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A B S T R A C T   

North American observed atmospheric dust has shown large variability over the last two decades, coinciding 
with regional patterns of vegetation and wind speed changes. Dust emission models provide the potential to 
explain how these direct causes of vegetation and wind speed changes are related to changing dust emission. 
However, those dust models which assume land cover types are homogeneous over vegetation classes and fixed 
over time, are unlikely to adequately represent changing aerodynamic roughness of herbaceous cover, woody 
cover, and litter. To overcome these model limitations and explain changing (2001–2020) dust emission, we used 
a new MODIS albedo-based dust emission model calibrated to satellite-observed magnitude and frequency of dust 
emission point source (DPS) data. We focused our work on four regions of southwestern USA, identified pre-
viously as the main dust emission sources. We classified the interplay of controlling factors (wind speed and 
aerodynamic roughness) which created disturbance regimes with dust emission change consistent with diverse 
land use and management drivers. Our calibrated model results show that dust emission is increasing or 
decreasing, in different regions, at different times, for different reasons, consistent with the absence of a secular 
change of observed atmospheric dust. Our work demonstrates that using this calibrated dust emission model, 
sensitive to changing vegetation structure and configuration and wind speeds, provides new insights to the 
contemporary factors controlling dust emission. With this same approach, the prospect is promising for 
modelling historical and future dust emission responses using prognostic albedo in Earth System Modelling.   

Introduction 

Measured March fine atmospheric dust concentrations have shown 
large variability over the past two decades at remote sites across the 
south-western United States (Hand et al. 2016; Aryal and Evans, 2021). 
The changes in dustiness across the western US have been partially 
explained by inter-annual and decadal-scale climate variability (Hand 
et al., 2016; Achakulwisut et al., 2017; Aryal and Evans, 2021). How-
ever, other contributing factors cannot be ruled out including aban-
donment of cropland due to declining water resources for irrigation, and 
disturbances including wildfires, invasive plant species, increased pop-
ulation and economic activity (Hand et al., 2016). It is difficult to 
attribute the cause of changes in atmospheric dust, not least because 
there is no direct relation between the main factors controlling dust 
emission and the different factors controlling atmospheric dust disper-
sion and deposition. Furthermore, land use change, land management 
and concurrent ecosystem changes have not been examined in detail. 

Lambert et al. (2020) showed that increasing atmospheric dust obser-
vations (2000–2014) occurred across the Great Plains of the USA and 
that increasing trend coincided with increasing cropland coverage and 
planting and harvesting seasons of predominant crops. Public and pri-
vate rangelands of the dry western US are managed for multiple activ-
ities including livestock grazing, recreation, energy development, 
wildlife habitat, and to maintain the quality of air, soil, water and 
vegetation resources. The diverse land uses and management ap-
proaches create disturbance regimes that produce diverse ecosystem 
responses e.g., spread of invasive plants and changing fire regimes, and 
potentially accelerate or reduce (or may have no effect on) aeolian 
sediment transport rates and dust emission. 

It remains unclear what are the direct causes of changing observed 
dust in the atmosphere. Potential direct causes range from dispersion of 
dust caused by changing wind speeds, to changing dust emission asso-
ciated with vegetation composition and cover changes. Hydrological 
drought associated with soil moisture is implicated in the cause of 

* Corresponding author. 
E-mail address: ChappellA2@cardiff.ac.uk (A. Chappell).  

Contents lists available at ScienceDirect 

Aeolian Research 
journal homepage: www.elsevier.com/locate/aeolia 

https://doi.org/10.1016/j.aeolia.2022.100852 
Received 12 July 2022; Received in revised form 14 December 2022; Accepted 16 December 2022   

mailto:ChappellA2@cardiff.ac.uk
www.sciencedirect.com/science/journal/18759637
https://www.elsevier.com/locate/aeolia
https://doi.org/10.1016/j.aeolia.2022.100852
https://doi.org/10.1016/j.aeolia.2022.100852


Aeolian Research 60 (2023) 100852

2

change in vegetation (Lee and Gill, 2015). However, we are focused here 
on the direct causal effect of dust emission. Furthermore, it is important 
to recognise that dust in the atmosphere (e.g., dust optical depth) is not 
equivalent to dust emission. The amount of dust in the atmosphere is a 
function of the sediment transport magnitude and frequency (Wolman 
and Miller, 1960), and dust residency time (Textor et al., 2006), which is 
influenced by distance from source and dust deposition influenced by 
the particle size of the dust emitted and scavenged by precipitation 
(Mahowald et al., 2014). Importantly, if any of these factors controlling 
atmospheric dust changes e.g., the dust source changes and/or the 
particle size of dust emitted has decreased over time, this could explain 
the changing amounts of dust in the atmosphere. Ecosystem change 
affects land cover (vegetation type and organisation characterised by 
land surface roughness) and influences wind erosivity and indirectly the 
spatiotemporal distribution of dust sources. The feedback and in-
teractions between dust emission and dust in the atmosphere therefore 
requires an isolated and nuanced approach to explain the direct causal 
effect. 

North American dust emission between 2001 and 2020 was previ-
ously modelled using an albedo-based dust emission model (AEM) and 
calibrated using dust emission point source (DPS) frequency observa-
tions (Hennen et al., 2022; Fig. 1). These data emphasised significant 
spatial variability in dust emission, occurring predominantly in the bi-
omes of the Great Plains (GP) and North American Deserts (NAD), 
producing 7.2 Tg y-1 combined. Within these biomes, dust emission 
mostly occurred in four ecoregions either side of the Rocky Mountains, 
including the Western Shortgrass Prairies (in GP), the Chihuahuan 
Desert (in NAD), the Colorado Plateau (NAD), and the Wyoming Basin 
(NAD). That work described the broad cause of dust emission difference 
over space and time. Here, we investigate change in dust emission over 
time for each of these four regions to determine specifically how changes 

in wind patterns and land cover, characterised by surface roughness, 
have influenced dust emissions. 

Different types of disturbance may change the vegetation species 
composition across landscapes and the cover and structure of vegeta-
tion. Such changes can reduce the aerodynamic resistance of landscapes 
to erosive winds (Cowie et al., 2013) and can lead to the creation of dust 
emission hot spots (Gillette, 1999), or affect the erodibility of entire 
landscapes (Webb and McGowan, 2009). The magnitude and timing of 
dust emissions following ecosystem change, likely reflect the scales and 
rates during and/or after disturbance (Belnap et al., 2007; Munson et al., 
2011). Disturbances associated with e.g., agriculture, renewable and 
non-renewable energy development, livestock grazing, and off-road 
vehicles may produce different patterns and rates of change in surface 
soil properties (e.g., crusting, disaggregation) and vegetation, that 
attenuate aeolian sediment transport dynamics (e.g., Belnap et al., 2007; 
Aubault et al., 2015; Flagg et al., 2014). 

To date, modelling studies have focused on potential dust emission 
responses to broad-scale (global to regional) changes in vegetation cover 
but have omitted the effects of changing vegetation species composition, 
heights, and spatial distributions (Chappell and Webb, 2016). The ef-
fects of changing roughness structures need to be addressed to under-
stand how ecosystem changes are influencing spatial and temporal 
patterns of wind erosion (Webb et al., 2014a). Field studies have iden-
tified local (plot scale) aeolian transport responses to abrupt distur-
bances such as vegetation removal and wildfire (Dukes et al., 2018), and 
vegetation state-transitions associated with woody shrub encroachment 
in the Chihuahuan Desert (Bergametti and Gillette, 2010; Webb et al. 
2014b). However, the specific impacts of disturbance-induced 
ecosystem changes on North American dust emissions across 
landscape-to-regional scales is understudied, and unknown (Nauman 
et al., 2018). 

Fig. 1. The main dust emitting ecoregions of North America and their land cover types. Land cover data (left) are described by MODIS product MCD12Q1. The mean 
calibrated dust emission (Fcal; kg m−2 y-1; right) is described by the MODIS albedo-based dust emission model following the same approach as Hennen et al. (2022). 
The ecoregions (Dinerstein et al., 2017) include 402 = Western Shortgrass Prairie, 428 = Chihuahuan Desert, 429 = Colorado Plateau and 438 = Wyoming Basin 
shrub steppe. 

M. Hennen et al.                                                                                                                                                                                                                                



Aeolian Research 60 (2023) 100852

3

Our objective here is to use a dust emission model to explain the 
dynamics of wind and drag partition induced by changing vegetation to 
investigate the magnitude and frequency of spatio-temporal variation in 
changing dust emission across North America. Our approach is to use an 
established albedo-based dust emission model (AEM) calibrated to sat-
ellite observed dust emission point source frequencies to identify and 
explain, across different ecoregions in North America, changed dust 
emission timeframes and spatial patterns. 

Methods, data, and study area 

Albedo-based dust emission model (AEM) 

Dust emission was estimated daily using the AEM following estab-
lished approaches (Chappell and Webb, 2016; Ziegler et al., 2020; 
Hennen et al., 2022). Consequently, we provide only a brief description 
of the model which identifies the key differences and similarities with 
the original dust emission scheme on which it is based (Marticorena and 
Bergametti, 1995). Our approach similarly relies on estimates of salta-
tion flux Q (g/m/s) to simulate dust emission F (kg m−2 y-1). The Q for a 
given particle diameter (d), soil moisture (w), wind speed at height h 
(Uh), and albedo (ω) were calculated as 

Q(d,w,ω,Uh) = c
ρa

g
u3

s*(ω,Uh)

(

1+
u*ts(d)H(w)

us*(ω, Uh)

)

(

1−

(

u*ts(d)H(w)

us*(ω, Uh)

)2
)

(1)  

where ρa is air density (1.23 kg m−3), g is gravitational acceleration 
(9.81 m s−2), c is a dimensionless fitting parameter (set to 1), u*ts(d) is 
threshold wind friction velocity (m/s). The soil surface wind friction 
velocity us* is the momentum remaining after the partition of the above 
canopy momentum (u*) by roughness elements at all larger scales 
(topography, vegetation). The us* is compared with the soil surface 
threshold friction velocity (u*ts), which assumes a smooth, dry and loose 
soil surface. The u*ts is adjusted by a soil moisture function H(w) which 
increases the entrainment threshold as soil moisture increases (Fécan 
et al., 1999). Consequently, the above equation (Eq. (1)) calculates the 
magnitude of sediment transport (left hand side) which is then adjusted 
by the frequency of occurrence (right hand side; 0 or 1) i.e., us* > u*ts. 

The main difference with the original dust emission scheme is that 
we estimate directly the us* normalised by wind speed as a function of 
aerodynamic shelter (Ra) related to shadow: 

Ra =
us*
Uh

= 0.0311

(

exp
−ωns

1.131

0.016

)

+ 0.007 (2)  

where ωns is the normalised and rescaled shadow (ω) translated and 
scaled (ωn) from a MODIS range (ωn min = 0, ωn max = 35) for a given 
illumination zenith angle (ϴ = 0◦) to that of the calibration data (a =
0.0001 to b = 0.1) using the following rescaling equation (Chappell and 
Webb, 2016): 

ωns =
(a − b)(ωn(θ) − ωn(θ)max)

(ωn(θ)min − ωn(θ)max)
+ b (3) 

Shadow is the complement of albedo 1−φdir(0◦
, λ) influenced by 

spectral characteristics e.g., soil moisture, mineralogy and soil organic 
carbon. This spectral information was removed by normalizing per 
pixel, the directional reflectance viewed and illuminated at nadir ρ(0◦

, λ)

(Chappell et al., 2018): 

ωn =
1 − φdir(0

◦
, λ)

ρ(0◦ , λ)
=

1 − φdir(0
◦
)

ρ(0◦ )
(4) 

To implement this approach we used MODIS black sky albedo (φdir) 
to estimate ωn and normalized shadow by dividing it by the MODIS 
isotropic parameter fiso (MCD43A1 Collection 6, daily at 500 m): 

ωn(0
◦

) =
1 − φdir(0

◦
, λ)

fiso(λ)
=

1 − φdir(0
◦
)

fiso

(5) 

The fiso is a MODIS parameter that contains information only on the 
spectral composition as distinct from structural information (Chappell 
et al., 2018). In theory, the structural information is waveband inde-
pendent (Chappell et al., 2018). We have shown elsewhere that the 
normalization of MODIS data using this fiso parameter and that of MODIS 
Nadir BRDF-Adjusted Reflectance (NBAR) are able to remove the spec-
tral content for all bands examined (Chappell et al., 2018). In practice, 
we calculated ωn using MODIS band 1 (620–670 nm). To retrieve the 
wind friction velocity as a function of Uh, the daily maximum wind speed 
at h = 10 m above the soil surface is provided by ECMWF Climate 
Reanalysis, ERA5-Land hourly wind field data at 11 km spatial resolu-
tion (Muñoz Sabater, 2019). Within an ERA5 pixel, the wind speed is 
applied to the MODIS albedo-based us*

Uh 
available daily at 500 m. 

Dust emission F (kg m−2 s−1) is calculated as: 

F(d) =
∑

d

Af AsMQ(d)10(13.4 %clay−6.0)with 0% < clay% < 20%. (6) 

The %clay was allowed to vary spatially and in common with other 
dust emission models we restricted the max(%clay) = 20 (Woodward, 
2001). The proportion of emitted dust in the atmosphere M for a given 
particle size fraction (d) is dependent on the particle size distribution 
which we calculated 1 < d < 10 µm following Zender et al. (2003) by 
using M = 0.87. The coverage of snow (As) and whether the soil surface 
is frozen (Af) is used to reduce dust emission by using the MODIS nor-
malised difference snow index (MOD10A1 Collection 6, daily at 500 m). 

When dust emission models were first developed there were few 
continuously varying global datasets available and simplifying as-
sumptions were made for their implementation. The soil surface wind 
friction velocity to drive sediment transport (in the presence of large 
typically vegetation canopy roughness) was not available and instead 
the above canopy wind friction velocity was used. The partition between 
those drag forces used aerodynamic roughness lengths which were not 
available everywhere and therefore were set static over time and fixed 
over space to a bare soil surface condition (Zender et al., 2003). Under 
these conditions, dust emission estimates were maximised and recog-
nised by modellers as over-estimated in the presence of vegetation. 
Consequently, dust emission schemes reduced estimates using E, the 
area of bare, exposed ‘erodible’ soil surface (Marticorena and Berga-
metti, 1995). For implementation of these approaches in dust emission 
modelling, researchers assumed for simplicity that dryland roughness 
did not vary with wind speed (was not aerodynamic) and was approxi-
mated by (at nadir) cover from photosynthetic vegetation indices (VIs 
and more recently derivations of the VIs including leaf area index; LAI) 
readily available from satellite remote sensing (e.g., Evans et al., 2016). 
These approaches using VIs therefore assumed that the sheltering effect 
of the drag was restricted only to that ‘green’ canopy area. This approach 
does not represent ‘brown’ roughness not readily evident in VIs caused 
by non-photosynthetic, dormant or dead vegetation, common in dry-
lands which contain the majority of dust sources. Furthermore, this 
approach does not represent non-erodible stone covered surfaces 
without sediment also common in dryland regions. Perhaps of greatest 
significance for large scale dust models, this implementation of E is 
sensitive to vegetation reconstruction of past trends or projections of 
future shifts in vegetation which are crudely represented in common 
with critique of dust source masks (Mahowald et al., 2010). 

Unlike existing dust models, the use of ωns to dynamically estimate 
us* removes the need for vegetation indices and fixed vegetation co-
efficients to determine effective aerodynamic roughness. Furthermore, 
we do not use the the ratio E. Since us* is spatially explicit, it is not 
necessary to apply contemporary preferential dust source masks to pre- 
condition F (i.e., increasing F in areas perceived to have greater 
erodibility). 
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We modelled dust emission using MODIS albedo (daily, 500 m) for 
the period 2001–2020 for four ecoregions in southwest North America 
(Hennen et al., 2022). Mean dust emission is provided on days when 
dust occurred (evident from the dust emission point source data). All 
other days are removed when making mean calculations. 

Our assessment of the spatio-temporal variability and classification 
of dust emission sources, is with respect to the direct controlling envi-
ronmental variables of only wind speed and land surface roughness 
which combine to form the wind friction velocity (aerodynamic nature 
of vegetation cover). Indirect controlling environmental variables are 
not considered here because they provide a typically second-order in-
fluence on the emission process and the modelling. For example, soil 
moisture is not considered here. Soil moisture is converted to a function 
which adjusts the threshold of sediment entrainment (Eq. (1)). Soil 
moisture is required at the very surface of the soil which is not readily 
available, provided by large scale models which reduces its realistic 
representation. Furthermore, the process of sediment entrainment is 
parameterised crudely, by assuming it is static over time and fixed over 
space (even if soil moisture and / or vegetation are varied). The sedi-
ment is also assumed to be loose and available with an infinite supply of 
particles comprising segregated sizes rather than being aggregates of 
particles. The conventional approach to tackling these weaknesses is to 
calibrate the dust emission model to dust optical depth (DOD) (Hennen 
et al., 2022; Chappell et al., 2021). 

We take a different approach and instead calibrate the dust emission 
model to dust emission point source (DPS) observations of dust emission 
frequency, subjectively identified through visual inspection of satellite 
data by Baddock et al. (2011), Lee et al. (2009, 2012) and Kukal and 
Irmak (2020) to calibrate the albedo-based dust emission model 
(Chappell and Webb, 2016). Human interpretation of satellite data has 
many benefits compared to automated approaches (Schepanski et al., 
2007). Humans are able to identify the point at the head of a dust plume, 
especially where dust plumes are visually similar to bare ground (Hen-
nen et al., 2019). Limited image sampling frequency and occasional 
opaque atmosphere due to clouds or atmospheric dust are unavoidable 
in DPS (and DOD). The DPS data may be biased towards the larger dust 
emission events in space and time and may not represent the smaller 
dust emission events. However, in the absence of extensive networks 
providing dust emission measurements, DPS data provide the best 
available and most proximal data for calibrating the location and timing 
of dust emission (Hennen et al., 2022). 

First, we calculated the DPS probability of occurrence P(DPS > 0), a 
first order approximation of the probability of sediment transport P(Q >
0), which is directly proportional to the probability of dust emission P(F 
> 0) at those locations. Next, we equated this to study durations equal to 
the frequency us* which exceeds u*ts adjusted by H(w): 

P(DPS > 0) ≈ P(F > 0)∝P(Q > 0) = us* > u*tsH(w)

{

1

0
(7) 

During each simulation, the correct response (F > 0)
{1

0 depends on 
the correct u*tsH(w). Importantly, the traditional dust emission models, 
like the AEM used here, assume that the soil surface is smooth and 
covered with an infinite supply of loose erodible material which when 
mobilised by sufficient us* causes transport and dust emission. This 
(energy-limited) assumption is rarely justified in dust source regions, 
where the soil surface is rough due to soil aggregates, rocks, or gravels, 
sealed with biogeochemical crusts, or loose sediment is largely unavai-
lable. Consequently, we follow the newly established approach (Hennen 
et al., 2022) and bypass those weak assumptions by using observed dust 
emission frequencies at DPS data locations to parameterise the 
entrainment threshold frequency distribution 

Q = C
ρa

g
u3

s*P(DPS > 0) (8) 

On this basis, modelled dust emission is calibrated (Fcal) following 

Hennen et al. (2022) using the coefficients obtained by comparing sat-
ellite observed dust emission (F) against dust emission model (Eqs. (6) 
and (8)) estimates: 
Log10(Fcal) = 0.88Log10(F)− 2.02 (9)  

where Fcal is the adjustment of modelled dust emission using satellite 
derived dust emission point source observations (Baddock et al., 2011; 
Lee et al., 2009, 2012; Kukal and Irmak, 2016; Kandakji et al., 2020). We 
recognise that these dust emission point sources provide information 
about observed dust emission and not emission events that are hidden by 
clouds. This limitation also affects satellite observations of dust in the 
atmosphere (e.g., dust optical depth). However, these dust emission 
point sources provide a valuable, large area examination of dust emis-
sion which is not currently available in other datasets. 

Dust source regions 

Ecoregions (Dinerstein et al., 2017) were used to describe vegetation 
geography, important for patterns of dust emission, wind, and aero-
dynamic roughness (Fig. 1). The US Environmental Protection Agency 
(EPA) level II ecological classification scheme divides the area into 22 
ecoregions, which are here aggregated into four vegetation-type biomes 
following Hennen et al. (2022). The Wyoming Basin (438) comprises 
mostly grasslands, with discrete areas of shrubland. The Colorado 
Plateau (429) and Chihuahuan Desert (428) reside mainly in the semi- 
arid southwest, comprising mostly shrub and barren land cover types. 
The Western Shortgrass Prairie (402) transitions from more humid 
conditions in the north and east, to the semi-arid conditions in the south 
and southwest (Kukal and Irmak, 2016). Land cover types of this biome 
follow this gradient, with grasslands and croplands in the north and east, 
transitioning to more arid shrubland in the southwest (Fig. 1). 

Analysis and classification of spatiotemporal change in dust emission 

Regional statistics of dust emission conditions use daily modelled 
estimates from only locations (pixels) and days where dust occurred 
(Table 1). These data describe conditions during dust emission and do 
not describe the area weighted means of the entire region on all days. To 
directly attribute the contribution of surface roughness and wind speed 
(Ra = u*/Uh and U10) relative to the change in Fcal, we plot the anom-
alies. For each region, monthly anomalies were calculated from nor-
malised data: 

Varnorm =
(Vari − Varmin)

(Varmax − Varmin)
(10)  

where Varnorm = is the normalised monthly anomaly, Vari = the monthly 
anomaly, and Varmin and Varmax represent the range of monthly values 
across the time series. We calculate the normalised monthly anomalies 
as the difference against the median (Table 1) of all normalised monthly 
values between 2001 and 2020. The median rather than the mean was 
selected to reduce skewness in the anomalies due to outliers. 

The relative change in Fcal compared to the median is expressed 
absolutely (magnitude of change irrespective of ± sign) by the size of 
circle representing each of the monthly means. There are six classes of 
monthly outcomes. The first three classes (class 1–3) represent months 
where Fcal has increased compared to the median, while the subsequent 
classes (class 4–6) describe months where Fcal decreases relative to the 
long-term median. In each group, the change in each of the environ-
mental variables are either both increasing or both decreasing (in-phase) 
or one is increasing while the other is decreasing (out-of-phase: class 2 
and 5). When the environmental variables are in-phase (class 1, 3, 4, and 
6), the direction of their sign (increasing or decreasing) explain the 
limits of that system. Where both Ra and U10 are increasing (top right 
quadrant in Fig. 4), the increasing roughness is the limiting factor (class 
1 and 4). Where both u*/Uh and U10 are decreasing (bottom left 
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quadrant in Fig. 4), the decreasing wind speeds are the limiting factor 
(class 3 and 6). The seasonal average contribution (%) of each class, 
within each region is calculated. 

Positive and negative anomalies in Fcal are separated across the 1:1 
line, where increasing U10 with decreasing Ra (top left triangle) pro-
duces nearly all positive anomalies (class 1–3), while decreasing U10 
with increasing Ra (bottom right triangle) is predominantly negative Fcal 
anomalies. We use a 1:1 line to define the point where change in each of 
the environmental variables is in-phase (both increasing or decreasing) 
and occurs at the same rate (normalised anomalies). During these con-
ditions the magnitude of change in Fcal (described by the size of the 
marker) shows the smallest rate of change, as the net change in one 
variable is cancelled out by the other. The farther from the 1:1 line, the 
rate of change in Fcal increases as the variables become less in-phase. 

Using the previously established six categories produced with the 
time series data, the anomalies relative to the long-term (2001–2020) 
are shown per pixel across the region. Above average dust emission is 
shown using yellow–brown tones (classes 1, 2 and 3) and below average 
dust emission using green–blue tones (classes 4, 5 and 6). We fitted per 
pixel least squares regression to the annual anomalies over the entire 
time period (2001–2020). Global and regional (including North Amer-
ica) wind speeds have been found to decrease over time and then sub-
sequently reverse, indicating two distinct time periods with turning 
point which differs across regions (Zeng et al., 2019). Consequently, we 
investigated two separate time periods (2001–2010 and 2011–2020) for 
wind speed, wind friction velocity and dust emission. 

Results 

Regional variations in dust emission and controlling environmental 
variables 

During dust events, the Wyoming Basin (WB) produced the highest 
mean (0.016 kg m−2 y-1) and median (0.014 kg m−2 y-1) modelled dust 
emission (F) calibrated to observed DPS (Eq. 7) of all ecoregions, with a 
vastly larger maximum monthly value of 0.11 kg m−2 y-1 and a large 
standard deviation of 0.014 kg m−2 y-1 (Table 1). The Chihuahuan 
Desert ecoregion (CD) produced the smallest Fcal during dust events, 
with a mean of 0.006 kg m−2 y-1 and a maximum of 0.02 kg m−2 y-1. The 
Colorado Plateau (CP) and Western Shortgrass Prairie (WSP) produced 
similar Fcal, with a mean between 0.009 and 0.01 kg m−2 y-1 and a 
maximum monthly average of between 0.02 kg m−2 y-1 and 0.03 kg m−2 

y-1. Mean surface roughness conditions during dust events were 
approximately the same across each of the regions (Ra = u*/Uh = 0.06 – 

0.07), with WSP producing the largest (roughest) Ra = 0.07, while WB 
had the largest variance and CD had the smallest. Regional mean surface 

winds (U10) were largest in WSP (9 m s−1), followed by WB (8.8 m s−1), 
CP (8.4 m s−1), and smallest in CD (8.2 m s−1). WSP had the largest mean 
surface winds (U10 = 9 m s−1), and the CD had the smallest (8.1 m s−1). 
Variability in U10 changes per region, with WB producing the largest 
standard deviation (0.8 m s−1) and maximum monthly value (11.95 m 
s−1). By comparison, variability in all other regions was far less (~0.5 m 
s−1), with maximum U10 = 9.4 – 10.6 m s−1. The long-term (2001–2020) 
median was used to calculate the anomalies in the subsequent results. 

Temporal variation in dust emission and controlling environmental 
variables 

Seasonal trends in modelled dust emission (Fcal on dust days), surface 
roughness (Ra = u*/Uh), and surface winds (U10) of the four ecoregions 
are described by monthly area averages in Fig. 2. For WB, CD, and WSP, 
a springtime (MAM) peak in Fcal (0.01–0.02 kg m−2 y-1) was estimated. 
These peak periods of Fcal correspond to seasonal patterns in U10, with 
maximum winds of 8.8–9.8 m s−1 during April. Modelled dust emissions 
from the CP region peaked (0.025 kg m−2 y-1) during the winter months 
(DJF), corresponding with monthly mean winds of 8.2–8.7 m s−1 and 
monthly minimum vegetation roughness (Ra = 0.05). All regions pro-
duced decreasing Fcal (0.001–0.01 kg m−2 y-1) during the summer 
months (JJA) as U10 decreased to a minimum and despite decreasing Ra. 

Annual anomalies show the inter-annual variation in the daily mean 
value of each parameter (Fig. 2 – right column; b, d and f) against the 
long-term median for each ecoregion. Large inter-annual variability is 
observed in each case (region/parameter) but there are no long-term 
significant (p < 0.05; hereafter) trends in the least squares linear 
regression gradient over the entire period (2001–2020). 

Daily mean Fcal varied by ±0.0025 kg m−2 y-1 between years, with a 
general increase in the least squares linear regression gradient (trend) 
for WSP, CD, and WB between 2001 and 2010 (significantly in WSP), 
before decreasing through the subsequent decade. Each of these regions 
produce a significant increase in U10 during the 2001–2010 period. The 
CD and WB regions both had a significant increasing trend in Ra during 
the same period, while the WSP had only a small significant change in 
Ra. However, we found no significant trend in U10 or Ra for each of these 
regions in the period 2011–2020. Both U10 or Ra decreased initially until 
around 2012–2015, then increased until 2017 before varying about the 
mean between 2017 and 2020. The CP region had large variability in 
Fcal, with multiple peaks, including 2002/03, 2010, 2012, 2014, and 
2018 of similar magnitude to the maximum positive anomalies modelled 
in other regions. The Fcal estimates for CP are distinct from the other 
regions and show no significant trends in Ra or U10. We explore the 
differences between regions and the peculiarities of CP in the Discussion. 

Table 1 
Regional statistics for mean (2001–2020) annual average environmental conditions during dust emission days with a monthly resolution. Results are for each of the 
ecoregions presented in Fig. 1 including Western Shortgrass Prairie (WSP; 402); Wyoming Basin (WB; 438); Colorado Plateau (CP; 428); Chihuahuan Desert (CD; 429). 
Fcal values are calibrated against observed DPS frequency (equation (7)).   

Median Mean Standard Dev. Maximum Minimum 
Dust Emission (Fcal; kg m-2 y-1) WSP: 402 0.008 0.009 0.0059 0.02 0.001 

WB: 438 0.014 0.016 0.0135 0.11 0.002 
CP: 428 0.009 0.01 0.0065 0.03 0.002 
CD: 429 0.005 0.006 0.0041 0.02 0.001  

Surface roughness (Ra = u*/Uh) WSP: 402 0.07 0.07 0.0031 0.07 0.05 
WB: 438 0.06 0.06 0.0062 0.07 0.04 
CP: 428 0.06 0.06 0.0022 0.07 0.05 
CD: 429 0.06 0.06 0.002 0.07 0.05  

Surface winds (U10; m s-1) WSP: 402 8.96 9.01 0.4996 10.67 8.14 
WB: 438 8.74 8.83 0.7504 11.95 6.29 
CP: 428 8.36 8.4 0.5566 9.95 7.14 
CD: 429 8.19 8.17 0.5123 9.42 6.79  
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Spatiotemporal variability in dust emission and direct controlling 
environmental variables 

The spatial variability in the mean and changing (regression 
gradient) Fcal, U10, and Ra = u*/Uh are shown per pixel in Fig. 3. Mean 
dust emission during all dust days was largest (>0.06 kg m−2 y-1) in 
discrete locations within the CP (429 in Fig. 3) and WB ecoregions (438 
in Fig. 3). Large dust emission (>0.04 kg m−2 y-1) was predicted 
throughout southern areas of CP, along western parts of the WSP (402 in 
Fig. 3) and northern CD (428 in Fig. 3). Small Fcal (<0.0001 kg m−2 y-1) 
was predicted across large parts of the CD predominantly in the south, 
northern CP and northeast WSP. U10 are quite consistent across the four 
ecoregions (average 9.4–10.5 m s−1). The largest winds occurred in 
areas within WSP (>12 m/s), and decrease towards the west, with a 
minimum of 8–9 m/s over central regions of CP. Vegetation roughness 
was smallest over the CP, northern and eastern areas of CD and the WB. 
In contrast. WSP had increasing u*/Uh values from 0.065 in the west and 
0.08 in the east. 

The gradient of Fcal during the two periods shows contrasting trends, 
with large areas increasing during 2001–2010 and a greater area 
reducing during the subsequent 2011–2020 period. The largest varia-
tions (gradient > 0.1) were predicted in large parts of CP, WSP, and 
northern areas of CD. Variations in Fcal across CP were associated mostly 
with changes in U10, as Ra changes infrequently during the two periods. 
Here, U10 alternated between an increasing trend (2001–2010) to a 
reducing trend during 2011–2020 in areas where modelled Fca varied in- 

kind. In the CD, changes in Fcal appear most influenced by changes in 
both U10, and Ra, increasing during 2001–2010 mostly in the north, 
where Ra remained the same but U10 increased. Fcal reduced in the same 
region during 2011–2020, as Ra increased, and U10 remained constant. 
During 2001–2010, Fcal increased in the WSP predominantly in the east 
where mean U10 was greatest. This increase in Fcal coincided with a 
reduction in Ra, while changes in U10 varied throughout the same re-
gion. Trends in Fcal across WB were generally smaller than in other re-
gions (gradient (<0.1), with alternating patterns from east to west. In 
the east, changes in Fcal followed changes in U10, increasing initially 
(2001–2010) before decreasing in the period 2011–2022, while Ra 
remained constant. In the northwest, small changes in Fcal occurred 
concurrently with opposite change in Ra, with Fcal increasing between 
2001 and 2010 (Ra decreases) and decreasing between 2011 and 2020 
(Ra increases). 

Classifying changes in dust emission according to environmental conditions 

Across all ecoregions, positive and negative anomalies in Fcal are 
separated across the 1:1 line, where increasing U10 with decreasing Ra 
(top left triangle) produces nearly all positive anomalies (class 1–3), 
while decreasing U10 with increasing Ra (bottom right triangle) is pre-
dominantly negative Fcal anomalies (Fig. 4). This coherence suggests a 
uniform response across the region, where the dominating environ-
mental conditions (U10 and Ra) in each month dictate the response in 
Fcal. The WB region provides a notable exception, with multiple months 

Fig. 2. Seasonality (column 1; a, c and e) and annual anomalies from the long-term (2001–2020) median (column 2; b, d and f) of modelled data of the four 
contributing ecoregions of North America. Dust (Fcal; kg m−2 y-1; <10 µm) calibrated to observed dust frequency during the period 2001–2020 (top row; a and b), 
wind friction velocity normalised by wind speed (Ra = u*/Uh; middle row; c and d) which describes the land surface roughness, and wind speed (U10; bottom row; e 
and f). The ecoregions are denoted by CD = Chihuahuan Desert (429), CP = Colorado Plateau (438), WSP = Western Shortgrass Prairie (429) and WB = Wyoming 
Basin (428). 
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with decreasing Fcal anomalies occurring above the 1:1 line. This occurs 
predominantly during wind limited conditions (class 3 and 6) between 
DJF and MAM (Table 2). In this case, months with similar environmental 
conditions in U10 and Ra create different patterns of Fcal, suggesting a 
lack of spatial coherence within the ecoregion, where the mean condi-
tions do not represent discrete areas of large dust emission change. 

In each of the ecoregions, the largest rate of change typically occurs 
in Class 1 and 2, where positive anomalies are driven by an increase in 
U10 and either decreasing roughness (Class 2) or moderately increasing 
roughness (Class 1). Across all regions, Class 1 (increasing dust emission, 
roughness limited) and Class 6 (decreasing dust, wind limited) make up 
the largest proportion (51 % combined) of monthly conditions (Table 2). 
Class 3 (increasing dust, wind limited) and Class 4 (decreasing dust, 
roughness limited) conditions are least frequent (20.2 % combined). 

Opposite phase conditions (increasing Fcal - Class 2 and decreasing Fcal - 
Class 4) each comprise 14.3 % of the monthly conditions. Regionally, 
this pattern is replicated in WSP, CP, and CD, while WB has the largest 
proportion of months during the opposite phase (Class 2 and 4) condi-
tions (Fig. 3). 

Seasonally, each region shows a shift in the proportion of each class 
representing the change in conditions throughout the year (Table 2). In 
both CD and CP, predominant dust emission controls change between 
Class1 and Class 6 throughout the year. 

In CD, Class 1 conditions dominate DJF (33.3 %) and MAM (78.3 %), 
as increasing modelled Fcal coincides with increasing U10, despite 
increasing Ra. Decreasing modelled Fcal (Class 6) typically occurs in JJA 
(45 %) and SON (76.7 %), despite decreasing Ra as U10 decreases faster. 
This same pattern occurs on the CP, albeit with an increase in modelled 

Fig. 3. Maps of the four ecoregions showing (left column; a, d & g) long-term (2001–2020) mean conditions during dust events of (top row; a–c) dust emission (Fcal; 
kg m−2 y-1), (middle row; d–f) surface wind speed (U10; m/s), and (bottom row; g–i) wind friction velocity normalised by wind speed (surface roughness; u*/Uh; m/s). 
Middle and right-side column: average change per pixel using statistically significant regression gradients for (middle) 2001–2010 and (right) 2011–2020 of annual 
dust emission. The ecoregions include Western Shortgrass Prairie (402), Chihuahuan Desert (428), Colorado Plateau shrublands (429) and Wyoming Basin shrub 
steppe (438). 
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Fcal (Class 1) occurring later (MAM 68.3 % – JJA 38.3 %) and decrease in 
modelled Fcal (Class 6) during SON (61.7 %) and DJF (35 %). 

In WSP and CD, increasing Fcal during DJF – MAM and decreasing Fcal 
during JJA -DJF are evident. However, the initial increase in Fcal during 
DJF, occurs despite reducing U10 as this is offset by a greater reduction in 
Ra (i.e., Class 3–41.7 %), before U10 and Ra both increase during MAM 
(Class 1 – 53.3 %). During JJA, modelled Fcal typically reduced (61 % of 
the time), mostly as U10 decreases (45 % Class 5 and 6 combined) or Ra 
increases faster than increasing U10 (Class 4 – 26.7 %). Decreasing Fcal 
continues in SON (98 % of the time), with decreasing U10 76.7 % of the 
time (Class 5 and 6) and increasing Ra 58.4 % of the time (Class 4 and 5). 

The WB has increasing Fcal during DJF with Ra decreasing 61 % of the 
time and U10 increasing 23.3 % of the time. During MAM, predomi-
nantly increasing Fcal coincides with an increase in U10 58.3 % (Class 1 

and 2) and reducing Ra (Class 2 and 3) 51.7 % of the time. During JJA, 
Fcal predominantly decreases (60 %), yet Class 1 produces the largest 
frequency of a single condition (40 %), increasing Fcal as U10 increases at 
a faster rate relative to increasing Ra. 

Anomaly maps showing change over time 

The direct causal change in dust emission is restricted to wind speed 
and land surface roughness (aerodynamic nature of vegetation cover). 
The cause of dust emission is different in different classes as explained in 
the text related to Fig. 3. Here those explanations are placed into their 
spatial context which is notably spatially coherent (Fig. 5). The main 
results are divided in two. The first are those with increasing dust 
emission and increased wind speeds: 

Fig. 4. Monthly anomalies from the long-term (2001–2020) average of wind speed (U10) and of wind friction velocity normalised by wind speed (Ra = u*/Uh) which 
describes the land surface roughness, and dust emission. The anomalies are shown for the four regions: Western shortgrass prairie (a); Colorado Plateau shrublands 
(b); Wyoming Basin shrub steppe (c); Chihuahuan desert (d). The magnitude of the dust emission anomalies is shown using the symbol size and the sign of the dust 
emission anomalies is shown as a positive above the (dashed, 1:1) line and a negative below the line. The seasonal average contribution (%) of each class, within each 
region is displayed (see Table 2). 
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• In a few large patches in all regions, but mainly in the Wyoming 
Basin and the Colorado Plateau (Class 3; yellow), modelled dust 
emission increased despite wind speed decreasing, because the 
decrease in roughness produced a relative wind speed increase.  

• In northern Chihuahuan Desert, southern Colorado Plateau and the 
Wyoming Basin (Class 2; red), modelled dust emission increased 
because wind speed has increased, and roughness has decreased.  

• In other parts of the Western Shortgrass Prairie and the Chihuahuan 
Desert (Class 1; orange), modelled dust emission increased despite 
increasing roughness because the increased wind speed was suffi-
cient to overcome the change. 

The main results associated with decreasing dust emission and 
increasing roughness are:  

• Over large areas in all regions, except the Western Shortgrass Prairie 
(Class 6; cyan), modelled dust emission decreased despite decreased 
roughness because winds decreased which produced a relative 
roughness increase.  

• In patches throughout all regions (Class 5; blue), modelled dust 
emission decreased because wind speed has decreased and roughness 
increased.  

• In mainly the Western Shortgrass Prairie but also in small areas of 
other regions (Class 4; purple), modelled dust emission has decreased 
despite increased wind speeds because the increased roughness is 
sufficient to overcome the change. 

Discussion 

Regional statistics of calibrated, modelled dust emission (Table 1) 
showed that on dust days the Wyoming Basin (WB) was predicted to 

have produced the largest mean amount of dust (1.84 kg m−2 y-1) of all 
ecoregions, the largest maximum monthly average (15.75 kg m−2 y-1) 
and the greatest variability. The WB also had the greatest variability in 
surface roughness and wind speeds. All other regions had smaller and 
similar variability. This indicates that the WB ecosystem behaviour and 
dust response is very different to the other ecoregions. Seasonality of the 
ecoregions in calibrated dust emission, surface roughness and surface 
winds are described by monthly area averages (Fig. 2). All regions 
except the Colorado Plateau (CP) showed a springtime peak in Fcal (0.01 
– 0.02 kg m−2 y-1) corresponding to seasonal patterns in U10. The CP 
region modelled peak dust emission occurred during the winter months 
(DJF), corresponding with large mean winds and minimum vegetation 
roughness (snow was eradicated in the analysis). During the summer 
months, modelled dust emission decreased in all regions when wind 
speed was at a minimum regardless of roughness. These basic results 
indicate that patterns and trends in dust emission are the net outcome of 
spatiotemporal variation which requires a nuanced approach to 
exploring and explaining the cause of change. 

We found modelled dust emissions changed (2001–2020) within all 
ecoregions (Fig. 1). Increased dust months (mainly centred on New 
Mexico) were associated with either directly increasing wind speeds or 
relative wind speed increases (Figs. 3 and 5). Decreased dust emission 
was predicted to occur in all ecoregions and all States, with notable 
predominance in Mexico, and was due directly to increased roughness or 
indirectly to the relative roughness increase in roughness. It is 
straightforward to understand the physical basis represented in the 
model, an increase in roughness reduces the wind friction velocity, 
which reduces the wind momentum flux at the soil surface and reduces 
sediment transport and dust emission (class 5) and vice versa (class 2). 
We described these cases as out-of-phase. Although well described in 
the literature as aerodynamic roughness, the in-phase cases can pro-
duce an increase in either wind speed or roughness. For example, cases 1 
and 4 both have increasing roughness and increasing wind speed but can 
produce either an increase or a decrease in dust emission depending on 
the balance of the factors. Similarly, cases 3 and 6 both have decreasing 
roughness and decreasing wind speed but can produce either an increase 
or a decrease in dust emission depending on the balance of the factors. 
These cases demonstrate an equifinality in sediment transport and dust 
emission depending on the influence of the relative wind speed or 
roughness embodied in the wind friction velocity. These new insights 
and clarity of explanation are enabled by our recent improvements in 
dust emission modelling based on albedo (Chappell et al., 2010; Chap-
pell and Webb, 2016; Hennen et al., 2022) and specifically the ability to 
quantify the soil surface wind friction velocity in sediment transport and 
dust emission models. 

Our albedo-based dust emission model (AEM) results calibrated to 
satellite-observed dust emission point source (DPS) data describe 
increasing and decreasing dust emission in different regions across 
southwest USA and changing dust emission over time with no distinct 
trend. As explained in the previous paragraph, these results are the 
consequence of the controlling factors, wind speed and roughness, being 
in-phase or out-of-phase with each other in different regions and at 
different times. The complex interplay of controlling factors explained 
here is consistent with the diverse land use and management drivers, 
which create disturbance regimes producing diverse ecosystem re-
sponses and potentially accelerate or reduce (or may have no effect on) 
aeolian sediment transport rates and dust emission. Although this 
complex interplay of controlling factors produces an equifinality of 
outcomes, dust emission is increasing and decreasing in different regions 
at different times.. Given the related but fundamental differences be-
tween dust emission occurrences and transported atmospheric dust 
(attenuated by dispersion, grain-size dependent processes related to 
deposition, and wind speed), it is reasonable that our work found no 
detectable temporal trend in dust emission. Furthermore, our work 
found considerable spatial coherence in the changing dust emission. Our 
results (Table 2) showed that, among seasons, most increased dust 

Table 2 
The proportion of months in each season and each segment of the anomaly time 
series (2001–2020; Fig. 3). The ecoregions include Western Shortgrass Prairie 
(WSP; 402), Chihuahuan Desert (CD; 428), Colorado Plateau shrublands (CP; 
429) and Wyoming Basin shrub steppe (WB; 438).  

Proportion 
(%) 

Increasing Dust Decreasing Dust 
In- 
Phase 
(+) 

Op- 
Phase* 

In- 
Phase 
(-) 

In- 
Phase 
(+) 

Op- 
Phase** 

In- 
Phase 
(-) 

Seasons/ 
Class 

1 2 3 4 5 6 

WSP (402) 21. 15.4 13.3 13.3 15.4 21.2 
DJF 6.7 30.0 41.7 3.3 0.0 18.3 
MAM 53.2 26.7 11.7 1.7 0.0 6.7 
JJA 23.3 5.0 0.0 26.7 25.0 20.0 
SON 1.6 0.0 0.0 21.7 36.7 40.0 
CD (428) 34.0 9.2 7.1 6.7 9.2 33.8 
DJF 33.3 13.3 21.7 13.3 6.7 11.7 
MAM 78.2 11.7 1.7 5.0 1.7 1.7 
JJA 21.6 11.7 5.0 5.0 11.7 45.0 
SON 3.3 0.0 0.0 3.3 16.7 76.7 
CP (429) 30.5 12.9 5.8 6.7 12.9 31.2 
DJF 10.0 30.0 20.0 1.7 3.3 35.0 
MAM 68.4 18.3 1.7 3.3 3.3 5.0 
JJA 38.4 0.0 0.0 15.0 23.3 23.3 
SON 4.9 3.3 1.7 6.7 21.7 61.7 
WB (438) 17.8 19.9 16.0 12.1 19.9 14.3 
DJF 0.1 23.3 48.3 0.0 0.0 28.3 
MAM 13.3 45.0 6.7 8.3 0.0 26.7 
JJA 40.0 0.0 0.0 25.0 35.0 0.0 
SON 15.0 8.3 6.7 13.3 41.7 15.0 
Average 26.0 14.3 10.5 9.7 14.3 25.2 

DJF = December-February, MAM = March-May, JJA = June-August and SON =
September-November. 
*Increasing U10, Decreasing.Ra = u*/Uh. 
**Decreasing U10, Increasing.Ra = u*

Uh
.

M. Hennen et al.                                                                                                                                                                                                                                



Aeolian Research 60 (2023) 100852

10

Fig. 5. Map (a) showing classes of annual average dust emission anomalies increase (classes 3, 2 and 1; yellow, red and orange;) and decrease (classes 6, 5 and 4; 
cyan, blue and purple) relative to the long-term (2001–2020) mean dust emission anomalies (b; Fcal anomalies, kg m−2 y-1) caused by change in wind friction velocity 
normalised by wind speed (c; Ra = u*/Uh anomalies) and wind speed (d;Uh anomalies, m/s) relative to their respective long-term means. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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emission occurred mainly in March-May in all regions, except the 
Wyoming Basin when wind speed and roughness were both increasing 
(in-phase wind speed increase). However, most decreased dust emission 
occurred mainly in September-November when the wind speed and 
roughness were both decreasing (in-phase relative roughness increase). 

It is important to note that our analysis is dependent on the data used 
to drive the modelling. The ERA5-Land wind data are provided at 11 km 
pixel resolution. These data are downscaled from 40 m to 10 m height 
based on aerodynamic roughness (z0) which is static over time and 
classified over space. Consequently, these winds are currently incapable 
of representing processes below that grid scale. For example, these 
modelled winds are unlikely to represent thunderstorm outflow events 
which are important for North American summer time dust emission in 
the southwest. The quality of the wind data may be important for out-
comes associated with the Wyoming Basin. There is considerable scope 
to improve this downscaling of ERA5-Land using albedo-based estimates 
of z0. 

The new AEM’s capability to adequately represent surface wind 
friction velocity (and aerodynamic roughness), enables explanations of 
dust emission which include roughness. Without including roughness 
and, therefore, the complete explanation of the wind friction velocity, it 
is difficult to avoid interpretations of responses which privilege wind 
speed. Furthermore, roughness is the key to management since change 
in vegetation is the only tool available for managers to reduce wind 
speed and to protect the soil surface from sediment transport and dust 
emission (Mahowald et al., 2007). Our results demonstrate the impor-
tance of both timing of land management activities that influence sur-
face roughness and the amount of roughness change relative to seasonal 
wind speed changes for increasing or effectively reducing dust emis-
sions. A practical implication of our findings is that management (e.g., 
restoration) objectives and land health assessments that use ground 
cover benchmarks to assess wind erosion must also account for effects of 
wind speed (Webb et al., 2020). Maintaining ground cover (surface 
roughness) above a target or benchmark level may be effective for 
avoiding wind erosion in one season but not another with stronger 
winds. This suggests that a conservative approach to setting ground 
cover targets for wind erosion and dust emission control is needed to 
avoid under-protecting soil resources and air quality. 

Conclusions 

The net outcome of spatiotemporal variation in the direct causal 
factors of wind speed and aerodynamic roughness are varying patterns 
and trends in dust emission across persistent dust source areas in the US. 
Although soil moisture is a well-established control on the entrainment 
threshold our model calibration circumvents its influence and it cannot 
be separated. Our per pixel analysis explained dust emission responses 
for the first time as ‘in-phase’ and ‘out-of-phase’ wind speed and sur-
face roughness (vegetation) changes, demonstrating a sophisticated 
interplay between the controlling factors that produce equifinality in 
dust emission change. These findings are consistent with diverse land 
use and management drivers changing over space and time, which 
create diverse disturbance regimes in ecosystem responses. Dust emis-
sion is increasing and decreasing in different regions at different times 
for different reasons consistent with existing interpretations of climate 
variability used to explain changes in observed dust in the atmosphere. 
This new generation of calibrated AEM, sensitive to changing vegetation 
structure and configuration, provides new insights to understand the 
factors controlling dust emission. Management can only directly control 
roughness. With these new insights, land managers can mitigate soil 

erosion effectively by identifying change in dust emission associated 
with changes in wind and roughness.  

Dates used Google Earth Engine data Google Earth Engine 
Catalogue reference, link or 
DOI 

2009 MODIS land cover used to mask 
land / sea 

MODIS/051/MCD12Q1/ 
2009_01_01   
https://doi.org/10.506 
7/MODIS/MCD12Q1.006 

Static ISRIC clay content https://github.com/ 
ISRICWorldSoil/SoilGrid 
s250m/ 

2001–2020 MODIS black sky albedo MODIS/006/MCD43A1  
Band1_fiso https://doi.org/10.506 

7/MODIS/MCD43A1.006 
2001–2020 ECMWF ERA5-Land 

u-component_of_wind_10m 
v-component_of_wind_10m 
volumetric_soil_water_layer_1 
soil_temperature_level_1 

ECMWF/ERA5_LAND/ 
HOURLY 
https://doi.org/10.24381/cds 
.e2161bac 

2001–2020 MODIS Snow Cover MODIS/006/MOD10A1   
https://doi.org/10.5067/MO 
DIS/MOD10A1.006  
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