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Abstract: We describe an algebra of observables for a static patch in de Sitter space,

with operators gravitationally dressed to the worldline of an observer. The algebra is a

von Neumann algebra of Type II1. There is a natural notion of entropy for a state of

such an algebra. There is a maximum entropy state, which corresponds to empty de Sitter

space, and the entropy of any semiclassical state of the Type II1 algebras agrees, up to an

additive constant independent of the state, with the expected generalized entropy Sgen =

(A/4GN ) + Sout. An arbitrary additive constant is present because of the renormalization

that is involved in defining entropy for a Type II1 algebra.
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1 Introduction

1.1 Background

Not long after it was understood that an entropy should be associated to the horizon area

of a black hole [1, 2], Gibbons and Hawking [3] proposed that similarly, the area of a
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cosmological horizon should be interpreted as an entropy. Specifically, they considered an

observer in a de Sitter space with radius of curvature rdS. The worldline of the observer

is assumed to be timelike. The region of de Sitter space that is causally accessible to such

an observer is bounded by past and future horizons. Gibbons and Hawking associated

to the horizon of an observer an entropy A/4GN (where A is the area of the observer’s

horizon and GN is Newton’s constant) and a temperature TdS = 1/2πrdS = 1/βdS. The

temperature, but not the entropy, had been defined earlier by Figari, Hoegh-Krohn, and

Nappi [4].

A difference between a black hole horizon and a cosmological horizon is that, in a sense,

the notion of a cosmological horizon is more observer-dependent. A black hole horizon in

an asymptotically flat (or asymptotically Anti de Sitter) spacetime is defined in terms of

the region that is causally accessible to any observer at infinity. In a cosmological model

such as de Sitter space, different observers can see and can influence different parts of the

spacetime, and experience different horizons. De Sitter space has a great deal of symmetry,

such that the horizon of any observer has the same area. That is not true in a more general

cosmological model.

It seems fair to say that although black hole entropy remains highly enigmatic to this

day, the entropy of a cosmological horizon, such as the de Sitter horizon, is only more

mysterious. A working hypothesis, expressed in a modern form in [5], is that black hole

entropy measures the logarithm of the dimension of a quantum Hilbert space that is needed

to describe a black hole as seen by an observer who remains outside the horizon. What

would be the analog of this for cosmological horizons? A plausible analog of an observer

who remains outside the black hole horizon is an observer in de Sitter space whose horizon

is under discussion. The region of de Sitter space causally accessible to such an observer

has been called a “static patch.” Thus a possible analog of the working hypothesis about

black hole entropy would be to say that the de Sitter entropy measures the logarithm of

the dimension of the quantum Hilbert space that an observer in the static patch can use

to account for inaccessible degrees of freedom beyond the horizon.

Something somewhat along these lines has actually been proposed [6–14], but with a

subtle difference. To explain this point, let us consider a de Sitter space that instead of

being empty, as considered originally by Gibbons and Hawking, contains ordinary particles

and fields and perhaps even some small black holes. In this case, we follow Bekenstein

and define a generalized entropy that includes the horizon entropy A/4GN and also the

ordinary entropy Sout of the matter that the observer can see:

Sgen =
A

4GN
+ Sout. (1.1)

In the case of a black hole in an asymptotically flat spacetime, both terms A/4GN and Sout

can be arbitrarily large, and it takes an infinite-dimensional Hilbert space to describe the

possible states of the world as seen by an outside observer. In the case of de Sitter space,

it has been argued that this is not the case: it is claimed that the maximum possible value

for Sgen is the value that it has for empty de Sitter space [6, 7, 15]. One can certainly

increase Sout by considering a state in which the static patch is not empty. The claim is
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that this has the effect of reducing the horizon area, in such a way that the decrease in

A/4GN exceeds the increase in Sout.

The proposal, then, is that empty de Sitter space maximizes the entropy of any state

of the static patch. Here by empty de Sitter space we mean the generalization with gravity

included of the natural de Sitter invariant state of quantum fields in de Sitter space [16–

20], which is often called the Bunch-Davies state. Thus in leading order for small GN , the

maximum possible entropy of a state of the static patch, including particles and fields and

black holes it may contain and also degrees of freedom that are somehow associated to the

cosmological horizon, is AdS/4GN , where AdS is the horizon area of empty de Sitter space.

(For the one-loop correction to the formula AdS/4GN for the entropy of empty de Sitter

space, see [21].)

The existence of a maximum entropy state of de Sitter space makes possible an inter-

pretation of de Sitter entropy that does not quite have an analog for black hole entropy.

The proposal is that a Hilbert space of dimension roughly exp(AdS/4GN ) suffices to de-

scribe all possible states of the static patch, including any matter and black holes it may

contain and also the cosmological horizon [6–14]. Empty de Sitter space would then be

described by the maximally mixed state on this finite-dimensional Hilbert space [22, 23].

By contrast, in the case of a black hole, the Bekenstein-Hawking entropy A/4GN possibly

determines the size of a Hilbert space that describes the black hole as seen from outside,

but this Hilbert space does not describe particles and fields outside the black hole horizon.

The claim that empty de Sitter space is maximally mixed may sound counterintuitive,

since the Bunch-Davies state of quantum fields reduces on the static patch to a thermal

ensemble with temperature TdS. The idea is that this thermal distribution comes purely

from entropic, rather than energetic, suppression on the full static-patch Hilbert space

[10, 11, 14]. As a simple illustration, consider a particle with energy E at rest in the center

of the static patch. The presence of such a particle reduces the area of the cosmological

horizon from AdS to

Ahor/4G = AdS/4G− βdSE. (1.2)

We will recall the derivation of this statement in section 3. If the total number of mi-

crostates is exp(AdS/4G), and the number of microstates such that the particle has energy

E is exp(Ahor/4G), then assuming that each microstate is equiprobable, the probability to

observe a particle of energy E in the center of the static patch will be

p(E) = exp(−βdSE). (1.3)

In this way, one can obtain a thermal distribution purely on entropic grounds.

1.2 A Type II1 Algebra For The Static Patch

In the present article, we will make a contribution to the understanding of de Sitter entropy

by defining a von Neumann algebra of Type II1 that, in the limit of small GN , describes

the possible observations of an observer in de Sitter space. We will also reconsider and

generalize a previous discussion in which, inspired by considerations involving the large N
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limit in holography [24, 25], observations outside a black hole horizon were described by

an algebra of Type II∞ [26].

The entanglement entropy of a local region in quantum field theory is always ultraviolet

divergent, as discovered long ago [27, 28]. An abstract explanation of why this happens

is that the algebra of observables in a local region in quantum field theory is of Type III

[29], and there is no notion of entropy for a state of an algebra of Type III. By contrast,

for states of an algebra of Type II, it is possible to define an entropy, though in physical

terms this is a sort of renormalized entropy with a state-independent divergent constant

subtracted. Thus, at least for the black hole and de Sitter space, the fact that gravity

converts the algebra of observables from being of Type III to being of Type II gives an

abstract explanation of why the entropy of a region of spacetime is better-defined in the

presence of gravity.

A Type II1 algebra has a state of maximum entropy, as has been explained long ago

[30] and reconsidered recently [31]. Hence a Type II1 algebra is a candidate for describing

the physics of a static patch in de Sitter space, with empty de Sitter space corresponding

to the state of maximum entropy. By contrast, there is no upper bound on the entropy of

a state of a Type II∞ algebra. Therefore, a Type II∞ algebra is a candidate for describing

physics outside the black hole horizon.

In section 2, we consider the problem of defining, in the limit GN → 0, an algebra of

observables in a static patch of de Sitter space. There is no asymptotic region at infinity

to which a local operator can be “gravitationally dressed,” so we assume the existence of

an observer in the static patch and we gravitationally dress operators in the static patch to

the worldline of the observer. We consider a minimal model in which the observer consists

only of a clock. The resulting algebra is of Type II1. The maximum entropy state of the

Type II1 algebra is the natural state of empty de Sitter space (tensored with a simple

state of the observer). The density matrix of the maximum entropy state is the identity,

in keeping with the idea that this state is maximally mixed and has a flat entanglement

spectrum [22].

In section 3, we assume that the de Sitter space is not necessarily empty and show that

(up to an additive constant that is independent of the state) the entropy of a semiclassical

state of the Type II1 algebra agrees with the generalized entropy Sgen = A/4GN + Sout.

In this, we closely follow an analysis we present elsewhere for the case of the Type II∞
algebra of a black hole [32]. We also make use of a formula of Wall expressing the generalized

entropy in terms of relative entropy on the horizon [33].

An observer in a static patch in de Sitter space has access to observables that are

localized in that patch, but has no way to know what there is beyond the horizon and

therefore has no knowledge of a global quantum state of the whole system. However, with

some assumptions about what is beyond the horizon, one can construct a global Hilbert

space for the whole system, and the Type II1 algebra constructed in section 2 should act

naturally on this Hilbert space. We explore this question in section 4. We get a simple

answer if we assume the existence behind the horizon of a second observer who is completely

or almost completely entangled with the observer in the static patch. In the absence of

such a second observer, the question is more difficult and appears not to have a simple
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limit for GN → 0.

Finally, in section 5 we reconsider the Type II∞ algebra of the black hole. We define

this Type II∞ algebra in a way that makes sense for a black hole in an asymptotically flat

spacetime (as opposed to the asymptotically AdS spacetime considered in [26]). We also

formulate the derivation in a way that shows a close analogy between the definition of the

Type II∞ algebra for the black hole and the Type II1 algebra for de Sitter space.

Appendix A is an explanation of the crossed product construction for operator algebras

and of Takesaki duality, which underlies the construction of the Type II1 algebra for de

Sitter space. In Appendix B, we explain how, in the presence of gravity, the symmetries

of de Sitter space can be imposed as constraints in the construction of a Hilbert space of

quantum states. Here we follow previous analysis [34, 35], the only novelty being to present

the construction in the BRST framework; it is known in general that this is possible [36].

We also explain why it is more straightforward to impose constraints on operators than

on states. Some facts explained in the appendix are important background to this article,

though we explain more than we strictly need.

1.3 What is a Type II1 Algebra?

In the remainder of this introduction, we provide a short introduction to Type II1 algebras.

A Type II1 algebra is just the natural algebra of observables that acts on a countably

infinite set of qubits in a state that is almost maximally mixed. In more detail,1 consider

a system A consisting of a countably infinite set of qubits that are almost completely

entangled with an identical system B also consisting of a countably infinite set of qubits.

In the case of a finite number N of qubit pairs, a state in which the nth qubit of system A

is maximally entangled with the nth qubit of system B for all n is

ΨTFD =
1

2N/2

N⊗
n=1

∑
i=1,2

|i〉n,A ⊗ |i〉n,B. (1.4)

We have called this state ΨTFD because it can be viewed as the usual thermofield double

state specialized to the case that the Hamiltonian is H = 0. In the limit N → ∞, one

constructs a Hilbert space HTFD with the property that for any state in this space, almost

all of the qubit pairs are almost completely entangled in the same way as in ΨTFD. Let a

be any operator that acts on only the first k qubits of system A and define

F (a) = 〈ΨTFD|a|ΨTFD〉. (1.5)

Since ΨTFD has been chosen so that the qubits of the A system are maximally mixed, the

density matrix of the A system is ρA = 2−N I, where I is the identity matrix. So

F (a) = Tr ρAa = 2−NTr a, (1.6)

and therefore, if a, a′ are two operators that both act only on the first N qubits of system

A, then

F (aa′) = F (a′a) = 2−N Tr aa′. (1.7)

1This construction goes back to Murray and von Neumann; for a slightly different description, see for

example section 3.3 of [37].

– 5 –



Some other important properties of F (a) are that it is normalized to

F (1) = 1 (1.8)

and that it is positive, in the sense that

F (a†a) > 0, a 6= 0. (1.9)

The function F (a) is defined as soon as one includes all the qubits that a acts on in the

definition of ΨTFD, and it is unaffected by including additional qubits, so it is well-defined

in the limit of an infinite system. Eqn. (1.7) says that the function F (a) has the algebraic

property of a trace, and it is in fact convenient to denote it as one:

F (a) = Tr a. (1.10)

Clearly then

Tr 1 = 1 (1.11)

and

Tr a†a > 0, a 6= 0. (1.12)

So far we have defined the trace for the algebra A0 of all operators that act on only finitely

many qubits of system A. However, the definition can be extended to a larger algebra A
that consists of all operators that can be approximated sufficiently well by operators that

act on only finitely many qubits of system A. (Technically, A contains operators that are

weak limits of sequences of operators in A0.) The algebra A is known as a von Neumann

algebra of Type II1. The center of A consists only of complex scalars. In von Neumann

algebra language, this means that A is a “factor,” somewhat analogous to a simple Lie

group.

We are quite familiar with a more elementary example of an infinite algebra that has a

trace, namely the algebra B of all (bounded) operators on a Hilbert space H of countably

infinite dimension. This algebra has a trace, but it is not defined for all elements, only

for those that are “trace class”; in particular, in the algebra B, the trace of the identity

operator is +∞. By contrast, a Type II1 algebra has a trace that is defined for all elements,

and which can be normalized so that Tr 1 = 1. We will see that it is natural to define a

Type II1 algebra associated to de Sitter space. The tensor product of the two algebras A
and B that we have described so far is an algebra C = A ⊗ B that turns out to be a von

Neumann algebra of Type II∞. C is a factor, since A and B are, and it has a trace, since

A and B do, but the trace is not defined for all elements of C, since that is the case for B.

In an asymptotic expansion near N = ∞, the algebra of observables outside a black hole

horizon is of Type II∞ [26]. This was found by incorporating some 1/N corrections in a

construction of emergent Type III algebras in holographic duality [24, 25]. Our main result

in the present article is an analogous statement involving the static patch of de Sitter space

and an algebra of Type II1.

Though not the main focus of the present article, Type III von Neumann algebras can

be constructed in a similar way, starting with the thermofield double state for a nonzero
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Hamiltonian. The Hamiltonian can be taken to be a simple sum of single qubit Hamiltoni-

ans, H =
∑

iHi, where Hi acts only on the ith qubit. In the thermodynamic limit, another

novel algebra, now of Type III, can be defined just as before. The main difference is that

this algebra does not have a trace. See for example [37] for a fuller explanation.

A Type II or Type III von Neumann algebra does not have an irreducible representation

in a Hilbert space. Whenever such an algebra acts on a Hilbert space H, it commutes

with another algebra A′ that is also of the same type, Type II or Type III. For example,

in the Murray-von Neumann construction of the Type II1 factor A that we have just

described, A obviously commutes with an isomorphic algebra Ã that acts on system B.

If Λ is a projection operator in Ã, then ΛH is a subspace of H on which A acts. This

motivates the question of how “small” Λ can be and how much we can shrink H while

still getting a Hilbert space on which A acts. This question was addressed by Murray and

von Neumann. Projection operators Λ in a Type II1 algebra A (or Ã) are classified, up to

unitary equivalence in the algebra, by their trace, and any value of the trace between 0 and

1 is possible. (The values 0 and 1 occur only for Λ = 0 and Λ = 1.) In the construction

of A from the infinite system of entangled qubits, for any positive integers k and n, the

projection operator onto a k-dimensional subspace of the 2n-dimensional Hilbert space of

the first n qubits of system A gives, in the large N limit, a projection operator Λ ∈ A with

Tr Λ = k/2n. By taking limits, one can define a projection operator Λ ∈ A with any trace

between 0 and 1. (In section 4.2, we will find another construction of a projection operator

in A with any desired value of the trace between 0 and 1.)

Murray and von Neumann showed that the Hilbert space representations of the algebra

A are classified by a parameter d, called the continuous dimension, that can be any positive

real number or ∞. The Hilbert space HTFD is defined to have d = 1, and if Λ ∈ Ã is a

projection operator with Tr Λ = f , then ΛH has d = f . Finally, d is additive in direct

sums, so for example the direct sum of k copies of HTFD has d = k. By taking d very small,

we can make a “small” representation of A, but there is no irreducible representation; any

representation can always be reduced further. The “trace” function Tr a that we defined

earlier has the algebraic properties of a trace, but it is not actually the trace in any

representation of A; it is more like a trace with an infinite factor 2N
∣∣
N→∞ removed.

Since an algebra of Type II1 does not have an irreducible Hilbert space representation,

there is no notion of a pure state of such an algebra. However, there is a notion of density

matrices and entropies. This results from the fact that the bilinear form Tr aa′ on a pair of

elements a, a′ ∈ A is nondegenerate (the nondegeneracy is a consequence of the fact that

Tr a†a > 0 for a 6= 0). So any linear function F (a) on the algebra is of the form Tr aa′ for

a unique2 a′ ∈ A.

For example, if A acts on a Hilbert space H and Ψ is a vector in H, the function

F (a) = 〈Ψ|a|Ψ〉 is a linear function on A, so there is a unique ρ ∈ A such that

〈Ψ|a|Ψ〉 = Tr aρ. (1.13)

2More precisely, in general a′ may be an unbounded operator “affiliated” to A, meaning that bounded

functions of a′ are in A. We will usually omit this qualification.
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Since 〈Ψ|a†a|Ψ〉 ≥ 0 for all a ∈ A, we have Tr a†aρ ≥ 0 for all a. This is described by saying

that ρ is positive. Assuming that the state Ψ is normalized to 〈Ψ|Ψ〉 = 1, we have Tr ρ = 1.

So ρ is a positive element of A of trace 1. By analogy with the standard terminology in

ordinary quantum mechanics, such an element of A is called a density matrix, and we define

ρ to be the density matrix of the state Ψ, for observations in A. As a simple example,

consider the state ΨTFD. Since by definition 〈ΨTFD|a|ΨTFD〉 = Tr a, the density matrix of

ΨTFD is ρ = 1.

Conversely, suppose that we are given a density matrix ρ ∈ A. In ordinary quantum

mechanics, every density matrix has a (highly non-unique) “purification.” This statement

has an analog for an algebra A of Type II1. A purification of a density matrix ρ ∈ A
is a Hilbert space H with an action of A and a state Ψ ∈ H such that Tr aρ = 〈Ψ|a|Ψ〉
for all a ∈ A. The GNS construction of operator algebra theory (see for example section

3.1 of [37]) gives a simple construction of a purification of any state of a Type II1 algebra,

generalizing a standard construction in ordinary quantum mechanics in which a purification

is constructed by doubling the Hilbert space.

Once one has density matrices, one can also define entropies; for example, the von

Neumann entropy is defined as usual as

S(ρ) = −Tr ρ log ρ. (1.14)

Rényi entropies are defined similarly:

Sα(ρ) =
1

1− α
log Tr ρα. (1.15)

These entropies have slightly unusual properties that we will discuss first informally and

then in a more formal way.

The maximally mixed state of N qubits has von Neumann entropy N . So the state

ΨTFD on N qubits, reduced to system A, has entropy N , and in the N → ∞ limit its

entropy diverges. A state obtained from ΨTFD by disentangling, say, k qubits has entropy

N −k, less than N but also divergent for N →∞. To define entropies for a state in ΨTFD,

reduced to system A, we subtract N before taking the large N limit. With this definition,

the maximally mixed state of the infinite system of qubits has entropy 0 and other states

have negative entropy. This is the usual definition for states of an algebra of Type II1. In

short, entropy in a Type II1 algebra is a renormalized entropy. There is a state of maximum

entropy, whose entropy is defined to be 0, and other states have negative entropy.

Now let us see these properties from the definition3 S(ρ) = −Tr ρ log ρ. First of all,

the state of maximum entropy is ΨTFD, corresponding to ρ = 1. For ρ = 1, we do indeed

have S(ρ) = 0. To show that any other density matrix σ has S(σ) < 0, one way is as

follows. In general let ρ and σ 6= ρ be two density matrices. As in ordinary quantum

mechanics, one can interpolate between σ and ρ by the one-parameter family of density

matrices ρt = (1 − t)ρ + tσ, 0 ≤ t ≤ 1. Let f(t) = S(ρt). The same calculation as in

ordinary quantum mechanics shows that f ′′(t) ≤ 0 for 0 ≤ t ≤ 1. In other words, the

3For previous treatments, see [30, 31].
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Figure 1. The Penrose diagram of de Sitter space. An observer enters at the point p at past

infinity and exits at the point q at future infinity. Coordinates can be chosen to put these points at

corners of the diagram, as shown. The observer’s worldline is a timelike curve γ from p to q, such

as the geodesic from p to q, shown here as the vertical line on the right boundary of the diagram. P

is the static patch of this observer, and P ′ is the complementary static patch, spacelike separated

from P . The shaded regions are behind past and future horizons for an observer in either P or P ′.

entropy is concave. If ρ = 1, one finds f(0) = f ′(0) = 0, f ′′(0) = −Tr (1 − σ)2 < 0.

Therefore f(t) < 0 for 0 < t ≤ 1. In particular S(σ) = f(1) < 0.

As an example that will be relevant in section 2, let Λ be a nonzero projection operator

in Ã. As explained earlier, its trace is a positive number that is no greater than 1 (and equal

to 1 only if Λ = 1). Therefore ρΛ = Λ/Tr Λ is a density matrix. To evaluate S(ρΛ), we note

that the operator ρΛ has the two eigenvalues 0 and 1/Tr Λ, so ρΛ log ρΛ = ρΛ log(1/TrΛ)

and hence S(ρΛ) = −Tr ρΛ log ρΛ = − log(1/Tr Λ) < 0.

The algebra of operators in a local region in ordinary quantum field theory is a von

Neumann algebra of Type III, a statement that is more or less equivalent to the statement

that neither pure states nor density matrices nor entropies can be defined for such an

algebra. The main observation of the present article is that, provided an observer is

included in the description of the static patch, gravity converts the Type III algebra of

the static patch in de Sitter space to an algebra of Type II1.

2 The Algebra Of The Static Patch

2.1 The Static Patch

What can be seen by an observer in de Sitter space? We will discuss this question first in

the context of ordinary quantum field theory in a fixed de Sitter background, and then in

the context of semiclassical quantization of gravity.

Imagine an observer who enters a D-dimensional de Sitter space X at a point p in

past infinity and exits in the far future at a point q in future infinity (fig. 1). From p to

q, the observer travels on some worldline γ. The part of de Sitter space that is causally

accessible to the observer – the part that the observer can influence and can also see, or in

– 9 –



other words the intersection of the past and future of γ – is bounded by past and future

horizons. The causally accessible region, which we will call P , is known as the static patch

of the observer. P depends only on the points p and q and not on the path γ. The region

of X that is spacelike separated from P , so that the observer can neither see nor influence

it, is a complementary static patch P ′.

Consider first an ordinary quantum field theory on X, without gravity. Such a theory

has a Hilbert space H of physical states. In general, in quantum field theory, the algebra of

observables in any local region is a von Neumann algebra of Type III [29]. So in particular,

the algebra of observables in the region P is a Type III algebra A of operators on H, and

the algebra of observables in P ′ is a second Type III algebra A′, the commutant of the first

(A′ consists of the bounded operators that commute with A, and vice-versa). The Type

III nature of A and A′ means that there is no natural notion of entropy for a state of either

of these algebras. Concretely, if one picks a state Ψ ∈ H and attempts to compute the

entropy of the state Ψ reduced to a region of spacetime, one will encounter an ultraviolet

divergence, as first observed long ago [27, 28].

2.2 The Thermal Nature of de Sitter Space

The Hilbert space H of a quantum field theory in a fixed de Sitter background contains a

distinguished state ΨdS [16–20], sometimes called the Bunch-Davies state. The Euclidean

version of de Sitter space is a sphere SD, and the state ΨdS can be defined by analytic

continuation from SD. ΨdS is the natural “vacuum” of a quantum field in a background

de Sitter space; it is the analog for de Sitter space of the Hartle-Hawking state of a black

hole. ΨdS is invariant under the full automorphism group GdS of de Sitter space, which is

SO(1, D) or a double cover of this to include spin.

Once we choose to focus on a particular static patch P , what is relevant is not the

full de Sitter automorphism group, but the subgroup GP that consists of automorphisms

of P . Concretely, this subgroup is GP ∼= R × SO(D − 1), where the first factor, which

we will denote as Rt, generates what we will call the time translations of the static patch.

If the trajectory γ of the observer is chosen to be the geodesic from p to q, then Rt is

the group of translations along γ, and the second factor in GP , namely SO(D − 1), is

the group of rotations around γ. Rt is generated by a Killing vector field V that we can

choose to be future-directed timelike in the static patch P and past-directed timelike in the

complementary patch P ′. In ordinary quantum field theory in a fixed de Sitter background,

Rt is generated by a conserved charge H that acts on the Hilbert space H.

As argued by Gibbons and Hawking [3] (for earlier work see [4]), in quantum field

theory in a fixed de Sitter background, the state ΨdS has a thermal interpretation. The

thermal interpretation arises because, after analytic continuation to Euclidean signature,

V becomes the generator of a rotation of SD. As a result, correlation functions in the

state ΨdS can be analytically continued to periodic functions in imaginary time and can

be interpreted as correlation functions in a thermal ensemble with a Hamiltonian HP and

inverse temperature βdS = 2πrdS. Here HP generates time translations of the static patch

and rdS is the radius of curvature of the de Sitter space.
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Importantly, HP is not the conserved charge H associated to the Killing vector field

V of de Sitter space; the operator H has no positivity, since V is past-directed in the

complementary patch P ′. Rather, HP is supposed to be a “one-sided” Hamiltonian that

generates time translations in P , and does nothing in P ′. Because of fluctuations near the

cosmological horizon – that is, near the boundary of P – such an operator actually cannot

be defined in the natural Hilbert space H of de Sitter space. However, it is possible with

a sort of “brick wall” boundary condition on the cosmological horizon to define a Hilbert

spaceHP that describes excitations in region P only and on which HP can be defined and is

bounded below. Correlation functions in the state ΨdS ∈ H of operators in the patch P can

be interpreted as thermal correlation functions of the same operators for a thermal density

matrix on HP that is proportional to exp(−βdSHP ). This is one way to make precise the

statement that correlation functions in the state ΨdS have a thermal interpretation.

All of this is in close analogy with the thermal nature of the Hartle-Hawking state

of a black hole [38, 39] and of the Minkowski space vacuum as seen by an accelerated

observer [40]. A more or less equivalent statement in the language of operator algebras is

that, in the case of quantum field theory in a fixed de Sitter background, the “modular

Hamiltonian” Hmod which generates the modular automorphism group of the algebra A of

the static patch for the state ΨdS is

Hmod = βdSH, (2.1)

where H generates time translations of the static patch. The analogous statement for

the Rindler wedge, with the Minkowski space vacuum playing the role of ΨdS, is due to

Bisognano and Wichman [41]; this result was carried over to black holes by Sewell [42], and

the de Sitter case is similar. The interpretation of βdSH as the generator of the modular

automorphism group will be very important in what we say later.

What has been described so far applies to quantum field theory in a fixed de Sitter

background, without dynamical gravity. However, a number of authors [10, 11, 13, 14] have

claimed in various ways that this picture is substantially modified when gravity becomes

dynamical, even for very small values of Newton’s constant GN . Without repeating all of

the arguments here, we can motivate some of the claims as follows. In gravity, because

diffeomorphisms are gauged, conserved charges associated to diffeomorphisms of spacetime

can be computed as surface terms. In the case of a black hole in asymptotically flat or

asymptotically AdS spacetime, the energy is an important conserved charge, and it can be

measured as a surface term at spatial infinity, namely the ADM energy. However, the static

patch in de Sitter space has no boundary at infinity. Its only boundary is the cosmological

horizon. Therefore, gravity will force the time generator HP of the static patch to have an

interpretation as a boundary term on the cosmological horizon. The leading boundary term

when the de Sitter radius is large is the area of the cosmological horizon. But according

to Gibbons and Hawking, this area is an approximation to the entropy of the static patch.

So “energy” in the static patch is really entropy. One argument in this direction [14]

involves comparing the energy of a fluctuation in the static patch to the entropy reduction

associated to observing that fluctuation. A quite different line of argument [22] that leads

to a somewhat similar conclusion involves use of a replica trick to argue that the state
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ΨdS has a flat entanglement spectrum (so that there is no relevant notion of “energy”

independent of entropy). We will recover these claims by a simple but slightly abstract

analysis of the operator algebra of the theory.

2.3 The Algebra of Observables

What algebra of observables is accessible to an observer in the static patch? A first thought

might be that in ordinary quantum field theory, the observer can measure the quantum

fields only in the immediate vicinity of the observer’s worldline γ. However, according to

the Timelike Tube Theorem [43, 44], the algebra of observables in ordinary quantum field

theory in an arbitrarily small neighborhood of γ is the same as the algebra of observables

in the static patch.4 Thus, in ordinary quantum field theory, it is reasonable to claim that

the observer can access the whole algebra A of observables in P .

Now let us suppose that gravity is one of the fields that we want to consider in de

Sitter space. We assume, however, that GN is extremely small, or to be more precise that

the Planck length ` is much less than rdS. Then gravity is very weakly coupled and can

be treated perturbatively. In leading order, we make a quadratic approximation to the

gravitational action and quantize gravitational perturbations in de Sitter space in a free

field approximation. This leads to the construction of a Hilbert space Hgrav that describes

gravitational fluctuations. This must be included as a tensor factor in defining the Hilbert

space H that was the input in the previous discussion. Thus the full Hilbert space, at this

level, is

H = Hmatt ⊗Hgrav, (2.2)

where now Hmatt is the Hilbert space obtained by quantizing the matter fields.

Including the weakly coupled gravitational field as one more quantum field in the

construction of the Hilbert space does not qualitatively change anything what we have

said so far about the algebra of observables. The Type III algebra A of the static patch

now includes operators that act on the gravitational fluctuations just as they act on any

other fluctuations. The extended Hilbert space still contains a natural state ΨdS that can

be defined by analytic continuation from Euclidean signature and it still has a thermal

interpretation.

What does qualitatively change the picture is that, as de Sitter space is a closed

universe, with compact spatial sections, the automorphisms of de Sitter space have to

be treated as gauge constraints. This means, in particular, that the Hilbert space that

describes quantum fields and gravity in de Sitter space, in the limit GN → 0, is not H but

rather is a Hilbert space Ĥ that is constructed from H by imposing the de Sitter generators

as constraints. The procedure to do so is subtle. Naively, one might think that Ĥ would

be the GdS-invariant subspace of H, but this subspace is much too small, because, with the

exception of ΨdS, GdS-invariant states are not normalizable. Instead, Ĥ should be defined

4The Timelike Tube Theorem was formulated for quantum fields in Minkowski space. The original proof

by Borchers [43] used the Minkowski space structure in an essential way, but Araki’s proof [44] is based on

more robust considerations, and we expect that it carries over to a general spacetime. In fact, the result

has been proved for free field theories in spacetimes that are globally hyperbolic and real analytic [45] (the

condition assumed was actually weaker than real analyticity).
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as a space of coinvariants [34, 35]. Equivalently, as we explain in Appendix B, one can

introduce a BRST complex for the action of GdS on H and define Ĥ as the top degree

BRST cohomology. The invariant subspace is the bottom degree BRST cohomology.

Our goal, however, is to describe not the physics of the whole de Sitter space X,

but rather the physics of a particular static patch P . The global Hilbert space Ĥ is not

accessible to an observer in P . What is accessible to that observer is only an appropriate

algebra of observables. So what we really want to do is to impose the constraints not on the

Hilbert space but on the algebra of observables that is accessible to the observer. Since this

question depends on a specific choice of P , the group of constraints that we have to impose

is not the full GdS, but its subgroup GP , the group of symmetries of P . The important

symmetry is the time translation symmetry, so we will focus on that one.

2.4 Including an Observer

Imposing constraints on the algebra of observables is more straightforward conceptually

than imposing constraints on the states. As noted earlier, to impose GdS as a group of

constraints on physical states, one does not simply require that a physical state should

be annihilated by the group generators; the correct procedure is more subtle and is most

naturally described in a BRST procedure with ghosts. There is no such subtlety for op-

erators. The subtlety in the case of physical states is possible because it makes sense for

the space of physical states to consist of a BRST cohomology group of states with nonzero

ghost number, as long as only one value of the ghost number is involved. But it does not

make sense for physical operators to carry nonzero ghost number, so in imposing a group

of constraints on the algebra of operators, we can ignore the ghosts and simply restrict to

the subalgebra of invariant operators. See Appendix B for a fuller explanation.

In particular, in the case of the static patch, imposing time translations as a constraint

means replacing A by AH , its subalgebra consisting of operators that commute with H.

However, the only H-invariant elements of A are c-numbers. In the language of operator

algebras, this is true because “the modular automorphism group acts ergodically” in this

situation, with no nontrivial invariant operators. Concretely, one might think that one

could construct an H-invariant operator by starting with any operator O and integrating

over time translations, that is, by replacing O with

Ô =

∫ ∞
−∞

dt eiHtOe−iHt. (2.3)

However, the matrix elements of such an Ô between any two vectors Ψ, χ ∈ Ĥ are infinite

(or zero) since

〈Ψ|eiHtOe−iHt|χ〉 (2.4)

is independent of t. It will be clear from the description of Ĥ in Appendix B that this is

true, even though Ψ and χ cannot simply be characterized as GdS-invariant elements of H.

Since AH is trivial, the only way to get anything sensible is to include the degrees

of freedom of the observer as part of the analysis. A minimal model of the observer that

suffices for our purposes is to say that the Hamiltonian of the observer is Hobs = q, where
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q is a new variable. It is physically sensible to assume that the energy of the observer is

non-negative, so we will assume that q ≥ 0. Thus the Hilbert space of the observer, in

this model, is Hobs = L2(R+), where R+ is the half-line q ≥ 0. We could also endow the

observer with additional degrees of freedom, but this would not change anything essential

in what follows.

We assume that the observer has access to any operator acting on Hobs. Therefore,

after including the observer, but prior to imposing the constraint, the algebra of observables

is A ⊗ B(L2(R+)), where B(L2(R+)) is the algebra of all (bounded) operators acting on

L2(R+).

Now we have to impose the constraint. The simplest model is to assume that the

appropriate constraint operator is simply the sum of the Hamiltonian H of de Sitter space

and the Hamiltonian of the observer:

Ĥ = H +Hobs = H + q. (2.5)

This is a reasonable model in the limit GN → 0, though for GN > 0, one would expect

corrections involving positive powers of GN . In this model, the algebra of observables, after

imposing the constraint, is the Ĥ-invariant part of A⊗B(L2(R+)):

Â = (A⊗B(L2(R+))Ĥ . (2.6)

It turns out that this is an interesting algebra. To analyze it, we will first ignore

the condition q ≥ 0 and study the case that q is real-valued, that is we consider the Ĥ-

invariant part of the algebra A ⊗ B(L2(R). Let p = −id/dq. We can construct by hand

some operators in A ⊗ B(L2(R)) that commute with Ĥ. One such operator is q itself.

Moreover, for any a ∈ A, the operator eipHae−ipH also commutes with Ĥ. We do not

include Ĥ itself because, as it is a constraint operator, it annihilates physical states. There

are no other obvious operators in A⊗B(L2(R)) that commute with Ĥ, and a special case

of Takesaki duality [46] asserts that there are none.5

Thus the invariant algebra AĤ can be characterized as {eipHae−ipH , q}, that is, the

von Neumann algebra generated by operators eipHae−ipH , a ∈ A, along with (bounded

functions of) q. This is actually a standard description of the “crossed product” of A
by the one-parameter automorphism group generated by H (see the description of AL in

section 3.1 of [26]), and in particular it is an algebra of Type II∞. We will denote this

crossed product algebra as Acr. Note that Acr is defined without the constraint on the

observer energy. Conjugating by e−ipH leads to an equivalent description in which Acr is

generated by operators a and q−H. In this description, the inequality q ≥ 0 for positivity

5Takesaki duality asserts an isomorphism between A⊗B(L2(R)) and a certain “double crossed product”

algebra Adc. As in the text, first define the crossed product algebra Acr generated by operators eipHae−ipH

and q. This algebra has an outer automorphism generated by p, so we can define a double crossed product

algebra Adc as the crossed product of the algebra Acr by the action of p. Adc is generated by Acr together

with x′ + p where [x′,Acr] = 0. The action of H + q on A⊗B(L2(R)) is identified under Takesaki duality

with the action of translations of x′ on Adc. Since the invariant subalgebra of Adc under the latter action is

simply the original crossed product algebra Acr, we conclude that Acr
∼= (A⊗B(L2(R)))Ĥ . See Appendix

A for more background.
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of the energy becomes q −H ≥ 0. In order to compare to formulas in [26], it is useful to

define x = −q. Then Acr is the algebra {a, H + x} generated by operators a ∈ A along

with H +x; it does not matter if we take H +x or −(H +x) as a generator of the algebra.

In this language, the constraint that the observer has nonnegative energy (which we have

not yet imposed) is

H + x ≤ 0. (2.7)

The trace in the Type II∞ algebra Acr can be described as follows (see [26] for more

detail). In general, an element â ∈ Acr is an A-valued function of H + x. But since

H|ΨdS〉 = 0, when we evaluate a matrix element 〈ΨdS|â|ΨdS〉, we can set H = 0 and view

â as an A-valued function of x, which we will denote as a(x). The trace is then6

Tr â =

∫ ∞
−∞

βdSdx eβdSx 〈ΨdS|a(x)|ΨdS〉. (2.8)

This is well-defined and satisfies Tr âb̂ = Tr b̂â for a certain class of elements â, b̂ ∈ Acr.

It is also positive in the sense that Tr â†â > 0 for all â 6= 0. But it is not well-defined

for all elements; for example, the trace of the identity element of Acr is divergent. The

reason that this happened is that we have implicitly assumed ΨdS to be independent of x.

However, a constant function on R is not square-integrable, so ΨdS extended in this way is

not an element of H⊗ L2(R). Thus the trace defined in eqn. (2.8) is not a “state” of Acr

but a “weight.” Here, a state on an algebra is a linear function â → F (â) that is positive

in the sense that F (â†â) ≥ 0 for all â 6= 0; a weight is precisely the same, except that it is

not defined for all elements of the algebra (it equals +∞ for some elements).

Now we want to impose the constraint that q ≥ 0. To do this, let Θ(q) be the function

that is 1 for q ≥ 0 and 0 for q < 0. Multiplication by Θ(q) is a projection operator Π,

acting on H⊗L2(R). We can incorporate the constraint by just replacing the algebra Acr

with

Â = ΠAcrΠ. (2.9)

In other words, the operators are the same as before, but restricted to act between states

that are in the image of Π. Â can be viewed as a von Neumann algebra acting on the

Hilbert space Π(H⊗ L2(R)) = H⊗ L2(R+). Â automatically comes with a trace, namely

the restriction of the trace on Acr to operators of the form ΠâΠ.

An infinite-dimensional von Neumann algebra that has a trace that takes a finite value

for the identity element is of Type II1. So to show that Â is of Type II1, it suffices to show

that the trace in this algebra takes a finite value for the identity element. The identity

element of Â corresponds to the element Π = Θ(q) = Θ(−H − x) of Acr, so we compute

TrÂ 1 = TrAcr Π =

∫ ∞
−∞

βdSdx eβdSx〈ΨdS|Θ(−H − x)|ΨdS〉 =

∫ 0

−∞
βdSdx eβdSx = 1. (2.10)

6This is essentially eqn. (3.39) in [26], but the variable called X in that equation is βdSx in eqn. (2.8). In

[26], the crossed product algebra was defined by adjoining Hmod +X to the bare algebra A, where Hmod is

the modular Hamiltonian. This is equivalent to adjoining (Hmod +X)/βdS = H +X/βdS. We have defined

the crossed product algebra by adjoining H + x, so the relation is X = βdSx.
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Thus the algebra of observables in de Sitter space including the observer is of Type II1,

and moreover the trace that we have defined is normalized so that Tr 1 = 1.

It is also true on very general grounds that Â = ΠAcrΠ is a factor, meaning that its

center consists only of the complex scalars. In general, if B is a von Neumann algebra that

is a factor and Π is a projection operator in B, then the von Neumann algebra ΠBΠ is also

a factor.7

A Type II1 algebra that is “hyperfinite,” meaning that it can be approximated by

finite-dimensional matrix algebras, is isomorphic to the Murray-von Neumann algebra that

was described in section 1.3. Algebras of local regions in quantum field theory – and their

crossed products with finite-dimensional automorphism groups — are believed to be always

hyperfinite. So we expect that Â is isomorphic to the algebra, described in section 1.3,

that acts on an infinite collection of qubits in an almost maximally mixed state.

As we explained in section 1.3, the trace in a Type II1 algebra is defined for all elements

of the algebra, and it is possible for a state of such an algebra to introduce density matrices

and entropies that share many properties with density matrices and entropies in ordinary

quantum mechanics. We also explained that a Type II1 algebra has a state of maximum

entropy, namely the state with density matrix ρ = 1.

To understand what is the state of maximum entropy in the case of the algebra Â, we

can compute expectation values in this state. First consider an operator a ∈ A. For ρ = 1,

the expectation value of a is

Tr aρ = Tr a =

∫ 0

−∞
βdSdx eβdSx〈ΨdS|a|ΨdS〉 = 〈ΨdS|a|ΨdS〉. (2.11)

On the other hand, consider an operator of the form G(−H−x), where G is some bounded

function. Bearing in mind that H|ΨdS〉 = 0, 〈ΨdS|ΨdS〉 = 1, and x = −q, we get

TrG(−H−x)ρ = TrG(−H−x) =

∫ 0

−∞
βdSdxeβdSx〈ΨdS|G(−H−x)|ΨdS〉 =

∫ ∞
0

βdSdq e−βdSqG(q).

(2.12)

Thus we can think of the maximum entropy state as the ordinary de Sitter state ΨdS of

the quantum fields, tensored with a thermal energy distribution p(q) = βdS e
−βdSq for the

observer. More formally, the maximum entropy state has the following purification: the

Hilbert space is H ⊗ L2(R−) (where R− is the half-line x ≤ 0 and Â acts as described

earlier), and the state is

Ψmax = ΨdS

√
βdS e

βdSx/2. (2.13)

We will discuss this purification further in section 4. Since the maximally entropic state

has density matrix ρmax = 1, we have for any x ∈ Â

Tr x = Tr xρmax = 〈Ψmax|x|Ψmax〉. (2.14)

7The algebra ΠBΠ acts on ΠH, and its center is the intersection of ΠBΠ with its commutant. It is

shown in [47], in statement EP7) proved on p. 21, that the commutant of ΠBΠ is ΠB′, where B′ is the

commutant of B in H. So the center of ΠBΠ is the intersection of ΠBΠ with ΠB′. If B is a factor, which

means that the intersection of B and B′ consists only of C, then the intersection of ΠBΠ and ΠB′ consists

only of multiples of the identity of ΠBΠ, and therefore ΠBΠ is a factor.
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Rényi entropies can be defined as usual as Sα(ρ) = 1
1−α log Tr ρα. Clearly, all Rényi

entropies vanish for the maximally entropic state with ρ = 1; thus, this state is analogous

to a state in ordinary quantum mechanics that has a flat entanglement spectrum, and

therefore has Rényi entropies that are independent of α. That the state ΨdS has a flat

entanglement spectrum was argued by Dong, Silverstein, and Torroba via a Euclidean

path integral and a replica trick [22]. Their reasoning can be extended to include the

observer, as we discuss in section 4.

The flat entanglement spectrum also implies that after coupling to gravity, the sup-

pression of fluctuations in de Sitter space can be understood purely in entropic terms, as

advocated in [10, 11, 14]. Let Λ ∈ Â be a projection operator, and suppose that the ob-

server performs an experiment in which the possible outcomes correspond to Λ and 1−Λ.

In the maximally entropic state with density matrix ρ = 1, the probability of the outcome

corresponding to Λ is pΛ = Tr Λ. After that outcome is observed, the system can be de-

scribed by the density matrix ρΛ = Λ/Tr Λ. The von Neumann entropy of the new density

matrix is S(ρΛ) = −Tr ρΛ log ρΛ = − log(1/Tr Λ), as computed in section 1.3. S(ρΛ) is the

same as the entropy deficit ∆SΛ = S(ρΛ) − S(ρ) associated with the observed outcome,

since S(ρ) = 0. Thus we have arrived at a rather abstract explanation of the relation

pΛ = e∆SΛ (2.15)

that was claimed in [10, 14].

Before imposing the constraints, the time evolution of an operator a ∈ A is defined by

a(t) = eiHtae−iHt. (2.16)

After incorporating the observer and imposing the constraints, we replace a by its dressed

version â = eipHae−ipH . The time evolution of this operator can then be defined by

â(t) = eiHtâe−iHt. (2.17)

Here we could replace eiHt by e−iqt, since â commutes with the constraint H + q. Since

HΨmax = 0, we have, for example,

〈Ψmax|â(t)â′|Ψmax〉 = 〈ΨdS|a(t)a′|ΨdS〉, (2.18)

so the operators â, â′, after imposing the constraints, have the same thermal properties

as the operators a, a′ before imposing the constraints. Thus, even though the state Ψmax

is maximally mixed, correlation functions in this state are thermal at the usual de Sitter

temperature.

2.5 What Is An Observer?

Introducing an observer was necessary to give a sensible result in the preceding analysis, but

may seem artificial. In a satisfactory theory, we are not entitled to introduce an observer

from outside. The observer should be described by the theory.

Our requirement for what an observer should be is quite minimal. The role of the

observer was to help us fix the time translation symmetry of de Sitter space, so an observer
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is any system that can tell time. We chose a simple model in which a complete set of

commuting observables in the observer’s Hilbert space is the Hamiltonian Hobs = q. This

is not necessary; we could endow the observer with additional operators that commute with

Hobs. In fact, our model was unrealistically simple; in a more realistic model, we would at

least want to describe the position of the observer in de Sitter space. However, endowing

the observer with operators that commute with Hobs would not affect the analysis in an

interesting way. Such operators would just go along for the ride.

One can explain as follows the role of the observer in our analysis. Let Ĥ be the

Hilbert space of de Sitter space after imposing the gravitational constraints, as reviewed

in Appendix B. This Hilbert space exists, and there are operators that act on it. But no

operators on Ĥ can be defined just in the static patch. Therefore, rather than all of Ĥ, one

considers a “code subspace” consisting of states in Ĥ in which the static patch contains an

observer with some assumed properties. There are operators in the static patch that are

well-defined on the code subspace, though these operators are not well-defined on all of H.

What we have studied is the algebra of operators in the static patch that act on such a

code subspace.

For a rather non-minimal model of an observer in de Sitter space, we could take the

Local Group of galaxies that are gravitationally bound to the Milky Way. Assuming that

the accelerating expansion of the present universe is the beginning of a phase of exponential

expansion in de Sitter space, within roughly 1011 years galaxies that are not gravitationally

bound to the Milky Way will be behind a cosmological horizon. The Local Group will

persist, with only relatively slow changes, for a time vastly longer than the time scale of

the de Sitter expansion. An analysis similar to what we have presented (but taking into

account the many degrees of freedom of the Local Group) is applicable to a code subspace

of states in which the Local Group is present in de Sitter space.

A minimal modification of the model would be to give the observer a mass m� TdS,

and replace q ≥ 0 with q ≥ m. This, together with appropriate boundary conditions, would

give a rationale for assuming that the observer worldline is localized along the geodesic at

the center of the static patch. The algebra of observables is still of Type II1.

2.6 Gravitational Dressing, and Giving the Observer an Orthonormal Frame

The algebra Â that we have defined for the static patch with an observer present might be

described as an algebra of gravitationally dressed operators. In the static patch of de Sitter

space, there is no region at spatial infinity to which an operator could be gravitationally

dressed, so instead Â is an algebra of operators that have been gravitationally dressed to

the observer.

We only discussed explicitly the group Rt of time translations of the static patch,

and we have not taken into account the second factor in the static patch symmetry group

GP = Rt × SO(D − 1). This second factor is the rotation group of the static patch. Since

the group SO(D − 1) is compact, imposing SO(D − 1) as a group of constraints simply

means requiring that operators should be SO(D − 1)-invariant. Though there is nothing

wrong with this, one loses a great deal of information if one is only able to gravitationally

dress the rotation-invariant operators. As an alternative, we could equip the observer with
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an orthonormal frame, as well as a Hamiltonian. At the classical level, this means that

the phase space of the observer would be not T ∗R+, where R+ is the half-line q ≤ 0,

but T ∗R+ × T ∗SO(D − 1). With such a model of the observer, we would be able to

gravitationally dress all operators in the static patch, not just the ones of zero angular

momentum. The resulting algebra is still of Type II1.

In case the observer is the Local Group of galaxies, as discussed in section 2.5, this

step is unnecessary as the Local Group is not invariant under any nontrivial rotations, so

arbitrary operators in the static patch could be gravitationally dressed to the Local Group.

Equipping the observer with an orthonormal frame, or some other mechanism that

breaks the rotation symmetry, is actually important in section 3, because we will assume

that all operators in A, not just the ones that commute with rotations, can be gravitation-

ally dressed to the observer. Otherwise we would not get the standard relative entropy.

However, for simplicity, the analysis in section 3 is written without introducing an explicit

symmetry-breaking mechanism.

3 A Bulk Formula For The Entropy

We have argued that the operators accessible to an observer in de Sitter space form a

von Neumann algebra Â of Type II1. To a state of such an algebra, one can associate an

entropy. The goal of the present section is to describe a bulk formula for the entropy of a

state of Â that is semiclassical in a sense that we will describe. (This discussion is in close

parallel with a treatment of the black hole in a companion paper [32].)

As in section 2.4, Â = ΠAcrΠ, where Acr is the crossed product algebra generated by

A and H +x and Π is the projection operator Π = Θ(−H −x). Acr can act on the Hilbert

space Ĥ = Π(H⊗ L2(R)), where A, H act on H and x acts on L2(R). We will explain in

section 4 that every state of the algebra Â – that is, every density matrix ρ ∈ Â – can be

purified by a pure state in Ĥ. (We will also explain a natural setup in which Ĥ emerges as

the space of physical states.) For now, we can just think of a choice of a state Φ̂ ∈ Ĥ as a

convenient way to describe a state of the algebra Â.

We will consider states of the form

Φ̂ = Φ⊗ f(x), (3.1)

with Φ ∈ H, f(x) ∈ L2(R). Because of the projection operator Π, it is natural to assume

that the function f(x) has support for x < 0. We assume a normalization condition

〈Φ|Φ〉 = 1 =

∫ 0

−∞
dx |f(x)|2. (3.2)

We want to impose a further condition on f that will ensure roughly that the full spacetime,

including the observer, is a definite semiclassical spacetime in which, when a given event

is occurring, the observer’s clock shows a well-defined time, with the uncertainty in time

being much less than βdS. We recall that, before conjugation by e−ipH , the Hamiltonian

of the observer is Hobs = q = −x. Prior to imposing the constraint q ≥ 0, there is a

self-adjoint operator p conjugate to q with [p, q] = −i, so i[Hobs, p] = −1. This tells us that
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−p is the time told by the observer’s clock; since [e−ipH , p] = 0, this continues to be true in

the conjugated description.8 We would like the observer to be able to measure the times

at which events occur in de Sitter space with a precision much greater than the natural de

Sitter time scale βdS. For this, the function f(x) should be slowly varying. We choose

f(x) = ε1/2g(εx), ε� βdS. (3.3)

where g(x) is a smooth, bounded function with support for x < 0 and ε is a small parameter.

We assume a normalization condition
∫ 0
−∞ dx |f(x)|2 = 1. In a state of this kind, p ≈ 0,

with an uncertainty of order ε. After this state evolves for a time t with Hamiltonian

Hobs = q, it has p ≈ −t, with the same uncertainty. Such a function f(x) is mostly

supported for x ∼ −1/ε � 0, and hence Φ ⊗ f(x) is approximately invariant under the

projection operator Π = Θ(−H − x). So we can view Φ̂ = Φ ⊗ f(x) as an element of

Ĥ = Π(H⊗ L2(R)).

An important and slightly perplexing detail is that the maximum entropy state Ψmax =

ΨdS ⊗
√
βdSe

βdSx/2 is not a semi-classical state in this sense; in this state, p has an uncer-

tainty of order βdS. The following analysis of the density matrix of a state of the form Φ̂

therefore does not apply to Ψmax. (The density matrix of Ψmax is the identity operator, as

explained in section 2.4.)

To compute the entropy of the state Φ̂, we will first find an approximate formula for

its density matrix ρ
Φ̂

and then evaluate the von Neumann entropy S(ρ
Φ̂

) = −Tr ρ
Φ̂

log ρ
Φ̂

.

Let ΨdS ∈ H be the natural Bunch-Davies state, and let ∆ΨdS
: H → H be its modular

operator for the algebra A. To slightly shorten the formulas in the following derivation,

we will write just Ψ and β for ΨdS and βdS.

We have ∆Ψ = e−hΨ where hΨ (which was called Hmod in section (2.2)) is often called

the modular Hamiltonian. We will also need the corresponding relative modular operator

∆Φ|Ψ : H → H for the algebra A and the states Φ and Ψ. This operator is defined by

∆Φ|Ψ = S†Φ|ΨSΦ|Ψ, where SΦ|Ψ is the relative Tomita operator, which is antilinear and

satisfies SΦ|ΨaΨ = a†Φ, for a ∈ A. From this it follows that9

〈Ψ|∆Φ|Ψa|Ψ〉 = 〈Ψ|S†Φ|ΨSΦ|Ψa|Ψ〉 = 〈Ψ|S†Φ|Ψa
†|Φ〉 = 〈Φ|a†|Φ〉 = 〈Φ|a|Φ〉, a ∈ A. (3.4)

We write ∆Φ|Ψ = e−hΦ|Ψ , where hΦ|Ψ is the relative modular Hamiltonian.

The desired density matrix ρ
Φ̂

is supposed to satisfy

〈Φ̂|â|Φ̂〉 = Tr ρ
Φ̂
â, â ∈ Â. (3.5)

But Tr ρ
Φ̂
â = 〈Ψmax|ρΦ̂

â|Ψmax〉, according to eqn. (2.14). So the condition we want is

〈Ψmax|ρΦ̂
â|Ψmax〉 = 〈Φ̂|â|Φ̂〉. (3.6)

8Once one takes into account the constraint q ≥ 0, a self-adjoint operator p obeying [p, q] = −i does not

exist, so quantum mechanically, a clock whose energy is bounded below cannot tell time perfectly. But it

can tell time very well, for a long period. For example, p can be defined for states whose support is away

from q = 0, so p is approximately well-defined for any state that is supported mostly away from q = 0, such

as the states considered in the text.
9In the step 〈Ψ|S†Φ|Ψa

†|Φ〉 = 〈Φ|a†|Φ〉, we use the fact that SΦ|Ψ is antilinear and SΦ|Ψ|Ψ〉 = |Φ〉.
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There is an obvious similarity between eqns. (3.4) and (3.6), suggesting that ρ
Φ̂

can

be constructed in a simple way by modifying ∆Φ|Ψ to include x. In doing so, we have to

remember that as well as satisfying (3.6), ρ
Φ̂

is supposed to be an element of Â (or possibly

an unbounded operator affiliated to Â, meaning that bounded functions of ρ
Φ̂

are in Â).

The operator x is not an element of Â, but a general bounded function of x+hΨ/β is in Â.

Also, ∆Φ|Ψ itself is not affiliated to Â, but as we will discuss shortly, e−βx∆Φ|Ψ is affiliated

to Â.

Taking these facts into account, one can find an approximation to the density matrix:

ρ
Φ̂

=
1

β
f(x+ hΨ/β)e−βx∆Φ|Ψf(x+ hΨ/β) +O(ε). (3.7)

First of all, the operator O = f(x+ hΨ/β)e−βx∆Φ|Ψf(x+ hΨ/β) is manifestly self-adjoint

and non-negative. The operators f(x+ hΨ/β), f(x+ hΨ/β) are elements of Â, since they

are bounded functions of x+ hΨ/β. We have

e−βx∆Φ|Ψ = e−(βx+hΨ)+(hΨ−hΦ|Ψ). (3.8)

One term in the exponent is the algebra generator βx+hΨ. To understand the other term,

we use the Connes cocycle, defined as

uΦ|Ψ(s) = ∆is
Φ|Ψ∆−is

Ψ = ∆is
Φ∆−is

Ψ|Φ. (3.9)

The important properties of uΦ|Ψ(s) for our purposes are that for real s it is valued in

A, and that the two formulas for uΦ|Ψ(s) are in fact equal. See for example section 6

of [48]. Differentiating the first formula for uΦ|Ψ(s) with respect to s at s = 0, we learn

that hΨ − hΦ|Ψ is affiliated to A. So the operator in eqn. (3.8) is affiliated with Â. The

equivalence between the two formulas in eqn. (3.9) implies, again by differentiating with

respect to s at s = 0, that

hΦ|Ψ − hΨ = hΦ − hΨ|Φ. (3.10)

In verifying eqn. (3.6), we will make use of the fact that f(x) is slowly varying, which

implies that f(x+hΨ/β) approximately commutes with ∆Φ|Ψ. Hence instead of eqn. (3.7),

we can equivalently write

ρ
Φ̂

=
1

β
|f(x+ hΨ/β)|2e−βx∆Φ|Ψ +O(ε). (3.11)

It suffices to verify eqn. (3.6) for â = aeiu(βx+hΨ), a ∈ A, u ∈ R, since any element of

Â can be approximated by a sum of such operators. We have chosen the state f(x) of the

observer’s clock so that |p| . ε. But multiplication by eiuβx shifts p by −uβ. As a result,

the left and right hand sides of eqn. (3.6) vanish exponentially unless |u| . ε/β, so we can

restrict to that range of u. We have

〈Φ̂|â|Φ̂〉 =

∫ 0

−∞
dx |f(x)|2〈Φ|aeiu(hΨ+βx)|Φ〉. (3.12)
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For |u| . ε/β, we can drop the factor eiuhΨ , with an error of order ε. Once this is done,

the integrand in eqn. (3.12) involves a matrix element 〈Φ|a|Φ〉 with a ∈ A. Hence we can

use eqn. (3.4), giving

〈Φ̂|â|Φ̂〉 =

∫ 0

−∞
dx |f(x)|2eiuβx〈Ψ|∆Φ|Ψa|Ψ〉. (3.13)

Since hΨ|Ψ〉 = 0, we can move any function of x inside the matrix element and replace x

by x+ hΨ/β:

〈Φ̂|â|Φ̂〉 =

∫ 0

−∞
dx
〈
Ψ
∣∣ |f(x+ hΨ/β)|2∆Φ|Ψâ

∣∣Ψ〉 . (3.14)

Multiplying and dividing by βeβx, we get

〈Φ̂|â|Φ̂〉 =

∫ 0

−∞
dxβeβx

〈
Ψ

∣∣∣∣ 1β |f(x+ hΨ/β)|2e−βx∆Φ|Ψâ

∣∣∣∣Ψ〉 (3.15)

=

〈
Ψmax

∣∣∣∣ 1β |f(x+ hΨ/β)|2e−βx∆Φ|Ψâ

∣∣∣∣Ψmax

〉
.

Comparing to eqn. (3.11), this establishes the claimed formula for the density matrix.

The entropy is S(ρ
Φ̂

) = −Tr ρ
Φ̂

log ρ
Φ̂

= −〈Φ̂| log ρ
Φ̂
|Φ̂〉. Because f(x) is slowly varying

and supported mostly at large |x|, in evaluating log ρ
Φ̂

, we can approximate f(x+ hΨ/β)

by f(x). We get then

− log ρ
Φ̂

= hΦ|Ψ + βx− log |f(x)|2 + log β. (3.16)

The entropy then is

S(ρ
Φ̂

) = 〈Φ|hΦ|Ψ|Φ〉+

∫ 0

−∞
dx|f(x)|2(βx− log |f(x)|2 + log β). (3.17)

= 〈Φ|hΦ|Ψ|Φ〉+ 〈Φ̂|βx|Φ̂〉+

∫ 0

−∞
dx|f(x)|2(− log |f(x)|2 + log β).

It is convenient, however, to use the identity of eqn. (3.10). Since 〈Φ|hΦ|Φ〉 = 0, we get

S(ρ
Φ̂

) = −〈Φ|hΨ|Φ|Φ〉+ 〈Φ̂|hΨ + βx|Φ̂〉+

∫ 0

−∞
dx|f(x)|2(− log |f(x)|2 + log β). (3.18)

We now want to show that this formula, which has been derived based on rather

abstract considerations, agrees with what one would expect from gravity. To be more

precise, since the entropy of a Type II1 algebra is a renormalized entropy whose definition

involves a subtraction, we will only reproduce the expected results from gravity up to an

overall additive constant, independent of the state. One can think of this constant as the

entropy of the maximum entropy state, which in the Type II1 algebra is defined to be 0.

First of all, following Bekenstein [1], the generalized entropy of a horizon is defined as

Sgen =
A

4GN
+ Sout, (3.19)
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Figure 2. In this diagram, the “exterior” region for a given cut of the future horizon is the region

to the right of, and spacelike separated from, the given cut. In the case of a cut along the surface

B – the intersection of the past and future horizons of the static patch P – the exterior region is

simply P . What is exterior to a later cut of the future horizon is a smaller spacetime region, such

as the example shaded in black.

where A is the horizon area and Sout is the entropy of the fields exterior to the horizon. To

be more exact, one can evaluate this formula for any spacelike surface that is a codimension

1 “cut” of the horizon. Sgen is then supposed to be the entropy (including gravitational

entropy) of the region exterior to (and spacelike separated from) the given cut. In the case

of de Sitter space, if we choose the cut to be the “bifurcate horizon” B (the intersection

of past and future horizons, sketched in fig. 2), then Sgen is expected to be the entropy of

the static patch. If we choose a later cut, then Sgen is an entropy of a smaller spacetime

region, as also illustrated in the figure.

The generalized entropy for different horizon cuts can be compared by an elegant

formula [33]. A particularly simple and useful case of this formula compares Sgen(B), the

generalized entropy of the bifurcate horizon B, to Sgen(∞), the limit of the generalized

entropy as the horizon cut goes to future infinity. In this case, the formula reads10

Sgen(B) = Sgen(∞)− Srel(Φ||Ψ). (3.20)

Here Srel(Φ||Ψ) is the relative entropy between a state Φ of the bulk fields and the natural

de Sitter state Ψ = ΨdS. The state ΨdS (or the Hartle-Hawking state, in the case of a black

hole) enters the derivation because its modular Hamiltonian generates time translations,

which act as boosts of the horizon, leaving fixed the cut B.

To compare these formulas, the first step is to observe that one term in eqn. (3.17) is

the relative entropy in eqn. (3.20):

− Srel(Φ||Ψ) = 〈Φ| log ∆Ψ|Φ|Φ〉 = −〈Φ|hΨ|Φ|Φ〉. (3.21)

This is indeed Araki’s formula for relative entropy in the general context of von Neumann

algebras [50]. In the present discussion, Φ and Ψ are states of the underlying Type III1

10We elaborate upon the derivation of this formula in a companion paper [32].
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algebra A of quantum fields in de Sitter space, and Araki’s formula for relative entropy

is essentially the only one available. In the more familiar case of an algebra of Type

I, with states Ψ,Φ corresponding respectively to density matrices σ, ρ, one can show that

−〈Φ| log ∆Ψ|Φ|Φ〉 = Tr ρ log ρ−Tr ρ log σ, where the last formula is a possibly more familiar

definition of relative entropy.11

So to reconcile our formula (3.18) with the expected result (3.20), we need

Sgen(∞)
?
= 〈Φ̂|hΨ + βx|Φ̂〉+

∫ 0

−∞
dx|f(x)|2(− log |f(x)|2 + log β) + constant, (3.22)

where we include in the formula an additive constant which is not captured by the Type

II1 algebra. Of course, the generalized entropy in the far future is supposed to be

Sgen(∞) =
A(∞)

4GN
+ Sout(∞), (3.23)

where A(∞) and Sout(∞) are the horizon area and the entropy outside the horizon in the

far future.

Because of the exponential expansion of de Sitter space, typical perturbations cross the

horizon and disappear from the static patch in a time of order β. Hence after a few times

β, the static patch contains an observer in empty de Sitter space. It follows that Sout(∞)

is just the entropy of the observer. In our model, we have attributed to the observer

no property except an energy, and therefore the entropy of the observer comes only from

fluctuations in energy. We can interpret the term
∫ 0
−∞ dx|f(x)|2(− log |f(x)|2+log β) on the

right hand side of eqn. (3.22) as the entropy in the observer’s energy fluctuations. The time

at which this entropy is measured does not matter, since in the model, the observer energy

Hobs = q = −x is a conserved quantity. So we identify
∫ 0
−∞ dx|f(x)|2(− log |f(x)|2 + log β)

as Sout(∞).

It remains to understand the term 〈Φ̂|hΨ +βx|Φ̂〉 in the formula for the entropy. Recall

that the conjugation by e−ipH mapped Hobs = q = −x to −x−H. It follows that

〈Φ̂|hΨ + βx|Φ̂〉 = −β〈Hobs〉. (3.24)

To complete the analysis, one needs the fact that the presence in the center of the static

patch of an object of energy E, assuming that E is small enough that one can work to

linear order in E, reduces Ahor/4GN , where Ahor is the area of the cosmological horizon, by

βE [14]. In four dimensions, for example, the Schwarzschild-de Sitter metric for the case of

an object of energy E at the center of the static patch is ds2 = −f(r)dt2 + 1
f(r)dr2 +r2dΩ2,

with

f(r) = 1− 2GE

r
− r2

r2
dS

, (3.25)

where the de Sitter radius is rdS = β/2π. The cosmological horizon is at the zero of f(r)

that approaches rdS for E → 0. This is at

rhor = rdS −GE +O(E2). (3.26)

11The equivalence of the two formulas for relative entropy in the case of an algebra of Type I is shown,

for example, in section 4.3 of [49]. (See footnote 16 of that paper for the conventions used there for the

relative modular operator.)
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The horizon area is Ahor = 4πr2
hor, so

Ahor

4GN
=
πr2

dS

GN
− 2πErdS +O(E2) =

πr2
dS

GN
− βE +O(E2). (3.27)

This shows the claimed shift −β〈Hobs〉 in the entropy of the horizon due to an object at

the center of the static patch.

We can therefore interpret the term −β〈Φ̂|q|Φ̂〉 = −β〈Hobs〉 in eqn. (3.22) as Ahor/4GN
or more precisely as the shift in Ahor/4GN due to the presence of the observer.

4 Hilbert Spaces

4.1 More On Type II Algebras and Hilbert Spaces

We have described an algebra AP of observables that governs the experiences of an observer

in the static patch P of de Sitter space. From the point of view of an observer in P , the

state of the universe is entirely summarized by a density matrix ρ ∈ AP . This observer

has no way to know what there is outside of P .

However, if we make a global model of the whole de Sitter space X, then we can

construct a Hilbert space Ĥ that describes the whole universe. This will give a purification

of the density matrix ρ. In general, a state Ψ ∈ Ĥ governs observations both in the static

patch P and in the complementary static patch P ′. In this section, we will analyze the

Hilbert spaces that result from different assumptions about what is in the patch P ′.

But first we will make a few general remarks about Hilbert space representations and

density matrices. As a preliminary, instead of the two static patches P and P ′, let us

consider ordinary quantum systems A and B with Hilbert spaces HA and HB that are

respectively of dimension n and m. The combined system AB has a tensor product Hilbert

space HAB = HA⊗HB of dimension nm. If and only if n = m, any density matrix of either

system is the reduced density matrix of a pure state of the combined system. If n > m,

then any density matrix of system B can be realized by a pure state of the combined

system, but this is not true for system A. For n > m, the maximum entropy of a density

matrix of system A that comes from a pure state of the combined system is logm. This is

less than the entropy log n of a maximally mixed state of system A by an “entropy deficit”

∆S = log n − logm = log 1/d, where d = m/n. If instead d > 1, the roles of systems A

and B are reversed, and B has an entropy deficit log d.

All of this has a precise analog for an algebra A of Type II1. The role of d is played by

the “continuous dimension” of Murray and von Neumann, which as explained in section

1.3 classifies the representations of A on a Hilbert space. Here d is a positive real number

or infinity. When A acts on a Hilbert space, its commutant A′ is of Type II1 unless d =∞,

in which case it is Type II∞.

For d = 1, we can assume that the Hilbert space H is a copy of the algebra A itself.

The inner product on H is defined by (x, y) = Tr x†y, for x, y ∈ H. The action of A on H is

described by x→ ax, for a ∈ A, x ∈ H. The commutant of A is another algebra A′ that can

be described as follows. For any a ∈ A, there is an element a′ ∈ A′, acting on H by right

multiplication, x→ xa′. (A′ is actually the “opposite algebra” to A, with multiplication in
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the opposite order: (ab)′ = b′a′.) Let Ψ ∈ H be any pure state. To find the reduced density

matrix ρ for the algebra A, we compute (Ψ|a|Ψ) = (Ψ, aΨ) = Tr Ψ†aΨ = Tr aΨΨ†, where

we used the cyclic property of the trace. So ρ = ΨΨ†. Similarly we can find the density

matrix of the same state for the algebra A′. In this case, (Ψ|a′|Ψ) = (Ψ|Ψa′) = Tr Ψ†Ψa

and therefore the density matrix is σ = Ψ†Ψ.

The formulas ρ = ΨΨ†, σ = Ψ†Ψ show that by taking Ψ = ρ1/2 or Ψ = σ1/2, we can

get an arbitrary density matrix ρ or σ of algebra A or algebra A′ as the reduced density

matrix of a pure state Ψ ∈ H. The same formulas also imply that Tr ρn = Trσn, for any

n, so the von Neumann and Rényi entropies of ρ and σ are always equal. All this is as in

ordinary quantum mechanics.

To get a Hilbert space representation of A with d < 1, we can pick a projection operator

Π ∈ A of trace d. Then, viewing Π an an element of A′, we project onto the subspace

HΠ ⊂ H consisting of states ΨΠ, Ψ ∈ H. The algebra A acts on the left on HΠ as before.

Its commutant consists of operators Πa′Π, acting on the right by ΨΠ → ΨΠa′Π. These

operators make an algebra Ã′ = ΠA′Π, which is also of Type II1. The element Π ∈ A′ is

the identity in Ã′. It is usual in an algebra of Type II1 to define a normalized trace such

that the trace of the identity element is 1. For the algebra Ã′, the normalized trace is

T̃r Πa′Π =
1

Tr Π
Tr Πa′Π. (4.1)

Clearly T̃r Π = 1.

An example of a normalized state in HΠ is Ψ = Π/(Tr Π)1/2. Using the property

Π2 = Π of a projection operator, one finds that the density matrix of algebra A for this

state is ρ = ΨΨ† = Π/Tr Π. The entropy of this density matrix is

S(ρ) = − log(1/Tr Π) = − log(1/d), (4.2)

as we computed in section 1.3. The normalized density matrix of the same state for the

algebra Ã′ is simply σ = Π, with entropy

S(σ) = −T̃rσ log σ = 0. (4.3)

Thus, as in ordinary quantum mechanics, for d < 1, there is a pure state of the system,

namely Π ∈ HΠ, which has maximum entropy for the second algebra Ã′, but has an

entropy deficit log(1/d) for A.

Now let us consider a general state Ψ = xΠ ∈ HΠ, with x ∈ A. For Ψ to be normalized,

we need

(Ψ,Ψ) = Tr x†xΠ = 1. (4.4)

By similar calculations to those that we have already considered, the density matrix of the

state Ψ for the algebra A is ρ = xΠx†, which satisfies (Ψ|a|Ψ) = Tr aρ, for all a ∈ A. For

Πa′Π ∈ Ã′, we get (Ψ|Πa′Π|Ψ) = Tr Πx†xΠa′ = Tr Π T̃r Πx†xΠa′. Therefore the density

matrix of the same state for Ã′ is

σ = (Tr Π)Πx†xΠ. (4.5)
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These formulas for ρ and σ lead to Trσn = (Tr Π)nTr ρn for any n, and therefore T̃rσn =

(Tr Π)n−1 Tr ρn. Differentiating with respect to n at n = 1 to compute S(ρ) = −Tr ρ log ρ,

S(σ) = −T̃rσ log σ, we get

S(ρ) = S(σ)− log(1/Tr Π) = S(σ)− log(1/d). (4.6)

We already know that the state Ψ = Π has the maximum entropy of any state in HΠ for the

algebra Ã′, namely 0, so this formula shows that the same state has the maximum entropy

of any state in HΠ for the algebra A, namely − log 1/d. Thus, similarly to what happened

in ordinary quantum mechanics, the maximum entropy state in HΠ has an entropy deficit

log 1/d for the algebra A.

As in ordinary quantum mechanics, exchanging the two algebras A and A′ has the

same effect as replacing d with 1/d, so we will not consider separately the case d > 1.

The case that is symmetrical between the two algebras is d = 1. This suggests that

if we place in P ′ an observer identical to the observer in P , we might get a Hilbert space

representation with d = 1. We will begin with this case, and show that it does lead to

d = 1. As in the preceding discussion, examples with d 6= 1 can then be constructed by

simply acting with a projection operator in one of the two algebras. The case that there is

no observer in P ′ turns out to be troublesome, and we will only be able to offer a conjecture

about what happens in this case.

4.2 An Observer in the Second Patch

In section 2.4, we started with a Hilbert space H that describes quantum fields in de Sitter

space, with the constraints ignored. The important constraint operator was the operator

H that generates future-directed time translations of the static patch P , and past-directed

time translations of the complementary patch P ′. Then we introduced an observer in P

with canonical variables p, q, and a Hamiltonian Hobs = q, with q ≥ 0. We now extend this

construction to an identical observer in the complementary static patch P ′. This observer

has canonical variables p′, q′ and Hamiltonian H ′obs = q′, again with q′ ≥ 0. The combined

Hilbert space, ignoring the Hamiltonian constraint, is therefore now H ⊗ Hobs ⊗ H′obs,

where p, q act on the Hilbert space Hobs of the observer in P , and p′, q′ act on the Hilbert

space H′obs of the observer in P ′. For example, we can represent q and q′ as multiplication

operators and set p = −i∂/∂q, p′ = −i∂/∂q′, or we can represent p, p′ by multiplication

and q, q′ by differentiation. We will, to begin with, ignore the conditions q, q′ ≥ 0, and

impose those conditions at the end by acting on the Hilbert space and the algebras with

suitable projection operators.

The constraint operator of the combined system is the total Hamiltonian of the bulk

system plus the two observers:

Ĥ = H +Hobs −H ′obs = H + q − q′. (4.7)

The reason for the minus sign multiplying H ′obs is that H generates past-directed time

translations in the patch P ′; indeed, H is odd under the exchange of the two patches, and

the extended constraint operator Ĥ has the same property.
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We essentially already know from section 2.4 how to describe the algebras of the two

patches. The observer in patch P , if we ignore the constraint, has access to an algebra

A of operators on H, and also to the operators p, q on Hobs. The combined algebra is

A⊗ B(Hobs), where B(Hobs) is the algebra of all bounded operators on Hobs. Taking the

constraint into account at the level of observables just means replacing A⊗B(Hobs) with

its Ĥ-invariant part. Relative to section (2.4), the constraint now has an extra contribution

q′, but since this operator commutes with A ⊗ B(Hobs), that makes no difference. Hence

the invariant subalgebra of A ⊗ B(Hobs) is the same as it was before; it is generated by

eipHae−ipH for a ∈ A, along with q. Schematically, the invariant algebra is

A∗P = {eipHae−ipH , q}, a ∈ A. (4.8)

The reason for the ∗ in A∗P is that we have not yet imposed the conditions q, q′ ≥ 0; when

those conditions are imposed, we will drop the ∗. The fact that A∗P is not affected by

the presence of an observer in the patch P ′ is a special case of the fact that an observer

in patch P does not know what is in P ′. Similarly, before imposing the constraint, the

algebra of the complementary patch P ′ is A′ ⊗B(H′obs), where A′ is the commutant of A
acting on H. Imposing the constraint means replacing A′ ⊗ B(H′obs) with its Ĥ-invariant

part, which is generated by e−ip′Ha′eip′H , a′ ∈ A′, along with q′. Schematically

A∗P ′ = {e−ip′Ha′eip′H , q′}, a′ ∈ A′. (4.9)

The algebras A∗P and A∗P ′ obviously commute.

However, we want to impose the constraint Ĥ not just on the operators but on the

Hilbert space H ⊗ Hobs ⊗ H′obs. It is straightforward to impose a compact group G of

constraints on a Hilbert space: one just restricts to the G-invariant subspace of Hilbert

space. However, that does not work well for constraints that generate a noncompact group.

To understand why, let us consider a simplified case in which the constraint that we wish

to impose is just q′. There is no Hilbert space of states annihilated by q′, since a state

annihilated by q′ must be proportional to δ(q′) and is not normalizable. Our problem is

not that different, because −Ĥ = e−ip′(H+q)q′eip′(H+q) is conjugate to q′. In the case of a

constraint Ĥ that generates a noncompact group (here the group of time translations of the

static patch), rather than requiring a physical state Ψ to satisfy ĤΨ = 0, it is often better

to impose an equivalence relation Ψ ∼= Ψ+Ĥχ for any χ. The equivalence classes are called

coinvariants, and often one can define a Hilbert space of coinvariants even though there is

no Hilbert space of invariants. The space of coinvariants has a natural interpretation in

BRST quantization. This is discussed in detail in Appendix B, but for the present case of

a single constraint, we will give a brief explanation here. In the case of a single constraint

Ĥ, the BRST complex is defined by introducing a single ghost operator c and a single

antighost operator b, satisfying c2 = b2 = 0, {c, b} = 1. These operators can be realized

on a pair of states | ↓〉, | ↑〉, respectively of ghost number 0 and 1, satisfying | ↑〉 = c| ↓〉,
|↓〉 = b|↑〉. The BRST operator is Q = cĤ. The BRST cohomology is defined as the space

of states Ψ̂ with QΨ̂ = 0 modulo the equivalence relation Ψ̂ ∼= Ψ̂ + Qχ̂. The cohomology

of ghost number 0 consists of states Ψ̂ = Ψ|↓〉 annihilated by Q. The equivalence relation
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is vacuous for states of ghost number 0, since there are no states at ghost number −1. The

condition QΨ̂ = 0 is equivalent to ĤΨ = 0, so the BRST cohomology at ghost number 0 is

the space of invariants. At ghost number 1, we have Ψ̂ = Ψ|↑〉 for some Ψ. The constraint

QΨ̂ = 0 is vacuous, since there are no states of ghost number 2, and the equivalence relation

Ψ̂ ∼= Ψ̂ + Qχ̂ becomes Ψ ∼= Ψ + Ĥχ. So the BRST cohomology at ghost number 1 is the

space of coinvariants.

The present problem is actually a typical example in which one wants to work with

the space of coinvariants. Represent p′ by multiplication, and q′ by q′ = i∂/∂p′, and define

a map from H⊗Hobs⊗H′obs to H⊗Hobs as follows. View an element Ψ ∈ H⊗Hobs⊗H′obs

as a function Ψ(p′) that is valued in H⊗Hobs. For such a Ψ, define TΨ ∈ H ⊗Hobs by

TΨ =

∫ ∞
−∞

dp′ eip′(H+q)Ψ(p′). (4.10)

Integration by parts shows that the map Ψ → TΨ is invariant under Ψ → Ψ + Ĥχ, with

Ĥ = H + q − i∂/∂p′. So T gives a map from the space of coinvariants to H ⊗Hobs, and

this map is in fact an isomorphism. So the space of coinvariants can be identified with12

H ⊗ Hobs, and this is the desired Hilbert space Ĥ∗ (on which we still have to impose

q, q′ ≥ 0). Of course, we could have made a similar construction with the role of the two

observers exchanged, and then we would have identified Ĥ∗ with H⊗H′obs.

It remains to determine how the algebras A∗P and A∗P ′ act on Ĥ∗. By definition, any

operator x in either A∗P or A∗P ′ commutes with Ĥ and therefore with the BRST operator

Q; hence x makes sense as an operator on the BRST cohomology at ghost number 1, and

therefore, on the space of coinvariants. Since we have identified the space of coinvariants

with Ĥ∗ = H⊗Hobs via the map T , there is a unique operator x̂ on Ĥ∗ such that x̂TΨ =

T (xΨ), and this is the operator by which x acts on Ĥ∗.
When we carry out this procedure for A∗P , nothing happens. T commutes with the

operators p, q,H , and a ∈ A from which A∗P is constructed. So as an algebra of operators

on Ĥ∗, A∗P = {eipHae−ipH , q}, a ∈ A, exactly as in eqn. (4.9). What happens to A∗P ′ is

more interesting, since the definition of A∗P ′ in eqn. (4.9) involves operators q′, p′ that are

eliminated when we identify Ĥ as H⊗Hobs. We find

T (e−ip′Ha′eip′HΨ) = a′TΨ (4.11)

and

T (q′Ψ) = (H + q)TΨ. (4.12)

So as an algebra of operators on Ĥ, A∗P ′ is generated by a′ ∈ A′ along with H + q:

A∗P ′ = {a′, H + q}, a′ ∈ A′. (4.13)

What we have arrived at in eqns. (4.9) and (4.13) is the usual picture of two commuting

crossed product algebras acting on H⊗L2(R), with q as a multiplication operator on L2(R).

12This explanation is slightly oversimplified. As in Appendix B, the coinvariants have to be defined in

a space of functions of p with compact support (or rapidly vanishing at infinity) rather than in a Hilbert

space, and after defining the space of coinvariants, one then takes a completion to get a Hilbert space. The

result of a more careful analysis is as stated in the text.
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The same construction appears in analyzing a black hole [26]. We will reconsider the black

hole in section 5.

As in section 2.4, to put A∗P in a standard form, we conjugate by e−ipH and define

x = −q, leading to

A∗P = {a, H + x}, a ∈ A (4.14)

and

A∗P ′ = {e−ipHa′eipH , x}, a′ ∈ A′. (4.15)

Here

p = −i
∂

∂q
= i

∂

∂x
. (4.16)

We still have to impose the conditions q, q′ ≥ 0, which now become H + x ≤ 0 and

x ≤ 0. So we introduce projection operators Π ∈ A∗P , Π′ ∈ A∗P ′ , defined by Π = Θ(−H−x),

Π′ = Θ(−x). Then finally we define the physical Hilbert space in the presence of observers

of nonnegative energy by projection

Ĥ = ΠΠ′Ĥ∗. (4.17)

Similarly the physical algebras of the two static patches are

AP = ΠA∗PΠ, AP ′ = Π′A∗P ′Π′. (4.18)

The projection operators Π ∈ A∗P , Π′ ∈ A∗P ′ become the identity operators in AP , AP ′ .
We already defined the algebra AP in section 2.4. We showed it to be of Type II1

and studied its normalized trace. Since the construction is symmetric between the two

algebras, AP ′ is also of Type II1, and we expect that Ĥ has continuous dimension 1 as a

representation of AP or of AP ′ . This is equivalent to saying that the maximum entropy

state of either algebra, with density matrix 1, can be realized by a pure state Ψ ∈ Ĥ. The

appropriate state, namely Ψmax = ΨdS

√
βdSe

βdSx/2Θ(−x), was already described in section

2.4 (eqn. (2.13)). The difference between the present discussion and the previous one is

that in section (2.4), H ⊗ L2(R−) = Π(H ⊗Hobs) was introduced arbitrarily as a Hilbert

space in which the maximum entropy density matrix of the algebra AP can be purified.

Now, instead, we have shown that after a further projection by Π′, Π(H⊗Hobs) becomes

the physical Hilbert space for the case that there are identical observers in the two patches.

The further projection by Π′ does not affect the analysis of the density matrix of the state

Ψmax for the algebra AP , since Π′ leaves Ψmax invariant and commutes with AP .

As an interesting variant of this, we can consider the case that the complementary

patch P ′ contains an observer that is not isomorphic to the observer in P . As one simple

option, we can assume that the Hamiltonian H ′obs = q′ of the second observer is bounded in

the range a ≤ q′ ≤ b. We do not have to assume that a ≥ 0, but it is physically natural to

do so. Moreover, in that case, the projection operator onto states with a ≤ q′ ≤ b, namely

Π′[a,b] = Θ(b − q′)Θ(q′ − a) = Θ(b + x)Θ(−x − a), is an element of the algebras AP ′ . The

computation of Tr Π′[a,b] proceeds precisely as in eqn. (2.10), except that the integral over

x goes over the range −b ≤ x ≤ −a:

Tr Π′[a,b] =

∫ −a
−b

βdSdx eβdSx = e−βdSa − e−βdSb. (4.19)
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This illustrates the assertion that a projection operator in a Type II1 algebra can have any

trace between 0 and 1, as discussed in section 1.3.

In the presence of an observer in the patch P ′ with energy bounded in the range

a ≤ q′ ≤ b, the Hilbert space becomes Ĥ[a,b] = Π Π′[a,b]Ĥ
∗. The algebra AP is unaffected,

but we now have AP ′ = Π′[a,b]A
∗
P ′Π

′
[a,b]. As a representation of AP , Ĥ now has continuous

dimension d = Tr Π′[a,b]. As explained in section 4.1, the maximum possible entropy of a

pure state in Ĥ[a,b], given that this Hilbert space has continuous dimension d < 1 for the

algebra AP , is

SP,max = − log(1/d) (4.20)

for the algebra AP , and SP ′,max = 0 for AP ′ . A normalized state that has the maximum

possible entropy for each algebra is

Ψmax,[a,b] =
1√

Tr Π′[a,b]

Π′[a,b]Ψmax. (4.21)

The physical meaning of the entropy reduction in the patch P is that as we have

removed some qubits from the patch P ′, there is no state in Ĥ[a,b] that describes complete

entanglement of all degrees of freedom in P with anything in P ′. On the other hand, the

the state Ψmax,[a,b] describes complete entanglement of everything in P ′ with something in

P .

4.3 No Observer in the Second Patch

If we try to repeat this analysis without assuming the presence of an observer in the static

patch, we run into immediate difficulty.

We found in section 4.2 that, assuming there is an observer in the complementary

patch P ′, we can incorporate the constraints at the level of Hilbert space states by simply

omitting the Hilbert space H′obs of this second observer. Whether there is an observer in

the patch P was not important in this argument. In other words, if one assumes that there

is an observer in P ′ but none in P , then the map T defined in eqn. (4.10) makes sense as

an isomorphism between the space of coinvariants in H⊗H′obs and H. So in this case, the

physical Hilbert space on which A∗P ′ acts should be just Ĥ = H.

Since the definition of the map T would make sense with the roles of P and P ′ ex-

changed, we also seem to learn that if there is an observer in P and none in P ′, the algebra

A∗P should act on Ĥ = H. However, this is not the case. Recall from eqn. (4.13) that,

as an algebra of operators on Ĥ, A∗P ′ is generated by a′ ∈ A′ and H + q. For the same

reason, the action of A∗P on H should now be generated by a ∈ A and H. As we established

earlier, for any representation Ĥ of A∗P , the commutant algebra A∗P
′ should be a Type II

von Neumann algebra. But the reason that we introduced an observer in the patch P in

the first place is that on the Hilbert space H of quantum fields in de Sitter space, there

are no operators (except c-numbers) that commute with both A and H. So H cannot be

a representation of A∗P .

We do not have a definitive resolution of this puzzle, but we will offer a conjecture.
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To motivate the conjecture, we start with this question. How much less do we expect

the maximum entropy to be if there an observer in P but none in P ′, relative to the case

of identical operators in each of the two patches?

To motivate an answer, let us discuss the corrections to the entropy SdS of de Sitter

space. According to Gibbons and Hawking [3], in leading order SdS = A/4GN , where A

is the area of the cosmological horizon. They obtained this result by evaluating the path

integral for the Euclidean version of de Sitter space, which is simply a sphere. In the

approximation of keeping only factors that depend exponentially on GN , the result is e−I ,

where I = −A/4GN is the classical action. Gibbons and Hawking interpreted this as eSdS ,

giving SdS = A/4GN .

A more precise evaluation of the Euclidean path integral would then be expected to give

a better approximation to SdS. For our purposes, what is relevant is an extremely simple

correction13 to the original calculation that shifts the entropy by a multiple of logGN . In

general, consider a gauge or gravitational theory with a classical action proportional to 1/λ,

where λ is a coupling parameter. In such a theory, consider a family of classical solutions

that depends on r parameters, and assume that the generic element of the family is invariant

under an s-dimensional group F of gauge symmetries. Then the contribution of this family

to the path integral is proportional to λ−
1
2

(r−s) (times e−I , with I the action). In the case

of gravity, we can use this formula with λ = GN . As a solution of Einstein’s equations

with positive cosmological constant, de Sitter space does not depend on any moduli, so

this is a case with r = 0. On the other hand, the de Sitter group GdS = SO(D + 1) is a

group of symmetries of this solution, so s = dimGdS. So a slightly more precise formula

for the Euclidean path integral of de Sitter space is e−IG
dimGdS/2
N . Equating this with eS ,

one finds a logarithmic correction to the de Sitter entropy

SdS =
1

4GN
− dimGdS

2
log(1/GN ) + · · · , (4.22)

where the omitted terms are of order 1 for GN → 0. This logarithmic correction can be

found in eqn. (1.4) of [21] and more explicitly (for some values of D) in eqn. (1.12) of that

paper.

Now assume that a particular static patch P has been selected by some sort of boundary

condition or partial gauge-fixing (see section 4.4) that explicitly breaks GdS down to the

symmetry group of P . This group is GP = R × SO(D − 1), where R is the group of time

translations of P , and SO(D − 1) is the group of rotations. So the logarithmic correction

to the entropy is now −1
2 (1 + dim SO(D − 1)) log(1/GN ).

What will happen to the maximum possible entropy if we include an observer in the

patch P , and nothing in P ′? In this case, we expect no increase in the maximum possible

entropy, since in the maximally entropic state of de Sitter space, all modes in P ′ are fully

entangled. Adding something to P without adding anything to P ′ does not increase the

maximum possible entanglement entropy, which is limited by what there is in P ′. So we

expect that if an observer is added in P only, the logarithmic correction to the entropy is

13The closest analog of this correction for a black hole would appear in the normalization of the measure

for integration over the time-shift mode.
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unchanged and remains −1
2(1 + dim SO(D − 1)) log(1/GN ). On the other hand, suppose

we add an observer in P ′ who is identical to the observer in P . Then the two observers can

be maximally entangled. A calculation similar to the Gibbons-Hawking calculation but

including the entangled pair of observers is discussed in section 4.4. Intuitively, without

getting into details, we should expect that with the observers present, time translations

should not be interpreted as a group of unbroken gauge transformations, because time

translations act on the degrees of freedom of the observers. However, unless we equip each

observer with an orthonormal frame (this option was discussed in section 2.6), rotations

are still a group of gauge symmetries. So we expect that the logarithmic correction in the

presence of the pair of entangled observers will be just −1
2dim SO(D − 1) log(1/GN ). In

other words, omitting an observer from the patch P ′ reduces the maximum entropy by
1
2 log(1/GN ), up to a remainder that is finite for GN → 0.

With this in mind, let us go back to the question of what is the appropriate Hilbert

space Ĥ if there is an observer in the patch P and none in the patch P ′. This Hilbert

space is expected to admit an action of the Type II1 algebra AP . It therefore can be

characterized by a continuous dimension d, and, if d < 1, the maximum entropy state of

AP that can be realized by a pure state in Ĥ has an entropy deficit log(1/d), as we learned

in section 4.1. Since the entropy deficit that we expect as a result of having no observer in

P ′ is 1
2 log(1/GN ), we are led to conjecture that

d ∼ G1/2
N . (4.23)

If this is the correct answer, then it is not surprising that we do not get a sensible

answer when we apply the analysis of section 4.2 to the case of an observer in only one

patch, because our analysis only suffices to determine the limit of d for GN → 0, and eqn.

(4.23) says that this limit is the forbidden value d = 0. If eqn. (4.23) is correct, some sort

of quantum correction is needed in order to get a sensible result. Possibly it is important

to take into account fluctuations in the horizon.

4.4 Euclidean Approach

Here we will generalize the Euclidean approach to the de Sitter entropy [3] to include a

completely entangled pair of observers. The Euclidean approach as traditionally developed

computes a function that is called the “entropy” without including an observer; however,

it is entirely unclear in what sense the function that is computed actually is an entropy.

By including an observer in the Euclidean description, we can describe a calculation that

is similar in spirit to the original one [3] and that gives a similar answer (with a different

coefficient for the logarithmic correction), but does have a clear interpretation in terms of

entropy.

With our assumption that an observer is described by operators p, q and Hamiltonian

H = q, the observer can be described in Lorentz signature by an action
∫

dτ(pq̇−q), where

τ is proper time measured along the observer’s worldline. In Euclidean signature, this

becomes
∫

dτ(−ipq̇ − q).
The Euclidean version of de Sitter space is a sphere SD. We assume that the path

integral for de Sitter space containing an entangled pair of observers is dominated by a
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Figure 3. A sphere SD – drawn here for D = 2 – with a closed geodesic γ, the Euclidean worldline

of the observer.

saddle point in which spacetime is SD with a round metric, and the observer worldline is

a simple closed geodesic γ ⊂ SD (fig. 3). The circumference of γ is βdS, the inverse of the

de Sitter temperature.

In this situation, if we “cut” SD on a plane of symmetry that is orthogonal to the

worldline γ, and continue to Lorentz signature, then we get a Lorentz signature picture

with a pair of observers, one in a static patch P and one in the complementary patch P ′.

We expect these two observers to be maximally entangled in a thermofield double state,

since in the Euclidean picture they are connected by a finite length worldline.

In Lorentz signature, a particular static patch P can be selected by imposing a bound-

ary condition on the observer’s worldline at past and future infinity. In Euclidean signature,

there is no asymptotic region in which a boundary condition can be imposed. Instead, we

select a particular closed geodesic γ ⊂ SD by partial gauge-fixing, reducing the symmetry

group GdS of de Sitter space to the symmetry group of a particular geodesic, which is the

same as the symmetry group GP of a particular static patch. Taking this into account, the

coefficient of the logarithmic correction discussed in section 4.3 is reduced from −1
2dimGdS

to −1
2dimGP .

Apart from this, in the leading approximation for small GN , the path integral that

we have to do factors as the product of a gravitational path integral, studied originally by

Gibbons and Hawking [3] and in much more detail recently [21], and a path integral for

the observer.

The path integral of the observer is∫
Dp(τ)Dq(τ) exp

(∮
γ

dτ

(
ip

dq

dτ
− q
))

. (4.24)

We do first the path integral over p. This gives a delta function δ(dq/dτ). This delta

function has two consequences.

First, in doing the path integral over q, we can treat q as a constant. The action for

the case that q is constant is βdSq, so the measure in the integration over the zero-mode of

q is e−βdSq. Bearing in mind that in analyzing the algebra in section (2.4) we set x = −q,
this factor is eβdSx. We have seen this factor before. The pure state with maximum entropy

for the algebra AP of the static patch P was Ψmax =
√
βdSe

βdSx/2ΨdS. In a Type I context,
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such a state would lead to a density matrix proportional to eβdSx, although in the usual

formalism for Type II algebras, this exponential factor is in the definition of the trace (eqn.

(2.8)) rather than in the density matrix (which is ρ = 1 for the maximally entropic state).

But the delta function has another and more troublesome consequence. For any peri-

odic function q(τ), we have
∮
γ dτ dq

dτ = 0. Therefore the delta function δ(dq/dτ) that came

from the integral over p contains a factor δ(0). Concretely, this factor comes from the

integral over the constant mode of p. Formally an infinite factor δ(0) in the path integral

increases the logarithm of the path integral, which is the de Sitter entropy, by an infinite

additive constant.

We argued in section 4.3 that adding an entangled pair of observers in the patches

P and P ′ increases the maximum possible entropy not by an infinite amount but by an

amount of order 1
2 log GN . To get this answer, we would like to replace the factor δ(0) that

came from the path integral over p by a factor 1/G
1/2
N . How can we do this?

By taking the Hamiltonian of the observer to be simply H = q, we have given a

continuous spectrum to the observer and therefore it is natural that incorporating a pair

of entangled observers can increase the maximum entanglement entropy by an infinite

amount, accounting for the δ(0). Thus from this point of view, to replace δ(0) by 1/G
1/2
N ,

we should replace the continuous spectrum of the observer by a discrete spectrum with a

level spacing of order G
1/2
N .

A simple way to do this is to replace the Hamitonian H = q of the observer by

H = GNp
2 +q, which does indeed lead to a level spacing of order G

1/2
N . If we add this term

to the Hamiltonian, then the action likewise has an extra term GN
∮
γ dτ p2(τ). For small

GN , this has no important effect in the preceding calculation except to replace the δ(0)

that came from the integral over the constant mode of p with a factor 1/G
1/2
N . Moreover,

it seems that a GNp
2 term in the Hamiltonian of the observer would have played little role

elsewhere in this article, since all of our considerations have involved the limit GN → 0.

Although it may be true that adding a term GNp
2 to the Hamiltonian of the observer

makes a better model, there are two things that make us reluctant to propose this as a

solution to the problem with the δ(0). First, it is not clear to us on physical grounds why

one should assume that the observer has a level spacing of order G
1/2
N . Second, it is not

clear that adding this term to the Hamiltonian of an observer would help in addressing the

possibly related puzzle that we ran into in section 4.3, where it was difficult to understand

the continuous dimensions of the physical Hilbert space in the case that there is an observer

in only one of the two complementary patches. Something more subtle may be needed to

deal properly with both the δ(0) and the continuous dimension.

5 Revisiting the Black Hole

In this section, we will revisit the Type II∞ algebra of observables exterior to a black hole

horizon. One goal is to simplify the arguments that have been presented previously, and

formulate them in a way that is not limited to the case of negative cosmological constant.

A second goal is to explain that the black hole can be treated quite similarly to the way

that we have analyzed de Sitter space in the present article.
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Figure 4. The Penrose diagram of the maximally extended asymptotically flat Schwarzschild

spacetime. The left and right exteriors are the unshaded regions labeled ` and r; the left and right

regions at spatial infinity are labeled L and R. The shaded regions are behind past and future

horizons. S is a bulk Cauchy hypersurface, chosen so that it can be decomposed as a union of

portions in regions ` and r.

For illustration, we will primarily focus on the maximally extended Schwarzschild

solution in an asymptotically flat spacetime. However, our arguments apply equally well

for AdS Schwarzschild, and we will briefly turn to this setting to discuss the boundary

interpretation of the Type II∞ algebra.

We work in a semiclassical limit in which the Schwarzschild radius rS of the black hole

is held fixed, while Newton’s constant GN → 0. This means that the mass of the black

hole is very large.

5.1 The Type II∞ algebra

Let Y be the maximally extended Schwarzschild spacetime (fig. 4), and let ` and r denote

the left and right exteriors in Y (L and R will denote left and right spatial infinity).

Consider first ordinary quantum field theory in the curved spacetime Y . This theory has

a Hilbert space H0, and Type III1 algebras A`,0 and Ar,0 of observables in the left and

right exterior. The algebras A`,0 and Ar,0 are factors (their centers consist only of complex

scalars), and they are each other’s commutants.

The spacetime Y has a Killing vector field V that generates time translations. V is

future-directed in the right exterior and past-directed in the left exterior. In the quantum

theory constructed on Y by expanding around the black hole solution, there is a conserved

quantity ĥ associated to V . If S is a bulk Cauchy hypersurface, then

ĥ =

∫
S

dΣµV νTµν , (5.1)

where Tµν is the energy-momentum tensor of the bulk fields (including the energy-momentum

pseudo-tensor of the bulk gravitational fluctuations). The operator ĥ has an interpretation

in modular theory (or Tomita-Takesaki theory) that is related to the thermal nature of

the black hole. Let ΨHH be the Hartle-Hawking state of the quantum fields on Y [38, 39].

Then the modular operator of the state ΨHH for the algebra Ar,0 is ∆ = exp(−Hmod)
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where Hmod, known as the modular Hamiltonian, satisfies Hmod = βĥ, with β the inverse

of the Hawking temperature [41, 42].

As in fig 4, one can choose the hypersurface S to pass through the codimension 2

intersection of the left and right horizons. It can then be split as a union S = S` ∪ Sr of

portions to the left and right of the horizon. Having done so, it is tempting to define left

and right bulk Hamiltonians14

hr =

∫
Sr

dΣµV νTµν

h` = −
∫
S`

dΣµV νTµν , (5.2)

and then

ĥ = hr − h`. (5.3)

However, this does not work, because the fluctuations in hr and h` are divergent. A modular

Hamiltonian of a Type III algebra never has a splitting as in eqn. (5.3). By contrast, for

algebras of Type I or Type II, there is always such a splitting. As we shall see, adding

gravity will lead to a splitting of ĥ and to a Type II∞ algebra.

In the limit GN → 0, local fluctuations of the gravitational field can be treated as

just one more field propagating on Y . Specifically, for GN → 0, the graviton becomes a

massless spin 2 free field, which can be quantized in the usual way. However, adding gravity

also introduces additional modes that are not related to local excitations. This is perhaps

most obvious in the case of JT gravity in two dimensions. There are no local excitations

at all. Nevertheless, JT gravity has a two-dimensional phase space, which was analyzed

in detail in [51], for example. The phase space consists by definition of modifications of

the geometry along a Cauchy hypersurface S that satisfy natural boundary conditions at

infinity, modulo those that can be eliminated by a diffeomorphism of the full spacetime

that is trivial at infinity. One such mode is the black hole energy, which in JT gravity is

the same whether it is measured in the left or right asymptotic region. In other words, in

JT gravity, the left and right Hamiltonians are equal, HL = HR. The second mode in JT

gravity is more subtle; it involves a shift in the times tL and tR measured at infinity along

S on the left and on the right. In other words, a localized perturbation of the geometry

along S can have the property that it can be eliminated by a diffeomorphism, but only by

a diffeomorphism that acts nontrivially at infinity, shifting the times tL and tR measured

along S in the left and right asymptotic regions. Since the Schwarzschild spacetime has a

time translation symmetry that shifts tL and tR by equal and opposite amounts, only the

sum ∆ = tL + tR is well-defined; thus there is only one mode of this kind.

The time-shift ∆ is not measureable by an observer on either the left or right side

of the black hole, so it is not part of the algebra of observables in either exterior region.

In JT gravity, the algebras of gauge-invariant observables accessible on the left or right

regions outside the horizon are generated, respectively, by HL and HR. In particular, these

algebras are abelian, and the two algebras coincide, since HL = HR. This is quite different

14The reason to define h` with a minus sign is that V is past-directed in the left region.
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from the situation in ordinary quantum field theory, where the left and right algebras A`,0
and Ar,0 are factors and their intersection consists only of multiples of the identity.

For Schwarzschild black holes above two dimensions, the time-shift mode is still present,

and there are additional modes of a somewhat similar nature that represent a relative ro-

tation between the two asymptotic boundaries. Taking these modes into account, the full

Hilbert space in a Schwarzschild spacetime, including perturbative gravitational fluctua-

tions around the Schwarzschild background, is

H ∼= H0 ⊗ L2(Rt)⊗ L2(SO(D − 1)), (5.4)

where L2(Rt) and L2(SO(D−1)) are respectively the spaces of square-integrable functions

of the time-shift ∆ and of the relative rotation. We give an alternative derivation of this

result – making clear the close analogy with the Hilbert space of two observers in de Sitter

space – in Section 5.2 below. Of the three factors in H, the first, namely H0, by itself,

admits the action of natural Type III algebras in the left and right exterior regions, just

as in ordinary quantum field theory in a Schwarzschild background. Our main goal here

is to explain that properly including the second factor L2(Rt) turns the Type III algebras

into algebras of Type II∞. The third factor L2(SO(D − 1)) describes the possibility that

the Schwarzschild black hole can acquire spin and become a Kerr black hole. (To be more

precise, a slowly rotating black hole can be described by a wavefunction in L2(SO(D− 1)),

but if the black hole rotation is not sufficiently slow, one must instead use the nonlinear

Einstein equations and the full Kerr solution.) This third factor does not affect the nature

of the algebra, and so we will henceforth ignore it for simplicity.

To analyze the algebra of observables in the right exterior region, it is convenient to

use the time translation symmetry of the Schwarzschild solution to fix tR = 0 and therefore

∆ = tL. Having made this choice, the coordinate system at spatial infinity in the right

exterior is completely fixed. Therefore, it is possible to gravitationally dress bulk operators

to the right asymptotic region. To gravitationally dress bulk operators to the left exterior

region, we would instead choose tL = 0, ∆ = tR.

Time translations of the left and right boundaries are generated by the ADM Hamil-

tonians HL and HR. We aim to construct an algebra of observables for the right exterior

region in the limit GN → 0. In that limit, HL and HR diverge, simply because the black

hole mass M0 = rS/2GN diverges. It is convenient, therefore, to define subtracted Hamil-

tonians

hL = HL −M0, hR = HR −M0 (5.5)

that have limits for GN → 0.

The operator hL generates shifts of tL. We can make a unitary transformation to

reduce to the case that hL acts only on tL, hL = i ∂
∂tL

, since if instead hL = i ∂
∂tL

+ XL

where XL acts on H0, we can remove XL by conjugating with exp(itLXL), and thereby

reduce to hL = i ∂
∂tL

.

The conserved charge ĥ associated to the time translation symmetry of the full space-

time is related to the right and left ADM Hamiltonians by

ĥ = HR −HL = hR − hL. (5.6)
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The algebra Ar of operators in the right exterior is generated by the algebra Ar,0 of QFT

operators in the right exterior, together with the subtracted right ADM energy hR = hL+ĥ.

Since hL commutes with everything in Ar,0, while ĥ generates the modular automorphism

group of Ar,0, this is the crossed product of Ar,0 by the modular automorphism group of

ΨHH , and hence is a Type II∞ algebra.

The algebra A` of operators in the left exterior is generated by the subtracted left ADM

energy hL, together with eitLĥA`,0e−itLĥ. The conjugation of the left exterior QFT algebra

A`,0 by eitLĥ is necessary because we chose a gauge where operators that act solely on H0

are implicitly dressed to the right boundary, and hence are not local to the left exterior.

Conjugating by eitLĥ shifts this gravitational dressing to the left boundary. Explicitly, one

can check that [
eitLĥA`,0e−itLĥ, hL + ĥ

]
= 0 , (5.7)

and hence eitLĥA`,0e−itLĥ commutes with right-boundary time translations. Indeed, the

algebra A` is the commutant of Ar, as desired.

5.2 Isometries and Gauge Constraints

We now give an alternative derivation of the Hilbert space and algebra described above

that makes the analogy with the de Sitter construction manifest. The isometry group of the

asymptotic boundary of the Schwarzschild spacetime Y includes two copies of Rt that act

separately as time translations of the left and right boundaries.15 Gauge transformations

of the asymptotic boundary are physical degrees of freedom. Hence, before imposing any

gauge constraints, we have an “extended Hilbert space”

Hext ∼= H0 ⊗ L2(Rt)L ⊗ L2(Rt)R .

Here, H0 describes the state of the bulk quantum fields, L2(Rt)L describes timeshifts of

the left asymptotic boundary, and L2(Rt)R describes the timeshifts of the right asymptotic

boundary. Just as in section 5.1, up to conjugation, the left and right subtracted ADM

Hamiltonians act solely on L2(Rt)L and L2(Rt)R as hL = i∂tL and hR = i∂tR respectively.

The (extended) right exterior algebra consists of

Aext
r
∼= Ar,0 ⊗B

(
L2(Rt)R

)
, (5.8)

with the left exterior algebra defined analogously.

Note that these are almost the same algebras and Hilbert space that we found for

de Sitter space with two observers in section 4.2, before imposing the gauge constraints.

The only difference is that the subtracted ADM energies hL and hR, unlike the observer

energies, do not need to be positive.16 Instead, hL and hR can take any real values in the

semiclassical limit, because of the large constant rS/2GN that has been subtracted when

15For simplicity, we omit two copies of SO(D− 1) whose inclusion would lead to the relative orientation

mode in (5.4). We also omit certain asymptotic symmetries such as translations that do not interact with

the gauge constraints in an interesting way.
16In fact, as we shall see, the analogous constraint to the positivity of the observer energies in de Sitter

would be a finite upper bound on the subtracted ADM energies hL and hR.
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defining them. As in section 2.4, in the absence of a bound on hL and hR, the physical

algebras will be of Type II∞ rather than Type II1.

The final step in deriving those algebras is to impose the isometry group of the full

Schwarzschild spacetime as a set of gauge constraints. The relevant isometry group con-

sists of a single copy of Rt. Because this isometry acts nontrivially at the asymptotic

boundary, the correct constraint is not that the bulk isometry generator ĥ annihilates all

physical states, but rather that the generator is equal to the corresponding generator in

the asymptotic isometry group. In this case, the constraint is exactly (5.6), namely

ĥ = hR − hL (5.9)

This is the same constraint that we found for observers in de Sitter, except that the energy

of the observers has been replaced by minus the subtracted ADM energies.

The problem of how to incorporate such a constraint on the Hilbert space was already

discussed in section 4.2. It leads to the elimination of one of the two factors of L2(Rt).
The physical algebra of operators in the right exterior consists of the invariant subalge-

bra of the extended algebra of operators Aext
r given in eqn. (5.8). This algebra is generated

by hR together with eitRĥAr,0e−itRĥ. Operators eitRĥAr,0e−itRĥ are bulk operators that have

been dressed to the right boundary. Similarly the algebra Aext
r is generated by hL together

with e−itLĥAl,0eitLĥ. In the extended Hilbert space description, no operators that act solely

on H0 are gauge-invariant; any gauge-invariant operator must be dressed to either the right

or the left boundary (or to some combination of the two).

5.3 Boundary Interpretation

If the Schwarzschild spacetime Y is replaced by AdS-Schwarzschild, then the discussion

above is completely unchanged. However in this case we know that the bulk gravity theory

has a holographic dual. This holographic dual has an associated parameter N , such that

the GN → 0 limit corresponds to N → ∞. At finite GN , the left and right boundary

algebras are Type I. We will see that the Type II∞ algebras describe a particular large N

limit of these Type I algebras.

Let us first understand the boundary interpretation of the Hilbert space H described

in (5.4). For the purposes of illustration, it is helpful to consider the state

|Ψ̃〉 =

∫
dtf(t) |ΨHH(t)〉 ,

where |ΨHH(t)〉 = exp(ihLt) |ΨHH〉 is a timeshifted version of the Hartle-Hawking state.

In other words, |Ψ̃〉 is the product of |ΨHH〉 ∈ H0 with some function f(t) ∈ L2(Rt) that

describes a state of the the time-shift mode. The holographic dictionary tells us that the

boundary dual of hL is HL−M0, where HL is the left boundary Hamiltonian, and the dual

of |ΨHH〉 is the thermofield double state

|ΨTFD〉 =
∑
i

e−βEi/2 |i〉L |i〉R , (5.10)
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where the sum is over all energy eigenstates |i〉. Hence

|Ψ̃〉 =
∑
i

∫
dtf(t)ei(Ei−M0)t−βEi/2 |i〉L |i〉R =

∑
i

f̃(Ei −M0)e−βEi/2 |i〉L |i〉R . (5.11)

In other words, |Ψ̃〉 is dual to a variant of the thermofield state, with finite energy fluctu-

ations that are controlled by the Fourier transform f̃(Ei −M0) of f(t).

Note that to construct the thermofield double state itself we would need to have f(t) =

δ(t). Since δ(t) 6∈ L2(Rt), the large N limit of |ΨTFD〉 does not lie in H. Indeed, in

the strict N → ∞ limit, the left and right boundary algebras of any Hilbert space that

contains the thermofield double cannot be Type I or II, because the fluctuations in the

modular Hamiltonian of the state |ΨTFD〉 diverge at large N . If one instead works in a

perturbative expansion in 1/N , then the thermofield double state can be described by a

Gaussian wavefunction for the timeshift mode where the energy fluctuations are of order

N and hence ∆t = O(1/N) [26].

What about states in H where the QFT degrees of freedom are not in the Hartle-

Hawking state? The holographic dictionary tells us that QFT operators in the large N

limit are dual to single-trace boundary operators. In fact, the full Hilbert space H is

spanned by states that can be constructed using finite products of single-trace operators

from states of the form (5.11). This is discussed in detail in [32]. The algebras associated

to the left and right exteriors are generated by the subtracted Hamiltonians HL/R −M0

and single-trace boundary operators.

From a boundary perspective, it is not so surprising that these algebras are Type II,

and hence have a finite renormalized trace. At finite N , operators whose matrix elements

decay sufficiently rapidly at large energy will have a finite Hilbert space trace. For simple

operators that are tightly peaked in energy in a finite window around M0, this trace should

diverge at large N as exp(SBH) times some N -independent constant. The Type II algebra

trace simply divides out the divergent constant exp(SBH), and keeps the finite piece.
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A Crossed Product and Takesaki Duality

For the convenience of the reader, we recall here a few basic facts on the structure of Connes

and Takesaki’s crossed product of a von Neumann algebra by a group action. The crossed

product construction is analogous to the semi-direct product in group theory. We refer to

[52, 53] for a complete exposition.

Crossed product. Let M be a von Neumann algebra on a Hilbert space H, G a locally

compact group, and α an action of G on M ; by changing the representation, we may

assume that α is implemented by a unitary action U of G on H, namely α = AdU . The

crossed product M̂ = M oα G of M by α is the von Neumann algebra on H⊗ L2(G)

M̂ = {x⊗ 1, u(g) : x ∈M, g ∈ G}′′ (A.1)

(double commutant), where u(g) = U(g) ⊗ λ(g), with λ the left translation unitary rep-

resentation of G on L2(G). Namely, M̂ is the von Neumann algebra generated by M ⊗ 1

and u(g), g ∈ G. Note that Ad u = α on M . The construction of M̂ does not depend on

the choice of the unitary implementation U of α, up to a natural isomorphism.

Let β : G→ AutM be another action. We shall say that α and β are cocycle equivalent

if there exists a unitary α-cocycle g ∈ G 7→ w(g) ∈ M , namely w(gh) = w(g)αg(w(h)),

w(·) continuous map with w(g) unitary, such that βg(x) = w(g)αg(x)w(g)∗. If α and β are

cocycle equivalent, there exists a natural isomorphism

{M oα G, α̂} ' {M oβ G, β̂} ; (A.2)

this isomorphism is the identity on M and maps u(g) to w(g)u(g).

Dual system. In the following, we assume that G is abelian, denote by Ĝ the dual group

and by 〈p, g〉, p ∈ Ĝ, g ∈ G, the duality pairing between Ĝ and G. In the particular, if

G = R, we have Ĝ = R and 〈s, t〉 = eits.

Let V be the unitary representation of Ĝ on L2(G), with V (p) the multiplication by

〈p, ·〉 on L2-functions. Then v = 1⊗ V implements the action α̂ of Ĝ on M̂ given by

α̂p(x) = x, α̂p(u(g)) = 〈p, g〉u(g), g ∈ G, p ∈ Ĝ, x ∈M, (A.3)

(with the identification x = x ⊗ 1) called the dual action. The α̂-fixed point subalgebra

M α̂ is M :

M = {x ∈ M̂ : α̂p(x) = x, p ∈ Ĝ}. (A.4)

Let
̂̂
M = M̂ oα̂ Ĝ be the crossed product of M̂ by α̂. Then M̂ is the ̂̂α-fixed point algebrâ̂

M
̂̂α

of
̂̂
M :

M̂ = {x ∈ ̂̂M : ̂̂α(x) = x}. (A.5)

Takesaki duality. Takesaki duality shows the isomorphism of the dynamical systems

{̂̂M, ̂̂α} ' {M ⊗B(L2(G)), α⊗Adλ} (A.6)
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(Adλ is the action on B(L2(G)) implemented by λ), namely M ⊗B(L2(G)) is isomorphic

to
̂̂
M with an isomorphism that interchanges α⊗Adλ with with ̂̂α. Therefore(

M ⊗B(L2(G))
)α⊗Adλ 'M oα G . (A.7)

Dominant and integrable actions. Recall that M is properly infinite if M contains a type

I∞ factor (for example, if M is of type III); equivalently, if M is isomorphic to M ⊗F with

F a type I∞ factor.

By definition, the action α on M is dominant if Mα is properly infinite and

{M,α} ' {M ⊗B(L2(G)), α⊗Adλ} (A.8)

(isomorphism of dynamical systems). Then

α dominant =⇒ Mα is isomorphic to M̂ . (A.9)

α is dominant iff there exist unitaries z(p) ∈M , p ∈ Ĝ (Borel family) such that

αg(z(p)) = 〈p, g〉z(p), g ∈ G, p ∈ Ĝ. (A.10)

The dual action is always dominant. Every action α is cocycle equivalent to a dominant

action β.

The action α is said to be integrable if the linear span of{
x ∈M+,

∫
G
α(x) dg <∞

}
(A.11)

is weakly dense in M . Every dominant action is integrable. If G is compact, every action

is integrable. Moreover:

α integrable =⇒ Mα is isomorphic to a reduced von Neumann subalgebra of M̂ ,

(A.12)

namely Mα ' eM̂e for some projection e of M̂ .

Weights, operator-valued weights, dual weights. A normal, faithful, semifinite (n.f.s.)

weight ϕ on M is a map M+ → [0,+∞] (the extended positive real numbers), with M+

the cone of positive elements of M , such that

ϕ(x+ y) = ϕ(x) + ϕ(y), ϕ(ax) = aϕ(x), x, y ∈M+, a ≥ 0 , (A.13)

with supϕ(xi) = ϕ(supxi) for every bounded, increasing nets {xi} in M+ (normality),

ϕ(x) = 0 =⇒ x = 0, x ∈ M+ (faithfulness), and the linear span M0 of the x ∈ M+ such

that ϕ(x) <∞ is dense in M (semifiniteness). ϕ can be extended by linearity to all M0.

If N ⊂M is a von Neumann subalgebra, a n.s.f. operator valued weight E : M+ → Ñ+

is defined similarly as in (A.13), with Ñ the extended positive part of N+ (see [52] for the

definition of Ñ+), with the property

E(n∗xn) = n∗E(x)n , x ∈M+, n ∈ N . (A.14)
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The notion of operator-valued weight, due to Haagerup, generalises the notion of condi-

tional expectation.

Let M̂ = M oα G be as above. Then

T (x) =

∫
Ĝ
α̂p(x) dp , x ∈ M̂+ , (A.15)

defines a n.f.s. operator-valued weight T : M̂+ → M̃+.

Every n.f.s. weight ϕ of M , in particular every normal, faithful state ϕ on M , has a

canonical lift to a n.f.s. weight ϕ̂ on M̂ given by

ϕ̂ = ϕ · T ; (A.16)

ϕ̂ is called the dual weight of ϕ.

Note that, if G is not discrete, ϕ̂(u(t)) is not defined; however, formally, ϕ̂(u(t)) = 0,

t 6= 0. For example, if G = Z, then an element X of M̂ has a Fourier series expansion (in

some topology) with Fourier coefficients xn ∈M , so

X =
∑
n

xnu(n) and ϕ̂(X) = x0. (A.17)

If G = R, this is formally true: if X =
∫
x(t)u(t) dt, with x(t) a “good” M -valued function,

then ϕ̂(X) = ϕ(x(0)).

Note also that, if M = C, then M̂ is L∞(R) and ϕ̂ is the mean in Fourier trans-

form, namely ϕ̂(λ(f)) = f(0), say for a smooth, compactly supported f , where λ(f) =∫
f(s)λ(s)ds.

Crossed product by the modular group. We now specialise the above discussion to the case

G = R and the action α is given by the modular group σϕ of a faithful normal state ϕ on

M (the discussion may be generalized to the case of n.f.s. weights). Thus

M̂ = M oσϕ R . (A.18)

By the Connes cocycle Radon-Nikodym theorem, the modular groups associated with dif-

ferent states are cocycle equivalent, therefore M̂ does not depend on the choice of the state

ϕ, up to a natural isomorphism.

We may define the action γ of R on M̂ by setting

γs(x) = σϕs (x), x ∈M, γs(u(t)) = u(t), s, t ∈ R, (A.19)

indeed γs = Adu(s) on M̂ . It turns out that γ is the modular group σϕ̂ of the dual weight

ϕ̂ of ϕ on M̂ . So sϕ̂ is inner. Thus, there exists a trace τ on M̂ (a n.f.s. weight τ such

that τ(z∗xz) = τ(x) for all unitaries z ∈ M̂ and x ∈ M̂+) given by

τ(·) = ϕ̂(ρ−1·) , (A.20)

where u(t) = ρit; ρ is affiliated to M̂ , the density matrix of ϕ̂ with respect to τ . Therefore,

M̂ is semifinite.
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With ϑ = σ̂ϕ the dual action of σϕ on M̂ , we have ϑs(u(t)) = eitsu(t), so ϑs(ρ) = esρ,

therefore

τ · ϑs = e−sτ , (A.21)

namely ϑ is a trace scaling action on M̂ .

If M is a type III von Neumann algebra, then M̂ is a type II∞ von Neumann algebra.

If M is a type III1 factor, then M̂ is a II∞ factor.

Let x ∈ M and f a Borel function on R such that
∫
e−s|f(s)|ds < ∞. Since ρit =

U(t)⊗ λ(t), we have

τ(xf(log ρ)) = ϕ̂(xρ−1f(log ρ)) = ϕ(T (xρ−1f(log ρ))) (A.22)

= ϕ(x)T (ρ−1f(log ρ)) = ϕ(x)

∫
e−sf(s)ds.

In particular, if f is the characteristic function of [0,∞), the projection e = f(log ρ) has

finite trace: τ(e) =
∫∞

0 e−sds = 1 <∞.

B The Hilbert Space of Coinvariants

In this appendix, we will review the construction [34, 35] of a physical Hilbert space for

quantum fields coupled to gravity in de Sitter space, in the limit G → 0. Then we will

explain how the construction can be naturally placed in the language of BRST cohomology.

B.1 Constraints and Group Averaging

First, we recall the construction of a Hilbert space for a quantum field in de Sitter space

X, in the absence of gravity [16–20]. For illustration, we consider the case of a free scalar

field φ of mass m, with action

I = −1

2

∫
dDx

√
det g

(
gij∂iφ∂jφ+m2φ2

)
. (B.1)

φ obeys the massive Klein-Gordon equation(
−gijDiDj +m2

)
φ = 0. (B.2)

By ΨdS, we mean a state with Gaussian correlations in which the one-point function 〈φ(x)〉
vanishes, and the two-point function 〈φ(x)φ(y)〉 is determined by analytic continuation

from Euclidean signature. A Hilbert space H that provides an irreducible representation

of the canonical commutation relations of the field φ and contains such a state ΨdS can be

constructed in an essentially unique way. For this, we observe first that H must contain

states obtained by acting on ΨdS with any number of φ fields. So H must contain states

Ψf =

∫
dx1dx2 · · · dxnf(x1, x2, · · · , xn)φ(x1)φ(x2) · · ·φ(xn)|ΨdS〉 (B.3)

where f(x1, x2, · · · , xn) is any compactly supported function of an n-plet of points17 x1, x2, · · · ,
xn ∈ X. Let H0,n be the space generated by all such states Ψf , where f depends on n

17Since Wightman functions are distributions in Lorentz signature, there is no need to require that the

points x1, · · · , xn be distinct.
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points, and let H0 = ⊕∞n=0H0,n. The vector ΨdS that we started with is an element of

H0,0 ⊂ H0. Having specified the correlation functions of the field φ in the state ΨdS, we

immediately know what should be the inner products of states in H0. For Ψf1 ∈ H0,n,

Ψf2 ∈ H0,m, we define

〈Ψf1 ,Ψf2〉 =

∫
dx1 · · · dx′mf1(x1, · · · , xn)f2(x′1, · · · , x′m)〈ΨdS|φ(xn) · · ·φ(x1)φ(x′1) · · ·φ(x′m)|ΨdS〉.

(B.4)

These integrals always converge, because f1 and f2 were defined to have compact support.

With this inner product, inH0 there are many null vectors; for example, if f = (−gijDiDj+

m2)f̃ for some function f̃ of compact support, then Ψf is a null vector, because of the Klein-

Gordon equation satisfied by φ. Taking the quotient of H0 by its null vectors, we get a

space H1 that has all the properties of a Hilbert space except completeness. Its Hilbert

space completion is the Hilbert space H of the massive scalar field in de Sitter space.

Now let us try to couple to gravity, in the limit GN → 0. After turning on gravity,

we cannot just consider the fluctuations of matter fields; we have to also construct a

Hilbert space of small fluctuations in the metric. This does not change the picture in a

qualitative way. What does qualitatively change the picture is that in the presence of

gravity, one wishes to impose the symmetry group GdS as a group of constraints. This is

subtle. Naively, for GdS to be a group of constraints means that states should be GdS-

invariant. So one’s first thought is to impose the constraints by restricting from H to its

GdS-invariant subspace HGdS . However, there are actually no GdS-invariant vectors in H
except multiples of ΨdS. The definition of H started with a space H0 constructed using

a function f of compact support on the product of n copies of X. The compact support

condition trivially means that such states cannot be GdS-invariant for n > 0. To define H,

we then took a completion, so that states in H are not necessarily derived from functions

of compact support. Nevertheless, states in H are never GdS-invariant. One can define

a vector space of GdS-invariant states Ψf , where f(x1, x2, · · · , xn) is GdS-invariant, but

there is no way to define an inner product on the space of such states, since the necessary

integral never converges.

Therefore a different procedure is needed. The procedure that works is to consider

not invariants in the action of GdS on the vectors Ψf , but coinvariants. For any Ψf ∈ H0

and any g ∈ GdS, we simply declare Ψf and gΨf to be equivalent. The equivalence classes

are called coinvariants. We also impose a constraint that 〈ΨdS|Ψf 〉 = 0 (the purpose of

this constraint is to avoid a divergent disconnected contribution in eqn. (B.5) below). The

space of Ψf subject to the equivalence relation and the constraint defines a new space H′0,

on which GdS acts trivially by fiat. The formula of eqn. (B.4) does not define an inner

product onH′0, because in general for Ψf1 , Ψf2 ∈ H0 and g ∈ GdS, 〈Ψf1 ,Ψf2〉 6= 〈Ψf1 , gΨf2〉.
However, averaging or more precisely integrating over GdS gives a simple fix. We define

(Ψf1 ,Ψf2) =

∫
GdS

dg 〈Ψf1 , gΨf2〉, (B.5)

where dg is the invariant Haar measure on the GdS group manifold. It is fairly obvious that

if the integral converges, the inner product ( , ) is consistent with the equivalence relation
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(any state of the form (1 − g)Ψ is a null vector for this inner product), and therefore the

integral defines an inner product on H′0. The convergence of the integral is subtle; see for

example [35] for analysis. Also subtle and not fully understood is the question of whether

the inner product defined this way is positive semi-definite. This is known to be the case

in some important examples [34]. We will not address these issues here; our goal is only to

explain how group averaging can be interpreted in terms of BRST quantization. Assuming

the inner product ( , ) exists and is positive semi-definite on the space H′0, we can proceed

as before. We define a space H′1 as the quotient of H′0 by null vectors. The Hilbert space

completion of H′1 is then the desired Hilbert space Ĥ taking into account the gravitational

constraints.

B.2 The BRST Interpretation

So far, we have just summarized the construction of [34, 35], which has been called “group

averaging” because of the role of integration over GdS in defining the inner product. In

general, group averaging can be naturally understood in a framework18 of BRST and

BV quantization [36]. Our goal in the rest of this appendix is to explain this point.

BRST quantization (rather than the more general BV quantization) is adequate when the

constraints generate a Lie algebra, so this approach will suffice.

Let tp, p = 1, · · · , dimGdS be the linear operators that generate the action of GdS on

H0. They obey

[tp, tq] = f rpqtr, (B.6)

where f rpq are the structure constants of GdS. Those structure constants obey the Jacobi

identity f s[pqf
t
r]s = 0, or in more detail

f spqf
t
rs + f sqrf

t
ps + f srpf

t
qs = 0. (B.7)

Introduce fermion operators cr and bs, known respectively as ghosts and antighosts, with

anticommutation relations

{cr, bs} = δrs , {cr, cs} = {br, bs} = 0. (B.8)

Ghost number is defined so that cr has ghost number 1 and bs has ghost number −1. The

antighost operators have an irreducible representation on a finite-dimensional vector space

K that contains a state | ↓〉 of minimum ghost number, with bs| ↓〉 = 0. Other states

in K are obtained by acting on | ↓〉 with a polynomial in the c’s. In particular K also

contains the state | ↑〉 = c1c2 · · · cdimGdS | ↓〉 of maximum ghost number, annihilated by the

c’s. Mathematically, an additive constant in the ghost number is usually fixed so that | ↓〉
has ghost number zero and therefore | ↑〉 has ghost number dimGdS. We will use that

convention, though physically it is not always the most natural choice.

The group GdS acts on the combined space H0 ⊗K with generators

Tr = tr −
∑
s,t

f trsc
sbt. (B.9)

18See [54] for a relatively short and highly readable introduction to the BRST and BV methods of

quantization.
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The BRST operator is defined as

Q =
∑
r

crtr −
1

2

∑
r,s,t

f trsc
rcsbt. (B.10)

The factor of 1/2 is important in verifying the crucial relation

Q2 = 0, (B.11)

which enables one to define the cohomology of Q. The cohomology of Q at ghost number

n is defined as the space of states Ψ of ghost number n that satisfy QΨ = 0, modulo those

of the form Ψ = Qχ. We denote this cohomology group as Hn(Q,H0); mathematically, it

is called the degree n Lie algebra cohomology of GdS with values in H0. The factor of 1/2

is also important in verifying the anticommutation relation

{Q, br} = Tr. (B.12)

This anticommutation relation ensures that the group generators act trivially on the coho-

mology of Q, since if QΨ = 0, then TrΨ = {Q, br}Ψ = Q(brΨ).

In the BRST approach to quantization, the space of physical states is defined via the

cohomology of the BRST operator Q at a specific value of the ghost number. Which is

the correct value is somewhat theory-dependent. However, normally there is one specific

“allowed” value of the ghost number and physical states are defined in terms of the BRST

cohomology19 at that value of the ghost number. If one did not have this restriction to

a particular value of the ghost number, there would be an invariant distinction between

physical states based on their ghost number.

In the example of the de Sitter space with weakly coupled gravity, there are two

important values of the ghost number, namely the minimum and maximum possible values.

A state in H0⊗K of the minimum possible ghost number is of the general form Ψ̂ = Ψ⊗|↓〉,
with Ψ ∈ H0. The condition QΨ̂ = 0 reduces to taΨ = 0, in other words Ψ must be GdS-

invariant. This is the naive approach to imposing the constraints. As explained earlier,

it is unsatisfactory, because except for ΨdS itself, there are no GdS-invariant states in H0

or in its Hilbert space completion. On the other hand, consider states with the maximum

possible ghost number. Such a state has the form Ψ̂ = Ψ ⊗ | ↑〉. For such a state, the

condition QΨ̂ = 0 is trivial, since the ghost number of QΨ̂ exceeds the maximum possible

value. However, we need to consider the equivalence relation Ψ̂ ∼= Ψ̂ + Qχ. Concretely, a

general state of the appropriate ghost number is χ =
∑

a χ
aba| ↑〉 for some states χa ∈ H0.

For this choice, the equivalence relation becomes20

Ψ ∼= Ψ +
∑
a

taχ
a. (B.13)

Thus, for states of maximum ghost number, the equivalence relation reduces to an equiva-

lence relation on H0, namely taχ ∼= 0 for any state χ ∈ H0 and for a = 1, · · · , dimGdS. This

19A completion is involved, as discussed momentarily.
20This formula and some previous ones need slight modification if G is not unimodular. See footnote 22

and [55]. The symmetry groups of de Sitter space and of the static patch are unimodular.
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has the same content as the equivalence relation (1 − g)χ ∼= 0 that we used in discussing

group averaging, since from (1 − g)χ ∼= 0, by differentiating with respect to g at g = 1 we

can deduce that taχ ∼= 0; conversely, from taχ ∼= 0 for all χ, we can deduce (1 − g)χ ∼= 0

by integration. So in short the top degree cohomology of the BRST operator Q acting on

H0 ⊗K is the starting point in the construction of the Hilbert space via group averaging.

The rest of the discussion proceeds rather as before, defining an inner product, discard-

ing null vectors, and taking a completion to get a Hilbert space. In the BRST language,

the construction of the inner product is naturally described as follows.

First define an indefinite hermitian inner product on K such that 〈↓ | ↑〉 = 1; cr, bs are

hermitian; and 〈Ψ,Ψ′〉 = 0 if Ψ,Ψ′ have ghost number n, n′ with n+ n′ 6= dimGdS. These

conditions completely determine the inner product; for instance 〈cr ↓ |bs ↑〉 = 〈↓ |crbs| ↓〉 =

δrs , since {cr, bs} = δrs and cr|↑〉 = 0. On H′0 ⊗K, define an inner product 〈 , 〉 that is the

tensor product of the inner product just defined on K and the natural one on H′0 that was

defined in eqn. (B.4). Then Q is hermitian in this inner product, so 〈Ψ,Ψ′〉, for Ψ, Ψ′ of

respective ghost numbers n and dimGdS − n, induces a natural sesquilinear map

〈 , 〉 : Hn(Q,H′0)×HdimGdS−n(Q,H′0)→ C. (B.14)

However, this map is not very useful for our purposes, since physical states lie in HdimGdS(Q,H′0),

which is paired with H0(Q,H′0) = 0.

There is a simple way around this. We defined H0 in terms of states Ψf where f

has compact support. We can drop the compact support condition and define a “dual”

space H̃0 generated by states Ψf with any smooth function f , not necessarily of compact

support. The inner product 〈 , 〉 defined in eqn. (B.4) by integration over a product of

copies of X makes sense as a pairing between H̃0 and H0. (It does not make sense as a

pairing between H̃0 and itself, which is why it is necessary to base the construction on the

cohomology with values in H0.) We can define the BRST cohomology Hn(Q, H̃0) for states

valued in H̃0, and in particular H0(Q, H̃0) is the naive space of unnormalizable states Ψf

with GdS-invariant f . As we explained at the beginning, the only trouble with that space

is that it is not a Hilbert space in a natural way.

However, the pairing between H̃0 and H0 that comes from eqn. (B.4) is useful. Taking

the tensor product of this with the inner product on K, we get a natural sesquilinear pairing

〈 , 〉 : (H̃0⊗K)× (H0⊗K)→ C and, since Q is again hermitian, this leads to a much more

interesting map

〈 , 〉 : Hn(Q, H̃0)×HdimGdS−n(Q,H′0)→ C. (B.15)

Therefore, to define a hermitian inner product on HdimGdS(Q,H′0), we need a linear map

η : HdimGdS(Q,H′0) → H0(Q, H̃′0) (sometimes called a rigging map in the literature).

Such a map is the composition of b1b2 · · · bn with integration over the action of GdS. The

integration operation can be formally denoted δ(~T ), since it projects onto (unnormalizable)

states that are annihilated by the T ’s. Thus η = b1b2 · · · bdimGdS
δ(~T ). We have21 [Q, η} = 0,

21The expression [Q, η}, for any operator η, is defined as Qη − (−1)ηηQ, where (−1)η is 1 or −1 if η is

bosonic or fermionic. In the present case, η is bosonic or fermionic depending on whether dimGdS is even

or odd.
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since22 {Q, br} = Tr, [Q,Tr] = 0, and Trδ(~T ) = 0. So η does give a natural map from

HdimGdS(Q,H′0) to H0(Q, H̃′0). In short, then, from a BRST point of view, the natural

hermitian inner product on HdimGdS(Q,H′0) is

(Ψ,Ψ′) = 〈Ψ|η|Ψ′〉. (B.16)

Once this inner product is defined, as usual one reduces by null vectors and takes a com-

pletion to get the desired Hilbert space Ĥ.

One further subtlety is the role of the original de Sitter state ΨdS. When we summa-

rized the group averaging procedure in Appendix B.1, in addition to imposing an equiva-

lence relation that had the same content as taχ ∼= 0, we also split off ΨdS by restricting to

states Ψf that are orthogonal to ΨdS. This was necessary for convergence of the integral

(B.5). Similarly, in the BRST approach, η only makes sense as an operator on H′0, not

on H0. However, physically it makes sense that ΨdS should be included as a vector in the

Hilbert space Ĥ after imposing constraints. We believe that a heuristic explanation is as

follows. First of all, the state ΨdS|↑〉 is contained in the BRST cohomology with values in

H0⊗K, so the question is how to define its norm. Before imposing the GdS constraints, the

state ΨdS is normalizable and one can normalize it to have norm 1. When one imposes the

GdS constraints, one should divide the norm of the GdS-invariant state ΨdS by vol(GdS),

the (infinite) volume of the de Sitter group. However, when one integrates over the group

to define the inner product, in the case of a GdS-invariant state, this just gives back a

factor of vol(GdS). In other words, precisely because the Hilbert space inner product is

defined by integration over the group, the state ΨdS has a nonzero norm after imposing the

constraints and survives as a vector in the physical Hilbert space. Obviously, it would be

desirable to have an explanation of this point that does not involve canceling the infinite

factors of vol(GdS).

B.3 The Observables

In BRST quantization, though the ghosts are important in understanding the physical

states, the analysis of the observables is more straightforward. This has been implicitly

assumed in the present article, as our main focus has been the algebra of observables in the

static patch, and we analyzed this algebra with no mention of the ghosts. The fact that

the description of the observables is straightforward can be explained as follows. First of

22The formula {Q, br} = Tr implies that
[
Q, b1b2 · · · bn} is a linear combination of operators

b1 · · · bi−1Tibi+1 · · · bn. In such an expression, we move Ti to the right, where it annihilates δ(~T ). In

moving Ti to the right, we pick up terms that are of order n − 1 in b, since [Ti, bj ] = fkijbk. Summing

all such contributions, we get a multiple of εi1i2···infki1i2bkbi3 · · · bin where εi1i2···in is completely antisym-

metric. This expression vanishes for GdS and also for the symmetry group of the static patch. In fact,

εi1i2···infki1i2bkbi3 · · · bin is a multiple of f trt{cr, b1 . . . bn}, and vanishes if and only if f trt = 0, which is the

condition for G to be unimodular (meaning that a left-invariant measure on the group manifold is also

right-invariant). If G is not unimodular, the group averaging procedure must be slightly modified by cor-

recting the group generators [55]. Any semisimple Lie group and any group that has no invariant subgroup

of codimension 1 is unimodular. (The symmetry group of the static patch is unimodular though it has such

a subgroup.) A simple example of a Lie group that is not unimodular is the group of 2×2 upper triangular

matrices.
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all, in the BRST approach, an observable is defined to be an operator O on the full state

space including the ghosts that commutes with Q in the Z2-graded sense: [Q,O} = 0.

This condition ensures that if QΨ = 0, then QOΨ = 0, and also that if Ψ = Qχ, then

OΨ = OQχ = (−1)OQ(Oχ). The two statements together imply that O has a well-defined

action on the cohomology of Q. Moreover, if O = [Q,U} for some operator U , then O acts

trivially on cohomology, since if QΨ = 0 then OΨ = [Q,U}Ψ = Q(UΨ). So observables in

BRST quantization are defined to be cohomology classes of operators; in other words, an

observable is an operator O that satisfies [Q,O} = 0, modulo operators of the form [Q,U}.
In general, one shows that at least in the context of perturbation theory (which here

means perturbation theory in GN ) every cohomology class has a representative that can

be constructed with no explicit use of b. In the present context, this means this means

that every operator has a representative constructed only from matter fields and gravity

together with the ghost field c. Usually, one is primarily interested in operators of ghost

number zero. The reason is that as explained in Appendix B.2, normally physical states

are defined at just one value of the ghost number (the maximum value, in the case of de

Sitter space) and hence an operator of nonzero ghost number has vanishing matrix elements

between physical states. An operator of ghost number zero, in its representative that does

not contain factors of b, automatically also does not depend on c; in other words, such

an operator is constructed from matter fields and gravity only. If O is an operator that

is constructed without any use of either b or c, then the condition [Q,O} = 0 reduces to

[ta,O] = 0. In other words, O must be GdS-invariant.

So while it is subtle to impose the de Sitter constraints on physical states, it is straight-

forward to impose the constraints on operators: an operator that acts on the constrained

system is simply an operator on the unconstrained system that commutes with the con-

straints. This was assumed in the main body of the paper.

If Ψ1, Ψ2 are physical states of the constrained system and O is an operator of the

constrained system, then

〈Ψ1|gOg−1|Ψ2〉 = 〈Ψ1|O|Ψ2〉, (B.17)

since physical states were defined to satisfy g−1Ψ1 = Ψ1, g
−1Ψ2 = Ψ2 (mod {Q, · · · }).

We have described this construction for the case of imposing constraints under the full

group GdS, but the same ideas apply for imposing constraints under a subgroup such as

the symmetry group GP of a static patch P . That case is actually much more simple. One

has GP = Rt × SO(D − 1), where Rt is the group of time translations of the static patch

and SO(D−1) is a group of rotations. The group SO(D−1) is compact, which means that

there is no analytical difficulty in defining and understanding the BRST cohomology for

SO(D−1) at either the top or bottom value of the ghost number (and these two cohomology

groups are actually naturally isomorphic). The group Rt of time translations of the static

patch is abelian. The group averaging procedure for this abelian group is straightforward

and was actually implemented in section 4.

A subtlety in all this accounts for a difficulty that we had in section 4.3. As we

have explained, it is possible to identify operators that commute with a set of constraints

without first defining a Hilbert space that these operators act on. What one gets this way
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is an algebra B0, but not a von Neumann algebra. To define a von Neumann algebra, one

has to construct a Hilbert space Ĥ that B0 acts on, and then one can complete B0 to a

von Neumann algebra B of operators on Ĥ. In general, B depends on Ĥ. In the main

example of the present paper, we start with a Hilbert space HdS ⊗ L2(R)⊗K, where HdS

is a Hilbert space of fields in de Sitter space, L2(R) is the Hilbert space of an observer in

P , and K is the Hilbert space of a possible observer in the complementary patch P ′. An

algebra A of the static patch acts on H. We consider a constraint Ĥ = H + q − k, where

H generates the time translation symmetry of the patch P , q is the Hamiltonian of the

observer in P , and k acts on K. There are two cases of interest: either K is a second copy

L2(R)′ of L2(R) and k = q′ is the Hamiltonian of an observer in P ′, or K = C, k = 0.

Operators on HdS⊗L2(R) that commute with the constraint are eipHae−ipH and (bounded

functions of) q, where p = −id/dq and a ∈ A. These generate an algebra B0, which does

not depend on whether there is an observer present in P ′. However, the completion of B0

to a von Neumann algebra B does depend on the presence of an observer in P ′. In the case

K = L2(R)′, k = q′, B is the projected crossed product algebra of Type II1 that we have

studied in this article. In this case, the Hilbert space Ĥ of coinvariants, as a representation

of B, has a “continuous dimension” in the sense of Murray and von Neumann that can be

any positive real number d, depending on what we assume for the range of values of q′.

But in case K = C, k = 0, in the limit GN → 0, by conjugating by e−ipH , we can reduce

to the case that the constraint is just q and the Hilbert space Ĥ obtained after imposing

the constraint is the original Hilbert space HdS. In that description, B0 is generated by

A and H, and its von Neumann algebra completion is the Type I algebra of all bounded

operators on H. This is an unreasonable result, since the algebra of operators accessible

to an observer in P should not depend in this way on whether there is an observer in

P ′. Having no observer in the second patch is similar to taking the limit d → 0 for the

continuous dimension of the Hilbert space, but that limit is not possible for an algebra of

Type II1; that is why we seem to get a different algebra in the patch P when there is no

observer in P ′. We suggested in section 4.3 that actually it is not possible in this problem

to take a strict limit GN → 0, and that in the absence of an observer in P ′, the continuous

dimension of Ĥ is d ∼ G1/2
N .
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