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Abstract. For ∆ ≥ 5 and q large as a function of ∆, we give a detailed picture of the phase transition of the random cluster model on
random ∆-regular graphs. In particular, we determine the limiting distribution of the weights of the ordered and disordered phases at
criticality and prove exponential decay of correlations and central limit theorems away from criticality. Our techniques are based on
using polymer models and the cluster expansion to control deviations from the ordered and disordered ground states. These techniques
also yield efficient approximate counting and sampling algorithms for the Potts and random cluster models on random ∆-regular
graphs at all temperatures when q is large. This includes the critical temperature at which it is known the Glauber and Swendsen-
Wang dynamics for the Potts model mix slowly. We further prove new slow-mixing results for Markov chains, most notably that
the Swendsen-Wang dynamics mix exponentially slowly throughout an open interval containing the critical temperature. This was
previously only known at the critical temperature.

Many of our results apply more generally to ∆-regular graphs satisfying a small-set expansion condition.
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1. Introduction

The random cluster model on a graph G= (V,E) with parameters q, β ≥ 0 is the measure µG on {0,1}E with

µG(A) :=
qc(A)(eβ − 1)|A|

ZG(q, β)
, ZG(q, β) :=

∑
A⊆E

qc(A)(eβ − 1)|A| , (1)

where c(A) is the number of connected components of (V,A). Setting p := 1− e−β gives a description of µG as a tilted
bond percolation model with edge probability p ∈ [0,1]:

ZG(q,− log(1− p)) =
∑
A⊆E

qc(A)

(
p

1− p

)|A|
=

1

(1− p)|E|
∑
A⊆E

qc(A)p|A|(1− p)|E\A| .

The random cluster model is a generalization of the q-color ferromagnetic Potts model, which, for q a positive integer,
is the probability distribution on [q]V defined by

µPotts
G (σ) :=

1

ZPotts
G (q, β)

∏
{u,v}∈E

eβ1σu=σv , ZPotts
G (q, β) :=

∑
σ∈[q]V

∏
{u,v}∈E

eβ1σu=σv .

In particular, the case q = 2 case is the Ising model. The connection between the Potts and random cluster models is that
for integer q,

ZG(q, β) = ZPotts
G (q, β) ,
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and moreover, there is a natural coupling of the measures µG and µPotts
G . The coupling is as follows. Given an edge set A

distributed according to the random cluster measure µG, independently assign a uniformly chosen color from [q] to each
connected component of (V,A) to obtain a coloring σ ∈ [q]V . The distribution of σ is µPotts

G [26]. For an introduction to
the random cluster model, see [38].

This paper concerns a relatively complete set of results about the probabilistic and algorithmic behavior of the large-q
random cluster model on random ∆-regular graphs. In particular, we obtain a detailed description of the phase diagram;
establish strong correlation decay and finite-size scaling statements; prove central limit theorems off criticality; obtain
efficient approximate counting and sampling algorithms at all temperatures β > 0; and establish slow-mixing of standard
Markov chains in a neighborhood of the critical temperature βc. Many of our results apply more generally to ∆-regular
graphs satisfying a small-set expansion condition, see Section 1.1.1. We will shortly give precise statements of these
results, but before doing this we briefly give some context and an outline of our methods.

Our techniques are based on polymer models and the cluster expansion, tools developed to investigate the phase
diagrams of statistical physics models on lattices [39, 50, 52, 62]. In particular, we adapt to the random graph and expander
setting the idea from [52] of analyzing the Potts model phase transition by controlling the ordered and disordered phases
of the random cluster model via separate convergent cluster expansions. The key to this approach is obtaining convergent
ordered and disordered expansions for parameter regimes that overlap — in particular, the expansions both converge at
the critical temperature. These expansions give us strong control on the dominant and sub-dominant contributions to the
partition function, and enable us to prove our probabilistic and algorithmic results. While the use of expansion methods
to obtain probabilistic results is well-known, algorithmic implications are more recent [16, 29, 43, 46, 53].

The most crucial technical aspect of this paper is thus the development of convergent expansions, and our main innova-
tion here is a polymer model that applies to the ordered phase on expander graphs. This relies on an inductive construction
of polymers that circumvents the difficulty created by the non-local weight qc(A) present in the random cluster model.
In prior work studying the random cluster model on Zd via Pirogov–Sinai theory, this non-local weight was handled by
using notions of boundaries arising from the topology of Euclidean space. Our inductive construction defines a notion
of ‘boundary’ that encodes the connected components of A, and hence the computation of qc(A), for typical edge sets
A. The success of this encoding, and its usefulness for deriving a convergent expansion, relies crucially on (i) expansion
properties of the underlying graph and (ii) the fact that in the ordered phase, typical edge sets A consist of a large fraction
of all edges. The second point is one aspect of the fact that the phase transition of the random cluster model is first order
when q is large. This leads to the resulting boundaries being geometrically small, which is important for obtaining a
convergent expansion.

The techniques typically used to understand statistical physics models on random graphs are very different from ours:
typical methods include the first and second moment methods, the cavity method, and the interpolation method [18, 19, 23,
57, 59, 65]. Using polymer models and the cluster expansion allows us to obtain results that are not, to date, accessible via
the aforementioned techniques. The strengths of our approach include: the ability to make statements about every vertex
or pair of vertices in a graph (e.g., Theorem 1, part (6)); a precise characterization of phase coexistence (Theorem 2); and
control of both the ordered and disordered contributions to the partition function at and away from criticality which leads
to strong algorithmic consequences (Theorems 4 and 6). On the other hand, our approach is inherently perturbative in
that it requires q to be large, and it does not as readily yield explicit formulae for critical thresholds.

1.1. The phase diagram of the random cluster model on random graphs

On Zd, meaning on sequences of graphs Gn ↑ Zd in an appropriate sense, a great deal is known about the random
cluster model, see [24] and references therein. When q ≥ 1 these models are known to undergo a phase transition at a
critical temperature βc(q) from a disordered state (β < βc) to an ordered state (β > βc). The nature of this transition
depends on the value of q and the dimension d. For the present paper the most relevant results concern when q is large.
In this case configurations in the disordered state typically consist of relatively few edges, while in the ordered state
typical configurations have relatively few missing edges. Moreover, exactly at βc typical configurations look like either
an ordered or a disordered configuration. In physical parlance, the phase transition is first-order [52]. Finer results
concerning finite-size scaling are also known [12]. Roughly speaking, these results concern how |V (Gn)|−1

logZGn
differs from limn→∞ |V (Gn)|−1

logZGn , i.e., the corrections to the leading order behavior of logZGn as Gn ↑ Zd.
Below we will identify a first-order phase transition for the random cluster model on random regular graphs (Theorem 1)
and determine the finite-size scaling of the (random) log partition function (Theorem 3).
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1.1.1. Expansion profiles
To state the class of graphs to which our results apply, we need a refined notion of edge expansion. The expansion profile
of a ∆-regular graph G= (V,E) is

φG(α) := min
S⊂V,|S|≤α|V |

|E(S,Sc)|
∆|S|

, α ∈ (0,1/2], (2)

where E(S,Sc)⊂E is the set of edges with one vertex in S, one in Sc. For ∆ ∈ {3,4, . . .} and δ ∈ (0,1/2) we will be
interested in the family G∆,δ of ∆-regular graphs that satisfy:

1. φG(1/2)≥ 1/10,
2. φG(δ)≥ 5/9.

We note that the constants 1/10 and 5/9 are somewhat arbitrary; what we use in our proofs is that they are greater than 0
and 1/2, respectively.

1.1.2. Locally tree-like graphs and local convergence of probability measures
Given a graph G, let BT (v) denote the depth-T neighborhood of a vertex v ∈ V (G). A sequence of graphs Gn is locally
tree-like if for every T > 0, with probability tending to one as n→∞ over the choice of a uniformly random vertex v
from Gn, BT (v) is a tree.

Recall that random cluster measures on the infinite ∆-regular tree T∆ can be defined by taking weak limits of measures
on finite trees with boundary conditions. Two random cluster measures µfree and µwire on T∆ are of particular importance:
they are respectively obtained by taking weak limits with free boundary conditions and with wired boundary conditions,
i.e., all leaves ‘wired’ into one connected component. See [38, Chapter 10] for more details, including a proof that these
weak limits exist and are unique. The measure µfree is particularly simple as it is an independent edge percolation measure.

In what follows we adopt the convention that the index of a graph sequence denotes the number of vertices in the
graph: |V (Gn)|= n. We further assume n is increasing, but not necessarily through consecutive integers, so as to ensure
n∆/2 is an integer. Limits as n→∞ are understood in this sense.

For a sequence of ∆-regular graphs Gn we say a corresponding sequence µn of probability measures on {0,1}E(Gn)

converges locally to a random cluster measure µ∞ on the infinite ∆-regular tree T∆, denoted µn
loc−−→ µ∞, if for every

ε,T > 0 and n sufficiently large, with probability at least 1 − ε over the choice of a random vertex v from Gn, the
distribution of µn restricted to BT (v) is within ε total variation distance of the distribution of µ∞ restricted to the depth-
T neighborhood of the root. See [59, 65] for examples and more details of this notion of convergence.

1.1.3. Main probabilistic results and related literature
The statements of our results require some notation. Fix ∆, δ in the definition of G∆,δ and let η := min{1/100, δ/5}.
Given a graph Gn = (V,E) on n vertices, let Ωn = {0,1}E and let

Ωdis := {A ∈Ωn : |A| ≤ η|E|}

Ωord := {A ∈Ωn : |A| ≥ (1− η)|E|}

Ωerr := Ωn \ (Ωdis ∪Ωord)

so that Ωn = Ωdis tΩord tΩerr. We write µn for the random cluster measure on Gn.
Recall that a sequence of probability measures µn on Ωn has exponential decay of correlations with rate ε > 0 if there

exists a C > 0 such that

|µn(e, f)− µn(e)µn(f)| ≤Ce−ε·distGn (e,f), for all e, f ∈E(Gn),

where distGn(·, ·) is the graph distance on Gn and we have used the customary abuse of notation µn(e) = µn({A⊂E :
e ∈A}) and similarly for other marginals.

Finally with A denoting the random edge subset drawn according to a random cluster measure, given a sequence of
random cluster measures µn we say |A| obeys a central limit theorem under µn if for each t ∈R,

lim
n→∞

P

(
|A| −Eµn |A|√

varµn(|A|)
≤ t

)
=

1√
2π

∫ t

−∞
e−x

2/2 dx .

Theorem 1. Suppose ∆≥ 5, δ > 0. For q = q(∆, δ) sufficiently large there exists a βc(q,∆) so that the following holds
for every sequence Gn ∈ G∆,δ of locally tree-like graphs.
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1. The limit limn→∞ n
−1 logZGn exists and is an analytic function of β on (0,∞)\{βc}. For β ≤ βc the limit equals

fdis = log q + ∆
2 log

(
1 + eβ−1

q

)
, while for β ≥ βc the limiting value is given by a function ford(q,∆, β) defined

in Section 3.
2. For β < βc, lim supn→∞ n

−1 logµn(Ωn \Ωdis)< 0.
3. For β > βc, lim supn→∞ n

−1 logµn(Ωn \Ωord)< 0.

4. For β < βc, µn
loc−−→ µfree as n→∞.

5. For β > βc, µn
loc−−→ µwire as n→∞.

6. For β 6= βc, µn exhibits exponential decay of correlations.
7. For β 6= βc, |A| obeys a central limit theorem under µn.
8. For all β ≥ 0, µn(Ωerr) =O(e−n).

Theorem 1 gives a rather complete description of the phase transition and probabilistic properties of the random cluster
model on locally tree-like graphs in G∆,δ . At all temperatures, all but an exponentially small fraction of the measure is
on configurations with at most an η- or at least a (1− η)-fraction of all edges. There is a unique phase transition at βc,
Ωdis has all but an exponentially small fraction of the measure for β < βc, and Ωord has all but an exponentially small
fraction of the measure for β > βc. Correlations decay exponentially at β 6= βc. In fact, as the proof will show, we can
make stronger statements about correlation decay conditional on Ωdis or Ωord; see also Lemma 19 below. As part of our
proof we determine the critical point asymptotically in q: βc(q,∆) = (1 + oq(1)) 2 log q

∆ , see Section 3.
For the q-color Potts model, some of these results were known previously, and without the restriction that q is large.

Dembo, Montanari, and Sun [23] proved that for any sequence Gn of 2∆-regular locally tree-like graphs the limit
1
n logZGn exists for all β and equals the replica-symmetric Bethe formula for the free energy, given implicitly by a
variational formula. For random ∆-regular graphs Galanis, Štefankovič, Vigoda, and Yang [32] established a detailed
picture of the phase transition, and they determined βc explicitly:

βc(q,∆) = log
q− 2

(q− 1)1−2/∆ − 1
(3)

for q ≥ 3 and ∆ ≥ 3 integers. They also proved versions of Theorem 1 parts (2), (3), and (7) for the Potts model with
slightly different definitions of Ωord and Ωdis.1 Taken together with the results of [23] this implies the formula (3) for
βc for integral q ≥ 3 holds for all sequences of ∆-regular locally tree-like graphs. For the case q = 2 of the Ising model,
Dembo and Montanari [22] and Montanari, Mossel, and Sly [59] proved local convergence results for locally tree-like
graphs. See also [65] for further results on general 2-spin models on locally tree-like graphs. Giardinà, Giberti, van der
Hofstad, and Prioriello [35] proved a central limit theorem for the magnetization of Ising model in random regular graphs
in the uniqueness regime. To the best of our knowledge Theorem 1 gives the first central limit theorem in a supercritical
phase of a spin model on a sparse random graph.

It is important to note that βc in Theorem 1 is not the Gibbs uniqueness threshold βu of the random cluster model
on the infinite tree. Instead it is the ‘order-disorder threshold’ in the terminology of [32]. In particular, βu < βc. We also
remark that there is another uniqueness threshold β?u > βc conjectured by Häggström [42], but this conjecture concerns a
class of Gibbs measures that does not include µfree.

Note that the correlation decay given in part (6) of Theorem 1 is very strong compared to decorrelation statements for
random graphs outside the range of tree uniqueness obtained by other methods. The statements in, e.g. [18, 19], assert that
the correlation between two randomly chosen vertices in the graph tends to 0 with high probability, while the correlation
decay property in part (6) holds for every pair of vertices, and moreover the decay is exponential in the distance.

Next we turn our attention more specifically to random ∆-regular graphs, i.e., when Gn is chosen uniformly at random
from the set of all ∆-regular graphs on n vertices. Recall we implicitly assume n∆/2 is an integer. As alluded to above,
Theorems 1 and 6 apply to the random ∆-regular graph when ∆ ≥ 5: in Proposition 38 below we cite results showing
that there is a δ > 0 such that realizations of the random graph belong to G∆,δ with high probability. Here and in what
follows, we say a property Pn of graphs on n vertices holds with high probability if P [Pn] = 1− o(1) as n→∞.

Theorem 1 primarily concerned the behavior at β 6= βc, but it is also interesting to investigate the behavior precisely at
βc. For the Potts model, Galanis, Štefankovič, Vigoda, and Yang [32] showed that with high probability over the choice of
Gn, at β = βc both µn(Ωord)≥ n−c and µn(Ωdis)≥ n−c for some constant c > 0, and also that µn(Ω \ (Ωdis ∪Ωord)) is
exponentially small.2 This is a logarithmic-scale phase coexistence result, and using this, they proved that the Swendsen–
Wang dynamics mix slowly at criticality. Our next result gives a complete phase coexistence result for the random cluster

1The definitions of Ωord and Ωdis in [32] specify the number of vertices receiving each of the q-colors.
2In fact [32] uses slightly different definitions of Ωord and Ωdis , as was mentioned earlier.
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model, and hence also the Potts model, on the random ∆-regular graph for ∆≥ 5 and q large by determining precisely
the limiting distribution of µn(Ωdis) and µn(Ωord) at criticality.

Theorem 2. For ∆≥ 5 and q = q(∆) large enough, there is a non-constant, positive random variable Q so that for the
random cluster model on the random ∆-regular graph at β = βc:

1. The random variable µn(Ωdis) converges in distribution to 1/(Q+ 1) and µn(Ωord) converges in distribution to
Q/(Q+ 1) as n→∞

2. The random cluster measure µn conditioned on Ωdis and on Ωord converges locally to µfree and µwire respectively.
3. Q/q→ 1 in probability as q→∞.

We will also prove a stronger form of Theorem 2 part (2), showing that this holds for all locally tree-like graphs in
G∆,δ for β in an interval around βc, see Proposition 34.

Theorem 2 is derived via the following result, in which fdis and ford are the functions from Theorem 1 part (1). In
particular, the result will be used to characterize the distribution of the random variable Q from Theorem 2. The functions
αdis
k and αord

k in the theorem statement depend on q,∆, β and are defined in Section 6.

Theorem 3. Fix ∆ ≥ 5. Let Y1, Y2, . . . be a sequence of independent Poisson random variables where Yk has mean
(∆− 1)k/(2k). For the random ∆-regular graph Gn and q = q(∆) large enough,

1. For β < βc, logZGn − nfdis converges in distribution to W dis given by the almost surely absolutely convergent
series

W dis :=
∑
k≥3

αdis
k Yk .

2. For β > βc, logZGn − nford converges in distribution to W ord given by the almost surely absolutely convergent
series

W ord := log q+
∑
k≥3

αord
k Yk .

3. For β = βc,

ZGn
exp (nfdis(βc))

−→ exp(W dis) + exp(W ord)

in probability as n→∞.

The random variable Q in Theorem 2 is exp(W ord −W dis) with β = βc. Theorem 3 can be viewed as a kind of
finite-size scaling result, as the random variables W dis and W ord capture the deviations in ZGn from the bulk tree-like
behavior. Theorem 2 is a comparison of the size of these corrections for the ordered and disordered contributions to the
partition function.

The Poisson random variables Yk in Theorem 3 correspond to the limiting distribution of the number of cycles of length
k in the random regular graph. Similar Poisson random variables arise in analogous results for a class of random constraint
satisfaction problems (including random graph coloring) in the replica symmetric regime that have been obtained by
combining the small subgraph conditioning method with the second-moment method or rigorous implementations of the
cavity method [18, 19, 63]. See also [17, 55, 60] for more on finite-size effects in spin models on random graphs and
corrections to the Bethe formula due to short cycles.

Remark 1. For integer q, the results of Theorems 1 and 2 can be immediately transferred to the Potts model via the
Edwards-Sokal coupling. In particular this means that the function βc(q,∆) in Theorem 1 must agree with (3) for integer
q.

Remark 2. The lower bound ∆ ≥ 5 in Theorems 1 and 2 and Theorem 4 below facilitates some arguments involving
small-set expansion. We believe our results could be extended to ∆ = 3,4 with a more delicate analysis.

While we are able to obtain a much more complete description of the phase diagram of the random cluster and Potts
models on random ∆-regular graphs than in previous works, we emphasize that our techniques are inherently perturbative,
i.e., rely on taking q large. In particular, our arguments require q ≥∆C∆ for some fixed, but large, C . It would be very
interesting to extend these results to all q > 2.
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1.2. Approximate counting and sampling

One motivation for this paper is to investigate the relationship between phase transitions and computational complex-
ity. The family of graphs most central to the interplay between phase transitions and algorithms are arguably random
graphs. Random graphs provide candidate hard instances for several important NP-hard problems like max independent
set, q-coloring, and MAX-CUT. Explanations for the computational hardness of these instances are given by structural
properties of the relevant statistical physics models (hard-core model, anti-ferromagnetic Ising and Potts models), includ-
ing replica symmetry breaking of the solution space as predicted by the cavity method from statistical physics [1, 51, 58].
On the other hand, another class of models, including the hard-core model on random bipartite graphs and the ferromag-
netic Ising and Potts models, do not exhibit replica symmetry breaking: they are replica symmetric over the entire range
of parameters [23, 65]. Nonetheless these models still play an important role in computational complexity: they are used
as gadgets in hardness reductions for approximate counting and sampling [27, 30, 32, 64, 65].

In this paper we investigate approximate counting and sampling problems in replica symmetric models on random
graph through the lens of the q-color ferromagnetic Potts and random cluster models. These models exhibit a first-order
‘disorder/order’ phase transition (proved for the Potts model in [32], and for the random cluster model in this paper),
and this phase transition has been used in the construction of gadgets to show #BIS-hardness of sampling from the Potts
model on bounded degree graphs [32]. But are these instances computationally hard themselves? For the case of large q,
we establish that the answer is ‘no’: there are efficient approximate sampling and counting algorithms for the Potts and
random cluster models at all temperatures. Very few all-temperature algorithms for statistical physics models on random
regular graphs are known (examples include the special cases of the Ising and monomer-dimer models for which the
problems are tractable on all graphs [48, 49]). To the best of our knowledge this is the first such result for a problem
where approximate counting is NP- or #BIS-hard in the worst case (in this case, #BIS-hard). Our counting algorithms are
deterministic, and rely crucially on exploiting the first-order phase transition established in Theorem 1.

There are two main computational problems associated to statistical physics models like the random cluster and Potts
models: the counting problem of computing the partition function Z , and the sampling problem of outputting a random
configuration distributed as µ. In general these problems are #P-hard even for restricted classes of graphs and parameter
settings. As a result, current research is focused on finding efficient approximate counting and sampling algorithms. We
say Ẑ is an ε-relative approximation to Z if e−εẐ ≤ Z ≤ eεẐ . A fully polynomial-time approximation scheme (FPTAS) is
an algorithm that, given a graph G and any ε > 0, outputs an ε-relative approximation to ZG and runs in time polynomial
in 1/ε and |V (G)|. A polynomial-time sampling algorithm is a randomized algorithm that, given a graph G and any
ε > 0, outputs a configuration A with distribution µ̂ in time polynomial in |V (G)| and 1/ε such that ‖µG − µ̂‖TV ≤ ε.

There is an extensive literature on approximate counting and sampling from the Potts and random cluster models which
we discuss below in Section 1.2.1. First, however, we state our algorithmic results. Recall the class of graphs G∆,δ from
Section 1.1.1.

Theorem 4. For every ∆≥ 5, δ > 0, and q large enough as a function of ∆, δ, there is an FPTAS and a polynomial-time
sampling algorithm for the q-color Potts and random cluster models at all inverse temperatures β ≥ 0 over the class
G∆,δ .

Corollary 5. For ∆≥ 5 and q = q(∆) large enough, with high probability over the random ∆-regular graph, there is a
FPTAS and polynomial-time sampling algorithm for the q-color Potts and random cluster models at all temperatures.

In particular, there is an algorithm that in polynomial-time decides to accept or reject a random n-vertex, ∆-regular
graph G. The acceptance condition is simply that G ∈ G∆,δ , see Lemma 38 below. For accepted graphs, the algorithm of
Theorem 4 can be used.

Our methods also allow us to obtain negative algorithmic results, i.e., to establish exponentially slow mixing of some
well-known Markov chains. Precise definitions of the Markov chains appearing in the next theorem, and of mixing times,
can be found in Section 4.

The Swendsen–Wang dynamics [66] are non-local dynamics for the Potts model devised to circumvent the problem
of phase coexistence by allowing re-coloring of many vertices in a single step of the chain. On the lattice (Z/nZ)d (with
q sufficiently large) the Swendsen–Wang dynamics are expected to be fast except at criticality, where the mixing time
is exp(Ω(nd−1)) [11, 33]. On the other hand, for the mean-field model (i.e., on the complete graph) the mixing time
is exponentially slow in an entire interval around βc [5, 31, 34, 37]. It has been conjectured that the Swendsen–Wang
dynamics for random regular graphs exhibit mean-field behavior, mixing exponentially exponentially slowly for q > 2
and β in the entire interval (βu, β

?
u). See [4] for a discussion. The next theorem takes a step towards confirming that the

mean-field picture is correct for random regular graphs by proving slow mixing in an interval. Previously slow mixing
was only known at criticality, consistent with both lattice and mean-field-type behavior [4, 32].
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Theorem 6. For all ∆ ≥ 5 and q = q(∆) large enough, there is an interval (βm, βM ) containing βc so that for any
sequence of locally tree-like graphs Gn ∈ G∆,δ , the mixing times of the random cluster Glauber dynamics and the
Swendsen–Wang dynamics3 are eΩ(n).

As remarked above, slow mixing was previously only known at the critical point β = βc on random ∆-regular graphs
for q ≥ 2∆/ log ∆ [32]. Our ability to prove Theorem 6 is due to the fact that our methods give us detailed information
about the relative probabilities of ordered and disordered configurations in an interval around βc.

1.2.1. Related algorithmic work
For the special case of the Ising model (q = 2), Jerrum and Sinclair [49] gave a fully polynomial-time randomized
approximation scheme (FPRAS) for all graphs and all inverse temperatures β ≥ 0. See also [40], which shows that the
q = 2 random cluster Glauber dynamics are rapidly mixing on all graphs. When q = 1 the random cluster model is
Bernoulli bond percolation, and algorithmic tasks are trivial. The existence of efficient algorithms at all temperatures and
on all graphs appears to be a rather special property, though. For q /∈ {1,2} most positive algorithmic results to date have
been restricted to the high-temperature regime (β small) or, when q is integral, the low-temperature regime (β large).

The most relevant results for the present paper are that, for the case of random ∆-regular graphs, Blanca, Galanis,
Goldberg, Štefankovič, Vigoda, and Yang [3] give an efficient sampling algorithm for the Potts and random cluster
models when the temperature is above the uniqueness threshold of the infinite ∆-regular tree, i.e., β < βu(T∆); Blanca
and Gheissari then showed O(n logn) mixing of the random cluster dynamics for β < βu [4]. In a more general setting,
Bordewich, Greenhill, and Patel showed the Glauber dynamics for the Potts model on graphs of maximum degree at most
∆ mix rapidly for β ≤ (1 + oq(1)) log q/(∆− 1) and showed slow mixing of the Glauber dynamics on random regular
graphs for β ≥ (1 + oq(1)) log q/(∆− 1− 1/(∆− 1)) [8]. See also [20] for deterministic algorithms in a slightly smaller
range of β.

On the hardness side, Goldberg and Jerrum [36] showed that approximating the Potts model partition function ZPotts

for q ≥ 3 on general graphs is #BIS-hard; that is, it is as hard as approximating the number of independent sets in a
bipartite graph [25]. Galanis, Štefankovič, Vigoda, and Yang [32] refined these results by showing that for β > βc(q,∆)
(recall (3)), it is #BIS-hard to approximate ZPotts on graphs of maximum degree ∆. The description of the phase diagram
of the Potts model on random regular graphs found in [32] and discussed above is a crucial ingredient for this result.

For q > 2 the algorithms mentioned above apply only in the high-temperature regime. At very low temperatures
efficient sampling and counting algorithms have recently been developed for structured classes of graphs [2, 43, 45] and
for expander graphs [14, 28, 29, 46]. By making use of the ideas in [43] in combination with the application of Pirogov-
Sinai theory to the random cluster model in [11], Borgs, Chayes, Helmuth, Perkins, and Tetali [9] gave efficient counting
and sampling algorithms for the random cluster model on d-dimensional tori (Z/nZ)d at all temperatures when q is large
enough as a function of d. As the tori (Z/nZ)d approximate Zd as n→∞, the results of [9] can be interpreted as saying
that the phase transition for the q-state random cluster model on Zd is not an algorithmic barrier, at least when q is large.
Our Theorem 4 has a similar interpretation: informally speaking, it says that the phase transition for the q-state random
cluster model on random ∆-regular graphs is not an algorithmic barrier when q is large.

On the other hand, it is shown in [32] that this phase transition does have a link to computational complexity, since it
can be used to construct gadgets which show the #BIS-hardness of approximating the Potts partition function for β > βc.
Similarly, while the phase transition in the hard-core model on random ∆-regular bipartite graphs has a direct link to
the NP-hardness of approximating the independence polynomial on bounded degree graphs [30, 64, 65, 68], it is still
plausible that there are efficient sampling and counting algorithms for the hard-core model on random bipartite graphs at
all activities. For activities large enough, efficient algorithms are given in [16, 46, 53], with the last paper obtaining the
best known bound of λ= Ω(log ∆/∆). The authors of [16] observe, however, that Ω(log ∆/∆) appears to be a barrier
for the type of polymer model argument used in these papers, and so finding efficient algorithms for the hard-core model
at and slightly above criticality will likely require new ideas and techniques.

1.3. Open problems

For integer q, the explicit formula (3) for βc(q,∆) was found in [32]. We conjecture that this formula holds for non-
integral q as well:

3For non-integer q we consider the Chayes-Machta dynamics [15], a generalization of Swendsen–Wang to non-integer q. The results also apply to
the Potts Glauber dynamics.
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Conjecture 7. For all ∆ ≥ 3, q > 2, the critical point of the random cluster model on the random ∆-regular graph
satisfies

βc(q,∆) = log
q− 2

(q− 1)1−2/∆ − 1
.

It would be interesting to see if the methods of [23, 32] could be generalized to the random cluster model to prove this
conjecture.

As discussed earlier, our methods rely in an essential way on q being very large. Phenomenologically, one expects the
same behavior for all q > 2. It would be very interesting to extend our results to this setting. One possible approach, at
least for algorithmic results, is to show that a Markov chain started from either A = ∅ or A = E can be used to obtain
approximate samples.

1.4. Organization of the paper

In Section 2 we define ordered and disordered polymer models, and prove estimates showing that their cluster expansions
converge in overlapping regions of parameters that cover all inverse temperatures β when q is large as a function of ∆.

The definitions and estimates of Section 2 allows us to study the random cluster model via the polymer models. In
Section 3 we exploit this polymer model framework to prove Theorem 1. In Section 5 we show that the random ∆-
regular graph belongs to G∆,δ with high probability and that membership in G∆,δ can be checked efficiently. In Section 6
we prove Theorems 2 and 3. In Section 4 we prove Theorem 6.

The estimates of Section 2 reduce the algorithmic problems to algorithmic problems concerning the two polymer
models. In Section 7 we provide efficient approximate counting and sampling algorithms for the polymer models, proving
Theorem 4.

2. Polymer model representations and estimates

Recall the definition of G∆,δ from Section 1.1.1. In this section we assume the following.

Assumption 1. We assume q ≥ 1, ∆≥ 5, G ∈ G∆,δ , and set parameters

n := |V (G)| , eβ0 − 1 := q1.9/∆, eβ1 − 1 := q2.1/∆, η := min{1/100, δ/5}. (4)

2.1. A priori estimates

The intuition for understanding the large-q random cluster model on an expander graph is that at all temperatures a typical
configuration consists of either very few of the edges or nearly all of the edges. The following lemma will allow us to
make this precise. Recall c(A) is the number of connected components induced by an edge set A.

Lemma 8. Suppose G ∈ G∆,δ and n≥ 360/(ηδ). For A⊂E such that η|E| ≤ |A| ≤ (1− η)|E|,

c(A)

n
+
|A|
|E|
≤ 1− η/40 .

Proof. Given A, let V1 denote the set of vertices in connected components of size 1, let V2 denote the set of vertices in
connected components of size at least 2 and at most δn, and let V3 be the remaining vertices in G. Let n1 = |V1| and
n2 = |V2|. We will prove the lemma by a case analysis based on n1 +n2. Before doing this, we collect some useful facts.

First, observe that

c(A)≤ n1 + n2/2 + 1/δ . (5)

Second, note that if C1, . . . ,Ck are the vertex sets of the connected components of A belonging to either V1 or V2, then

|E| − |A| ≥ 1

2

k∑
i=1

|E(Ci,C
c
i )|+ 1

2
|E(V3, V

c
3 )| ,
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(recall that for S ⊆ V (G), E(S,Sc) denotes the set of edges of G with one vertex in S and the other in Sc). Using the
definition of G∆,δ to bound |E(V3, V

c
3 )| and |E(Ci,C

c
i )| from below, it follows that

|E| − |A| ≥ n1
∆

2
+ n2

5

9

∆

2
+ min{n1 + n2, n− n1 − n2} ·

∆

20
. (6)

Combining (5) and (6) and recalling that |E|= n∆/2 gives

c(A)

n
+
|A|
|E|
≤ 1− 1

18

n2

n
− min{n1 + n2, n− n1 − n2}

10n
+

1

δn
. (7)

We now perform the case analysis.
First suppose that n1+n2

n ≤ η/2. Then by (5) and the assumption that |A|/|E| ≤ 1− η, we have

c(A)

n
+
|A|
|E|
≤ η

2
+

1

δn
+ 1− η = 1− η

2
+

1

δn
.

Next suppose n1+n2

n > 1− η/2. If n2/n < η/2, then n1/n > 1− η. This implies

|E| − |A| ≥ n1
∆

2
> (1− η)|E|

which contradicts the assumption on A. We may therefore assume that n2/n≥ η/2 and so (7) gives

c(A)

n
+
|A|
|E|
≤ 1− η

36
+

1

δn
.

Finally if η/2≤ n1+n2

n ≤ 1− η/2 then (7) gives

c(A)

n
+
|A|
|E|
≤ 1− η

20
+

1

δn
.

In each case we’ve shown that c(A)
n + |A|

|E| ≤ 1− η
36 + 1

δn , and the lemma follows.

Recall that Ω = {0,1}E , and that Z =
∑
A∈Ω q

c(A)(eβ−1)|A|. When we write A ∈Ω we call the edges in A occupied
and the edges not in A unoccupied. In light of Lemma 8, we decompose the state space into three pieces. Recall that

Ωdis := {A ∈Ω : |A| ≤ η|E|}

Ωord := {A ∈Ω : |A| ≥ (1− η)|E|}

Ωerr := Ω \ (Ωdis ∪Ωord) .

Let Zord,Zdis, Zerr be the corresponding random cluster model partition functions. Thus

Z = Zord +Zdis +Zerr . (8)

The next lemma shows that Zerr represents an exponentially small fraction of the partition function. It also establishes
that unless β lies in the interval (β0, β1), then up to an exponentially small correction, Z is given by Zord or Zdis.

Lemma 9. If q and n are sufficiently large as a function of ∆ and δ then the following hold.

1. For β ≥ 0, Zerr/Z ≤ e−n.
2. For β ≥ β1, Zdis/Z ≤ e−n.
3. For β ≤ β0, Zord/Z ≤ e−n.

Proof. Let z := max
{
q, (eβ − 1)∆/2

}
. Then Z ≥ zn so that for A ∈Ω,

qc(A)(eβ − 1)|A|

Z
≤ z2|A|/∆+c(A)−n .
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By Lemma 8, we have for every A ∈Ωerr,

2|A|
∆

+ c(A)− n≤−ηn
40

.

Since |Ωerr| ≤ |Ω|= 2n∆/2, it follows that

Zerr/Z ≤ 2n∆/2z−ηn/40 ≤ 2n∆/2q−ηn/40 ,

which proves part (1) for q = q(∆, δ) large enough.
Next suppose β ≥ β1. To prove part (2), recall that η ≤ 1/100, so using |Ωdis| ≤ 2n∆/2,

Zdis

Z
≤ (eβ − 1)−∆n/2Zdis ≤ (eβ − 1)(η−1)∆n/22∆n/2qn ≤ q−2.1·.99n/2+n2∆n/2 ≤ e−n

for q = q(∆) large enough.
Lastly, suppose β ≤ β0. Then, using that A ∈Ωord implies c(A) is at most ηn,

Zord

Z
≤ q−nZord ≤ q(η−1)n2∆n/2(eβ0 − 1)∆n/2 ≤ q−.99n+.95n2∆n/2 ≤ e−n

for q = q(∆) large enough, which proves part (3).

Lemma 9 implies the contribution of Zerr to Z is negligible at all temperatures, and so it suffices to control Zdis, Zord

or both, depending on the value of β. We will do this by defining two polymer models and proving they have convergent
cluster expansions for β ∈ [0, β1] and β ∈ [β0,∞) respectively. Crucially, since β0 < β1, these two intervals overlap.

2.2. Polymer models

Let P be a collection of (possibly edge-labelled) finite connected subgraphs of some given finite or infinite graph. We
refer to the elements of P as polymers. We say that two polymers γ1, γ2 ∈ P are compatible, denoted γ1 ∼ γ2, if they are
vertex disjoint, and we write γ1 � γ2 to denote incompatibility. Let w : P → C; w is called a weight function. The triple
(P,∼,w) is a special case of a polymer model as defined by Kotecký and Preiss [50], generalizing a technique used to
study statistical mechanics models on lattices, see, e.g., [39].

Let P ′ ⊆P be a finite subset of polymers, and let Ω(P ′) denote the family of all sets of pairwise compatible polymers
from P ′. Then the expression

Ξ(P ′) :=
∑

Γ∈Ω(P′)

∏
γ∈Γ

w(γ)

is the partition function of the polymer model (P ′,∼,w). The cluster expansion is a formal power series for log Ξ(P ′).
In order to describe the cluster expansion we require some notation.

Suppose that Γ = (γ1, . . . , γt) is an ordered tuple of polymers. We define the incompatibility graph HΓ to be the graph
on the vertex set 1, . . . , t where {i, j} ∈E(HΓ) if and only if i 6= j and γi is incompatible with γj . A cluster is an ordered
tuple Γ of polymers whose incompatibility graph HΓ is connected. Given a graph H , the Ursell function φ(H) of H is

φ(H) :=
1

|V (H)|!
∑

A⊆E(H)
spanning, connected

(−1)|A| .

Let C be the set of all clusters of polymers from P ′. The cluster expansion is the formal power series in the weights
w(γ)

log Ξ(P ′) =
∑
Γ∈C

w(Γ) , (9)

where

w(Γ) := φ(HΓ)
∏
γ∈Γ

w(γ) .
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The convergence of the infinite series on the right-hand side of (9) is not automatic. The following theorem gives a
convenient condition for convergence, and a useful consequence.

Let E(γ) denote the set of edges in the polymer γ. For a cluster Γ let ‖Γ‖ :=
∑
γ∈Γ |E(γ)| and write Γ� γ if there

exists γ′ ∈ Γ so that γ � γ′.

Theorem 10 ([50]). Suppose that there exists r ≥ 0 such that for all polymers γ ∈ P ,∑
γ′�γ
|w(γ′)|e(1+r)|E(γ′)| ≤ |E(γ)| , (10)

then the cluster expansion for log Ξ(P ′) converges absolutely for every finite subset P ′ ⊆P . Moreover, for all polymers
γ, ∑

Γ∈C, Γ�γ
|w(Γ)| er‖Γ‖ ≤ |E(γ)| . (11)

Our applications of polymers models will involve weights w(γ) that are analytic functions of a parameter β. By
verifying that (10) holds uniformly for all β in a domain in the complex plane, we will obtain analyticity of log Ξ in the
same domain, as Theorem 10 then implies that the right-hand side of (9) converges uniformly in β in the domain.

Note that when the weights w(γ) of a polymer model are all non-negative reals, we can define an associated Gibbs
measure ν on Ω(P ′) by

ν(Γ) :=

∏
γ∈Γw(γ)

Ξ(P ′)
. (12)

2.3. Disordered polymer model

In this section we describe a polymer model that captures deviations from the disordered ground state Adis = ∅.
Define disordered polymers to be connected subgraphs (V ′,E′) of G with |E′| ≤ ηn. Let Pdis = Pdis(G) be the set

of disordered polymers in G. Two polymers are compatible if they are vertex disjoint. For a polymer γ, let |γ| denote the
number of vertices of γ and |E(γ)| the number of edges. The weight of the polymer is defined to be

wdis
γ := q1−|γ|(eβ − 1)|E(γ)|.

The disordered polymer partition function is

Ξdis :=
∑

Γ

∏
γ∈Γ

wdis
γ ,

where the sum is over all compatible collections of disordered polymers.

Proposition 11. If q and n are sufficiently large as a function of ∆ and δ, then for all β ∈C such that
∣∣eβ − 1

∣∣≤ eβ1 −1,
the disordered polymer model satisfies (10) with r = log q/(4∆).

Proof. We will show that for β ≤ β1 and for every v ∈ V (G),∑
γ3v

e(1+r)|E(γ)| ∣∣wdis
γ

∣∣≤ 1

2
. (13)

This is sufficient to verify (10) for the disordered polymer model: given a polymer γ′, sum (13) over all vertices of γ′.
Since |γ′|/2≤ |E(γ′)|, we obtain (10). We will prove (13) in three steps.

First we consider polymers with |E(γ)|= 1 and |E(γ)|= 2. The contribution to the left-hand side of (13) from such
polymers is exactly e1+r∆|eβ − 1|q−1 + 3

2e
2+2r∆(∆− 1)|eβ − 1|2q−2. Since ∆≥ 5 and

∣∣eβ − 1
∣∣≤ q 2.1

∆ , this is at most
1/6 for q = q(∆) large enough.

Next we consider polymers with 2< |E(γ)|<∆/2. Note that |γ| ≥
√

2|E(γ)| for any polymer. By [10, Lemma 2.1
(c)] we can bound the number of polymers with k edges containing a fixed vertex v by (e∆)k . We bound the contribution
of these polymers to the left-hand side of (13) by∑

3≤k<∆/2

(e2+r∆)kq1−
√

2k
∣∣eβ − 1

∣∣k ≤ ∑
3≤k<∆/2

(e2+r∆)kq1−
√

2k+ 2.1
∆ k ≤

∑
3≤k<∆/2

|e2+r∆|kq2.05−
√

2k .
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Since
√

6− 2.05> 1/8, this is at most 1/6 for q = q(∆) large enough.
For larger polymers we need two facts. First, that ∆ |γ| ≥ 2 |E(γ)| + |E(V (γ), V (γ)c)|. Second, since γ defines a

connected subgraph we have |γ| ≤ |E(γ)| + 1 ≤ 2ηn ≤ δn, and so the vertices of γ satisfy the small set expansion
condition guaranteed by G ∈ G∆,δ . Together these facts imply |γ| ≥ 9|E(γ)|

2∆ . Using [10, Lemma 2.1 (c)] we bound the
contribution of these polymers to the left-hand side of (13) by∑

k≥∆/2

(e2+r∆)kq1− 9k
2∆

∣∣eβ − 1
∣∣k ≤ ∑

k≥∆/2

(e2+r∆)kq1− 9k
2∆ + 2.1k

∆ =
∑

k≥∆/2

(e2+r∆)kq1− 12k
5∆ ,

and again this is at most 1/6 for q = q(∆) large enough.

We remark that it is useful to consider complex β here in order to derive analyticity properties of limiting free energies
later (see for example Lemma 29 below).

2.3.1. Disordered polymer measure on edges
In addition to the Gibbs measure for the disordered polymer model given by (12), the disordered polymer model also
defines a probability measure νdis on Ω = {0,1}E via projection. To obtain a sample A from νdis, first sample a config-
uration of compatible disordered polymers Γ from νdis, that is, with probability

∏
γ∈Γw

dis
γ /Ξdis. Second, let

A=
⋃
γ∈Γ

E(γ) .

We will show in Section 2.6 that when the disordered cluster expansion converges, i.e., for β ≤ β1, the distribution νdis

is very close to the distribution of the random cluster model measure µ conditioned on Ωdis.

2.4. Ordered polymer expansion

Next we define a polymer model that describes deviations from the ordered ground state Aord = E. We need a more
complicated construction compared to the disordered polymer model to handle the non-local cluster weight. The basic
idea of the ordered polymer model is that, given an edge configuration A, polymers represent the connected components
of the ‘boundary’ B(A) of A. We begin by making this precise.

2.4.1. Boundary of occupied edges
The precise notion of boundary is given by the following construction. Given A⊆E, let B0(A) be the set of unoccupied
edges E \A. To form Bi+1(A) from Bi(A) we add any edge e incident to a vertex v with at least 5∆/9 incident edges in
Bi(A). This procedure stabilizes and results in a set B∞(A) of edges, of which B0(A) are unoccupied and B∞(A)\B0(A)
are occupied.

Lemma 12. For any A⊆E, the algorithm to generate B∞(A) runs in time quadratic in |B0(A)|. Moreover, |B∞(A)| ≤
9 |B0(A)|.

Proof. First, observe that the same set B∞(A) results no matter the order in which edges are added. The first claim
therefore will follow from the second as there are at most 9 |B0(A)| edges added, and finding the next edge to add (if one
exists) takes time at most 9∆ |B0(A)|.

We now prove the second claim. For i≥ 0, say that an edge e ∈ Bi(A) witnesses an edge f ∈ Bj(A)\Bj−1(A) (where
j > i) if e∩f = {v} and v has k ∈ [5∆/9,∆−1] incident edges in Bj−1(A) (in other words, all remaining edges incident
to v are added at step j according to the procedure above). We note that each edge in B0(A) witnesses at most 8∆/9
edges (≤ 4∆/9 at each endpoint) and each edge of B∞(A)\B0(A) witnesses at most 4∆/9 edges (since if e is added
at step i ≥ 1, then e automatically has one endpoint with ∆ incident edges in Bi(A)). On the other hand, each edge in
B∞(A)\B0(A) is witnessed by at least 5∆/9 other edges. It follows that

|B∞(A)\B0(A)| ≤ |B0(A)|(8∆/9) + |B∞(A)\B0(A)|(4∆/9)

(5∆/9)
,

and so |B∞(A)| ≤ 9|B0(A)| .
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2.4.2. Ordered polymers
We define ordered polymers to be connected subgraphs γ ofGwith an edge labelling ` : E(γ)→{occupied,unoccupied},
subject to (i) |Eu(γ)| ≤ ηn, where Eu(γ) denotes the set of unoccupied edges of γ, and (ii) B∞(Eu(γ)) = E(γ), i.e.,
the inductive boundary procedure applied to the unoccupied edges of γ stabilizes at γ. Let Pord = Pord(G) be the set of
disordered polymers in G. As usual, two polymers are compatible if they are vertex disjoint.

Let c′(γ) denote the number of components of the graph (V,E \ Eu(γ)) with fewer than n/2 vertices. We think of
these as ‘finite components’, cf. Lemma 13 below and also Section 3 where we make a similar definition with G replaced
by an infinite tree. The weight function for ordered polymers is

word
γ := qc

′(γ)(eβ − 1)−|Eu(γ)|.

The ordered polymer partition function is

Ξord :=
∑

Γ

∏
γ∈Γ

word
γ ,

where the sum is over compatible collections of ordered polymers.
We end this section with two lemmas that will be used to prove the convergence of the ordered cluster expansion. First,

recall the following well-known fact about expander graphs, see e.g. [67, Lemma 2.3].

Lemma 13. Let G= (V,E) be a graph and let |E′| ≤ η |E|. Then (V,E \E′) contains a connected component of size(
1− η

2φG(1/2)

)
|V |.

Next we bound the number of unoccupied edges of a polymer in terms of c′.

Lemma 14. For all ordered polymers γ, |Eu(γ)| ≥ 5
9∆ · c′(γ).

Proof. Let S1, . . . , St denote the connected components of (V,E \Eu(γ)). By Lemma 13, since φG(1/2) ≥ 1/10, we
may assume without loss of generality that S1 contains at least (1− 5η)n≥ (1− δn) vertices. Let U be the union of the
vertices in S2, . . . , St, so c′(γ) = t− 1 ≤ |U |. Since any edge leaving U must be unoccupied and |U | ≤ δn, the claim
follows since φG(δ)≥ 5/9.

2.4.3. Convergence of Ordered Expansion
Proposition 15. If q = q(∆) is sufficiently large, then for all β ∈ C such that

∣∣eβ − 1
∣∣ ≥ eβ0 − 1 the ordered polymer

model satisfies (10) with r = log q/(200∆).

Proof. We will show that for β ≥ β0 and for every v ∈ V (G),∑
γ3v

e(1+r)|E(γ)| ∣∣word
γ

∣∣≤ 1

2
. (14)

As in the proof of Proposition 11, this suffices to verify condition (10).
We index polymers by k = |Eu(γ)|. By Lemma 12 |E(γ)| ≤ 9|Eu(γ)|. By [10, Lemma 2.1 (c)] we can bound the

number of polymers with |Eu(γ)|= k containing a vertex v by (2e∆)9k , where the factor of 2 accounts for the choice of
occupied/unoccupied for each edge. Then, since

∣∣eβ − 1
∣∣≥ q 1.9

∆ , by Lemma 14∑
γ3v

e(1+r)|E(γ)| ∣∣word
γ

∣∣≤∑
k≥1

(2e2+r∆)9kq
9k
5∆

∣∣eβ − 1
∣∣−k

≤
∑
k≥1

(2e2+r∆)9kq(
9

5∆−
1.9
∆ )k

=
∑
k≥1

(2e2+r∆)9kq−
k

10∆ ,

which is at most 1/2 for q = q(∆) sufficiently large.
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2.4.4. Ordered polymer model measure on edges
Let νord be the polymer model measure defined by (12). As for the disordered polymer model we can define a measure
νord on Ω = {0,1}E . To obtain a sampleA from νord we sample a collection Γ of compatible ordered polymers according
to νord and then let

A=E \
⋃
γ∈Γ

Eu(γ) .

2.5. Consequences of the cluster expansion convergence

This section derives some consequences of Theorem 10. Let Cdis and Cord be the sets of clusters of polymers in Pdis and
Pord, respectively. For ∗ ∈ {dis,ord} we write Cv∗ for the set of clusters containing the vertex v. We will always assume
that q is large enough that Propositions 11 and 15 apply.

2.5.1. Truncated cluster expansion error bounds
The following lemma will be used extensively in Section 6 and Section 3.

Lemma 16. For every v ∈G and m≥ 1,∑
Γ∈Cv∗
‖Γ‖≥m

|w∗(Γ)| ≤ q− m
200∆ . (15)

Proof. This follows from Propositions 11 and 15 by applying (11) with γ a single edge containing v and r =
log q/(200∆).

An important consequence of Lemma 16 is the following. For m≥ 1, define truncated cluster expansions

T ∗m :=
∑
Γ∈C∗
‖Γ‖<m

w∗(Γ), ∗ ∈ {dis,ord} (16)

By summing (15) over all vertices we have that∑
Γ∈C∗
‖Γ‖≥m

|w∗(Γ)| ≤ nq− m
200∆ , ∗ ∈ {dis,ord} (17)

and so

|T ∗m − log Ξ∗| ≤ nq−
m

200∆ , ∗ ∈ {dis,ord} , (18)

which will be used in Section 7.

2.5.2. Probabilistic estimates for measures on edges
We first show that the set of edges contained in a polymer sample is typically small.

To do this, we will need an extension of Propositions 11 and 15 for modified polymer weights. For ∗ ∈ {dis,ord} and
t > 0, consider an auxiliary polymer model on P∗ by modifying the polymer weights by multiplying by an exponential:

w̃∗γ =w∗γ · et|E(γ)| .

Corollary 17. For ∗ ∈ {dis,ord} and t= 3/α, the conclusions of Propositions 11 and 15 hold for the modified polymer
models with weights w̃∗γ .

Proof. Taking q large enough, the estimates in the proofs of Propositions 11 and 15 go through for the modified weights.

Now recall that for ∗ ∈ {dis,ord}, ν∗ is the Gibbs measure associated to the ∗-polymer model (given by (12)) and ν∗
is the measure on {0,1}E induced by ν∗ (as defined in Subsections 2.3.1, 2.4.4).
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Lemma 18. Let ∗ ∈ {dis,ord} and let Γ be a random configuration of compatible polymers sampled from ν∗. Then for
α> 0,

P(‖Γ‖>αn)≤ e−2n

for q = q(∆, α) sufficiently large.

Proof. Fix ∗ ∈ {dis,ord} and let Γ be a random sample from ν∗. Consider the cumulant generating function

ht(‖Γ‖) := logEet‖Γ‖ .

For t > 0, recall the modified polymer model defined above, let Ξ̃∗ be the modified partition function, and note that

Eet‖Γ‖ =
1

Ξ∗

∑
Γ

et‖Γ‖
∏
γ∈Γ

w∗γ =
1

Ξ∗

∑
Γ

∏
γ∈Γ

w̃∗γ =
Ξ̃∗
Ξ∗

.

Taking logs, we obtain the identity ht(‖Γ‖) = log Ξ̃∗ − log Ξ∗. Setting t= 3/α and applying Corollary 17 and (17) with
m= 1 and the modified weights, we obtain

log Ξ̃∗ ≤
∑
Γ∈C∗

|w̃∗(Γ)| ≤ n .

Since Ξ∗ ≥ 1 we then have ht(‖Γ‖)≤ n also. By Markov’s inequality

P(‖Γ‖>αn)≤ e−tαnEet‖Γ‖ ≤ e−tαnen ≤ e−2n .

The next lemma shows that νdis and νord exhibit exponential decay of correlations. In the following we let A denote
a random edge subset drawn according to the measure νdis or νord.

Lemma 19. 1. For β ≤ β1, νdis exhibits exponential decay of correlations and |A| obeys a central limit theorem with
respect to νdis.

2. For β ≥ β0, νord exhibits exponential decay of correlations and |A| obeys a central limit theorem with respect to
νord.

Proof. These are standard consequences of the condition (10), so we will only provide a sketch. To prove exponential
decay of correlations, we need to show that there exist constants C,ε > 0 so that for all e, f ∈E,

|νdis(e, f)− νdis(e)νdis(f)| ≤Ce−εdist(e,f) . (19)

See e.g. [13, Theorem 1.3] for details. Establishing (19) amounts to observing that the correlation between edges e and f ,
νdis(e, f)− νdis(e)νdis(f), equals a weighted sum over clusters of disordered polymers containing both e and f of the
cluster weight. The size of any such cluster is at least dist(e, f), and a tail bound like (18) shows the total weight of these
clusters is exponentially small in dist(e, f).

Likewise for νord, by taking complements and using inclusion-exclusion it is enough to show that∣∣νord(e, f)− νord(e)νord(f)
∣∣≤Ce−εdist(e,f) , (20)

where νord(e) is the probability e /∈ A and νord(e, f) is the probability that {e /∈ A} ∧ {f /∈ A}. Again (20) can be
expressed as a sum of cluster weights with clusters of size at least dist(e, f) and so we obtain exponential decay of
correlations.

To prove a central limit theorem for |A| under νdis we first center and normalize, letting Y = (|A| − E|A|)/σ where
σ2 = var(|A|). Now by the method of moments (or cumulants) it is enough to show that for each fixed k ≥ 3, the kth
cumulant of Y , κk(Y ), vanishes as n→∞. Using the cluster expansion we can express

|κk(Y )|=

∣∣∣∣∣ ∑
Γ∈Cdis

wdis(Γ)

(
‖Γ‖
σ

)k∣∣∣∣∣
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≤ 1

σ3

∑
Γ∈Cdis

|wdis(Γ)|‖Γ‖k

≤ ∆n

σ3

∑
t≥1

e−kttk =O
( n
σ3

)
,

where we applied (11) in the last line. A simple conditioning argument (see e.g. [21, Lemma 9]) shows that σ = Ω(n1/2),
and so for k ≥ 3, κk(Y )→ 0, as desired. The proof for νord is similar, substituting missing edges for occupied edges.

Remark 3. The correlation between edges e and f is a joint cumulant of the indicator random variables that each is in
A. The same techniques can be used to show that joint cumulants of the indicators of k edges decay exponentially in the
size of the minimum spanning tree connecting the edges in G, see [13] for more details.

The next lemma states that up to total variation distance ε, the measures induced by νdis and νord on the local neigh-
borhood of any vertex v are determined by clusters contained in a (larger) neighborhood of v. To make this precise, for
∗ ∈ {dis,ord}, T ∈N and a vertex v, define νBT (v)

∗ to be the projection of ν∗ to {0,1}E(BT (v)) ⊂ {0,1}E . Here BT (v)
is the ball of radius T around v.

Lemma 20. Suppose T > 0, ε > 0, and ∗ ∈ {dis,ord}. There is an m large enough as a function of ∆, T, ε so that for
any v ∈ V , νBT (v)

∗ is determined up to total variation distance ε by clusters which lie entirely in Bm(v).

Proof. We prove this for νdis, the proof for νord is identical. Let A⊆E be distributed according to νdis. We first claim
it is enough to give, for each F ⊆E(BT (v)), a quantity κ(F ) so that

1. |κ(F )− νdis(A⊂ F c)| ≤ ε2−2∆T

.
2. κ(F ) depends only on clusters contained in Bm(v) for some m=m(T,∆, ε).

The lemma follows from these two properties by calculating νBT (v)
dis (·) via inclusion-exclusion, re-writing νBT (v)

dis (·) in
terms of νdis(·), and summing the error bound over all subsets of E(BT (v)).

To find such a κ(F ), observe there is (cf. (9)) an exact formula for νdis(A⊂ F c) in terms of clusters:

log νdis(A⊂ F c) =−
∑

Γ∈Cdis

wdis(Γ)1Γ∩F 6=∅ ,

where 1Γ∩F 6=∅ indicates that Γ contains a polymer which contains an edge from F . Since F spans at most |V (BT (v))| ≤
∆T + 1 vertices, by Lemma 16 we can truncate the RHS and obtain∣∣∣∣∣∣∣∣log νdis(A⊂ F c) +

∑
Γ∈Cdis

‖Γ‖≤m

wdis(Γ)1Γ∩F 6=∅

∣∣∣∣∣∣∣∣≤ q
− m

200∆ (∆T + 1) . (21)

Note the quality of (21) is independent of F . The desired quantity is

κ(F ) = exp

− ∑
Γ∈Cdis

‖Γ‖≤m

wdis(Γ)1Γ∩F 6=∅

 .

Taking m large enough as a function of ∆, T, ε gives properties (1) and (2) and proves the lemma, as, since κ(F ) ∈ (0,1),
the accurate multiplicative approximation guaranteed by (21) implies an accurate additive approximation.

2.6. Polymer model approximation of the partition function

Using the results above we now show that the scaled polymer model partition functions are good approximations to Zdis

and Zord. We also show that the measures νdis and νord on edge sets are good approximations to µdis and µord, where
µdis and µord are the random cluster measure µ conditioned on Ωdis and Ωord, respectively.
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Lemma 21. For q = q(∆, δ) sufficiently large and β ≤ β1,∣∣Zdis − qn ·Ξdis
∣∣≤ e−nZdis . (22)

Moreover,

‖µdis − νdis‖TV ≤ e−n . (23)

Proof. Write Ξdis
≤ for the contribution to Ξdis of compatible collections Γ of polymers with |E(Γ)| ≤ η|E| and let

Ξdis
> = Ξdis − Ξdis

≤ . By definition we have Zdis = qn · Ξdis
≤ . By Lemma 18 we have Ξdis

> ≤ e−2nΞdis ≤ 2e−2nΞdis
≤ . It

follows that∣∣Zdis − qn ·Ξdis
∣∣= qnΞdis

> ≤ 2qne−2n ·Ξdis
≤ = e−nZdis . (24)

The proof of (23) is nearly identical, see, e.g., the proof of [47, Lemma 14].

We now turn to Zord. This requires a preparatory lemma.

Lemma 22. Let Γ = {γ1, . . . , γk} be a collection of compatible polymers, and assume |Eu(Γ)| ≤ η|E|. The number of
connected components in the graph G− (Eu(γ1)∪ . . .∪Eu(γk)) is c′(γ1) + . . .+ c′(γk) + 1.

Proof. Let S1, . . . , St denote the vertex sets of the components of G \ Eu(Γ), and without loss of generality let S1 be
the largest component. As in the proof of Lemma 14, we have that |S1| ≥ (1− δ)n by Lemma 13 and our assumption on
|Eu(Γ)|. We claim that for for each i≥ 2, we have E(Si, S

c
i )⊂Eu(γj) for some j. This suffices to prove the lemma.

Suppose, towards a contradiction, that E(S2, S
c
2) contains edges from more than one of the sets Eu(γi). Without loss

of generality, let the ` > 1 indices for which E(S2, S
c
2)∩Eu(γi) 6= ∅ be 1,2, . . . , `.

Let T ⊂ S2 denote the set of vertices in S2 that have fewer than ∆ incident edges from each of the sets
Eu(γ1), . . . ,Eu(γ`). If T = ∅, pairwise compatibility of polymers implies each vertex in S2 is incident to ∆ edges
in exactly one of the sets Eu(γi), 1≤ i≤ `. Since S2 is connected, all edges incident to S2 must in fact be from the same
set Eu(γi), contradicting ` > 1.

To conclude the proof, we show T = ∅ is the only possibility. Suppose not, i.e., T 6= ∅. Note that all of the edges in
E(T,T c) belong to E(γ1)∪ . . .∪E(γ`). Moreover |T | ≤ δn and so |E(T,T c)| ≥ 5∆|T |/9 since φG(δ)≥ 5/9. It follows
that there is a vertex u ∈ T incident to ≥ 5∆/9 edges in E(γ1) ∪ . . . ∪E(γ`). Without loss of generality, it must be the
case that u is incident to ≥ 5∆/9 edges in E(γ1), as u cannot be an endpoint of unoccupied edges in distinct compatible
polymers. By the definition of the polymer γ1, all of the ∆ edges incident to u must then belong to E(γ1), contradicting
the definition of T .

Lemma 23. If q = q(∆, δ) is sufficiently large and β ≥ β0, then∣∣∣Zord − q(eβ − 1)
∆n
2 ·Ξord

∣∣∣≤ e−nZord. (25)

Moreover,

‖µord − νord‖TV ≤ e−n . (26)

Proof. Write Ξord
≤ for the contribution to Ξord of compatible collections Γ of polymers with |Eu(Γ)| ≤ η|E|. Then

Zord = q(eβ − 1)
∆n
2 Ξord
≤ by Lemma 22. By Lemma 18 we have Ξord

> ≤ e−2nΞord ≤ 2e−2nΞord
≤ . It follows that∣∣∣Zord − q(eβ − 1)

∆n
2 Ξord

∣∣∣= q(eβ − 1)
∆n
2 Ξord

> ≤ 2e−2nq(eβ − 1)
∆n
2 Ξord
≤ ≤ e−nZord.

As in the proof of Lemma 21, (26) follows from a similar argument.

Corollary 24. If q and n are sufficiently large as a function of ∆ and δ, then for all β > 0

Z̃(q, β) := qn ·Ξdis + q(eβ − 1)∆n/2 ·Ξord (27)

is an e−n/2-relative approximation to ZG(q, β).

Proof. The result follows by applying Lemmas 9, 21 and 23 in the the ranges β ≤ β0, β0 ≤ β ≤ β1 and β ≥ β1 .
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3. Phase transitions on trees and random graphs

In this section we prove that the q-state random cluster model on locally tree-like graphs in G∆,δ has a unique phase
transition, and we characterize the critical point. To do this we define ordered and disordered polymer models for the
random cluster model on the infinite ∆-regular tree T∆ and its finite depth-L truncations TL∆, and then relate these
models to the random cluster model on locally tree-like ∆-regular graphs.

3.1. The random cluster model and polymer models on finite trees

Fix ∆ and let T∆ be the rooted infinite ∆-regular tree with root vertex r. Let TL∆ denote the finite subtree of T∆ with
root r and depth L where each non-leaf vertex has degree ∆.

3.1.1. Free boundary conditions and the disordered polymer model on finite trees
We start with TL∆. The random cluster model on TL∆ with free boundary conditions is simply the random cluster model
on TL∆. In particular,

Zfree
TL∆

(q, β) =
∑

A⊆E(TL∆)

qc(A)(eβ − 1)|A| ,

where c(A) is the number of connected components of (V (TL∆),A). To distinguish these boundary conditions we call the
resulting measure on edges the free random cluster model on TL∆. Recall from Section 1.1.2 that µfree is the weak limit
of the free random cluster model measures on TL∆ as L→∞.

Next we define a disordered polymer model on TL∆. Define polymers to be connected components of TL∆. Unlike in
Section 2, we do not restrict the size of polymers. The weight of a polymer is again given by wdis

γ = q1−|γ|(eβ − 1)|E(γ)|.
Call the resulting polymer model partition function Ξdis

TL∆
.

Lemma 25. We have the equality

Zfree
TL∆

(q, β) = q|V (TL∆)| ·Ξdis
TL∆
.

Moreover, the induced measure νdis on edges is the free random cluster measure on TL∆.

Proof. This follows from two facts: 1) There is a bijection between subsets A ⊆ E(TL∆) and collections of mutually
compatible polymers and 2) if A ⊆ E(TL∆) corresponds to the set of polymers {γ1, . . . , γk}, then c(A) = |V (TL∆)| +∑
i(1− |γi|). That is, the bijection of 1) is weight-preserving.

3.1.2. Wired boundary conditions and the ordered polymer model on finite trees
Informally, the random cluster model on TL∆ with wired boundary conditions is obtained by declaring that the boundary
vertices belong to a single connected component. Formally, we call a subset of V (TL∆) finite if it contains no boundary
vertex. Then,

Zwire
TL∆

(q, β) :=
∑

A⊆E(TL∆)

qcw(A)(eβ − 1)|A| ,

where cw(A) is the number of finite connected components of (V (TL∆),A) plus 1; the additional one is to account for
the single component containing the boundary vertices. We call the resulting measure on edges the wired random cluster
measure on TL∆. Recall from Section 1.1.2 that µwire is the weak limit of the wired random cluster measures on TL∆ as
L→∞.

Ordered polymers on TL∆ are defined as in Section 2, but with no restriction on their size. The weight function is

word
γ := qc

′(γ)(eβ − 1)−|Eu(γ)|,

where c′(γ) is the number of finite connected components of the graph (V (TL∆),E(TL∆)\Eu(γ)). We have the following
analogue of Lemma 22.

Lemma 26. Let Γ = {γ1, . . . , γk} be a collection of compatible ordered polymers on TL∆. Then

cw

(
E(TL∆) \

k⋃
i=1

Eu(γi)

)
= 1 +

k∑
i=1

c′(γi) . (28)
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Proof. Let S1, . . . , St denote the vertex sets of the finite components of E(TL∆) \
⋃k
i=1Eu(γi). In particular, by the

definition of cw , the left hand side of (28) is equal to t+ 1.
If S ⊆ V (TL∆) is finite, then |E(S,Sc)| ≥ (∆− 2)|S|. It then follows, as in the proof of Lemma 22, that each of the

sets S1, . . . , St is incident to edges from precisely one of the polymers γ1, . . . , γk . The result follows.

With this we prove that the polymer model partition function equals the wired random cluster partition function after
scaling.

Lemma 27. We have the equality

Zwire
TL∆

(q, β) = q(eβ − 1)|E(TL∆)|Ξord
TL∆

.

Moreover, the induced measure νord on edges is the wired random cluster measure on TL∆.

Proof. This follows from Lemma 26, which implies there is a weight-preserving bijection between sets A⊆E(TL∆) and
collections of mutually compatible ordered polymers.

3.2. Infinite trees and limiting free energies

To motivate the definitions that follow, we begin by rewriting the cluster expansions for Ξord and Ξdis for a given finite
∆-regular graphG on n vertices. For a cluster Γ, let u(Γ) be the number of distinct vertices contained in Γ. Write Cvdis(G)
for the set of disordered clusters containing v, and similarly for ord. Then

log Ξdis =
∑

v∈V (G)

∑
Γ∈Cvdis(G)

1

u(Γ)
wdis(Γ), (29)

log Ξord =
∑

v∈V (G)

∑
Γ∈Cvord(G)

1

u(Γ)
word(Γ) . (30)

Using this as a model, we consider ordered and disordered polymer models on the infinite ∆-regular tree T∆ rooted
at r. Here we define polymers and weights exactly as for TL∆ above in Section 3.1, but with the additional condition that
the polymers be finite. In particular, for an ordered polymer γ the weight function is

word
γ := qc

′(γ)(eβ − 1)−|Eu(γ)|,

where c′(γ) is the number of finite connected components of the graph (V (T∆),E(T∆) \Eu(γ)); here we mean finite
in the usual sense of finite cardinality.

Lemma 28. For q = q(∆) sufficiently large the following hold with r = log q/(200∆):

1. For β ∈C such that
∣∣eβ − 1

∣∣≤ eβ1 − 1, the disordered polymer model on T∆ satisfies (10).
2. For β ∈C such that

∣∣eβ − 1
∣∣≥ eβ0 − 1, the ordered polymer model on T∆ satisfies (10).

Proof. We can mimic the proofs of Propositions 11 and 15 once we note that the tree T∆ satisfies the following optimal
expansion condition: for a finite set S ⊂ V (T∆), |E(S,Sc)| ≥ (∆− 2)|S|.

Let Crord and Crdis be the respective sets of clusters on T∆ containing the root r. Define

ford(β, q) :=
∑

Γ∈Crord

1

u(Γ)
word(Γ), fdis(β, q) :=

∑
Γ∈Crdis

1

u(Γ)
wdis(Γ) ,

By Lemma 28 and (11) of Theorem 10, for q large and β ∈ [β0, β1] these series converge and are functions of ∆, β, q.
Further define

ford(β, q) :=
∆

2
log(eβ − 1) + ford, fdis(β, q) := log q+ fdis. (31)
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Proposition 29. For any sequence of locally tree-like graphs Gn ∈ G∆,δ and q = q(∆, δ) large enough, we have

lim
n→∞

1

n
logZdis

Gn = fdis,
∣∣eβ − 1

∣∣≤ eβ1 − 1 (32)

lim
n→∞

1

n
logZord

Gn = ford,
∣∣eβ − 1

∣∣≥ eβ0 − 1. (33)

Moreover these limits are uniform on the given regions of β.

Proof. We give the proof of the first statement, as the proof of the second statement is the same up to changes in notation.
First note that by Lemma 21, we have

qnΞdis
Gn

Zdis
Gn

∈ [1− e−n,1 + e−n] ,

and so∣∣log(qnΞdis
Gn)− logZdis

Gn

∣∣≤ 2e−n .

It follows by the triangle inequality that∣∣logZdis
Gn − nfdis

∣∣≤ ∣∣log(qnΞdis
Gn)− nfdis

∣∣+ 2e−n . (34)

By (29) and the definition of fdis,

∣∣log(qnΞdis
Gn)− nfdis

∣∣=
∣∣∣∣∣∣
∑
v∈V

 ∑
Γ∈Cvdis(Gn)

1

u(Γ)
wdis(Γ)−

∑
Γ∈Crdis

1

u(Γ)
wdis(Γ)

∣∣∣∣∣∣ , (35)

where we note that the above series converge for q = q(∆, δ) sufficiently large by Proposition 11 and Lemma 28 combined
with Theorem 10.

Now, fix ε > 0 and let m= log(2/ε). Let Vm be the set of vertices of Gn whose depth-m neighborhood is not a tree.
Applying Lemma 16, we note that for q = q(∆) sufficiently large,

∣∣∣∣∣∣
∑

Γ∈Cvdis(Gn)

1

u(Γ)
wdis(Γ)−

∑
Γ∈Crdis

1

u(Γ)
wdis(Γ)

∣∣∣∣∣∣≤ ε+

∣∣∣∣∣∣∣∣
∑

Γ∈Cvdis(Gn)
‖Γ‖≤m

1

u(Γ)
wdis(Γ)−

∑
Γ∈Crdis

‖Γ‖≤m

1

u(Γ)
wdis(Γ)

∣∣∣∣∣∣∣∣ . (36)

Applying Lemma 16 again (with m= 1) shows that each sum on the RHS of (36) is at most 1 in absolute value and so
the RHS of (36) is at most ε+ 2. If v /∈ Vm, then the two sums on the RHS of (36) are in fact equal and so the RHS of
(36) is equal to ε. Combining this observation with (34) and (35), we conclude that∣∣logZdis

Gn − nfdis

∣∣≤ εn+ 2|Vm|+ 2e−n .

Since Gn is locally tree-like, |Vm|/n→ 0 and so lim sup | 1n logZdis
Gn
− fdis| ≤ ε. Taking ε→ 0 proves the statement.

The same proof shows that limn→∞
1
n logZord

Gn
= ford for

∣∣eβ − 1
∣∣≥ eβ0 − 1.

3.3. Determining the critical point

We will define the critical point βc(q,∆) implicitly in terms of the functions ford and fdis. It will be convenient to first
obtain the formula for fdis given in Theorem 1.

Lemma 30. For β ∈C such that
∣∣eβ − 1

∣∣≤ eβ1 − 1

fdis(β, q) = log q+
∆

2
log

(
1 +

eβ − 1

q

)
. (37)
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Proof. This proof uses the following generalization of Section 3.1.1. Given a finite subtree T of T∆, define the disordered
polymer model on T just as we did for TL∆ and let Cdis(T ) denote the collection of clusters of disordered polymers in
T . For a cluster Γ let G(Γ) denote the graph union of all polymers in Γ. As in Lemma 25, the polymer model partition
function on T is a scaling of the random cluster model partition function.

Note that the random cluster measure on a finite tree with free boundary conditions has a very simple description:
it is independent edge percolation with the probability of retaining each edge being eβ−1

eβ−1+q
[38, Chapter 10]. This

independence implies that any joint cumulant involving indicators of at least two edges vanishes, i.e., for all trees T with
at least two edges,∑

Γ∈Cdis(T ):
G(Γ)=T

wdis(Γ) = 0 , (38)

since the left-hand side is the joint cumulant of the edges of T in the random cluster model on T .
To conclude, note that we have

fdis =
∑

Γ∈Cdis
r

1

u(Γ)
wdis(Γ) =

∑
T

1

|V (T )|
∑

Γ∈Cdis(T ):
G(Γ)=T

w(Γ)

where the first sum on the right hand side is over all finite subtrees of T∆ containing the root. By Lemma 28 part (1),
these sums are absolutely convergent. By (38), only trees consisting of a single edge contribute to the sum over T , and
there are ∆ of these. Each contributes log

(
1 + eβ−1

q

)
, and this gives the result.

Proposition 31. For all ∆≥ 5 and q = q(∆, δ) large enough, there is a unique βc(q,∆) ∈ (β0, β1) such that ford(β) =
fdis(β). Moreover, ford < fdis for β ∈ [β0, βc) and ford > fdis for β ∈ (βc, β1].

Proof. Our proof of this proposition follows the strategy of [52].
We begin with a computation. Let β ∈ [β0, β1] so that both the ordered and disordered expansions converge. Then by

Proposition 29 and Lemma 30,

d

dβ
(ford − fdis) =

d

dβ
lim
n→∞

1

n
logZord

Gn −
∆

2
· eβ

q+ eβ − 1

= lim
n→∞

1

n

d

dβ
logZord

Gn −
∆

2
· eβ

q+ eβ − 1
.

The interchange of the derivative and limit is valid since ford is a uniform limit of analytic functions by Proposition 29.
To bound the first term we note that

1

n
· e
β − 1

eβ
d

dβ
logZord

Gn

is the expected number of edges in a random cluster configuration conditioned on Ωord and is therefore at least (1 −
η)n∆/2. It follows that

d

dβ
(ford − fdis)≥ eβ

∆

2

[
1− η
eβ − 1

− 1

q+ eβ − 1

]
> 0,

since η ≤ 1/100 and β ∈ [β0, β1].
Next, note that

fdis − ford =
∆

2
log

(
q2/∆

eβ − 1
+ q2/∆−1

)
− ford. (39)

By Lemma 28 part (2) and Lemma 16 (with T∆ in place of G) we have |ford| ≤ q
1

200∆ . It follows that for q sufficiently
large, if β = β0 then fdis > ford and if β = β1 then ford > fdis. Since ford − fdis is a continuous and strictly increasing
function of β on [β0, β1], we obtain that there is a unique βc ∈ (β0, β1) at which ford = fdis.
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Corollary 32. For all ∆≥ 5 and q = q(∆) large enough, βc(q,∆) is given by

βc(q,∆) = (1 + oq(1))
2 log q

∆
. (40)

Proof. By Proposition 31, the claim follows by equating ford and fdis and solving for β, see (39).

Proposition 31 implies there is a unique transition point on locally tree-like sequences of finite graphs satisfying our
expansion hypotheses. The next proposition shows that the transition is first order.

Proposition 33. For any sequence of locally tree-like graphs Gn from G∆,δ , if q = q(∆, δ) is large enough then

1. For β < βc, lim supn→∞
1
n logµn(Ω \Ωdis)< 0.

2. For β > βc, lim supn→∞
1
n logµn(Ω \Ωord)< 0.

Proof. The lemma follows by combining Proposition 29 with the estimates of Lemma 9. If β ∈ (β0, βc), then by Propo-
sition 29 and Lemma 9 part (1),

lim sup
n→∞

1

n
logµn(Ω \Ωdis)≤max{−1, ford − fdis}< 0

where the last inequality follows from by Proposition 31. Similarly if β ∈ (βc, β1), then the quantity in part (2) is at most
max{−1, fdis − ford}< 0.

If β ≤ β0, then by Lemma 9, lim supn→∞
1
n logµn(Ω\Ωdis)≤−1. Similarly if β ≥ β1, then lim supn→∞

1
n logµn(Ω\

Ωord)≤−1.

3.4. Local convergence and proof of Theorem 1

Recall from Sections 2.3.1 and 2.4.4 that the disordered and ordered polymer measures on a graph Gn induce measures
νndis and νnord on edges.

Proposition 34. Let Gn be a sequence of locally tree-like graphs from G∆,δ , ∆≥ 5. Then for q large,

1. If β ≤ β1, νndis
loc−−→ µfree.

2. If β ≥ β0, νnord
loc−−→ µwire.

Proof. We begin with the first statement. To ease notation let us denote νndis by νdis. Recall that for T > 0 and v ∈Gn,
BT (v) denotes the depth-T neighborhood of v. Recall also that νBT (v)

dis denotes the projection of νdis to {0,1}E(BT (v)).
For L > 0, let νdis,L denote the Gibbs measure associated to the disordered polymer model on TL∆ as defined in

Section 3.1.1. By Lemma 25 the induced measure νdis,L on {0,1}E(TL∆) is the free random cluster measure on TL∆.
We let r denote the root of the tree TL∆. We will show that for T > 0 and ε > 0, for all L sufficiently large the

distribution νBT (v)
dis of a randomly chosen v ∈Gn is within distance 2ε of νBT (r)

dis,L in total variation distance. This suffices
to prove part (1) since µfree is the weak limit of νdis,L as L→∞.

We will apply Lemma 20. Given ε > 0, letm=m(∆, T, ε) large enough as required by the lemma. SinceGn is locally
tree-like, with high probability over the choice of v, the depth-m neighborhood of v will be a tree, so we can condition
on this. Lemma 20 tells us that up to total variation distance ε, νBT (v)

dis is determined by clusters contained in Bm(v).
By Lemma 28, the cluster expansion of the disordered polymer model on TL∆ converges for all L. For L≥m, we may

apply the proof of Lemma 20 to show that up to total variation distance ε, νBT (r)
dis,L is determined by clusters contained in

Bm(r).
Since Bm(v) and Bm(r) are identical, we have

‖νBT (v)
dis − νBT (r)

dis,L ‖TV ≤ 2ε

as required.
The proof of the second claim is identical, using Lemma 27 in place of Lemma 25.

Proof of Theorem 1. Claim (1) follows from Proposition 29. The limit limn→∞
1
n logZGn is analytic for β ∈ (0,∞) \

{βc} since fdis is analytic on (0, β1] and ford, as a uniform limit of analytic functions, is analytic on [β0,∞). The formula
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for fdis when β < βc follows from Lemma 30. Claims (2) and (3) follow immediately from Proposition 33. Claim (8)
follows from Lemma 9.

To emphasize the dependence on n, write µndis and µnord denote the distributions of µn conditioned on Ωdis and Ωord,
respectively. To conclude, we will prove the following strengthening of Claims (4), (5), (6), and (7):

(i) For β ≤ β1, µndis
loc−−→ µfree as n→∞.

(ii) For β ≥ β0, µnord
loc−−→ µwire as n→∞.

(iii) For β ≤ β1, µndis exhibits exponential decay of correlations and |A| obeys a central limit theorem with respect to
µndis.

(iv) For β ≥ β0, µnord exhibits exponential decay of correlations and |A| obeys a central limit theorem with respect to
µnord.

Given Lemmas 21 and 23 it is enough to prove (i)–(iv) for νndis and νnord in place of µndis and µnord. Claims (i) and (ii)
then follow from Proposition 34. Claims (iii) and (iv) follow from Lemma 19 combined with the observation that since
the diameter of an expander graph is O(logn), the total variation distance error e−n from Lemmas 21 and 23 can be
absorbed in the constant in the exponential decay bound.

4. Slow mixing of Markov chains

In this section we prove Theorem 6. We will give the proof for Chayes-Machta (CM) dynamics [15] and then indicate
how to adapt the proof for the (much simpler) case of random cluster and Potts Glauber dynamics.

We begin by recalling the definition of the Chayes-Machta (CM) dynamics [15], a generalization of Swendsen-Wang
dynamics for the Potts model to the setting of the random cluster model. Given a random cluster configuration A ∈ Ω =
{0,1}E , one step of the CM dynamics is defined as follows:

1. declare each component of A to be ‘active’ independently with probability 1/q, and declare all vertices in active
components to be active;

2. delete all edges in A that connect two active vertices;
3. add each edge in E that connects two active vertices independently with probability p= 1− e−β .

We use PCM(·, ·) to denote the transition matrix of the CM dynamics, and µtA the t-step distribution of the chain started
at configuration A. The mixing time of the CM dynamics is:

τmix = inf

{
t : max

A⊂E
‖µ− µtA‖TV ≤ 1/4

}
.

Our general strategy follows one previously used at β = βc, e.g., [11, 32]. Our ability to extend slow mixing to an
interval around βc stems from our ability to control the contribution of subdominant phases off criticality (Lemma 36
below).

We begin with a lemma that says CM dynamics are unlikely to transition from an ordered configuration to a disordered
configuration.

Lemma 35. For q = q(∆) sufficiently large and β ∈ (β0, β1), PCM(A,Ωdis)< e−n∆/40 for all A ∈Ωord.

Proof. Let U ⊆ V denote the set of vertices declared active at Step 1 in the definition of CM dynamics and let A′ denote
the random edge configuration resulting from Steps 1, 2, and 3. Let m = |E ∩

(
U
2

)
|, that is, the number of edges of G

joining two active vertices. Note that the number of edges removed from the configuration in Step 2 is at most m and so
if m< |E|/2, then |A′|> |A| − |E|/2≥ (1/2− η)|E|. Therefore A′ /∈Ωdis and so we may assume that m≥ |E|/2.

Letting X denote the number edges added at Step 3 we have |A′|> |A| −m+X . If X ≥ pm/2, it follows that

|A′| ≥ (1− η)|E| − (1− p/2)m≥ (p/4− η)|E|> η|E|

Since p= 1− e−β = 1− oq(1) for β ∈ (β0, β1), we have p > 8η for q large. As a result, A′ /∈Ωdis. The result follows by
noting that P(X < pm/2)≤ e−pm/8 by Chernoff’s bound.

The next lemma says that near βc, it is exponentially more likely to see a disordered or ordered configuration than a
configuration in Ωerr.
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Lemma 36. If q = q(∆, δ) is sufficiently large, |β − βc| ≤ 1
20∆ , and n is sufficiently large, then

µn(Ωdis)≥ e−n/20 and µn(Ωord)≥ e−n/20 .

Proof. If β ∈ (β0, β1), then by Proposition 29 and Lemma 9 part (1),

lim
n→∞

1

n
logµn(Ωdis)≥min{0, fdis − ford} .

By the argument of Proposition 31 we have∣∣∣∣ ddβ (ford − fdis)

∣∣∣∣< eβ

eβ − 1
· ∆

2
<∆ .

Since fdis − ford = 0 at β = βc, it follows that fdis − ford > −1/20 for β ∈ (β0, βc + 1
20∆ ). The bound on µn(Ωdis)

follows. The same argument shows that limn→∞
1
n logµn(Ωord)>−1/20 for β ∈ (βc − 1

20∆ , β1).

Proof of Theorem 6 for CM dynamics. We will establish slow mixing of CM dynamics by bounding the conductance
of CM dynamics defined as

ΦCM = min
∅⊂S⊂Ω

ΦCM (S) where ΦCM (S) =

∑
A∈S µ(A)PCM(A,Sc)

µ(S)µ(Sc)
.

Note that PCM and µ depend on the given graph G= (V,E), and in particular, on n= |V (G)|. We leave this implicit. By
a standard argument (see [61]), it suffices to show that ΦCM ≤ e−Ω(n) for β ∈ (βm, βM ). This is straightforward from
the lemmas above:

ΦCM ≤ΦCM (Ωdis) =

∑
A∈Ωdis

µ(A)PCM(A,Ωcdis)

µ(Ωdis)µ(Ωcdis)

≤ en/10

( ∑
A∈Ωdis

µ(A)PCM(A,Ωord) +
∑

A∈Ωdis

µ(A)PCM(A,Ωerr)

)

≤ en/10

(
µ(Ωdis)e

−n∆/40 +
∑

A∈Ωerr

µ(A)PCM(A,Ωdis)

)

≤ en/10
(
e−n∆/40 + e−n

)
≤ 2e−n/40 .

For the second inequality we used Lemma 36. For the third inequality we applied Lemma 35 and reversibility, and for the
fourth inequality we used Lemma 9.

We conclude this section by noting that the above proof adapts easily to the to the cases of random cluster and Potts
model Glauber dynamics. First we recall their definitions. Given a random cluster configuration A ∈ Ω = {0,1}E , one
step of the random cluster Glauber dynamics transitions to a new configuration A′ as follows:

1. select an edge e ∈E uniformly at random;
2. set A′ =A∪ {e} with probability µG(A∪{e})

µG(A∪{e})+µG(A\{e})
3. otherwise set A′ =A\{e}.

Given a Potts configuration σ ∈ [q]V , one step of the Potts model Glauber dynamics transitions to a new configuration
σ′ as follows:

1. select a vertex v ∈ V uniformly at random;
2. set σ′(v) = k with probability µPotts

G (τ(v) = k | τ(w) = σ(w) ∀w 6= v) and set σ′(u) = σ(u) for all u 6= v.

We note that by considering the monochromatic edges in each Potts model configuration, the above dynamics naturally
induces dynamics on the random cluster model. The proof of Theorem 6 for the Glauber dynamics for the random cluster
model and Potts model are similar to the proof for CM dynamics but simpler, as the associated dynamics cannot transition
directly from Ωdis to Ωord. We omit the details.
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5. Application to random ∆-regular graphs

In this section we prove that for ∆≥ 5, there is some δ > 0 so that the random ∆-regular graph belongs to G∆,δ with high
probability. We use the following result on the expansion profile of the random regular graph which is a combination of
[7, Theorem 1] and [44, Theorem 4.16].

Theorem 37. Let ∆ ≥ 3 and let G be a ∆-regular graph on n vertices chosen uniformly at random. Let 0 < x < 1 be
such that

24/∆ < (1− x)1−x(1 + x)1+x , (41)

then with high probability φG(1/2) ≥ (1 − x)/2. Moreover, for every ε > 0, there exists δ > 0 such that with high
probability φG(δ)≥ (∆− 2− ε)/∆.

Proposition 38. For every ∆≥ 5, there exists δ > 0 so that a uniformly chosen ∆-regular graph on n vertices is in G∆,δ

with probability 1− o(1) as n→∞. Moreover, there is a polynomial-time algorithm that accepts/rejects graphs that (i)
only accepts G if G ∈ G∆,δ and (ii) it accepts with probability 1− o(1) for a randomly chosen ∆-regular graph.

Proof. Let G be a uniformly chosen ∆-regular graph on n vertices. By substituting x = 1/10 into (41), Theorem 37
shows that φG(1/2)≥ 1/10 with high probability. Moreover, taking ε= 2/9, the second half of Theorem 37 shows that
there exists δ > 0 such that φG(δ)≥ 5/9 with high probability. This proves the first claim. We remark that one can extract
explicit sufficient conditions on δ from the proof of [44, Theorem 4.16].

Note that it also holds that for some ε̃ > 0, φG(1/2) ≥ 1/10 + ε̃ and φG(δ) ≥ 5/9 + ε̃ with high probability. Then
using the approximation algorithm from [41], we can approximate φG(1/2) and φG(δ) and with high probability get a
certificate that φG(1/2)≥ 1/10 and φG(δ)≥ 5/9.

6. Finite Size Scaling

In this sectionGn is always a random ∆-regular graph on n vertices. Our objective is to determine the limiting distribution
of logZord

Gn
−nford and logZdis

Gn
−nfdis as n→∞. This will prove Theorems 2 and 3. To ease notation, we let Zdis and

Zord denote Zdis
Gn

and Zord
Gn

, respectively.
To state the key proposition we need to introduce a class of graphs that will capture the way in which a ∆-regular

graph locally deviates from being a tree. Assume ∆ ≥ 3. Let T∆−2,∆ denote the rooted infinite tree whose root has
∆− 2 children and for which every other vertex is degree ∆. For k ≥ 3 the ∆-regular tree rooted at Ck is the graph TCk∆

obtained by attaching to each vertex of a k-cycle Ck a copy of T∆−2,∆, and rooting the resulting graph at a distinguished
vertex r in Ck .

We define disordered and ordered polymers on TCk∆ exactly as we did for T∆ in Section 3.2. For q = q(∆) large
enough the cluster expansions for these polymer models converge provided β ≤ β1 and β ≥ β0, respectively. This can be
established by repeating the proof of Lemma 28. For ∗ ∈ {dis,ord} let Cr∗(T

Ck
∆ ) denote the set of ∗-clusters that contain

the root r of TCk∆ . To help distinguish notation, in this section we write Cr∗(T∆) for the sets of ∗-clusters on the rooted
∆-regular tree that contain the root. We then let

αdis
k :=

∑
Γ∈Crdis(T

Ck
∆ )

wdis(Γ)−
∑

Γ∈Crdis(T∆)

wdis(Γ)

αord
k :=

∑
Γ∈Crord(TCk∆ )

word(Γ)−
∑

Γ∈Crord(T∆)

word(Γ) .

Note that αdis
k is well-defined as the difference of two absolutely convergent power series when β ≤ β1, and similarly for

αord
k when β ≥ β0.

Proposition 39. Let (Y1, Y2, . . . ) be a sequence of independent Poisson random variables where Yk has mean (∆ −
1)k/(2k).

1. For β ≤ β1, W dis
n := logZdis − nfdis converges in distribution to W dis given by the almost surely absolutely

convergent series

W dis :=
∑
k≥3

αdis
k Yk .
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2. For β ≥ β0, W ord
n := logZord − nford converges in distribution to W ord given by the almost surely absolutely

convergent series

W ord := log q+
∑
k≥3

αord
k Yk .

3. For β = βc, Wn := logZord − logZdis converges in distribution to W given by the almost surely absolutely con-
vergent series

W := log q+
∑
k≥3

(αord
k − αdis

k )Yk .

Moreover, letting Q := eW , we have Q/q→ 1 in probability as q→∞.

To prove Proposition 39 we will need several results about the distribution of short cycles in random ∆-regular graphs.

Lemma 40. For k ≥ 3, let Xk denote the number of cycles of length k in the random ∆-regular graph on n vertices.
Then

1. For 3≤ k ≤ logn
5 log ∆ , EXk = (1 +O(k2/n)) (∆−1)k

2k [56].
2. For any fixed T , the joint distribution of X3, . . . ,XT converges to that of independent Poisson random variables of

means (∆−1)k

2k , k = 3, . . . , T [6, 69].
3. For every fixed T > 0, with high probability over the choice ofG, the depth-t neighborhood of every vertex contains

at most one cycle of length at most T for t= logn
5 log ∆ [54, Lemma 2.1].

With this we can prove Proposition 39.

Proof. Throughout this proof we assume the high probability event that Gn ∈ G∆,δ , with δ chosen as in Section 5 occurs.
We begin by establishing the claimed limits, deferring the claims about absolute convergence almost surely to the end.
Towards claim (1), let Xk denote the number of k-cycles in Gn, and define

W̃ dis
n (T ) :=

T∑
k=3

αdis
k Xk .

We will show that for any ε > 0, there is T large enough so that for all t≥ T we have

lim sup
n→∞

P
[∣∣∣W̃ dis

n (t)−W dis
n

∣∣∣≥ ε]≤ ε .
By Lemma 40, part (2), the joint distribution of X3, . . . ,Xt converges to that of Y3, . . . , Yt, and so this will prove that
W dis
n = logZdis − nfdis converges to W dis =

∑
k≥3α

dis
k Yk in distribution.

Fix ε > 0. We begin with the formula from the proof of Proposition 29 for W dis
n . Writing G in place of Gn,

W dis
n =

∑
v∈V

 ∑
Γ∈Cvdis(G)

1

u(Γ)
wdis(Γ)−

∑
Γ∈Crdis(T∆)

1

u(Γ)
wdis(Γ)

 .

Let m= 200∆ log(4n/ε)/ log q. We can apply Lemma 16 to obtain∣∣∣∣∣∣∣∣∣W
dis
n −

∑
v∈V

 ∑
Γ∈Cvdis(G)

‖Γ‖≤m

1

u(Γ)
wdis(Γ)−

∑
Γ∈Crdis(T∆)

‖Γ‖≤m

1

u(Γ)
wdis(Γ)


∣∣∣∣∣∣∣∣∣≤ ε/2 . (42)

Note that the terms inside the parentheses cancel exactly unless there is a cycle, necessarily of length at most m, in the
m-neighborhood of v. To measure the error in W̃ dis

n (T )−W dis
n due to these cycles we will reformulate (42) in a way

that takes cancellations into account.
A cluster Γ appears in only one of the two sums in (42) for only two possible reasons: because the cluster contains

a cycle in G, or because the cycle prevents a cluster on the tree from occurring in G. For a cycle of length k these
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possibilities only occur for clusters of size at least k because smaller clusters in G match the tree clusters exactly. To
account for the fact that a single cycle will appear in the neighborhood of many vertices in the sum above, we instead
sum over the cycles in G and remove the factor 1/u(Γ). Formally, for each cycle C let v(C) be a distinguished vertex on
the cycle, and let Cycm(G) be the set of all cycles of length at most m of G. Then the sum over v in V in (42) can be
rewritten as

W dis
n (m) :=

∑
C∈Cycm(G)


∑

Γ∈Cv(C)
dis (G)

|C|≤‖Γ‖≤m

wdis(Γ)−
∑

Γ∈Crdis(T∆)

|C|≤‖Γ‖≤m

wdis(Γ)

 .

If G satisfies conclusion (3) of Lemma 40 then there is at most one cycle in the depth-m neighborhood of each vertex,
and hence

W dis
n (m) =

∑
C∈Cycm(G)

 ∑
Γ∈Crdis(T

C
∆)

|C|≤‖Γ‖≤m

wdis(Γ)−
∑

Γ∈Crdis(T∆)

|C|≤‖Γ‖≤m

wdis(Γ)

 ,

where TC∆ is the ∆-regular tree rooted at the cycle C . We have used here that any cluster containing a polymer that is
not contained in the m-neighborhood of r has size larger than m, so there is no need to truncate TC∆ to a finite depth.
Moreover, (42) can be rewritten as∣∣W dis

n −W dis
n (m)

∣∣≤ ε/2. (43)

By Lemma 16 we have that∣∣∣∣∣∣∣∣∣
∑

Γ∈Crdis(T
C
∆)

|C|≤‖Γ‖≤m

wdis(Γ)−
∑

Γ∈Crdis(T∆)

|C|≤‖Γ‖≤m

wdis(Γ)

∣∣∣∣∣∣∣∣∣≤ 2q−|C|/200∆

Using Lemma 40 part (1) this means the expected contribution to the error from cycles of length at least T is at most

E
∣∣∣W̃ dis

n (T )−W dis
n (m)

∣∣∣≤∑
t≥T

2
(∆− 1)t

2t
q−t/200∆ .

Then if q ≥∆400∆, the expected contribution is at most ∆−T . If we take T = | log∆(ε2/4)| then by Markov’s inequality

P
[∣∣∣W̃ dis

n (t)−W dis
n (m)

∣∣∣≥ ε

2

]
≤ ε

2
.

for all t≥ T . Combining this with (43) we obtain

P
[∣∣∣W̃ dis

n (t)−W dis
n

∣∣∣≥ ε]≤ ε,
for all t≥ T as desired.

Part (2) of Proposition 39 for W ord
n can be proven in the same way, and part (3) follows by combining the first two

parts since the cycle counts are coupled identically. Next we show that Q/q→ 1 in probability as q→∞. It suffices to
prove that

E

∣∣∣∣∣∣
∑
k≥3

(αord
k − αdis

k )Yk

∣∣∣∣∣∣
= oq (1)
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as q→∞. We can bound this by

E

∣∣∣∣∣∣
∑
k≥3

(αord
k − αdis

k )Yk

∣∣∣∣∣∣
≤∑

k≥3

E[Yk]
∣∣αord
k − αdis

k

∣∣
≤
∑
k≥3

(∆− 1)k

2k
· 4q− k

200∆

≤
∑
k≥3

exp

[
k

(
log(∆− 1)− log q

200∆

)]
= oq (1)

for q = q(∆) sufficiently large, i.e., q ≥∆400∆.
To conclude, observe that this last calculation (and exactly analogous computations for parts (1) and (2)) verifies the

conditions of Kolmogorov’s two-series theorem, implying the claimed almost sure absolute convergence.

Proof of Theorem 2. Claim (1) follows by combining claims (1) and (2) of Proposition 39, and claim (3) is part of
Proposition 39 claim (3).

Claim (2) follows from the stronger statements in the proof of Theorem 1 that for β ≤ β1, µndis
loc−−→ µfree, and for β ≥

β0, µnord
loc−−→ µwire. That proof also implies that the conditional measures both exhibit exponential decay of correlations

(and central limit theorems) at βc.

Proof of Theorem 3. The first two parts of this proposition are special cases of Proposition 39. The third part follows
from the first two and Lemma 9 as in the proof of Theorem 2 above.

7. Algorithms

The polymer models and estimates in Section 2 yield efficient approximate counting and sampling algorithms by adapting
the polymer model algorithms from [9, 43, 46] to our current setup. In particular, if we assume ε > e−n/2/2, then by
Lemmas 21 and 23 and Corollary 24 it suffices to find an FPTAS for Ξdis when β ≤ β1 and for Ξord when β ≥ β0, as
well as polynomial-time sampling algorithms for νdis and νord.

7.1. Approximate counting

The approximate counting algorithms from [9, 43, 46] based on truncating the cluster expansion have two main require-
ments: 1) condition (18), or a similar statement giving an exponentially small error bound, holds, and 2) one can list all
polymers of size at most m and compute their weight functions in time exp(O(m+ logn)).

Lemma 41. There is an algorithm that lists all ordered polymers of size at mostm with running time exp(O(m+logn)).

Proof. We can enumerate all connected edge sets of size at most m in time n(e∆)m, and hence can create a list L of all
labelled connected edge sets of size at most m in time m exp(O(m)).

By Lemma 12 it takes time poly(K) to create the ordered polymer corresponding to set of K unoccupied edges. For
each element (γ, `) of L we apply the ordered polymer construction to the subset of edges of γ labelled ‘unoccupied’. If
this construction returns (γ, `) we retain the element, otherwise we discard it. In time poly(m) exp(O(m)) = exp(O(m))
we obtain a complete list of all ordered polymers.

Proof of Theorem 4, FPTAS. Suppose ε > e−n/2. Note that a polynomial-time algorithm to compute T ord
m (as defined

in (16)) with m = O(logn/ε) yields a polynomial-time algorithm for an ε-approximation to Ξord by (18) whenever
β > β0, as in this case the cluster expansion converges. The same statement holds true for β < β1 for approximation Ξdis

by T dis
m . In turn, Corollary 24 implies that this gives an FPTAS for Z . The existence of a polynomial-time algorithm to

compute T ord
m and T dis

m can be seen as follows.
By [9, Lemma 2.2], an algorithm for computing T ord

m (resp. T dis
m ) exists provided there are polynomial-time algorithms

to
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1. list all polymers of given size m≤O(logn),
2. compute the weights of all polymers of size m≤O(logn).

Listing and computing the weights of disordered polymers of size m in time exponential in m is elementary: all
connected subgraphs on k edges can be listed in time n(e∆)k , and the weights are given by an explicit formula.

Listing ordered polymers of a given size m in time exponential in m can be done by Lemma 41. To compute the
weights in time polynomial in n requires computing the number c′(γ) of connected components induced by a polymer.
Since it takes time |C(x)| to determine the connected component C(x) of a vertex x, this can be done in time n for each
polymer.

This completes the proof when ε > e−n/2. When ε≤ e−n/2, one can obtain an FPTAS by brute-force enumeration, as
the total number of configurations is 2∆n/2.

7.2. Approximate sampling

Since an efficient sampling algorithm for the Potts model when q is a positive integer follows from an efficient algorithm
for the random cluster model by the Edwards–Sokal coupling, we describe our efficient sampling algorithm only for the
random cluster model.

Proof of Theorem 4, Sampling. We consider only ε > e−n/2, as smaller ε can be handled by brute force.
When the disordered (respectively, ordered) cluster expansion converges we obtain an efficient approximate sampling

algorithm for the measure ν̄dis (respectively, ν̄ord) induced by the disordered polymer model by [43, Theorem 10]; note
that we have verified the conditions of this theorem in the previous section. By Lemma 21, we thus obtain an efficient
approximate sampling algorithm for µdis, the random cluster model conditional on the event that the configuration lies
in Ωdis, when β ≤ β1. Similarly we obtain efficient approximate sampling algorithms for µord when β ≥ β0. By the
approximate counting part of Theorem 4, which we have already proved, we can efficiently approximate the relative
probabilities of Ωord and Ωdis. We thus obtain an efficient approximate sampling algorithm for the q-random cluster
model by Corollary 24.

7.3. Application to random ∆-regular graphs

Corollary 5 follows directly from Theorem 4 and Proposition 38 in Section 5.
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