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ARTICLE INFO ABSTRACT

Keywords: North American observed atmospheric dust has shown large variability over the last two decades, coinciding
Dust emission with regional patterns of vegetation and wind speed changes. Dust emission models provide the potential to
&eé);]e)t]:twn explain how these direct causes of vegetation and wind speed changes are related to changing dust emission.

However, those dust models which assume land cover types are homogeneous over vegetation classes and fixed
over time, are unlikely to adequately represent changing aerodynamic roughness of herbaceous cover, woody
cover, and litter. To overcome these model limitations and explain changing (2001-2020) dust emission, we used
a new MODIS albedo-based dust emission model calibrated to satellite-observed magnitude and frequency of dust
emission point source (DPS) data. We focused our work on four regions of southwestern USA, identified pre-
viously as the main dust emission sources. We classified the interplay of controlling factors (wind speed and
aerodynamic roughness) which created disturbance regimes with dust emission change consistent with diverse
land use and management drivers. Our calibrated model results show that dust emission is increasing or
decreasing, in different regions, at different times, for different reasons, consistent with the absence of a secular
change of observed atmospheric dust. Our work demonstrates that using this calibrated dust emission model,
sensitive to changing vegetation structure and configuration and wind speeds, provides new insights to the
contemporary factors controlling dust emission. With this same approach, the prospect is promising for
modelling historical and future dust emission responses using prognostic albedo in Earth System Modelling.

Southwestern USA
Dust point source
Management

Lambert et al. (2020) showed that increasing atmospheric dust obser-
vations (2000-2014) occurred across the Great Plains of the USA and

Introduction

Measured March fine atmospheric dust concentrations have shown
large variability over the past two decades at remote sites across the
south-western United States (Hand et al. 2016; Aryal and Evans, 2021).
The changes in dustiness across the western US have been partially
explained by inter-annual and decadal-scale climate variability (Hand
et al., 2016; Achakulwisut et al., 2017; Aryal and Evans, 2021). How-
ever, other contributing factors cannot be ruled out including aban-
donment of cropland due to declining water resources for irrigation, and
disturbances including wildfires, invasive plant species, increased pop-
ulation and economic activity (Hand et al., 2016). It is difficult to
attribute the cause of changes in atmospheric dust, not least because
there is no direct relation between the main factors controlling dust
emission and the different factors controlling atmospheric dust disper-
sion and deposition. Furthermore, land use change, land management
and concurrent ecosystem changes have not been examined in detail.
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that increasing trend coincided with increasing cropland coverage and
planting and harvesting seasons of predominant crops. Public and pri-
vate rangelands of the dry western US are managed for multiple activ-
ities including livestock grazing, recreation, energy development,
wildlife habitat, and to maintain the quality of air, soil, water and
vegetation resources. The diverse land uses and management ap-
proaches create disturbance regimes that produce diverse ecosystem
responses e.g., spread of invasive plants and changing fire regimes, and
potentially accelerate or reduce (or may have no effect on) aeolian
sediment transport rates and dust emission.

It remains unclear what are the direct causes of changing observed
dust in the atmosphere. Potential direct causes range from dispersion of
dust caused by changing wind speeds, to changing dust emission asso-
ciated with vegetation composition and cover changes. Hydrological
drought associated with soil moisture is implicated in the cause of
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change in vegetation (Lee and Gill, 2015). However, we are focused here
on the direct causal effect of dust emission. Furthermore, it is important
to recognise that dust in the atmosphere (e.g., dust optical depth) is not
equivalent to dust emission. The amount of dust in the atmosphere is a
function of the sediment transport magnitude and frequency (Wolman
and Miller, 1960), and dust residency time (Textor et al., 2006), which is
influenced by distance from source and dust deposition influenced by
the particle size of the dust emitted and scavenged by precipitation
(Mahowald et al., 2014). Importantly, if any of these factors controlling
atmospheric dust changes e.g., the dust source changes and/or the
particle size of dust emitted has decreased over time, this could explain
the changing amounts of dust in the atmosphere. Ecosystem change
affects land cover (vegetation type and organisation characterised by
land surface roughness) and influences wind erosivity and indirectly the
spatiotemporal distribution of dust sources. The feedback and in-
teractions between dust emission and dust in the atmosphere therefore
requires an isolated and nuanced approach to explain the direct causal
effect.

North American dust emission between 2001 and 2020 was previ-
ously modelled using an albedo-based dust emission model (AEM) and
calibrated using dust emission point source (DPS) frequency observa-
tions (Hennen et al., 2022; Fig. 1). These data emphasised significant
spatial variability in dust emission, occurring predominantly in the bi-
omes of the Great Plains (GP) and North American Deserts (NAD),
producing 7.2 Tg y'! combined. Within these biomes, dust emission
mostly occurred in four ecoregions either side of the Rocky Mountains,
including the Western Shortgrass Prairies (in GP), the Chihuahuan
Desert (in NAD), the Colorado Plateau (NAD), and the Wyoming Basin
(NAD). That work described the broad cause of dust emission difference
over space and time. Here, we investigate change in dust emission over
time for each of these four regions to determine specifically how changes
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in wind patterns and land cover, characterised by surface roughness,
have influenced dust emissions.

Different types of disturbance may change the vegetation species
composition across landscapes and the cover and structure of vegeta-
tion. Such changes can reduce the aerodynamic resistance of landscapes
to erosive winds (Cowie et al., 2013) and can lead to the creation of dust
emission hot spots (Gillette, 1999), or affect the erodibility of entire
landscapes (Webb and McGowan, 2009). The magnitude and timing of
dust emissions following ecosystem change, likely reflect the scales and
rates during and/or after disturbance (Belnap et al., 2007; Munson et al.,
2011). Disturbances associated with e.g., agriculture, renewable and
non-renewable energy development, livestock grazing, and off-road
vehicles may produce different patterns and rates of change in surface
soil properties (e.g., crusting, disaggregation) and vegetation, that
attenuate aeolian sediment transport dynamics (e.g., Belnap et al., 2007;
Aubault et al., 2015; Flagg et al., 2014).

To date, modelling studies have focused on potential dust emission
responses to broad-scale (global to regional) changes in vegetation cover
but have omitted the effects of changing vegetation species composition,
heights, and spatial distributions (Chappell and Webb, 2016). The ef-
fects of changing roughness structures need to be addressed to under-
stand how ecosystem changes are influencing spatial and temporal
patterns of wind erosion (Webb et al., 2014a). Field studies have iden-
tified local (plot scale) aeolian transport responses to abrupt distur-
bances such as vegetation removal and wildfire (Dukes et al., 2018), and
vegetation state-transitions associated with woody shrub encroachment
in the Chihuahuan Desert (Bergametti and Gillette, 2010; Webb et al.
2014b). However, the specific impacts of disturbance-induced
ecosystem changes on North American dust emissions across
landscape-to-regional scales is understudied, and unknown (Nauman
et al., 2018).
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Fig. 1. The main dust emitting ecoregions of North America and their land cover types. Land cover data (left) are described by MODIS product MCD12Q1. The mean

calibrated dust emission (Fq; kg m 2y’

right) is described by the MODIS albedo-based dust emission model following the same approach as Hennen et al. (2022).

The ecoregions (Dinerstein et al., 2017) include 402 = Western Shortgrass Prairie, 428 = Chihuahuan Desert, 429 = Colorado Plateau and 438 = Wyoming Basin

shrub steppe.
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Our objective here is to use a dust emission model to explain the
dynamics of wind and drag partition induced by changing vegetation to
investigate the magnitude and frequency of spatio-temporal variation in
changing dust emission across North America. Our approach is to use an
established albedo-based dust emission model (AEM) calibrated to sat-
ellite observed dust emission point source frequencies to identify and
explain, across different ecoregions in North America, changed dust
emission timeframes and spatial patterns.

Methods, data, and study area
Albedo-based dust emission model (AEM)

Dust emission was estimated daily using the AEM following estab-
lished approaches (Chappell and Webb, 2016; Ziegler et al., 2020;
Hennen et al., 2022). Consequently, we provide only a brief description
of the model which identifies the key differences and similarities with
the original dust emission scheme on which it is based (Marticorena and
Bergametti, 1995). Our approach similarly relies on estimates of salta-
tion flux Q (g/m/s) to simulate dust emission F (kg m 2 y'l). The Q for a
given particle diameter (d), soil moisture (w), wind speed at height h
(Up), and albedo (w) were calculated as

oumantn = cuntao (10 (- (205 )

(€Y

where p, is air density (1.23 kg m™>), g is gravitational acceleration
(9.81m s’z), ¢ is a dimensionless fitting parameter (set to 1), u«(d) is
threshold wind friction velocity (m/s). The soil surface wind friction
velocity uy+ is the momentum remaining after the partition of the above
canopy momentum (u:) by roughness elements at all larger scales
(topography, vegetation). The uy is compared with the soil surface
threshold friction velocity (u«s), which assumes a smooth, dry and loose
soil surface. The u-; is adjusted by a soil moisture function H(w) which
increases the entrainment threshold as soil moisture increases (Fécan
et al., 1999). Consequently, the above equation (Eq. (1)) calculates the
magnitude of sediment transport (left hand side) which is then adjusted
by the frequency of occurrence (right hand side; 0 or 1) i.e., ug > Uss.
The main difference with the original dust emission scheme is that
we estimate directly the us normalised by wind speed as a function of
aerodynamic shelter (R,) related to shadow:
1.131

Ug —Wps
Ry =" = 0.0311( exp—2r
U, (ex” 0.016

) +0.007 (2)
where wp; is the normalised and rescaled shadow (w) translated and
scaled (@,) from a MODIS range (@n min = 0, ®n max = 35) for a given
illumination zenith angle (6 = 0°) to that of the calibration data (a =
0.0001 to b = 0.1) using the following rescaling equation (Chappell and
Webb, 2016):

(0= 0)(@,(6) — 9,(0),)
N PPN 1) B ®

Shadow is the complement of albedo 1—¢4;(0°,2) influenced by
spectral characteristics e.g., soil moisture, mineralogy and soil organic
carbon. This spectral information was removed by normalizing per
pixel, the directional reflectance viewed and illuminated at nadir p(0°, 1)
(Chappell et al., 2018):

1- (ﬂd“(ocv A _ 1o (0)
_ 1=, _ 1=t @
p(0°, 4) p(07)
To implement this approach we used MODIS black sky albedo (¢4;,)
to estimate w, and normalized shadow by dividing it by the MODIS
isotropic parameter fi;, (MCD43A1 Collection 6, daily at 500 m):

[
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- (odir(00> 4) _ 1- €0dir(00)
ﬁ:ﬂ(l) fi.m

The fis, is a MODIS parameter that contains information only on the
spectral composition as distinct from structural information (Chappell
et al.,, 2018). In theory, the structural information is waveband inde-
pendent (Chappell et al., 2018). We have shown elsewhere that the
normalization of MODIS data using this fs, parameter and that of MODIS
Nadir BRDF-Adjusted Reflectance (NBAR) are able to remove the spec-
tral content for all bands examined (Chappell et al., 2018). In practice,
we calculated ®, using MODIS band 1 (620-670 nm). To retrieve the
wind friction velocity as a function of Uy, the daily maximum wind speed
at h = 10 m above the soil surface is provided by ECMWF Climate
Reanalysis, ERA5-Land hourly wind field data at 11 km spatial resolu-
tion (Munoz Sabater, 2019). Within an ERA5 pixel, the wind speed is
applied to the MODIS albedo-based 'L‘,—h available daily at 500 m.

Dust emission F (kg m 25 1) is calculated as:

0,(07) = ®)

F(d) = Y AAMQ(d) 10034 % -00)with 0% < clay% < 20%. )
d

The %c1ay was allowed to vary spatially and in common with other
dust emission models we restricted the max(%clay) = 20 (Woodward,
2001). The proportion of emitted dust in the atmosphere M for a given
particle size fraction (d) is dependent on the particle size distribution
which we calculated 1 < d < 10 um following Zender et al. (2003) by
using M = 0.87. The coverage of snow (A;) and whether the soil surface
is frozen (Ay) is used to reduce dust emission by using the MODIS nor-
malised difference snow index (MOD10A1 Collection 6, daily at 500 m).

When dust emission models were first developed there were few
continuously varying global datasets available and simplifying as-
sumptions were made for their implementation. The soil surface wind
friction velocity to drive sediment transport (in the presence of large
typically vegetation canopy roughness) was not available and instead
the above canopy wind friction velocity was used. The partition between
those drag forces used aerodynamic roughness lengths which were not
available everywhere and therefore were set static over time and fixed
over space to a bare soil surface condition (Zender et al., 2003). Under
these conditions, dust emission estimates were maximised and recog-
nised by modellers as over-estimated in the presence of vegetation.
Consequently, dust emission schemes reduced estimates using E, the
area of bare, exposed ‘erodible’ soil surface (Marticorena and Berga-
metti, 1995). For implementation of these approaches in dust emission
modelling, researchers assumed for simplicity that dryland roughness
did not vary with wind speed (was not aerodynamic) and was approxi-
mated by (at nadir) cover from photosynthetic vegetation indices (VIs
and more recently derivations of the VIs including leaf area index; LAI)
readily available from satellite remote sensing (e.g., Evans et al., 2016).
These approaches using VIs therefore assumed that the sheltering effect
of the drag was restricted only to that ‘green’ canopy area. This approach
does not represent ‘brown’ roughness not readily evident in VIs caused
by non-photosynthetic, dormant or dead vegetation, common in dry-
lands which contain the majority of dust sources. Furthermore, this
approach does not represent non-erodible stone covered surfaces
without sediment also common in dryland regions. Perhaps of greatest
significance for large scale dust models, this implementation of E is
sensitive to vegetation reconstruction of past trends or projections of
future shifts in vegetation which are crudely represented in common
with critique of dust source masks (Mahowald et al., 2010).

Unlike existing dust models, the use of w,s to dynamically estimate
ug removes the need for vegetation indices and fixed vegetation co-
efficients to determine effective aerodynamic roughness. Furthermore,
we do not use the the ratio E. Since uy- is spatially explicit, it is not
necessary to apply contemporary preferential dust source masks to pre-
condition F (i.e., increasing F in areas perceived to have greater
erodibility).
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We modelled dust emission using MODIS albedo (daily, 500 m) for
the period 2001-2020 for four ecoregions in southwest North America
(Hennen et al., 2022). Mean dust emission is provided on days when
dust occurred (evident from the dust emission point source data). All
other days are removed when making mean calculations.

Our assessment of the spatio-temporal variability and classification
of dust emission sources, is with respect to the direct controlling envi-
ronmental variables of only wind speed and land surface roughness
which combine to form the wind friction velocity (aerodynamic nature
of vegetation cover). Indirect controlling environmental variables are
not considered here because they provide a typically second-order in-
fluence on the emission process and the modelling. For example, soil
moisture is not considered here. Soil moisture is converted to a function
which adjusts the threshold of sediment entrainment (Eq. (1)). Soil
moisture is required at the very surface of the soil which is not readily
available, provided by large scale models which reduces its realistic
representation. Furthermore, the process of sediment entrainment is
parameterised crudely, by assuming it is static over time and fixed over
space (even if soil moisture and / or vegetation are varied). The sedi-
ment is also assumed to be loose and available with an infinite supply of
particles comprising segregated sizes rather than being aggregates of
particles. The conventional approach to tackling these weaknesses is to
calibrate the dust emission model to dust optical depth (DOD) (Hennen
et al., 2022; Chappell et al., 2021).

We take a different approach and instead calibrate the dust emission
model to dust emission point source (DPS) observations of dust emission
frequency, subjectively identified through visual inspection of satellite
data by Baddock et al. (2011), Lee et al. (2009, 2012) and Kukal and
Irmak (2020) to calibrate the albedo-based dust emission model
(Chappell and Webb, 2016). Human interpretation of satellite data has
many benefits compared to automated approaches (Schepanski et al.,
2007). Humans are able to identify the point at the head of a dust plume,
especially where dust plumes are visually similar to bare ground (Hen-
nen et al., 2019). Limited image sampling frequency and occasional
opaque atmosphere due to clouds or atmospheric dust are unavoidable
in DPS (and DOD). The DPS data may be biased towards the larger dust
emission events in space and time and may not represent the smaller
dust emission events. However, in the absence of extensive networks
providing dust emission measurements, DPS data provide the best
available and most proximal data for calibrating the location and timing
of dust emission (Hennen et al., 2022).

First, we calculated the DPS probability of occurrence P(DPS > 0), a
first order approximation of the probability of sediment transport P(Q >
0), which is directly proportional to the probability of dust emission P(F
> 0) at those locations. Next, we equated this to study durations equal to
the frequency us- which exceeds u«; adjusted by H(w):

1

0 @

P(DPS > 0) = P(F > 0)xP(Q > 0) = uy > M*,SH(W){

During each simulation, the correct response (F > 0){ (1) depends on

the correct u-H(w). Importantly, the traditional dust emission models,
like the AEM used here, assume that the soil surface is smooth and
covered with an infinite supply of loose erodible material which when
mobilised by sufficient u;- causes transport and dust emission. This
(energy-limited) assumption is rarely justified in dust source regions,
where the soil surface is rough due to soil aggregates, rocks, or gravels,
sealed with biogeochemical crusts, or loose sediment is largely unavai-
lable. Consequently, we follow the newly established approach (Hennen
et al., 2022) and bypass those weak assumptions by using observed dust
emission frequencies at DPS data locations to parameterise the
entrainment threshold frequency distribution

0= c%ﬂu;P(DPs > 0) (8)

On this basis, modelled dust emission is calibrated (F.q) following
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Hennen et al. (2022) using the coefficients obtained by comparing sat-
ellite observed dust emission (F) against dust emission model (Egs. (6)
and (8)) estimates:

Log,o(Fear) = 0.88Log,,(F) —2.02 ()]

where F,y is the adjustment of modelled dust emission using satellite
derived dust emission point source observations (Baddock et al., 2011;
Lee etal., 2009, 2012; Kukal and Irmak, 2016; Kandakji et al., 2020). We
recognise that these dust emission point sources provide information
about observed dust emission and not emission events that are hidden by
clouds. This limitation also affects satellite observations of dust in the
atmosphere (e.g., dust optical depth). However, these dust emission
point sources provide a valuable, large area examination of dust emis-
sion which is not currently available in other datasets.

Dust source regions

Ecoregions (Dinerstein et al., 2017) were used to describe vegetation
geography, important for patterns of dust emission, wind, and aero-
dynamic roughness (Fig. 1). The US Environmental Protection Agency
(EPA) level II ecological classification scheme divides the area into 22
ecoregions, which are here aggregated into four vegetation-type biomes
following Hennen et al. (2022). The Wyoming Basin (438) comprises
mostly grasslands, with discrete areas of shrubland. The Colorado
Plateau (429) and Chihuahuan Desert (428) reside mainly in the semi-
arid southwest, comprising mostly shrub and barren land cover types.
The Western Shortgrass Prairie (402) transitions from more humid
conditions in the north and east, to the semi-arid conditions in the south
and southwest (Kukal and Irmak, 2016). Land cover types of this biome
follow this gradient, with grasslands and croplands in the north and east,
transitioning to more arid shrubland in the southwest (Fig. 1).

Analysis and classification of spatiotemporal change in dust emission

Regional statistics of dust emission conditions use daily modelled
estimates from only locations (pixels) and days where dust occurred
(Table 1). These data describe conditions during dust emission and do
not describe the area weighted means of the entire region on all days. To
directly attribute the contribution of surface roughness and wind speed
(R, = u+ /Uy and Uy) relative to the change in F.q, we plot the anom-
alies. For each region, monthly anomalies were calculated from nor-
malised data:

(Var; — Varyn 10

Varwm = 75—~
(Vara — Varmin)

where Vary,om = is the normalised monthly anomaly, Var; = the monthly
anomaly, and Varp, and Var,q. represent the range of monthly values
across the time series. We calculate the normalised monthly anomalies
as the difference against the median (Table 1) of all normalised monthly
values between 2001 and 2020. The median rather than the mean was
selected to reduce skewness in the anomalies due to outliers.

The relative change in F.y compared to the median is expressed
absolutely (magnitude of change irrespective of + sign) by the size of
circle representing each of the monthly means. There are six classes of
monthly outcomes. The first three classes (class 1-3) represent months
where F,q has increased compared to the median, while the subsequent
classes (class 4-6) describe months where F.4 decreases relative to the
long-term median. In each group, the change in each of the environ-
mental variables are either both increasing or both decreasing (in-phase)
or one is increasing while the other is decreasing (out-of-phase: class 2
and 5). When the environmental variables are in-phase (class 1, 3, 4, and
6), the direction of their sign (increasing or decreasing) explain the
limits of that system. Where both R, and Uj are increasing (top right
quadrant in Fig. 4), the increasing roughness is the limiting factor (class
1 and 4). Where both u:/U, and U are decreasing (bottom left
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Table 1
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Regional statistics for mean (2001-2020) annual average environmental conditions during dust emission days with a monthly resolution. Results are for each of the
ecoregions presented in Fig. 1 including Western Shortgrass Prairie (WSP; 402); Wyoming Basin (WB; 438); Colorado Plateau (CP; 428); Chihuahuan Desert (CD; 429).

F,q values are calibrated against observed DPS frequency (equation (7)).

Median Mean Standard Dev. Maximum Minimum
Dust Emission (F.q; kg m2 y?) WSP: 402 0.008 0.009 0.0059 0.02 0.001
WB: 438 0.014 0.016 0.0135 0.11 0.002
CP: 428 0.009 0.01 0.0065 0.03 0.002
CD: 429 0.005 0.006 0.0041 0.02 0.001
Surface roughness (R, = us/Uy) WSP: 402 0.07 0.07 0.0031 0.07 0.05
WB: 438 0.06 0.06 0.0062 0.07 0.04
CP: 428 0.06 0.06 0.0022 0.07 0.05
CD: 429 0.06 0.06 0.002 0.07 0.05
Surface winds (Ujo; m s) WSP: 402 8.96 9.01 0.4996 10.67 8.14
WB: 438 8.74 8.83 0.7504 11.95 6.29
CP: 428 8.36 8.4 0.5566 9.95 7.14
CD: 429 8.19 8.17 0.5123 9.42 6.79

quadrant in Fig. 4), the decreasing wind speeds are the limiting factor
(class 3 and 6). The seasonal average contribution (%) of each class,
within each region is calculated.

Positive and negative anomalies in F,4 are separated across the 1:1
line, where increasing U;o with decreasing R, (top left triangle) pro-
duces nearly all positive anomalies (class 1-3), while decreasing Uso
with increasing R, (bottom right triangle) is predominantly negative F 4
anomalies. We use a 1:1 line to define the point where change in each of
the environmental variables is in-phase (both increasing or decreasing)
and occurs at the same rate (normalised anomalies). During these con-
ditions the magnitude of change in F.y (described by the size of the
marker) shows the smallest rate of change, as the net change in one
variable is cancelled out by the other. The farther from the 1:1 line, the
rate of change in F 4 increases as the variables become less in-phase.

Using the previously established six categories produced with the
time series data, the anomalies relative to the long-term (2001-2020)
are shown per pixel across the region. Above average dust emission is
shown using yellow—brown tones (classes 1, 2 and 3) and below average
dust emission using green-blue tones (classes 4, 5 and 6). We fitted per
pixel least squares regression to the annual anomalies over the entire
time period (2001-2020). Global and regional (including North Amer-
ica) wind speeds have been found to decrease over time and then sub-
sequently reverse, indicating two distinct time periods with turning
point which differs across regions (Zeng et al., 2019). Consequently, we
investigated two separate time periods (2001-2010 and 2011-2020) for
wind speed, wind friction velocity and dust emission.

Results

Regional variations in dust emission and controlling environmental
variables

During dust events, the Wyoming Basin (WB) produced the highest
mean (0.016 kg m~2 y'l) and median (0.014 kg m 2 y'l) modelled dust
emission (F) calibrated to observed DPS (Eq. 7) of all ecoregions, with a
vastly larger maximum monthly value of 0.11 kg m~2 y'! and a large
standard deviation of 0.014 kg m~2 y! (Table 1). The Chihuahuan
Desert ecoregion (CD) produced the smallest F.q during dust events,
with a mean of 0.006 kg m 2 y! and a maximum of 0.02kg m~2y'L. The
Colorado Plateau (CP) and Western Shortgrass Prairie (WSP) produced
similar F.y, with a mean between 0.009 and 0.01 kg m 2 y"1 and a
maximum monthly average of between 0.02 kg m~2 y! and 0.03 kg m~2
y!. Mean surface roughness conditions during dust events were
approximately the same across each of the regions (R, = u+/Uy = 0.06 —
0.07), with WSP producing the largest (roughest) R, = 0.07, while WB
had the largest variance and CD had the smallest. Regional mean surface

winds (Ujg) were largest in WSP (9 m s’l), followed by WB (8.8 m sh,
CP(8.4m s’l), and smallest in CD (8.2 m s~ ). WSP had the largest mean
surface winds (U;p =9 m s’l), and the CD had the smallest (8.1 m s’l).
Variability in Ujp changes per region, with WB producing the largest
standard deviation (0.8 m s’l) and maximum monthly value (11.95 m
s 1). By comparison, variability in all other regions was far less (~0.5 m
s’l), with maximum U;p=9.4-10.6 m s~ L. The long-term (2001-2020)
median was used to calculate the anomalies in the subsequent results.

Temporal variation in dust emission and controlling environmental
variables

Seasonal trends in modelled dust emission (F.4 on dust days), surface
roughness (R, = u+/Up), and surface winds (Uyg) of the four ecoregions
are described by monthly area averages in Fig. 2. For WB, CD, and WSP,
a springtime (MAM) peak in Fq (0.01-0.02 kg m~2 y'!) was estimated.
These peak periods of Fq correspond to seasonal patterns in Ujg, with
maximum winds of 8.8-9.8 m s ! during April. Modelled dust emissions
from the CP region peaked (0.025 kg m~2 y'!) during the winter months
(DJF), corresponding with monthly mean winds of 8.2-8.7 m s~! and
monthly minimum vegetation roughness (R, = 0.05). All regions pro-
duced decreasing F.q (0.001-0.01 kg m2 y'l) during the summer
months (JJA) as Ujg decreased to a minimum and despite decreasing R,.

Annual anomalies show the inter-annual variation in the daily mean
value of each parameter (Fig. 2 — right column; b, d and f) against the
long-term median for each ecoregion. Large inter-annual variability is
observed in each case (region/parameter) but there are no long-term
significant (p < 0.05; hereafter) trends in the least squares linear
regression gradient over the entire period (2001-2020).

Daily mean F,q varied by £0.0025 kg m~2 y'! between years, with a
general increase in the least squares linear regression gradient (trend)
for WSP, CD, and WB between 2001 and 2010 (significantly in WSP),
before decreasing through the subsequent decade. Each of these regions
produce a significant increase in Ujp during the 2001-2010 period. The
CD and WB regions both had a significant increasing trend in R, during
the same period, while the WSP had only a small significant change in
R,. However, we found no significant trend in U;g or R, for each of these
regions in the period 2011-2020. Both Ujg or R, decreased initially until
around 2012-2015, then increased until 2017 before varying about the
mean between 2017 and 2020. The CP region had large variability in
Fcq;, with multiple peaks, including 2002/03, 2010, 2012, 2014, and
2018 of similar magnitude to the maximum positive anomalies modelled
in other regions. The F,q estimates for CP are distinct from the other
regions and show no significant trends in R, or Ujp. We explore the
differences between regions and the peculiarities of CP in the Discussion.
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Fig. 2. Seasonality (column 1; a, c and e) and annual anomalies from the long-term (2001-2020) median (column 2; b, d and f) of modelled data of the four
contributing ecoregions of North America. Dust (Fq; kg m2 y'l; <10 um) calibrated to observed dust frequency during the period 2001-2020 (top row; a and b),
wind friction velocity normalised by wind speed (R, = u-/Up; middle row; ¢ and d) which describes the land surface roughness, and wind speed (U;¢; bottom row; e
and f). The ecoregions are denoted by CD = Chihuahuan Desert (429), CP = Colorado Plateau (438), WSP = Western Shortgrass Prairie (429) and WB = Wyoming

Basin (428).

Spatiotemporal variability in dust emission and direct controlling
environmental variables

The spatial variability in the mean and changing (regression
gradient) Fq, Ugg, and R, = u« /Uy, are shown per pixel in Fig. 3. Mean
dust emission during all dust days was largest (>0.06 kg m~2 y'!) in
discrete locations within the CP (429 in Fig. 3) and WB ecoregions (438
in Fig. 3). Large dust emission (>0.04 kg m 2 y!) was predicted
throughout southern areas of CP, along western parts of the WSP (402 in
Fig. 3) and northern CD (428 in Fig. 3). Small F.q (<0.0001 kg m~2 y'l)
was predicted across large parts of the CD predominantly in the south,
northern CP and northeast WSP. Uj¢ are quite consistent across the four
ecoregions (average 9.4-10.5 m s~!). The largest winds occurred in
areas within WSP (>12 m/s), and decrease towards the west, with a
minimum of 8-9 m/s over central regions of CP. Vegetation roughness
was smallest over the CP, northern and eastern areas of CD and the WB.
In contrast. WSP had increasing u- /Uy values from 0.065 in the west and
0.08 in the east.

The gradient of F.q during the two periods shows contrasting trends,
with large areas increasing during 2001-2010 and a greater area
reducing during the subsequent 2011-2020 period. The largest varia-
tions (gradient > 0.1) were predicted in large parts of CP, WSP, and
northern areas of CD. Variations in F, across CP were associated mostly
with changes in Uy, as R, changes infrequently during the two periods.
Here, Ujo alternated between an increasing trend (2001-2010) to a
reducing trend during 2011-2020 in areas where modelled F,, varied in-

kind. In the CD, changes in F.4 appear most influenced by changes in
both Uy, and R,, increasing during 2001-2010 mostly in the north,
where R, remained the same but Uj¢ increased. F 4 reduced in the same
region during 2011-2020, as R, increased, and U;o remained constant.
During 2001-2010, F.y increased in the WSP predominantly in the east
where mean Ujy was greatest. This increase in Fq coincided with a
reduction in R4, while changes in Uy varied throughout the same re-
gion. Trends in Fq across WB were generally smaller than in other re-
gions (gradient (<0.1), with alternating patterns from east to west. In
the east, changes in F.4 followed changes in Ujg, increasing initially
(2001-2010) before decreasing in the period 2011-2022, while R,
remained constant. In the northwest, small changes in F.y occurred
concurrently with opposite change in R,, with Fy increasing between
2001 and 2010 (R, decreases) and decreasing between 2011 and 2020
(R, increases).

Classifying changes in dust emission according to environmental conditions

Across all ecoregions, positive and negative anomalies in F 4 are
separated across the 1:1 line, where increasing U;o with decreasing R,
(top left triangle) produces nearly all positive anomalies (class 1-3),
while decreasing Uy with increasing R, (bottom right triangle) is pre-
dominantly negative F.; anomalies (Fig. 4). This coherence suggests a
uniform response across the region, where the dominating environ-
mental conditions (Ujg and R,) in each month dictate the response in
F¢q1. The WB region provides a notable exception, with multiple months
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Fig. 3. Maps of the four ecoregions showing (left column; a, d & g) long-term (2001-2020) mean conditions during dust events of (top row; a—c) dust emission (F¢q;
kg m2 y'l), (middle row; d—f) surface wind speed (U;p; m/s), and (bottom row; g—i) wind friction velocity normalised by wind speed (surface roughness; u /Uy; m/s).
Middle and right-side column: average change per pixel using statistically significant regression gradients for (middle) 2001-2010 and (right) 2011-2020 of annual
dust emission. The ecoregions include Western Shortgrass Prairie (402), Chihuahuan Desert (428), Colorado Plateau shrublands (429) and Wyoming Basin shrub

steppe (438).

with decreasing F.q anomalies occurring above the 1:1 line. This occurs
predominantly during wind limited conditions (class 3 and 6) between
DJF and MAM (Table 2). In this case, months with similar environmental
conditions in Uy and R, create different patterns of Fq, suggesting a
lack of spatial coherence within the ecoregion, where the mean condi-
tions do not represent discrete areas of large dust emission change.

In each of the ecoregions, the largest rate of change typically occurs
in Class 1 and 2, where positive anomalies are driven by an increase in
Ui and either decreasing roughness (Class 2) or moderately increasing
roughness (Class 1). Across all regions, Class 1 (increasing dust emission,
roughness limited) and Class 6 (decreasing dust, wind limited) make up
the largest proportion (51 % combined) of monthly conditions (Table 2).
Class 3 (increasing dust, wind limited) and Class 4 (decreasing dust,
roughness limited) conditions are least frequent (20.2 % combined).

Opposite phase conditions (increasing F.q - Class 2 and decreasing Fc -
Class 4) each comprise 14.3 % of the monthly conditions. Regionally,
this pattern is replicated in WSP, CP, and CD, while WB has the largest
proportion of months during the opposite phase (Class 2 and 4) condi-
tions (Fig. 3).

Seasonally, each region shows a shift in the proportion of each class
representing the change in conditions throughout the year (Table 2). In
both CD and CP, predominant dust emission controls change between
Class] and Class 6 throughout the year.

In CD, Class 1 conditions dominate DJF (33.3 %) and MAM (78.3 %),
as increasing modelled Fq coincides with increasing Ujg, despite
increasing R,. Decreasing modelled F.q (Class 6) typically occurs in JJA
(45 %) and SON (76.7 %), despite decreasing R, as U decreases faster.
This same pattern occurs on the CP, albeit with an increase in modelled
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Fig. 4. Monthly anomalies from the long-term (2001-2020) average of wind speed (U;0) and of wind friction velocity normalised by wind speed (R, = u+/Uy) which
describes the land surface roughness, and dust emission. The anomalies are shown for the four regions: Western shortgrass prairie (a); Colorado Plateau shrublands
(b); Wyoming Basin shrub steppe (c); Chihuahuan desert (d). The magnitude of the dust emission anomalies is shown using the symbol size and the sign of the dust
emission anomalies is shown as a positive above the (dashed, 1:1) line and a negative below the line. The seasonal average contribution (%) of each class, within each

region is displayed (see Table 2).

Fq (Class 1) occurring later (MAM 68.3 % — JJA 38.3 %) and decrease in
modelled F.q (Class 6) during SON (61.7 %) and DJF (35 %).

In WSP and CD, increasing F,q during DJF —- MAM and decreasing F q
during JJA -DJF are evident. However, the initial increase in F,4 during
DJF, occurs despite reducing Uy as this is offset by a greater reduction in
R, (i.e., Class 3-41.7 %), before U and R, both increase during MAM
(Class 1 - 53.3 %). During JJA, modelled F.4 typically reduced (61 % of
the time), mostly as U decreases (45 % Class 5 and 6 combined) or R,
increases faster than increasing Uy (Class 4 — 26.7 %). Decreasing F.q
continues in SON (98 % of the time), with decreasing Uy 76.7 % of the
time (Class 5 and 6) and increasing R, 58.4 % of the time (Class 4 and 5).

The WB has increasing Fq during DJF with R, decreasing 61 % of the
time and Uj increasing 23.3 % of the time. During MAM, predomi-
nantly increasing F.q coincides with an increase in Ujg 58.3 % (Class 1

and 2) and reducing R, (Class 2 and 3) 51.7 % of the time. During JJA,
F.q predominantly decreases (60 %), yet Class 1 produces the largest
frequency of a single condition (40 %), increasing F 4 as Uy increases at
a faster rate relative to increasing R,.

Anomaly maps showing change over time

The direct causal change in dust emission is restricted to wind speed
and land surface roughness (aerodynamic nature of vegetation cover).
The cause of dust emission is different in different classes as explained in
the text related to Fig. 3. Here those explanations are placed into their
spatial context which is notably spatially coherent (Fig. 5). The main
results are divided in two. The first are those with increasing dust
emission and increased wind speeds:
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Table 2

The proportion of months in each season and each segment of the anomaly time
series (2001-2020; Fig. 3). The ecoregions include Western Shortgrass Prairie
(WSP; 402), Chihuahuan Desert (CD; 428), Colorado Plateau shrublands (CP;
429) and Wyoming Basin shrub steppe (WB; 438).

Proportion Increasing Dust Decreasing Dust
(%)

In- Op- In- In- Op- In-

Phase Phase* Phase Phase Phase** Phase

(D] ) ) )
Seasons/ 1 2 3 4 5 6

Class

WSP (402) 21. 15.4 13.3 13.3 15.4 21.2
DJF 6.7 30.0 41.7 3.3 0.0 18.3
MAM 53.2 26.7 11.7 1.7 0.0 6.7
JJA 23.3 5.0 0.0 26.7 25.0 20.0
SON 1.6 0.0 0.0 21.7 36.7 40.0
CD (428) 34.0 9.2 7.1 6.7 9.2 33.8
DJF 33.3 13.3 21.7 13.3 6.7 11.7
MAM 78.2 11.7 1.7 5.0 1.7 1.7
JJIA 21.6 11.7 5.0 5.0 11.7 45.0
SON 3.3 0.0 0.0 3.3 16.7 76.7
CP (429) 30.5 12.9 5.8 6.7 12.9 31.2
DJF 10.0 30.0 20.0 1.7 3.3 35.0
MAM 68.4 18.3 1.7 3.3 3.3 5.0
JJA 38.4 0.0 0.0 15.0 23.3 23.3
SON 4.9 3.3 1.7 6.7 21.7 61.7
WB (438) 17.8 19.9 16.0 12.1 19.9 14.3
DJF 0.1 23.3 48.3 0.0 0.0 28.3
MAM 13.3 45.0 6.7 8.3 0.0 26.7
JJIA 40.0 0.0 0.0 25.0 35.0 0.0
SON 15.0 8.3 6.7 13.3 41.7 15.0
Average 26.0 14.3 10.5 9.7 14.3 25.2

DJF = December-February, MAM = March-May, JJA = June-August and SON =
September-November.
*Increasing Ujg, Decreasing.R, = ux/Up.

o . . Rq=
**Decreasing Ujo, Increasing. a

e In a few large patches in all regions, but mainly in the Wyoming
Basin and the Colorado Plateau (Class 3; yellow), modelled dust
emission increased despite wind speed decreasing, because the
decrease in roughness produced a relative wind speed increase.

e In northern Chihuahuan Desert, southern Colorado Plateau and the

Wyoming Basin (Class 2; red), modelled dust emission increased

because wind speed has increased, and roughness has decreased.

In other parts of the Western Shortgrass Prairie and the Chihuahuan

Desert (Class 1; orange), modelled dust emission increased despite

increasing roughness because the increased wind speed was suffi-

cient to overcome the change.

The main results associated with decreasing dust emission and
increasing roughness are:

e Over large areas in all regions, except the Western Shortgrass Prairie
(Class 6; cyan), modelled dust emission decreased despite decreased
roughness because winds decreased which produced a relative
roughness increase.

In patches throughout all regions (Class 5; blue), modelled dust
emission decreased because wind speed has decreased and roughness
increased.

In mainly the Western Shortgrass Prairie but also in small areas of
other regions (Class 4; purple), modelled dust emission has decreased
despite increased wind speeds because the increased roughness is
sufficient to overcome the change.

Discussion

Regional statistics of calibrated, modelled dust emission (Table 1)
showed that on dust days the Wyoming Basin (WB) was predicted to

Aeolian Research 60 (2023) 100852

have produced the largest mean amount of dust (1.84 kg m~2 y™) of all
ecoregions, the largest maximum monthly average (15.75 kg m~2 y1)
and the greatest variability. The WB also had the greatest variability in
surface roughness and wind speeds. All other regions had smaller and
similar variability. This indicates that the WB ecosystem behaviour and
dust response is very different to the other ecoregions. Seasonality of the
ecoregions in calibrated dust emission, surface roughness and surface
winds are described by monthly area averages (Fig. 2). All regions
except the Colorado Plateau (CP) showed a springtime peak in F4 (0.01
- 0.02 kg m~2 y'!) corresponding to seasonal patterns in Uzo. The CP
region modelled peak dust emission occurred during the winter months
(DJF), corresponding with large mean winds and minimum vegetation
roughness (snow was eradicated in the analysis). During the summer
months, modelled dust emission decreased in all regions when wind
speed was at a minimum regardless of roughness. These basic results
indicate that patterns and trends in dust emission are the net outcome of
spatiotemporal variation which requires a nuanced approach to
exploring and explaining the cause of change.

We found modelled dust emissions changed (2001-2020) within all
ecoregions (Fig. 1). Increased dust months (mainly centred on New
Mexico) were associated with either directly increasing wind speeds or
relative wind speed increases (Figs. 3 and 5). Decreased dust emission
was predicted to occur in all ecoregions and all States, with notable
predominance in Mexico, and was due directly to increased roughness or
indirectly to the relative roughness increase in roughness. It is
straightforward to understand the physical basis represented in the
model, an increase in roughness reduces the wind friction velocity,
which reduces the wind momentum flux at the soil surface and reduces
sediment transport and dust emission (class 5) and vice versa (class 2).
We described these cases as out-of-phase. Although well described in
the literature as aerodynamic roughness, the in-phase cases can pro-
duce an increase in either wind speed or roughness. For example, cases 1
and 4 both have increasing roughness and increasing wind speed but can
produce either an increase or a decrease in dust emission depending on
the balance of the factors. Similarly, cases 3 and 6 both have decreasing
roughness and decreasing wind speed but can produce either an increase
or a decrease in dust emission depending on the balance of the factors.
These cases demonstrate an equifinality in sediment transport and dust
emission depending on the influence of the relative wind speed or
roughness embodied in the wind friction velocity. These new insights
and clarity of explanation are enabled by our recent improvements in
dust emission modelling based on albedo (Chappell et al., 2010; Chap-
pell and Webb, 2016; Hennen et al., 2022) and specifically the ability to
quantify the soil surface wind friction velocity in sediment transport and
dust emission models.

Our albedo-based dust emission model (AEM) results calibrated to
satellite-observed dust emission point source (DPS) data describe
increasing and decreasing dust emission in different regions across
southwest USA and changing dust emission over time with no distinct
trend. As explained in the previous paragraph, these results are the
consequence of the controlling factors, wind speed and roughness, being
in-phase or out-of-phase with each other in different regions and at
different times. The complex interplay of controlling factors explained
here is consistent with the diverse land use and management drivers,
which create disturbance regimes producing diverse ecosystem re-
sponses and potentially accelerate or reduce (or may have no effect on)
aeolian sediment transport rates and dust emission. Although this
complex interplay of controlling factors produces an equifinality of
outcomes, dust emission is increasing and decreasing in different regions
at different times.. Given the related but fundamental differences be-
tween dust emission occurrences and transported atmospheric dust
(attenuated by dispersion, grain-size dependent processes related to
deposition, and wind speed), it is reasonable that our work found no
detectable temporal trend in dust emission. Furthermore, our work
found considerable spatial coherence in the changing dust emission. Our
results (Table 2) showed that, among seasons, most increased dust
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Fig. 5. Map (a) showing classes of annual average dust emission anomalies increase (classes 3, 2 and 1; yellow, red and orange;) and decrease (classes 6, 5 and 4;
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emission occurred mainly in March-May in all regions, except the
Wyoming Basin when wind speed and roughness were both increasing
(in-phase wind speed increase). However, most decreased dust emission
occurred mainly in September-November when the wind speed and
roughness were both decreasing (in-phase relative roughness increase).

It is important to note that our analysis is dependent on the data used
to drive the modelling. The ERA5-Land wind data are provided at 11 km
pixel resolution. These data are downscaled from 40 m to 10 m height
based on aerodynamic roughness (zp) which is static over time and
classified over space. Consequently, these winds are currently incapable
of representing processes below that grid scale. For example, these
modelled winds are unlikely to represent thunderstorm outflow events
which are important for North American summer time dust emission in
the southwest. The quality of the wind data may be important for out-
comes associated with the Wyoming Basin. There is considerable scope
to improve this downscaling of ERA5-Land using albedo-based estimates
of 2o.

The new AEM’s capability to adequately represent surface wind
friction velocity (and aerodynamic roughness), enables explanations of
dust emission which include roughness. Without including roughness
and, therefore, the complete explanation of the wind friction velocity, it
is difficult to avoid interpretations of responses which privilege wind
speed. Furthermore, roughness is the key to management since change
in vegetation is the only tool available for managers to reduce wind
speed and to protect the soil surface from sediment transport and dust
emission (Mahowald et al., 2007). Our results demonstrate the impor-
tance of both timing of land management activities that influence sur-
face roughness and the amount of roughness change relative to seasonal
wind speed changes for increasing or effectively reducing dust emis-
sions. A practical implication of our findings is that management (e.g.,
restoration) objectives and land health assessments that use ground
cover benchmarks to assess wind erosion must also account for effects of
wind speed (Webb et al., 2020). Maintaining ground cover (surface
roughness) above a target or benchmark level may be effective for
avoiding wind erosion in one season but not another with stronger
winds. This suggests that a conservative approach to setting ground
cover targets for wind erosion and dust emission control is needed to
avoid under-protecting soil resources and air quality.

Conclusions

The net outcome of spatiotemporal variation in the direct causal
factors of wind speed and aerodynamic roughness are varying patterns
and trends in dust emission across persistent dust source areas in the US.
Although soil moisture is a well-established control on the entrainment
threshold our model calibration circumvents its influence and it cannot
be separated. Our per pixel analysis explained dust emission responses
for the first time as ‘in-phase’ and ‘out-of-phase’ wind speed and sur-
face roughness (vegetation) changes, demonstrating a sophisticated
interplay between the controlling factors that produce equifinality in
dust emission change. These findings are consistent with diverse land
use and management drivers changing over space and time, which
create diverse disturbance regimes in ecosystem responses. Dust emis-
sion is increasing and decreasing in different regions at different times
for different reasons consistent with existing interpretations of climate
variability used to explain changes in observed dust in the atmosphere.
This new generation of calibrated AEM, sensitive to changing vegetation
structure and configuration, provides new insights to understand the
factors controlling dust emission. Management can only directly control
roughness. With these new insights, land managers can mitigate soil
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erosion effectively by identifying change in dust emission associated
with changes in wind and roughness.

Dates used Google Earth Engine data Google Earth Engine
Catalogue reference, link or
DOI
2009 MODIS land cover used to mask MODIS/051/MCD12Q1/
land / sea 2009.01_01
https://doi.org/10.506
7/MODIS/MCD12Q1.006
Static ISRIC clay content https://github.com/
ISRICWorldSoil/SoilGrid
s250m/
2001-2020 MODIS black sky albedo MODIS/006/MCD43A1
Band1 _fiso https://doi.org/10.506
7/MODIS/MCD43A1.006
2001-2020 ECMWF ERAS5-Land ECMWEF/ERAS5_LAND/
u-component_of wind_10m HOURLY
v-component_of wind_10m https://doi.org/10.24381/cds
volumetric_soil_water_layer_1 .e2161bac
soil_temperature_level_1
2001-2020  MODIS Snow Cover MODIS/006/MOD10A1

https://doi.org/10.5067/MO
DIS/MOD10A1.006
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