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Abstract

We studyN = 2 supersymmetric Sachdev-Ye-Kitaev (SYK) models with complex fermions at
non-zero background charge. Motivated by multi-charge supersymmetric black holes, we propose
a new N = 2 SYK model with multiple U(1) symmetries, integer charges, and a non-vanishing
supersymmetric index, realizing features not present in known SYK models. In both models, a
conformal solution with a super-Schwarzian mode emerges at low temperatures, signalling the
appearance of nearly AdS2/BPS physics. However, in contrast to complex SYK, the fermion
scaling dimension depends on the background charge in the conformal limit. For a critical
charge, we find a high to low entropy phase transition in which the conformal solution ceases to
be valid. This transition has a simple interpretation– the fermion scaling dimension violates the
unitarity bound. We offer some comments on a holographic interpretation for supersymmetric
black holes.
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1 Introduction

The Sachdev-Ye-Kitaev (SYK) models [1, 2] of randomly interacting fermions are the simplest

known quantum mechanical systems without quasi-particles that display maximal chaos. In a

seemingly unrelated arena of gravitational physics, a charged black hole near the extremal “mass

= charge” limit develops an approximate two-dimensional anti-de Sitter (AdS2) region. The

physics of AdS2 displays chaos, scrambling, and an approximate conformal symmetry. In light

of the AdS/CFT correspondence, these features (among others) make SYK models candidate

toy descriptions of quantum black holes, following some earlier insight given by [3, 4]. For

applications to charged black holes, one may consider of SYK models with N complex fermions

and at least one conserved U(1) symmetry. A model of this kind is the complex SYK model

(cSYK), where a set of four or more fermions are coupled through a random interaction drawn

from a fixed Gaussian ensemble. See [5] for a detailed exposition of this model.

In this paper we will focus on a simple (but ultimately drastic) modification of the complex

SYK model, where the Gaussian random interaction is roughly replaced by its covariance matrix.

A precise version of this modification, which we will review below, was introduced by Fu, Gaiotto,

Maldacena, and Sachdev in [6]. The seemingly small modification of the random Hamiltonian

allows one to write it as the square of a complex (Gaussian random) operator– the combination

of the conserved supercharges Q + Q̄, which leads to very different physics. In particular, the
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model in fact possesses N = 2 supersymmetry; the U(1) phase rotation of the fermions does

not commute with supersymmetry and thus becomes an R-symmetry. Supersymmetry typically

relates bosons and fermions via the action of Q, however, as noted in [6], a supersymmetric

model consisting only of fermions may be achieved as long as supersymmetry is non-linearly

realized.

While the proposal in [6] seems to be the simplest generalization of SYK to incorporate

N = 2 supersymmetry, for reasons that will be explained shortly, we will sometimes refer to this

model as N = 2 SYK with fractional charges. Unlike cSYK and even N = 1 versions, the model

with extended supersymmetry possesses states annihilated by one complex supercharge; these

BPS states have a large exact degeneracy which survives at strong coupling (this feature of the

strong coupling partition function was observed in [7, 8]). It is natural to conjecture there is

some relationship between a large BPS degeneracy in supersymmetric SYK and the degeneracy

of supersymmetric AdS2 black holes [9, 10]. However, the N = 2 SYK model with fractional

charges does not have all of the expected features of these near-BPS black holes– a point we will

come back to later.

The first goal of this paper will be to perform a more exhaustive study of this N = 2 SYK

model, in particular at non-zero R-charge, or equivalently a non-zero chemical potential. For

example, in [6] and subsequent work, the focus was placed on analyzing the model in an ensemble

of zero U(1) R-charge [7, 8, 11–16]. Because the background R-charge does not commute with

supersymmetry, this choice of zero charge ensemble preserves supersymmetry and dramatically

simplifies the solution of the model. We generalize this analysis and will uncover an interesting

phase structure as a function of the charge when supersymmetry is broken.

We will contrast the results obtained in a non-zero R-charge sector of N = 2 SYK with

the solution of complex SYK. In particular we are interested in the strong coupling limit, or

equivalently temperatures smaller than the scale set by the variance of the couplings. In this

limit we expect an emergent conformal symmetry at the level of correlation functions between the

fermions; this is the infrared reparametrization symmetry. It is spontaneously broken to SL(2,R)

by the associated “conformal solution” of the Schwinger-Dyson equations which determines the

two-point functions. In complex SYK the scaling dimension of the fermions is simply obtained

by dimensional analysis arguments and has a universal value independent of the charge density.

In N = 2 SYK, the model possesses not just time translation and U(1)R symmetries, but

also a complex supercharge which is charged under the U(1)R. In the infrared, we will show

that there is an emergent super-reparametrization symmetry, that is spontaneously broken to

2



SU(1, 1|1) superconformal symmetry by the conformal solution. The superconformal group

SU(1, 1|1) extends the SL(2,R) with bosonic subgroups SL(2,R) × U(1)R ⊂ SU(1, 1|1). This

superconformal symmetry is further broken spontaneously by the background R-charge, and

because of this, the scaling dimension of the fermion is no longer fixed by dimensional analysis.

Instead, one needs to look more carefully at the solution of the model to derive a constraint

that uniquely determines the scaling dimension ∆. The result gives a non-trivial function of

the charge which can be found in equation (2.27) (this expression was independently derived

by S. Sachdev [17]). Another feature is that the coefficient of the fermion two-point function in

the conformal limit is undetermined from the IR at non-zero charge (when the charge is zero it

is fully determined by supersymmetry). We will verify numerically that this parameter of the

solution is fixed once the UV behavior of the model is incorporated, consistent with the idea

that there is a unique two-point function at strong coupling. We also derive a Luttinger-Ward

relation given in equation (2.50) and the grand potential in (2.90) (by proposing a “spooky

fermion” picture for N = 2 SYK similar to [5]), and verify numerically its validity. Finally, we

analyze the spectrum of bilinear operators within the conformal solution at any charge.

This takes us to the second departure between complex and N = 2 SYK. While the conformal

solution of complex SYK is well-behaved for any charge, we find a critical charge in N = 2

SYK for which the scaling dimension of the fermion and the overall coefficient of the two-point

function vanish. At higher values of the charge, the scaling dimension becomes either negative

or complex, signaling the fact that this solution is no longer physical (see for example figure 2).

Instead, for these charges the model develops a gap and behaves as a set of massive complex free

fermions. We note that the phenomenon is distinct from the complex modes already observed

in the literature such as in [18–20], where some bilinear operator becomes complex. In our case,

the fundamental fermion directly gets a dimension that violates unitarity.

This phase transition we found in N = 2 SYK is analogous to a similar phenomena observed

in [21–23] for complex SYK. Those references pointed out that even in complex SYK there

is a phase transition at non-zero charge where the conformal solution stops dominating and

a gap develops. This leads to a new phase referred to as a “low entropy phase”. This is in

contrast to the conformal phase which is “high entropy”, in the sense that there is a large order

N zero temperature entropy (at least when the temperature is taken to zero after taking the

large N limit, in this order). Even though there is a phase transition, it is an open problem to

understand analytically the origin of this phase transition since nothing seems to go wrong with

the conformal solution. Some observations on this direction were made in [5] which show some

unusual features in the four-point function kernel when the charge is too large, but the analysis
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is not conclusive and does not determine the precise value of the critical charge. In contrast we

can understand this transition much better in N = 2 SYK. Now there is a sharp issue with the

conformal solution at finite charge since the fermion itself develops an instability. We give some

numerical evidence that the charge at which the fermion becomes unstable corresponds to the

same charge at which there is a high- to low-entropy phase transition.

There is a nice analogy between this phase transition and black hole physics. The phase

diagram described above can be compared with the one for a near extremal charged black

hole, which develops an AdS2 throat close to its horizon. This black hole is unstable towards

discharging when a charged fermion is present with a mass (in AdS2 units) smaller than the

electric field, even though the black hole is perfectly stable in the vacuum. This happens through

Schwinger pair production, see for example [24]. A similar phenomenon can also occur with scalar

fields when their effective mass is below their Breitenlohner-Freedman (BF) bound close to the

horizon [25]. The supersymmetric model seems to have more in common with the candidate

bulk description than complex SYK, since we find an electric field dependent scaling dimension

and an instability. Thus, we can interpret the appearance of a new boundary phase at a critical

charge as the endpoint of the black hole stability. Since conformal symmetry is lost, the bulk

spacetime will be drastically changed and we can no longer use a dual description as a disc of

Euclidean AdS2 with SL(2,R) isometry. The fact that the entropy is low in the new phase

suggests that the horizon completely disappears. A schematic picture of the proposal for the

bulk is in figure 1.

We can now move to the second part of the paper. So far, we have discussed the conformal

solution (and when it becomes unstable). However, even though the solution of the SYK model

develops a conformal symmetry in the IR, this symmetry is both spontaneously and explicitly

broken. The breaking of the conformal symmetry dominates the dynamics of the model at

these scales, explaining the maximal chaos for example [2]. Similarly, in N = 2 SYK there is

a supersymmetric Schwarzian mode controlling the breaking of superconformal symmetry. We

verify a similar statement may be made at finite charge before the phase transition.

However, there is an essential restriction on the N = 2 SYK model thusfar considered in

the literature, and this restriction continues to the N = 2 Schwarzian theory one derives from

this model. As we mentioned previously, the model of [6] has the particular feature that the

fermionic charge is fractional compared to the R-charge of the supercharge1. This leads to a

1In N = 2 SYK, q labels the number of fermions appearing in the supercharge, and not the number of
fermions appearing in the Hamiltonian. If we normalize the supercharge to have unit R-charge, the fundamental
fermion has charge 1/q. This is consistent with charge quantization for abelian groups.
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Figure 1: A depiction of the transition of N = 2 SYK, along with a schematic dual bulk geometries
in each phase. At background charge Q = 0, it was shown in [6] that the model possesses a
superconformal solution. We show that for Q < Qcrit supersymmetry may be lost (depending on
which model is under consideration), but a conformal solution exists. This system is dual to a
(possibly supersymmetric) AdS2 geometry with a Euclidean horizon and a large extremal entropy.
Schematically, a single boundary fermion two point function is computed by a charged fermion in
AdS in which the semi-classical scaling dimension depends on the background charge. However, we
find above a critical background charge, the dimension of the fermion violates the unitarity bound
and the conformal solution ceases to be valid. In SYK, we find a new massive phase with vanishing
large N entropy. We conjecture the bulk dual is a horizon-less geometry.

Schwarzian theory with fractional charges. An interesting feature of these models of fractional

charge fermions is that the BPS states come with a range of charges. This may be seen directly in

the grand partition function Z(β, µ) = Tr[e−βH+βµQ], and in particular can lead to cancellations

in the supersymmetric index I = Tr[(−1)F ] which counts BPS states weighted by their fermion

number. For example, in the large N limit one obtains the super-Schwarzian theory which may

be solved exactly– [7, 8] gives a density of states of the BPS sector for even N given by

Z(β, µ) =
∑

Q∈Z, |Q|< q
2

eβµQ
2eNs0 cos(πQ

q
)

q
+ . . . (1.1)

where s0 = log(2 cos π
2q

). (For odd N the same expression is valid but now the charge ranges over

half-integers instead of integers.) The dots denote the non-BPS contributions to the spectrum.
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For even N they are separated on average by a gap given by Egap = 0.412J/N (obtained for

the q = 3 model using the Schwarzian coupling computed in section 2.2). For odd N the gap is

exponentially small in N instead. This is written with respect to the charge Q that assigns unit

charge to the fermions. The R-charge QR assigning unit charge to the supercharge is related to it

by QR = Q/q. The formula (1.1) happens to be exact for q = 3 and N even or N = 3 mod 4, but

for q > 3 is only approximate in the large N limit. We would like to emphasize that even though

we are describing the density of BPS states, their R-charge distribution (1.1) is not protected by

supersymmetry. For example, because of the spread in charges the Witten index of this theory

vanishes, something that can be reproduced by neglecting the interaction between the fermions

(the index being independent of the temperature and the couplings).

As has been touched upon already, the Schwarzian theory also appears in the context of near

extremal black holes in higher dimensions, describing both the classical dynamics of excitations

above extremality [4, 26–39] and quantum effects that become large as we take the extremal

limit [40–42, 9, 10]. In particular, it was recently shown that a black hole in AdS5×S5 develops

an emergent SU(1, 1|1) symmetry in the BPS limit in [10]. However, the Schwarzian theory

describing its near-BPS dynamics is not the same as the ones constructed in [6] (Some interesting

questions are being raised regarding how to understand the BPS black hole microstates in N = 2

JT gravity in [43, 44]). Instead, the charge of the fundamental fermion is equal to the charge of

the supercharge. One can then use the same formula for the large N spectrum (1.1) with q = 1,

so that the BPS states have only zero R-charge and the index and degeneracy match.

Naively setting q = 1 does not make sense from the SYK perspective– with only fundamental

fermions and a supercharge linear in them, the model would become trivial and not display

any emergent conformal symmetry. To circumvent this we will instead construct models with

multiple fermions2 and show one can then define interacting theories described at low energies

by unit fundamental R-charge3. We study in detail a prototypical model with these features, but

more general multi-fermion theories are possible. One interesting feature of N = 2 SYK models

with multiple fermions is the presence of flavor symmetries that commute with the supercharge.

In this case we obtain the Schwarzian with integer R-charge and a non-zero index, in a sector

of fixed flavor charge (in the simplest realization we can even gauge the flavor charge). The

partition function is Z(β, µ) = eNs0 + Znon−BPS(β, µ) for some order one number s0, in the

Schwarzian approximation. Our new N = 2 SYK model is thus the first of its kind to realize

2We thank E. Witten for this suggestion.
3In three spacetime dimensions, related models with and without supersymmetry and multiple fields were

constructed in [45, 46]. The presence of dynamical bosons in higher dimensions can lead to different conclusions
about the IR effective solution compared to what is discussed in this work.

6



the q = 1 Schwarzian, and passing to a sector of fixed flavor charge is somewhat analogous to

passing to a particular charge sector of the AdS5 black holes in [10].

For completeness we study these models with multiple fermions at non-zero flavor and R-

charges. We find a similar phase structure as in the models of [6] with the fundamental fermion

becoming unstable at large charges. When charges are too large the conformal solution breaks

down and the system is driven to a low-entropy phase, although we leave a more exhaustive

analysis for future work of the phase structure of these models. We also find a potential

instability as we raise the flavor charge, without breaking supersymmetry (see figure 13). Using

the Luttinger-Ward relation we show that the conformal ansatz breaks down precisely where the

charge of one of the fermions becomes maximal saturation value of ±N/2.

The rest of the paper is organized as follows. In section 2 we analyze the model of [6] at

non-zero charge. After reviewing the definition of the model and the derivation of the mean field

action we solve the IR Schwinger-Dyson equations in section 2.1. We discuss the breakdown of

the conformal ansatz in section 2.2. We also solve the full Schwinger-Dyson equations numerically

to verify our claims, derive a Luttinger-Ward relation for N = 2 SYK relating the charge

to the spectral asymmetry present in the IR limit of the two-point functions, find the grand

potential, and compute the Schwarzian coupling numerically. In section 2.3 we analyze the

operator spectrum by looking at the four-point function. In section 2.4 we elaborate on the

holographic interpretation. In section 3 we carry out most of the same analysis for a model with

multiple fermions. We analyze the behavior of the Witten index, solve the IR Schwinger-Dyson

equations, study the phase structure at non-zero charge, and analyze the operator spectrum.

We conclude in section 4 pointing out some future directions.

2 N = 2 SYK with fractional charge

We begin with the N = 2 supersymmetric SYK model of [6]. We will study this model at

non-zero charge (some of the results were independently derived in [17]). This model consists of

N complex fermions which obey the standard Dirac algebra:

{ψi, ψ̄j} = δij , {ψi, ψj} = 0 , {ψ̄i, ψ̄j} = 0 . (2.1)

7



In terms of these fermions, the model is defined by a complex supercharge Q with the property

that it involves q-fermion interactions4:

Q = i
q−1

2 Ci1i2...iqψ
i1ψi2 . . . ψiq , (2.2)

where we take the couplings Ci1i2...iq to be totally antisymmetric. We introduce disorder by

integrating out these couplings with Gaussian statistics and we will fix the normalization of the

random variables 〈Ci1i2...iqC̄ i1i2...iq〉 ∼ J/N q−1, with a q-dependent constant we will fix later to

match the mean field action and equations of motion (2.19). Additionally, we take q to be odd

so Q has Fermi statistics. We see that (2.2) has Q2 = Q̄2 = 0, and the Hamiltonian is

H = {Q, Q̄} , (2.3)

as dictated by the supersymmetry algebra. When the Hamiltonian is expanded as a sum of

interactions between 2q − 2 fermions, it has the same form as complex SYK [47, 48, 3, 4, 49, 5,

50, 51], but the complex SYK couplings are not Gaussian independent variables, given instead

in terms of quadratic combinations of Ci1...iq .

Supersymmetry relates bosons and fermions, but with supersymmetric SYK models we realize

the supersymmetry nonlinearly. For example take

{Q, ψi} = 0 , {Q, ψ̄i} = i
q−1

2 q Ci,i1,...,iq−1ψ
i1 . . . ψiq−1 ∼ b̄i , (2.4)

where the second equation defines the bosonic composite complex field bi, up to a choice of

normalization. This means we do not need to include fundamental bosons in the theory in order

for it to be supersymmetric. It is convenient nevertheless to do a Hubbard-Stratonovich trans-

formation integrating-in a fundamental boson bi such that on-shell its given by the expression

above. This has two advantages. The first is that now supersymmetry transformations (2.4)

are linearly realized. The second is that the theory with only fermions is not melonic and is

not described by a mean field action, but the equivalent theory with the boson integrated-in is

melonic and solvable at low temperatures [6].

The Hamiltonian constructed above has an additional symmetry that corresponds to a U(1)R

phase rotation of the fundamental fermions. The complex fermions transform in conjugate

representations, and therefore the supercharge is purely (anti)holomorphic with respect to the

4In contrast to [6], we employed Einstein summation rather than an explicit ordered sum Q =

i
q−1
2

∑
1≤i1<...<iq≤N Ci1i2...iq ψ

i1ψi2 . . . ψiq . This leads to some different numerical factors.
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rotation, which guarantees for example that Q2 = 0. This implies that the U(1)R symmetry is

the R-symmetry of the one-dimensional N = 2 Poincare algebra. The explicit generator is:

Q =
∑

j

ψ̄jψ
j − N

2
, QR =

1

q
Q. (2.5)

The first expression defines the fermion charge Q, with a shift of N/2 to enforce charge conjuga-

tion symmetry. This is the standard definition with a fermion having unit charge. On the right

we give the natural definition of the R-charge QR, such that the R-charge of the supercharge

is one. In these units the fundamental fermion has a fractional R-charge 1/q. For this reason

we will refer to these modes as fractional charge N = 2 SYK, as opposed to the models we will

study in the next section.

Refined Witten Index

The N = 2 SYK model is a particular instance of supersymmetric quantum mechanics, and

therefore one may compute the Witten index [52] which counts the number of bosonic and

fermionic ground states with a (−1)F = e−iπQR , with F the fermion number. This is a protected

quantity which may be computed in the free field limit with all Ci1...iq set to zero. However,

due to the presence of fractionally charged ground states with opposite bose-fermi statistics, the

Witten index of this N = 2 SYK model vanishes. As explained in [6], this model possesses

a Zq global symmetry under which the fermions transform with a q-th root of unity, and in

particular commutes with the supercharge. Turning on a (discrete) chemical potential for this

symmetry allows one to define a non-vanishing refined Witten index. This refined Witten index

I(r) ≡ Tr
[
(−1)F e2πirQR

]
for this theory is given by

I(r) = eπiN( 1
2
− r
q

)(1− e 2πir
q )N =

(
2 sin

πr

q

)N
, (2.6)

which vanishes for r = 0. In general, the index and the number of ground states do not agree

because there may be cancellation in the index. A bound on the number of ground states by

computing the maximum absolute value of the index. The answer is

maxr log |I(r)| = N log

(
2 cos

π

2q

)
(2.7)

The maximum value is given for rmax = (q ± 1)/2. We will match this later at large N to the

zero temperature entropy using the low temperature solution of the model.
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2.1 Mean field and the conformal solution

We now review the mean field formulation of this theory. The supersymmetry can be made

manifest by introducing superspace coordinates Z ≡ (τ, θ, θ̄). In terms of these coordinates, the

infinitesimal supersymmetry and R-symmetry transformations are realized respectively as:

τ → τ + θη̄ + θ̄η , θ → θ + η , θ̄ → θ̄ + η̄ (2.8)

for an infinitesimal complex Grassmann parameter η and,

θ → eiaθ , θ̄ → e−iaθ̄ , (2.9)

for a phase a. The fermion and boson (2.4) are encoded in a chiral fermionic superfield Ψi(τ, θ, θ̄),

where the chirality is defined by a suitable supercovariant derivative,

Dθ̄ ≡ (∂θ̄ + θ∂τ ) , Dθ̄Ψ
i(τ, θ, θ̄) = 0 =⇒ Ψi(τ, θ, θ̄) = ψi(τ + θθ̄) +

√
2 θ bi(τ) . (2.10)

A similar set of expressions hold for the anti-chiral superfield Ψ̄i(τ, θ, θ̄) annihilated by Dθ defined

by conjugation5.

The supersymmetric Lagrangian density corresponding to the Hamiltonian (2.3) may be

written in terms of the chiral superfields as

L =
1

2

∫
d2θ Ψ̄iΨ

i + i
q−1

2

∫
dθ Ci1i2...iqΨ

i1Ψi2 . . .Ψiq + i
q−1

2

∫
dθ̄ C̄ i1i2...iqΨ̄i1Ψ̄i2 . . . Ψ̄iq . (2.11)

In component form, the Lagrangian becomes after integrating by parts

L = ψ̄i∂τψ
i − b̄ibi + i

q−1
2

√
2qCi1i2...iqb

i1ψi2 . . . ψiq + i
q−1

2

√
2qC̄ i1i2...iq b̄i1ψ̄i2 . . . ψ̄iq (2.12)

Following [6] we introduce the superspace two-point function G(Z1, Z2) = 1
N
〈Ψ̄i(Z1)Ψi(Z2)〉.

The components of this anti-chiral-chiral superfield contains the fermion and boson two point

functions (noting the sum over i is implicit):

Gψψ(τ1, τ2) ≡ 1

N
〈ψ̄i(τ1)ψi(τ2)〉, Gbb(τ1, τ2) ≡ 1

N
〈b̄i(τ1)bi(τ2)〉. (2.13)

The full two-point function in superspace also includes fermionic correlators mixing fermions

5In our conventions, conjugation always reverses the order of the fermions.
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and bosons. The complete expansion is

G(Z1, Z2) = Gψψ(τ1 − θ1θ̄1, τ2 + θ2θ̄2) + 2θ̄1θ2Gbb(τ1, τ2)

+
√

2θ̄1Gbψ(τ1, τ2 + θ2θ̄2)−
√

2θ2Gψb(τ1 − θ1θ̄1, τ2). (2.14)

In the large N limit we will see that the classical solution of the mean field equations we derive

satisfies Gψb = 0 and we can consistently set the mixed correlators to zero for now. It will be

necessary to include them later when considering the kernel giving quadratic fluctuations around

the mean field classical solution.

Starting with the action as in (2.11), our next goal is to produce the aforementioned mean-

field equations of motion which are valid at large N . We will follow a series of now standard

steps for SYK models, working largely in superspace:

• Integrate out the random couplings to generate a bi-local Lagrangian:

L =
1

2

∫
d2θ Ψ̄iΨ

i +

∫
dθ̄1dθ2 Ψ̄i1Ψ̄i2 . . . Ψ̄iq〈C̄ i1i2...iqCj1j2...jq〉Ψj1Ψj2 . . .Ψjq . (2.15)

• Integrate in the field G(Z1, Z2) which is then fixed to be the superspace two-point function

by further integrating in an anti-chiral-chiral bilocal field Σ(Z1, Z2). The components

of Σ(Z1, Z2) contain the fermionic and bosonic self energies, Σψψ(τ1, τ2) and Σbb(τ1, τ2),

respectively. This amounts to inserting a superspace identity

1 =

∫
DGDΣ exp

(
−N

∫
dZ̄1dZ2 Σ(Z1, Z2)

(
G(Z1, Z2)− 1

N
Ψ̄i(Z1)Ψi(Z2)

))
, (2.16)

with the order of indices chosen to match the fact that G and Σ have the same chirality.

• Integrate out the fundamental fermions to obtain an action in terms of the collective

variables only. We will not write the action explicitly, but instead focus on the equations

of motion.

• Vary the action with respect to the bilocal fields. To write the equations of motion in

superspace, we will introduce chiral and anti-chiral integrations

∫
dZ ≡

∫
dτdθ ,

∫
dZ̄ ≡

∫
dτdθ̄ , (2.17)

which manifest supersymmetry when acting on superfields of the appropriate chirality.
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Because the mean field action is bi-local, we will sometimes encounter several such inte-

grations over distinct superspace coordinates.

The equations of motion resulting from this procedure can be written as

Σ(Z2, Z3) =
1

2
J G(Z2, Z3)q−1,

1

2
Dθ3G(Z1, Z3) +

∫
dZ2 G(Z1, Z2) Σ(Z3, Z2) = δ(Z1 − Z3), (2.18)

where we define a supersymmetric delta function δ(Z1 −Z2) ≡ (θ̄1 − θ̄2)δ(τ1 − θ1θ̄1 − τ2 + θ2θ̄2).

This equation defines the normalization we chose for J the coupling constant which leads to

particularly simple component equations (2.19). Note also that the second equation is properly

anti-chiral-anti-chiral in Z1 and Z3; in particular the superspace integration over Z2 as well as

the ordering of the indices inside G and Σ means we do not need to introduce explicit conjugate

bilocals Ḡ and Σ̄.

The superspace presentation of the mean field action for the N = 2 SYK model is well known,

but as already discussed, we will also introduce and analyze the consequences of a chemical

potential (µ) for the U(1)R symmetry. In our conventions the chemical potential µ appears as

µGψψ in the action which means it couples to qQR. Because the R-symmetry does not commute

with supersymmetry, or equivalently because the Grassmann variables (θ, θ̄) are charged under

the R-symmetry (2.9), the inclusion of a chemical potential generically corresponds to turning on

background fields which break supersymmetry. Therefore, we will study the mean field equations

in component form from now on and study the supersymmetric point as a special case.

In the fermion-number conserving saddle-point we are interested in, the mixed Gbψ correlators

vanish and we can focus on Gψψ, Gbb, and their self energies. Moreover we will also assume the

solution is time translation invariant. Under these assumptions, the Schwinger-Dyson equations

derived from the mean field action with chemical potential µ are given by

Σψψ(τ) = J(q − 1)Gψψ(τ)q−2Gbb(τ), Σbb(τ) = JGψψ(τ)q−1, (2.19)

Gψψ(ω) =
1

−iω + µ+ Σψψ(−ω)
, Gbb(ω) =

1

−1− Σbb(−ω)
. (2.20)

The τ = τ1 − τ2 is the time difference and the second line is written in Fourier space. Also, one

may note that while the boson b carries U(1)R charge, there is no chemical potential present in

the Gbb equation because this is only an auxiliary field.

The full Schwinger-Dyson equations are complicated to solve and are typically studied
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numerically, as we do in section 2.2. However, they are tractable in the IR limit, meaning

long time separations |Jτ | � 1 compared to the scale set by J . In this regime we will assume

the theory is approximately conformal, and importantly we will see below that this assumption

may be violated depending on the background charge. This conformal ansatz determines the

fermion and boson two point functions at zero temperature to be

Gψψ(τ) =
gψψ
|τ |2∆

(
eπEΘ(τ)− e−πEΘ(−τ )

)
, Gbb(τ) =

gbb
|τ |2∆b

(
eπEbΘ(τ) + e−πEbΘ(−τ )

)
, (2.21)

where we allow for the possibility of a spectral asymmetry in order to incorporate states with

non-zero charge, parametrized by E for the fermion and Eb for the boson. The spectral asymmetry

defined in the IR should be thought of as related to the chemical potential or the charge through

the UV behavior of the correlators. The prefactors gψψ and gbb are coefficients to be determined

by the equations of motion. Finally we also introduce the IR scaling dimensions for fermions

∆ and bosons ∆b. After solving the zero temperature equations, the ansatz can also be put at

finite temperature by a reparametrization

Gψψ(τ) = gψψ

(
β

π
sin

πτ

β

)−2∆

e2πE( 1
2
− τ
β ) , Gbb(τ) = gbb

(
β

π
sin

πτ

β

)−2∆b

e2πEb( 1
2
− τ
β ), (2.22)

valid for 0 < τ < β, together with Jτ � 1 and J(β − τ) � 1 so that the IR solution we are

going to find is accurate.

Using the two-point functions outlined above, the next step is to solve the equations (2.20)

in the IR strong coupling limit in which the self-energies dominate over bare propagators. This

leads to the simple form Σψψ(−ω)Gψψ(ω) = −Σbb(−ω)Gbb(ω) = 1 (after a shift of self-energies,

see [5]). The solution is obtained by transforming the two point functions to Fourier space,

taking the inverse, and then transforming back to time. This determines the self-energies (which

for simplicity we write at zero temperature) to be

Σψψ(τ) =
1

gψψ

(1− 2∆) sin 2π∆

2π(cosh 2πE + cos 2π∆)

1

|τ |2(1−∆)

(
−eπEΘ(−τ ) + e−πEΘ(τ)

)
, (2.23)

Σbb(τ) = − 1

gbb

(1− 2∆b) sin 2π∆b

2π(cosh 2πEb − cos 2π∆b)

1

|τ |2(1−∆b)

(
eπEbΘ(−τ ) + e−πEbΘ(τ)

)
,

Having both the two point functions and self-energies, we can now plug these back into the first

set of Schwinger-Dyson equations (2.19). This places constraints on the dimensions, prefactors

and spectral asymmetries. In contrast to the special case studied in [6] with no spectral

asymmetry, we find a different set of constraints.
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The equations (2.19) can be easily solved in steps. We can separately match the spectral

asymmetry, overall scaling dimension, and prefactors in the left and right-hand sides. Matching

the spectral asymmetry in both equations gives a single constraint

Eb = −(q − 1)E (2.24)

which is consistent with the on-shell expression for the boson in term of fermions b ∼ ψ̄q−1 (2.4).

Matching scaling dimensions in both equations gives again a single constraint,

(q − 1)∆ + ∆b = 1, (2.25)

which can be interpreted as demanding the interaction term Ci1...iqb
i1ψi2 . . . ψiq in the component

action to be marginal. For consistency of the IR ansatz, namely to make sure we can neglect

the iω and +1 terms in the equations (2.20), we need ∆ > 0 and ∆b > 1/2 which, upon using

the constraint on dimensions (2.25), implies 0 < ∆ < 1/(2(q − 1)). This means that a solution

outside of this range should be considered inconsistent in the sense that the IR ansatz is invalid.

The final step to solving the equations is to match the prefactors in the left and right hand

side of equations (2.19). The two equations give the following constraint:

(1− 2∆) sin 2π∆

2π(cosh 2πE + cos 2π∆)
= (q − 1)Jgq−1

ψψ gbb,
(1− 2∆b) sin 2π∆b

2π(cosh 2πEb − cos 2π∆b)
= Jgq−1

ψψ gbb (2.26)

By matching these two expressions for gq−1
ψψ gbb, we can completely determine the scaling dimen-

sions as a function of q and the spectral asymmetry E , after using the expression for ∆b and Eb.
The solution can only be found implicitly through the equation6

(1− 2∆) sin 2π∆

cosh 2πE + cos 2π∆
= (q − 1)

(1− 2(q − 1)∆) sin 2π(q − 1)∆

cosh 2π(q − 1)E − cos 2π(q − 1)∆
(2.27)

This determines ∆, ∆b and Eb, all as a function of q and E . Finally, since now the two equations

(2.26) are identical we can only determine the combination gq−1
ψψ gbb, but not each prefactor

separately. As explained in [6] this can be traced back to an emergent symmetry in the IR

Schwinger-Dyson equations under Gψψ(τ)→ λGψψ(τ) and Gbb(τ)→ λ1−qGbb(τ). It is expected

that this does not generate a relevant mode in the IR and simply the UV boundary conditions

determine a precise value of gψψ and gbb. As reviewed for example in [49] unitarity requires both

coefficients to be positive, and this is consistent with the constraint (2.26). We will verify that

6This expression was independently derived in [17].
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the full solution determines a consistent coefficient using a numerical solution of the Schwinger-

Dyson equations below in section 2.2.

Emergent SU(1, 1|1) symmetry

The equation above that determines ∆ cannot be solved explicitly in general. There are special

values of parameters where we expect the solution to preserve supersymmetry. In these cases the

equations can be exactly solved and we reproduce the results of [6] (We will see other examples in

the next section where even supersymmetry is not powerful enough to fully fix the IR solution).

The first observation we can make is that for the following values of the spectral asymmetry the

scaling dimensions have a simple expression

Esusy =
ir

q
, r ∈ Zq, ⇒ ∆ =

1

2q
, ∆b =

1

2
+

1

2q
. (2.28)

The interpretation for this family is that it corresponds to turning on the discrete chemical

potential conjugate to the Zq global symmetry that commutes with the supercharge. A simple

way of deriving constraints from global supersymmetry is to construct the unique superspace

two-point function that is anti-chiral in the first variable, chiral in the second, and manifestly

invariant under global super-translation (τ, θ, θ̄)→ (τ+ε+ θ̄η+θη̄, θ+η, θ̄+ η̄), with parameters

(ε, η, η̄). The answer is given by

Gsusy(Z1, Z2) = f(τ1 − τ2 − θ1θ̄1 − θ2θ̄2 − 2θ̄1θ2), (2.29)

where the right hand side involves an arbitrary function f . Using (2.14) we can see that this

implies Gψψ(τ1, τ2) = f(τ1− τ2) and Gbb(τ1, τ2) = −f ′(τ1− τ2). Combining these facts we obtain

the constraint

Gbb(τ1, τ2) = −∂τ1Gψψ(τ1 − τ2), (2.30)

which together with the conformal ansatz implies ∆b = ∆ + 1/2, and replacing this in (2.19)

and (2.20) gives ∆ = 1/2q, as obtained in the equation above (2.28). Moreover, supersymmetry

also implies a relation between coefficients gbb = 2∆gψψ, allowing one to fully find the solution

for the prefactors as well:

gsusy
ψψ =

(
1

2πJ

sin π
q

cos π
q

+ cos 2πr
q

)1/q

, gsusy
bb =

1

q

(
1

2πJ

sin π
q

cos π
q

+ cos 2πr
q

)1/q

. (2.31)
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These solutions correspond to a finite two-point functions except when r = (q± 1)/2. For those

two values the denominators vanish and gsusy
ψψ and gsusy

bb both diverge. It is interesting to note

those are precisely the values at which the refined index has maximal absolute value.

So far we have imposed only the global N = 2 supersymmetric conditions but the model at

low temperatures enjoys a bigger group of symmetries. In the IR limit we solved the Schwinger-

Dyson equations (2.18) in a regime where we can neglect the first term and get

∫
dZ2 G(Z1, Z2)

[
J

2
G(Z3, Z2)q−1

]
= δ(Z̄1 − Z̄3). (2.32)

It was pointed out in [6] that these equations have a symmetry under N = 2 supersymmetric

reparametrizations which we denote by Diff(S1|2). This consists of super-reparametrizations

Z = (τ, θ, θ̄)→ Z ′ = (τ ′, θ′, θ̄′) that satisfy the constraints

Dθθ̄
′ = 0 Dθτ

′ = θ̄′Dθθ
′, (2.33)

Dθ̄θ
′ = 0 Dθ̄τ

′ = θ′Dθ̄θ̄
′. (2.34)

As shown in [6] the solutions of these constraints can be parametrized by a bosonic reparametriza-

tion mode f(τ), a local U(1) transformation eia(τ) and a complex fermionic mode η(τ) which

may be grouped into the bosonic and fermionic reparametrizations as:

Bosonic : τ ′ = f(τ) , θ′ = eia(τ)
√
∂τf(τ)θ θ̄′ = e−ia(τ)

√
∂τf(τ)θ̄ , (2.35)

Fermionic : τ ′ = τ + θη̄(τ) + θ̄η(τ) , θ′ = θ + η(τ + θθ̄) θ̄′ = θ̄ + η̄(τ − θθ̄) . (2.36)

Then its easy to check that the IR Schwinger-Dyson equation is invariant under

G(Z1, Z2)→ (Dθ1θ
′
1)

1
q (Dθ̄2 θ̄

′
2)

1
q G(Z ′1, Z

′
2). (2.37)

Even though this is a symmetry of the equations, this is not a symmetry of the solutions. The

correlators found above at the supersymmetric point with ∆ = 1/(2q) are only invariant under a

subgroup SU(1, 1|1) of Diff(S1|2). Therefore we see that the emergent super-reparametrization

symmetry is spontaneously broken to the N = 2 superconformal group. Of course both of these

symmetries are broken by the UV term, giving rise to the N = 2 Schwarzian mode.

In a state with non-zero charge, we saw that ∆ is not given by the supersymmetric solution. It

is interesting to notice that the IR equations preserve supersymmetry even at finite charge, when

the UV term is ignored. From this point of view, the breaking of supersymmetry that happens
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from the inclusion of a chemical potential is spontaneous: the solution breaks the symmetry.

From (2.37) one can deduce that the fermion ψ is a superconformal primary. In particular

that transformation rule, applied to the solution with zero charge density only, implies the R-

charge 1/q is twice the scaling dimension ∆ = 1/(2q). This will be important to keep in mind

in the next section.

It is instructive to see how a super-reparametrization explicitly acts on the two-point func-

tion. Its enough to do this at the linearized level. Bosonic reparametrizations and U(1)R

transformations look the same as reparametrizations and local gauge transformations in complex

SYK, and we will not repeat it here. The new generators are the infinitesimal fermion super-

reparametrization, and under them the two-point function changes as

δGψψ = −Gbψ(τ1, τ2)η̄(τ1) (2.38)

δGbψ = Gbb(τ1, τ2)η̄(τ1)− ∂τ2Gψψ(τ1, τ2)η̄(τ2)− 1

q
Gψψ(τ1, τ2)η̄′(τ2) (2.39)

δGbb = ∂τ2Gbψ(τ1, τ2)η̄(τ2)− 1

q
Gbψ(τ1, τ2)η̄′(τ2). (2.40)

and a similar transformation for η. To simplify the expressions we rescale η → η/
√

2 compared

to (2.36). Its clear the first and third equation vanishes on-shell since the fermionic correlators

are zero Gbψ = 0. The second line is more interesting. On a superconformal solution of the type

discussed above, the variation of Gbψ also vanishes whenever η = η0+η1τ and η̄ = η̄0+η̄1τ . These

four real parameters are the fermionic generators of SU(1, 1|1). For η ∼ τn with n 6= 0, 1 the

transformation acts non-trivially on the two-point function, and all these modes have SL(2,R)

Casimir given by h = 3/2 at E = Esusy
7. We will see these modes later again when we compute

fluctuations of the action around the classical Schwinger-Dyson solution. At the same time we

see that for E 6= Esusy the four fermion zero-modes are broken spontaneously since the on-shell

correlators no long satisfy any supersymmetry relation.

The Zero Temperature Entropy

We can compute the zero temperature entropy of the model and compare with the index, using

the IR asymptotic of the solution of the mean field action. In order to do this it is convenient to

take a derivative with respect to q in the action. This simplifies when evaluating on a solution

7The Casimir operator C1+2 acting on δGbψ(τ1, τ2) is defined in the same way as equations (3.54) of [53],
with the difference that the scaling dimension appearing in the generators of SL(2,R) are different for the first
and second insertion. Writing the eigenvalue of the Casimir as h(h− 1) defines the parameter h.
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of the equations of motion and gives

∂q
logZ

N
= Jβ

∫
Gψψ(τ)q−1Gbb(τ) logGψψ(τ), (2.41)

= #β + 2π2∆ Jgq−1
ψψ gbb +O(β−1) (2.42)

In the second line we inserted the conformal solution, keeping terms insensitive to the UV

behavior. If we denote the temperature independent term in the partition function by log Z =

β# +G+O(β−1), where we introduce the grand potential G, then it is given by 8

dG

dq
= N

π∆(1− 2∆) sin 2π∆

(q − 1)(cos 2π∆ + cosh 2πE)
. (2.43)

In [49] it is explained how to go from this expression to computing S0(Q). Unfortunately

this cannot be done in this model since it is not clear what boundary conditions to use when

integrating over q. Instead, for now we will focus on the particle-hole symmetric point with

QR = 0. In this case the solution is the supersymmetric one with E = 0 which implies ∆ =

1/(2q). In this case G = S0 and we obtain dS0

dq
= N

π tan π
2q

2q2 . This can be easily integrated, using

the free fermion limit to fix the integration constant, and gives

S0(QR = 0) = N log
(
2 cos

π

2q

)
, (2.44)

which precisely matches with the maximization of the index in equation (2.7). We will see a

similar phenomenon in the models we study in the next section.

We will later propose a closed formula for the zero-temperature entropy and grand potential

at non-zero charge based on an extension of the spooky propagator of [5], and verify these

relations numerically.

2.2 Breakdown of conformal ansatz

We will now analyze what happens to the conformal solution of the Schwinger-Dyson equations

as we turn on the spectral asymmetry, and therefore the background R-charge. We start with

the E = 0 case for which we obtain a supersymmetric solution with ∆ = 1
2q

. As we turn on

E we find ∆ is a solution of the transcendental equation given above. The scaling dimension

smoothly goes from ∆(E = 0) = 1
2q

to ∆(|E| = Ecritical) = 0. The critical asymmetry Ecritical > 0

8This expression was independently derived in [17].
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To integrate this formula we need to know �(q, E), which is given by the implicit formula (2.12)

given above. It is interesting to consider anyways the supersymmetric case E = 0 which implies

� = 1/(2q). In this case the answer gives dS0

dq
= N

⇡ tan ⇡
2q

2q2
. This can be easily integrated, using

the free fermion limit to fix the integration constant, and gives

S0 = N log
�
2 cos

⇡

2q

�
, (2.18)

which precisely matches with the maximization of the index in equation (2.4). We will see a

similar phenomenon in the models we study in the next section.

2.3 Breakdown of Conformal Ansatz

When we focus on the E = 0 case we obtain a supersymmetric solution with � = 1
2q
. As we turn

on E we find � is a solution of the transcendental equation given above. The scaling dimension

smoothly goes from �(E = 0) = 1
2q

to �(|E| = Ecritical) = 0. The critical asymmetry Ecritical > 0

is determined by the following equation

sinh ⇡(q � 1)Ecritical
cosh ⇡Ecritical

= (q � 1) (2.19)

For |E| > Ecritical there are solution for the scaling dimension in the complex �-plane indicating

the conformal ansatz breaks down 1. This equation cannot be solved in general but we quote

here the value for q = 3,

Ecritical =
log(1 +

p
2)

⇡
= 0.28055.. (2.20)

E/Ecritical (2.21)

2q� (2.22)

1The point � = 0 is always a solution but one with gq�1d = 0. Therefore at least one of the two prefactors
has to vanish which is a non-physical solution.
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Figure 2: Plot showing the conformal solution for the fermion scaling dimension ∆ as a function
of the spectral asymmetry E for q = 3. The behavior is similar for other values of q. We see the
scaling dimension reaches zero at the critical spectral asymmetry, and for larger E , the conformal
ansatz is invalid, to the right of the dashed red line.

is determined by the following equation

sinh π(q − 1)Ecritical

cosh πEcritical

= (q − 1) (2.45)

For |E| > Ecritical there are solution for the scaling dimension in the complex ∆-plane indicating

the conformal ansatz breaks down9. The value for q = 3 is given numerically by

Ecritical =
log(1 +

√
2)

π
= 0.28055.. (2.46)

We show the behavior of ∆ as a function of E in figure 2. After E > Ecritical, there is no valid

conformal solution. In such a region, the Dyson Schwinger equations Eq.(2.19) can be studied

numerically. We will in fact show that the solution exponentially decays once E > Ecritical. In

contrast to known transitions [21, 22], in this case the fundamental fermion ψi itself develops

an either negative or complex scaling, making the physical interpretation of this transition more

transparent.

Numerical Solution to Schwinger Dyson equations

We can solve equations (2.19) numerically by iterations. We work in Euclidean time with finite

temperature, τ ∼ τ + β, and for numerical purpose we consider a discretized time τi = iβ
Nstep

.

9The point ∆ = 0 is always a solution but one with gq−1
ψψ gbb = 0. Therefore at least one of the two prefactors

has to vanish which is a non-physical solution.
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Figure 3: Numerical solutions to large N Dyson Schwinger equations, where from left to right
βJ = 5, 20, 50 and up to down E = 0, 0.15. We plot against dimensionless quantity 2πτ

β . We also
plot the best fit conformal solutions Gcψψ and Gcbψbψ and we observe good agreement up when

τ ∼ O(1/J).

To describe continuous physics we require Nstep � βJ. We work with grand canonical ensemble

and fix µ. For a given µ, the expectation value of the charge can be computed by

〈Q〉
N

=
1

2N
〈[ψ̄i, ψi]〉 =

1

2
(G(0)−G(β)) . (2.47)

We fit numerical solutions against the Ansatz given in equation (2.22) where we leave gψψ/gbb

and Eψ unfixed. Other parameters are fixed entirely by IR Schwinger Dyson equations. We take

the best fitted E as the value E(µ). Similar to the case of complex SYK, Q(µ) and E(µ) both

non-trivially depend on µ, and by tuning µ we may understand Q(E). Some examples showing

the result of this procedure are presented in figure 3. It is evident that the conformal solution is

a good approximation in the IR when βJ is large. Moreover, the UV boundary conditions also

fixes the undetermined ratio gbb/gψψ as shown in figure 4.

We now turn to the determination of the charge. Similar to complex SYK, it is possible

to derive an analytic relation between the charge and the spectral asymmetry. We do this in
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Figure 4: Plot of gbb/gψψ computed from the numerical solution for q = 3 at different values of E .
Note the infrared Schwinger-Dyson equations can only determine the combination gq−1

ψψ gbb, but the
individual values are determined by the full solution. At E = 0, it agrees with the supersymmetric
answer gbb = 2∆gψψ = 1

3gψψ.

Appendix A. First we define the fermionic and bosonic contribution to the total charge

qf (∆, E) =
(1

2
−∆) sinh 2πE

cosh 2πE + cos 2π∆
+

i

2π
log

(
cos π(∆ + iE)

cos π(∆− iE)

)
, (2.48)

qb(∆b, Eb) =
(1

2
−∆b) sinh 2πEb

cosh 2πEb − cos 2π∆b

+
i

2π
log

(
sin π(∆b + iEb)
sin π(∆b − iEb)

)
. (2.49)

The total fermion charge is given in terms of these functions by

Q

N
= qf (∆, E) + (q − 1)qb(∆b, Eb). (2.50)

The right hand side is a function of the spectral asymmetry E explicitly and through the scaling

dimensions ∆ and ∆b. This expression is the sum of two terms. The first is the contribution

to the charge from the fermion itself, while the second term is a contribution to the fermion

charge from the auxiliary boson. This weird behavior is due to the fact that this zeroth-order

boson is an auxiliary field that has been integrated-in to simplify the interactions. This bosonic

contribution is similar to the one derived in [54, 55] for first-order bosons. We have verified

numerically that this relation is correct, and the result is shown in figure 5. In particular we can

compute the charge that corresponds to the critical spectral asymmetry, and for q = 3 it is

Qcritical ≡ Q(Ecritical) = (
√

2− 1)N, (2.51)
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Imitating the derivation in [3] we can use this symmetry to show that, evaluated on a classical so-

lution of the mean field action, the bilocal current satisfies the local conservation
R +1
�1 j(⌧1, ⌧0)d⌧1 =

0.Then we can define the charge as

Q̃ =

Z ⌧0

�1
d⌧1

Z 1

⌧0

d⌧2 j(⌧1, ⌧2). (B.5)

We can verify using the UV behavior of the Green functions that this coincides with the charge
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where following standard conventions we defined the asymmetry in the Fourier transfrom of the

correlators ✓f/b by

e�2i✓f =
cos(⇡�+ i⇡E)
cos(⇡�� i⇡E) , e�2i✓b = �sin(⇡�+ i⇡Eb)

sin(⇡�� i⇡Eb)
. (B.10)

With these definitions the particle-hole symmetric point is ✓f = 0, ✓b =
⇡
2
and Q/N = 0. It is

important to notice that the equation (B.9) for the fermion charge involves a contribution from

the bosons as well in the IR, even though in the UV it comes purely from the fermion correlator.
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Figure 5: Plot of Q(E) computed with the numerical solution of the Schwinger-Dyson equations
for q = 3 (blue dots). Shown in solid black line is the analytic formula (2.50), analogous to the
Luttinger-Ward relation.

which is smaller than the maximal allowed value N/2. Therefore the phase transition we find is

physical.

At low energy and for charges small compared to N , the N = 2 Schwarzian description

is reliable. We can numerically determine the Super-Schwarzian coupling. Instead of directly

fitting the free energy, we find it more accurate and less computationally intensive to compute the

compressibility. Due to the N = 2 supersymmetry, the compressibility of the U(1)R symmetry

is directly related to the super-Schwarzian coupling, as the relative coefficient between the

reparametrization modes f(τ) and the U(1) sigma model is fixed by supersymmetry. The bosonic

part of the N = 2 Super-Schwarzian is given by [7]

Sb =
2πNαS
βJ

∫ 2π

0

dτ

(
−Sch

(
tan

f

2
, τ

)
+ 2q2 (∂τa)2

)
(2.52)

where f is the reparametrization mode on the circle and a(τ) is the generator of the U(1)R

symmetry. We have rescaled time to have period 2π for convenience. The additional factor of

q2 comes from normalizing the fundamental fermion to have R charge 1 instead of 1/q. On the

other hand, the compressibility can be found through U(1)R sigma model action as

Sb ⊃ 2π

∫ 2π

0

K

2β
(∂τa)2 . (2.53)

We can therefore compute compressibility K from the numerical Dyson-Schwinger equations

and extrapolate the N = 2 Schwarzian coupling as

αS =
1

4q2

KJ

N
. (2.54)
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Figure 6: A demonstration that the coupling obtained via the compressibility is consistent with
a direct linear fitting of the entropy S(βJ). The dots are the numerical entropy computed through
numerical Dyson Schwinger solutions on a grid of size 220. Due to finite size effects, we can not
take T to be too small. We show a best fit with slope fixed to be the answer determined through
compressibility. The intercept, S0, is close to its analytical answer. We can also fit both the slope
and the intercept, and we obtain S(βJ) = 0.5493 + 0.3233/(βJ). The difference is about 2.7% and
we conclude the answer determined both ways are consistent with each other.

To compute the compressibility, we turn on a small chemical potential, numerically solve the

Schwinger-Dyson equations on a grid of size 219 and specialize to q = 3; the result is

K =

(
dQ

dµ

)

T=0

= lim
µ→0

Q

µ
≈ 0.303N/J. (2.55)

This in term determines the Schwarzian coupling to be αS ≈ 0.00842. This is different from the

numerical coupling of the N = 0 Schwarzian for complex SYK which is given by αcSYK
S = 0.01418

[53, 5]. As we vary E , we can also compute the free energy and entropy. At low temperature

and zero charge, the Schwarzian theory implies a free energy which admits an expansion

− βF = −βE0 + S0 +
c

2β
, c =

4π2αSN

J
≈ 0.332

N

J
. (2.56)

where E0 corresponds to the ground state energy and takes a non-zero value due to normal

ordering when going from the Hamiltonian to the mean field action.10 The S0 is the zero

temperature entropy and the 1/β term is due to the Super-Schwarzian. In figure 6 we checked

that the answer is consistent with a direct linear fitting against the entropy S(βJ).

We now explain how to use the numerical solution to compute the thermodynamic potentials.

10We thank Yingfei Gu and Pengfei Zhang for a very useful discussion on this point.
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Figure 7: Left: Numerical solutions of Gψψ in the region where E > Ecritical. We observe
exponential decay solutions. Since the solution ceases to be conformal, the infrared parameter
E is no longer meaningful. The solutions depend on both βJ and µ/J. Right: Log plot of Gψψ at
various values of βJ, where dashed lines are linear fits. We observe that the exponent is linear in
µ.

Since in the numerical procedure we fix µ, the grand potential can be computed by the on-shell

action as

− βΩ(µ, T )/N = log

(
2 cosh

(
βµ

2

))
+
∑

ω

log

(
1 +

Σψψ
iω+µ

1 + Σbb

)
− β

∫ β

0

dτ Gψψ(τ)Σψψ(τ), (2.57)

where we used the Schwinger-Dyson equations and the time translation of the solution to simplify

the last term. To compute the free energy F , we can change to the canonical ensemble by

βF = βΩ + βµQ. (2.58)

For general µ we compute the free energy and entropy numerically from (2.58). We show the plot

of entropy in the grand canonical ensemble against chemical potential in figure 8. We observe

a sharp transition near µ = J, where a new decaying exponential solution to the Schwinger-

Dyson equations(as shown in figure. 7) starts to exist. The discontinuous jump in entropy is

consistent with a first order transition. The transition goes from a high entropy phase to a

low entropy phase, where S0/N is approximately zero. At zero temperature, such exponentially

decay solutions can be found analytically to be

Gψψ (τ) = e−(µ−µc)τΘ (τ) , Gbb (τ) = −δ (τ) + e((q−1)(µ−µc)+J)τΘ (−τ) , (2.59)
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Figure 8: The entropy computed numerically as a function of the chemical potential µ
J . For

each value of µ, we compute the free energy and entropy on a numerical grid of size 225 at small
temperatures and extrapolate the zero temperature entropy. Note at µ = 0, we obtain S0(0) ≈
0.5484 which is close to the value predicted by the index log(2 cos π6 ) ≈ 0.5493. The transition
happens slightly above µ = µc = J, where the exponential decaying solution (2.59) starts to
appear. Extrapolating the precise zero temperature entropy becomes involved near the transition
point.

where the critical chemical potential is determined to be

µc =
J

2
(q − 1). (2.60)

To verify that this is a solution of the Schwinger-Dyson equations, begin by writing the ansatz

Gψψ (τ) = e−(µ−µc)τΘ (τ) , and use Σbb(τ) = JGψψ(τ)q−1 to obtain the boson self-energy, in both

position and Fourier space as

Σbb (τ) = Je−(q−1)(µ−µc)τΘ (τ) , ⇒ Σbb (ω) =
J

−iω + (q − 1)(µ− µc)
. (2.61)

We can use the momentum space equation to determine Gbb(ω) and Fourier transform back to

position space to obtain Gbb (τ) = −δ (τ) + e((q−1)(µ−µc)+J)τΘ (−τ). The position space equation

Σψψ(τ) determines the value of µc since

Σψψ (τ) = J(q − 1)e−(q−2)(µ−µc)τΘ (τ)
(
−δ(τ) + e((q−1)(µ−µc)+J)τΘ(−τ )

)
= −J(q − 1)

2
δ(τ).

(2.62)

where we used Θ(τ)δ(τ) = 1
2
δ(τ). We note that when J = 0, µc is zero and the solution reduces

to the retarded propagator of free massive fermion. The non-zero value µc can be thought as

the minimal value required for the chemical potential to overtake the random interaction and
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creates a gap in the spectrum. For q = 3,we note µc = J. Numerically a sharp transition occurs

around this value.

2.3 Operator spectrum

In this section we will determine the scaling dimensions of bilinear operators at the nearly

conformal fixed point. The operator spectrum provides important insights of the IR physics, in

directions orthogonal to the reparametrization modes. The spectrum of the theory (2.3) at zero

charge has been worked out and extensively discussed in [6, 11, 15]. We generalize the analysis to

non-zero chemical potential, which explicitly breaks supersymmetry. However, in the infrared,

supersymmetry is only spontaneously broken by the nearly conformal solution. Since the infrared

equations of motions remain supersymmetric, the superspace formalism provides a powerful

tool to analyze the bilinear spectrum. The scaling dimensions of operators become continuous

function of the chemical potential µ, or equivalently the spectral asymmetry parameter E .

In particular, we will check that the spectrum does not contain an operator with a complex

scaling dimension. Such a complex mode corresponds (for instance) to a bulk field below its

BF bound, and thus suggests an instability. Such modes are observed in various examples in

nearly conformal theory [18–20]. In the presence of a complex mode, the infrared physics is not

correctly described by the conformal saddle. In our case we verify that there are no complex

modes in the range 0 ≤ E < Ecritical, and thus the conformal solution exhibits a consistent

spectrum. As E → Ecritical (the point of the phase transition), we observe the spectrum exhibits

unusual features such as a continuum of states.

To determine the spectrum of bilinear operators, we find it convenient to look at the variation

of large N Dyson Schwinger equation, and set it to zero. To see that such a procedure determines

the bilinear spectrum, we note that Dyson Schwinger equations are operator equations, and we

may insert additional operators at infinity while the equations still hold. Such an insertion

corresponds to a deformation

δGψψ = 〈ψ̄i(τ)ψi(0)Oh(∞)〉 , δGbb = 〈b̄i(τ)bi(0)Oh(∞)〉 (2.63)

To make such deformation non-zero, O must be a bilinear operator consisting of fundamental

fermions and bosons. Without losing of generality, we may restrict O to be primary.

Imposing δGψψ satisfies the Dyson Schwinger equation provides a necessary consistency

condition for the deformation to correspond to an operator insertion, and it ‘bootstraps’ the
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operator spectrum. Note that this is only a necessary condition, and it is not guaranteed that

all such deformation corresponds to non-trivial operators. Nontrivial operators are distinguished

by their SL(2) Casimir (or the supersymmetric extension) and respect the h→ (1−h) symmetry

which may relate different δG.

To write the infrared Dyson Schwinger equations (2.32) in a more compact form, we let

G(Z1, Z2)T = G(Z2, Z1) and let (?, ?̄) be chiral and anti-chiral convolutions, respectively. In this

notation, the infrared equations of motion are:

J

2
G ? (Gq−1)T ≡

∫
dZ2 G(Z1, Z2) (

1

2
JG(Z3;Z2)q−1) = (θ̄1 − θ̄3)δ(τ1 − τ3 − θ1θ̄1 + θ3θ̄3). (2.64)

J

2
(Gq−1)T ?̄G ≡

∫
dZ̄2 G(Z2, Z1) (

1

2
JG(Z2;Z3)q−1) = (θ1 − θ3)δ(τ1 − τ3 + θ1θ̄1 − θ3θ̄3). (2.65)

where G = 〈Ψ̄i(Z1)Ψi(Z2)〉 is the anti-chiral-chiral propagator, and Dθ1G = D̄θ2G = 0. These

equations are manifestively invariant under the SU(1, 1|1) transformation (2.37). However, the

infrared solutions with E 6= 0 are not invariant under such transformations. Thus supersymmetry

is only spontaneously broken in the infrared. In such a case, the fermionic transformations in

SU(1, 1|1) transform the solution with zero Gψb to solutions with non zero values of Gψb.

We vary Eq.(2.64) on both sides and take the convolution against G from the right. Noting

(A ? B)?̄C = −A ? (B?̄C), we obtain

δG(Z1, Z2) =
J(q − 1)

2

(
G ?

((
Gq−2

)T
δGT

))
?̄G

=
J(q − 1)

2

∫
dZ̄3dZ4G(Z1, Z4)G(Z3, Z4)q−2δG(Z3, Z4)G(Z3, Z2)

=

∫
dZ̄3dZ4K

N=2(Z1, Z2;Z3, Z4)δG(Z3, Z4)

(2.66)

In other words, δG must be an eigenfunction of the kernel

KN=2(Z1, Z2;Z3, Z4) =
J(q − 1)

2
G(Z1, Z4)G(Z3, Z2)G(Z3, Z4)q−2, (2.67)

with eigenvalue 1. The eigenvalue equation determines the spectrum. Note the kernel can

always be written in N = 2 superspace. If we assume full SU(1, 1|1) invariance on the super-

correlator G, the kernel can also be diagonalized directly in the superspace [14]. In that case,

the spectrum is guaranteed to organize into SU(1, 1|1) supermultiplets with relative scaling

dimensions fixed by symmetry. However, our conformal solution spontaneously breaks SUSY.

Within a supermultiplet, the SUSY constraints on scaling dimensions no longer hold. Thus it is
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necessary to work in components when we diagonalize the super-kernel.

To write in components, we assume translational invariance and the supercorrelator can be

expanded as:

G(Z1, Z2) = Gψψ(τ1 − τ2 − θ1θ̄1 − θ2θ̄2) +
√

2θ̄1Gbψ(τ1 − τ2 − θ2θ̄2)

−
√

2θ2Gψb(τ1 − τ2 − θ1θ̄1) + 2θ̄1θ2Gbb(τ1 − τ2). (2.68)

Now we evaluate the spectrum of the kernel Eq.(2.67) over the conformal saddle. In such case

the vacuum carries a definite fermionic number, and

G(Z1, Z2) = Gψψ(τ1 − τ2 − θ1θ̄1 − θ2θ̄2) + 2θ̄1θ2Gbb(τ1 − τ2), (2.69)

but the fluctuation does not:

δG(Z1, Z2) = δGψψ(τ1 − τ2 − θ1θ̄1 − θ2θ̄2) +
√

2θ̄1δGbψ(τ1 − τ2 − θ2θ̄2)

−
√

2θ2δGψb(τ1 − τ2 − θ1θ̄1) + 2θ̄1θ2δGbb(τ1 − τ2). (2.70)

At this point we specialize to the case of q = 3 for simplicity. Evaluating the super kernel

integral in components, and matching the corresponding components in δḠ we obtain

δGψψ(τ12) = −2J

∫
dτ3dτ4 (Gψψ(τ14)Gψψ(τ32)Gψψ(τ34)δGbb(τ34) +Gψψ(τ14)Gψψ(τ32)Gbb(τ34)δGψψ(τ34))

(2.71)

δGψb(τ12) = 2J

∫
dτ3dτ4Gbb(τ32)Gψψ(τ14)Gψψ(τ34)δGψb(τ34) (2.72)

δGbb(τ12) = 2J

∫
dτ3dτ4Gbb(τ14)Gbb(τ32)Gψψ(τ34)δGψψ(τ34). (2.73)

We can organize the fluctuations in the bosonic and fermionic sectors as

Kb = 2J

(
−Gψψ(τ14)Gψψ(τ32)Gbb(τ34) −Gψψ(τ14)Gψψ(τ32)Gψψ(τ34)

Gbb(τ14)Gbb(τ32)Gψψ(τ34) 0

)
(2.74)

Kb ∗
(
δGψψ

−δGbb

)
=

(
δGψψ

δGbb

)
, (2.75)

Kf = 2JGbb(τ32)Gψψ(τ14)Gψψ(τ34) , (2.76)

K̄f = 2JGψψ(τ32)Gbb(τ14)Gψψ(τ34) . (2.77)

We note that the spectrum only depends on the combination g2
ψψgbb, although individual matrix

28



element can depend on the precise value of gψψ and gbb.

To proceed we note that with non zero spectral asymmetry, the three point function of

(2.63) can be an arbitrary linear combination of the symmetric and antisymmetric three point

functions:

δGψψ =
A

|τ |2∆−h +
B sgn(τ)

|τ |2∆−h , δGbb =
a

|τ |2∆b−h +
b sgn(τ)

|τ |2∆b−h . (2.78)

Due to such a mixing, each matrix element in the bosonic and fermionic kernel should be thought

as a 2 by 2 matrix. It is enough to work out the kernel with general spectral asymmetry, defined

by

K({τ, E ,∆}) =
(
eπE1Θ(τ14)− e−πE1Θ(τ41)

)

|τ14|2∆1

(
eπE2Θ(τ32)− e−πE2Θ(τ23)

)

|τ23|2∆2

(
eπE3Θ(τ34)− e−πE3Θ(τ43)

)

|τ34|2∆3

(2.79)

Explicitly, by evaluating

∫
dτ3dτ4K ({τ, E ,∆})

(
sgn(τ34)
|τ34|2∆−h

1
|τ34|2∆−h

)
= K({E ,∆})

(
sgn(τ34)
|τ34|2∆−h

1
|τ34|2∆−h

)
(2.80)

we can find its matrix representation in the basis
(

sgn(τ)
τ2∆−h ,

1
τ2∆−h

)
.

K({E ,∆}) =
1

4π

(
cf (

3
2
−∑∆i, 0)(Q̄−Q) cf (

3
2
−∑∆i, 0)(P + P̄ )

cb(
3
2
−∑∆i, 0)(Q+ Q̄) −cb(3

2
−∑∆i, 0)(P − P̄ )

)
(2.81)

where

cf (∆, E) = 2i cos(π(∆ + iE))Γ(1− 2∆) , cb = 2 sin(π(∆ + iE))Γ(1− 2∆), (2.82)

and we introduced the parameters

P = cf (∆i = 1, E1)cf (∆2, E2)cf (∆3,−E3), P̄ = cf (∆1,−E1)cf (∆2,−E2)cf (∆3, E3), (2.83)

Q = cf (∆1, E1)cf (∆2,−E2)cb(∆3, E3), Q̄ = cf (∆1,−E1)cf (∆2,−E2)cb(∆3, E3). (2.84)

We can look at the spectrum of the theory by evaluating (2.74) and (2.76) in terms of (2.81).

The bosonic and fermionic spectrum are presented in Figure 9, where a line crossing the axis
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Figure 9: The bilinear spectrum for E = 0 and 0.15 where each intersection with horizontal
axis signifies an operator with dimension corresponding to the location of the intersection. The
blue curve is bosonic and the black curve is fermionic. Note Kf and K̄f have identical spectra,
thus all fermionic curves have multiplicity 2. In addition, the presence of pairs of lines comes
from the spurious doubling of the spectrum due to unphysical local symmetries. Accounting for
the unphysical modes, the E = 0 spectrum possesses the N = 2 Schwarzian multiplet with 2
h = 3/2 modes. Turning on the chemical potential leads to an IR theory with spontaneously
broken supersymmetry. While the spectrum still organizes into multiplets, the 3/2 modes are no
longer protected.

indicates the possible presence of a operator with that dimension. The fermionic operators

always carry a double degeneracy as the fermionic kernels Kf and K̄f have identical spectra.

As explained in [6], a general feature of supersymmetric SYK models is the presence of spurious

modes due to new local scaling or reparametrization symmetries which act independently on

each argument of the bilocals but are incompatible with the UV boundary conditions. This

includes for instance a local version of the scaling discussed below (2.27).

At E = 0, we observe the supermultiplet
(
1, 2× 3

2
,2
)

associated with the N = 2 super

Schwarzian. This contains a h = 1 mode corresponding to the R-symmetry, a pair of h = 3/2

modes indicating the presence of a complex supercharge, and a h = 2 mode corresponding to

the Hamiltonian, or the reparametrization mode. We also see another copy of this spectrum

corresponding to the spurious non-diagonal super-reparametrizations which act differently on the

two arguments of the two-point function. As explained in [6], the spurious reparametrization

mode is not expected to produce a soft mode in the IR, since this transformation affects the UV

behavior of the correlators.

At 0 < E < Ecritical, we still observe two sets of reparametrizations modes together with

the two h = 1 partners and two fermionic partners. Even though the field contents follow

the structure of N = 2 multiplet, the scaling dimensions do not obey the superconformal
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Figure 10: We plot Det(Kb − I4×4) with h = 1
2 + is, where a complex mode is indicated by

location of zeros. We check that there is no complex modes until E = Ec, at which point there is
also a continuous spectrum of operators in the form of 1

2 + is.

Ward identities. We find the smallest fermionic modes have h 6= 3/2 for E 6= 0 due to the

breaking of supersymmetry. For example at E = 0.15, we find the four h = 3
2

modes split

and have scaling dimensions h± ≈ 1
2
± 0.09178. Moreover, the first supermultiplet after the

Schwarizian multiplet has dimensions ≈ (2.78478, 2 × 3.32804, 3.77582) no longer obeying

the superconformal constraints. While we do not pursue it further in this work, it would be

interesting to understand the dynamics of supersymmetry breaking in theories with an emergent

super-Schwarzian mode, perhaps along the lines of [56].

In figure 10 we check for the possible complex modes, whose scaling dimension takes the form

h = 1
2

+ is determined by SL(2,R). In all admissible range of E we find no complex modes. In

addition, we find no bosonic modes between 1 < h < 3
2
, which if present could dominate over

the Schwarzian in the infrared [57, 58]. Therefore the bilinear spectrum is free of any known

problems.

Now we turn to the behavior close to the critical asymmetry Ecritical. At the critical charge,

although the conformal two point coefficients (2.26) become zero, the kernel remains finite, and

in fact equals the identity matrix. This gives rises to unusual feature that instead of having a

discrete set of modes, a continuum of modes emerges for any real value of h. In figure 11 we

show the situation close but below of the transition, showing how the eigenvalue curve flattens

out. Noticeably, as E → Ecrticial, a continuum of complex modes also emerges as shown in figure

10.

31



Figure 11: Some bosonic correlators near transition, with E = 0.2780, 0.2801. Fermions do not
flatten out, but the bosonic eigenvalues start to flatten. At E = Ecritical, there is a continuous
bosonic spectrum.

2.4 Comments on the holographic interpretation

In this section we make a proposal for a holographic interpretation of the features we found in

N = 2 SYK at finite charge; we also derive a formula for the charge dependence of the zero-

temperature entropy. While we do not have an exact bulk dual of the model, our interpretation

has some qualitative and some quantitative features which can be compared.

We begin with the most conservative point of view. Since there is a slightly broken emergent

SU(1, 1|1) symmetry in N = 2 SYK, and given that the dynamics is described by the N = 2

Schwarzian theory, the dual two dimensional black hole is described by N = 2 JT gravity (see for

example [59]). This theory of gravity includes a U(1) gauge field dual to the SYK electric charge.

The two dimensional black hole background also includes N complex fermions ψbulk which are

dual to the N SYK fermions ψi, and their bosonic partners. Following the notation in section 5

of [5] we take the fermions to have mass M in the bulk, charge one, and they move on an electric

field E equal to the spectral asymmetry introduced above. When this fermion is quantized with

Neumann boundary conditions, the boundary two point function has the conformal form with

scaling dimension ∆ = 1
2
−
√
M2 − E2. We cannot use Dirichlet boundary conditions since those

would have ∆ > 1/2 which is not observed in SYK.

Assume first that the masses of the fermions do not depend on the electric field. Then the

two dimensional black hole is stable as long as the electric field is not too large E < Ecritical = M .

Beyond the critical electric field the fermion develops a complex scaling dimension. When this

happens there is a non-zero amplitude for Schwinger pair production that can screen the electric

field and induce an instability of the two dimensional black hole. This is qualitatively similar to
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what we find in the analysis of the N = 2 SYK fermion as a function of the spectral asymmetry,

with the only difference that M has a dependence on E11. The numerical analysis done for

N = 2 SYK indicates that the new phase after the instability is not a black hole, since it is a

low entropy phase not possessing a nearly conformal symmetry.

So far the fermion coupled to JT gravity is intended to be thought of as a sector of the

dual black hole to SYK. There is a different type of duality proposed in [5], which we will refer

to as the ‘spooky fermion’, between some exact results in SYK and a set of fermions in the

two dimensional hyperbolic disk. This proposal implies for example that the zero-temperature

entropy of the complex SYK model is given by

GF (E) = N [logZF
D − logZF

N ]. (2.85)

The right hand side involves the one-loop partition function of N complex fermions with Dirichlet

conditions in the boundary of the hyperbolic disk, denoted by ZF
D and N ghosts fermions

with Neumann boundary conditions, denoted by ZF
N and contributes with an extra minus sign.

G(∆, E) is the grand canonical partition function. It was shown in [5] that

∂GF

∂∆
= −N π(1− 2∆) sin 2π∆

cosh 2πE + cos 2π∆
. (2.86)

Then one can compute the grand canonical partition function by integrating ∆ from 1/2 to

∆ = 1/q which is the answer for complex SYK, independent of the spectral asymmetry. This

identification fails for other topologies [61].

For N = 2 SYK we propose a similar duality at the level of the disk topology. The first

difference is the presence of a bulk boson with Dirichlet boundary conditions and a bulk ghost

boson with Neumann boundary conditions. Its contribution is GB(∆b, Eb) = N [logZB
D− logZB

N ].

The total grand potential is then

G(∆, E) = GF (∆, E) +GB(∆b, Eb). (2.87)

This boson is required by supersymmetry. For example at E = 0 it should satisfy ∆b = ∆ + 1/2.

Moreover, the charge of the boson has to be (q − 1) times the charge of the fermion by susy

implying Eb = (q − 1)E . For E 6= 0 susy is broken by based on the dynamics of SYK we found

11Black holes in four dimension can also have electric field dependent dimensions when placed in AdS, which
plays an important role in the recent work [60].
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here we impose that ∆b = 1− (q − 1)∆. It is possible to show that

∂GB

∂∆b

= −N π(1− 2∆b) sin 2π∆b

cosh 2πEb − cos 2π∆b

. (2.88)

As opposed to complex SYK, for the N = 2 theory the fermion dimension is not fixed. The

spooky propagator gives a way of understanding the formula (2.27). The grand potential depends

on ∆ and E . It is reasonable to expect that the value of ∆ should be such that the grand potential

is extremized with respect to changes in the scaling dimension. Using that ∂∆∆b = −(q − 1)

gives

∂∆G(∆, E) = 0, ⇒ (1− 2∆) sin 2π∆

cosh 2πE + cos 2π∆
= (q − 1)

(1− 2∆b) sin 2π∆b

cosh 2πEb − cos 2π∆b

(2.89)

This is exactly the same equation as (2.27).

We can use this picture to also derive the Luttinger-Ward relation. In order to do this start

from the expression for the grand potential and apply the thermodynamic relation Q = 1
2π
∂EG

[49]. This gets contributions both from the spooky fermion and boson propagators. It is easy

to check that this relation implies the Luttinger-Ward formula (2.50) which we verified by a

numerical solution of the Schwinger-Dyson equations.
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Imitating the derivation in [3] we can use this symmetry to show that, evaluated on a classical so-

lution of the mean field action, the bilocal current satisfies the local conservation
R +1
�1 j(⌧1, ⌧0)d⌧1 =

0.Then we can define the charge as

Q̃ =

Z ⌧0

�1
d⌧1

Z 1

⌧0

d⌧2 j(⌧1, ⌧2). (B.5)

We can verify using the UV behavior of the Green functions that this coincides with the charge

of the  fermion when we choose µf ! �0(⌧1� ⌧2)�µ�(⌧1� ⌧2) and µb ! �(⌧1� ⌧2), then we get

Q̃ = �
Z 1

�1
d⌧⌧ (�0(⌧)G(�⌧) + (q � 1)�(⌧)D(�⌧)) , (B.6)

after some simplification. Following [3] we can check that this notion of charges matches with

the expectation

Q̃ =
G(0+) +G(0�)

2
� q � 1

2
, (B.7)

= q
Q

N
� q � 1

2
. (B.8)

To obtain this expression we defined the value of G(0) as the average and we set ⌧D(⌧)|⌧!0 !
1/2. not sure how to make this precise, but this gives Q = 0 for E = 0. The last step of the

calculation is to perform the integral in the IR and match the UV answer above. This was

already done in section 2.2.3 of [3] so we can simply quote the answer for the fermion. The

answer for the boson is simply given by a shift E ! E + i/2 since this removes extra minus signs

that appear in fermion correlators. The final answer is

Q

N
=

1

q

✓
�✓f
⇡

�
✓
1

2
��

◆
sin(2✓f )

sin 2⇡�

◆
+

q � 1

q

✓
�✓b �

⇡
2

⇡
�
✓
1

2
��b

◆
sin(2✓b)

sin 2⇡�b

◆
(B.9)

where following standard conventions we defined the asymmetry in the Fourier transfrom of the

correlators ✓f/b by

e�2i✓f =
cos(⇡�+ i⇡E)
cos(⇡�� i⇡E) , e�2i✓b = �sin(⇡�+ i⇡Eb)

sin(⇡�� i⇡Eb)
. (B.10)

With these definitions the particle-hole symmetric point is ✓f = 0, ✓b =
⇡
2
and Q/N = 0. It is

important to notice that the equation (B.9) for the fermion charge involves a contribution from

the bosons as well in the IR, even though in the UV it comes purely from the fermion correlator.
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where for simplicity we write it in terms of q0 = e2⇡i(�1/⌧) and y0 = e2⇡i(z/⌧).
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Figure 12: Plot showing the zero temperature entropy for q = 3 N = 2 SYK, computed using the
spooky fermion and boson propagators in equation (2.90) (solid black line) as a function of charge
from Q = 0 up to the critical value Q = 0.4142N . We also show the result from a numerical solution
of the Schwinger-Dyson equations (blue dots) showing perfect agreement, at least far enough from
the critical charge where the numerical procedure becomes more involved.

Finally, we can verify the grand potential itself matches with the one obtained from the

Schwinger-Dyson equation. The explicit expression is given by

G(E)/N =

∫ 1/2

∆

dx
π(1− 2x) sin 2πx

cosh 2πE + cos 2πx
+

∫ 1/2

1−(q−1)∆

dx
π(1− 2x) sin 2πx

cosh 2π(q − 1)E − cos 2πx
, (2.90)
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where ∆ is the fermion scaling dimension derived from (2.89). Using this expression we can also

compute the entropy G = S0(Q) − 2πEQ. In figure 12 we verify this expression coincides with

the result from numerical solution of the mean field equations. We would like to stress that G

cannot be simply obtained from integrating (2.43) over q since it is not clear what boundary

conditions to use for that integral, so this provides a non-trivial check. We can verify analytically

this works at Q = 0, giving

G(E = 0)/N =

∫ 1/2

1
2q

dx π(1− 2x) tan πx+

∫ 1/2

1
2q

+ 1
2

dx π(1− 2x) cot πx, (2.91)

= log

(
2 cos

π

2q

)
, (2.92)

which coincides with the expectation from the index. This simple final answer come from non-

trivial cancellations between the bosons and fermions contribution. It is possible to write down

an analytic answer as a function of E using results of [49] but it is not very illuminating.

3 N = 2 SYK with multiple fermions

In this section we will study models of N = 2 SYK with multiple complex fermions. In

contrast to the model introduced in [6], these new models have flavor symmetries that preserve

supersymmetry. At low temperature, the IR physics is still dominated by the N = 2 Schwarzian

theory with fundamental U(1)R charge equal to the charge of the supercharge.

We will consider theories with two sets of complex fermions ψi and χi with i = 1, . . . , N . Due

to N = 2 supersymmetry, the Hamiltonian is completely specified by giving the supercharge.

With more fermions, there is some arbitrariness in what we choose to be the supercharge which

defines the model; in the simplest realization we will take it to be

Q = iCijk ψ
iψjχk, (3.1)

where we take Cijk to be totally antisymmetric (this can be generalized since we only need anti-

symmetry in the first two indices). Then Q2 = Q̄2 = 0 and H = {Q, Q̄}. We take the complex

coupling matrix to be a gaussian random distributed with variance 〈Ci1i2...iqC̄ i1i2...iq〉 ∼ J/N q−1.

We will show these models also have an emergent SU(1, 1|1) symmetry at low temperatures,

with additional features due to the existence of a new global symmetry.

The supersymmetric Lagrangian following from (3.1) has the global symmetries U(1)ψ×U(1)χ
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which act independently on the two types of fermions ψ and χ. Their generators are Qψ =
∑

i ψ̄iψ
i−N/2 and Qχ =

∑
i χ̄iχ

i−N/2. Both of these generators commute with the Hamiltonian

but not with the supercharge. There is a linear combination that defines a supersymmetric flavor

symmetry:

QF = Qψ − 2Qχ, [QF ,Q] = 0. (3.2)

The existence of this flavor symmetry implies that deciding exactly what is the superconformal

R-symmetry U(1)R inside the infrared superconformal group is a non-trivial problem. The

simplest possibility is to pick Qχ itself, but in general it could be any linear combination

QR = Qχ + α QF , [QR,Q] = Q (3.3)

where α is an arbitrary real parameter. We will determine α from the solution of the model at

low temperatures.

It will be useful for some calculations below to generalize the model to involve an arbitrary

number of ψ fermions in the supercharge

Q = i
q−1

2 Ci1...iq ψ
i1 . . . ψiq−1χiq . (3.4)

This model also has two conserved currents Qψ and Qχ, and a generalization of the flavor charge

(3.2) is

QF = Qψ − (q − 1)Qχ . (3.5)

Again, we can propose a trial low temperature R-symmetry QR = Qχ + αQF , for a parameter

α we will determine later.

Finally, all these models again have a global discrete Zq symmetry. This is generated by

ψ → e
2πir
q ψ and χ→ e

2πir
q χ and it clearly commutes with the supercharge.

Calculation of the Index

We will now compute the refined Witten index for this theory. The calculation can be done

in the free fermion limit, but it will be useful to compare to the result we will find using the

mean field description below. We should first define a notion of fermion number that produces

cancellations between states when they do not preserve supersymmetry. We take the following

definition:

(−1)F ≡ eiπQχ (3.6)

36



Since this only counts the number of χ-oscillators, it is a-priori not the ‘true’ fermion number.

Nevertheless, since the supercharge involves an even number of ψ fields, all states in a supermul-

tiplet have the same ψ-fermion number modulo 2. Furthermore, the supercharge has fermion

number one with this definition and the contribution from states in the same supermultiplet will

vanish. More formally, we can say that the Hilbert space breaks up into a Z graded complex

. . .
Q→ Hqχ−1 Q→ Hqχ Q→ Hqχ+1 Q→ . . . . This reduces mod 2 to Z2, the fermion number grading.

There is a separate Q-cohomology for each qχ ∈ Z charge.

The presence of the flavor U(1)F allows us to define the Witten index refined by the chemical

potential y conjugate to this charge. The index is then given by

I(y) ≡ Tr
[
(−1)F e−βHeiyQF

]
, (3.7)

=
(

2 cos
(y

2

)
2 sin

(q − 1

2
y
))N

, (3.8)

where the second line was computed in the free theory. Just like the models of [6], the index

vanishes with no potential; Tr(−1)F = 0.

Already at the level of the index, we may find interesting features of the model defined by

(3.4) by passing from the grand canonical (fixed y) to the canonical (fixed QF ) ensemble. This

amounts to picking a charge sector of the theory with QF → qF labeling the sector (for example

qF = 0 if we gauge the flavor symmetry). Now the index in this sector does not vanish and is

given by

I(qF ) = TrqF

[
(−1)F e−βH

]
, (3.9)

=

∫ 2π

0

dy

2π
e−iyqF eNI(y), I(y) ≡ log

(
2 cos

(y
2

)
2 sin

(q − 1

2
y
))

(3.10)

Now we will take the large N limit while keeping qF of order one. Therefore we can ignore

the dependence on the flavor charge and focus on the I(y) term to find the saddle point of the

integral. In this limit the index can be approximated by

I ∼ eNI(yc) where ∂yI(yc) = 0. (3.11)

The saddle point equation ∂yI(yc) = 0 cannot be explicitly solved, but can be rewritten in a

form that will be useful for a later comparison

tan
(yc

2

)
= (q − 1) cot

(
(q − 1)

yc
2

)
, ⇒ d

dq

log I
N

=
yc
2

cot
(

(q − 1)
yc
2

)
. (3.12)
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To simplify the expression for the index we took a derivative of I(y) with respect to q, which

due to the saddle point equation only acts on explicit q dependence. We will see below that this

quantity can be identified with the zero temperature entropy S0 computed from the mean field

action at the particle-hole symmetry point.

We can also turn both a chemical potential for QF and for the Zq symmetry that commutes

with the supercharge. The answer is given by

I(y, r) = Tr
[
(−1)F e−βHeiyQF ei2π

r
q

(Qψ+Qχ)
]
, (3.13)

=
(

2 cos
(y

2
+
πr

q

)
2 sin

(q − 1

2
y − πr

q

))N
(3.14)

The reason that this refinement does not add much information is that it can be rewritten as

I(y, r) = (−1)rN I
(
y − 2πr

q
, 0
)
, (3.15)

and therefore its given up to a sign by the previous index. For example the fixed charge refined

index is I(qF , r) = ei2πr(
N
2
− qF

q
)I(qF , 0). We can use this index then to determine the Zq charge

of the BPS states in each fix flavor charge sector.

3.1 Mean field and the conformal solution

The derivation of the mean field action is largely identical to the one in section 2 so we will be

more brief. We will again work in superspace, first introducing introduce two chiral superfields

defined analogously to (2.10):

Ψi = ψi(τ + θθ̄) +
√

2 θ biψ , X i = χi(τ + θθ̄) +
√

2 θ biχ , (3.16)

where we have again introduced auxiliary bosons biψ, biχ, and their conjugates with an explicit

form obtained from the analog of (2.4). The action after integrating in the bosons can be written

in superspace in terms of these chiral fields and the interaction term is

L ⊃ i
q−1

2

∫
dθ
(
Ci1i2...iqΨ

i1 . . .Ψiq−1X iq
)

+ h.c. (3.17)
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More explicitly, the θ component of Ci1i2...iqΨ
i1 . . .Ψiq−1X ia gives the combination ψq−1bχ and

(q − 1)bψψ
q−2χ. We introduce now the fermions two point function

GΨΨ(Z1, Z2) =
1

N
〈Ψ̄i(Z1)Ψi(Z2)〉, GXX(Z1, Z2) =

1

N
〈X̄i(Z1)X i(Z2)〉. (3.18)

The expansion of these superfields includes Gψψ(τ1, τ2), Gbψbψ(τ1, τ2), etc. To derive the mean

field action we introduce a Lagrange multiplier Σψ(Z1, Z2) and Σχ(Z1, Z2), which in components

are Σψ(Z1, Z2) = 1
2
Σbψbψ(τ1−θ1θ̄1, τ2 +θ2θ̄2)+ . . . and similarly for χ. Next we integrate out both

the couplings and the fundamental superfields. The interaction term in the mean field action

involves

S ⊃ N
J

2

∫
dZ̄1dZ2 GΨΨ(Z1, Z2)q−1GXX(Z1, Z2). (3.19)

Since the procedure to find the action and its equations of motion (the Schwinger-Dyson equa-

tions) is similar to what we reviewed in section 2.1, we will move straight to the equations

and solution. We consider time translation invariant solutions with vanishing mixed correlators

between bosons and fermions.

1

2
Dθ3GΨΨ(Z1, Z3)+

∫
dZ2 GΨΨ(Z1, Z2)

[
J

2
(q − 1)GΨΨ(Z3, Z2)q−2GXX(Z3, Z2)

]
= δ(Z̄1 − Z̄3),(3.20)

1

2
Dθ3GXX(Z1, Z3)+

∫
dZ2 GXX(Z1, Z2)

[
J

2
GΨΨ(Z3, Z2)q−1

]
= δ(Z̄1 − Z̄3), (3.21)

where the quantities in brackets are equal to Σψ and Σχ, the superspace self-energies.

Solutions of Schwinger-Dyson equations

In this section, we solve the Schwinger-Dyson equations in the IR limit using the conformal

ansatz, derived from the mean field action above. In position space, the component equations

that determine the self energies (when off-diagonal bilinears are set to zero) are

Σψψ(τ) = J(q − 1)
(
Gψψ(τ)q−2Gbχbχ(τ) + (q − 2)Gbψbψ(τ)Gχχ(τ)Gψψ(τ)q−3

)
, (3.22)

Σχχ(τ) = J(q − 1)Gbψbψ(τ)Gψψ(τ)q−2, (3.23)

Σbψbψ(τ) = J(q − 1)Gψψ(τ)q−2Gχχ(τ), (3.24)

Σbχbχ(τ) = JGψψ(τ)q−1. (3.25)
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We can begin by picking a similar ansatz as in the previous section for all correlators

GAA(τ) =
gAA
|τ |2∆A

(
eπEAΘ(τ)− e−πEAΘ(−τ )

)
, (3.26)

GbAbA(τ) =
gbAbA
|τ |2∆bA

(
eπEbAΘ(τ) + e−πEbAΘ(−τ )

)
, (3.27)

where A = ψ or χ. We now have several different scaling dimensions ∆A, ∆bA and spectral

asymmetries EA, EbA for both sets of bosons and fermions.

The self-energies can be found by solving ΣAA(ω)GAA(−ω) = 1 and ΣbAbA(ω)GbAbA(−ω) =

−1, and the answer is the same as before for each correlator:

ΣAA(τ) =
1

gAA

(1− 2∆A) sin 2π∆A

4π
∏
± cos π(∆A ± iEA)

1

|τ |2(1−∆A)

(
−eπEAΘ(−τ ) + e−πEAΘ(τ)

)
,

ΣbAbA(τ) =
1

gbAbA

(1− 2∆bA) sin 2π∆bA

4π
∏
± sin π(∆bA ± iEbA)

1

|τ |2(1−∆bA
)

(
eπEbAΘ(−τ ) + e−πEbAΘ(τ)

)
.

We now follow the same steps as in the previous section to solve the rest of the equations. We

begin by matching the left- and right-hand sides of equations (3.22), (3.23), (3.24), and (3.25).

This again can be done in steps. We first match the spectral asymmetry of all equations. This

gives the following two independent constraints

Ebψ = −(q − 2)Eψ − Eχ, Ebχ = −(q − 1)Eψ. (3.28)

The interpretation of these constraints is clear since integrating out auxiliary bosons gives by

bψ ∼ ψ̄q−2χ̄ and bχ ∼ ψ̄q−1. Therefore their spectral asymmetry should respect these relations.

Moreover, there are only two U(1) charges we are free to chose in our theory and therefore there

should be only two independent spectral asymmetries which we take to be Eψ and Eχ. Next, we

can match the time dependence on both sides of the four equations. This gives the following

two constraints on the scaling dimensions

∆bχ + (q − 1)∆ψ = 1, ∆bψ + (q − 2)∆ψ + ∆χ = 1. (3.29)

We then determine the bosonic scaling dimensions from these equations and consider ∆ψ and

∆χ as independent variables. These constraints on the dimensions are also reasonable since

they imply the interaction terms are marginal in the low energy effective action. We will see

below that as opposed to Yukawa-like interactions without supersymmetry (examples of Yukawa

interactions with first order bosons are [55, 62]), the scaling dimensions will be determined from
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the spectral asymmetries uniquely.

Before moving on to matching the prefactors gAA and gbAbA of the equations for the self-

energies, we will analyze the range of allowable scaling dimensions such that the approximations

made in the IR solution are self consistent. Dropping the kinetic terms requires ∆fermion > 0 and

∆boson > 1/2, which implies the following inequalities

0 < ∆ψ <
1

2(q − 1)
, 0 < ∆χ <

1

2
− (q − 2)∆ψ <

1

2
(3.30)

The bound on ∆χ is therefore not fixed and goes from 1/2 to 1/(2(q − 1)) as we increase ∆ψ

within the allowed range.

Now we can match the prefactors. This will produce self-consistency equations that uniquely

determine the scaling dimensions. For each of the equations (3.22), (3.23), (3.24) and (3.25), we

get:

(1− 2∆ψ) sin 2π∆ψ

4π
∏
± cos π(∆ψ ± iEψ)

= 2(q − 1)gq−1
ψψ gbχbχ + 2(q − 1)(q − 2) gbψbψ gχχ g

q−2
ψψ (3.31)

(1− 2∆bχ) sin 2π∆bχ

4π
∏
± sin π(∆bχ ± iEbχ)

= 2gbχbχ g
q−1
ψψ (3.32)

(1− 2∆χ) sin 2π∆χ

4π
∏
± cos π(∆χ ± iEχ)

= 2(q − 1) gχχ gbψbψ g
q−2
ψψ (3.33)

(1− 2∆bψ) sin 2π∆bψ

4π
∏
± sin π(∆bψ ± iEbψ)

= 2(q − 1) gbψbψ g
q−2
ψψ gχχ (3.34)

These four equations are only consistent if the following two constraints are solved

(1− 2∆χ) sin 2π∆χ

4π
∏
± cos π(∆χ ± iEχ)

=
(1− 2∆bψ) sin 2π∆bψ

4π
∏
± sin π(∆bψ ± iEbψ)

, (3.35)

(1− 2∆ψ) sin 2π∆ψ

4π
∏
± cos π(∆ψ ± iEψ)

=
(1− 2∆bχ) sin 2π∆bχ

4π
∏
± sin π(∆bχ ± iEbχ)

+
(q − 2)(1− 2∆χ) sin 2π∆χ

4π
∏
± cos π(∆χ ± iEχ)

(3.36)

After replacing the values of scaling dimensions and spectral asymmetries for the bosons using

(3.29) and (3.28), these two equations are sufficient to determine ∆ψ(Eψ, Eχ) and ∆χ(Eψ, Eχ). We

will analyze the behavior of the scaling dimensions next. First, let us point out again that using

the IR solution we can only determine the following combinations of prefactors gq−2
ψψ gχχgbψbψ and

gq−1
ψψ gbχbχ . This is due to a set of two emergent scaling symmetries, which we refer to as λ1 and
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λ2, in the IR given by

λ1 : Gψψ → λ1Gψψ, Gbχbχ → λ1−q
1 Gbχbχ , Gχχ → λ2−q

1 Gχχ, Gbψbψ → Gbψbψ , (3.37)

λ2 : Gψψ → Gψψ, Gbχbχ → Gbχbχ , Gχχ → λ2Gχχ, Gbψbψ → λ−1
2 Gbψbψ . (3.38)

Is it easy to see that these transformations can be obtained from acting with U(1)ψ and U(1)χ

independently on the two insertions appearing in the two-point function. This is necessary

since otherwise a time independent transformation acting diagonally would leave the correlators

invariant. These symmetries are broken in the UV and therefore the prefactors should be

determined if we had access to the full solution. These transformations act on the UV correlators

and we do not expect a low energy mode coming from them for the same reasons as in [6].

Supersymmetric solution

Since we find a non-vanishing index we know the ground states preserve supersymmetry. This

implies for the conformal solution that supersymmetric solutions satisfy GbAbA ∼ ∂τGAA for

A = ψ, χ, analogous to (2.30). Then the bosonic scaling dimensions are given in terms of the

fermionic ones

∆bψ = ∆ψ +
1

2
, ∆bχ = ∆χ +

1

2
. (3.39)

As opposed to the model studied in the previous section, this does not determine the scaling

dimensions anymore from a purely dimensional analysis argument. Instead we are left with a

single constraint on the fermion dimensions

Susy : ∆χ + (q − 1)∆ψ =
1

2
. (3.40)

To determine a unique solution we need to look at the spectral asymmetry. The supersymmetry

relating the bosonic and fermionic correlators also imposes a matching between the spectral

asymmetries Ebψ = Eψ and Ebχ = Eχ. Combinging this with the relations (3.28), one finds

Susy : Eχ + (q − 1)Eψ = 0. (3.41)

This is not the most general solution and there are discrete configurations with complex spectral

asymmetry corresponding to turning on the Zq charge, analogous to (2.28). We will not discuss

those solutions here.

Using the relations above, so far supersymmetric solutions can be parametrized by ∆ψ and
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Eψ. Given Eψ, we now impose the constraints coming from the prefactors in the Schwinger-Dyson

equations. They give the following equation

sin 2π∆ψ

cos 2π∆ψ + cosh 2πEψ
=

(q − 1) sin 2π(q − 1)∆ψ

cosh 2π(q − 1)Eψ − cos 2π(q − 1)∆ψ

(3.42)

This should be seen as an implicit equation determining ∆ψ(Eψ), and all other quantities can be

determined by the relations above. This is consistent with the discussion of the index, only one

continuous chemical potential can be turned on while still preserving supersymmetry, the one

conjugate to the UV flavor charge (3.2). Explicit solutions are possible for small q. For q = 3 it

is given by

∆ψ =
1

2π
arcsin

(1

3

√
9− cosh2 2πEψ

)
. (3.43)

We will comment later on the fact that there is a critical spectral asymmetry at which the scaling

dimension vanishes.

Emergent SU(1, 1|1) symmetry

We will briefly point out now that the supersymmetric solution has an emergent SU(1, 1|1)

symmetry. The full Schwinger-Dyson equations in superspace (3.20), (3.21) upon dropping the

UV term are

∫
dZ2GΨΨ(Z1, Z2)(J(q − 1)GΨΨ(Z3, Z2)q−2GXX(Z3, Z2)) = 2δ(Z̄1 − Z̄3), (3.44)

∫
dZ2GXX(Z1, Z2)(JGΨΨ(Z3, Z2)q−1) = 2δ(Z̄1 − Z̄3), (3.45)

At late times when the UV term is ignored the equations are symmetric under the following

super-reparametrizations

GΨΨ(Z1, Z2) → (Dθ1θ
′
1)2∆ψ(Dθ̄2 θ̄

′
2)2∆ψGΨΨ(Z ′1, Z

′
2), (3.46)

GXX(Z1, Z2) → (Dθ1θ
′
1)2∆χ(Dθ̄2 θ̄

′
2)2∆χGXX(Z ′1, Z

′
2) (3.47)

as long as

(q − 1)∆ψ + ∆χ =
1

2
. (3.48)

This is precisely the supersymmetric relation found above (3.40). This shows that the fermions

are superconformal primaries under the SU(1, 1|1), which is a particular case of the more general

superreparametrizations above.
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Since the fermions are chiral primary operators, their R-charge has to be twice their scaling

dimension. This can be used to determine the parameter α appearing in QR in equation (3.3).

For example, the ψ fermion has charge Qψ = 1 and Qχ = 0 and therefore QR = α. The condition

of ψ being a chiral primary then determines the unknown coefficient:

α = 2∆ψ . (3.49)

A similar analysis for the χ fermion gives the same α thanks to (3.48).

We show later the presence of an N = 2 Super-Schwarzian mode in the bilinear spectrum.

For simplicity we can work at fixed QF (we will consider relaxing this in the next section). Since

the R-charge of the theory is given, up to a constant shift in the fixed QF sector, by Qχ this

means the R-charge of the supercharge is one. The bosonic sector of the action is

Sb =
2πNαS
βJ

∫ 2π

0

dτ

(
−Sch

(
tan

f

2
, τ

)
+ 2 (∂τa)2

)
, (3.50)

with a ∼ a + 2π. We gave some details of the quantum mechanical spectrum of this theory in

the introduction and emphasized it has the special feature that all BPS states have the same R-

charge. This is consistent with the fact that the index in a fixed QF sector is non-vanishing and

exponentially large in N (We have done some preliminary checks on these features using exact

diagonalization of the model). We consider next what happens when working in an ensemble in

which the flavor charge fluctuates.

Emergent local flavor symmetry

Just as the UV U(1)R becomes a local IR symmetry in the conformal limit, but leads to the U(1)R

mode of theN = 2 super Schwarzian, one might also expect that the U(1)F flavor symmetry may

become a spontaneously and explicitly broken local symmetry, leading to a new physical mode

(and potentially a spurious mode). In the case of N = 1 supersymmetry with a global SO(q)

symmetry, this situation was studied in [63] where such a Kac-Moody like enhancement and

corresponding flavor mode were found. In this section, we present a generalization appropriate

to our model with larger supersymmetry.

While not immediately relevant for the IR Schwinger Dyson equations and the U(1)F mode,

we will briefly discuss vector multiplets and U(1) gauge transformations in superspace. A vector
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superfield is a real superfield with the expansion

V (τ, θ, θ̄) = C(τ) +
√

2 θ λ(τ)−
√

2 θ̄ λ̄(τ)− θθ̄A(τ) , V † = V . (3.51)

Reality ensures the λ are conjugates of each other and C,A are real; this condition is chosen so

that eiV is unitary. A supergauge transformation is represented by two bosonic chiral superfields

Φ(τ, θ, θ̄) and Φ̄(τ, θ, θ̄):

V → V + Φ̄− Φ , Φ(τ, θ, θ̄) = φ(τ) +
√

2 θ ξ(τ) + θθ̄∂τφ(τ) , (3.52)

The final term in the superfield identifies one real degree of freedom of φ with the usual gauge

parameter. While we will not explore this direction further, it is interesting to note that

this vector superfield would be required to introduce a supersymmetric generalization of the

background chemical potential µ for the flavor symmetry.

A naive way to implement a local flavor symmetry in superspace would be to perform bi-

local transformations of the form G(Z1, Z2)→ eiV (Z1)e−iV (Z2)G(Z1, Z2) on the Schwinger Dyson

equations (3.44) and (3.45). However, this transformation does not take chiral superfields to

chiral superfields, so the correct prescription to perform bi-local independent chiral and anti-

chiral gauge transformations with the correct flavor charges using (3.52):

GΨΨ(Z1, Z2)→ e−iΦ̄(Z1)eiΦ(Z2)GΨΨ(Z1, Z2) , (3.53)

GXX(Z1, Z2)→ ei(q−1)Φ̄(Z1)e−i(q−1)Φ(Z2)GXX(Z1, Z2) (3.54)

This leaves

ei(−Φ̄(Z1)+Φ̄(Z3))
∫
dZ2 GΨΨ(Z1, Z2)[J(q − 1)GΨΨ(Z3, Z2)q−2GXX(Z3, Z2)] = 2δ(Z̄1 − Z̄3) ,

(3.55)

ei(q−1)(Φ̄(Z1)−Φ̄(Z3))
∫
dZ2 GXX(Z1, Z2)[JGΨΨ(Z3, Z2)q−1] = 2δ(Z̄1 − Z̄3) , (3.56)

which is a symmetry of the equations of motion under the support of the supersymmetric δ-

function on the right hand side. Actually, the holomorphic dependence on Φ cancels inside the

integral, and the resulting equations appear to have a full complex mode Φ̄ of transformations.

This was already anticipated from (3.37) which was the global scaling symmetry of the conformal

answer.

The above analysis indicates there are 2 bosonic and 2 fermionic flavor reparametrizations,
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but it is only the real part of the field φ(τ) which leads to a compact U(1) compatible with the

UV picture. The imaginary part leads to a scale symmetry which we believe is not associated

to any physical IR mode. It is less clear, however, that one fermionic mode should be physical

and the other should be unphysical. This is because even if we take φ(τ) to be purely real, the

complex supersymmetry generators produce both ξ and ξ̄ fields, schematically:

φ ∈ R
Q
↙

Q̄
↘

ξ ξ̄
Q̄
↘

Q
↙

∂τφ

(3.57)

We will see in the bilinear spectrum which modes actually appear in the infrared, where the

global supersymmetry transformations in the diagram would be replaced with the local super-

reparametrizations.

Understanding now that there is one physical local U(1) symmetry of the Schwinger-Dyson

equations, we expect the breaking of this U(1) leads to a new dynamical IR mode in addition to

theN = 2 super Schwarzian. We already reviewed the analogous IR action in Eq. (2.52) in which

we wrote down the bosonic part of the N = 2 Schwarzian; the U(1)R breaking boson becomes a

particle moving on the U(1) group manifold (with radius given in terms of the q parameter). A

similar effective action appears for the U(1)F mode, but there are some important differences.

First, because the U(1)R is part of the super-reparametrizations, it appears in the same multiplet

as the Schwarzian. In contrast, the global flavor symmetry commutes with supersymmetry, so

we expect there to be a multiplet of modes in correspondence with (3.52). Because the group

element can be written in superspace, the corresponding multiplet should describe a superparticle

moving on the U(1)F group manifold. While we will not derive the effective action, the situation

here is similar to that in [63]. One might further guess that the collective AdS2 description

would include N = 2 JT gravity coupled to U(1)F N = 2 BF theory, but we leave this question

for future work.
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The Zero Temperature Entropy

We now repeat the procedure in the previous section to compute the temperature independent

contribution to the partition function

∂q
logZ

N
=
Jβ

2

∫
Gψψ(τ)q−1Gbχbχ(τ) logGψψ(τ)+Gψψ(τ)q−2Gbψbψ(τ)Gχχ(τ)(1+(q−1) logGψψ(τ)).

We can evaluate the right hand side using the conformal solution. This is divergent but only

the temperature independent piece is independent of the UV behavior. The answer is given by

∂q
logZ

N
= #β + ∆ψπ

2J(gq−1
ψψ gbχbχ + (q − 1)gq−2

ψψ gχχgbψbψ) +O(β−1), (3.58)

where again only the temperature independence piece is insensitive to the UV behavior. Since

this calculation involves only the IR behavior of the action and the solution, the expression

depends only on the combination that we can determine without information about the UV.

Using equations (3.31) to (3.34), we obtain for the temperature independent piece

∂q
logZ

N
= π∆ψ

(
(1− 2∆χ) sin 2π∆χ

cos 2π∆χ + cosh 2πEχ
+

(2(q − 1)∆ψ − 1) sin 2π(q − 1)∆ψ

cos 2π(q − 1)∆ψ − cosh 2π(q − 1)Eψ

)
+ . . . , (3.59)

If we restrict to supersymmetric configurations this simplifies to

∂q
logZ

N
=

π∆ψ sin 2π(q − 1)∆ψ

cosh 2π(q − 1)Eψ − cos 2π(q − 1)∆ψ

+ . . . , (3.60)

Finally we note that if we define the zero temperature entropy as the contribution for Eψ, Eχ → 0

then we obtain
dS0

dq
= Nπ∆ψ cot (π(q − 1)∆ψ) . (3.61)

When evaluated at Eψ = Eχ = 0, the equation for ∆ψ obtained from the Schwinger-Dyson

equation becomes

tan π∆ψ = (q − 1) cot π(q − 1)∆ψ (3.62)

As anticipated above, this is exactly the same as what we found from the index. The equation

for dS0/dq and the equation for ∆ψ matches precisely with the expression (3.12) for the index at

fixed charge, after identifying yc → 2π∆ψ. This match can be understood as a manifestation of

I-maximization in the context of quantum mechanical systems with approximate superconformal

symmetry [64].
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To integrate this formula we need to know �(q, E), which is given by the implicit formula (2.12)

given above. It is interesting to consider anyways the supersymmetric case E = 0 which implies

� = 1/(2q). In this case the answer gives dS0

dq
= N

⇡ tan ⇡
2q

2q2
. This can be easily integrated, using

the free fermion limit to fix the integration constant, and gives

S0 = N log
�
2 cos

⇡

2q

�
, (2.18)

which precisely matches with the maximization of the index in equation (2.4). We will see a

similar phenomenon in the models we study in the next section.

2.3 Breakdown of Conformal Ansatz

When we focus on the E = 0 case we obtain a supersymmetric solution with � = 1
2q
. As we turn

on E we find � is a solution of the transcendental equation given above. The scaling dimension

smoothly goes from �(E = 0) = 1
2q

to �(|E| = Ecritical) = 0. The critical asymmetry Ecritical > 0

is determined by the following equation

sinh ⇡(q � 1)Ecritical
cosh ⇡Ecritical

= (q � 1) (2.19)

For |E| > Ecritical there are solution for the scaling dimension in the complex �-plane indicating

the conformal ansatz breaks down 1. This equation cannot be solved in general but we quote

here the value for q = 3,

Ecritical =
log(1 +

p
2)

⇡
= 0.28055.. (2.20)

E/Ecritical (2.21)

2q� (2.22)

1The point � = 0 is always a solution but one with gq�1d = 0. Therefore at least one of the two prefactors
has to vanish which is a non-physical solution.
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What are the charges form the LW relation?

The Zero Temperature Entropy

The action can be computed

@q
logZ

N
=

J�

2

Z
G (t)

q�1D�(�t) logG (t)+G (t)
q�2D (�t)G�(t)(1+(q�1) logG (t)) (3.47)

For the supersymmetric solution parametrized only by E the answer is

@q
logZ

N
= �(. . .) +� Jg

q�1
 g�⇡

2 +O(��1) (3.48)

where the dots and higher order terms are sensitive to UV behavior. Then the zero-temperature

entropy is
dS0

dq
= N⇡� cot (⇡(q � 1)� ) (3.49)

To integrate this formula we need to know � (q, E ), which is given by the implicit formula

sin 2⇡� 

cos 2⇡� + cosh 2⇡E 
+

(q � 1) sin 2⇡(q � 1)� 

cos 2⇡(q � 1)� � cosh 2⇡(q � 1)E 
= 0 (3.50)

When we choose E = 0 this is exactly the same as what we found from the index.

3.3 Breakdown of conformal ansatz

- Make plots of fermion scaling dimensions as a function of parameters to see they go to complex

plane

- Add numerical solution of mean field equations to see when conformal ansatz is good and

when its bad

3.4 Operator Spectrum

3.5 Exact Diagonalization

- Compute the �-charge of ground states as a function of QF . Is it a linear function? Can we

estimate the exact superconformal R-symmetry?
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2q
. As we turn

on E we find � is a solution of the transcendental equation given above. The scaling dimension

smoothly goes from �(E = 0) = 1
2q

to �(|E| = Ecritical) = 0. The critical asymmetry Ecritical > 0

is determined by the following equation

sinh ⇡(q � 1)Ecritical
cosh ⇡Ecritical

= (q � 1) (2.19)

For |E| > Ecritical there are solution for the scaling dimension in the complex �-plane indicating

the conformal ansatz breaks down 1. This equation cannot be solved in general but we quote

here the value for q = 3,

Ecritical =
log(1 +

p
2)

⇡
= 0.28055.. (2.20)

E/Ecritical (2.21)

2q� (2.22)

1The point � = 0 is always a solution but one with gq�1d = 0. Therefore at least one of the two prefactors
has to vanish which is a non-physical solution.
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The Zero Temperature Entropy

The action can be computed

@q
logZ

N
=

J�

2

Z
G (t)

q�1D�(�t) logG (t)+G (t)
q�2D (�t)G�(t)(1+(q�1) logG (t)) (3.47)

For the supersymmetric solution parametrized only by E the answer is

@q
logZ

N
= �(. . .) +� Jg

q�1
 g�⇡

2 +O(��1) (3.48)

where the dots and higher order terms are sensitive to UV behavior. Then the zero-temperature

entropy is
dS0

dq
= N⇡� cot (⇡(q � 1)� ) (3.49)

To integrate this formula we need to know � (q, E ), which is given by the implicit formula

sin 2⇡� 

cos 2⇡� + cosh 2⇡E 
+

(q � 1) sin 2⇡(q � 1)� 

cos 2⇡(q � 1)� � cosh 2⇡(q � 1)E 
= 0 (3.50)

When we choose E = 0 this is exactly the same as what we found from the index.

3.3 Breakdown of conformal ansatz

- Make plots of fermion scaling dimensions as a function of parameters to see they go to complex

plane

- Add numerical solution of mean field equations to see when conformal ansatz is good and

when its bad

3.4 Operator Spectrum

3.5 Exact Diagonalization

- Compute the �-charge of ground states as a function of QF . Is it a linear function? Can we

estimate the exact superconformal R-symmetry?
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To integrate this formula we need to know �(q, E), which is given by the implicit formula (2.12)

given above. It is interesting to consider anyways the supersymmetric case E = 0 which implies

� = 1/(2q). In this case the answer gives dS0

dq
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Figure 13: Fermion scaling dimensions of the supersymmetric solutions, as a function of the
spectral asymmetry of ψ fermion Eψ, for (a) q = 3 and (b) q = 5. We see at a finite critical value
of Eψ the solution becomes singular with ∆ψ → 0 while ∆χ → 1/2. This point corresponds to
maximal χ charge. The two curves meet at the dashed line ∆ = 1/2q for a special value of Eψ.

3.2 Breakdown of conformal ansatz

In this section we analyze what happens when we turn on the charge by increasing the spectral

asymmetry. As we found in the original N = 2 SYK model, for large enough spectral asymmetry

the conformal ansatz breaks down. We first analyze the supersymmetric solutions parametrized

by a single variable, and then move on to the general case.

Supersymmetric Solution The physics of the supersymmetric solution is very different from

the case studied in section 2. To begin with, there is a one-parameter family of solutions with

varying scaling dimensions that are supersymmetric. Second, the coefficients in front of the

Greens functions are also not completely determined. Using GbAbA ∼ ∂τGAA we can deduce

that gbAbA = 2∆AgAA for A = ψ, χ but now the Schwinger-Dyson equations in the IR only

fix the combination gq−1
ψψ gχχ, while gψψ and gχχ cannot be independently determined without

incorporating the UV behavior.

Third, we find a potential breakdown of the conformal ansatz even within the supersymmetric

solution. Solving the equation above numerically we find the result shown in figure 13. There is

again a critical spectral asymmetry |Eψ| = Ecritical such that for |Eψ| > Ecritical the fermion scaling

dimensions are either outside the unitarity bound or complex (the other potential is determined

by supersymmetry from Ecritical). The critical value is implicitly given by

sinh π(q − 1)Ecritical

cosh πEcritical

= (q − 1), (3.63)

which is exactly the same as the value found in the previous section for the model defined in [6].
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As we see in the figure above, this value decreases with increasing q.

To determine whether this phase transition is physical or not we need to compute the charges

and verify they are not maximal. We can use the Luttinger-Ward relation derived in the previous

section to compute both Qψ/N and Qχ/N . Each fermion charge includes a contribution from

their respective bosonic partner, as explained in the previous section. The answer is given by

Qψ/N = qf (∆ψ, Eψ) + (q − 2)qb(∆bψ , Ebψ) + (q − 1)qb(∆bχ , Ebχ), (3.64)

Qχ/N = qf (∆χ, Eχ) + qb(∆bψ , Ebψ), (3.65)

in terms of the functions defined in (2.48) and (2.49). Using these expressions for the charges

we can ask now whether the critical spectral asymmetry corresponds to an instability or not.

The first observation is that qf (∆ = 1/2, E) = −1/2 and qb(∆ = 1/2, E) = 0 regardless of

E . At the critical E = Ecritical, the scaling dimension of χ and bψ take precisely these values

∆χ(Ecritical) = 1/2 and ∆bψ(Ecritical). For these reasons we obtain |Qχ|(Ecritical) = N/2. Since

both fermion charges are bounded 0 ≤ |Qψ|, |Qχ| ≤ N/2 this means that there is no instability

in the range. The previous analysis shows that in the canonical ensemble there is no phase

transition since we can turn on Qχ and Qψ in a supersymmetric way satisfying the constraint

imposed by the conformal solution. Nevertheless there can be other gapped solutions that have

support in different curves in the (Qψ, Qχ) plane. Then, in the grand canonical ensemble there

might be phase transitions between these two sets of solutions. We expect this to be so, since

at Ecritical, while the Qχ is saturated, the flavor charge QF is not. For example, for q = 3, at

critical spectral asymmetry, QF/N =
√

2 < 3
2
. We leave a more detailed study of these possible

supersymmetric phase transitions for future work.

Finally, we observe there is always a supersymmetry preserving spectral asymmetry such

that a new degeneracy appears for the two species: ∆ψ = ∆χ = 1/2q. The special value of

Eψ ≡ E∗ψ is determined through the following equation

cos π
q

+ cosh 2π(q − 1)E∗ψ
cos π

q
+ cosh 2πE∗ψ

= (q − 1) (3.66)

For example in the specific case q = 3 gives E∗ψ = 1
2π

cosh−1(3/2) = 0.153... We can see this is

consistent with the result shown in figure 13.

General Behavior In general the solution depends both on Eψ and Eχ independently. The

behavior is similar to the one found for the supersymmetric case, when the spectral asymmetries
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become too large there is a breakdown of the conformal ansatz. Using the equations above, one

can determine the precise region in the (Eψ, Eχ) plane where the emergent conformal symmetry

breaks down, although we will not attempt to do it here.

Non-conformal solution We also propose the presence of gapped exponentially decaying

solutions analogous to the ones discussed in section 2 governing the low entropy phase. We can

see this explicitly at zero-temperature finding the solution analogous to (2.59). We find

Gψψ(τ) = e−µτΘ (τ) , Gχχ(τ) = −e(2µ+J)τΘ (−τ) , (3.67)

Gbψbψ (τ) = −δ (τ) , Gbχbχ (τ) = −δ (τ) + Je(2µ+J)τΘ (−τ) . (3.68)

We verified that they satisfy the full Dyson Schwinger equations (3.22)-(3.25). We note that

in contrast to 2.59, where the exponentially decaying solutions only exist for µ > µc > 0,these

solutions exist for any µ > 0. We are able to verify this numerically.

3.3 Operator spectrum

In this section we will find the spectrum of bilinear operators of the model (3.1). The calculation

is similar to section 2.3 so we will be brief. For simplicity we specialize to the case of q = 3. The

new feature of the model (3.1) is that we need to define a mixed super correlator between two

flavors:

GΨX(Z1, Z2) =
1

N
〈Ψ̄i(Z1)X i(Z2)〉 = Gψχ(t1 − t2 − θ1θ̄1 − θ2θ̄2) +

√
2θ̄1Gbψχ(t1 − t2 − θ2θ̄2)

−
√

2θ2Gψbχ(t1 − t2 − θ1θ̄1) + 2θ̄1θ2Gbψbχ(t1 − t2).

(3.69)

Although the mixed super correlator is set to zero in the conformal limit, the variations can

be non-trivial. For convenience we will use the correlator with subscript GAB to specify the

supercorrelator, where A,B = Ψ or X. In the conformal limit, the full equations of motions in

superspace (without assuming Gψχ is zero) are given by

GAB ? (ΣBC)T = δACδ(Z̄1 − Z̄3) , (ΣAB)T ?̄GBC = δACδ(Z1 − Z3), (3.70)

ΣΨΨ = J (GΨΨGXX − GΨXGXΨ) , ΣXX =
J

2
G2

ΨΨ , ΣΨX = −JGXΨGΨΨ, (3.71)
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where the repeated subscripts are summed over. As in the previous model, we vary the action,

perform the convolution, and evaluate on the conformal solution GcAB; the result we obtain is

δGΨΨ = J
(
GcΨΨ ? (δGΨΨGcXX + GcΨΨδGXX)T

)
?̄GcΨΨ, (3.72)

δGXX = J
(
GcXX ? (GcΨΨδGΨΨ)T

)
?̄GcXX , (3.73)

δGΨX = −J
(
GcΨΨ ? (GcΨΨδGΨX)T

)
?̄GcXX , (3.74)

Along the diagonal correlators, we may define a 2 by 2 super-kernel that mixes them(where we

drop the c superscript)

KN=2
diag (Z1, Z2, Z3, Z4) = J

(
GΨΨ(Z1, Z4)GΨΨ(Z3, Z2)GXX(Z3, Z4) GΨΨ(Z1, Z4)GΨΨ(Z3, Z2)GΨΨ(Z3, Z4)

GXX(Z1, Z4)GXX(Z3, Z2)GΨΨ(Z3, Z4) 0

)

(3.75)

and the off-diagonal super kernel along the directions of the mixed super correlator

KN=2
off-diag(Z1, Z2, Z3, Z4) = −JGΨΨ(Z1, Z4)GXX(Z3, Z2)GΨΨ(Z3, Z4). (3.76)

For supersymmetric solutions, super correlators only depend on the SU(1, 1|1) invariant combi-

nation τ1 − τ2 − θ1θ̄1 − θ2θ̄2 − 2θ̄1θ2. We present the bosonic and fermionic bilinear spectrum in

figures 14, 15 and 16.

At E = 0, the leading bosonic operator has dimension h = 1. In fact, we observe four h = 1

modes in the bosonic spectrum. Two of them respectively correspond to the U(1)R symmetry

and U(1)F symmetry. The other two are both spurious modes, corresponding to emergent scaling

symmetry in the infrared. This agrees with our analysis of the local symmetries of the model in

the previous subsection 3.1. Based on that reasoning, in the infrared we can take both U(1)R

and U(1)F parameters to be complex, hence accounting for the 4 degrees of freedom. We note

that the two U(1)F modes group together with two h = 1
2

modes and becomes the BPS multiplet(
1
2
,1
)
, whereas the two U(1)R modes group together with the h = 3

2
and h = 2 modes to form

the N = 2 Super-Schwarzian multiplet
(
1, 2× 3

2
,2
)

and its spurious partner. Hence there are

in total four h = 1 modes and two h = 2 modes, and four h = 3
2

modes.

A new feature of the multi-fermion model is the appearance of bosonic operator in the range

1 < h < 3
2
. At E = 0 we observe one such operator at h ≈ 1.43942. In presence of such an

operator, the N = 2 Schwarzian becomes sub-dominant in the infrared. The leading correction
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Figure 14: The bilinear spectrum for U(1) neutral sectors for E = 0 and 0.1 where each intersection
with the horizontal axis signifies an operator with dimension corresponding to the location of the
intersection. The blue curve is bosonic and the black curve is fermionic. All fermionic operators
are in fact doubly degenerate due to Kf and K̄f having identical spectrum. In addition, the
presence of pairs of lines comes from the spurious doubling of the spectrum due to unphysical
local symmetries. Accounting for the unphysical modes, the E = 0 spectrum possesses the N = 2
Schwarzian multiplet with two h = 3/2 modes. Turning on the chemical potential leads to an
IR theory with spontaneously broken supersymmetry. While the spectrum still organizes into
multiplets, the 3/2 modes are no longer protected.

Figure 15: Spectrum of the U(1) charged sector at distinct values of E .

becomes a bilocal action that depends on the scaling dimension of such an operator:

S ∼
∫
dτ1dτ2

(
f ′(τ1)f ′(τ2)

(f(τ1)− f(τ2))2

)h
(3.77)

All modes with dimension in between 1 and 3
2

leads to a more dominant contribution in the low

temperature expansion of free energy :

− βF = −βE0 + S0 +
∑

1<h< 3
2

ch
β2h−2

+
c

2β
+ . . . (3.78)
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Note in such a case, the infrared physics is still governed by the nearly conformal fixed point,

but the conformal breaking effects due to the Schwarzian is subleading. It does not invalidate

the solution (3.42) but rather makes the infrared physics non-universal. One strategy to remove

these extra modes (which we have not pursued further in this work) is to explicitly gauge the

U(1)F in the UV.

As we increase 0 ≤ Eψ < Ecritical, since the solutions remain supersymmetric, the N = 2

Super-Schwarzian multiplet and its spurious partner remain unmodified. However the mode with

dimension between 1 < h < 3
2

is shifted. In particular, when Eψ is greater than a special value

Eψ ≈ 0.151391, its dimension is shifted out of the undesired range, and the Schwarzian becomes

dominant in the infrared in this range. This is slightly before the value where ∆ψ = ∆χ = 1
6
,

which is the value found in (3.66); E∗ψ = 1
2π

cosh−1(3
2
).

The multi-fermion model has additional channels that are generically charged under both

U(1)’s, along the direction of δGΨX . Note such operators would be linear combinations of bilinears

in directions of δGψχ and δGbψbχ . These operators thus have the form

Jn = ψ̄i∂nτ χ
i + cb̄iψ∂

n
τ b

i
χ, (3.79)

where c is determined by the kernel, and each schematic form Jn corresponds to two distinct

linear combinations. We note that although there is a bilinear operator in the range of 1 < h < 3
2
,

we can not add it to the Lagrangian as it generically carries R-symmetry charge. Thus it does

not change the dominance of the N = 2 Super-Schwarzian, in contrast to the mode discussed in

the previous paragraph.

However, precisely at the special value of E enhance = E∗ψ = 1
2π

cosh−1(3
2
) such that ∆ψ =

∆χ = 1
6
, the operators (3.79) in fact have R-charge zero. To see that, note in the infrared, the

correct R-charge (3.3) has α = 2∆ψ from the analysis leading to (3.49), and therefore for these

operators,

QR = Qχ + 2∆ψQF = 1 +
1

3
× (−3) = 0. (3.80)

At this value of the spectral asymmetry, the leading operators J0 and their conjugates in the

series Jn have dimension 1, and emerge as additional local symmetries. Therefore we observe

a total of four additional h = 1 modes to emerge, and they are only charged under U(1)F .

They are paired with their fermionic partners with h = 1
2
. The spectrum at the enhancement

point is shown in figure 16. Assuming two of these modes are physical and two are spurious,

it is suggestive that the global symmetry is enhanced to SU(2)F by the addition of two new
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Figure 16: Top: the bilinear spectrum for U(1) neutral sectors at the enhancement point,
Eenhance = 1

2π cosh−1 3
2 . Bottom: the bilinear spectrum for U(1) charged. We see that at

E = Eenhance, there are additional double root at h = 1. Here, for each charged operator O, Ō
has the same dimension. There are therefore 4 additional h = 1 modes at the enhancement point.

(physical) generators. We note the enhancement point is free of any known problem in the

bilinear spectrum. We leave a detailed study of this symmetry enhancement and its holographic

interpretation for future study.
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4 Discussion and Open Questions

In this paper we have studied the model of [6] at non-zero charge and proposed new models

of N = 2 SYK with interesting features. We conclude with some open questions and future

directions.

A future direction is to develop, for the models of [6], a detailed picture for the bulk gravity

dual description. In particular we would like to find a good model for the bulk interpretation

of the low-entropy phase, with the hope of discovering new features of the instabilities of near

extremal black holes in higher dimensions. Moreover, we have given a simple description of this

transition in N = 2 SYK, since the fundamental SYK fermion becomes unstable. As far as we

know, it is an open problem to extend this kind of picture to complex SYK, where the origin of

this transition is more mysterious from the perspective of the conformal phase (some comments

in this direction are made in [5] looking at the bilinear spectrum as a function of the charge).

For the SYK model of [6] we obtained the N = 2 Schwarzian coupling at background

zero charge. It would be interesting to compute the Schwarzian coupling as a function of the

charge, since the coupling would be independent of the U(1)R compressibility. Instead, the

low energy model would be closer to the one of complex SYK since the fermionic modes of

the Super-Schwarzian would become massive. Additionally, an exhaustive analysis of the exact

diagonalization of these models would help in understanding the nearly conformal sector of the

spectrum, as well as the transition when this picture breaks down. Relatedly, we have not

explored exhaustively the phase diagram of the N = 2 SYK model with multiple fermions as a

function of an arbitrary pair of U(1) charges, and even a numerical solution of the mean field

equations are complicated to obtain.

The model with multiple fermions seems to have a richer phase diagram, including the

freedom to tune the charge while preserving supersymmetry. The existence of a special value of

the background charge for which ∆ψ = ∆χ implies a phase of enhanced symmetry between the

two fermion species; we conjecture the theory has an SU(2)F symmetry. It would be interesting

to study the effective theory at this point and understand the implications for the bulk dual,

which may be related to a point of enhanced symmetry for the horizon of a rotating near-BPS

black hole. We have also studied the R-charge in the infrared, which differs non-trivially from

the UV definition. We have found evidence that the infrared (superconformal) R-symmetry

extremizes the index, presumably a ‘nearly conformal’ version of the I-maximization principle

[65–68]. We will elaborate on this maximization principle in a future work [64].
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Finally we constructed models that realize N = 2 Schwarzian theories with fundamental R-

charge one. This presents features in the spectrum that are the closest to the N = 4 Schwarzian

theory describing BPS black holes in flat space [9], as explained in the introduction. While the

N = 4, Schwarzian theory was fully solved in that work, a microscopic UV Lagrangian which

realizes this Schwarzian in the infrared is currently unknown. We hope the model introduced in

section 3 can help in finding such theories with N = 4 supersymmetry when considering multiple

fermions transforming in representations of SU(2) without the need of including second order

bosons [69]. We leave this for future work.
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A Luttinger-Ward relation

Here we derive the relation between the charge density of our models and the spectral asymmetry

of the IR correlators. We follow the derivation presented in section 2 of [5], based on similar

ideas considered in Appendix C of [70].

We begin by deriving the Luttinger-Ward relation to the model of section 2, introduced in

[6]. The first step is to define a notion of “flow” of the green functions G and D, introducing a

bilocal conserved current j(τ1, τ2). Begin by generalizing the UV contributions of the mean field

action from δ′(τ1 − τ2) − µδ(τ1 − τ2) → µf (τ1, τ2) for fermions and δ(τ1 − τ2) → µb(τ1 − τ2) for

bosons, and defining the new self energies Σ̃ψψ(τ1, τ2) = Σψψ(τ1, τ2) +µf (τ1, τ2) and Σ̃bb(τ1, τ2) =

Σbb(τ1, τ2) + µb(τ1, τ2). Under this transformation we end up with a mean field action

I[G,Σ] = IIR[G, Σ̃] +

∫
dτ1dτ2 [µf (τ1, τ2)Gψψ(τ2, τ1) + µb(τ1, τ2)Gbb(τ2, τ1)] , (A.1)

where IIR is an action such that its equation of motion are exactly the Schwinger-Dyson ones in
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the IR approximation. Now define the following bilocal current

j(τ1, τ2) = µ(τ1, τ2)Gψψ(τ2, τ1) + (q − 1)µb(τ1, τ2)Gbb(τ2, τ1)− (1↔ 2), (A.2)

= Σ̃ψψ(τ1, τ2)Gψψ(τ2, τ1) + (q − 1)Σ̃bb(τ1, τ2)Gbb(τ2, τ1)− (1↔ 2). (A.3)

Now we can exploit the symmetries of the IR equations to say something about this bilocal

current. The IR equations coming from IIR are invariant under the local U(1) transformations

Gψψ(τ1, τ2)→ eiλ(τ1)e−iλ(τ2)Gψψ(τ1, τ2), Gbb(τ1, τ2)→ ei(q−1)λ(τ1)e−i(q−1)λ(τ2)Gbb(τ1, τ2). (A.4)

Imitating the derivation in [5] we can use this symmetry to show that, evaluated on a classical

solution of the mean field action, the bilocal current satisfies the local conservation through the

vanishing of
∫ +∞
−∞ j(τ1, τ0)dτ1 = 0. Then we can define the charge as

Q̃ =

∫ τ0

−∞
dτ1

∫ ∞

τ0

dτ2 j(τ1, τ2). (A.5)

We can verify using the UV behavior of the Green functions that this coincides with the charge

of the ψ fermion when we choose µf → δ′(τ1− τ2)−µδ(τ1− τ2) and µb → δ(τ1− τ2), then we get

Q̃ = −
∫ ∞

−∞
dττ (δ′(τ)Gψψ(−τ) + (q − 1)δ(τ)Gbb(−τ)) , (A.6)

after some simplification. Following [5] we can check that this notion of charges matches with

the expectation

Q̃ =
Gψψ(0+) +Gψψ(0−)

2
+ constant, (A.7)

=
Q

N
+ constant. (A.8)

To obtain this expression we defined the value of Gψψ(0) as the average and we set τD(τ)|τ→0 to

a constant to be determined below by consistency. The last step of the calculation is to perform

the integral in the IR and match the UV answer above. This was already done in section 2.2.3

of [5] so we can simply quote the answer for the fermion in equation (2.48). The answer for the

boson is simply given by a shift E → E + i/2 since this removes extra minus signs that appear

in fermion correlators. The final answer for the boson contribution is given in equation (2.49).

This was of deriving the bosonic contribution has an ambiguity from the analytic continuation

of the logarithm. We pick a sheet such that for Eb = 0 the contribution to the charge vanishes
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as well. The total answer for the fermion charge is

Q

N
= qf (∆, E) + (q − 1)qb(∆b, Eb). (A.9)

This fixes also the constant in the expression for Q̃ above, demanding that when E = 0 the total

fermion charge Q must vanish.

Now we can generalize this to the models of section (3). In this case we have two U(1)

symmetries and therefore we expect two Luttinger-Ward relations relating Eχ and Eψ to Qχ and

Qψ. The two symmetries act on the correlators as

Gψψ(τ1, τ2)→ eiλ(τ1)e−iλ(τ2)Gψψ(τ1, τ2), Gχχ(τ1, τ2)→ Gχχ(τ1, τ2),

Gbψbψ(τ1, τ2)→ ei(q−2)λ(τ1)e−i(q−2)λ(τ2)Gbψbψ(τ1, τ2), Gbχbχ(τ1, τ2)→ ei(q−1)λ(τ1)e−i(q−1)λ(τ2)Gbχbχ(τ1, τ2),

and the other symmetry is

Gψψ(τ1, τ2)→ Gψψ(τ1, τ2), Gχχ(τ1, τ2)→ eiλ(τ1)e−iλ(τ2)Gχχ(τ1, τ2),

Gbψbψ(τ1, τ2)→ eiλ(τ1)e−iλ(τ2)Gbψbψ(τ1, τ2), Gbχbχ(τ1, τ2)→ Gbχbχ(τ1, τ2).

Now it is straightforward to generalize the previous derivation. In order to do this we introduce

two bilocal currents j(τ1, τ2) one for each symmetry and evaluate it in both the UV and IR.

The final answer for the two charges is given in equations (3.64) and (3.65). We have fixed

ambiguities regarding the UV behavior of the boson two-point function by demanding that at

zero spectral asymmetry the charge should vanish, similar to the case in the previous section.

B Kernels with multiple fermions in components

We can decompose the 2 by 2 super-kernel components wise. The fermionic ones give

(
δGψb

δGχB

)
=

(
2JGψψ(t14)Gbψbψ(t32)Gχχ(t34) 2JGψψ(t14)Gbψbψ(t32)Gψψ(t34)

2JGχχ(t14)Gbχbχ(t32)Gψψ(t34) 0

)(
δGψb

δGχB

)
(B.1)
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The bosonic components consist of two distinct sectors, the neutral sector and the charged sector.

The charged sector can be further decomposed into the bosonic and fermionic parts

(
δGψχ

δGbψbχ

)
= 2J

(
Gψψ(t14)Gχχ(t32)Gbψbψ(t34) Gψψ(t14)Gχχ(t32)Gψψ(t34)

−Gbψbψ(t14)Gbχbχ(t32)Gψψ(t34) 0

)(
δGψχ

δGbψbχ

)

(B.2)

δGψbχ = −2JGψψ(t14)Gbχbχ(t32)Gψψ(t34)δGψbχ , (B.3)

δGbψχ = −2JGbψbψ(t14)Gχχ(t32)Gψψ(t34)δGbψχ, (B.4)

Finally the neutral sector for the bosonic correlators is given by




−2JGψψ(t14)Gψψ(t32)Gbχbχ (t34) −2JGψψ(t14)Gψψ(t32)Gbψbψ
(t34) −2JGψψ(t14)Gψψ(t32)Gχχ(t34) −2JGψψ(t14)Gψψ(t32)Gψψ(t34)

−2JGχχ(t14)Gχχ(t32)Gbψbψ
(t34) 0 −2JGχχ(t14)Gψψ(t32)Gχχ(t34) 0

2JGbψbψ
(t14)Gbψbψ

(t32)Gχχ(t34) 2JGbψbψ
(t14)Gbψbψ

(t32)Gψψ(t34) 0 0

2JGbχbχ (t14)Gbχbχ (t32)Gψψ(t34) 0 0 0




(B.5)
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