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Abstract

Black hole event horizons and cosmological event horizons share many properties, making
it natural to ask whether our recent advances in understanding black holes generalize to
cosmology. To this end, we discuss a paradox that occurs if observers can access what lies
beyond their cosmological horizon in the same way that they can access what lies beyond
a black hole horizon. In particular, distinct observers with distinct horizons may encode
the same portion of spacetime, violating the no-cloning theorem of quantum mechanics.
This paradox is due precisely to the observer-dependence of the cosmological horizon
— the sharpest difference from a black hole horizon — although we will argue that the

gravity path integral avoids the paradox in controlled examples.
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1 Introduction

One of the central lessons of the past few years is that the semiclassical gravitational path
integral knows about the encoding of the interior of the black hole in its Hawking radiation.
Black hole horizons are ubiquitous in our universe, as they are believed to exist at the center
of almost every galaxy. Perhaps even more ubiquitous is the cosmic horizon. Unlike a black
hole, this horizon surrounds us, but similar to a black hole, it is believed to Hawking radiate
at a characteristic temperature set by the size of the horizon. Furthermore, cosmic horizons
have a thermodynamic entropy [1]

A
S = el (1.1)
given by the same formula as the black hole entropy. Trying to understand the encoding of
spacetime beyond the cosmic horizon from the finite cavity within it is a difficult problem;
what would help is an “exterior” or “bird’s eye” view of cosmology. Assuming an exit from
inflation [2-4] or fixing future boundary conditions at ZT [5,6] are closely related versions

of providing this exterior view. They provide us with an infinite Hilbert space in which we



can make arbitrarily precise measurements and therefore put the problem on a more similar
footing to that of black holes.!

In this paper, we will take a similar exterior view of cosmology. Our model will be
Jackiw-Teitelboim gravity with a positive cosmological constant, which has de Sitter space
as a solution. It also has a black hole in de Sitter space as a solution, which can be thought
of as a dimensional reduction of the Nariai black hole. Like in higher dimensions, this black
hole solution admits an arbitrarily large analytic extension, which can have as many black
holes and as many inflating regions as one desires. This analytic extension is often assumed
to be a mathematical curiosity, but we will see that it passes some consistency checks. It will
allow us to formulate our paradox, which we briefly outline below.

In our spacetime with inflating regions separated by black hole regions, we will consider
two observers — Alice and Bob — in distinct inflating regions. We will assume these observers’
local patches have exited from inflation, and they are in a region where gravity is weak, such
that the spacetime background can be fixed. We will refer to such regions where the spacetime
geometry is fixed as frozen.? This will be our exterior view. A picture is provided below in
figure 1. The theory governing where Alice and Bob live is some quantum field theory (QFT)
on a curved background; the gravitational part of the spacetime simply prepares an initial
state for the evolution of the QFT. Since the two QFTs are spacelike separated, all operators
in Alice’s system commute with all operators in Bob’s system. But notice that the exteriors
of Alice’s and Bob’s horizons overlap. If the exterior of Alice’s horizon is encoded by the data
in her cavity, and similarly with Bob, that means that both Alice and Bob encode the same
piece of spacetime. This violates the no-cloning theorem, since they can both independently
extract a bit from beyond the horizon without affecting each others’ ability to do so. We will
elaborate on this paradox in section 4.

Our resolution to this paradox, which we will describe in more depth in section 5, will
be that whether or not the geometry in Bob’s distinct inflating region is taken to be frozen
or not can have a drastic effect on Alice’s ability to reconstruct operators in Bob’s region
(and vice versa for Bob). Furthermore, we will find that for most “natural” choices of state
on the two asymptotic regions, the dominant saddle in the semi-classical path integral is one
where Alice and Bob’s regions exist in their own, disconnected spacetimes. In this case, each
observer only encodes the region beyond their horizon within their connected portion of the
universe. Thus there is no overlap and no violation of no-cloning. In order to make the
dominant saddle the one hosting both Alice and Bob in the same connected universe, one

must first change the path integral prescription (act with an operator) which entangles the

!The finite dimensionality of the Hilbert space for a de Sitter universe was first proposed in [7-9] and
developed in [10-21]. For a study of fixed future boundary conditions see [22].

2Note that because gravity is turned off in these frozen regions, we can really think of Alice and Bob’s
Hilbert spaces as tensor factorizing. This should be contrasted with the idea that when the different patches
are weakly gravitating there is a single, non-factorizing Hilbert space which represents them both.



two asymptotic regions. In that case, both Alice and Bob will find the microscopic state of
their inflating regions to be mixed and they will not be able to encode each other’s regions.

What we are describing is similar to a “time-like homology constraint”, which disallows
consideration of entanglement wedges which are in the past of a portion of frozen spacetime
in the semi-classical saddle. The point of the present work will be to justify this constraint in
an explicit example by illustrating how the Euclidean path integral disallows such quantum
extremal surface saddles from contributing.

We now briefly outline the paper. In section 2, we will describe the set-up of JT gravity
coupled to 2d conformal matter. We will also describe the analytically extended nearly-
Nariai geometries with multiple black hole and cosmological horizons. We will describe
how quantum corrections are important for understanding this spacetime.? In section 3, we
describe various quantum extremal surface saddles. There we also discuss the entropy of
a single inflating region. This leads us to a paradox which we discuss in section 4. Then
in section 5 we propose a resolution of this paradox via the gravitational path integral. In
section 6 we end with some discussion and speculations about encoding a closed universe
with inflating regions in a quantum system via the gravitational path integral.

2 JT gravity coupled to conformal matter in dS,

We will consider Jackiw-Teitelboim gravity with positive cosmological constant minimally
coupled to conformal matter:

1:—% [/22R+2/822K] —4‘;{ 22¢(R—2)+2¢b/822(K—1)] Florr.  (2.1)

The path integral over the dilaton fixes us to dSa,

2 _ —do? + dp?
cos? o

ds , po~e+1L, o€ (—m/2,7/2). (2.2)
We have fixed the de Sitter length to 1. The metric equation of motion is

(g,uz/VQ - V.V, + g,uz/) o =211} . (2.3)

3 Analytic extensions of these near-Nariai geometries were recently discussed in [23], but the authors in
that work did not account for the backreaction due to quantum matter, which we include. We will also discuss
the relevant boundary conditions and how to compute physical quantities in the frozen regions.



The stress tensor on metric ds?> = e2wds§ = e (—do? + dp?) is given by

. IS ~ ~ 1. ~ ~ A -
Ty =T, = 15 <Vuwvyw — 5gw(w))2 ~V,V,w+ guyv2w> , (2.4)
=79 +7C(5V—|——ng. (2.5)
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In the final line, the second term is traceless and the last term is proportional to the metric.
Picking the periodicity ¢ ~ ¢ + 27 means the stress tensor on the cylinder —do? 4 dy? is
given by Tg,, = —55-0uw, precisely canceling the piece 57-d,,, above. This leaves only the
term proportional to the metric, which can be absorbed into a constant shift in ¢.* In this

case we have a dilaton solution
cos @

¢ =¢r . (2'6)
cos o
We can consider a different periodicity for ¢, ¢ ~ ¢ + L, in which case
5 mC
T.gy = *@6/“/, @Y~ Q + L (27)
A p-independent solution is given by
¢ = —2rTaceless (1 4 (y + o) tano) , (2.8)

where Tliryaceless = TEZ, + 54-0uv 1s the traceless part of T,,. Since this satisfies the sourced
equation (i.e. Tﬁryaceless # 0), we can add it to our previous sourceless solution to obtain

CoS ¢

¢=¢

-9 Ttraceless 1 t 2.9
TCOSO' Tlso ( +(’Y+U) ana) ( )
for some free constant ¢, and where now w ~ @+ L for general L. We pick L = 2mn with
n € Z* to ensure periodicity of our dilaton ¢, obtaining

~ cosp ¢

1
. —(1-=)1 , 2.1
oo 12( n2>( + (v +o0)tano) (2.10)

For a time-symmetric solution around ¢ = 0 we pick v = 0, and to ensure we are inflating in
at least some region of Z+ we pick ¢, > 5(1—1/ n?). We also drop the constant piece in @,
giving altogether

b=t _C (1 - nlz) o tano. (2.11)

COoS o B ﬁ

“The only term in the equation of motion (2.3) sensitive to constant shifts in ¢ is the g, ¢ term, which
can therefore cancel a contribution to the stress tensor that is proportional to g,..



oc=—7/2 WWWWMWAMWMMNwMWMAM(_'MWWWMWWW_’—
=0 o= o =2m
Figure 1: Solution to JT gravity with n = 3. The magnitude of the Casimir energy due to
matter decreases as n increases, leading to crunching regions which are larger than inflating
regions. The Penrose diagram is periodically identified, making the spatial topology that of
a circle.

Expanding around € = 7/2 — o gives

_drcosp— 3¢ (1— )
6 .

¢ (2.12)

We will refer to a region where ¢ — —oo as a crunching region (i.e. a black hole interior)
and ¢ — +o0o as an inflating region. We therefore see that this family of sourced solutions
shrinks the inflating regions and grows the crunching regions as compared to the unsourced
solutions. The inflating regions remain out of causal contact from one another, i.e. the
(black hole) wormhole grows and therefore remains nontraversable. This is reasonable since
we are reducing the magnitude of the Casimir energy. The case of n = 3 is shown in figure 1.
Extending the periodicity of the universe as a model was suggested in [4] and studied in [23].

2.1 Matter entropy

We will also need the matter entropy on our 27wn-sized universe. The quantum state of matter
will be given by a Weyl transformation of the vacuum state on the flat cylinder of size 27n.

We therefore write

= = Lm0 ), (2.13)

d2
5 0z’ 2n

with a map to the dS metric given by
7 = e Hlo—p)/n

T = ot/ (2.14)
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This gives the CFT entropy as

_ To — T g2=01) _ p2=¢1
Scrr = Elog ((332 xl)(xQ 131)> — Elog <2n2008( n ) COS( n )) 7 (215)

6 2y QUz1)Q(x2) 6 €3y, COS 0] COS 07

where €77 is an arbitrary cutoff to make the argument of the logs dimensionless. Notice that
the Euclidean background is singular for n > 1, since the angular coordinate of the sphere
satisfies ¢ ~ ¢ + 2mn. The state of matter is still well-defined due to the Weyl equivalence
with a smooth background. The inclusion of the gravitational sector breaks this equivalence,
although to formulate our paradox we will assume there exists a reasonable state for the
gravitational sector which allows us to use the island rule. We will return to this point in
section 5.

2.2 Backreacted and extended Nariai solution

Recall that JT gravity in dSe can be obtained by a dimensional reduction of near-extremal
black holes in dS;. These near-extremal black holes are the Schwarzschild black hole in the
limit where the black hole horizon approaches the cosmic horizon, called the Nariai limit.
In the higher-dimensional picture, this spacetime has an analytic extension which puts in as
many inflating and crunching regions as desired. Figure 1 is simply a dimensional reduction
of one of these possible analytic extensions, for the case n = 3. Usually, the extension to
additional inflating regions is considered a mathematical curiosity; what are all these other
universes?

A sharper objection is that of Kay and Wald [24], which argued that there are no reason-
able quantum states for quantum fields on the extended Schwarzschild-de Sitter spacetime,
which respect the isometries of the spacetime. They proved this two different ways. The
first is effectively the statement that Schwarzschild-de Sitter is out-of-equilibrium, since the
black hole horizon and cosmic horizon have different temperatures. This disallows a standard
Euclidean preparation of a state. This argument does not apply to the Nariai limit we are
concerned with where the two horizons have the same temperature. The second proof uses
monogamy of entanglement. If you line up several bifurcate horizons in a row, then a single
diamond between the black hole and cosmic horizons has to purify both the diamond to its
left and the diamond to its right in a state which respects the de Sitter symmetries. But
this is impossible unless the left and right diamond are the same, as occurs in the n = 1
spacetime. The way the state described in the previous subsection evades this argument is
that the bifurcate horizons disappear once we consider quantum corrections to the spacetime
solution. This suggests that the quantum state for matter we discussed above — and the
analytically extended spacetime — may be fact instead of fiction.

It would be nice to study the same issue in higher dimensions. A time slice of the



Nariai geometry is S' x S2, and for thermal periodicity conditions along the spatial S we
expect a negative Casimir energy, whose magnitude decreases as we grow the size of the S*.
This provides a contribution which wants to make the black hole wormhole grow as in two
dimensions. We derive monotonicity of the Casimir energy with the length of the circle L
and some further constraints for a conformal field theory on S' x S2? in appendix A. (The
Nariai geometry is time-dependent so here we are talking about the instantaneous energy,
say at 0 = 0.)

We need not take the other universes in the analytic extension seriously as a phenomeno-
logical model for what happens in our universe. Indeed, black holes formed from collapse do
not look like this. But similar to the thermofield double in anti-de Sitter space, it is a useful

theoretical model to probe various questions about horizons.

2.3 Boundary conditions

If we want to involve our saddle in a Hartle-Hawking-like path integral prescription, we
need to know what boundary conditions to put at the future boundary. We will cut-off the

space-time and glue to flat-space at the location defined by

P(z) = —, (2.16)

d 2
ds? = 6% . (2.17)
The flat-space metric will be
—dt* + dz?
ds? ;= —_— . (2.18)

We will often refer to this flat-space region as a hat, represented by the triangles at the top
of figure 2. If this gluing occurs near ZT, then the boundary condition on the dilaton picks

out a curve o(p) =~ § — do(p) in global coordinates which obeys the equation

-~ cosp ¢ 1\ 5 —00(p) ¢
T(S(I(go)_12<l_nz> S do(p) e (2.19)
Solving for do(¢) we have
B by B _em(1 - 1/n?)
do(p) =¢ e (cos(p) —an), an= 724@2% . (2.20)



As of now, the ratio ¢,/¢, is an undetermined constant (analogous to 7./e in [3]) which
in principle will need to be fixed in some auxiliary manner. We will return to this point
shortly. Note that do(p) goes to zero when cos g, = a;, > 0. This means that the inflating
region goes from ¢ € (— arccos ay,, arccos ay,) with arccosay, < m/2. In other words, the
backreaction of the quantum fields on the n > 1 universe causes the inflating region to shrink
and the wormhole to grow, as was discussed above.

There is a natural Milne-like wedge which covers the causal past of the portion of ZT that
is inflating. Focusing on the inflating region which is centered about ¢ = 0, we can define
coordinates which cover this wedge by the equations (see Appendix B)

tanh(y) = /1 — a2 i 4

"sino — ay cos @

tanh(7) = /1 — a2 —27 (2.21)

", sino — cosp

One can also check that the dSe metric in these coordinates is just the familiar de-Sitter

metric in the Milne wedge

—dn? + dx?

ds®> = 5=
sinh” 7

, (2.22)

and furthermore note that the cutoff surface given by do () in (2.20) is at constant 77 given
by

tanh 7. ~ 7, = —e\/1 — oz,%ﬂ. (2.23)

We see that we can continuously match 77 and x with the ¢ and x coordinates of (2.18) to
get the metric in the hat

*dﬁQ + d>"<'2

= (2.24)

dS%at =
As discussed in [3], the ratio 7i./e (or ¢,/¢,) has to do with the re-scaling between the flat
space x coordinate and the Milne x coordinate. The parameterization of the global manifold
in terms of these coordinates (and their analytic continuations) is presented in figure 2 for
the case n = 2.

To fix this undetermined parameter, one should compute the norm of the multi-hat state
using path integral methods. If our saddle dominates this path integral, then the multi-hat
state’s norm will depend explicitly on 7. /€. One can then extremize this norm over all possible
values of 7./e. See [3] for further discussion of this point. As is discussed below in section 5,



Figure 2: The lines in this diagram illustrate constant 7 and y surfaces.

the saddles we have discussed here do not naturally dominate the path integral. Without a
specific prescription for making this multi-hat saddle dominant, we cannot explicitly fix the
ratio 7./e. Thus, for the remainder of this work, we will leave it as an unfixed parameter,
keeping in mind that in principle it will be fixed to a specific value. We can use our coordinate
transformation in (2.21) to write the metric (2.24) in terms of o, ¢ coordinates. It takes the

form
sinh? 7j(a, )
ds2 =2 D) (a2 0 g2
Phat 2 cos? o (=do® +d)
= 0?(0,¢) (—do® + dp?), (2.25)
where
1 1—a?
o == 5 : 2.26
(@.¢) N2 (cosp — apsino)? — (1 —a2)cos?o (2.26)

We can then find entanglement entropies for regions with one endpoint in the hat and the
other in the de-Sitter region by simply replacing one of the Q’s in (2.15) by the 2 in (2.26).
Since € is local to the endpoint in the hat region, this will just affect the answer for the
entropy in (2.15) by an overall constant, independent of the position of the endpoint that is
in the de-Sitter region.

Finally, an important but potentially confusing point is that the quantum fields of the
CFT living in the back-reacted Milne wedge covered by the coordinates in (2.21) will not
be thermal with respect to Milne time 7. There is, however, a different set of coordinates
which one can choose for the same back-reacted wedge with respect to which the CFT state
is thermal. We can find these coordinates by first conformally mapping the interval o = /2,
© € (—@s, @x) to the half-circle 0 = 7/2, ¢ € (0,7n). The wedge associated to this half-

10



circle can then be viewed as a Rindler wedge of the Poincare patch of the Lorentzian cylinder
covered by o, . Following this procedure, the Rindler coordinates covering this Rindler
wedge are related to o, ¢ by

")
sin
tanh zy, = /1 — 32 p—p n

cos == — (B, cos £
sin 2=7/2
tanh t, = —\/1 — B2 a—w/; (2.27)
B cos === — cos £

where 3, = cos £* with ¢, defined by o, = cos .. See Appendix C for details. Just as
before, one can check that the coordinates t;;, and xy, cover the wedge associated to the
central inflating region. To reiterate, the state of the fields is thermal with respect to 41, but
not 1.

3 Island computation

With the gravitational solutions at hand, we want to consider the generalized entropy of an
interval in one of the inflating regions, analogous to the computations in [3,4,23]. We will
slightly modify the solution above by appending flat-space regions to each of the inflating
regions. Since the dilaton diverges toward the inflating boundary, the gravitational coupling
is approaching zero there. Therefore in the flat-space region we will assume gravitational
effects can be completely ignored.

We will assume that the island region is as depicted in figure 3, and that we are in an
OPE limit such that the entropy in the complement channel — which is the union of two
intervals — factorizes. We will do the computation for a region R close to but below Z,
where we will ignore the effects of gravity; as discussed below (2.26), moving R into the hat
as in figure 3 simply introduces an additive constant factor due to the distinct Weyl factor
in the hat. The gravitational entropy is ¢/4, which when combined with the matter entropy
in section 2.1 gives the generalized entropy as:

Sgen = 2¢0 + 2(]3TCOS pr_c <1 — 12> ortanoy + ¢ log <2n2COS (%) — o8 (%)
cosor 6 n 3 €2 COSO[COSOR
(3.1)
The overall factor of two is for both intervals. We want to extremize this answer with respect
to the {07, 1} endpoint. It is a little difficult to extremize this directly, but in the limit of
small backreaction ¢/ &r < 1, the n > 1 saddles are not very different from the n = 1 saddle,

at least as long as we choose the endpoints of region R to be near the interfaces between the

11
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Figure 3: Island region I for entropy of region R in an n = 3 universe.

crunching and inflating regions on Z*. The resulting island is as in figure 3.

The above situation presents us with a puzzle. While an observer Alice with access to
region R can encode the rest of the universe, the same would apply to an observer Bob in the
right or left patches. In particular, Alice and Bob would have overlapping islands (and would
be in each other’s island). This is inconsistent with complementary recovery, and leads to a
violation of the no-cloning theorem in quantum mechanics.

3.1 Entropy of an entire hat

We can also take region R to be an entire inflating region. In this case, the natural answer
for the entropy, analogous to the island we found in the previous section, is to extend region
R into the bulk such that it covers the entire spacetime. This is displayed in figure 4 and
gives S = 0. Like in the previous section, if we compute the entropy of the other hat, we will
find again that the island region is the rest of the spacetime, giving S = 0 again. This can
also be seen more directly from the replica analysis, which we discuss in section 5. Now that
we have argued for overlapping island regions, let’s move onto the paradox that arises.

12



Figure 4: The “purity” saddle which gives S = 0 for the entropy of one of the two hats in
an n = 2 universe.

4 A paradox

In this section we will carefully state our assumptions and the inconsistency they lead to.
We will see that the following two assumptions are in contradiction with each other:

1. For the two (or multi) hat state, the entanglement wedge of either hat is the entire

universe.
2. Any operator in Hat; commutes with any operator in Hats.

We now argue by contradiction that these both cannot be true. By the first assumption, the
entanglement wedges of the two hats overlap, for example in either of the black hole interiors.
For operators ¢ and 7 in the black hole interior such that [¢, 7] # 0, we then have

(¥l[¢, 7]l¢) = (¥[[O1, Oa]l¢p) = 0 (4.1)

where in the first equality we used entanglement wedge reconstruction to represent ¢ in Hat
with O; and 7 in Hate with Os. The second equality follows by assumption 2, but then we
reach a contradiction since we assumed [¢, 7] # 0.

Connection to no cloning

Note that this contradiction is very similar to the contradiction that if we have two overlap-
ping entanglement wedges for complementary regions then we could clone quantum infor-
mation. The proof for this is as follows. Suppose we have a quantum error correcting code
with overlapping entanglement wedges for complementary regions. Denote the two comple-
mentary regions by A and A. Suppose our code-subspace H¢ is spanned by the states {|i)}
indexed by . This subspace could be, for example, the Hilbert space of a qubit in the past
of Haty or Hats.

Then suppose that both of these regions can reconstruct the code-subspace. Recon-
structability is equivalent to the existence of a decoding isometry which isolates the code

13



subspace state onto a sub-factor of the physical Hilbert space, H 4 5, with dimension equal to
that of the code subspace. In other words, using the conventions and notations of [25], this

means that there is an isometry U4 acting on H 4 such that

Uali)az =19, ®X)a,4 (4.2)

for all |i) in the code subspace and for some division A; and Ay such that |A;| = dim H¢
and |As| = dimH 4/ dimHe. See [25] for the slight modification of this formula if dim H¢
is not a divisor of dim H 4, although this is unimportant for us. Here [x) 4, 1 is some state
which is independent of |i), which is essential.

Now by assumption there is also a similar equality for Uz on the complement region.
Putting eq. (4.2) together with its complementary version, and using that U4 and Uy

commute, we have

UaUali) gz = li)a, ® Uz X)a,4 = 1) 4, ©UaIX) 4,4 - (4.3)

The latter equality tells us that y is in fact dependent on ¢, violating the assumption of
reconstructability. Note that if this string of equalities were true then we could clone quantum
information. This is because the second equality in eq. (4.3) tells us that the reduced density
matrix of UgUa [i) 45 on A is [i) (i] 4, ® xa,, Where x4, = Trz[x) (x| 4,1, and analogously
for A, but the only pure state on AA with these reduced density matrices is

UaUgli) g1 = i) 4, @ 1) 3, @ IX) A, 4, - (4.4)

Thus, the joint isometry UoUj would allow one to clone quantum information onto the
Ha, @ Hy, subfactor of H 4, which of course is impossible.

5 Resolution

Our proposed resolution to the paradox above is that the quantum extremal surface saddles
in figures 3 and 4 are actually incorrect for the problem as posed. The reason will be roughly
due to a “time-like” homology constraint. To illustrate this, we first examine a slightly
different set-up than the one we consider with multiple disconnected hats.

5.1 A toy model of a toy model

We briefly discuss a slightly simpler set-up where a similar confusion arises. Consider global
dSg4y1, without black holes, illustrated in figure 5. We can imagine “freezing” the geometry in
two regions Ry and Rs close to ZT. By freezing here, we mean that in defining the quantum

14



Figure 5: We imagine taking global de Sitter and freezing two regions near Z* pictured in red.
We integrate over the geometry away from these intervals. Naively, there is a puzzle since the
entanglement wedge for one of the intervals appears to encompass the whole universe, since
the spatial cross sections are compact. The naive entanglement wedge for Ro is pictured in
blue.

state near ZT we only integrate over quantum fields while fixing the metric in the frozen
regions.?

If we take the saddle-point in figure 5 seriously, one would run into a paradox similar
to the one described in the section 4. This is because again the spatial cross-sections of
global dSg,1 are just topologically S and so the entanglement wedge for either Ry or Ry
is just determined by the trivial quantum extremal surface, i.e. the entanglement wedge is
the whole universe. If this were true, there would be operators encoded in Ry which do not
commute with operators in R».

We can see how the Hartle-Hawking prescription resolves this confusion, however. The
HH prescription says that to compute the dominant contribution to the wave-function we
just fix the two regions and then sum over all no-boundary geometries in the past which end
on these intervals.® When we do this, however, the dominant saddle is not the one pictured
in figure 5, but rather one where the two regions are in their own §epara}e universes as in
figure 6. This is because this saddle is enhanced by a factor of 67~ Jd=R _ o (due to
the additional universe) relative to the saddle where both intervals are in the same universe.
In this saddle, there is no confusion: the two regions just encode their own copies of the
universe. We see that without modification, the HH prescription produces a state of the two

15



Figure 6: The true saddle for the problem of two regions near Z, is actually two disconnected
universes, with each region in its own copy of the original spacetime.

regions which is naturally disentangled.

One could ask if there is a modification of the HH prescription - in other words, a
different state - where the saddle in figure 5 is the dominant saddle. Instead of delving into
this question more here, we instead turn to the main set-up of interest.

5.2 Back to the multiple black hole set-up

We return to our model of 2d Schwarzschild-de Sitter with a 27n-sized universe for n > 1.
As mentioned at the end of section 2.1, the Euclidean manifold which would prepare the
Hartle-Hawking state has a conical singularity. In other words, although the configuration
in Section 2 is a solution everywhere in Lorentzian signature, the analytic continuation of
these geometries to Euclidean signature is not everywhere a solution to the JT saddle-point
equations. The spatial cross section of the multi-hat saddle depicted in figure 4 has a total
angle of 2nm for n hats, which when continued into Euclidean signature leads to a conical
singularity in the past (o = +ico in global coordinates), at which point the constraint R = 2
is no longer obeyed. This is illustrated in figure 7. Say we have a UV complete theory where
this conical singularity is regularized somehow. Then using the argument in Section 5.1, we
see that if we freeze m < n hats, then the dominant saddle will be m disconnected universes,
and we will not run into a paradox of overlapping entanglement wedges.

Without such a UV complete theory, the resolution is even simpler: these problematic

50One might have in mind here that the two frozen regions R; and Ry correspond to two boundary quantum
field theories. The state of the system on R; U R is then prepared via the path integral over geometries in
its past. To determine this state, one could use the Hartle-Hawking prescription or perhaps a modified
prescription to produce a different state, as we will discuss below.

5Note that, as always, there are contributions from closed universes which contain neither R; nor Rs.
These are only relevant for computing the norm of the state but will divide out when we compute normalized
quantities.
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o =100

Figure 7: The connected, two-hat saddle which we are interested in studying. Here we have
illustrated the Lorentzian to Euclidean continuation of this saddle from the ¢ = 0 line. This
is a hemisphere of curvature R = 2 but with a conical excess at ¢ = i00, the south pole of
the hemisphere. The conical singularity has an opening angle of 47n. For n hats, it would
have an opening angle of 27mn.

spacetimes are simply not saddles. They instead appear as though an operator has been
inserted at some point in the Euclidean past. Thus they do not contribute to — let alone
dominate — the Hartle-Hawking path integral without operator insertions.

One could then ask: can we include operator insertions such that the connected spacetime
becomes a solution, and in fact dominates the path integral? For this to occur, we need a
nonperturbative definition of the location of the insertion, i.e. the location of the conical
singularity. A natural way of discussing the location is to define it relative to the future
boundary conditions. For example, one might geodesically “dress” this point to the future
asymptotic boundary. Then it is not hard to see that to make the connected two-hat saddle
dominant, we need that the position of this singularity is defined relative to not just one of
the hats but to both simultaneously. To understand this, imagine that we referenced just one
of the hats, say the left hat Haty. Then, similarly to the previous subsection, the dominant
saddle will again be one where the two hats sit in their own, disconnected de Sitter universes
since this is enhanced relative to the connected saddle by factors of e%°. Here the universe
with Hat; has an extra asymptotically de Sitter region due to the conical singularity in the
Euclidean region of the manifold. This is illustrated in figure 8. This again shows that
Hartle-Hawking-like prescriptions naturally want to disconnect all asymptotically de Sitter
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Figure 8: If we insert a conical singularity at a position which references only one of the
hats, instead of both simultaneously, the dominant saddle will be two disconnected universes
illustrated here. If we define the conical singularity with respect to the Haty, then Haty, will
be in a universe with angle 47 and another, fluctuating asymptotically inflating region. Hatg
will be off in its own 27 universe. We have schematically illustrated the procedure of tying
the conical singularity to a hat by the green dashed line. To prevent the saddle illustrated
here from dominating the path integral, we need to tie the position of the conical singularity
to both hats simultaneously. We discuss some ways of doing this in the main text.

regions, unless we force them to connect. Thus we see that to force them to connect we need
to define the position of the conical singularity with respect to both hats simultaneously.
In this case the disconnected saddles no longer contribute since the dressing of the conical
singularity only includes geometries which are connected in the path integral.

5.3 Inserting the conical singularity relative to both hats and resolution
of the paradox

This discussion so far has been abstract since we have not discussed any concrete methods
by which to actually insert this conical singularity in the Euclidean past. We now discuss

two possible options.

5.3.1 Freezing by hand

One option is to follow in the footsteps of [26] and just freeze more of the geometry by
hand. For example, instead of just freezing in the asymptotic regions where the dilaton is
becoming large and so gravity is becoming weak, we could for example choose to freeze all
regions of the geometry where the dilaton ¢(z) is bigger than some value ¢,. For example,
one could choose to freeze all parts of the geometry (Lorentzian or Euclidean) where the
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Figure 9: One could make the two-hat connected saddle dominate the path integral by
freezing some portion of the geometry in the interior. A natural choice is to freeze all regions
with some dilaton value ¢ > 0. Here we show the saddle where we have frozen everything
filled in with gray. Note that when we include ¢/ ¢, corrections to this solution then the
frozen region actually includes a neighborhood of the conical singularity.

dilaton is ¢(z) > 0, which corresponds to all regions where the total dilaton is greater
than its extremal value ¢g. Note that this is not the value of the dilaton at the de Sitter
horizon, which is instead ¢(z) = ¢,(1+O(c/d,)). Ignoring the quantum corrections of order
c/ ¢~>r, we see that this amounts to freezing everything in the geometry with angular variable
¢ € [-m/2,7/2) U [37/2,5m/2]. This is illustrated in figure 9. We see that the conical
singularity is just barely included in the Euclidean past frozen region.

With quantum corrections, the dilaton in fact linearly blows up to +oco at the conical
singularity and so the frozen region, where ¢ > 0, includes a neighborhood of the conical
singularity. Since the geometry is frozen in what used to be the “bulk” of the spacetime,
we are considering a genuinely different state from the HH state on the Hilbert space H =
HHat; ® HHaty- Given this frozen region, we then compute the wavefunction of this state
by summing over all geometries which end on this mixed-signature manifold. Clearly, our
connected saddle geometry is a solution to this problem and likely nothing else is.

Resolution of the paradox for frozen geometries: If we freeze portions of the
geometry by hand, then the resolution to our paradox is simple; since the frozen region
extends into the Lorentzian past of both saddles, the naive QES for Haty, which includes
the whole universe, can no longer work because it would manifestly include a piece of the
frozen region in the past of Hatp.
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Figure 10: This figure illustrates what happens if the frozen portion of the geometry is only
connected to one hat, in this case Hat;. The green-dashed lines schematically represent
the frozen portion of the geometry. In this case, Haty from replica 1 can be swapped with
Hat, from replica 2 and so the dominant saddle will just be two copies of the saddle which
dominates the norm, (HH|HH;). In other words, Tr[p?] = (HHf\HHf>2 where p is the
unnormalized density matrix. The double-headed arrow indicates that the left hats from
each replica have been swapped.

We can be more explicit and review how the Euclidean path integral implements the
constraint that the entanglement wedge for a frozen region R should not include any other
frozen region besides R. To illustrate how the gravity path integral enforces this constraint,
we can compute the Renyi-2 entropy, Sy = — log Trp?, of Hat, in the HH state prepared by
JT gravity along with the extra boundary condition of freezing the portions of its geometry
in figure 9. We will call the state of the two hats prepared via this path integral |HHy)
where the subscript f, for “frozen,” denotes that we are working with the extra boundary
conditions. What we want to argue is that Sy > 0 since the saddle which gives Sy = 0 does
not obey the boundary conditions.

To compute S, we prepare two replica copies of the pure state density matrix |HHy) (HHy| =
pfg 7| trace out R and then compute Tr[p?]. This amounts to computing the path integral
with 4 boundaries or 8 asymptotic hat regions, gluing all the R kets to their bra partners
in the same replica and then gluing the L kets to the L bras in the other replica. This is
illustrated in figure 11. To compute the purity, we are then instructed to sum over all JT
saddles that have these boundary conditions discussed in the previous section. If the frozen
region does not geometrically connect Haty to Hatg, then we can effectively swap the bra for
Hat; in replica copy 1 with the bra in Haty, for replica 2 as in figure 10. The dominant saddle
would then just be two copies of the saddle that dominates when computing (HH¢|HHy).
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Figure 11: We illustrate the boundary conditions associated to computing the purity, Tr[p? 71,
for the state on Haty in the Hartle-Hawking state with modified boundary conditions, where
the conical singularity (marked by “X”) is inserted in the frozen portion of the geometry.
The prime denotes bra vs. ket and the subscript denotes replica number. Since this dressing
ties hats of the same replica number to each other, we see that the quantum extremal surface
(or its Renyi-2 analog), which gave an answer of Sy = 0 for each hat, is excluded. The only
possibility is the analog of the “Hawking” saddle, which gives a non-zero answer for Ss.

g

In other words, we would get S2 = 0.

If on the other hand the frozen region connects both boundaries as in figure 9, then we
cannot swap the replica copies because Hat; and Hatp are effectively tied to each other
within each replica byt the path integral over the forzen region. In other words, one can only
get saddles which connect between bras (or kets) of the same replica. This is not the same

s <HHf\HHf>2 and so Sy # 0. Indeed, we expect it to be of order ¢p. As we will see in
the next section, there is another quantum extremal surface which we have thus far ignored

that appears for n > 1 and which gives an answer Sy ~ ¢q.

5.3.2 Modifying the JT action

Freezing a large portion of the interior geometry is a rather drastic way of making the multi-
hat saddle dominate the path integral. One might hope that there is a less severe way of
accomplishing this goal. One method might be to modify the bulk theory so as to insert a
conical singularity at the correct point. More explicitly, one could attempt to produce this
saddle by modifying the JT action from

/d%gb(R —2) /d%J—T]d) (R . \/%52(95 . x*)> (5.1)
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where « is an independent parameter that can be tuned to be a = with n the number

2(n-1)
n
of asymptotic hats. Here we have in mind that x, is defined in some way that makes sense
non-perturbatively, and, when evaluated on the metric gy with a conical singularity at the
past Euclidean south pole (i.e. o = ioo in global coordinates), we find that x4 (gg) = (0 =
100, ¢). For more general metrics, x, might depend on the background metric and dilaton:
Tx = x(¢,g). Suppose there exists some method to specify z, that depends only upon
the background metric g and not the dilaton. For example, we might imagine geodesically
dressing the point z, to the future asymptotic boundary. We can then integrate over the
dilaton and find that the geometries localize to those with positive curvature and a delta

function singularity at x = .. The metric equations also get modified to be

(gWV2 - V.V, + gm,) ¢ = 21T, + awagqb(m) . (5.2)
og (z)

Note that for a point x, which is extremal with respect to the dilaton, this extra source
term on the right hand side vanishes. This is why the fixed area states of [27, 28] have been
considered for extremal surfaces only. More generally, however, this term may not vanish.
Furthermore, depending on how specifically z, is defined in terms of g, 0z, /dg might be quite
hard to calculate. Regardless of the specific details of the dilaton solution to eq. (5.2), as long
as there remain n asymptotically inflating regions after accounting for the term proportional
to a, one can still discuss a version of our paradox in this modified saddle point. This paradox
for the modified saddle described by (5.2) will be resolved in the same way as follows.

Figures 10 and 11 can be used again in this context just by re-interpreting the green
dashed lines as schematically denoting the dressing of the conical singularity with respect
to the asymptotic hats, i.e. a prescription for defining x.(g). The same words then go
through. When we dress the conical singularity to only one hat, the dominant saddle is the
disconnected one. When we dress the conical singularity to both simultaneously, we can no
longer swap hats in different replicas, since they are “tied together” by the green lines in
figure 11. We see that the resolution is effectively the same, regardless of the details of how
we prepared the entangled state of the two hats via the gravitational path integral.

5.4 Entropy of an entire hat revisited

Having argued that whichever prescription we use to make the connected saddle for n > 1
dominate the path integral will necessarily preclude the zero-entropy saddle, we are then
left with the question of what exactly is the entropy for one of the hats in these connected
saddles? In the case of figure 3, if the saddle drawn is incorrect, then we are left only with
the trivial saddle with vanishing island. Thus the fine-grained entropy of region R is simply
the semiclassical matter entropy. But in figure 4 we still need to extend the endpoints of
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Figure 12: The impure saddle for region R with n = 2.

region R into the bulk. If they do not run across the entire universe, then where do they
end? As it turns out, there exists a nontrivial QES, shown in figure 12. This can be found
explicitly as an extremum of our generalized entropy functional. When n = 2, it suffices
to note that (a) there is a time-reflection Zs symmetry around o = 0, (b) the QES for the
region R in one hat has to be the same as the QES for the same region in the neighboring
hat, by purity of the semiclassical state, and (c) the generalized entropy of a region R U I
is invariant under 27 shifts. Fact (a) locates the QES at o = 0, whereas facts (b)-(c) locate
the QES at the center of the crunching regions.

For n > 2 we do not generally have fact (b). But we do know that the center of the
crunching regions is classically extremal, so for € = ¢/ ér < 1 the quantum extremal surface
will be located nearby. It will still be at ¢ = 0 due to fact (a). By explicit extremization of
the generalized entropy functional from a point {o1, 1} to {02, 2} in the gravitating part
of the spacetime, we find the quantum extremal surface is the pair of points

ccot T ~
o1 =09=0, p1L=T—¢&, pa=-—-T+¢, e=—" 41 0(32/P%). (5.3)
6¢,n
To the same order in ¢ = ¢/ qzr, the nearby black hole horizons at ¢ = 0 are located at
2
p=+1F er=1/n%) " This means that the QES lives beyond the horizon, ensuring that the

24¢r
entanglement wedge of R is larger than its causal past. This is represented for n = 3 in

figure 13. Notice that given the symmetry around o = 0, the growth of the wormhole was
necessary to get a nontrivial QES which bounded a spacelike region.

The existence of these saddles is a good sign, because otherwise we would not be able
to ascribe an entropy to region R. (One option would have been to declare it to be the
semiclassical entropy of region R, but the fact that its endpoints end at the interface of the
gravitating and non-gravitating regions would have been puzzling; in particular we would
have to exclude by fiat the gravitational contribution to the entropy here.) We take this as
an indication that our setup is self-consistent.
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Figure 13: The impure saddle for region R with n = 3.

A somewhat surprising feature of our setup and this result for the entropy is that it also
suggests a fine-grained entropy for a region between the two red QES’s, which is entirely in
the gravitationally fluctuating region of the spacetime (here we are assuming that whatever
prescription makes this saddle dominant does not freeze the region ¢ < m/2). In other
words, we can unitarily deform the region R U I in figure 13 downward while keeping the
red endpoints fixed without changing the fine-grained entropy. This is qualitatively different
from the usual scenario in AdS/CFT, where every time slice that includes a Cauchy slice
of the entanglement wedge also includes a frozen region. Also, when we normally apply the
island rule directly to a region in a gravitating spacetime we find that the region shrinks to
zero size and vanishes once we extremize with respect to the region’s boundary. In this case
we have a “floating” island which is not anchored to any boundary and does not have an
auxiliary region R; its endpoints are quantum extremal on their own. It seems consistent
to ascribe such a region a fine-grained entropy equal to its generalized entropy. Of course,
even if this is possible it is related to the fact that gravity was frozen somewhere else in the
spacetime.

Note that if we froze spacetime to the past of ¢ = 7/2 as in section 5.3.1, then unitarily
deforming R U I downward from the hat would not lead to any surprises, since any unitary
deformation of the region would include a frozen region.

6 Discussion

The observer-dependence of cosmic horizons makes the concept of encoding the region beyond
the horizon more subtle than in the context of black holes. In particular, two observers
outside of a black hole will agree on the black hole event horizon, and only one of them will
be able to encode the interior. However, two observers in different places in the universe will
have different cosmic horizons: if they each encode the region beyond their horizon, then
those regions can overlap. If this were realized it would lead to inconsistencies with quantum
mechanics.
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Figure 14: On the left we have reproduced figure 9, corresponding to the Euclidean prepara-
tion of a 47 universe with frozen regions denoted in gray. On the right we have the Euclidean
preparation of the thermofield double in AdS coupled to frozen flat-space “wing” regions.
The solid black line in the middle is the time-reflection symmetric point where the Euclidean
manifold is pasted to the Lorentzian manifold. These two situations are analogous.

The resolution to this problem is quite simple in our setup. It depends on carefully
defining the microscopic description. Our microscopic description is given by a CFT on the
“frozen” regions (i.e. the regions where the quantum effects of gravity are ignored) with a
boundary condition at an initial time. The initial boundary condition is prepared by a grav-
itational path integral, and in this paper we have looked for various saddles which dominate
this path integral. To reach a potential paradox, we considered freezing two disconnected
regions, corresponding to two different observers. Now, if we do nothing to entangle these
two regions in the microscopic description, then the dominant saddle which fills them in
will correspond to two distinct universes, one for each frozen region. In such a situation we
will not have overlapping entanglement wedges, and therefore no paradox (each observer will
encode the region beyond their horizon but within their connected piece of the universe).
However, if we entangle the two frozen regions in the microscopic description, then we can
have the leading saddle be a single universe hosting both frozen regions. But entangling
the two frozen regions has to be a process which references both, so in a computation of
the purity, the replica wormhole which would give a pure state for either frozen region is
disallowed. It is disallowed since it would require swapping one of the two frozen hats with
its replica, but this would violate the procedure that entangled the two regions, e.g. by the
procedure in 5.3.1. The entanglement wedge of either frozen region does not run across the
entire universe; we instead have complementary entanglement wedges for each frozen region,
as expected.

It is important in the situations we have analyzed that the frozen regions define the
microscopic description, and therefore the entropy. This is true even if the frozen regions
are somewhere else in the universe. A simple analogy is the thermofield double (TFD) in
AdS, coupled to non-gravitating flat-space wings. This is prepared by the FEuclidean path
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integral on the right-hand-side of figure 14. Notice the left and right wings, which would
have been disconnected in the Lorentzian manifold, are connected by a frozen region in the
Euclidean manifold. This is just as in figure 9 with our frozen flat-space hats, reproduced on
the left-hand-side of figure 14 (the two shield-like regions meet in the vicinity of the conical
singularity in the Euclidean past). So in the computation of the entropy of a hat or wing
using the island rule, the region cannot be extended to the entire universe since it will run
into another frozen region. This means S # 0. In a replica computation, like in section
5.3.1, the connected frozen regions must remain connected, disallowing the purity saddle
with S = 0 which swaps hats/wings. In the TFD the entropy of either the left or right
system is given by the black hole entropy. We saw a similar result for the entropy of a single
hat in section 5.4. However, the two wings, or two hats, can be disentangled, by unfreezing
one of the two. In the TFD this can be done by inserting an end-of-the-world brane behind
the horizon. Then the full microscopic description is just given by one side, and its entropy
now vanishes, see the right-hand-side of figure 15. This corresponds to “unfreezing” the left
region, in which case there is no problem with the right region encoding the interior (and
what used to be the left exterior) on its own. This would be the same as if we only froze one
of the two hat regions, shown on the left-hand-side of figure 15: the entropy of the theory
in the hat now vanishes, and it encodes the entire universe on its own. (The universe drawn
in figure 15 is size 47 because we imagine the frozen region includes the conical singularity
of particular opening angle in the Euclidean past, which fixes the size of the universe. If it
were not included then the frozen hat would like in a 27 universe.)

A complicating feature of our analysis was the conical singularity in Euclidean signature
that prohibits a conventional preparation of the Hartle-Hawking state. One option to deal
with this, although there is not an obvious candidate, is to find a bra-ket wormhole in global-
like coordinates which avoids the universe capping off in the Euclidean section. This would
avoid the conical singularity.

6.1 Comments on quantum cosmology

The fact that our observers tend to split up into disconnected universes depends crucially
on using the Hartle-Hawking wavefunction. Proposals like Vilenkin’s tunneling wavefunction
[29] seem to give the inverse answer for the amplitude in these simple setups [30,31]. In such
a situation we would find a preference for our observers to be in the same connected piece
of the universe. It would be interesting to analyze whether there remains a paradox in this
case.

Another interesting aspect of our analysis is that we see a semiclassical avatar of the
picture advocated in [23,32,33], where one can think of distinct observers as living in their

own universe due to coarse-graining beyond their horizons.
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Figure 15: On the right we have a pure-state black hole with an end-of-the-world brane
behind the horizon. This means that the single wing system (plus boundary) encodes the
entire bulk, and has fine-grained entropy S = 0. This corresponds to unfreezing one of the
two frozen regions in the TFD in figure 14. It is analogous to a single frozen hat region in
dS, shown on the left. In this case the theory in the hat has fine-grained entropy S = 0 and
encodes the entire universe on its own.

6.2 Encoding the n > 1 universe in a CFT,?

A curious fact about our solution described in section 2 is that after accounting for the
back-reaction from the quantum matter, our dilaton solution actually blows up to +oo as
one approaches the conical singularity. To see this, recall that the backreacted dilaton takes

the form in global dSs coordinates

o(o,p) = ¢r Zzzf - 1—02 (1 - n12> otano. (6.1)
Continuing ¢ — is and taking s — +o00, we see that the dilaton actually blows up linearly
in s to +00. This means that gravitational effects are becoming weak near the north and
south poles of the sphere. It is natural to introduce another boundary at these locations to
cut off the spacetime. In particular, we could imagine cutting out small holes around the
conical singularities and gluing in two semi-infinite cylinders, each ending on one of the holes.
We can imagine the bulk matter CFT continues to propagate along these cylinders. This is
illustrated in figure 16a.

We could further imagine connecting these two cylinders together to form a portion of
a torus, with some length 79. Doing so modifies the stress energy in the bulk portion of
the spacetime, putting the quantum fields in a thermal state with temperature set by 9.
This is also illustrated in figure 16b. The resulting bulk saddle will still have a moment
of time-reflection symmetry at s = ic = 0. We can then analytically continue the saddle
from this moment of symmetry and the picture we get is that of multiple inflating patches
connected via wormholes similar to the saddles discussed in this work, where the full universe
is entangled with a 2d CFT on a circle. This is illustrated in figure 17. By the island rule, the
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Figure 16: In the figure on the left, we imagine attaching two semi-infinite cylinders to holes
at the north and south poles of the sphere. Here we have exaggerated the size of the holes
relative to the size of the sphere. This prepares the CF'T matter state in the vacuum on
the circle, as was considered in section 2. On the right, we imagine making the CF'T state
thermal. This will raise the energy in the spacetime and make the wormholes longer upon
analytic continuation. The red dots denote points of maximal dilaton and the black dots
denote points of minimal dilaton along the ¢ = 0 time slice.

microscopic entropy of the CFT is zero, since the island just includes the full closed universe.
In other words, the CFT will encode certain observables in the inflating patches. This part
is not surprising, and has been explored in previous work [34, 35], but a construction like
the one above would allow us to probe subsystem encoding, i.e. to see if subregions of the
CFT3 encode subregions of the de Sitter universe.” This encoding is similar in spirit to what
happens for the encoding of the black hole interior in the radiation after a black hole has
fully evaporated and also to scenarios recently discussed in [3,37-39]. The difference for
us is that now we have the possibility of encoding asymptotically inflating regions in the
dual CFT. This is reminiscent of proposals for “making a universe in the lab” by creating

"What one would like is an island region that includes part of the inflating patch of the spacetime. But
insofar as the endpoints of this region are quantum extremal cousins of the classically extremal cosmic horizon,
one will run into issues with entanglement wedge nesting [36]. The basic issue is that the bifurcate cosmic
horizon is a “minimax” surface (minimum in time, maximum in space) as opposed to a maximin surface like
the bifurcate black hole horizon. Here there would be both cosmic and black hole horizons in the closed
universe and so there is hope of finding a maximin QES in the closed universe, presumably close to the black
dots in figure 17.
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Figure 17: Here we illustrate the Lorentzian interpretations of the Euclidean saddles shown
in figure 16. The idea is that for finite 79 these saddles describe a situation where a closed
dSs universe with multiple inflating and crunching regions is encoded in a CF'T5 on a spatial
circle. The dashed lines signify the thermal entanglement between the closed universe and
the CFT.

inflating regions behind the black hole horizon in AdS/CFT [40].% Tt would be interesting to
understand this encoding in more detail and we hope to do so in the future.
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A Casimir energy on S' x 5?2

Here we adapt an argument from [41] to derive some constraints on the vacuum energy of a
conformal field theory on S}J x S? as a function of the size L. The radius of the S? will be
denoted by R but scale-invariant quantities will depend on the ratios R/L. The key tool will

be SL(2,Z) invariance of the thermal partition function on S} x S%
Z2(B)sy sz = Z(L) sy xs2 (A1)

Denote V = Vol(Sé x S} x 5%). To extract the vacuum energy density in the original channel

we go to low temperatures:

By
lim V"'log Z(8) g1 g2 ~ P _ ~R™*g(L/R) (A.2)
B—o0 L |4

Defining A = E — Fy,c we now consider the dual channel at finite L:

Jim Vog Z(L)gs g2 = lim V" log (Zexp(—LE)) (A.3)
1 —_—
51520 V™' log (exp( LEac) Z exp ( LA)> (A.4)

= ﬂlijgo <—R*4g(,8/R) +Vllog (Z exp(—LA))) (A.5)

Equating (A.2) with (A.5) and taking an L derivative gives

— 9, Rg(L/R) = 8y, Jim <47TR2 57 1o (Zexp LA))) (A.6)

This derivative is negative by unitarity A > 0, so we find

Evac,Sk x S2

— —4 >
neS S OuRTg(L/R) 20, (A7)

L
i.e. increasing the size of the spatial S' compared to the S? increases the energy density.
This is all we need in the main text, but we can say more. By extensivity of the thermal

entropy in the dual channel we have

lim hm V- llogZ(ﬁ)Slxsz— lim hm V- 1logZ(L)

L—0 B—oo L—0 B—oo

C
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This means g(L/R — 0) < 0. We can also provide a sign constraint for the second derivative.
We will drop some irrelevant prefactors and the large-3 limit. We have

o7 (i log (Z e_LA>) = % log (Z e_LA> + ;zé:A;_LLAA + %8,% log (Z e_LA) (A.9)

The first two terms are manifestly positive and the last term can be rewritten as

L (=3 At (AR B (e EA ) — (3 A E)?
~9o; L = 5 (A.10)
L 2 L(3e7t)
o= L(A+Ay) A; — A 2
_ 2 ( S0 (A.11)
2L (3 e~LAi)?
This tells us that 82 ¢g(L/R) < 0. So altogether we have
R4
GL/R—0) =~ ag(L/R) >0, BeL/B)<0| (A1

This means that g(L/R — oo) must approach a finite constant, as long as the second deriva-
tive inequality is strict for large L/R. This is reasonable, since the only parameter the
vacuum energy density can depend on in this limit is R, and by dimensional analysis the
expression should be k/R* for some constant k = g(L/R — 00).

B Coordinates on Milne wedge

In this appendix we exhibit the coordinates on the Milne-like wedge which covers the causal
past of the portion of Z* that is inflating. We are working with a 27n-sized universe with
n > 1. Since the local metric does not depend on n we will use the isometries of dSy to shrink
the Milne wedge of the n = 1 case. The isometries of dS, are best understood through the
embedding space,

ds? = —dXZ +dX? +dX3, —XZ+X?4+X2=1 (B.1)
Xo=tano, Xj= P X,=-2F (B.2)
COS O COS O

The isometries are given by the isometries of the embedding space R%? which preserve the
dSy hyperboloid. We therefore have the two boosts and rotation generators

K; = Xo0; + X;0, J12 = X109 — X901 (B?))
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Shrinking the Milne wedge will require fiddling with the time coordinate, so we will require
one of the two boosts, which in global coordinates are

Ky =sinocospd, + cososing Oy, Ky =cosocosp Oy —sinosinpd, . (B.4)

We see that K> shifts 0 = ¢ = 0 upward, which is what we need to shrink the Milne wedge,
while K7 keeps this point fixed. In fact Ko shrinks the entire Milne wedge as needed. We
therefore apply it as A = exp(a,, K2). Since it is a Lorentz boost it will act on the embedding

X 1 Xo—apnX
O —» ——— [0 2 (B.5)
Xo V1—a2 \ X2 —apXo

. : v . coshx v _  sinhxy v _ ~
We set these equal to new Milne coordinates X = Smh 7 X1 = b7 X9 = —cothn and

coordinates as

solve for 7, ¥ to get

tanh(y) = /1 — a2 ik

" sino — a, cos

tanh(7j) = /1 — a2 il (B.6)

", sino — cos

C Thermal coordinates on Milne wedge

We begin by writing down the coordinate transformation between the Poincaré patch and
the global cylinder. The embedding coordinates for the Poincaré patch are given by

2 .2 1 2 _ .2 1
XOZL, Xlzg, X2:u' (C.1)
2n U 2n
Equating this with (B.2) gives
n = sin o ’ - sin ¢ _ (C.2)
Cos Y + cos o Cos Y + cos o

In our case, we want a cylinder that is n times bigger, and for convenience we want o = 0 to
map to n = 0, so we will shift/rescale {o, p} — {(c —7/2)/n,p/n}. The region o = 7/2,p €
(—px, px) maps to n = 0,2 € (—x4, z4) with z, = sin(p,/n)/((cos p/n) + 1). Performing
an SL(2) transformation to map this to the half-line x € (0, 00) gives

ntxr+x,

thalf £ =F—- C.3
bt % Thar = F (C.3)
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Now going to thermal Rindler-like coordinates gives
thalf & Thalf = +etntTin (C4)

Solving for ty, Th gives

sin £
tanh 2y, = /1 — 82 O
c

o=m/2 _ ®
08 — B cos £

o—7/2

sin
tanh ty, = —/1 — 82 p— (C.5)
n

B cos == — cos £

where 3, = cos £, recovering (2.27).
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