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ABSTRACT: Recently Leutheusser and Liu [1, 2] identified an emergent algebra of Type
III; in the operator algebra of N' = 4 super Yang-Mills theory for large N. Here we
describe some 1/N corrections to this picture and show that the emergent Type I11; algebra
becomes an algebra of Type I1,,. The Type 11 algebra is the crossed product of the Type
II1; algebra by its modular automorphism group. In the context of the emergent Type
11 algebra, the entropy of a black hole state is well-defined up to an additive constant,
independent of the state. This is somewhat analogous to entropy in classical physics.
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1 Introduction

Recently Leutheusser and Liu [1, 2] studied the operator algebra of N' = 4 super Yang-Mills
theory in a novel way, arguing that in the strict large N limit, at a temperature above the
Hawking-Page transition, there is an emergent operator algebra that is a von Neumann
algebra of Type III;. In the context of the thermofield double state, which is dual to
a two-sided eternal black hole [3], the emergent Type III; algebra and its restrictions to
suitable regions of the boundary (or bulk) led to an interesting new perspective on black
hole physics.

In the present article, certain 1/N? corrections to this picture will be analyzed. In the
bulk dual of A = 4 super Yang-Mills theory, Newton’s constant G is proportional to 1/N?2,
so including corrections of order 1/N? in the boundary theory is equivalent to including
corrections of order G in the bulk. In the strict large N limit, the algebra of observables
on the right or left side of the black hole horizon contains a central generator, related to
the black hole mass or horizon area. With O(G) corrections included, that is no longer the
case and the right and left algebras become “factors” in von Neumann algebra language —
that is, algebras with trivial center, analogous to a simple Lie group. More specifically, the
correction of order G or 1/N? that we analyze deforms the Type III; algebra of the large
N limit into a factor of Type Il.

The fact that the limiting large N algebra has a nontrivial central generator is the
reason that a correction perturbative in 1/N can qualitatively change the algebra. There
are certainly additional contributions in the 1/N expansion that we do not analyze in this
article, but once the center has been eliminated, we do not expect further perturbative
corrections to change the nature of the algebra. Nonperturbative corrections are another
story, of course, since if NV is set to a definite integer, the algebra should be of Type 1.



Mathematically, the Type Il algebra arises as the “crossed product” of the Type 111y
algebra of the strict large N limit by its group of modular automorphisms. The crossed
product construction has the surprising property of not depending on the cyclic separating
state that is used to define it. This fact has been important in the mathematical theory
of Type III; algebras [4—6] and is interesting physically because it might be a step toward
understanding the algebra of observables outside a black hole horizon in a “background-
independent” way.

Deforming the algebra of operators exterior to a black hole from Type III to Type II
brings black hole physics closer to the standard framework of quantum mechanics. The
operator algebra of an ordinary quantum system is of Type I. Type I algebras have pure
states, as well as other familiar quantum concepts such as density matrices and von Neu-
mann entropies. If in a bulk language, one could describe the algebra of observables exterior
to a black hole as an algebra of Type I, the black hole information problem would very
likely be solved. The algebra of observables of a local region in quantum field theory is of
Type III. A Type III algebra does not have pure states, density matrices, or von Neumann
entropies. The fact that the algebra of observables outside the horizon of a black hole is
of Type III in the limit G — 0 is one manifestation of the black hole information problem.
Type II algebras are intermediate between the two cases. A Type II algebra does not have
pure states, but it does have density matrices and von Neumann entropies. Describing the
operators outside the black hole horizon by an algebra of Type II means that we do not
understand the microstates of a black hole, but we do have a framework to analyze the
black hole entropy (up to an overall additive constant, as will be explained).

In section 2 of this article, we will review aspects of the work of Liu and Leutheusser
[1, 2], explaining some things in a way that will be helpful later. In section 3, we introduce
the crossed product construction and the deformation of the emergent Type III; algebra
of the strict large N limit to an algebra of Type Il,. We explain how to define a trace and
a concept of entropy in the crossed product algebra.

As already explained, the deformation to a Type II algebra results from properly
taking into account the black hole mass or area, which one can think of as a collective
coordinate related to one of the conserved quantities that the black hole can carry, namely
its energy. The black hole can carry other conserved charges, notably angular momentum
and gauge charges, and a fuller description must include additional collective coordinates.
As explained in section 4, this requires making a crossed product not just with the modular
automorphism group but with a larger group of automorphisms. This more extended
version of the crossed product, however, does not lead to a further qualitative change in
the algebraic description.

Some background that might be helpful in understanding the present article can be
found in [7, 8].

2 The Large N Limit

With a convenient normalization of the fields, the action of A” = 4 super Yang-Mills theory
with gauge group SU(N) is conveniently written NTr L, where L is a gauge-invariant
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Figure 1. (a) A two-sided eternal black hole, with shaded regions to the future of the future
horizon and the past of the past horizon. Operators on the right and left boundaries, labeled R
and L, describe physics in the unshaded regions to the right or left of the black hole, respectively.
Also sketched is a Cauchy hypersurface S that passes through the bifurcate horizon. The horizon
divides S in a natural way into left and right portions Sy and S,. (b) A time band B = (¢, c0) of
the right boundary. According to [1, 2], in the large N limit, operators in B describe physics in the
causal wedge of B, which is sketched in black.

polynomial in the fields and their derivatives (with no explicit factors of N). With this
normalization, correlation functions of any single-trace operator W = Tr W, where W is
a gauge-invariant polynomial in the fields and their derivatives (again with no explicit
powers of N), have a simple large N scaling. In the vacuum or in a thermal state, W
has an expectation value of order IV, a connected two-point function of order 1, and more
generally a connected k-point function of order N2~*. Therefore, to define a large N limit
of the operator algebra, as analyzed by Leutheusser and Liu (LL) in [1, 2], we consider
subtracted single-trace operators of the form W = Tr W — (Tr W), with all possible choices
of W. Since (Tr W) diverges for N — oo, the subtraction is necessary in order to get a
large N limit.

For example, LL consider a thermal state at temperature 7', on a spatial manifold S.
They are primarily interested in the case that T exceeds the Hawking-Page temperature
Thp, or equivalently that 5 = 1/T is less than Syp = 1/THp, because in this case a thermal
ensemble on the boundary of AdSs is dual to a black hole in the interior. In fact, they
consider a pair of copies of the theory, the “right” and “left” copies R and L, entangled
in the thermofield double state Wppp at temperature T > Typ, and dual to a two-sided
eternal black hole [3]; see fig. 1(a). For T' > Typ, the free energy of N' = 4 super Yang-Mills
theory is of order N? for large N, with a T-dependent coefficient, just as in the case of QCD
[9]. Likewise the terms of order N in the thermal expectation value (Tr W) (for various
choices of W) are T-dependent in the high temperature phase, and therefore the algebra
defined by LL depends explicitly on T'. Similarly, if we introduce chemical potentials for
other conserved charges that the black hole can carry — angular momentum and the charges
associated with the R-symmetry group SU(4)g of N' = 4 super Yang-Mills — the large N
limit of the algebra of single-trace operators depends on those chemical potentials.

As already remarked, the subtracted single-trace operators have Gaussian correlation
functions: two-point functions of order 1, and k-point functions for £ > 2 that vanish
at N = oo. Therefore, in the large N limit, commutators of single-trace operators (and



their anticommutators, in the case of fermionic operators) are c-numbers. The matrix of
commutators has a finite-dimensional kernel, as explained presently. For the moment we
postpone discussion of the kernel and consider only the single-trace operators that have
nonzero commutators. Because those commutators are c-numbers, the subtracted single-
trace operators describe a generalized free field theory in the large N limit, as explained
by LL. From bounded functions of the operators of the generalized free field theory, we can
make a von Neumann algebra A. This is the emergent von Neumann algebra defined in
1, 2].

In the thermofield double state, we really have two copies of this algebra, the algebras
Apro and Ap o of the right and left system. (The subscript 0 means that we do not yet
include the operators with trivial commutators; it will be removed when we include them.)
LL give two explanations of the fact that Agro and Az are von Neumann algebras of!
Type III;. One argument uses AdS/CFT duality. Ago and Af o are dual to the algebras
Ao and Ay of low energy effective field theory outside the black hole horizon, on the
right and left side respectively:

Aro = Aro, Aro=Ap. (2.1)

)

It will become clear that not including the central generators in Ag o and Ay ¢ is dual to
defining A, and A, in terms of low energy effective field theory in the field of a black
hole of definite mass. When we extend A,.o and Ay to let the mass vary, we will remove
the subscript 0. Like the algebra of any local region in quantum field theory, A, and Ay
are of Type III;. See footnote 8 below for a second explanation that the algebras are of
Type II1;.

A black hole carries conserved charges — it has a mass or energy, and it can carry
angular momentum or conserved gauge charges.? These charges are determined by the
temperature and chemical potentials of the boundary theory. Since Az o and Ag o depend
on the temperature and the chemical potentials, likewise A, and A, depend on the black
hole mass and other conserved charges. The mass and other conserved charges carried by
the black hole are parameters of the classical black hole solution. One can think of those
parameters as collective coordinates, which are shared between the left and right of the
black hole and are not part of what is described by the left or right bulk algebras A and
Ao. Ago and A, o describe small fluctuations to the left or right of the black hole horizon,
for particular values of the collective coordinates.

Of the conserved charges carried by the black hole, the one that is really important for
a qualitative understanding is the mass or energy. We will postpone discussing the other
conserved charges until section 4.

Since the black hole mass is not a generator of the bulk algebra Ay or A, ¢, the gauge
theory Hamiltonians Hy, or Hg, which generate translations of the time coordinate ¢ along
the left or right boundaries, must not be part of the boundary algebra Ar o or Ago. The

! An introduction to the different types of von Neumann algebra can be found, for example, in section 3
of [7] or section 6 of [8].

2In the context of N' = 4 super Yang-Mills theory, the conserved gauge charges are dual to the R-
symmetry charges of the boundary theory.



mechanism by which this comes about is straightforward. The Hamiltonian of N' = 4 super
Yang-Mills theory, like the Lagrangian, is defined with an explicit factor of N:

Hp = 2];; Sd3x\/§Tr (FoiFojg +--+), (2.2)
where various additional terms are omitted. Above the Hawking-Page transition, because
of the explicit factor of N, Hr has a thermal expectation value of order N? and also a
connected two-point function of order N2. We can of course subtract the expectation value
and consider the operator Hj, = Hr — (Hpg). But because (Hj?) ~ N2, H}, does not have
a large N limit.?

If we simply divide Hj, by N, we get an operator with bounded fluctuations that does
have a large N limit: )
N
The correlation functions of U have the same large N scaling as any other single-trace

U= —Hp. (2.3)

operator that is defined with no explicit power of IV, so in particular U has a large N limit.
However, in the large N limit, U is central. That is because, for any V € Ag,

1 idV
[UV] = Hr, V] = Nt

Thus, at N = oo, U becomes central and commutes Agr . Since we defined Ag to consist

(2.4)

only of the single-trace operators that have nontrivial commutators, U is not part of Ag .
Shortly, we will define an extended algebra Ag with U as an additional (central) generator.

Because Hp is not part of Ag o, time translations are a group of outer automorphisms?*
of that algebra. This fact is very important in the work of LL. Let B be a “time band”
tg <t < t1 in the right boundary, with ¢g,¢; € RU=+o00. Let .Aﬁo be the algebra generated
by subtracted single-trace operators in B. Any local operator can be conjugated into the
time band by a time translation. So if time translations were part of Ag, Ag,o would
simply coincide with Ag . Since the generator of time translations is actually not part of
Ar, Ag,o is a proper subalgebra of Ago. As explained by LL, the algebra 'Ag,o is dual
to the bulk algebra of operators in the “causal wedge” of the time band B (fig. 1(b)),
and thus is of Type III;, like the bulk algebra of any local region. If one backs away from
the strict large N limit and considers an expansion in powers of 1/N, then as asserted in
[1, 2], the definition of Ag,o makes sense to all finite orders in 1/N, since if ¢(Z,t) is a
local operator in a given time band, its time derivatives of any finite order are also local
operators in the same time band.

Although the operators Hr and Hj do not have large N limits, the difference H=
Hpr — Hj, does have such a limit. Indeed, H annihilates the thermofield double state UrrDp,

3This is analogous to the fact that in quantum statistical mechanics, the usual Hilbert space and Hamil-
tonian do not have an infinite volume limit (even if one subtracts a constant from the Hamiltonian so that
its thermal expectation value vanishes). This is why the thermofield double was introduced [10]. It provides
a way to describe the infinite volume limit in a Hilbert space. See for example [7].

4Similarly, in the large volume limit of quantum statistical mechanics, time translations are a group of
outer automorphisms of the algebra of observables that acts on the thermofield double Hilbert space [10];
see [7] for an explanation.



so in particular it does not have divergent fluctuations in that state, in contrast to Hr and
Hy. From a boundary point of view, the thermofield double Hilbert space Hrgp is defined
as the Hilbert space spanned by the states alrpp with a € Arg. (It can equally well be
defined as the Hilbert space spanned by states a¥Utrp with a € Ay o; this gives the same
Hilbert space.) From a bulk point of view, Hrpp is more simply the Hilbert space obtained
by quantizing the small fluctuations about the eternal black hole (for fixed values of the
collective coordinates). The fact that H=H j% - H ’L exists as an operator acting on Htrp
but H }% and H }J do not shows that Hrrp is not a simple tensor product® of left and right
Hilbert spaces acted on by Ap g and Agpo. This nonfactorization of Hrgp in the large N
limit is also related to the fact that Ao and Ag, defined in the large /N limit, are not
of Type I. If these algebras were of Type I, they would have irreducible representations
Hr and Hy, and we could hope for a factorization Hrrp = H ® Hp, similarly to what
actually happens for large N below the Hawking-Page temperature. As the algebras are of
Type III, there are no candidates for Hy, or Hg.

What is the bulk dual of the fact that Hp = Hr — (Hg) and H; = Hy, — (H) do not
have large N limits, but H=H % — H} does have such a limit? The eternal black hole has
a Killing vector field V that generates time translations. V is future-directed timelike on
the right side of the black hole outside the horizon and past-directed timelike on the left
side of the black hole outside the horizon. The associated conserved charge is

ﬁ:i/dxﬂvwmm (2.5)
S

where S is a Cauchy hypersurface of the bulk theory, and 7),, is the energy-momentum
tensor of the bulk fields (including the energy-momentum pseudo-tensor of the bulk grav-
itational fluctuations). The operator h has a simple boundary dual

h=pH. (2.6)

Eqn. (2.6) reflects the fact that the vector field V' reduces to 39; on the right boundary,
and to —B3d; on the left boundary. To try to split h as the difference of a “right” part
and a “left” part, one can proceed as follows. Choose the Cauchy hypersurface S to pass
through the bifurcate horizon where the left and right exteriors of the eternal black hole
meet (fig 1(a)), and write S = Sy U S,, where Sy and S, are the left and right portions of
S. Then define

m:/dwwmw
Sy

hy = —/ dX*V T,
Se

~

h=h, — hy. (2.7)

(A minus sign is included in the definition of hy because V is past-directed in the left region;
with this minus sign included, h, formally propagates states towards the future.) These

This fact has an analog in the thermodynamic limit of quantum statistical mechanics [10]; see [7].



expressions formally split % as a difference between right and left operators. The problem
with the splitting is that, because of divergent fluctuations, h, and hy, do not make sense
as operators. Actually, h, and hy do make sense as quadratic forms; that is, for suitable
states U, U’ € Hrpp, the matrix elements (V’|h,.|¥) and (¥'|hy|¥) are well-defined. But h,
and h, do not make sense as operators on Hrpp, because for example, due to an ultraviolet
divergence near the horizon, |h,|¥rp)|> = <\I’TFD|h%|\I’TFD> = 00, 80 hr|¥rpp) is not a
Hilbert space state. More generally, for any ¥ € Hrrp, h,V is not square-integrable and so
not in Hrrp. All this is in parallel with properties of the boundary operators Hy, and H7,
which likewise make sense as quadratic forms but, because of fluctuations, do not make
sense as operators on Hrrp. -

The modular operator® of the state Urpp for the algebra Apro is A = e BH, (Ex-
changing Aro and Ar o reverses the sign of q , so the modular operator of Az, o for the
state Uppp is A™! = exp(+8H).) One way to deduce the formula A = e=PH is to start
with finite IV, where the Hilbert space of the thermofield double is a simple tensor product
Hr @ Hpg, and the algebras of observables on the left and right factors are of Type I. In
this description, the left and right Hamiltonians are H;, = H ® 1, Hr = 1 ® H, where
H is the usual Hamiltonian on a single copy of the system. In such a Type I situation, a
state ¥ € H ® Hp has reduced density matrices pp and py, for the right and left systems
and the modular operator of ¥ for Ag is a tensor product A = pzl ® pr. In the case
VU = Urpp, the density matrices are thermal: pr = pr, = e‘ﬁH/Z, where Z is the partition
function, so A = exp(—BHg + BHL) = exp(—ﬁﬁ). Both A and H have a large N limit,
and, since the relation A = e #H holds for every N, it automatically is valid in the large
N limit. By contrast, the intermediate steps in the derivation involved operators pr and
pr, and Hilbert spaces Hp and H, that do not have large N limits. The formula A = e=#H#
with H Urrpp = 0 implies

A\I/TFD = \I/TFD- (28)

Since ﬁﬁ is equal to the bulk operator iAL, the bulk counterpart of the boundary statement
h

A = e FH i simply A = e~". The result A = e~" can also be deduced from a classical
result of Bisognano and Wichman about Rindler space [11], or more exactly from the analog
of this result for the eternal black hole.” ~

LL in [1, 2] exploited the relation A = e PH or equivalently ﬁﬁ[ = —log A in the
following way. Conjugation by e“#, 4 € R is called modular flow. Since H generates
time translations on the right boundary, modular flow for the algebra Ag ¢ with parameter
u shifts the boundary time by t — ¢ + Su. Let B be the time band tg < ¢t < oo (fig.
1(b)). Modular flow for the algebra Apgo with flow parameter u > 0 maps B to itself,
and therefore it conjugates Ag,o to itself. Such a “half-sided modular inclusion” of von

Neumann algebras® has very strong implications, which LL use in proposing a way to probe

6See for example [8] for basic facts about modular operators.

"This analog was first described by Sewell [12], who also observed a close relation to Unruh’s thermal
interpretation of Rindler space [13].

8Half-sided modular inclusions exist only for algebras of Type III; [14]. As observed in [1, 2], the
existence of the half-sided modular inclusion Ago C Ag,o gives an explanation of the Type III; nature of
ARr,o that does not require duality with a bulk description.



behind the black hole horizon. One notable fact about their construction is the following.
As LL explain, the half-sided modular inclusion in this problem can be seen to lowest order
in G directly in the bulk description. Purely from a bulk point of view, it would not be
clear that this structure persists beyond lowest order, when quantum fluctuations of the
spacetime are taken into account. However, in the boundary theory, it is obvious that the
definitions of Ag ¢ and Agp and the statements about a half-sided modular inclusion make
sense to all orders in 1/N. Hence from a bulk point of view, this structure exists to all
orders in G.

The state Wrpp for the algebra Ap g is defined so that thermal expectation values are
the same as expectation values in the state Wppp:

(a) = (Urrpla|¥rrp), a € Agrp. (2.9)

The same formula holds for a € A, o. Defined this way, ¥rrp describes expectation values
of operators in Ag o and Ay, o, or their bulk duals A, o and Ay o, without taking into account
the central operator U. Let us define an extended algebra Ap that includes U. We define
Ar as a tensor product

Ar = Agro ® Ay, (2.10)

where Ay is the abelian algebra of bounded functions of U. While Ag ¢ acts on Htrp, Ar
acts on Hrrp = Hrrp ® L?(R), where L2(R) is the space of square-integrable functions of
U, with U acting by multiplication. An element of Ag is a U-dependent element of Ag o
such as

3:/ dua(u)e™,  a(u) € Apy (2.11)

—0o0

(here a(u) need not be a smooth function of u; for example, we may have a(u) = ad(u — uq)
for some a, 1, corresponding to a = ae“oV). We can define an extended thermofield double
state that describes thermal expectation values of elements of the extended algebra Ag.
To do this, we simply note that, as its connected k-point functions vanish in the large N
limit for £ > 2, the thermal correlation functions of U are Gaussian. In other words, there
is a Gaussian function g(U) such that for any k, (U*) = [*°_dU g(U)U*. By definition,
U = (Hr—(Hg))/N has mean 0; its variance is the heat capacity (U?) = —(1/N?)03(HR).
So the Gaussian function g(U) is concretely

N2 1/2 N2U2
9} = (2w|6ﬁ<HR>|> exp <2|65<HR>|> | (2.12)

We can define an extended thermofield double state \T/TFD = g(U)l/ 2P rpp that captures
thermal expectation values of operators in the extended algebra Apg, in the sense that for
3 as in (2.11), we have

(3) = (G Al reD) = / " au () / " du e (G la(u)[Urn). (2.13)

—0o0 —00

Because U is central in the algebra Ag, the state \TJTFD is what is called a classical-quantum
state. In general, the definition of a classical-quantum state is as follows. Consider a



bipartite quantum system AB with Hilbert space Hap = Ha ® Hp. (In our application,
Hap = ’QTFD, Ha = L*(R) and Hp = Hrrp.) A classical-quantum density matrix on
Hap is a density matrix of the form pap = >, pili)a(ila ® p; B, for some basis |i)4 of
Ha, some density matrices p; g on Hp, and some positive numbers p; with >, p; = 1.
Equivalently, pap commutes with a maximal set of commuting operators of the A system
(the diagonal matrices in the basis |i) 4). Because U is central, not only is Urpp a classical-
quantum state, but actually any state of the algebra Apg is classical-quantum. When we
deform away from the large N limit in section 3, there will no longer be a central element
U, and the generic state will no longer be classical-quantum.

In this discussion, we extended the algebra Ago by adding another generator U =
Hp,/N. What happens if we also define U’ = H} /N and add it to Az? U’ is not really
“new” since U —U’ = H /N, where H has a large N limit, so that H /N vanishes at N = oc.
So to get a proper arena for the action of all boundary operators in the large N limit, we
only have to add one new generator U associated to fluctuations in energy (plus additional
ones that are related in the same way to the angular momentum and conserved R-charges;
see section 4). Thus to the algebras Ao and Agp, we only add one new generator U
which is in a sense “shared” between the two sides, rather as from a bulk point of view the
horizon area A is visible from either side of the horizon and thus is “shared.” In the large
N limit,

A = AL70 ® Ay, (2.14)

in perfect parallel with eqn. (2.10). With 1/N corrections included, matters are more
subtle, as we will see in section 3, and it is no longer true that Ay and Ag have in common
an operator such as U.

As explained in [1, 2], the algebra Ap is of Type III in the large N limit. However, it is
not a “factor” in von Neumann algebra language because its center does not just consist of
the complex scalars C. Rather, its center is the infinite-dimensional commutative algebra
Apy. Tt may seem somewhat nongeneric that Ag has such a large center at N = oco. We
will learn in section 3 that 1/N corrections modify the algebra so that its center becomes
trivial. In the process, the algebra will be deformed from being of Type III to being of
Type II. Indeed, it will become a factor of Type Il.

We conclude with a few facts that will be useful in section 3. First, if an algebra A acts
on a Hilbert space H, a vector ¥ € H is said to be cyclic for A if H is spanned by vectors
aVl, a € A. It is said to be separating for A if a¥ = 0, a € A, implies a = 0. The vector
\TITFD is separating for Ag because, as the thermal expectation value of any operator afa
is always strictly positive for any a # 0, eqn. (2.13) implies that alrrp = 0 for all nonzero
ac Ag. \TITFD is also cyclic for Ag because (1) Hrrp was defined in a way that ensured
that Urpp is cyclic for Apgo; (2) since the Gaussian function g(U) is everywhere positive,
any function f(U) can be factored as m(U)g'/?(U) for some function m(U), and therefore
the state g'/ 2(U) is cyclic for the abelian algebra Ay, acting on L?(R). The statement
that the product state \TITFD is cyclic for Agp = Ao ® Ay is just a composite of these two
statements.



3 The 1/N Expansion and the Crossed Product

3.1 Beyond the Large N Limit

Our goal in this section is to understand 1/N corrections to the picture described in section
2. In section 2, we considered an algebra generated by single-trace operators with their
thermal expectation values subtracted, an example being W = Tr W — (Tr W), where W
is a polynomial in the fields and their derivatives. A typical element of the algebra was
a complex linear combination of products of such operators. To depart from the strict
large N limit, we have to modify the definition slightly so that coefficients are not complex
numbers, but rather functions of N that have an asymptotic expansion in powers of 1/N?
around the N = oo limit. Thus an element of the algebra is a sum of elements

[o.¢]
> apNFWNWg W, g €C. (3.1)
k=0

(The coefficients aj depend on the choice of Wy, --- ;W,. The associated von Neumann

algebra is generated by bounded functions of such expressions.) Another way to say this is
that we work not over C but over a formal power series ring C[[1/N?]]. This is necessary
because operator product coefficients and commutation relations of A” = 4 super Yang-Mills
theory have nontrivial asymptotic expansions in powers of 1/N2. To define an algebra that
is consistent with operator product expansions and commutators, we have to allow the
operators to have N-dependent coefficients of this form.

In section 2, we described the algebra of bulk operators in the field of a black hole,
in the large N limit, in terms of the left and right algebras A, and 4, and a central
generator U. In this description, the Hilbert space is ﬁTFD = Hrrp ® L2 (R), where A,
and Ay act on Hrtrp, and L?(R) is the space of square-integrable functions of U, with
U acting by multiplication. We also observed that the boundary operator Hy/N makes
sense in the large N limit as an element of the right algebra Ag, and in the large N limit
we identified Hj /N with U.

Once we go beyond the N = oo limit, H/N is no longer central. Rather, for any
a = Ag, we have [Hp/N,a] = (—i/N)osa. To identify a bulk dual of Hj/N, we have
to find a bulk operator that satisfies the same commutation relation. Such an operator
presents itself, namely the operator %ﬁ, where h was defined in eqn. (2.7). This operator

satisfies the desired commutation relation, because % is the conserved charge associated
to a Killing vector field that coincides with 59, on the right boundary. This suggests the
identification ) )

—Hp=U+ ——h. 3.2
Formally, one might be tempted to use here h, /(3 rather than h /B, on the grounds that the
two operators have the same commutation relations with operators that are to the right
side of the black hole. However, as was explained earlier, h, is not a well-defined operator.
We will get more insight by expressing all statements in terms of operators that actually

exist.

~10 -



The left and right hand sides of eqn. (3.2) have the desired commutation relations
with elements of Apr, but this does not determine the right hand side uniquely: without
spoiling anything, we could add an arbitrary element? b, € Ay or an arbitrary function
f(U). More generally, we could add any be Ao ® Ay. Thus we should ask whether eqn.
(3.2) should be corrected to

1 2 1~ 1~
—Hp=U+ —-h+ —b+O(1/N? 3.3
R LU+ gh+ b+ O1/N?), (33)
where we also include the possibility of corrections in higher orders in 1/N. The answer is
that to reconstruct Apg, there is no need to add any such corrections, because they can be
removed by conjugation. Thus, we introduce the operator II = —id/dU, acting on L?(R).
Conjugation by exp(—ibII/N) will remove the b/N term from the right hand side of eqn.
(3.3), and order by order in 1/N, a similar conjugation would remove any possible higher
order terms in 1/N that could be added in eqn. (3.3) without spoiling the commutators
with Ag.
Since h = B(Hp, — H}), eqn. (3.2) also implies
1
N
Thus, order by order in 1/N, we can interpret the boundary algebra Apg as the algebra

H, =U. (3.4)

generated by A, ¢ together with one more operator U + /f\z/ BN, acting on Hrrp ® L?(R).
We will summarize this by saying that order by order in 1/N, Ar = A0 < A, BN Here

Arox Ay 7 BN is the algebra generated by A, o together with U + h /BN, and the meaning

of the symbol x is that U + /f;/ BN does not commute with A, but rather generates an
outer automorphism of A, . At the von Neumann algebra level, we should consider not
U +/f\z/ BN but bounded functions of this operator. However, we do not indicate this in the
notation.

This description of Ag, however, is only perturbative in 1/N. It may not hold if we
set N to a definite integer value such as 101, because the series of conjugations that was
used to set Hp/N = U + ﬁ/ BN order by order may not converge at integer N. In fact,
we expect that to happen, because the description just given leads to a Type II algebra,
as we will see, but when N is an integer, Apg is of Type 1.

Going back to perturbation theory in 1/N, the reader may observe an apparent diffi-
culty. Apg is supposed to commute with Ay, which in the large N limit was identified with
Aeo @ Ay. Our proposal Ag = Ao x A, /BN is not consistent with that identification
of Ap. That is because, although A, commutes with Aso ® Ay, A, /BN

U +iAL/ BN commutes with U but not with Ay . There is, however, a simple fix. Although

U+ﬁ/5N does not commute with a, € Ay, it does commute with eiHﬁ/ﬂNage_inﬁ/ﬁN. So

we propose that Ay, is generated order by order in 1 /Jy by U (or more exactly, by bounded
ilTh/BN

does not;

functions of U) along with operators of the form e age*inﬁ/ AN More succinctly, we
describe this by writing Aj, = eiHh/BN.Agyoe*iHh/ﬂN x Ay

9We cannot add an element of A0, because such an element is noncentral and would contribute to the
commutators with elements of A, .
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The underlying thermofield double state is symmetrical between A, and Ag, but there
is an apparent asymmetry between these descriptions of Ay and Ag. This asymmetry,
however, can be removed by conjugating both algebras with e ™7/2N This leads to

Ap = e Th/26N Ao ATR/2BN o, -AU+E/2,3N

A = eiHﬁ/QﬁNAme—inﬁ/zﬂN w A (3.5)

U—h/28N"
Since % is odd under the exchange of A;p and A, these formulas treat Aj and Ag
symmetrically.

However, the symmetrical formulas are slightly less convenient, so we instead will use
the description

Ar = Aro X Ay 5
Ap = /BN g, o= R/BN o A, (3.6)

valid to all orders in 1/N.

From this description, we can see at least heuristically that the 1/N corrections have
deformed Apg so that its center has become trivial. The central element U of Apr has been
deformed to U + h /BN, an element of Ag that is not central. It is true that the deformed
Agr commutes with U, but U is not an element of Ag, so it is not in the center of Ag.
Rather, U is an element of Ay, which explains why it commutes with Ag, since A;, and
Apr commute. In section 3.2, we will understand more precisely that Ap, as described in
eqn. (3.6), is a factor of Type Il.

We have expressed eqn. (3.6) in terms of the boundary algebras. However, duality
tells us to identify these boundary algebras with bulk algebras A, and Ay:

Ap=A,, A=A, (3.7)

Here A, is a bulk algebra of observables on the right side of the black hole that incorporates
A, o, the observable U that is central at N = oo, and 1/N corrections, and A, is an
analogous algebra on the left side of the black hole.

One important fact about eqn. (3.6) is that it implies that to all orders in 1/N, the
algebras A; and Ag have a group of outer automorphisms that is not part of the exact
theory. This is simply the abelian group of translations U — U + ¢, ¢ € R, generated by
II. To see that this is an outer automorphism of Apg, observe that since the constant ¢
is anyway part of the algebra A, o, it does not matter whether we adjoin U + E/ BN or
U+c+ ﬁ/ﬁN to A, . Similarly, since ¢ is anyway part of eiHﬁ/BN.Agjoe*iHﬁ/ﬁN, it does
not matter if we adjoin U or U + ¢ to that algebra. It will turn out that there is a notion
of entropy for the algebra Ay, or Ag — in contrast to A, o and Ay, for example — but this
entropy is shifted by a constant if U is shifted. So the outer automorphism will mean that
perturbatively in 1/N, one can only define entropy differences.

An analog of eqns. (3.2) and (3.4) was expressed by Jafferis, Lewkowycz, Maldacena,
and Suh (JLMS) [15] in terms of the “modular Hamiltonian” of the boundary theory, which
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is defined as minus the logarithm of the density matrix. The density matrix of the theory on
the right boundary is pr = %e_BHR, so the modular Hamiltonian is — log pr = SHgr+log Z.
A similar formula holds for pr. Here we view log Z as a c-number function of NV; in fact,
log Z = —(HR) + (S), where (S) is the thermal entropy at inverse temperature /3, also
viewed as a c-number function of N. The JLMS formula for log pr and log pr,, which has
been important in understanding entanglement wedge reconstruction, reads

A
H logZ = h, + —
BHR + log +4G
A
H log 7 = — .
BH + log h€+4G’ (3.8)

where A is the area of the horizon, and a formal splitting h= h, — hy is used. Equivalently,

- A
BHR_hT+E_<S>
A
BH = hy + e (.S). (3.9)

A comparison to eqn. (3.4) shows that the relation is

BNU + (S) = hy + %. (3.10)

It is believed that only two linear combinations of the three operators h,, hy, and
A/AG, namely h, + A/4G and hy + A/AG (or equivalently h and U) are actually well-
defined quantum mechanically. This statement is related to the observation by Susskind
and Uglum [16] that the generalized entropy of a black hole, namely A/4G + Sout (where
Sout is the entropy outside the horizon) is better-defined than either term is separately.
If one believed that hy, h,, and A/4G are all separately well-defined, one would likely
conclude that hy and h,., being defined by integrals on the left and right of the horizon,
are respectively elements of A, and A, and therefore of Ay, and Ag. Since H} and Hj
are also contained in Ay, and Apg, one would then deduce that A/4G is contained in both
algebras and therefore is central in each. This is actually true to lowest order in G, but as
we have seen not beyond lowest order.

In sections 3.2-3.5, we will explain some of the mathematical theory of the algebras
that we encountered in eqn. (3.6). These are algebras of a special type that has been
important in the mathematical theory of von Neumann algebras of Type III. In explaining
the theory, it is convenient to assume that we are working with ordinary functions of N
rather than formal power series in 1/N. If we were working with ordinary functions of
N, it would not matter whether what we adjoin to A, to build Ag is U + ﬁ/ BN or
BN(U + h/BN) = BNU + h. So, setting

X = ANU, (3.11)
we restate eqn (3.6) in the form

Agp = AnO X A71+X' (3.12)
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However, for the application to gravity, all formulas of sections 3.2-3.5 are supposed to be
expanded in a formal power series in 1/N around N = oo, since that was the setting for
the derivation of eqn. (3.6).

3.2 The Crossed Product

Suppose that a von Neumann algebra A acts on a Hilbert space H, and let T be a self-
adjoint operator on H that generates a group of automorphisms of A. The condition for
this is that

eTsae 5 c A, VacA scR. (3.13)

This gives an action of the additive group R on A by automorphisms. (This action is
not always faithful since in general some elements of R may act trivially.) The “crossed
product” of A by R, sometimes denoted A x R, is defined as follows. Let L?(R) be the
space of square-integrable functions of a real variable X. Then A x R is the algebra that
acts on H® L?(R) and is obtained by adjoining T'+ X, or more precisely bounded functions
of T+ X, to A. Thus A x R is generated, as an algebra, by operators a ® 1, a € A and
T @ X s € R. Additively, A x R is generated by operators ae"*” ® X a € A, s € R.
To see that operators of the form ae'*”T @ e*X do form an algebra, observe that for a,b € A,
s,t € R, we have

(2T ® e X) (b eltT @ etX) = aeiTheisT (i(+IT g (ils+)X (3.14)

and since eqn. (3.13) tells us that e*"be™*7 € A, the right hand side is in .A x R. One can
often omit the tensor product symbol in formulas such as those of this paragraph without
causing confusion.

The automorphism group that we have considered is said to be inner if 7 € A,
s € R; otherwise it is outer. In the case of an inner automorphism group, adjoining 7"+ X
to A is equivalent to just adjoining X, since bounded functions of T" are already part of
A. So in this case, A x R is just a tensor product A ® Ax, where Ax is the commutative
algebra of bounded functions of X. So the crossed product construction applied to an inner
automophism group does not give anything essentially new, and it certainly does not give
a factor, since it gives an algebra with the large center Ax. All automorphisms of a Type
I factor are inner, but that is not true for Type II or Type III. The crossed product by R
is therefore potentially most interesting for Type II or Type III.

For the example that is important in the present article, let ¥ € H be a cyclic sepa-
rating vector for A, and let A = e be the corresponding modular operator. The main
theorem of Tomita-Takesaki theory says (in part) that A~ is an automorphism of A; in
other words, with T = ﬁ, eqn. (3.13) is satisfied. For an algebra of Type I, to prove this is
a simple exercise with density matrices. In general, the proof is not so simple, but there is
a relatively simple proof [21] in the case of most importance in physics, which is a hyperfi-
nite algebra (an algebra that can be approximated by finite-dimensional matrix algebras).
The automorphism group Ry generated by % is called the modular automorphism group.
Evidently, a restatement of eqn. (3.12) is that Ar = Ay 0 X Ry pp-
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In the mathematical theory of Type III; factors [4-6], an important fact is that the
crossed product of such a factor by its modular automorphism group Ry (for any ¥) is a
factor of Type Ils,. This result is relevant for us, because A, is a Type III; factor, and
therefore Ag is a Type Il factor. In particular, Ag is a factor, and thus has trivial center,
as was claimed in section 3.1. The Type II nature of Ag will ultimately enable us to define
traces, density matrices, and entropies. A Type III; factor is actually the only type of von
Neumann algebra whose crossed product with its modular automorphism group is a factor.
So it is only because A, is of Type III; that Ap is a factor.

In the mathematical theory of Type III; algebras, it is essential that, despite appear-
ances, for any von Neumann algebra A with cyclic separating vector ¥, the algebra A xRy
does not depend on'® ¥, up to a unique equivalence. This means that when one studies
A x Ry, one is learning about properties of A, not about properties of the pair A, V.
Physically, the fact that A x Ry is essentially independent of W is somewhat similar to

a statement of background independence.!!

We will call it state-independence. State-
independence of A x Ry is proved using the Connes cocycle [5], which has had a number
of interesting recent applications to quantum field theory and gravity [17-20].

As a first step toward the explanation, recall that if A acts on H with cyclic separating
vector €2, the Tomita operator Sq is defined by'? Sqaf) = afQ, a € A. One also defines
the modular operator Ag = SqtSq. More generally, if ¥ € H is another vector (which we
will usually assume to be also cyclic separating), one defines the relative Tomita operator
Sy|o via the condition Sypall = af¥. The relative modular operator is defined to be

Aygjq = STMQS\I,‘Q. Thus in particular
The Connes cocycle is defined as

ugja(t) = A j0Ag" = AFAGY (3.16)

Clearly uy|o(t) is unitary for real ¢, and ugy(f) = 1. Some important additional properties
of uy|n(t) are:

1By contrast, if one more naively omits X and simply extends the algebra A by adjoining bounded
functions of hy (as opposed to functions of he + X ), the resulting algebra does depend on the choice of .

1T achieve full background independence, one would want to define the algebra in a way that is un-
changed if ¥ is replaced by any other state. Here, we have the more modest result that ¥ can be replaced
by any other state in the thermofield double Hilbert space at a particular temperature. We lost the chance
for full background independence when we replaced single-trace operators Tr W by subtracted versions
W =Tr W — (Tr W) that have a large N limit. The subtraction depended on the temperature, and at this
stage the chance for full background independence was lost. As a step toward full background indepen-
dence, one could avoid this subtraction and consider operators that are allowed to grow as a power of N
for N — oco. This appears to present other technical difficulties.

12T be more precise, Sq is the closure of the operator defined by the following condition. The same
remark applies for Sy o below, and similarly later to the Tomita operators of the commutant A’. Some
basic background on the Tomita operators and related matters can be found, for example, in [8]. In the
present article, we use the most common convention for the relative Tomita and modular operators. In [8],
a different choice was made for a reason explained in footnote 16 of that article.
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* uy(t) € A
e The two formulas for ug|o(t) given in eqn. (3.16) are in fact equal.

o If &, Q) and ¥ are three cyclic separating states, then w satisfies a chain rule

ug|o(t)ugs(t) = wye(t) (3.17)

and in particular
uy|o(t)ugw(t) = 1. (3.18)

The equivalence of the two formulas in eqn. (3.16) actually amounts to this special
case of the chain rule.

The proofs of these statements (due originally to Connes [5]) are explained in section 6 of
[18].

Let A’ be the commutant of A (the algebra of bounded operators on H that commute
with A). If a vector is cyclic and separating for A, then it is also cyclic and separating for
A’, so one can define operators S, S(I,m characterized by S},a’Q = a’f(Q), S(I,ma’Q = a/tw.
Likewise, one defines A, = 5555, A(I,m = S&,‘QTS(MQ. The Connes cocycle for A’ is
defined by the obvious analog of eqn. (3.16). However, one has Af, = Ag_)l, A/xpm = A5|1\1;
So one can write the cocycle for A" in terms of the modular operators for A:

Upio(t) = Agp Al = AGAY g (3.19)
One has the same three properties as before: U(PIQ € A’; the two expressions for u(I,m are
equal; given three states, u’ satisfies a chain rule u(I,m(t)u’mq,(t) = u(mq)(t).

We now want to show that, given any two cyclic separating vectors €, ¥, the two
algebras A x R and A x Ry are conjugate in a natural fashion. To be more precise,
setting P = —id/d X, the algebras are conjugate via the operator u(mQ(P) that we get by
substituting ¢ with P in the definition of u/‘I’\Q(t)' (This substitution makes sense because
P commutes with u(mﬂ(t) for all ¢, so we can define an operator u(mQ(P) that acts on a
state with P =t as u(l,IQ(t)) Thus, the claim is that

A xRy = iy (P) (A x Ro)ug o (P)F. (3.20)

The chain rule implies that this construction leads to a unique conjugacy between the
crossed product algebras for any two states; in other words, given three states ®,Q, W, it
does not matter if we conjugate directly from A x Rg to A x Ry according to eqn. (3.20),
or if we conjugate first from A x Rg to A xRg and then to A xRy. This ability to select a
unique conjugacy between the two algebras means that they are really physically the same
rather than just being abstractly isomorphic.!?

13 Abstract isomorphism would have very little import. For example, in any quantum field theory, the
algebra of observables in any topologically simple local region in any spacetime is believed to be a factor
of Type III;, so all these are isomorphic; but there is no useful sense in which they are “the same,” since
there is no distinguished isomorphism between them.
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Since u/‘I/\Q is invertible, with inverse u’QI\I,, to establish the conjugacy claimed in eqn.
(3.20), one just needs to show that u(l,m conjugates any of the generators of A x Rq to an
element of A xRy. We will use the fact that A xR, is generated by operators a® 1, a € A,
along with e’ ® X5 = A;s ® X, s € R. More informally, the generators are a and
A;Seix 5. Similarly, A x Ry is generated by operators a and A;S eXs._ The conjugacy we
want is trivial for the generators a € A: since ufmg(s) e A for all s, and A commutes with
both A" and P, u(mQ(P) commutes with A. So we just need to show the desired conjugacy

for the other generators Aﬁiseisx :
ugia(P)AG e X uy o (P)T € Ax Ry, VseR. (3.21)

Since [X, P] =i, we have eiSXu’\I,m(P)Jf = u/\P\Q(P — s)felsX. So

“(Ifm(P)AQlSelSXu(pm( )T = u<P|Q(P)A§_21$u\II\Q( S)Teisx

— A~ 1PA1PA—1SA 1P+13A1P is 1sX

Qv Qo
= Agis e = AGEE N uy o (s). (3.22)

Since ug|o(s) € A C AxRy and Ag,iseisx is also a generator of A xRy, the final expression
in eqn. (3.22) is the product of two elements of A X Ry, and therefore is an element of this
algebra. This completes the proof that u/‘l’lfl(P) conjugates A x Rg to A x Ry.

3.3 Classical-Quantum States And The Modular Operator

In section 2, we encountered an algebra A,y ® Ay with a large center. Because of this
center, every state for this algebra is classical-quantum in a natural sense. For the crossed
product algebra Ar = A, x Ry acting on H=H L?(R), that is no longer true, but
a reasonable class of classical-quantum states are states of the form x ® gl/ 2(X), x € H,
g'?(X) € L*(R). Tt follows from the analysis of state independence in section 3.2 that
even though the algebra A, o x Ry is state-independent, this notion of a classical-quantum
state is state-dependent. When we identify A, o x Ro with A, o x Ry by conjugating the
algebra of observables by u’\Ij‘Q(P), we must also act on the states with the same operator
u’\Ij‘Q(P). But u’\I,‘Q(P) does not map a classical-quantum state of the class just described
to a state of the same class.

It turns out to be useful to understand modular theory for classical-quantum states of
the special form V=0 gl/z(X), where the quantum part of U is the same state ¥ that
was used to define the crossed-product. Thus, given the modular operator Ay for a state
W of an algebra A, there is a simple and informative formula for the modular operator AA
of U. We assume here that g'/2(X) is everywhere positive, which ensures that U is cychc
separating.

We will use the following characterization of the modular operator Ag of an algebra
A with cyclic separating state . Ay is characterized by the fact that, for all a,b € A,

(U]ab|¥) = (T|bAga|l). (3.23)
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To verify eqn. (3.23), one computes

(U|bAga|¥) = (U|bSy Sya|¥) = (bTW|SyT|Syal)
= (Sya¥|Sy|bT W) = (alU|bW) = (T|ab|F). (3.24)

We used the definition of the adjoint of an antilinear operator, <\I/|SJ;,|\I/’> = (¥'|Sy|T).
We will glso need the KMS condition. Set ﬁ\p = —logAy, and for a € A, let a, =
elhvuge=ihwt - The KMS condition is a property of functions such as (a,b) = (¥|a,b|¥);
if ¥ is a thermofield double state, then a, is a time translate of a and these are real time
thermal correlation functions. Replacing a with a,, in eqn. (3.23) we get the KMS condition

(W]a,b|¥) = (¥[ba, [ ¥). (3.25)

We used AgV¥ = U to get Aga,|¥V) = Ai\ﬁauAE,iS]\IO with s = —i, and we interpreted this
as a,+i¥. This explanation has been rather cavalier; see for example section 4.2 of [8] for
more detail. A precise statement of the KMS condition is that the function (¥|a,b|¥),
originally defined for real u, analytically continues to a function holomorphic in the strip
—1 <Imwu < 0, and the function (¥|ba, |¥), likewise initially defined for real u, analytically
continues to a function holomorphic in the strip 0 < Imwu < 1, in such a way that eqn.
(3.25) holds. Because hgW = 0, these functions satisfy

(U)ayby |¥) = (V|ay+sbyts|¥). (3.26)

In the context of the thermofield double, this is time translation symmetry.
We want to find the operator Ag that obeys

(U[ab|¥) = (V[bAga|P), Va,be AxRy. (3.27)
It turns out that
Rg = Ay glhe + X)(g(X)) ™ (3.28)
In proving this, it is convenient to introduce the Fourier transform of g(X):
o0
glw) = [ dxdno(x)
—0o0
1 & .
g(X) = = / dw e X G (). (3.29)
2 J_ o

So another way to write the formula for 3@ is

. A\IJ 00 o~ _
Az = —iw(he+X) . .
¥ 2rg(X) /_Oo dwe g(w) (3.30)

The operators Ay, /};\p, and X all commute, so there are no subtleties of operator ordering.
It is enough to verify (3.27) for operators that form an additive basis of A x Ry, so
we can take 3 = aels(hv+X) b = peit(he+X) with a,b € A and s,t € R. We have

(@|§A|@>:/ ng(X)<\IJ|aeis(?Lq/+X)beit(’fz\I,JrX)|‘Il>

—00

= /OO dX (X)X (W]ab, | W) = §(s + ¢)(¥|aby|P). (3.31)
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On the other hand, eqn. (3.30) leads to

o0 o0

e~ 1 _ o L o
(U|bAGa|T) = / axo— [ dwg(w)(lll]belt(h‘I’+X)Aq,e iw(hy+X)5ls(he+X)) gy
T

—00

/ dw g(w / dX e CH=X (Wb, 5| 0)

— s+ D)(W|bai_ | W) = (s + 1)(Tla_.b| V)
=g(s+1t)(¥|abs|¥). (3.32)
We integrated over X and w and used the KMS condition and time translation symmetry.

This completes the proof of the formula for 3@
Eqn. (3.28) implies that we can factor Ag as

A; = KK, (3.33)
with
K =Ae X g(hy + X) = et Xg(hy + X)
K = 0" (3.34)

The point of this factorization is as follows. Since it is only a function of /ﬁ\p + X, K
is contained in the crossed product algebra A x Ry. (This statement assumes that the
function ¢g(X) has the property that g(X)e X is bounded; otherwise we should say that
K is affiliated to A x Ry, meaning that bounded functions of K are in A x Ry.) Likewise
K is a function only of X, so it commutes with A x Ry and belongs to the commutant
(A xRy).

Existence of such a factorization means that the modular automorphism group of U is
inner. Indeed for a € A x Ry, A‘s A I8 — Kisa K% because a commutes with K. Since
K € A xRy, the automorphlsm a— KISaK’iS is inner. For an algebra of Type III, the
modular automorphism group is never inner. So for any A, the crossed product algebra
A % Ry is always of Type I or Type II.

A noteworthy fact is that the factorization in eqn. (3.33) is not quite unique. If we
shift X — X + ¢, we get

K> e K, K- K. (3.35)

The group of constant shifts of X, X — X + ¢, is an outer automorphism group of the
crossed product algebra; it was already introduced in section 3.1. There is no further
indeterminacy in the factorization of A provided the crossed product algebra is a factor.
As already remarked, this happens precisely in the case of interest to us that A is of Type
1114

3.4 Traces

A trace on an algebra is a linear function on the algebra such that Tr ab = Tr ba for any two
elements a, b in the algebra. For example, for any positive integer N, the algebra of N x N
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matrices has such a trace. A more subtle case is the Type I, von Neumann algebra of all
bounded operators on a separable (infinite-dimensional) Hilbert space H. This algebra has
a trace, but it is not defined for all elements of the algebra, only for a subalgebra consisting
of operators that are “trace class.” For example, the trace of the identity element in an
algebra of Type I is not defined; it would be +oc.

The factorization of the modular operator for a classical-quantum state U leads imme-
diately to the existence of a trace, albeit in general one that is defined only for a subalgebra.
For a € A x Ry, one defines

Tra = (U[aK ! |W). (3.36)
Making use of eqn. (3.23), we get
Trab = (V[abK !|W) = (V[bK TA53[V). (3.37)
Since ¥ = 351{1\/, the right hand side of eqn. (3.37) is <\/I\I\BK’1B@3£§1]\/I\/> Writing
Ag = KK, where K commutes with K and with a, we get

Trab = (U[bK 'KaK '|U) = (U[baK ~!|T) = Trb3, (3.38)

completing the proof that this function is a trace.
Using eqn. (3.34) for K, along with AgW¥ = U, hy|¥) = 0, the definition of the trace
can be simplified to

X
9(X)

In writing the last formula, we view 3 as a function of X with values in operators on H, so

~

Tra = <‘/1} a

@> = /Oo dX X (U[a|W). (3.39)

—00

that the matrix element (¥|a]¥) is a function of X, which goes into the integral over X.
This formula shows that the trace on A x Ry is not defined for all elements of this algebra,
since the integral over X may not converge. For example, it does not converge if 3 is an
element of the original algebra .A.

A noteworthy fact is that in the definition of the trace, the dependence on the function
g(X) has disappeared. In other words, we used the function g(X) to define a classical-
quantum state that in turn motivated the formula for the trace, but the trace that we have
defined does not depend on the choice of g(X). That does not mean that the definition
of the trace is completely canonical. The outer automorphism of the crossed product that
shifts X to X + ¢ has a simple action on the trace:

Tra — e“Ira. (3.40)

It is no accident, of course, that the only indeterminacy of the trace is a simple rescaling.
When a von Neumann algebra is a factor (its center consists only of complex scalars), a
trace on this algebra, if it exists, is unique up to a scalar multiple.

Among those von Neumann algebras that are factors, Type III algebras do not admit
any trace, and Type I and Type II; algebras admit a trace that is not rescaled by any
outer automorphism. The only case of a factor that admits a trace that is rescaled by an
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outer automorphism is a factor of'* Type Il,,. This is the case of primary interest in the
present article.

We can use eqn. (3.39) to get a useful formula for the trace for elements of a certain
subalgebra of A x Ry. We recall that A x Ry contains elements ae' (v tX) for any u € R,
and likewise contains linear combinations ), a;eti(hv+X)  Taking limits, A x Ry contains

iu(hg+X)

operators of the form a = [*_dua(u)e with a smooth function a(u) that vanishes

for large u. Let us impose a further condition that the function a(u) is holomorphic for
0 <Imwu < 1. In this case, we can get a convenient formula for Tra:

Tra:/ dXeX<@|ay@>=/ AX du XX (W a(u)| D). (3.41)

After shifting the contour in the u integral from R to i + R and integrating first over X to
get a delta function in u, we find

Tra = 27 (Wa(i)|¥). (3.42)

The condition for a(u) to be holomorphic in the strip is rather special, but elements
of A x Ry associated with functions that have that property form a subalgebra and it is
interesting to check the cyclic property of the trace for elements of this subalgebra. Suppose
that 3 = [0 dua(u)ehe+X) b = [* dub(u)e“i(h‘l”rx), WPere a(u) and b(u) are both
holomorphic in the strip. Then defining b, (v) = e"*“b(v)e v we get

A o0 3 —~ oo . o~

ab = / du dv a(u)by (v)el @) (he+X) — / dw dua(u)b, (w — w)e™ e +X) (3.43)
—0o0

—00

So eqn. (3.42) gives in this case
= / u(Ula(u)by, (i — w)| ). (3.44)
On the other hand,

Trba

du(¥|b(u)a, (i — u)|¥)

.

o /_Z du ()ay (i — u)b(u)|T)

—2n [~ du (Wt - wi-u(0)])

- 27r/_z du (W]a(u)by (i — u)|). (3.45)

We successively used the KMS condition (3.25), translation invariance (3.26), and a change
of variables u — i — u.

1See [7], section 3.6, for another explanation of why a Type Il factor has a trace whose normalization
cannot be canonically determined.
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3.5 Density Matrices and Entropies

Let A be an algebra that acts on a Hilbert space H. Suppose also that A is equipped with
a nondegenerate trace Tr that is positive in the sense that Trafa > 0 for all nonzero a.
Under these circumstances, one can define a density matrix. The density matrix p of a
state U € H is an element p € A such that for a € A, (U]a|¥) = Trpa. Such a p will exist
because of nondegeneracy of the trace. p will be positive in the sense that Tr pafa > 0 for
all a € A. Tt will satisfy Trp = 1.

Such a p is quite analogous to a density matrix in ordinary quantum mechanics. It
describes the outcomes when an arbitrary a € A is measured in the state W.

Once one has a trace and a notion of a density matrix, one can define a version of the
von Neumann entropy:

S(p) = —Trplogp. (3.46)

In the case of the crossed product algebra A x Ry, the definition of the trace is not
completely canonical, since A x Ry has a group of outer automorphisms that conjugates
X to X + ¢, ¢c € R. As observed in section 3.4, this rescales the trace by Tr — e“Tr. To
preserve the condition Tr p = 1, we have to compensate by rescaling the density matrix,
p — e p, and this has the effect of shifting the entropy by the same constant c:

S(p) = S(p) + c. (3.47)

Thus the indeterminacy in the entropy is an overall additive constant, the same for all
states. This is similar to the situation in classical physics, where entropy differences are
defined by relations such as dE = T'dS, but there is no natural way to fix an additive
constant in the entropy.
One can eliminate the arbitrary additive constant by taking the differential of eqn.
(3.46). This gives
dS = —Trdplogp, (3.48)

by analogy with the classical dE = T'dS and also by analogy with what is sometimes called
the first law of entanglement entropy [22]. Entropy differences defined this way should be
physically sensible. Another analogy is with the many problems, such as those studied
in [23, 24], in which entanglement entropy differences in quantum field theory are better
defined than entanglement entropies.

Part of the analogy with classical physics is actually that the entropy defined in eqn.
(3.46) is not positive-definite, and in fact it is not bounded below.'® The entropy of a
classical harmonic oscillator goes to —oo as the temperature goes to 0, because the system
gets compressed in a smaller and smaller phase space volume. As explained in section

15This statement involves taking literally that we are interested in the entropy of a state of a Type Il
algebra, and not thinking in terms of an asymptotic expansion in 1/N. From the standpoint of the 1/N
expansion, one would call the entropy positive if the leading term for large N is positive, regardless of the
nature of the lower order terms. This is likely to be true in physically sensible situations. The remarks in
the text are applicable if we think of N as a fixed number at which we have a Type Il algebra; then, the
entropy is unbounded below. However, the analysis in this article leading to a Type Il algebra is really
only valid in an asymptotic expansion near N = oo.
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3.6 of [7], entropy in a Type II algebra, such as the crossed product algebra that we have
encountered in black hole physics, can be made arbitrarily negative by disentangling qubits.

Let us compute the entropy of the classical-quantum state ¥ = ¥ ® g(X)'/? that we
used to motivate the definition of the trace. In this case, upon replacing a by aK in the
definition Tra = (U[aK T, we get TrakK = (U[a|T). So the density matrix of ¥ is just
K. From eqn. (3.34), we find K log K = e~ "+ X) g(hy + X)(—(hy + X) +log g(hy + X)).
Using eqn. (3.39) and recalling that ﬁ\yﬁ/) = 0, we find the entropy of the density matrix
K to be

S0 = [ X (Xg(X) - g(X) logg(X)). (3.49)
The normalization condition for the state W is
/ dX ¢g(X)=1. (3.50)

Clearly, subject to this normalization condition, S(K’) is unbounded above and below. If
g(X) is strongly peaked around a classical value Xy, then S(K) will be very close to X
(assuming | Xo| > |log g(Xo))).

In the large N limit of the thermofield double state, g(X) is a Gaussian, presented in
eqn. (2.12) (recall X = BNU). This Gaussian is peaked near X = 0, not near X = A/4G,
as we would need to get the Bekenstein-Hawking entropy. One must recall that entropy
for a Type Il factor involves an arbitrary additive constant, so only entropy differences
can really be defined. In effect, with the normalizations we have used, entropy is measured
relative to the classical entropy A/4G of a black hole at inverse temperature 5. (Somewhat
similarly, entropy in a Type II; algebra is defined relative to the entropy of a maximally
entangled state. See for example section 3.6 of [7].) If one evaluates S(K') using eqn.
(2.12) for g, one finds that the logg term in eqn. (3.49) leads, apart from a constant,
to a contribution $9zlog |(Hp)| to S(K). This term is actually a universal logarithmic
correction to the Bekenstein-Hawking entropy that is associated to energy fluctuations in
the canonical ensemble [25].

We have obtained in eqn. (3.49) what looks like a classical formula for the entropy
because of considering a special sort of classical-quantum state. For a more generic state
one would certainly not get a classical formula for the entropy.

4 Other Conserved Charges

In addition to time translation symmetry, the two-sided eternal black hole solution of N = 4
super Yang-Mills theory has additional rotational and gauge symmetries. The symmetry
group is maximized for the case that the angular momentum and conserved charges of the
black hole vanish. In this case, the rotational symmetry group is Spin(4) and the gauge
group is SU(4)r, which from the boundary point of view is a group of R-symmetries. The
global form of the symmetry group is G = (Spin(4) x SU(4)r)/Z2. Observers on the left
and right side boundaries of the black hole spacetime see separate symmetry groups Gy,
and Gg. In the boundary theory, these symmetry groups are generated by left and right
conserved charges ()7 and ()%, where a runs over a basis of the Lie algebra g of G.
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We can proceed precisely as in the discussion of time translations in section 2. The
operators 7 and Q% do not separately have large N limits in the thermofield double state
Urrp. The difference!® @a = Q% — Qf" annihilates Ypp and does have a large N limit.
The @“ act on the Hilbert space Htrp obtained by quantizing the generalized free field
theory of nonzero modes that emerges in the large N limit [1, 2] and generate an action of
the group G. Let us denote the representation matrices as W(g), g € G.

The operators U* = Q%/N also have a large N limit. They are central in the large N
limit and their correlation functions are Gaussian. To get a Hilbert space on which the U?
can act in addition to the operators of the generalized free field theory, we can extend Hrrp
to ﬁTpD = Hrrp & L2(g). Here L2(g) is the space of square-integrable functions of the
U?, with the U® acting by multiplication. (We also need to extend Hrrp to accommodate
time translations, as described in section 2, but we omit this here.)

This gives an adequate framework to describe the large N limit, but to go to higher
orders in 1/N in the case of a nonabelian symmetry group, a slightly different point of view
is preferable. The global symmetry group of the boundary theory is the product G, x G,
but the eternal black hole solution is invariant only under a diagonal subgroup Gp of
G, X Ggr. This means that actually there is a family of classical solutions, parametrized
by the quotient (G, x Gr)/Gp. This quotient is a copy of G; we will call that copy G
(where M is for “moduli space”). Concretely, G parametrizes the choice of “Wilson
line” between the left and right boundary; thus, starting with any one given solution,
representing a point that we identify with 1 € G, we make a solution corresponding to
an arbitrary g € G by making a gauge transformation by an element of the gauge group
(here the group of rotations and R-symmetries) that equals 1 on the left boundary and
equals g on the right boundary. The group G x Gr acts on G by g — ngggl, gr € Gy,
gr € Gr. A given point g € GG is invariant under a diagonal subgroup of G, x G defined
by nggél =gor g; = ggrg~'. We will call this group Gy.

For any choice of g € G, quantization of small fluctuations in the background of the
eternal black hole gives a thermofield double Hilbert space that we will now call Hrrp 4,
since it depends on g. Each Htrp 4 is a representation of the subgroup G4 of G, x Gr
that is unbroken at the point g € Gaq. As g varies, Hrrp,4 varies as the fiber of a bundle
V of Hilbert spaces over Gaq:

HTFD,g — VY
! (4.1)
Gum.

An “improved” thermofield double Hilbert space ’;QTFD that incorporates the moduli in
G can be defined as the space of L? sections of the Hilbert space bundle V.

However, a simpler description is available. The Hilbert space bundle V — G is
homogeneous under the action of Gy x Gg on the base space G, and we can pick either
a Gp-invariant or a Gg-invariant trivialization of this bundle. Picking a Gp-invariant

16 The left and right systems in the thermofield double are CPT conjugates. The * in Q%" is CPT, which
acts by complex conjugation if the group generators are defined to be hermitian operators (or as minus
complex conjugation if they are defined to be antihermitian).
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trivialization can be accomplished by picking any trivialization at all over a chosen point
1 € G and then extending this, by acting with G, to a Gr-invariant trivialization over
all of Gaq. The extension exists and is unique because for any g € G, there is a unique
element of G;, namely g, that maps 1 € G to g € Gaq. This Gp-invariant trivialization
is not Gg-invariant. However, following the same procedure with G instead of G, we
can define a Gg-invariant trivialization that is not GGy-invariant.

FEither way, once we trivialize the bundle in a G- or Gr-invariant fashion, there is a
simple description of the Hilbert space ﬁTFD and of the action of G, x G on it. When
the bundle is trivialized, ’;QTFD becomes a simple tensor product ’;QTFD = HT1FD ®L2(G M)-
Thus a wavefunction becomes an Hrpp-valued function on G 4. However, there are two
such formalisms, depending on whether we use the left-invariant or right-invariant trivial-
ization of V. Let us write ¥(g) for the wavefunction with the left-invariant trivialization
and x(g) for the wavefunction with the right-invariant trivialization. To describe concretely
the action of G, x Gr on ¥(g) or x(g), we will need to remember the action of the diagonal
group G on Htrp, generated by the operators @a that were introduced earlier and with
the representation matrices W(g).

Let Sy, g5 be the operator that represents a group element g X gr € G, x Gp if we
use the Gr-invariant trivialization with wavefunction W(g). Concretely, Sy, 4,(¥) is the
function on G4 defined by

(Sg1.9n(¥))(9) = W(gr)¥(g; ' 99r)- (4.2)

The idea of this formula is that since W is defined with a Gp-invariant trivialization of
the fibration, G acts only on the base space G of the fibration and not on the fiber
‘Hrrp, but as the trivialization is not Gp-invariant, G acts on the fiber (via the operator
W (gr)) as well as on the base. The reader can verify that eqn. (4.2) does define an action
of G, x Gg on Hrrp. If instead we use a wavefunction Xx(g) defined with the G g-invariant
trivialization, then the roles of G and Gy are reversed. The action of G x Gg is then
described by operators T}, 4, such that

(Typ.900))(9) = W(gL)x(g7 " 99r)- (4.3)

The relation between the two formalisms is simply x(g) = W(g)¥(g), or
x =AY, (4.4)

where A : Hypp — Hrrp is the defined by (AU)(g) = W(g)¥(g). The equivalence of the
two formalisms is defined by
Tor9r = ASgL,QRAil‘ (4.5)

Let t¢ and t% be the generators of the G, and G actions on L?(G r4). Thus in view of
the formulas of the last paragraph, in the formalism based on a Gp-invariant trivialization,
the action of G, on fi‘zTFD = Hrrp ® L?(R) is generated by t¢, while the action of Gr
is generated by t% + Q. In the formalism based on a Gg-invariant trivialization, the
generators are instead t¢ 4+ Q and t%, respectively.
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Now we can explain how to incorporate the collective coordinates associated with the
G symmetry in the algebra of observables outside the black hole horizon. On the right
side of the horizon, for a fixed choice of the collective coordinates, we have an algebra A, o
acting on Hrtrp. To incorporate the collective coordinates in the left-invariant formalism,
we replace Hrrp by Hrrp = Hrrp ® L?(G ), and we adjoin the Gr generators th+ Q*
to A, . In other words, Ap is the algebra generated by A, o together with t% 4+ Q“. What
we have just arrived at is the mathematical definition of the crossed product of the algebra
A, o by a group of automorphisms G. We denote it as Ar = A, % G.

As for Ay, it is the commutant of Ag. It is generated by ¢ and AflAg,oA.

This description treats the left and right sides of the black hole asymmetrically because
of using a trivialization that is G p-invariant but not Gr-invariant. We can reverse the roles
of G and Gr by conjugating by A. Then we get a description in which Ay, is generated
by Ao and t¢ + Q% while Ag is generated by t% and AA,oA~1. In all cases, regardless
of the formalism, A;, and Ag are isomorphic to the crossed product of Ayg or Ao by G.

When we got to essentially this point in the discussion of time translations in section
3.1, we observed that there exists a left-right symmetric formalism obtained by conjugating
by A2 (eqn. (3.5)). In the case of a nonabelian group G, there is no equally convenient
analog of A1/2.

Thus collective coordinates associated to an automorphism group G can always be
included in the algebra of observables to the right (or left) of the eternal black hole horizon
by replacing the algebra of observables A, defined in a particular background with its
crossed product Arp = A,o x G. However, in contrast to the case of time translation
symmetry, it seems that the crossed product with a compact automorphism group does
not lead to a qualitative change in the algebraic structure. In quantum field theory, for
compact G, A, o x G is always an algebra of Type III;, like A, g. A proof of this has been
sketched by R. Longo. The main input is the fact that Hrpp contains all representations
of GG, each with infinite multiplicity.
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