution on all partitions that
satisfies (1.2) in expectation and maximizes entropy over all such distributions. This maximum
entropy distribution p will turn out to have some remarkable properties that will help us approx-
imate p, ().

The first useful property of maximum entropy distributions is that there is an exact formula
for p,(a) in terms of u. Let P denote the set of partitions that satisfy the constraints (1.2)
exactly. Then, as we prove below in Section 3,

() = W p(P), (1.3)

where H(p) = — > p(x) log p(x) is the Shannon entropy of 4 and y(P) is the probability that
a partition drawn according to g is a partition of n. This formula is a consequence of a much
more general fact about maximum entropy distributions (given in Lemmas 3.1 and 3.2 below)
and is inspired by the work of Barvinok and Hartigan [BH10, BH13, Bar17] on counting integer
points in polytopes.

The second useful property of constrained maximum entropy distributions is that they can
be determined via convex programming. This property has been used to great effect in sev-
eral recent results in theoretical computer science [SV14, AGM™17, AGV18] and is also used
in [BH10]. In the case of integer partitions, the description of y is relatively explicit.

We now sketch a derivation of this distribution. A probability distribution on partitions is a
joint distribution of non-negative integer-valued random variables (Y} );>1 indexed by the natural
numbers. The expectation constraints are that for each j € J, the sum of the means of these
distributions times their indices to the jth power equals |a;n™1)/2]; that is,

> ke = [amUt2] forall j € J (1.4)

k>1

where 1, = EY}, is the expected number of parts of size k. The constraints are given entirely
in terms of the means 7); nothing else about the joint distribution of the Y}’s enter in. Since
entropy is maximized by a product measure, and a geometric random variable has the greatest
entropy of any non-negative integer-valued random variable with a given mean, the maximizing
distribution must be a collection of independent geometric random variables. Their means can
be determined by solving a discrete convex program. To compute the asymptotics of H (u), we
scale this discrete optimization problem and take a limit, obtaining a continuous convex program
((1.7) below) on real valued functions whose optimum determines the exponential growth rate
of p,, (). We then use Euler-Maclaurin summation to measure the approximation error.
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The final step is approximating the probability that p yields a partition satisfying all con-
straints by proving a multivariate local central limit theorem. The generality of the types of
partitions we enumerate necessitates some new technical ideas here. As with many local cen-
tral limit theorems, we write a probability as an integral. The elimination of so-called minor
arcs—i.e. the portion of the integral that contributes an essentially negligible amount—requires
a quantitative equidistribution result of Green and Tao [GT12]. Establishing this multivariate
local central limit is perhaps the most technically challenging part of the proof; it appears in
Section 6.

1.2. Main results

We now define precisely the class of partitions we enumerate. Let J be a finite set of non-
negative integers containing at least one positive integer, and let N = (Nj;),c, be a vector of
positive integers indexed by J. A partition A has profile N if

d @l =N;  foralljeJ

TEA

We call J the profile set.

Let P(IN) denote the set of partitions with profile N and let p(IN) = |P(IN)|. For instance,
with J = {1} and N; = n, we have p(N) = p(n), the usual partition number. To study the
asymptotics of p(N) we normalize the profile. For « € R and n € N, let

N(a,n) = (layn™72])je ;.

Then let p,(a) = p(N(a,n)). We will study the asymptotics of p, () as n — oo. As men-
tioned above, this class of partition problems includes the classic case of partitions of n; parti-
tions of n into sums of kth powers; and partitions of n with a given number of parts. While these
cases are all covered by our main result, the cases in which ./ includes more than one positive
integer have not been considered before, and it is here that many of the interesting features in
the problem and our approach emerge.

One new feature is that certain profiles are impossible, either for number-theoretic reasons or
because the values in o are incompatible. For example, the constraints may violate the Cauchy-
Schwartz inequality. The compatibility of constraints depends on the vector o and can be ex-
pressed in terms of the Stieltjes moment problem [Sti94]; this is discussed further in Section 1.5.

Other profiles are impossible for number-theoretic reasons that depend on n. For instance,
since k* = k mod 2 for all integers k, we have that p(N) = 0 if N; # Ny mod 2. A concise
way of describing this particular constraint is that the polynomial %xQ + %w is integer-valued
meaning that %mQ + %m € Z for all m € Z. Thus a necessary condition for P(IN) # & is that
%Ng + %Nl € 7. It will turn out that a/l number-theoretic obstructions can be defined in this
way. Let

Q, = {thxj : t; € (=1/2,1/2] and Y " t;m’ € Zforall m € Z} (1.5)

jeJ jeJ
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be the set of integer-valued polynomials using only powers in J and having coefficients in
(—1/2,1/2]. We subsequently define the set

NT :=NT(J) = {(mj)jej ez’ : a;m; € Z for all Zaﬂj € QJ} .

jeJ

It follows from the definition that if N ¢ NT then p(IN) = 0. We say ax is n-feasible if N(a, n) €
NT.

To connect p(N) to the principle of maximum entropy, we define i to be the maximum
entropy distribution on the set of all partitions so that

E/\NH Z .73J = N]

TEA

for all j € J. We will see below that under one assumption, the maximum entropy distribu-
tion exists, is unique, and can be represented as a collection of independent geometric random
variables. We then prove the identity (1.3) relating p(IN) to .

Equipped with (1.3), we pose a continuous convex program that determines the exponential
growth rate of p,(a) (in y/n). Recall from above that the maximum entropy distribution will
consist of independent geometric random variables. The Shannon entropy of a geometric random
variable with mean 7 is

G(n) == (n+1)log(n +1) —nlogn. (1.6)
We now define
M(e) = mas / G(f(x)) da (1.7)

subject to / 2/ f(x)dr = a for j € J,
0

where F is the set of all integrable functions f : [0,00) — [0,00). Note that the objective
function to be maximized is strictly concave, and the constraints linear, so we have a convex
program.

The assumption we make on « ensures feasibility of this continuous convex program and
the existence of an optimal solution.

Assumption 1. There exists 3 € {R\ 0}” so that

[e'e) l‘j
dr=a, forjeJ. (1.8)
/o exp (Ley Ber') — 1 ’

In fact, for these integrals to converge, (3 must belong to a certain convex subset of R”: those
vectors for which the polynomial }._; B;27 is positive on (0,00). We discuss Assumption 1
and its connections to other problems in optimization and information theory in Section 1.5.



6 Gweneth McKinley et al.

Assumption 1 implies the optimization problem (1.7) is feasible; in fact via convex duality
the vector 3 is a certificate that the optimizer is

fi(x) = ! (1.9)

exp <ZjeJ6j$j> 1

The optimum M () determines the growth rate of the entropy of the maximum entropy distri-
bution y from (1.3), and thus the growth rate of p,,(c). We can now state our main result.

Theorem 1.1. For all profile sets J and all o € R satisfying Assumption 1,

when o is n-feasible (and 0 otherwise).

The constant b(.J) is given by

Je+|J] 1 .
jeJ

where j, := min J. The constant ¢(a) depends on v implicitly through the vector 3 guaranteed
by Assumption 1 and is given by

B 19 =Tea 1.0 Bo 1
)= (QW)j‘*ZlJI (det X2)1/2 Bi. P 2 ePo — 1 G ePo —1

where ,
Y — </00 .TH_'j exp (ZKEJ ﬂf'x ) 5 dac) (110)
0 (exp (ZEGJ ngé) B 1) ijeJ

and Q is defined in (1.5).

In Section 2 we make things more concrete by sketching the maximum-entropy-based proof
of Theorem 1.1 in the special case of J = {1} before proving the general result in the remaining
sections.

1.3. Related work

While maximizing entropy is implicit in other methods of enumerating partitions (including sad-
dlepoint and large deviations methods), our proof method is a direct application of maximum
entropy to counting (inspired by Barvinok and Hartigan [BH10] and presented in Section 3).
The maximum entropy method works by analyzing the maximum entropy distribution . Distri-
butions on partitions with independent coordinates have often arisen in the study of the structure
of typical integer partitions. Indeed Fristedt identified the distribution x4 above from the form
of the generating function of p(n) [Fri93], though he did not connect it with maximum entropy.
Vershik [Ver96, Ver97] and Vershik and Yakubovich [VYO01], in the context of finding limiting
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shapes of partitions, considered related distributions and noted that they can be interpreted as
grand canonical distributions from statistical physics. See also [DVZ00] in which large devia-
tions for limit shapes are approached via the same type of distribution.

Melczer, Panova, and Pemantle [MPP20] noted that while such distributions have been com-
monly used to determine limit shapes, they have only rarely been used to prove asymptotic
enumeration results (their results and Takédcs [Tak86] being the exceptions). The approach
of [MPP20] shares some important steps in common with our approach here: both are prob-
abilistic approaches to enumeration, and both solve a limiting variational problem. Melczer,
Panova, and Pemantle enumerate partitions by proving a local large deviation principle, which,
when solved, produces a probability distribution on partitions given by independent geomet-
ric random variables with specified means. In fact computing a large deviation rate function
in this setting is equivalent to minimizing the Kullback-Leibler divergence between probabil-
ity measures (as in Sanov’s Theorem [San58]), which is essentially an entropy maximization
problem (see the discussion in, e.g. [Csi75]). Where the maximum entropy and large deviation
approaches differ is that a large deviation approach requires a prior distribution on partitions
and thus is restricted to settings such as that of bounded Young diagrams, while the principle of
maximum entropy works in general, without a prior (and in fact this is an important motivation
for the principle itself: to be able to generate a prior when one does not exist). The identity (1.3)
provides a direct and very general link between enumeration and probability distributions on
partitions.

Finally, the last step of our approach is to prove a multivariate local central limit theorem;
the use of a local central limit theorems is a common step in many approaches to asymptotic
enumeration of partition numbers [Tak86, Fri93, Pit97, CCHO1, Rom05, MPP20].

1.4. Limit Shapes

The scaling N(a,n) = (|a;nU™1/2]),c; is chosen so that a typical partition \ in P(IN) has
a limit shape. In particular, if we rescale the Young diagram of A € P(N) by y/n in each
direction, then the area of the rescaled diagram will be of roughly constant order; indeed, in the
case that 1 € J, the rescaled area will be exactly ;. Informally, we say that there is a limit
shape if the rescaled Young diagram of a uniformly random A € P(N) converges in distribution
(in an appropriate sense) to a constant shape. In the classical case of J = {1}, a limit shape
was shown to exist by Szalay and Turdn [ST77a, ST77b] (see also [Ver96]). This shape is shown
in Figure 1.2. Similarly, a limit shape for partitions whose Young diagram fit in a rectangle of
constant aspect ratio was found by Petrov [Pet09].

We will show that there is a limit shape for all the cases covered by Theorem 1.1. In order
to state precisely what is meant by “limit shape” some preliminaries are required. Following
Vershik [Ver96], define the space D = {¢(t))} where ¢ : Ry — [0,00) with [ ¢(t) dt < oo
and ¢ non-increasing. Endow D with the topology of uniform convergence on compact sets.
We will think of D as the space of scaled Young diagrams and their limits, where we consider
Young diagrams in French notation. For a partition A and n € N, define the function

oan(t) =n2[{a€X:a>tyn}.
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Figure 1.1: figure

The optimizer f* = (e¢vs” — 1)~! for partitions Figure 1.2: figure
of . The limit shape for partitions of n.

The function ¢, ,(t) is simply the boundary of the Young diagram of A in French notation,
rescaled by y/n in each direction. Our goal is to identify the limit shape when ) is chosen from
P(N) uniformly at randomly; intuitively, the law of large numbers states that if \ is chosen from
the maximum entropy measure /i, instead, then we have

o 1
w1 {aehiaz v ~ [ ST e (1.11)
x J

With this in mind, the function ¢ (¢) defined via

o 1 o0 .
bt = / o et / J*(s) ds,

where f* is as in (1.9), is a strong candidate for the limit shape. This will turn out to be the case.

Theorem 1.2. In the context of Theorem 1.1, let \ be an element of P(N(c,n)) chosen uni-
formly at random. Then ¢y ,, converges in distribution to ¢, as n — oo.

Note that the value M () may be viewed as a functional of the limit shape ¢ itself, since f*
can be obtained by differentiation. The relationship between the growth rate of exp(M (ax)+/n)
and the limit shape ¢, is not new and has a long history in statistical mechanics and its ad-
jacent fields. For instance, in a survey on the limit shapes, Shlosman shows that the asymp-
totic log p(n) ~ 7r\/2/_3\/ﬁ follows from the shape theorem for partitions [ShlO1]. The sur-
vey [Oko16] by Okounkov discusses many other examples of relationships—both heuristic and
rigorous—between limit shapes, asymptotic enumeration and large deviation principles (see
also, e.g., [CKPO1)).

We now give two examples of limit shapes obtainable in Theorem 1.2. These examples were
obtained by choosing (3 first then calculating the corresponding cx.

Example 1.3. Let J = {0,1,2,3,4} and let &« = {12.8748,6.698,4.66192, 3.72617, 3.15877}.
Then 8 ~ {.95, —10.1, 36.5, —49.5,22.4}. The limit shape is given in Figure 1.4.
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Figure 1.5: The optimizer f* for Example 1.4. Figure 1.6: The limit shape for Example 1.4.

Example 1.4. Let J = {1,2,3} andleta = {4.31168, 3.86652, 3.65774}. Then 3 ~ {4.0, —8.5,4.6}.
The optimizer f* is shown in Figure 1.5 and the limit shape is show in Figure 1.6. Note that
both have a vertical asymptote at 0 indicating that the typical number of parts of such a partition

is w(y/n).

These examples indicate some of the rich behavior possible in the setting of moment-constrained
integer partitions. By specifying £ moments we can obtain a limit shape with up to k£ — 1 inflec-
tion points. In fact, it is not hard to show that the set of limit shapes obtainable in the framework
of Theorem 1.1 is dense in the set of all integrable, non-negative and non-increasing functions
on [0, 00).

1.5. Remarks on Assumption 1

The Stieltjes moment problem [Sti94] is the problem of finding a density function of a continuous
random variable supported on [0, c0) given its moments. In other words, given a sequence of
positive numbers a, c, . . ., determine if there is a density f on [0, 00) with [ 2 f(z)dz =
ay, k > 1, and if so, whether it is uniquely determined. The truncated or reduced Stieltjes
moment problem is the same but with only the first d moments specified. The closely related
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Hausdorff and Hamburger moment problems are the analogous problems with support [0, 1] and
(—o0, 00) respectively. Stieltjes determined necessary and sufficient conditions on the sequence

a1, 0, . . . for the existence of a solution to the moment problem. Let A,, and A,, be the Hankel
matrices generated from 1 = o, oy, ..., o, and o, g, . . ., o, Tespectively, where we recall
that the Hankel matrix generated by a sequence aq,as, ..., as,—1 is (ai+j—1)§fj:1 . Then the

Stieltjes moment problem has a solution if and only if det A, > 0 and det A, > 0 for all n.
Note that by interlacing, this is equivalent to the matrices A,, and A,, being positive definite for
all n. The conditions for the truncated Stieltjes problem are the same but only constraining the
Hankel matrices formed using the specified moments. These conditions are equivalent to certain
matrices being positive semidefinite [Cur91] and thus the problem of determining feasibility can
be posed as a semidefinite program.

When the (truncated) moment problem is feasible there may be infinitely many solutions, and
so one can ask for a principled approach to select one distribution satisfying the given constraints.
Jaynes’ principle of maximum entropy suggests choosing the distribution with maximum entropy
subject to the constraints. Such a choice is very natural: many widely used distributions, both
discrete and continuous, are maximum entropy distributions subject to constraints on the sup-
port and a small number of moments, e.g. Gaussian, exponential, geometric, and uniform (see
e.g. [Cov99, Chapter 12]).

One can pose the maximum entropy Stieltjes moment problem as a continuous convex pro-
gram.

fer

max—/ f(z)log f(z)dx (1.12)
0
subject to / 2 f(z)dr = a;forj=0,...d,

0

where we set a¢g = 1 to ensure that f is a probability density function. The objective function
is the entropy of the distribution with density f. Note the similarity of the maximum entropy
moment program (1.12) to the program (1.7), which we will call the maximum geometric entropy
moment problem. The only difference is in the objective functions which are different strictly
concave functions (also in (1.7) we may only specify a subset of the first ., moments, but we
could do the same in (1.12)). The two problems share essentially all of their qualitative features.
To describe these features, let us assume for now that J = {0,...,d} and that g = 1 (the
latter is simply a normalization). Then the feasible sets of (1.7) and (1.12) are identical and
non-empty if and only if the Stieltjes condition holds. Csiszar [Csi75] shows that if a maximum
entropy solution to (1.12) exists then it must be of the form f(z) = exp(— Z?:o B;x7) for some
B € R, Moreover, from any solution (3 to the system of equations

o d
/ xjexp (—ZﬂM) dr =ajforj=0,...d (1.13)
0 £=0

we can generate an optimal solution to (1.12) via f(x) = exp (— Z?:o B,z > We will show

below in Lemma 3.6 that from any solution 3 to the system (1.8) we can also generate an optimal
solution to (1.7).
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On the other hand, it can happen that c satisfies the Stieltjes condition for feasibility but no
solution to (1.13) exists [Jun00, Tag03]. A simple example is o = (g, a1, 2) = (1,1, 3). This
set of moments is feasible for the truncated Stieltjes problem since the matrices {{1,1},{1,3}}
and {{1}} have positive determinants. In this case there is a least upper bound to the maximiza-
tion problem but it is not achieved by any density function.

Similarly, in the case of the maximum geometric entropy moment problem there are vectors
o feasible for the Stieltjes moment problem that nevertheless do not satisfy Assumption 1 and
thus do not have an optimal solution to (1.7). It is straightforward to generate such an c. First
pick B = (Bo, B, - .. Ba) so that Z;l:o 173} is positive on (0,00). Let o, j = 0,...,d + 1 be
given by

o = / h cal )
’ 0 exp (Z?:o xfﬁg> -1

Then let aj = ) for j = 1,...,d and atg11 = a;,; + € where ¢ > 0 is chosen small
enough so that the corresponding Hankel matrices have positive determinant (this mirrors the
construction in [Jun00]). This results in a feasible optimization problem without an optimal
solution. Such vectors « are not covered by our results and we ask if it is still possible to
determine the asymptotics of p, ().

Question 1.5. Fix J and suppose « is feasible for the Stieltjes moment problem but no optimal
solution to (1.7) exists. What are the asymptotics of p,(a) as n — oco?

One can also ask a computational question: given o satisfying Assumption 1, can we effi-
ciently compute the corresponding 3 and thus the growth constant M (c)? Again essentially all
of the work devoted to solving the analogous maximum entropy moment problem can be applied
here, since both objective functions are strictly concave. We refer the reader to [Las10, Chapter
12].

1.6. Organization and notation

In Section 3 we discuss the connection between maximum entropy distributions and counting and
prove a version of the exact formula (1.3). In Section 4 we compute the asymptotics of ¢/(*)
by comparing a discrete optimization problem to the continuous optimization problem (1.7).
In Section 5 we prove Theorem 1.2 which shows the existence of a limit shape. In Section 6
we prove a multivariate local central limit theorem to estimate the factor p(P(IN)). Finally in
Section 7 we indicate some possible extensions and future directions related to the results and
methods of this paper.

All logarithms in this paper are base e. The Shannon entropy of a discrete random variable
X with probability mass function fx is H(X) = — ) fx(z)log fx(z). A geometric random
variable X with parameter p € (0, 1) has probability mass function fx(k) = p(1 — p)* for
k > 0. Its mean is ) = % and its entropy is (7 + 1) log(n + 1) — nlogn. We let P denote the
set of all partitions, which we identify with the set Lo(N) := B}, Ny, i.e. the set of sequences
in Ny := N U {0} that converge to 0 (in particular, P is a countable set). We let R, = (0, c0).
We will use the convention that bold symbols (N, «, 3, . . . ) denote vectors indexed by a profile
set J or by the integers {1, ..., d}.
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2. An extended example: the Hardy-Ramanujan formula

To give a feel for the overall approach, we show how to derive (1.1) using the method outlined

in Section 1.1. Let 2 denote the set of all integer partitions A, i.e. all finite multisets of natural

numbers; and for each n, let P, = {A € Q: ) _, = = n} denote the set of partitions of .
Now consider all probability measures y on {2 that satisfy

Ere Y 7=, (2.1)

TEA

i.e. distributions on partitions with expected size n. Define y,, to be the probability measure on
) satisfying (2.1) that maximizes entropy among all such measures. We will establish in Section
3 (Lemma 3.2) an exact identity relating ,, to the size of P,,:

p(n) = |P,| = e, (Py) . 2.2)

Thus to deduce the asymptotics of p(n), it will be sufficient to analyze the entropy H (1,,) as well
as the probability 1i,,(P,). To do this we need to understand the maximum entropy measure.
In fact, we can describe i, explicitly following the two observations made above. Let A be a
random partition chosen according to x,, and let Y}, denote the number of parts of \ of size k.
Then the constraint (2.1) is a linear constraint on the means (7 )x>1 of the random variables
(Yi)ks1: Doy ke = n. To maximize entropy, the Y,’s must be independent geometric random
variables. Then to compute H (u,,) we solve the following convex optimization problem with
variables (7 )g>1-

H(p,) = max Z G(nx) dz (2.3)
k>1
subject to Z kng =n.
k>1

To understand the asymptotics of H(u,,), we scale by y/n and approximate a Riemann sum
by an integral to obtain the following continuous convex optimization problem over real-valued
functions:

M = m?X /OO G(f(z))dx 2.4)
0
subject to /OO zf(x)der =1,
0

over all integrable functions f : [0, 00) — [0, 00). The optimizer f*(z) = ﬁ with § = \/ié

can be found using Lagrange multipliers. This yields M = 7 \/g , the constant in the exponent of

the Hardy—Ramanujan formula. The solution to the discrete problem is also given by Lagrange
multipliers: for k > 1, n, = eﬁTl—l’ where the Lagrange multiplier (3 satisfies

A= L1 +0(n=3?). (2.5)
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We now can approximate i, (P,,). With the above description of 1, in place, this is a question
about the probability that a linear combination of independent (but not identically distributed)
geometric random variables equals its mean. Using the above expression for 7, and (2.5) we see

that
1 2 Bx
3 xée 3 21/6

After proving a sufficiently strong local central limit theorem (Theorem 6.2), this implies

—1/2
pin(Pr) ~ (27r - Var (Z k:Yk>> ~ (96n3)~1/4 . (2.7)
k

This provides asymptotics for one of the two quantities in (2.2). We now need to estimate
the entropy H (u,) of the measure p,. By independence, we have H(u,) = > H(Y}); using
the expression for G(+) in (1.6) we see that

H(u) =Y G ((eBk - 1)—1) . 2.8)

k>1
This is a Riemann sum, and since 8 ~ [3/1/n, the leading order of this sum is a corresponding

integral:
N6 )~vi [ 6 dxwﬁﬁ (2.9)
ePk — 1 0 efr —1 37 '

k>1

Already, this shows a weaker version of (1.1), namely

logp(n) = W\/g\/ﬁ(l +o0(1)). (2.10)

Note that in order to prove (2.10) from (2.2) it was necessary to prove that x(7P,) does not
decrease too quickly, as in (2.7).

To upgrade (2.10) up to the asymptotic formula (1.1), we need to upgrade our asymptotic
expression (2.9) beyond just the leading term; in particular, we will need asymptotics for H (1)
up to an additive error of o(1). Using more careful Euler—-Maclaurin summation (Lemma 4.1)
one can show

H(p,) = ﬂ\/g\/ﬁ - }Llogn - %log(Q\/é) +o(1). (2.11)

Plugging in the asymptotic expressions (2.7) and (2.11) into (2.2) proves (1.1). Or in other
words, the formula (1.1) arises from three factors: a factor exponential in y/n with constant M
in the exponent given by a continuous optimization problem; a polynomial factor (with specified
constant) arising from a local central limit theorem; and a factor arising from the approximation
of a Riemann sum by an integral.
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3. Maximum entropy distributions

In this section we derive the maximum entropy distribution on partitions given moment con-
straints and give an exact formula for p(IN) in terms of this distribution.

We first give an elementary and completely general statement connecting counting to maxi-
mum entropy.

Lemma 3.1. Let Q) be a finite set and let f : Q) — R%. For B € R define
Ap = {w € Q : f(w) = B} and suppose Ag is finite and non-empty. Let |1 be the maximum
entropy distribution on () so that E,, f = B. Then

|Ap| = 0. u(Ap). 3.1)

This is inspired by, e.g. [BH10, Theorem 3.1], and is a simple consequence of the form of
maximum entropy distributions subject to mean constraints. The usefulness of convex duality
in constrained entropy maximization has appeared in several previous works, inclduing [CC75,
BTC77, BTTC88, BV04, SV14].

Proof. Let K C R? be the convex hull of the set {f(w) : w € Q}. We have B € K since
Agp is non-empty. We may assume that B lies in the relative interior of K'; otherwise we can
restrict ourselves to the proper face F' of K in which B lies and consider distributions on 2’ =
{w € Q: f(w) € F}, since any distribution on €2 satisfying Ef = B must be supported on 2.
If F = {B} then the lemma follows from the fact that the maximum entropy distribution on a
finite set is the uniform distribution.

We can determine the maximum entropy distribution by solving the convex optimization
problem

max — Z u(w)log p(w
wel
subject to Z pw)f(w) =B
weN
> nlw) =
we

pu(w) = 0Vw € Q.

The convex dual to this program is

minb-B+logZe_bf( )
weN
where b € R? .

Our assumption that B is in the relative interior of K means that the primal problem is strictly
feasible; i.e. there exists a strictly positive feasible solution ¢ > 0. Slater’s condition (see
e.g. [BV04]) then guarantees strong duality: the optima of the primal and dual are equal. This
gives an optimal primal solution

p(w) = —e oI
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where b € R%and Z are chosen such that > p(w) = land > p(w) f(w) = B. The normalizing
constant 7 is called the partition function in statistical mechanics. The existence of such a b
follows from strong duality.

We then compute

==Y p(w)log p(w

weN

ZZe 1@ (log Z +b- f(w))

weN

=logZ+b-B.
On the other hand, ;((Ag) = - |Ag|e™®®, and putting these together yields (3.1). O

If the set €2 is countably infinite, a maximum entropy distribution subject to a given mean
constraint may not exist. See, e.g. [Csi75, Cen00], for some sufficient conditions. The following
lemma will suffice for our application.

Lemma 3.2. Let Q be a countably infinite set and let f : Q — R For B € R? define Ag =
{w € Q: f(w) = B} and suppose Ag is finite and non-empty. Suppose further that there exists
someb € Rlsothat Z =Y e P/ < oo, and with p(w) = £e /), we have E,, f = B.
Then y1 is the maximum entropy distribution on () so that E,, f = B, and

[Ag| =" p(Ap). (3.2)

Proof. The fact that p is the maximum entropy distribution follows from the strict convexity of
the entropy function. The calculation of H (1) and the verification of (3.2) then follow exactly
as in the proof of Lemma 3.1. [

Before applying Lemma 3.2 to our setting, we need a lemma relating Assumption 1 to the
existence of a solution to a system of equations.

Lemma 3.3. Suppose there exists 3 = (3;)c; € R’ so that

o0 7
/0 exp (Y,c; Birt) — 1 do = ay

forall j € J. Then for n sufficiently large, there exists 3 = (ﬁj) jeJ So that

kI

— = |a;nUtV/2| (3.3)
2 (CesBk) -1

Further, as n tends to infinity B\jnj/z — Bj foreach j € J.

To prove Lemma 3.3 we need the following basic calculus fact.
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Lemma 3.4. Let g : RY — R? be continuously differentiable with g(0) = 0 and assume g'(0) =
M is invertible. Suppose there is a § > 0 so that for ||x|| < § we have |M Y| - ||¢'(z) — M|| <
1/2. Then for all y with || M| - ||ly|| < §/2 there is some ||z|| < & so that g(x) = y.

Proof. Set xg = 0 and 2, = M~ (Mxy_1 +y — g(x,_1)) for k > 1. Then we first note that
for any z with ||z|| < ¢ we have
1
M~ (Mx — g(x)|| < [|M7Y] - || Mz —/ g'(tx) -z dt||
0

<217l - s 1 (1) |

N

5/2.
By induction, we claim that ||z;|| < J. Indeed
o]l < 1M TH M-y — glar-a))ll + 1Myl < 0.

We now want to show that the sequence {z;} is Cauchy. By the mean-value theorem, we
have

@ — || < MM (231 — 23-2) — (9(p-1) — 9(z4—2)) |

1
= | M| M (21 — xp—2) — /0 g (Th—2z + t(Th—1 — Tp—2)) - (Th—1 — Tp—2) ||

< M relo] 9" (w2 + t(zeo1 — Ta—2)) = M| - |z — 2p2]] -

We claim that ||z — z_1|| < §27%"! and prove so by induction. Since ||24|| < & and the ball
of radius ¢ is convex, we have ||z;_o + t(2r_1 — xx_2)|| < ¢ and so by the above we may bound

1
ok = 2| < Gllzn-r — 2r—|

completing the proof that ||z;, — x| < 627+,
This shows that {z}} is Cauchy and thus converges to some .. Taking limits of both sides
of the definition of x; then shows that g(z..,) = v. O

Now we prove Lemma 3.3.

Proof of Lemma 3.3. Rewrite our desired equality as

— U2 g2

~ B kn=1/2)i
Fi(B) 1= n .
2+ e (S B ) 1

Note that evaluating at B, := (Bjn9/2) o, gives

~

fi(Bo) = o
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as n — oo. Further, if we define f = (f;) e to be a function from R’ — R then observe that
as n — oo we have

1A * alexp (e, Bir')
L dr = —%; ;.
7By =~ | el =

Since 3 is a Gram matrix of linearly independent entries, it is positive definite and thus invertible.
This means that we can find a § so that for n sufficiently large we have || f'(8o) || - ||f/(8) —
' (Bo)|| < 1/2for |8 — Bol|| < ¢. For n sufficiently large we have

Hf’(ﬁo)*lﬂ al (n’(j“)/z Lajn(jJrl)/QJ)jeJ — (aj)jesll <6/2,

and so we may apply Lemma 3.4 to find the desired solution. Noting that we may take 6 — 0
slowly shows convergence. [

As a corollary of Lemmas 3.2 and 3.3 we derive a formula for p(N).

Corollary 3.5. Let J be a profile set and suppose o« € RY satisfies Assumption 1. Let N =
N(a,n). Then for large enough n,

p(N) = ")y, (P(N)), (3.4)

where (1, is the maximum entropy distribution on P so that

Erep, ¥ 27 =N; (3.5)

TEA

forall j € J. In particular, jui,, is the product measure on Ny where the projection u* to coor-
dinate k is given by a geometric random variable with parameter py, := 1 — exp(— Y jeJ B,k7)

where B is the solution to (3.3) guaranteed by Lemma 3.3.

Proof. Recall that the set of all integer partitions, P, is a countable set. Let f : P — R’ be
defined by f;(\) = > ., «/. Since « satisfies Assumption 1, there exists 3 solving (1.8), and
so by Lemma 3.3, there exists E solving the system (3.3). Let y,, be the distribution on NY
described in the last sentence of the statement of the lemma.

For a partition ), let a; be the multiplicity of & in \. We write f;(A\) = 3, axk’ and
compute

log 1 (N) = > _log py. + ax log(1 — pr)

k>1
= Zlog (1 — exp(— Z,@kﬂ) — Z ay Z,@kj
k>1 jeJ k=1 jed

= —log Z — ZBjZak/{j (3.6)

jeJ k=1
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where we have defined log Z := — ), log (1 — exp(— ZjeJ B]k9)> Exponentiating (3.6)
gives
1 ~
(V) = P90,

as required for Lemma 3.2. Moreover, since f; is additive over coordinates for each j € J,

exp( ZEGJ B\f E) i
E ~ln f] )\ - k']
A [ ( )] ; exp( Zeejﬂé )
k»]
= _ = N;
; exp(D_pe s Bek’) —

by our assumption on B Therefore by Lemma 3.2, 1, is the maximum entropy distribution on
P such that Ey,,, > ., 27 = N for j € J and p(N) = e/t (P(N)). O

Finally we determine the optimum and optimizer of the continuous convex program (1.7).

Lemma 3.6. Suppose o satisfies Assumption 1 and let 3 be a solution to (1.8). Let

1
exp(Y_jes Biad) —1°

Then f* is an optimal solution to (1.7), and thus

- | etrana

Proof. Thisis aconsequence of duality in infinite dimensional convex programming (see e.g. [Roc74]).
The program (1.7) is an infinite-dimensional convex program since the constraints are linear in

f(x) and the objective function [ G(f(x))dx is strictly concave (this follows from the fact

that G(n) is a strictly concave function of 77). The Lagrangian associated to this program is

Ut d) = [ty de - g ([ o -ay).

Jje€J

fi(x) =

A sufficient condition for optimality of f* is that f* is feasible and the function derivative of
L(f,y,3) with respect to f vanishes at f*. This is the condition

0 = log (1 + —) > Bl

jeJ

forall z € [0, 00). This is satisfied by f*(x) with 3 as given by Assumption 1 since log (1 +

g

=

&

N———
Il

ey Bja’, and so f* is an optimal solution. O



COMBINATORIAL THEORY vol (issue) (YEAR), #N 19
4. Asymptotics of e/ (/)

In this section we compute the asymptotics of the first term in the formula (3.4). In what follows
we fix the profile set J and o € ]Ri satisfying Assumption 1. We let N = N(a, n) and let 3
be the solution to (1.8) guaranteed by Assumption 1.

Lemma 4.1. With p,, defined as in Corollary 3.5, we have
H(u,) = vnM(a) + bi(J)logn + c1(a) + o(1) 4.1)

asn — oo, where by(J) = —% and

J 150 Bo 1 15,21

Let 3 be as in Lemma 3.3. For z > 0 let f*(z) = (exp <Zjej @:ﬂ) —1)"tandfork > 1
let f(k) = (exp <Zj6] B\jkj> —1)~!. Then from Lemma 3.6 and Corollary 3.5, we have

We start by relating the parameters B\j to their analogues 3;.

Lemma 4.2. Define € via Bjnj/ ?=; +¢€;/v/n. Then

et (Y= (=0 Lix T+O(n—1/2)
2 ePo —1 ﬁj*

where v;—;, is the vector with 1 in the j = j, coordinate and 0 in all other coordinates.

Proof. First write
(kn=1/2)7
1 o (Sies (Bint2) (b)) ) — 1
1.7:]* ( 1]'*:0 ) 1j*>1 > /Oo x]
- — — MR + — dx 4+ O(1/n).
i (@20 25) [ i

Taylor expanding the integrand at 3; gives

o = n~ 12

o e (S
/0 exp (ZieJ(ﬁini/Q)xi> —1 o ; Vil " h (eXP (ZkeJ(Bknk/Q)xk> — 1)

—a; - > (14 o(1>>%zm- +0(1/n)

ieJ

5 de + O(1/n)
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and so
1. . 1. _ 1.
Z(l +o(1)ex;; = — L= ( = ) + =22 L 0o(n?)
ieJ 2 efo —1 Bj.ni+/?
1, 1, -0 1,51 —1/2
— * * * = O / .
() ) oo
Solving for € completes the Lemma. U

We need an Euler-Maclaurin summation calculation that we postpone to the Appendix A.

Lemma 4.3. For~ € R’ with Zjej ~;t? > 0 forallt > 0 and ~;, > 0, we have as t — 07,

1 —i [ 1 v — 2 log(2r
2 (exp(Zjeﬂj@k)j)—l) - /0 G(exp(ZjGJf)/jxj)_l) dz — 7 log(2m/t)

k>1
15.-0 1 15,51
- G(e“fo—l) + =5 (logv;, — 1) +o(1)

where the error is uniform for v in a compact set K C R” satisfying the hypotheses.
Using this we compute the asymptotics of H (j,,).

Proof of Lemma 4.1. Write
1
>1 exp (Zjej @k]) -1

1
2 (SiesBmr2)(hn172)7) — 1

and apply Lemma 4.3 to v = (Bjnj/2>jej with t = n~'/2 to obtain

1
exp (S (B ) — 1
- 5206 () (los(Bn ) - 1) o).

dr — %* log(2mn!/?) 4.2)

Hin) = vi [ G

2 eﬁo_l 2

Now recall Bjnj/Q = 3; + e;n /2, then Lemma 4.2 states

et [ _Yi=i 15.-0 n 1521 T+O(n—1/2>
2 ePo —1 ﬁj*
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where v,_;, € R’ is the vector with a 1 in the j = j,. coordinate and zeros elsewhere, and %
given in (1.10). Then we have

/ G Al : : dr = / G ! : dx
0 exp (ZjeJ(,Bjn]/Q)xJ) —1 0 exp (Zjej(ﬁj + sjn_l/Q)mJ) -1
(4.3)
= M(a) —n*(€5p) + o(n~7?) (4.4)
1 Bo _
= M(Oé) + iz <1j*:0 (650 — 1) + 1j*>1> + 0(n 1/2) .
Putting (4.2) and (4.3) together gives the lemma. [

5. Limit Shapes

In order to show convergence in distribution of {¢, ,,} to {¢»} we need to show that for each
0 < t; <ty <ooande >0 we have

lim PANP(N(a,n)) ( max |¢)\,n — ¢oo‘ = 6) — 0 (51)
n— 00 te(tr,ta]

where the probability takes A\ uniformly from P(N(a, n)).

The main idea is that if we sample A according to the maximum entropy measure ,, and
condition on the profile of A to be N (e, n), then this is the same as choosing A uniformly from
P(N(a,n)). Lemma 6.1 will provide a polynomial lower bound for P, (A € P(N(c,n))).
As such, it is sufficient to show that if ) is chosen according y,,, then the convergence in (5.1) is
exponentially small in /7.

Adopting the notation of Theorem 6.2, let { X} }r>1 be independent geometric random vari-
ables where X}, has mean (exp(d_jc; Bk?) — 1)~! and recall that this is the number of parts of
size k of a partition A chosen according to the maximum entropy measure /i,,.

The core of the proof is to show that the heuristic (1.11) holds on the scale of y/n holds:

Lemma 5.1. Ler K C (0, 00) be a compact set. Then for eacht € K and ¢ > ( there exists a
constant Ck . so that

oe 1
P Z Xk—/ dx| > evn ée_CK*f\/ﬁ.
t  exp (Zjej ,Bjmj) -1

k>ty/n



22 Gweneth McKinley et al.

Proof. Note that for n sufficiently large (uniformly in K’) we have

o0 1
EX —/ dx
Z LS exp (ZjeJ gjxj) 1

k>tyn
1 o0 1
- ——- | —
K>ty €XD (Zjej ﬁjkﬁ> -1 t  exp (ZjEJ Bjxﬁ) -1
<evn/2
and so it is sufficient to show
Pl (X —EXy)| >evin/2 | <exp(—Crov/n). (5.2)

k>ty/n

This will follow from a standard Chernoff bound argument. By Lemma 6.18, for each k& > t/n
there are constants C, ¢ > 0 (depending on K) so that for |#| < ¢ we have

Eexp(0(X; — EXy)) < exp(CH*Var(Xy)).

This implies for |f| < ¢ we have

Eexp | 6 Z (Xp —EX}) | <exp | CH? Z Var(Xy) | < exp(C'0%/n).
P P

Applying this bound along with Markov’s inequality for § € (0, ¢] to be chosen small enough
with respect to €

Pl Y (X—EXy)>evn/2| =P exp |6 Y (Xp—EXy) | >exp(efy/n/2)

k>tyn k>ty/n
< exp(C'0*/n — e0y/n/2)
< eXp(_CE\/ﬁ) .
The corresponding lower bound follows by an identical argument. [

We now show that (5.1) holds for A chosen according to ji,,:

Corollary 5.2. For 0 < t; < ty < oo and € > 0, there is a constant ¢ = c(l1,t3,¢) > 0 so that

]P))\Nun ( max ‘¢)\7n(t) — ¢oo(t)‘ 2 6) < efc‘/ﬁ.

te(t1,ta]
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Proof. Foreacht € [t1, 5] so that t\/n € Z, apply Lemma 5.1 to see

|Dan(t) — doo(t)] = £ < eV,

Since there are O(+/n) many such ¢, we may union bound

Py, ( max |gxn(t) — doo(t)] = g) < Cvne™Vn L eV,

tE[tLtQ]
[

Proof of Theorem 1.2. Recall that in order to show Theorem 1.2, it is sufficient to show (5.1);
let A denote the event in (5.1) and note

Prp)(A) = Prvy, (A A € P(N)) < 1 (P(N)) ' Prnyy, (A) = O(n“e™") = 0(1).

6. The Local CLT

In the previous two sections, we gave an exact formula (3.4) for p(N) and computed the asymp-
totics of its first factor, e” (=) In this section, we compute the asymptotics of the second factor,
tn(P(N)), the probability a random partition generated by the entropy-maximizing distribution
[, has profile N.

Lemma 6.1. For all o satisfying Assumption 1 and n-feasible,

o) B .
pn(P(N)) = (1 +0(1)) - (27T)|J|/|2 dJe|t(E)1/2 o 2ges/241/4) 6.1)

asn — oo, where N = (|a;nU*V/2|),c;. Further, the error is uniform for o varying in a
compact set of R” satisfying Assumption 1.

To prove Lemma 6.1 we prove a multivariate local central limit theorem. While the proof of
this local central limit theorem can be easily adapted to a broader setting—such as for random
variables other than geometrics—we state it for the random variables of interest.

Theorem 6.2. Fix a compact set K C R’. Suppose {Y},}1>1 are independent geometric random
variables with parameters py, where p, = 1 — exp <— D icy Bjk’j> and B = (Bj)je] with
(B\jnj/2>jej € K for all n. Define

k21 jeJ
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and set S = Cov(X). Then

sup [P(X = a) — Laent| Q|
a (271')"]‘ det(S)

exp (—%(a —EX)T(S) Ha— EX)) | = o(det(S)~/?)

_ o(n Tiesi/241/9)

where the error term depends only on K and J.

Before discussing the proof of this theorem, we will attempt to give some intuition about the
statement itself. First, we may think of X as the profile of a random partition sampled from the
maximum entropy distribution x,, (where Y}, is the number of times k appears as a part in the
random partition). Our goal in this section is to estimate the probability that X is equal to its
mean, EX = N (Lemma 6.1). In fact, the theorem above estimates the probability mass function
P(X = a) for each possible profile a, and not only for a = N (although the multiplicative error
given by this estimate is large when a is far from N). We recover Lemma 6.1 by taking a = N
and noting det(S) ~ n2=icsU/2/4 det(2) as n — oo, as detailed below.

The conclusion of the theorem approximates the probability mass function P(X = a) in
terms of the density of a multivariate Gaussian. Indeed, the expression above is very nearly
the density of a |J|-dimensional Gaussian with mean EX and covariance matrix S; the only
difference is the factor 1,enT|Qy|.

We now explain the factor 1,cn7|Qy|. The random variable X is constrained by number-
theoretic identities. For instance, for any integer & we have k> = k£ mod 2 and soif 1,2 € J
then we must have that X; = X, mod 2. The set NT describes these constraints. While the
vector X is close to a Gaussian when centered and scaled, its support is a subset of this smaller
set NT; this means that the atoms of X must be assigned larger probability by some quantity
roughly reflecting the density of the set NT in Z7. This density is precisely 1/|Q|, thus giving
the factor |Q|.

We will show that the rescaled random variable defined via

X = <nj/21/4 = EYk)kJ)
JjEJ

E>1

converges in distribution to a centered multivariate Gaussian provided we have (3;n7/2);c; —
a. This is a consequence of (6.9).
Before proving Theorem 6.2, we show that Lemma 6.1 follows from Theorem 6.2.

Proof of Lemma 6.1. Apply Theorem 6.2 with the B\ guaranteed by Lemma 3.3. By hypothesis,
we have N = EX. Taking a = N then yields

Q|
)2 det S

pin(P(N)) = P(X = N) = (1 +0(1))
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since a is n-feasible. Recalling the definition of > from (1.10) and that Bjnj/ ? — B, for each
J, the computation

B i exXp (ZéeJ B\ek’g)
Sij = ;O kit (exp (ZeGJ Bﬂ&) B 1>2

i+ TR eJ Bynt/? k’/\/ﬁ)g)
— pli+i+1)/2 L (/o) p (ZZ Ben'?( 2
ﬁz (exp (ies Bin2(k/v/m)') =1)

=TS (1 + o(1))
shows det S = n2iesUT1/2) det ©2(1 4 o(1)), which completes the proof. O

6.1. Outline and Preliminaries

Theorem 6.2 is proved via Fourier analysis. Specifically, fort € R” and = € R, define Q¢(x) :=
2je t;z7 and set @y (t) := Ee'¥x,

The characteristic function p(t) := Ee! X

may then be written as

p(2mt) = [ [ or(27Qu(k)) . (6.2)

k>1

Fourier inversion (e.g. [Fel71, Theorem XV.3.4]) gives
P(X =a) = / o(2mt)e PR gt (6.3)
(=1/2,1/2)7

Theorem 6.2 will be proven by analyzing the integral in (6.3). Our method is a variant on
the Hardy-Littlewood circle method. The set (—1/2,1/2]” is broken up into major and minor
arcs: the major arcs are sets of small volume that contribute the bulk of the mass of the integral
in (6.3) while the minor arcs are the rest.

When proving a local central limit theorem, it is often the case that the only major arc is
a neighborhood of t = 0. In our problem, however, this does not occur; the number-theoretic
obstructions force P(X = a) = 0 for a ¢ NT. On the Fourier side, this means that there are
multiple major arcs, and in the case of a ¢ NT, the integral over them cancels out.

Before beginning the analysis, we give an outline of the proof of Theorem 6.2: the general
flow is that the size of the set we are integrating over decreases as the proof goes on. First, for
each o > 0, we define the following small neighborhood around 0:

U=U@)={t e (=1/2,1/2)7 : |t;] < én"/*forall j € J}.
‘We then define

R(d) = (=1/2,1/2]"\ ( U (q+U)> ,

q€Q
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where for each polynomial q(z) € Y ¢;2/ € Q,, we interpret ¢ = (g;);cs as a vector in
(—1/2,1/2]7. We show that for each R(J), the integral on R(J) is exponentially small. In
the language of the circle method, this states that the major arcs are exactly the neighborhoods
q + U for ¢ € Q. This is carried out in Section 6.2, and a more detailed summary is given
there, including an intuitive description of how the polynomials in Q; arise.

Next, in Section 6.3 we show that the integral over each neighborhood ¢+-U is equal provided
a € NT, and so we may combine the |Q |-many integrals over |J, .o (¢ + U) into |Q,| times
the integral over U.

Section 6.4 compares the integral of our characteristic function over U to the integral over
R? of the characteristic function of the corresponding Gaussian by showing upper and lower
bounds on the matrix S when viewed as a quadratic form (Lemma 6.16).

Section 6.5 reduces our integral even further to the set V = {t : |¢;| < (logn)n=7/271/4} by
comparing the characteristic function of each geometric variable of bounded mean to the char-
acteristic function of the corresponding Gaussian (Lemma 6.18); while not all of our geometric
variables have bounded mean, the bulk of the contribution to the covariance matrix .S comes
from the parameters Y}, of bounded mean (Lemma 6.17), which is sufficient for this purpose.

Finally, 6.6 evaluates the integral over V'; this is equivalent to an ordinary multivariate central
limit theorem with more careful tracking of error terms.

6.2. Bounding the minor arcs: reducing to a neighborhood of Q ;

Recall that our goal is to estimate the following integral

P(X =a) = / (H cpk(QﬂQt(k))> eH2mta) gt
(~1/2/27 \ j

(obtained by combining (6.2) and (6.3)). To help identify the major arcs, we will see in Lemma
6.5 we have that if ¢ is not close to an integer, then | (27t)| is uniformly bounded away from
1. This shows that if there are many integer values k for which the polynomial Q¢ (k) is not near
an integer, then the integrand above is small.

This means that we have to understand when the polynomial Q¢(z) = > jeJ x7t; is close
to an integer-valued polynomial, i.e. a polynomial ¢ so that ¢(Z) C Z. Perhaps surprisingly,
there are many such polynomials, even if we omit those with integer coefficients; as an example,
the binomial coeflicients (Z) are integer-valued polynomials but do not have integer coeflicients.
Motivated by this, for a given J, recall that we define

0, = {thxj . thmj € Zforallm € Z,t; € (—1/271/2]}

jedJ jed

to be the set of integer-valued polynomials of interest.

Polya [Po6115] showed that all integer-valued polynomials are integer linear combinations
of binomial coeflicients; this may be proved by induction on the degree and examining finite
differences. This shows, for instance, that |Q | is finite. To better understand Q ;, we look at an
extreme case:
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Qg | = H;‘l:1 (J!)-

Proof. Since every element of R/7Z has a unique representative in (—1/2,1/2], it is sufficient to
count the number of polynomials of degree at most d in R /Z that are integer-valued. Each such

equivalent class is equal to
] .
=1 J

for some choice of integers m ;. For each selection of (my, ..., mg) with1 < m; < j! weobtaina
distinct representative. Conversely, each integer polynomial may be written in the above form for

Lemma 6.3. Foreach d > 1,

some integers (m;); further, for two integers n; and ny, we have n; (j) = no (j) as polynomials
with coefficients in R/Z if and only if n; = ny mod j!. This means that we may uniquely
choose the representatives (m;) to satisfy 1 < m; < j! for each j. [

Now, recall our definitions of U and R: for § > 0, define U = U(§) = {t € (=1/2,1/2] :
|t;| < on~9/2forall j € J} and

R(3) = (=1/2,1/2)"\ ( U (q+U)> :

q€Q,

Thus R(J) is the set of points that are far from the coefficients of any integer-valued polynomial.
Our goal for this section is to show that the contribution of R(d) is negligible for any choice of
0> 0.

Lemma 6.4. In the context of Theorem 6.2, for each 6 > 0 there exists a constant ¢ = ¢(9, K)
so that

/ p(2mt)] dt = OV
R(5)

Lemma 6.4 will be accomplished by a pointwise bound on |p(27t)| on the set R(J). In
light of the infinite product in (6.2), in order to show that |p(27t)| is exponentially small in
/1, it is enough to show that on the order of \/n many | (27Q¢(k))| are uniformly less than
1. The following elementary fact is a step in this direction. For a real number ¢ € R define
|t|lr/z = min.ez [t — 2| to be the distance to the nearest integer. We want to show that for if
|t||r/z is large, then |Ee™| is bounded away from 1.

Lemma 6.5. Fixe > 0, andletp € [¢,1—¢|. Suppose Y is a geometric variable with parameter
p. Then for each §; > 0 there exists a 65 > 0 so that if ||t||r/z = 61 then |[Ee?™| < 1 — 6,

Proof. SinceY is integer-valued, we may assume without loss of generality thatt € (—1/2,1/2].
In each case we may uniformly bound the modulus of the characteristic function using compact-
ness and continuity. 0

From Lemma 6.5 we extract the following simple consequence, which is the engine behind
the proof of Lemma 6.4.
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Lemma 6.6. In the context of Theorem 6.2, for each £1,e5 > 0 there exists a ¢ > 0 so that the
following holds: ift € R’ satisfies

[{m € [Vn] : [|Q¢(m)|[r/z >
N

&
1} > e,

then
p(2mt)| < eV

where c may be chosen uniformly depending only on K, ¢, and ¢,.

Proof. There exists an £3 > 0 so that for k € [e21/n/2, y/n], the geometric parameters py, lie in
the interval [e3, 1 — e3]. Thus, for at least 91/n/2 values of k € [e24/1/2, \/n] we have

|0k (2mQe (k)] <1 —e4
for some €, > 0 depending only on £; and £3. We then may bound

NG
lp(27t)| < H or (27 Qe (k)| < (1 — £4)52V7/2  e—s2saVi/2
k=e2y/n/2

O]

We now need a structural result which will say that either ||Q¢(2)||r/z is either bounded
below quite often, or (J; is close to an element of Q ;. A quantitative equidistribution theorem
of Green and Tao [GT12, Proposition 4.3] will make explicit that these are the only two cases.

Theorem 6.7 (Green-Tao). Let d > 0 and suppose that g is a polynomial with real coefficients
of degree d. Suppose that 6 € (0,1/2). Then either (g(x) mod Z)yc(nj is 6-equidistributed or
else there is an integer k satisfying 1 < k < 69 so that ||kg mod Z| ceopny < 694,

Some definitions are in order.

Definition 6.8. Let g be a polynomial of degree d. Then there exist unique s; so that

g(m)=80+sl<q‘) +"'+sd(i;)

ey = sup N7|[s;llr/z

1<j<d

for each m. Define

where || ||,z is the nearest distance from z to an integer.
Further, a sequence { g(1m) } e[ is d-equidistributed if for all Lipschitz functions F' : R/Z —
C and arithmetic progressions P C [N] with |P| > JN we have

<O F|Lip -

1
— F(g(m)) — F(z)dx
7 - Floom) — [P
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Theorem 6.7 is proven via an effective version of Weyl’s equidistribution theorem together
with iterating the van der Corpet difference trick. Anticipating an application of Theorem 6.7, we
first translate the two possibilities of its dichotomy into our setting, beginning with the structured
case:

Lemma 6.9. Let g(2) = tg+t,2+- - - +1t42¢ be of degree d and have coefficients in (—k/2, k/2].
There exists a constant C so that if || g||c[n) < R then there is an integer-valued polynomial
q(z) = > q;# so that ||t; — q;||r/kz) < CRN™ forall j € [d).

Proof. By assumption we have N||s;||r;z < R forall 1 < j < d where s; is defined by
g(n) =" s;("). Thus there are integers m; so that s; = m; + ; where |¢;| < N77R. Define
the linear transformation 7" to be the map that takes as input (%o, . . . , t;) and outputs (so, . . . , Sq)

defined by
d d
4 z
Sy = Zsj(_) |
j=0 j=0 J

Since 7 is linear and invertible, there is a constant C so that C~! < % < Cforall x # 0.

For a given vector of integers (m;)?_,, define g; to be T~*((m;),) so that

=0
d d ;
>0 =3m(5),
=0 =0 J
and note that the above is an integer-valued polynomial. By linearity together with the fact that
q; depends only on s, 541, .., s4, we have that
d
T_l{l' : |J]j — mj| < €j} C {y . |yj — Qj| < 0261} .
i=j

By taking the rational numbers ¢; modulo kZ and replacing | - | with || - ||r/(xz), we have Thus,
we have that

d
I1t; = gllesuzy < CD _ei <2CRN.
i=j

]

We now show that the Green-Tao definition of equidistributed is good enough for the case at
hand.

Lemma 6.10. If a sequence {g(m)}me[n) is 3—12-equidistributed then

[{m € [N]: llg(m)lle/z > 1/43] _ 1
v > -

co
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Proof. Let F denote the Lipschitz function on R /Z that is piecewise linear with F'(0) = F(1/4) =
F(3/4) = F(1) = 0 and F(1/2) = 1. Then fR/Z z)dr = %, ||F|lup = 4 and F(z) <
121, J2>1/4- By the definition of 1/32-equidistributed we have

me[N]

implying

OOI»—l

N Z Lijg( (m)lr/z=1/4 Z — Z F(g

mE[N} mE[N]

O

We are now prepared to make use of Theorem 6.7; rather than proving Lemma 6.4 straight
away, it will show that Lemma 6.4 holds for some § > 0 rather than all § > 0:

Lemma 6.11. There exist constants ¢, C' > 0 so that

/ lp(2mt)| dt = O(e=V™).
R(C)

Proof. Lett € R(C') for C' > 1to be determined later. Apply Theorem 6.7 and Lemma 6.9 with
0 = 1/32to obtain constants Cs, C so that either (Q¢(7) mod Z),¢( /m is 1/32-equidistributed
or there is a k with 1 < k < (5 so that

1EQ¢||cooym < Cs .-

We have three cases that we address separately:
Case 1: Approximately equidistributed: If (Q¢(7) mod Z),c( z is 1/32-equidistributed, then

e € [Vl : |1Qe(@)llryz > 1/43]
NLD

by Lemma 6.10. Lemma 6.6 shows |¢(27t)| < e~V for some ¢ depending only on K.
Case 2: Not equidistributed, but £ = 1: In this case, Lemma 6.9 implies that there is an

|

integer-valued polynomial ¢ so that ||t; — ¢;||[r/z < Cyn~/%for all j € J. If we require C' > C,
then this would imply t ¢ R(C'), thus completing this case.

Case 3: Not equidistributed, & > 1: Suppose that ||kQ¢|ce(,m < Cs for some k > 1 and
not k = 1. Then there is an integer-valued polynomial g so that ) is close to q/k; further, since
we know that || Q¢ ||ceef,m > Cs, we have that q is not integer-valued.

Since ¢ is integer-valued but ¢/k is not, there exists some n and integer a so that ¢(n) = a
where a # 0 mod k. Further, note that the polynomial (¢(z) — a)/k cannot be integer-valued
since it has non-zero constant term. Thus, there must be some m and other value b with b # a
mod k so that g(m) = b. Write ¢(z)/k = & ey @;7’ where B and each a; are integers. Then
note that for each integer » with » = n mod B we have ¢(r)/k = a/k mod Z; similarly, if
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r=m mod B then ¢(r)/k = b/k mod Z. Moreover, ||b — a||lg/z) > 7. Therefore for each
to, we have that max{||to + b/kl|r/z, [[to + a/k|lr/z} > 35 > & Therefore, on some set of
positive density, @y is uniformly bounded away from 0 on the torus R/Z. Applying Lemma 6.6
completes the proof. O

We are now ready to prove the lemma.

Proof of Lemma 6.4. In light of Lemma 6.11, it is sufficient to find a constant ¢ = ¢(9, K) so
that

/ p(2mt)] dt = OV
R(0)\R(C)

Write
RO\ RC) = | (¢+U@C)\U(©5)).
qeQy
Thus, it is sufficient to show the bound for each set in the above union. Fix some ¢ € Q9
andt € ¢+ U(C) \ U(6). In the case where 0 ¢ J, simply set t, = 0 so that the following two

cases make sense.
Case 1: ||to|lr/z = d. Then for m < §y/n/(2dC'), we have

=l{to+ Y (t; —gq;)m’
R/Z jeJ\{o} R/7Z
>0
2

=5/2.

Z tjmj

jed

Applying Lemma 6.6 completes this case.
Case 2: [|to||r/z < d. The idea will be to look in the limiting setting and use a compactness
argument. Define the set of polynomials

T .= {Z ;) |¢;| < Cforalliand |e;| > 6 for some i, |co| < (5} :

jeJ
Note that 7" is compact; further, for |z| < 6/(2C') and all p € T' we have
Ip(z)| <0 +0=26.

Since R(J) increases as ¢ decreases, we may assume without loss of generality that 6 < 1/8;
in particular, this implies that |p(z)| < 1/4 for all |z| < §/(2C).

For each p € T, p is not identically zero on [0,4/(2C)] and so |p| must attain a non-zero
maximum M (p). Since p — M (p) is a continuous function of the coefficients of p and T is
compact, we must have that there is a value M so that M (p) > M, for all p € S. Additionally,
let L(p) be the length of the maximum interval in [0, /(2C')] on which |p| > M, /2. Note that
L is non-zero on 7" and continuous, and so we must have |L(p)| > Lo forallp € T
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For any t in the desired set, find s; € (—1/2,1/2] so that ({; — ¢;) = s; mod Z. Then the
polynomial
p(z) = (s;- /%)
jeJ

lies in the set 7. Thus, there is an interval / C [0,0/(2C)] of length at least L, on which
|p(2)| = My/2. For any x for which we have /N € I compute

Z tj:cj = Z ijj

JEJ R/Z jeJ

R/Z

= |[D_(s;n?*)(2/ V)’

jeJ

= Z(Sj”m)(l’/\/ﬁ)j
> My/2

R/Z

where in the last equality we used the fact that [p(z)| < 1/4 for |z| < §/(2C). Since [ is an
interval, we have that the number of x for which z/\/n € I is at least /n - |I| — 1. Since |1 is
bounded below by L, the proof is complete after applying Lemma 6.6. [
6.3. Combining the integrals

The primary goal of this section is to show the following lemma.

Lemma 6.12. For each § > 0 there is a constant ¢ = c(g, ,d) > 0 so that

sup
a

P(X = a) — laent|Qy| / p(2mt)e ETEA dt) = O(e™V).
U

A first step is a simple lemma that changes coordinates to combine the integrals from the
previous section. For a polynomial ¢ € Q, we write q € R’ for the vector of coefficients of g.

Lemma 6.13. For n sufficiently large we have

/ s0(271_1.))6—1'<27rt,a> dt = Z e—i<27rq,a> / s0(271_1.))6—1'<27rt,a) dt .
UQEQJ(q+U) U

q€Q

Proof. For n sufficiently large, we have that the union is in fact disjoint. This means that we
may first write

/ o(2mt)e 1T gt — Z / (2mt)e 2t gt
Ugeo; (¢+0) q+U

q€Qy
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For each g € O, we have

[ temtyeontalas = [ pane+ qeerraa gy
q+U U

= ¢ '(2ma2) / H v (2mi(t + q, X))e_i<2”t’a> dt
U

r>1

:ei<2”q’a>/ Hgom(27ri<t,x>)e’i<2”t’a> dt
U

x>1

e—i(qu,a)/ g0<2ﬂ_t>e—i(2ﬂ't,a) dt .
U

O
Lemma 6.14. For each vector of integers m = (m;) ey if m € NT then we have
D ermiem =g, (6.4)
q€Qy
Proof. Let q € Q. Then since m € NT we have
Z gim; =0 mod Z
Jj€J
and so '
S eman - 312y
q€Qy qeQy
O

Proof of Lemma 6.12. Note that if a ¢ NT then P(X = a) = 0. We may thus write
P(X =a)= 1a€NT/ ©(2mt)e 120 gt
(=1/2,1/2)7

= 1a€NT/ p(2mt)e ™R gt 4 O(e V™)
UgeQ(q+U)

= laent (Z 6_i<2”q’a>> / <p(27rt)e‘i<2”t’a> dt + O(e‘c\/ﬁ)
U

q€Qy

= laent| Q| / p(2mt)e 1R dt 4 O(e=V™)
U

by applying (6.3) and then Lemmas 6.4, 6.13 and 6.14 in succession. [
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6.4. Approximating the integral over U

With Lemma 6.12 established, we turn to the integral over U. First we show that an expression
in the statement of Theorem 6.2 can be written as a Gaussian integral.

Lemma 6.15. For any vectors t,a € R? and positive definite d x d matrix S we have
1 1 —la-EX)TS (a—-EX
—d/ exp <—i<t,a— EX) — —tTSt> g — P (a2 )y 5 (a ) 6.5)
(27m)? Jpa 2 (2m)? det(S)

Proof. Since S is positive definite, there is an invertible matrix M so that S = MT M. We may
thus write

_it"(a— EX) — %tTSt _ —%(Mt + (MY (a— EX)T (Mt + (M~ (a — EX))
— %(a —EX)*(S) }(a—EX).

Setting s = Mt + i(M~')?(a — EX) and using Cauchy’s integral theorem shows

1
/ exp (—i(t, a—EX) — 5tTSt) dt
R4

1 T —1
exp (—3(a— EX)"(9) ! (a — EX) 1
o2l L[ espi-Sisiryas
det(M) Rd 2
Evaluating the Gaussian integral as (27)%? and recalling det(M) = det(S)'/? completes
the proof of (6.5). [

Recall that for a given § > 0, we have defined U = U(8) = {t : |t;| < én~7/?}. With
Lemmas 6.12 and 6.15 in tow, it is sufficient to show that for some § > 0, we have

J.

This bound will follow from showing the following estimates:

/ exp (—%tTSt) dt = O(e™V™) (6.7)

p(t) —exp (@'<t,EX> - %tTSt) ‘ dt = O(e=tls™?) (6.8)

1 |
p(t) - Litery — exp (i<t,EX> - §tTSt> ‘ dt = o(n~Ties U241 (66)

= e /241/4) /
U\V

= e /241/4) /
|4

3
o(t) — exp (z’<t,EX> - %tTSt) ‘ dt = O ((12%2) ) 6.9)

where we have defined V := {t : |¢t;| < (logn)n=9/271/4}.

To show (6.7) along with the bound on det(.S) stated in Theorem 6.2, we demonstrate up-
per and lower bounds on S when viewed as a quadratic form. In what follows, we set o7 =
Var(Yk) = (1 — pk)/pi and Sk = COV((Ykkj)jej).
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Lemma 6.16. In the context of Theorem 6.2, define the matrix S via §” = LS”Z-7]~/7”L(Z'+J'H)/2 for
alli,j € J. Then there is a constant C = C(K) > 0 so that

C~'a|? < a’Sa < C|a? (6.10)
forall a € R’. In particular, det(S) = O (nXicsU+1/2),

Proof. By rescaling, assume without loss of generality that ||a|| = 1. Compute

. 2
a’Sa = inza;f (Z aj(k/\/ﬁ)j> (6.11)
where 02 = Var(Y}). If we define
e (“ 5,080
(1= (- Tse Ejtj>>2

then o} = f5(k/+/n), where we have written B = (B;n9/2);c;. We then have

a’Ya = % > f5(k/v/n) (Z aj(/c/\/ﬁ)j> = /0 h f5() (Z aij) dz + E (6.12)

k>1 jed jed

f3(t) =

where
1
vn

where g5(v) = f5(x)(3,c; a;27)*. Bounding each term in a straightforward manner gives

E <

1/4/n oo
(oL + g5V + [ gp@)de+ 1 [ lgp@lde

|E| = O(1/1/n) where the error is uniform since 3 varies in a compact set.

Since a and 3 vary over compact sets, the integral on the right-hand-side of (6.12) is bounded
above and below away erom 0; thus, for n sufficiently large, (6.12) demonstrates uniform bounds
above and below on a’ Ya. For each remaining small n, the sum

% > filk/v/n) (Z @j(k’/\/ﬁ)j>

k>1 jeJ

may be uniformly bounded above and below by compactness and continuity, thereby completing
the proof. 0

The bound (6.7) now follows easily from Lemma (6.16): for a given t define s via s; =
t;n?/%+1/4; then

1
/ exp | —=t' St dtg/ exp (—c|s|”) ds
c 2 RJ\[,5n1/4’5n1/4]J
= O(e’cl\/ﬁ)

for some constant ¢ > 0. The next two sections show (6.8) and (6.9).
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6.5. Establishing (6.8)

To show (6.8), we will show that for a geometric variable Y with mean bounded above we
can compare the characteristic function of Y to that of a corresponding Gaussian with an error
depending Var(Y') (this is Lemma 6.18 below). In the problem at hand, our geometric variables
actually have unbounded means; our first step is to show that while the means can be unbounded,
the bulk of the contribution to the variance .S comes from variables of bounded mean. In this
direction, we alter the proof of Lemma 6.16 to show that the contribution of the variance from
the first £/n terms can be made to be less than half provided ¢ is small enough:

Lemma 6.17. There exists an € > 0 so that for all t € U we have

t7St > %tTS(s)t

where
5(6) = Z Sk
k>+/ne
Proof. Define s via s; = t;n7/?*1/4, Then
t7St = sTSs.

‘We then want to show .
sTSs > §ST§(E)S

where S© is defined in the analogous way. Since both sides are homogeneous in s, assume
without loss of generality that s is a unit vector.
The proof of Lemma 6.16 shows

2
ST§(E)S—/ (Zsjmj> oZdx + O(1//n)

€ jeJ
where the error may be taken uniformly over . By compactness we have that for each ¢ > 0

that
. 2
max s;x0 | o?dx
||s|=1/0 <Z ! ) v

jeJ

is bounded above and tends to zero as ¢ — 0. Similarly, we also have

2
oo
; J 2 .
min ST oidr=:¢>0.
E J
Slll/o (jEJ ) :

Choosing ¢ small enough then gives the desired bound. [
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Seeking to show our characteristic function of X is close the characteristic function of the
corresponding Gaussian, we need a tail bound on the cumulant generating function log Ee*Y" for
geometric random variables. This will allow us to approximate the characteristic function for
each Y with that of a Gaussian with mean EY” and variance Var(Y).

Lemma 6.18. Fixe > 0. Let Y be a geometric random variable for some p € [, 1). Then there
are constants C, ¢ > 0 so that for all |t| < ¢, we have

2
log Ee™ — <z’t]EY - %Var(Y)) ‘ < OVar(Y)[t]*.

Proof. For convenience, write ;1 = EY and 02 = Var(Y") and set Y =Y — u. Then

|Eeit(y_“) —(1-0"2)| < tPEJY — ul?

We bound
1-— -6 6 1—p)? 1-—
E|Y—M|3<8(E|Y3|+/L3):8(( p)<p - D + )+( 3p) ) <CE 2p2060_2
p p p
Note B¢ = 12— and so |arg Ee™| = |arg(1 + (1 — p)e”)| which is uniformly bounded

since 1 — p is uniformly bounded away from 1. Write

. 2
log Re*Y—H) 4 502

_ )log <]E€it(Y—u)€a2t2/2> ’

e—t202/2 — Reit(Y 1)
log | 1— prErEyp

Eeit(Y—u) _ e—t202/2
e—t?02/2

N

< |Eeit(y_“) — (1—t0%/2)| + O(|t|*a?)
< C//‘t’30'2 ,
where each inequality uses the fact that |¢| and o are uniformly bounded above. [

In a similar vein to Lemma 6.16, we need the following simple bound whose proof is omitted
since it is essentially the same as that of Lemma 6.16.

Lemma 6.19.

et (Zenar) -ow,

k>1 jeJ

Now define T}, := {t : k < max; n//>"1/4|t;| < k + 1} and note that U \ V = Uiﬁlﬂl Ty.
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Lemma 6.20. There exist constants c, C' so that for t € T}, we have
t7St > ck?

and

2.

T>e\/n

1
log ¢, (t) — (z’(t,/m — 5tTSt> ’ < C6k2.
Proof. The first statement follows from (6.10). For the second, note that for t € T}, we have

1
Z log ¢, (t <z’<t,EYx> - EtTSmt) ‘ <C Z o2|Q¢ ()]
>ev/n zze\/n

<CY w2 (Z(w/\/ﬁ)j (k + 1))

=1 jeJ

< OBy o2 (Z(m/ﬁ)ﬂ')

r>1 JjeJ

< C'ok*n?Y ol <Z(w/ﬁ)f‘)

z>1 jeJ

g C//5l€2,

where the first bound is by Lemma 6.18 and the last bound is via Lemma 6.19.

As an immediate result, we see that if t € T}, N U for large k then |p(t)| is quite small.

Corollary 6.21. For ¢ sufficiently small, there is a constant ¢ > 0 so that for t € T, N U we
have

[p(t)] < e
Proof. Bound

)< JT lea(t)]

x>enl/4
< exp (—(c/4 — CO)k?)
< eXp(—C/kQ) )

where we have chosen ¢ sufficiently small and used Lemma 6.17. U

Since the measure of the set {b : k < |b;| < k + 1} is equal to some polynomial p(k), the
measure of Ty is |T}| = p(k)n~ ZJEJ(7/2+1/4)
With these preliminaries in place, we are ready to tackle (6.8):
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Proof of (6.8). To begin with, bound

i

then compute

> [Tl

logn<k<onl/4

[6n1/4]
1
o(t) — exp(i(t, EX) — §tTSt)‘ dt < ) |Ti|max

teTy

(6) — explift, EX) — %tTSt) ,

k=logn

1 A
o(t) — exp(—itTSt)‘ < n~ Lies/241/4) Z p(k) exp(—ck?)

k>logn

—0 (efc'aog(n))?) _

6.6. Establishing (6.9)

Our proof of (6.9) can be viewed as an adaptation of the classical proof of the Lindeberg-Feller
central limit theorem with an explicit error bound; see, for instance, [Durl0, Chapter 3.4] for a
similar proof and discussion of the classic theorem.

We first bound contribution of the tail to the second moment of a geometric variable.

Lemma 6.22. Let X be a geometric random variable with parameter p. Then for each C' > 0

we have
3Var(X)

E(|X — EX[1x- <
(I Flyx-exiar) < —5

Proof. By the Cauchy-Schwarz inequality we have

E (IX - EX["1yx-gxizc}) < VE (X —EX[")P(X —EX]| > C).

Compute

1—-p\* 1—p)(9 — 9p + p?
k>0 p p

9(1—p) 9Var(X)
S pt

By Chebyshev’s inequality, bound

Var(X)

P(X —EX| > C) < o

Putting the three equations together completes the proof. 0

We are now ready to show (6.9).
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Proof of (6.9). Fix t € R’ with ||t|| < 1 and let ¢ > 0 to be chosen later. Consider the random
variables ' 4
Zy = Zp(t) = (Vi —EY2) Y Kitm 92714
j€s

Then for |0 < logn note that

— H ]EeiGZk

k>1
and so
| (6t) — exp (—6t7'St/2)| < |exp (—0°t"St/2) — [ [(1 - 6°EZ;/2)
k>1
+ Y |E[e] — (1 - 0°EZ}/2)| .
k>1
Note that

[[(1 - 6°EZ;/2) = exp (Z log(1 — *EZ? /2))

k>1 k>1

— exp (-92tSt/2 +) 0(94(1@2;3)2))

k>1

= exp (—67*tSt/2 + O(1/v/n))

where the third line is obtained by comparing a sum to an integral as in the proof of Lemma
6.16. It is thus sufficient to show

3
max Z\E [e0%] — (1 — 0°EZ2/2)] :0<M) : (6.13)

lt]I<1, \0|<logn nl/s

Working towards this, recall that for any mean-zero variable X we have
[E[e™*] — (1 — ’EX?/2)| < E [min{|tX]* 2[tX*}] . (6.14)

See, for instance, [Durl0, Equation (3.3.3)]. Applying this bound to Z; gives

[E[e”?*] — (1 — 6°EZ}/2)| < E [min{|0Z,|*, 2|0 Z,|*}]
E [|0Z:’1{|Z)| < e}] + E [216Z;*1{| Zx| > €}]
01 cE[| Zi|*1{| Zk| < €}] + 20°E[| Ze|*1{| Z&| > €}]

<
<
< |

< |0)PeVar(Zy,) + 20%E[| Z|*1{| Z¢| > €}].
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Using (6.14) and Lemma 6.22, bound

> " |E[e?%] — (1 — 0*EZ2/2)| < el0*t"St + 20 Y " E[| Zi[*1{] Zi| > €}]

k>1 k>1

3 2
S kit Tk
p

jeJ k

~ 62 1
<elfPtTSt+6 : —E
NLD

nt/4e
k>1

92
_ 3
-9 (€|0| - n1/4€) ’

where in the last line we compared a sum to an integral to obtain this error term. Choosing
¢ = n~'/% and bounding |A| < logn completes the proof. O

Proof of Theorem 6.2. Chaining together Lemmas 6.12 and 6.15 with (6.6) completes the proof.
[

Theorem 1.1 follows immediately from Corollary 3.5, Lemma 4.1, and Lemma 6.1.

7. Extensions and future directions

There is a wealth of extensions and generalizations of the problem of enumerating integer par-
titions (see e.g. [And98]). Many of these extensions can be framed in the maximum entropy
framework, leading to continuous convex programs like (1.7) that express the exponential growth
rate of the partition number. Once we have such a program it is natural to modify it by adding
additional constraints or restricting the domain of the candidate functions. These new optimiza-
tion problems can be translated back to give new classes of integer partitions problems. Posing
the problems in the maximum entropy framework gives a natural, unifying explanation of many
methods and formulas in the literature, but also illuminates some new connections between inte-
ger partitions and infinite-dimensional convex programming. Below we indicate some possible
extensions of these methods to previously studied classes of integer partitions.

7.0.1 Distinct partitions: changing the objective function

One way to restrict a class of partitions is to insist that each part appear with one of a set of
prescribed multiplicities. The simplest such case is that of distinct partitions: partitions in which
each part occurs with multiplicity at most 1; equivalently a distinct partition is a subset of N (as
opposed to a multiset). Let ¢(n) denote the number of distinct partitions of n. The asymptotics
of ¢(n) have been studied in, e.g. [Mei54, Rom05].

Given a profile N indexed by the profile set .J, let ¢(IN) be the number of distinct partitions
Asothat Y, 2/ = N;forall j € J, and for & € R let g,(a) = ¢(N(ex,n)). Using the
methods of this paper, and making an assumption analogous to Assumption 1, we believe one
could show the exponential growth rate of ¢, (c) is again given by the optimum of a continuous
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convex program:

fer

Maist () = max/ H(f(x))dz
0
subject to / 2/ f(x)dr = o for j € J,
0

where F; is the set of all integrable functions f : [0,00) — [0,1] and H(p) = —plogp —
(1 — p)log(1l — p) is the entropy of a Bernoulli random variable with parameter p. This is
exactly the same optimization problem as in (1.7) but with a different objective function; both
objective functions are strictly concave, however, and so share essentially all the same qualitative
properties.

7.0.2 Bounded Young diagrams: restricting the support

Another class of restricted partitions is the class of partitions with bounded Young diagrams.
That is, partitions with restrictions on the size of the largest part and on the number of parts.
Asymptotic enumeration of partitions of n with largest part and number of parts both ©(y/n)
has been carried out in [JW19, MPP20].

One can follow the methods of this paper to enumerate partitions with a given profile and
largest part at most A/n. The continuous convex program giving the growth rate is the follow-
ing:

Ma(a) = max /0 G(f(x)) dx

A
subject to / 2l f(x)dr = o for j € J,
0

In regards to the discussion in Section 1.5 about the existence of a solution, something different
happens in this setting. There are again feasibility conditions on the moments «; this time
related to the Hausdorff moment problem [Hau21] (that of finding a probability distribution on
a bounded interval with given moments). Because the interval [0, A] is compact, if a collection
of moments are feasible for the truncated Hausdorff moment problem, then a unique maximum
entropy distribution with the given moments always exists [MP84]. The same is true if we
maximize geometric entropy, and so the only assumption on o needed is feasibility: the situation
discussed in Section 1.5 cannot occur.

Question 7.1. Can Theorem 1.1 be shown for partitions in a rectangle under the weakened
assumption that c is feasible for the Stieltjes moment problem?

7.0.3 Plane Partitions and Higher Dimensions

The Young diagram of a partition gives us a two-dimensional representation of the partition 7;
the natural generalization to dimension three — functions f : N® — {0, 1} that are weakly de-
creasing in each coordinate—give the structures known as plane partitions. The asymptotics for
the number of plane partitions of weight n was given by Wright [Wri31], although enumeration
of restricted plane partitions appears to not have been explored.
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Question 7.2. What are the asymptotics for the number of plane partitions that fit in an appro-
priately scaled rectangular box?
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A. Proof of Lemma 4.3

We make use of the Euler-Maclaurin summation formula which allows us to compare a sum to
a corresponding integral with an explicit error term.

Lemma A.1. (Euler-Maclaurin Formula). Let f : [a,b] — C be a smooth function. Then

/f e L1010 /fﬂ (+)

where P, is the second periodized Bernoulli polynomial

Pya) = (o = L))~ (&~ a]) + 5.

The following easy consequence of Stirling’s formula is closely related to the Wallis product.

/OO Py(z) dr = —10g(27r) — E

Fact A.2.

2x2 12°
Proof. Stirling’s formula states

N
1 1

Zlogk’ = N(logN —1) + 510gN+ 510g(27r) +o(1).

k=1

Applying Lemma A.1 to the left-hand side and taking N — oo completes the proof. 0
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To prove Lemma 4.3, first note

e —1 et —1

G( L >: ? log(1—e9). (A1)

We will seta = 3., v;(tk)’ and will find asymptotics for each of these two terms. To simplify
notation in this section we will set

p(x) = pyz) = Z'yj:cj : (A.2)
jed
Lemma A.3. Ast — 0" we have

ptk) o % @) ] Yo
2ogm 1=, aw gy (bt gt ol

=

Proof. Set

. & p(tr)
fj(t,l’) T @ep(m) 1
for j € {1,2} and

fi(e, 1) 1 [
BT 5/1 fo(t, z)Po(x) dx .

By the Euler-Maclaurin formula (Lemma A.1) we have

p(tk) = _p(tr) 1 p(t)
; a1 ) wm_1P T am_1 ¥

E =

_ 41 > p(l’) 1 ‘ Yo .
=1 \/O ep(:c) —1 dr — 2 (1j*>1 + 6_70 _ 1]-]*:0) + 0(1) + E.

To show I/ = o(1) note first that f,(¢, 1) = O(t). Define g(s) := =*5 and compute directly that

¢’ and ¢g” decay exponentially as s — oo and are both uniformly bounded. We then see that

fa(t,x) = (¢" (p(tx)) (P (tx))* + ¢’ (p(tz))p" (tz)) -

Changing variables by setting s = tx we see

/loo fa(t, z) Py(x) dx

<t [ 1 W)W ) + o G )] ds

0

=0(t),

since ¢” and ¢ are uniformly bounded and decay exponentially. O

Before dealing with the other term in (A.1), we need two lemmas.
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Lemma A.4. We have

oo 42,11 00 P.
lim MPQ(:L‘) dx = j.(j« — 1)/ 2() dx .
1

t—=0 [y eptr) _ 1

Proof. We first claim that there is a constant M so that for all x > 0 we have
t2p"(tz) =M
— L
epltz) — 1 = 2
Multiplying both sides by 22 and setting b = ¢tz we need to show that the function
b2 p//( b)
ep(b) —1
is uniformly bounded for all b > 0. For b near zero, the denominator is {2(’*) and the numerator
is O(b* - b*=2) = O(b’*). This shows that the function is bounded for b in a neighborhood of 0.
Conversely, the function tends to zero as b tends to infinity, thus showing the desired inequality.

To prove the lemma, we apply the dominated convergence theorem along with the fact that
for each fixed x we have the desired limit. ]

By a similar argument, we see the following.

Lemma A.5. We have
) p(tm)t2 /(¢ 2 >~ p

lim / € (p'(tz)) Py(z)dx = jf/ 2(237) dx .
1 1

t—o00 (ep(tz) _ 1)2

Lemma A.6. Ast — 0" we have

> tog(1 — exp(-p(th))) = £ [ log(1 ~ exp(-p(u)) dy — 252 log(1 — )

k>1
Jx 1 Jx
+ 1> b log(2m) — 3 log(~;.) + 5 log(1/t) | +o(1).
Proof. Note that

i log (1 — e—P(tw)) - —tp’(tx) =: fi(t,x)

dz ep(tx) —1
2 2 tz) 42 2
d—log (1— e ?t)) = tp(tz) P2 (p! (tz))
dx? ep(tz) _ 1 (er(t) — 1)2
=: fo(t,x).

By the Euler-Maclaurin formula, we then have

Zlog(l —exp(—p(tk))) = /100 log(1 — exp(—p(tx))) dx + %log (1 — e’p(t))

k>1

——fl ——/ fao(t, x) Py(z) dx
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Each piece will be dealt with separately. Write

/100 log(1 — exp(—p(tz))) dz =t~ /Ooo log(1 — exp(—p(y))) dy — /01 log(1 — exp(—p(te))) dz
Note if j, = 0 then
/01 log(1 — exp(—p(tz))) dz = log(1 — e~ ™) + o(1)
and if j, > 1 then
/0 log(1 — exp(—p(ta)) dr = /0 log(p(te)) di + o(1)

1
:/ log(~y;,t7*27*) dx + o(1)

0
= log(7;.) + jalogt — j. +o(1).

Now compute

1 1, _ 1, ,
3 log (1 —e?®) = Zog (1 — e70) + 2L log(~;. ) + o(1)

2 2
and . P .
Applying the previous two lemmas to deal with the P, term finishes the proof. 0

Proof of Lemma 4.3. Combining (A.1) with Lemmas A.3 and A.6 completes the proof. [
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