

Adult snow crab, *Chionoecetes opilio*, display body-wide exoskeletal resistance to the effects of long-term ocean acidification

Tait Algayer¹, Ahmed Mahmoud¹, Sanjana Saksena¹, W. Christopher Long², Katherine M. Swiney^{2,5}, Robert J. Foy², Brittan V. Steffel³, Kathryn E. Smith⁴, Richard B. Aronson³, and Gary H. Dickinson^{1*}

¹Department of Biology, The College of New Jersey, 2000 Pennington Rd., Ewing, NJ 08628, USA

10 ²NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Resource
11 Assessment and Conservation Engineering Division, Kodiak Laboratory, 301 Research Ct.,
12 Kodiak, AK 99615, USA

13 ³Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology,
14 Melbourne, FL 32901, USA

¹⁵The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK

16 ⁵Current address: NOAA, National Marine Fisheries Service, Southwest Fisheries Science
17 Center, Fisheries Resources Division, 8901 La Jolla Shores Dr., La Jolla, CA 92037, USA

19 *Corresponding author: Gary H. Dickinson, dickinga@tcnj.edu, ORCID 0000-0003-1073-1483

21

22

23 **Keywords:** biomineralization; climate change; cuticle; calcite; exoskeleton; Crustacea;
24 microhardness; mechanical properties

25

26

28 **ABSTRACT**

29

30 Structural and mechanical properties of the decapod exoskeleton affect foraging, defense, and
31 locomotion. Ocean acidification (OA) poses a threat to marine biomes and their inhabitants,
32 particularly calcifying organisms. Vulnerability of the snow crab, *Chionecetes opilio*, a
33 commercially important, high-latitude species, to OA has not been explored. Although all oceans
34 are experiencing acidification, abiotic factors in high-latitude areas increase the rate of
35 acidification. We examined the effect of long-term (2-year) exposure to decreased seawater pH
36 (7.8 and 7.5; $P_{CO_2} \sim 760$ and 1550 μatm , respectively) on exoskeletal properties in post-terminal-
37 molt female *C. opilio*. Since the effects of OA vary among body regions in decapods, exoskeletal
38 properties (microhardness, thickness, and elemental composition) were measured in five body
39 regions: the carapace, both claws, and both third walking legs. Overall, adult *C. opilio*
40 exoskeletons were robust to OA in all body regions. Decreased pH had no effect on
41 microhardness or thickness of the exoskeleton, despite a slight (~6%) reduction in calcium
42 content in crabs held at pH 7.5. In contrast, exoskeletal properties varied dramatically among
43 body regions regardless of pH. The exoskeleton of the claws was harder, thicker, and contained
44 more calcium but less magnesium than that of other body regions. Exoskeleton of the legs was
45 thinner than that of other body regions and contained significantly greater magnesium
46 concentrations (~2.5 times higher than the claws). Maintenance of exoskeletal properties after
47 long-term OA exposure, at least down to pH 7.5, in adult *C. opilio* suggests that wild populations
48 may tolerate future ocean pH conditions.

49

50 **INTRODUCTION**

51

52 The absorption of anthropogenic CO_2 has caused oceanic pH levels to decrease by ~0.1 units
53 since the beginning of the industrial revolution (Caldeira and Wickett, 2003; Orr et al. 2005;
54 Doney et al. 2009; Doney et al. 2020; Leung et al. 2022). This phenomenon, known as ocean
55 acidification (OA), is predicted to persist and cause pH in ocean surface waters to drop another
56 ~0.3 units by 2100 and ~0.5 units by 2200 (Caldeira and Wickett 2003; Orr et al. 2005; IPCC
57 2014; Gattuso et al. 2015). Reduced pH of seawater, along with associated changes in carbonate
58 chemistry, can significantly decrease survival and growth in myriad marine taxa, with calcified

59 algae, corals, and mollusks standing out as the most vulnerable (Kroeker et al. 2010; Kroeker et
60 al. 2013). Although crustaceans were not initially believed to be particularly vulnerable to the
61 effects of OA (Kroeker et al. 2010, 2013; Whittman and Pörtner 2013; Byrne and Fitzer 2019),
62 recent studies with larval and juvenile crustaceans have demonstrated that elevated pCO₂ levels
63 can increase mortality (Miller et al. 2016; Giltz & Taylor 2017, Long et al. 2021), reduce growth
64 (Swiney et al. 2017; McLean et al. 2018), and alter energetics (Long et al. 2019) and behavior
65 (Gravinese et al. 2019). In addition, at all crustacean life stages, OA has been shown to alter the
66 formation and maintenance of the mineralized exoskeleton (Taylor et al. 2015; Meseck et al.
67 2016; Glandon et al. 2018; Bednaršek et al. 2020; Dickinson et al. 2021; Siegel et al. 2022),
68 potentially limiting the defensive, predatory, and locomotive abilities of these organisms (Page et
69 al. 2016; Coffey et al. 2017). Much of the OA research studying physiological and ecological
70 responses of crustaceans to decreased pH has involved only short-term (~30 days) to medium-
71 term (~ 6 month) exposure to OA; however, many crustaceans can live for a decade or longer,
72 which makes long-term exposure experiments critically important (Whiteley 2011; Siegel et al.
73 2022).

74

75 There have been relatively few studies explicitly exploring the effect of OA on structural and
76 mechanical properties of the mineralized decapod exoskeleton. The exoskeleton protects animals
77 from both environmental (e.g., desiccation, hydrodynamic or mechanical forces) and predatory
78 risks and, in the case of the claws (chelae) and mandibles, is critical for capturing, subduing, and
79 consuming prey. The crab exoskeleton is multilayered, consisting of an outer epicuticle, a
80 procuticle composed of an outer exocuticle and inner endocuticle, and a thin, uncalcified
81 membranous inner layer (Travis 1963; Roer and Dillaman 1984). The exo- and endocuticle are
82 formed by chitin-protein nanofibrils interlacing to create helical structures known as
83 “Bouligand” or “twisted plywood” layers, which are embedded with nanocrystalline magnesian
84 calcite or amorphous calcium carbonate (Bouligand 1972; Roer and Dillaman 1984; Raabe et al.
85 2006; Boßelmann et al. 2007). When the mechanical properties of the cuticle are compromised,
86 vital functions such as foraging, defense against predators, and locomotion, can suffer reductions
87 in performance efficiency (Juanes and Hartwick 1990). The cuticle provides muscle-attachment
88 sites in many regions of the body, making the functionality of appendages contingent on its
89 integrity (Meyers et al. 2013). Observed effects of OA include reduced microhardness (resistance

90 to permanent or plastic mechanical deformation) in the claws—but notably not in the carapace—
91 of decapods; this could compromise the ‘crushing’ abilities of the claws, potentially diminishing
92 defense and foraging abilities (deVries et al. 2016; Coffey et al. 2017; Dickinson et al. 2021). In
93 order to thoroughly investigate how this complex exoskeletal structure is responding to our
94 rapidly changing ocean, more body-region-specific analyses must be conducted on decapod
95 species.

96

97 Although the entire ocean is absorbing atmospheric CO₂ and experiencing acidification, high-
98 latitude regions are likely to acidify faster than lower-latitudes regions due to the higher
99 solubility of CO₂ in colder waters (Fabry et al. 2009; Cumming et al. 2011). The Bering Sea has
100 a set of environmental conditions that make its waters particularly vulnerable to OA (Opsahl and
101 Benner 1997; Pilcher et al. 2019). The low temperatures, poorly buffered water, and high climate
102 variability in this region are just some of the factors that make the Bering Sea a research priority
103 in terms of potential biological responses to OA (Mathis et al. 2011a).

104 The snow crab, *Chionoecetes opilio*, is one of the many valuable commercial species that inhabit
105 the Bering Sea. It has a distribution that spans the northern Pacific and Atlantic Oceans, and the
106 Arctic Ocean (Jadamec et al. 1999). In the Bering Sea, snow crabs are distributed along the
107 continental shelf and upper slope, with most individuals occurring at 50–200 m (Zacher et al.
108 2020). The lifespan of snow crabs is estimated at 14–16 years for males, and 11–12 years for
109 females, making them a relatively long-lived decapod species (Adams, 1979). Both male and
110 female snow crabs can live 3–5 years after completing their terminal molt and reaching sexual
111 maturity (Alunno-Bruscia & Sainte-Marie 1998; Ueda et al. 2009). In Alaska, snow crabs have
112 supported valuable fisheries, bringing in an ex-vessel revenue of \$101.7 million in 2020 (Garber-
113 Yonts and Lee, 2020; NOAA Fisheries 2021). Understanding how future ocean conditions will
114 impact Alaskan snow crab populations is essential to protecting these stocks from possible
115 overharvest (ADF&G 1991).

116 Carbonate chemistry in snow crab habitat varies both seasonally and spatially. Currently,
117 seasonal stratification combined with benthic remineralization results in pCO₂ values dropping
118 from late summer/early fall highs of 1600 μatm (pH about 7.5) to about 400 (pH 8.1) in the
119 winter when storms mix surface waters down (Mathis et al. 2014). Similarly, across the Bering

120 Sea shelf, aragonite saturation states in the summer grade from greater than 2 (pH about 8) in
121 shallow water at 60 m or less, to below 1 (pH about 7.8) at depths below 100 m (Mathis et al,
122 2011b). Projections for the greater Bearing Sea shelf show that average shelf pH is currently
123 below 7.8 for about half the year and below 7.5 for a negligible amount of time, but this will
124 grade to being below 7.8 for about 90% of the year and below 7.5 for 40% of the year by 2100
125 (Pilcher et al. 2022).

126 The effects of OA on exoskeletal properties have not been assessed previously in snow crabs.
127 Previous work on a congeneric species, the southern Tanner (hereafter Tanner) crab
128 *Chionoecetes bairdi*, however, revealed high susceptibility of the adult exoskeleton to OA
129 (Dickinson et al. 2021). Two-year exposure to OA conditions resulted in thinning of the cuticle,
130 internal and external dissolution, reduction in claw hardness, and alterations in mineralogy of the
131 carapace. Hence, the goal of this study was to assess the effects of ocean acidification on
132 exoskeletal properties of adult snow crab, *C. opilio*. Post-terminal-molt female snow crabs were
133 held in ambient (~8.1) or reduced pH seawater (7.8 and 7.5) for a period of two years. We then
134 evaluated microhardness and thickness of the two major structural layers of the cuticle, the
135 endocuticle and exocuticle, within five different body regions: the carapace, left and right claws,
136 and left and right third walking legs. Elemental composition in each body region was also
137 assessed. These assessments are crucial because variations in mechanical, elemental, and
138 structural properties of the exoskeleton can lead to differences in functionality.

139

140 MATERIALS AND METHODS

141 *Overview*

142 The work presented here is part of a broader project examining the effects of OA on snow crabs,
143 *Chionoecetes opilio*. In brief, ovigerous snow crab were held in the laboratory for two years
144 through two brooding cycles, and embryonic development and hatching successes were
145 monitored. After eggs hatched in the first year, the same adult females were provided with a
146 male to mate with and they extruded a second clutch of embryos. All females used for
147 exoskeleton assessments brooded two clutches of eggs, one per year, for each of two years; there
148 were no differences in reproductive output among treatments. Each year, larvae that hatched

149 were used in a series of experiments to determine the effects of OA on the larval phase. At the
150 end of the second year, the adult crabs were sacrificed and samples were taken to examine the
151 effects of OA on the exoskeleton of the females. The results of the embryonic and larval studies
152 are presented elsewhere (Long et al., 2022a & b). Sample preparation, and mechanical,
153 structural, and elemental testing generally followed Dickinson et al. (2021), with an expansion of
154 the number of body regions and exoskeletal layers assessed.

155

156 *Animal collection and OA exposure*

157 Mature female snow crabs, *Chionoecetes opilio*, were collected from the Bering Sea during the
158 eastern Bering Sea trawl survey (Daly et al. 2014) and transported to the NOAA Alaska Fisheries
159 Science Center's Kodiak Laboratory. Upon arrival and throughout the experiment, crabs were
160 held in flow-through, sand-filtered seawater at ambient salinity from Trident Basin (intakes 15
161 and 26 m) chilled to 2°C with recirculating chillers. Crabs were fed to excess twice a week on a
162 diet of chopped squid and herring. After a brief holding period, 25 crabs were randomly assigned
163 to each of three pH treatments: ~8.1 (ambient), 7.8, or 7.5. Two different holding systems were
164 used during this experiment during different parts of the brooding cycle; however, in both
165 systems the holding conditions were the same, with water acidified with the addition of CO₂,
166 temperatures chilled to a constant 2°C, and flow through seawater at ambient salinity. During the
167 majority of the brooding cycle, crabs were held in experimental tanks (0.6 x 1.2 x 0.6 m), one per
168 treatment. During this period, water was acidified per Long et al. (2013a). In brief, water was
169 acidified by mixing ambient seawater with seawater from a super-acidified tank (pH 5.5,
170 acidified via bubbling of CO₂) in head-tanks (one per treatment). The ambient-treatment head-
171 tank contained only ambient water with no input from the super-acidified tank. Super-acidified
172 water was mixed into acidified head-tanks via peristaltic pumps that were regulated by
173 Honeywell controllers and Durafet III pH probes placed inside the head tanks (see Long et al.
174 2013a for a diagram of this system). As embryos neared hatching, adult female crabs were
175 moved into individual 68-L tubs. This was necessary so that the number of larvae hatched from
176 each female could be counted (see Long et al. 2022a for details). Tub received recirculating
177 flow from 2000-L tanks that received flow-through water that was acidified by direct bubbling of
178 CO₂ controlled by a Durafet III pH probe (Fig. S1). Although this design, holding crabs in a
179 single tank for each treatment, or in individual tubs with water recirculating from a common

180 head tank, is technically pseudoreplication, there is no known mechanism by which the presence
181 of other crabs might have affected the exoskeleton of each other and we ignore tank affects in all
182 analyses. Both of the experimental setups supplied crabs with water at the same temperatures
183 and, in acidified treatments, with water acidified with CO₂ to the same pH and using the same
184 feedback mechanism. In addition, all crabs were transferred between the setups at the same time
185 negating any potential bias caused by the two different sets of holding conditions.

186 Temperature and pH (free scale) were measured in experimental units daily using a Durafet III
187 pH probe calibrated with TRIS buffer (Millero 1986). Water from the head tanks was sampled
188 once per week (N = 98 per treatment) and samples were poisoned with mercuric chloride and
189 analyzed for dissolved inorganic carbon (DIC) and total alkalinity (TA) at an analytical
190 laboratory. DIC and TA were determined using a VINDTA 3C (Marianda, Kiel, Germany)
191 coupled with a 5012 Coulometer (UIC Inc.) according to the procedure in DOE (1994) using
192 Certified Reference Material from the Dickson Laboratory (Scripps Institute, San Diego, CA,
193 USA; Dickson et al. 2007). The other components of the carbonate system were calculated in R
194 (V3.6.1, Vienna, Austria) using the seacarb package (Lavigne and Gattuso 2012). Crabs were
195 held in experimental conditions for two years and were monitored for mortality daily. At the end
196 of the two-year exposure period, surviving crabs were sacrificed and cuticle samples were taken
197 and kept frozen at -80°C. The total number of surviving crabs was 4 in the ambient treatment, 13
198 in the pH 7.8 treatment, and 10 in pH 7.5 treatment. Samples were transported on dry ice to The
199 College of New Jersey (Ewing, NJ) for analysis. All samples remained frozen during transit and,
200 upon arrival, were kept at -70°C until further use.

201 **Table 1.** Seawater chemistry parameters. pH and temperature were measured daily (N=681 per
202 treatment). Dissolved inorganic carbon (DIC) and alkalinity were measured weekly (N=98 per
203 treatment). Other parameters were calculated (see Materials and Methods). pH_F, pH on the free
204 proton scale; Ω_{Calcite}, calcium carbonate saturation; SW, sea water. Data are means ± SD.
205

	pH 8.1	pH 7.8	pH 7.5
pH_F	8.11 ± 0.08	7.80 ± 0.02	7.50 ± 0.02
Temperature (°C)	2.09 ± 0.32	1.97 ± 0.30	2.05 ± 0.31

P_{CO_2} (μatm)	362.18 ± 68.33	760.98 ± 43.95	1548.29 ± 102.11
DIC (mmol kg ⁻¹ SW)	2.01 ± 0.04	2.09 ± 0.05	2.15 ± 0.06
HCO ₃ ⁻ (mmol kg ⁻¹ SW)	1.90 ± 0.05	2.00 ± 0.04	2.04 ± 0.06
CO ₃ ²⁻ (mmol kg ⁻¹ SW)	0.09 ± 0.02	0.05 ± 0.00	0.02 ± 0.00
Total alkalinity (μmol kg ⁻¹ SW)	2110 ± 20	2090 ± 20	2110 ± 20
$\Omega_{Calcite}$	2.19 ± 0.37	1.11 ± 0.06	0.57 ± 0.04

206

207 **Sample Preparation**

208 Cuticle samples were taken from standardized locations in five body regions: the carapace, both
 209 claws, and both third walking legs. From each crab and each body region, two cuticle samples
 210 were cut using a water-cooled diamond band-saw (Gryphon, C-40); one of these was embedded
 211 in epoxy resin and polished for micromechanical and structural assessments while the other was
 212 used for elemental analyses. All segments were lyophilized for ~18 hours (Yamato, DC41-A)
 213 immediately after cutting. Within the carapace, the two segments were cut immediately adjacent
 214 to one another, both taken from the posterior margin. For left and right claws, the dactylus
 215 (movable finger) and pollex (fixed finger) were cut from the manus; dactyli were embedded and
 216 used for micromechanical and structural assessments while pollexes were used for elemental
 217 analyses. Similarly, for the left and right legs, the most distal segment (the dactyl or
 218 dactylopodite) was embedded and used for micromechanical and structural assessments while
 219 the segment proximal to this (the propodus or propodite) was used for elemental analyses. Note
 220 that a portion of the crabs were missing a claw or third walking leg at the end of the experimental
 221 exposure so samples could not be taken; for consistently, other legs were not substituted for the
 222 third walking leg.

223

224 Cuticle segments to be used in micromechanical and structural analyses were embedded
 225 individually in epoxy resin (Allied High Tech, Epoxy Set), ground, and polished as described in
 226 Coffey et al. (2017) and Dickinson et al. (2021). Samples were ground and polished on a
 227 grinding/polishing machine (Allied High Tech, M-Prep 5 or Met-Prep3 PH-4). Grinding steps
 228 employed a series 180, 320, 600 and 800 grit silicon carbide papers, followed by polishing with a

229 1 μm diamond suspension and a 0.04 μm colloidal silica suspension until the samples were
230 completely smooth and free of scratches. Gridding and polishing was used to produce a cross-
231 section along the anterior-posterior axis of carapace samples (normal to the dorsal surface of the
232 carapace), while grinding/polishing of claw and leg dactyl samples produced a cross-section
233 along the longest (longitudinal) axis. Polished samples were stored in a desiccator until testing.

234

235 *Micromechanical properties*

236 Vickers microhardness testing was conducted on embedded and polished samples. Testing was
237 conducted on a microindentation hardness tester (Mitutoyo, HM-200) following standard
238 procedures (ASTM 2017). Indents were made at 1 g load, 5 s dwell time. Two series of indents
239 were made: one in the endocuticle and one in the exocuticle. The two cuticle layers could be
240 readily differentiated from one another on the hardness tester (under reflected light), as there was
241 a dramatic difference in the thickness of Bouligand layers when moving from the endocuticle to
242 the exocuticle (i.e., layers were more densely packed in the exocuticle). Within each layer, 10
243 replicate indents were made, with the first indent approximately 500 μm from the edge of the
244 sample and each subsequent indent spaced about 200 μm apart. For leg (dactylopodite) samples,
245 the most distal tip of the sample was avoided, as cuticle wear and damage was visible in many
246 samples. Individual indents were measured directly on the hardness tester under a 100 X
247 objective and Vickers microhardness values were automatically calculated. Microhardness of
248 replicate indents within a sample and within a cuticle layer were averaged to determine the mean
249 microhardness for each sample.

250

251 *Cuticle thickness*

252 Following microhardness testing, the same embedded samples were used to quantify four
253 structural metrics: total thickness of the cuticle, exocuticle thickness, endocuticle thickness, and
254 thickness of individual Bouligand layers that comprise the endocuticle. Samples were imaged
255 under a reflected light microscope (Zeiss, AxioScope A1 with a Zeiss, AxioCam 105 color
256 camera) using a 2.5 X objective (~100 X total magnification) and darkfield illumination.
257 Panoramic images of the entire sample were constructed using the camera's analysis software
258 (Zeiss, Zen v. 2.3; Fig. S2). Thickness was measured on digital images following the methods of
259 Nardone et al. (2018) and Coffey et al. (2017). A grid was placed on each image (200 x 200 μm

260 for carapace samples; 500 x 500 μm for claw and leg samples) and cuticle thickness was
261 measured using a linear line tool each time the grid crossed the sample. Total thickness and
262 endocuticle thickness were measured separately at each point; exocuticle thickness was
263 calculated as the difference between total and endocuticle thickness. The endo- and exocuticle
264 layers were differentiated from one another based on the thickness of Bouligand layers (Roer and
265 Dillaman 1984); there was a distinct shift when moving from the endocuticle to the exocuticle in
266 Bouligand layer thickness (i.e., layers were thinner and more densely packed in the exocuticle;
267 Fig. S2). This resulted in a clear shift in coloration under darkfield illumination. At least 10
268 replicate measurements were made for each parameter within each sample, with the total number
269 of measurements dependent on the size of the sample. Replicate measurements for each metric
270 (total thickness, exocuticle thickness, endocuticle thickness) were averaged separately to
271 determine the mean for each sample. Thickness of the Bouligand layers that comprise the
272 endocuticle was measured by taking three additional images of the endocuticle under a 50 X
273 objective (~1,600 X total magnification) and brightfield illumination. The three images were
274 spaced roughly evenly along the length of the polished sample. Within each image, three
275 separate distance lines were drawn perpendicular to the Bouligand layers using the camera's
276 analysis software; each line spanned 10 distinct Bouligand layers. The total length of the line was
277 divided by 10 to determine average thickness of individual Bouligand layers. The 9 replicate
278 measurements (3 images with 3 measurements per image) were averaged to determine the mean
279 Bouligand thickness for each sample. A similar procedure was attempted within the exocuticle,
280 but the density of Bouligand layers precluded accurate measurements.

281

282 ***Elemental composition***

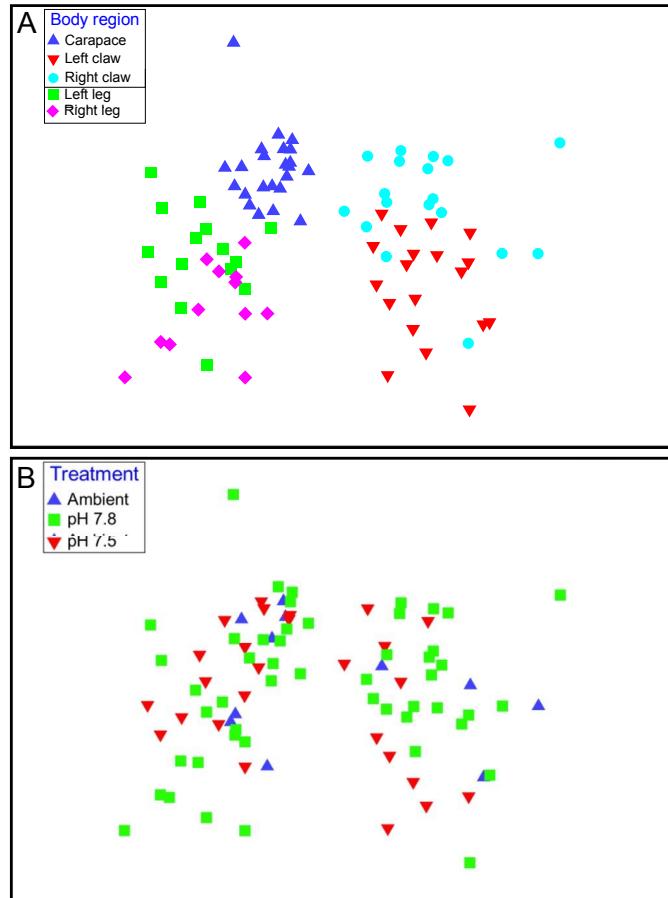
283 Elemental composition was measured at the U.S. Geological Survey's Coastal and Marine
284 Science Center, St. Petersburg, FL. Inductively coupled plasma optical emission spectrometry
285 (ICP-OES) was used to measure calcium, magnesium, and strontium content within the carapace,
286 right and left claws, and right and left third walking leg. Methods followed those described in
287 Gravinese et al. (2016) and Steffel et al. (2019). Samples were cut from each body region, as
288 described above, and any adhering tissue was removed using a scalpel and forceps. Samples
289 were first oxidized by sonication in a 1:1 mixture of 30% H_2O_2 and 0.1 M NaOH for 20 minutes.
290 This was followed by sonication in Milli-Q water for 5 minutes. This oxidation procedure was

291 repeated before samples were removed from solution and dried overnight at 90°C. Dried samples
292 were ground into a fine powder by mortar and pestle, and the oxidation process described above
293 was repeated on the powdered samples. Oxidized samples were dried again at 90°C for at least 3
294 hours before analyses. Samples were weighed and acidified in 2% HNO₃, then measured for
295 Ca²⁺, Mg²⁺, and Sr²⁺ using a PerkinElmer 7300 dual-view ICP–OES. Elemental weight-
296 percentages were calculated for each sample by multiplying concentration by the volume of
297 HNO₃ added prior to ICP-OES analysis, and then dividing by the total dry weight of the sample
298 using the conversion 1 ppm = 1 mg/L (Long et al., 2013b).

299

300 **Statistical analysis**

301 The exoskeletal properties of *C. opilio* were assessed using a combination of multivariate and
302 univariate statistical procedures. Multivariate approaches incorporated all measured variables to
303 assess the effect of seawater pH on exoskeletal properties, as well as if these properties varied
304 among body regions. Variables were normalized (expressed in terms of their z value) before
305 multivariate analysis and visualized with a non-metric multidimensional scaling (nMDS) plot
306 based on a Euclidian-distance resemblance matrix. Differences among treatments were then
307 analyzed with a permutational analysis of variance (PERMANOVA) with treatment fully crossed
308 with body region and crab identification number (unique to each individual crab) nested within
309 treatment as factors. Differences in dispersion were analyzed with a permutational analysis of
310 dispersion (PERMDISP) in order to help differentiate between effects of differences in data
311 location and dispersion. These analyses were followed by a principal component analysis (PCA)
312 and SIMPER analysis, which were used to identify the factors driving differences among body
313 regions. Multivariate analyses were conducted using Primer (v. 7, Primer-E). The effect of
314 seawater pH and body region on each individual micromechanical, structural, or elemental
315 variables was assessed using a general linear model (GLM) for each variable, followed by Tukey
316 HSD *post hoc* testing. Treatment pH and body region were treated as fixed factors; crab
317 identification number was used as a blocking factor, with crab identification number nested
318 within treatment pH. Univariate analyses were conducted in SPSS (v. 25, IBM Analytics). For
319 nMDS, PERMANOVA, PERMDISP, and PCA data for each individual body region (i.e.,
320 carapace, left claw, right claw, left leg, right leg) was included separately within the analyses.
321 Data from the two claws and two legs were combined for SIMPER and univariate analyses. All

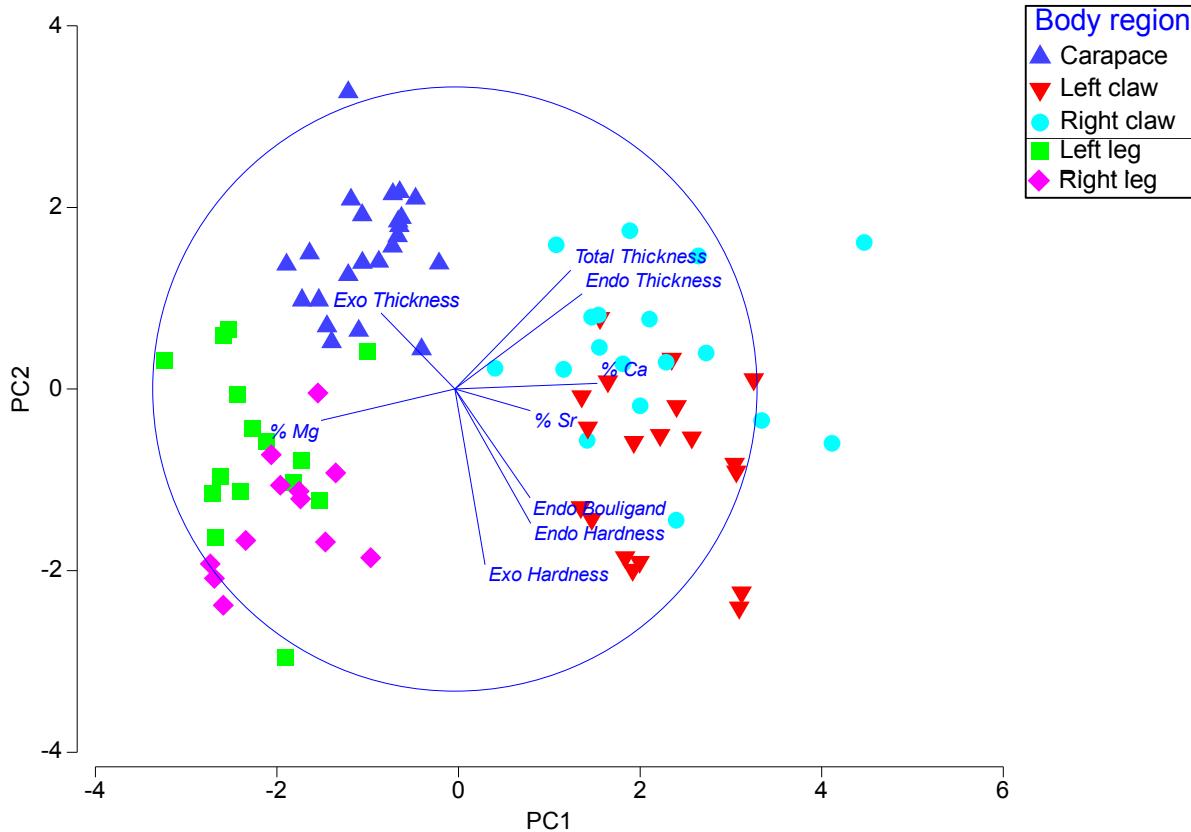

322 datasets generated during the current study are available as a supplemental document and sample
323 sizes for structural, mechanical and chemical analyses are included in Table S1.

324

325 **RESULTS**

326

327 Exoskeletal properties of snow crabs differed among body regions but not among pH treatments
328 (PERMANOVA, Table S2). Dispersion, a measure of spread in multivariate data analogous to
329 variance in univariate statistics, differed among body regions ($\text{pseudoF} = 2.755, p = 0.033$), but
330 not pH treatments ($\text{pseudoF} = 0.829, p = 0.440$) or crabs ($\text{pseudoF} = 0.661, p = 0.860$). When
331 both PERMDISP and PERMANOVA are significant, this indicates that either just the dispersion
332 differs among treatments or that both dispersion and location (multivariate analog for the mean)
333 differ; examination of an nMDS plot can help to distinguish between these two possibilities
334 (Anderson et al. 2008). The nMDS plot showed clear differences among sampled body regions
335 with legs, claws, and the carapace all separating from one another and having virtually no
336 overlap; from this we conclude that the significant PERMANOVA was driven by differences in
337 both location and dispersion (Fig. 1A). Conversely, there were no differences among pH
338 treatments (Fig. 1B), at least under the experimental conditions and sample size tested here. Post-
339 hoc pairwise comparisons (PERMANOVA) showed that each body region differed significantly
340 from all other body regions ($p < 0.05$), except that the left and right legs were not significantly
341 different from one another. Of note, and as shown in Fig. 1A, post-hoc pairwise comparisons
342 show a significant difference between the left and right claws ($p < 0.05$), although there is some
343 overlap of the two in the nMDS plot (Fig. 1A).

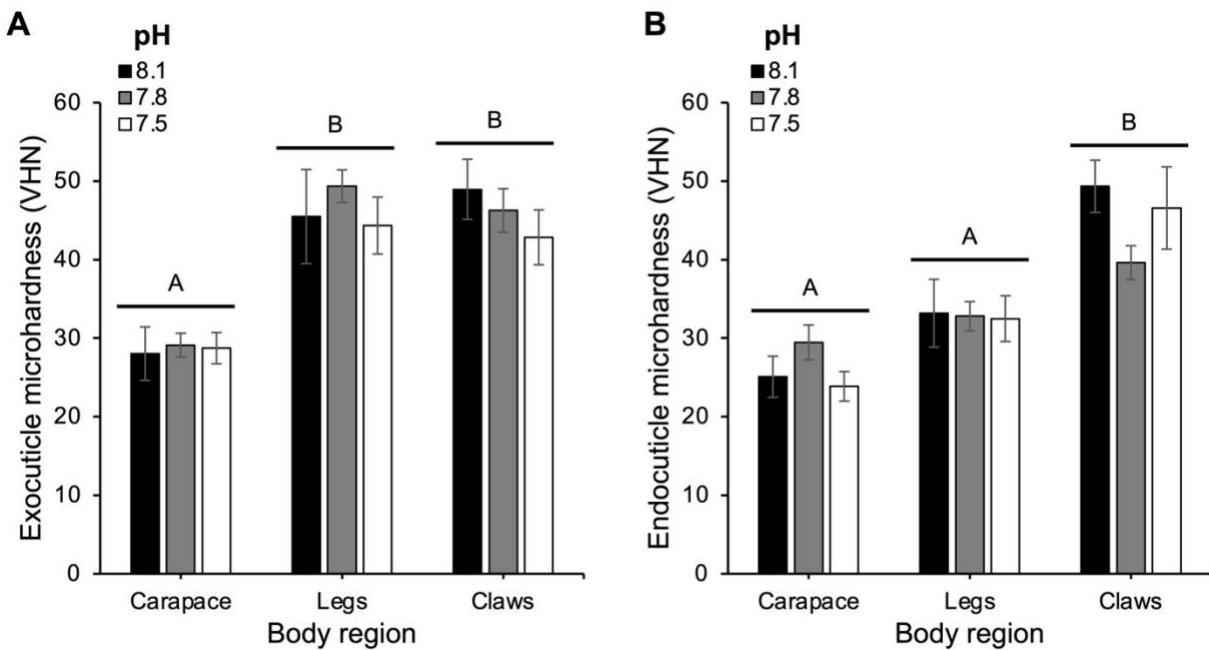


344

345 **Fig. 1.** Non-metric multidimensional scaling (nMDS) plots incorporating micromechanical,
 346 structural, and elemental variables. The same plot is coded by either (A) body region or (B) pH
 347 treatment. Data were normalized prior to analysis (see text for details). Stress is 0.14.

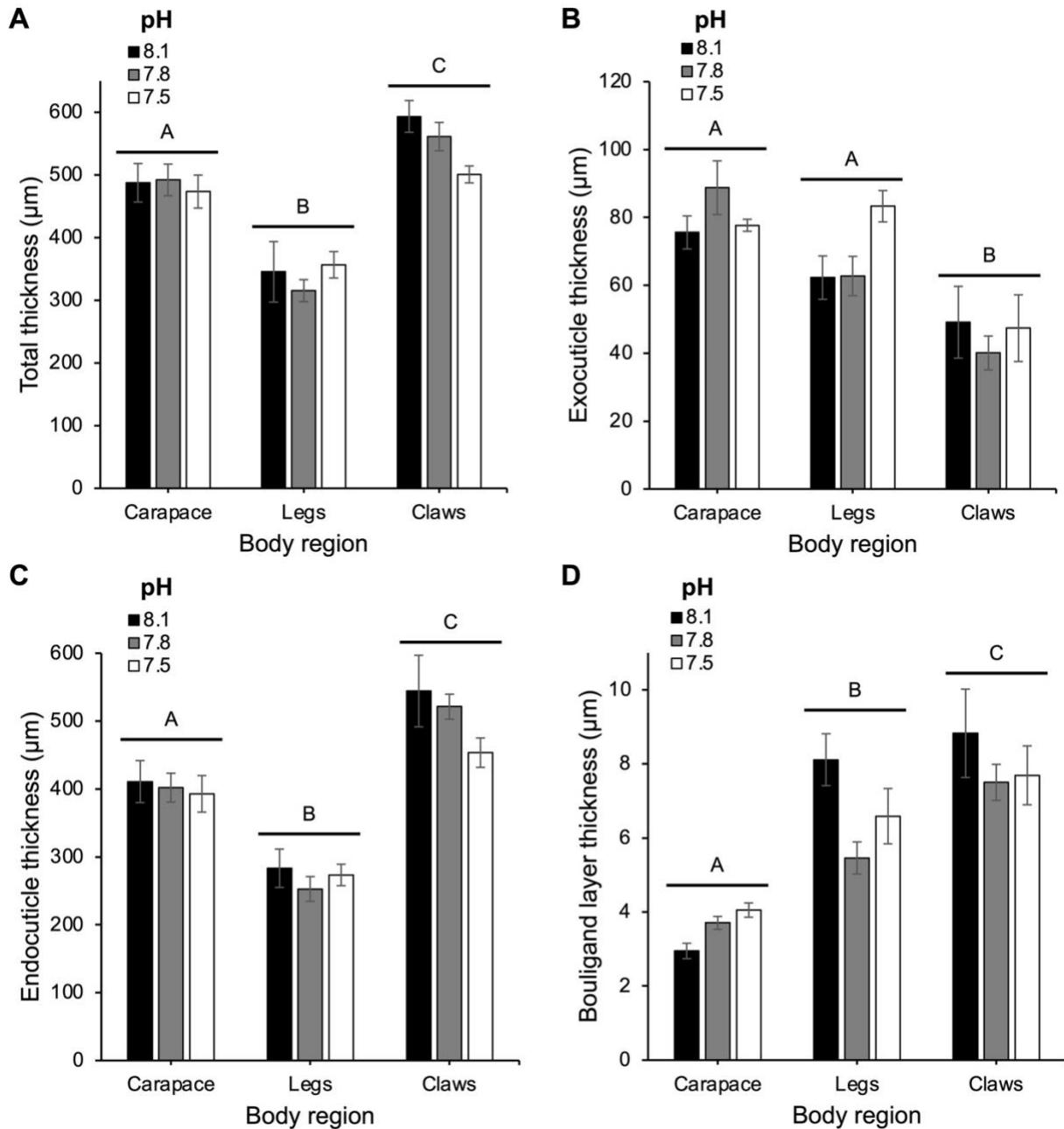
348

349 Principal component analysis (PCA) was used to visualize which factors drove the differences
 350 among body regions and SIMPER analysis was used to quantify the differences (Fig 2; Table
 351 S3). In general, the exoskeleton of claws was thicker, harder, and had higher calcium content
 352 (but lower magnesium content) than that of the carapace and legs. The carapace exoskeleton was
 353 thicker but less hard than that of the legs. Magnesium content tended to be highest in the legs.


354

355 **Fig. 2.** Principal component plot of observations of exoskeletal properties (microhardness,
 356 elemental content, and structure) among body regions. Data were normalized prior to analysis
 357 (see text for details). Vectors indicate the loadings of the variables. PC1 and PC2 contain 46%
 358 and 20% of the overall variance, respectively.

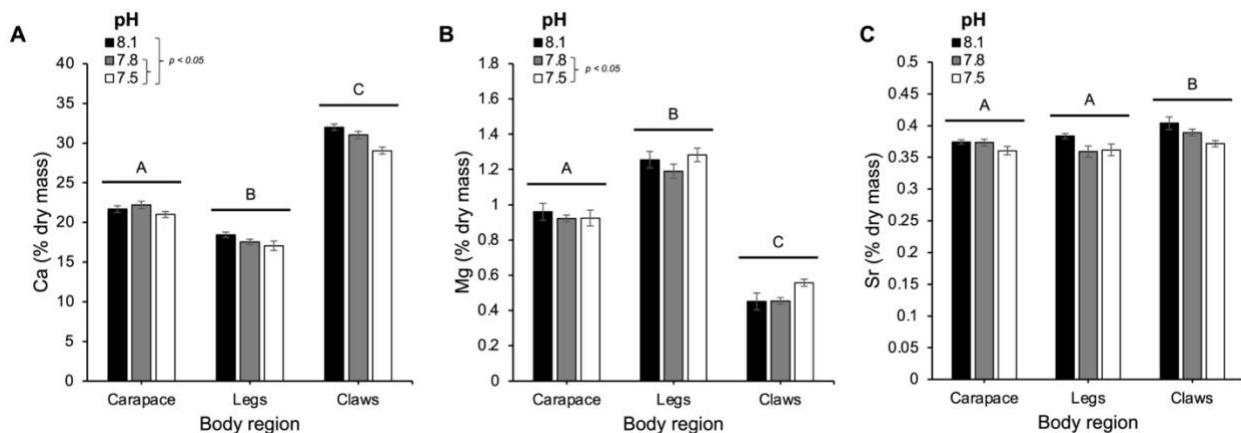
359


360 To further assess the effects of seawater pH, body region, and their interaction, each
 361 micromechanical, structural, or elemental variable was also assessed individually. Results were
 362 generally in agreement with multivariable assessments showing a strong effect of body region,
 363 but minimal effect of seawater pH, on exoskeletal properties. Seawater pH did not affect
 364 microhardness in either the endocuticle or exocuticle (GLM: $p > 0.05$; Fig. 3 & Tables S4 & S5).
 365 Microhardness, however, varied among body regions for both cuticle layers (GLM: $p < 0.0001$).
 366 Endocuticle microhardness of the claws was 73% greater than that of the carapace and 38%
 367 greater than the legs (Tukey HSD: $p < 0.05$). Exocuticle hardness was ~60% greater in the claws
 368 and legs as compared to the carapace (Tukey HSD: $p < 0.05$) but did not differ significantly

369 between the claws and legs. The interaction of pH and body region was not significant for either
370 layer.

371
372 **Fig. 3.** Vickers microhardness tested in the *C. opilio* exocuticle (A) and endocuticle (B) after
373 exposure to one of three pH levels for 2 years. Means \pm SE are shown. Different letters represent
374 significant pairwise differences between body regions (Tukey HSD: $p < 0.05$). pH treatments did
375 not differ from one another. $N = 3-22$.

376
377 Treatment pH did not affect any of the structural variables assessed (GLM: $p > 0.05$; Fig. 4 &
378 Tables S4 & S5), but the effect of body region was significant in all cases (GLM: $p < 0.0001$).
379 For total cuticle thickness and endocuticle thickness, each body region differed from each other
380 region (Tukey HSD: $p < 0.05$; Fig. 4A & C); total thickness was greatest in the claw,
381 intermediate in the carapace, and lowest in the legs. Exocuticle thickness showed the opposite
382 response, with thickness lower in the claws as compared to the carapace and legs (Tukey HSD: $p < 0.05$;
383 Fig. 4B). Thickness of the Bouligand layers that comprise the endocuticle differed among
384 each body region, with Bouligand layer thickness greatest in the claws and lowest in the carapace
385 (Tukey HSD: $p < 0.05$; Fig. 4D). The interaction of pH and body region was not significant for
386 any of the structural variables assessed.


387

388 **Fig. 4.** Structural variables measured in the *C. opilio* cuticle after exposure to one of three pH
 389 levels for 2 years. Means \pm SE are shown. Different letters represent significant pairwise
 390 differences between body regions (Tukey HSD: $p < 0.05$). pH treatments did not differ from one
 391 another. $N = 3-22$.

392

393 Unlike other measured variables, there was a slight, but significant, effect of treatment pH on
 394 calcium and magnesium content (GLM: $p < 0.05$; Fig. 5A–B & Table S4). Calcium content was

~6% greater in crabs held at pH 8.0 and 7.8 as compared to those at pH 7.5 (Tukey HSD: $p < 0.05$). Magnesium content differed between the pH 7.8 and pH 7.5 treatments, with magnesium content about 8% higher at pH 7.5 (Tukey HSD: $p < 0.05$). Overall, the effect of pH treatment on strontium content was not significant (GLM: $p = 0.075$; Fig. 5C & Tables S4 & S5). The effect of body region was significant for all elemental variables assessed (GLM: $p < 0.0001$; Fig. 5 & Table S4). Among body regions, each body region differed from each other body region for calcium and magnesium content (Tukey HSD: $p < 0.05$). Calcium content was greatest in the claws, intermediate in the carapace, and lowest in the legs with calcium content in the legs about half that of the claws. In contrast, magnesium content was greatest in the legs, intermediate in the carapace, and lowest in the claws; magnesium content was 2.5 times greater in the legs than the claws. Strontium content was greater in the claws as compared to the legs and carapace (Tukey HSD: $p < 0.05$), but did not differ between the legs and carapace. The interaction of pH and body region was not significant for calcium, magnesium, or strontium content.

Fig. 5. Elemental content measured in the *C. opilio* cuticle after exposure to one of three pH levels for 2 years. Means \pm SE are shown. Letters denote significant pairwise differences between body regions and brackets represent significant pairwise differences between pH treatments (Tukey HSD: $p < 0.05$). $N = 3-22$.

413

414 DISCUSSION

415

416 In this study, we quantified the effects of OA on adult snow crab exoskeletons in multiple body
 417 regions after a two-year exposure in order to understand how future ocean conditions might
 418 influence activities crucial to survival such as feeding, defense, and locomotion. Multivariate

419 analyses of all measured variables and body regions showed no effect of exposure pH on the
420 exoskeletal properties of *C. opilio*, at least under the experimental conditions (reduced pH 7.8
421 and 7.5) and sample sizes tested here. Although there was a slight (~6%) decrease in exoskeletal
422 calcium content at reduced seawater pH (7.5), microhardness and thickness were unaffected by
423 decreased pH at any level, suggesting that this difference may have little practical consequence.
424 On the other hand, there were substantial differences among the body regions, which highlights
425 that the structural and mechanical properties of the decapod exoskeleton are well-adapted to the
426 physical demands placed on those particular body regions. In contrast to other decapod species
427 (e.g., Coffey et al. 2017; Dickinson et al. 2021), it appears that adult snow crabs are relatively
428 resilient to the effects of reduced pH in terms of exoskeletal properties.

429

430 Since decapods use calcium carbonate, in the form of nanocrystalline magnesian calcite or
431 amorphous calcium carbonate, to harden their exoskeletons (Roer and Dillaman 1984; Dillaman
432 et al. 2005), it is possible that changes in seawater carbonate chemistry could affect both the
433 formation and maintenance of their cuticles (Siegel et al. 2022). There are three primary
434 mechanisms by which reduced pH could affect the decapod exoskeleton. First, if the calcium
435 carbonate saturation state of seawater (Ω) drops below 1 then external (abiotic) dissolution could
436 occur (i.e. thermodynamically, dissolution is favored; Waldbusser et al. 2016). In decapod
437 crustaceans, the epicuticle, the predominantly organic (wax and protein) outermost layer of the
438 cuticle (Roer and Dillaman, 1984; Fabritius et al., 2012), effectively protects the calcified cuticle
439 layers from direct contact with seawater (Ries et al. 2009). Hence, external dissolution would be
440 restricted to either sites where the epicuticle had been damaged or sites, such as on the denticles
441 on the claws, where the epicuticle has been worn off by constant use (Rosen et al. 2020;
442 Dickinson et al. 2021). Second, shifts in environmental pH can cause changes in the hemolymph
443 pH of decapods in the short-term, and the extent to which these changes are compensated for can
444 vary among species (Pane and Barry, 2007). If osmoregulatory functions, which are the primary
445 means by which decapods maintain acid-base balance in their hemolymph (Melzner et al. 2009;
446 Whately 2011), are unable to completely compensate for the change in pH, a prolonged decrease
447 in hemolymph pH could make it more difficult to precipitate calcium carbonate during shell
448 formation or lead to internal dissolution of the exoskeleton. It is important to note, however, that
449 most decapods that are able to maintain acid-base homeostasis under ocean acidification

450 conditions do so, at least in part, by buffering their hemolymph with bicarbonate via $\text{Cl}^-/\text{HCO}_3^-$
451 exchange at the gills (Pane and Barry 2007; Whiteley 2011, Appelhans et al. 2012). This
452 response could make precipitation of calcium carbonate more likely, and could explain why
453 many decapods show increased calcification rates or content in response to ocean acidification
454 (Ries et al. 2009; Long et al. 2013b; Glandon et al. 2018). Finally, ocean acidification can induce
455 changes in the expression of genes involved in cuticle formation; red king crab adults and
456 juveniles both exhibited an increase in the expression of such genes (Stillman et al. 2020). The
457 findings of this study, showing that the micromechanical and structural properties of the snow
458 crab were not altered by exposure to decreased pH levels, suggests that snow crabs may be
459 relatively resistant to long-term exposure to reduced pH. Thus, post-terminal molt snow crabs
460 may possess a largely intact epicuticle, have strong acid-base regulatory capacity, are able to
461 alter their gene expression to maintain their cuticles, or a combination of these traits. Future
462 experiments should examine the physiological response and gene expression patterns in snow
463 crab to elucidate the mechanism(s) of exoskeletal growth and maintenance.

464

465 Elemental analysis of the exoskeleton revealed a slight, but significant, reduction in calcium
466 content and increase in magnesium content in crabs exposed to pH 7.5. This shift in elemental
467 composition of the carapace also increased the $\text{Mg}^{2+}:\text{Ca}^{2+}$ ratio of the exoskeleton. Higher calcite
468 $\text{Mg}^{2+}:\text{Ca}^{2+}$ ratios correspond to higher solubility (Morse et al. 2006; Andersson et al. 2008; Chen
469 et al. 2008) but also higher strength, as substitution of Mg^{2+} within the calcium carbonate matrix
470 can impact fracture propagation and dislocation motion (Magdans and Gies 2004; Kunitake et al.
471 2012; Kunitake et al. 2013). Despite these alterations in mineral content of the cuticle, there were
472 no changes in cuticle thickness or micromechanical properties. This suggests that either the 6%
473 reduction in calcium content was not sufficient to cause a detectable difference in
474 micromechanical properties of the cuticle, or that the elevated magnesium content increased the
475 hardness of the mineral resulting in no net change in overall hardness levels. These results also
476 highlight that calcium content alone is not a direct predictor of cuticle mechanical or structural
477 properties in decapods. In both juvenile red and blue king crabs, elevated calcium content under
478 OA conditions was accompanied by diminished microhardness (Coffey et al. 2017). Similarly in
479 Tanner crabs, calcium content in the claws was unchanged despite decreased microhardness,
480 whereas in the carapace a decrease in calcium content did not affect microhardness (Dickinson et

481 al. 2021). Like the snow crabs in this study, the decreased calcium content in the carapace of
482 Tanner crabs was accompanied by an increase in magnesium content and FTIR spectroscopy
483 showed a shift in the mineral phase of calcium carbonate from amorphous calcium carbonate to
484 calcite (Dickinson et al. 2021). It may be, then, that the disconnect between calcium and
485 hardness is at least partially explained by the mineral phase of calcium carbonate. These findings
486 highlight that researchers should be cautious in making inferences regarding cuticle strength or
487 mechanical properties in decapods based on calcium content measurements alone.

488

489 The finding that exoskeletal properties of adult snow crabs are not particularly susceptible to OA
490 is unexpected because of the apparent vulnerability of the Tanner crab (*Chionoecetes bairdi*), the
491 snow crab's close relative, to OA. Both the snow crab and the Tanner crab have life expectancies
492 upwards of 10 years, live at similar depths, and endure the highly variable pH fluctuations of the
493 Bering Sea for the duration of their relatively long lives. A similar long-term OA exposure
494 experiment showed that adult Tanner crabs experienced 15% and 31% reductions in the total
495 thickness in the claw and carapace, respectively, in response to exposure to pH levels of 7.5
496 (Dickinson et al. 2021). Reduced pH also caused decreased endocuticle hardness of adult Tanner
497 crabs, whereas the micromechanical properties of snow crabs were unaffected by pH treatment
498 level. Although the mechanisms driving observed differences between *Chionoecetes* species in
499 susceptibility to OA remain unknown, it is worth noting that the species-specific differences
500 described here mirror those reported for other life stages in these species. For example, in Tanner
501 crab, OA exposure during oogenesis resulted in a 70% reduction in hatch success (Swiney et al.
502 2016). OA increased mortality and reduced growth and calcification in juvenile Tanner crabs
503 (Long et al., 2013a), and in adults, increased hemocyte mortality and decreased intracellular pH
504 were observed after OA exposure (Meseck et al. 2016). In contrast, hatching success, survival,
505 and embryonic morphology were unaffected by OA in snow crabs, and both direct and carryover
506 effects of OA on larval survival, morphology, and calcification were negligible (Long et al.
507 2022a & b). The findings of this study paired with previous findings support that snow crabs,
508 although morphologically and ecologically similar to the Tanner crabs, are better equipped for
509 survival in extreme pH conditions.

510

511 Although there was little variation in exoskeletal properties among pH treatments, exoskeletal
512 properties varied dramatically among body regions. We found that claws were harder and
513 thicker, and that they contained more calcium but less magnesium than the carapace and legs.
514 The exoskeleton of the legs was thinner than other body regions but contained substantially more
515 magnesium. These observations add to a growing body of evidence that the structural and
516 mechanical properties of the crustacean exoskeleton vary, often dramatically, with function (e.g.,
517 Boßelmann et al. 2007; Chen et al. 2008; Politi et al. 2019; deVries et al. 2021; Inoue et al. 2021;
518 Wang et al. 2022). Such variation in exoskeletal properties among body regions has been
519 observed both in animals assessed directly after field-collection (e.g. Steffel et al. 2019; Rosen et
520 al. 2020) as well as those exposed to laboratory conditions for months to years (e.g. Coffey et al.
521 2017; Dickinson et al. 2021; deVries et al. 2021; Lowder et al. 2022). Here, claws were found to
522 be hard and resistant to mechanical deformation within the exo- and endocuticle, making them
523 resistant to wear and abrasion and able to withstand high mechanical force from predatory or
524 defensive uses. Though thin, the outer mineralized layer of the legs, the exocuticle, showed
525 microhardness substantially higher than the inner endocuticle (consistent with Chen et al. 2008),
526 with exocuticle microhardness comparable to that of the claws. As the most distal segment of the
527 leg, the dactylopodite is likely to experience almost constant wear and abrasion as they are the
528 segment of the leg that comes in contact with the sea floor; the enhanced microhardness of the
529 leg exocuticle found here supports greater resistance to wear and abrasion. Elevated magnesium
530 content in the legs may contribute to elevated hardness (Kunitake et al. 2012; 2013) and may
531 also stabilize amorphous calcium carbonate (ACC) within the exoskeleton (Weiner et al. 2003;
532 Addadi et al. 2003). Calcium content, magnesium content, and thickness of the carapace was
533 intermediate to the legs and claws, with consistently lower hardness as compared to the claws.
534 Although the carapace must protect the internal organs, it must also be sufficiently flexible and
535 elastic to enable movement (Boßelmann et al. 2007). Altogether, the body region specific
536 differences observed support highly-adaptable mineralization processes within the Crustacea
537 (Lowenstam and Weiner 1989).

538

539 In terms of body-region-specific differences in exoskeletal properties, one surprising finding was
540 the separation of left and right claws in multivariate analyses. The right claw was thicker but
541 exhibited lower hardness in both the exo- and endocuticle compared with the left claw. This

542 exoskeletal asymmetry is unusual because, unlike crab species that display strong claw
543 dimorphism, snow crabs appear by eye to have bilateral chelal symmetry. For example, fiddler
544 crabs not only have evident bilateral chelal asymmetry, but the right and left claws differ in
545 function (Pope et al. 2000; Darnell et al. 2011). The major claw of the male fiddler crab
546 functions as an ornament and weapon in courtship contests, whereas the minor claw is used for
547 feeding, foraging, and grooming (Crane 1966; Christy 1982). Although the male fiddler crab
548 serves as an extreme example, chelal asymmetry as a result of handedness, or heterochely, is
549 well-developed and immediately apparent in many decapod species (Vermeij 1977; Abby-Kalio
550 and Warner 1989; Seed and Hughes 1997; Schenk and Wainwright 2001). Behavioral bias in
551 claw preference for performing various activities can induce morphological asymmetries in
552 Brachyrun crabs, resulting in species-wide heterochely (Smith and Palmer 1994). There is very
553 little evolutionary insight into the heterochely of snow crabs, as handedness in other members of
554 the genus *Chionoecetes*, *C. japonicus* and *C. bairdi*, has not been examined. The basis for
555 varying chela micromechanical properties in this species may very well be attributed to
556 functional differences between the two claws (Govid et al. 1985; Herrick 1895). Experiments
557 assessing the snow crab's behavioral responses to predator and prey presence would be
558 beneficial in gaining more insight on these aspects of *Chionoecetes* behavior.

559

560 CONCLUSIONS

561

562 Exoskeletal structural integrity is critical in crustacean locomotive, predatory, and defensive
563 activities. Although decreased pH levels can cause exoskeletal dissolution in a number of
564 crustaceans (Pansch et al. 2014; Nardone et al. 2018; Bednaršek et al. 2020; Dickinson et al.
565 2021), adult snow crab, *C. opilio*, display resilience to predicted changes in seawater chemistry,
566 at least under the experimental conditions tested here. These findings suggest that snow crab
567 populations in the eastern Bering Sea may not be drastically affected by ocean acidification,
568 although studies with a more extreme reduction in pH (i.e., below 7.5) are necessary to fully
569 assess their physiological tolerance. This study also revealed a dichotomy within the
570 *Chionoecetes* genus. The susceptibility of Tanner crabs to exoskeletal dissolution was
571 particularly high (Dickinson et al. 2021), whereas snow crabs did not experience any apparent
572 cuticle dissolution when exposed to reduced seawater pH (down to pH 7.5). This is despite the

573 fact that *C. bairdi* and *C. opilio* reside in the same depths of the eastern Bering Sea and have
574 similar life histories. Additional ecophysiological assessments of these closely related species are
575 needed to determine the mechanisms driving the differences between these species.

576

577 **Supplementary Information.** The online version contains supplementary material available at:

578

579 **Acknowledgements.** We thank the RACE Groundfish and Shellfish Assessment Programs of the
580 NOAA Fisheries Alaska Fisheries Science Center and the crews of the F/V Alaska Knight and
581 F/V Arcturus for their assistance in securing crabs used in this study. We thank N. Gabriel, N.
582 Sisson, A. Conrad (née Bateman), and staff of the Kodiak Laboratory for help performing the
583 experiments. Previous versions of this paper were improved by comments from T. Hurst. The
584 findings and conclusions in the paper are those of the authors and do not necessarily represent
585 the views of the National Marine Fisheries Service, NOAA. Reference to trade names does not
586 imply endorsement by the National Marine Fisheries Service, NOAA. This is contribution no.
587 249 from the Institute for Global Ecology at the Florida Institute of Technology.

588

589 **Author contributions.** GHD, WCL, and RJF contributed to the conceptualization of the study.
590 GHD, WCL, BVS, KES and RBA developed methodology. AM, SS, WCL, KMS, and BVS
591 carried out experimental exposures and collected data. TA, WCL and GHD analyzed data and
592 wrote the first draft of the manuscript. All authors commented on manuscript drafts and read and
593 approved the final manuscript.

594

595 **Funding.** The authors gratefully acknowledge funding from the National Oceanic and
596 Atmospheric Administration (NOAA) Ocean Acidification Program (W.C.L., K.M.S, and R.J.F.)
597 and the US National Science Foundation (grant DMR-1905466 to G.H.D. and ANT-1141877 to
598 R.B.A.). A.M. and S.S. were supported by The College of New Jersey's Mentored
599 Undergraduate Research Experience (MUSE).

600

601 **Data availability.** The datasets generated during and/or analyzed during the current study are
602 available as a supplemental document.

603

604 **DECLARATIONS**

605 **Conflict of interest.** All authors declare that they have no conflict of interest.

606

607 **Ethical approval.** All applicable international, national, and/or institutional guidelines for the
608 care and use of invertebrate animals were followed.

609

610 **REFERENCES**

611

612 Abby-Kalio N, Warner G (1989) Heterochely and handedness in the shore crab *Carcinus maenas*
613 (L.)(Crustacea: Brachyura). Zool J Linn Soc 96:19-26. <https://doi.org/10.1111/j.1096-3642.1989.tb01819.x>

615 Adams AE (1979) The life history of the snow crab, *Chionoecetes opilio*: a literature review. Sea
616 Grant Report 78-13

617 Addadi LS, Raz S, Weiner S (2003). Taking advantage of disorder: amorphous calcium
618 carbonate and its roles in biomineralization. Adv Mater 15:959-970.
619 <https://doi.org/10.1002/adma.200300381>

620 ADF&G (Alaska Department of Fish and Game) (1991) Westward region shellfish report to the
621 Alaska Board of Fisheries. Division of Commercial Fisheries, Westward Region, Kodiak.

622 Alunno-Bruscia M, Sainte-Marie B (1998) Abdomen allometry, ovary development, and growth
623 of female snow crab, *Chionoecetes opilio* (Brachyura, Majidae), in the northwestern Gulf of St.
624 Lawrence. Can J Fish Aquat Sci 55:459–477. <https://doi.org/10.1139/f97-241>

625 Anderson M, Gorley R, Clarke K.R (2008) PERMANOVA+ for PRIMER: Guide to software
626 and statistical methods, PRIMER-E Ltd, Plymouth, UK

627 Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implications of ocean
628 acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser
629 373:265-273. <https://doi.org/10.3354/meps07639>

630 Appelhans YS, Thomsen J, Pansch C, Melzner F, Wahl M (2012). Sour times: seawater
631 acidification effects on growth, feeding behaviour and acid-base status of *Asterias rubens* and
632 *Carcinus maenas*. Mar Ecol Prog Ser 459, 85-98. <https://doi.org/10.3354/meps09697>

633 ASTM (American Society for Testing and Materials) (2019). ASTM Designation C1327-15R19.
634 Standard test method for Vickers indentation hardness of advanced ceramics. American Society
635 for Testing and Materials, West Conshohocken, Pennsylvania. <https://doi.org/10.1520/C1327->
636 [15R19](https://doi.org/10.1520/C1327-15R19)

637 Bednaršek NR, Feely RA, Beck MW, Alin SR, Siedlecki SA, Calosi P, Norton EL, Saenger C,
638 Štrus J, Greeley D, Nezlin NP, Roethler M, Spicer JI (2020) Exoskeleton dissolution with
639 mechanoreceptor damage in larval Dungeness crab related to severity of present-day ocean
640 acidification vertical gradients. Sci Total Environ 716: 136610.
641 <https://doi.org/10.1016/j.scitotenv.2020.136610>

642 Boßelmann F, Romano P, Fabritius H, Raabe D, Epple M (2007). The composition of the
643 exoskeleton of two crustacea: The American lobster *Homarus americanus* and the edible crab
644 *Cancer pagurus*. Thermochim Acta 463:65-68. <https://doi.org/10.1016/j.tca.2007.07.018>

645 Bouligand Y (1972). Twisted fibrous arrangements in biological materials and cholesteric
646 mesophases. Tissue Cell 4: 189–217. [https://doi.org/10.1016/s0040-8166\(72\)80042-9](https://doi.org/10.1016/s0040-8166(72)80042-9)

647 Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425: 365.
648 <https://doi.org/10.1038/425365a>

649 Chen P-Y, Lin AY-M, McKittrick J, Meyers MA (2008) Structure and mechanical properties of
650 crab exoskeletons. Acta Biomater 4: 587-596. <https://doi.org/10.1016/j.actbio.2007.12.010>

651 Christy JH (1982) Burrow structure and use in the sand fiddler crab, *Uca pugilator* (Bosc). Anim
652 Behav 30:687–694. [https://doi.org/10.1016/s0003-3472\(82\)80139-5](https://doi.org/10.1016/s0003-3472(82)80139-5)

653 Coffey WD, Nardone JA, Yarram A, Long WC, Swiney KM, Foy RJ, Dickinson GH (2017)
654 Ocean acidification leads to altered micromechanical properties of the mineralized cuticle in
655 juvenile red and blue king crabs. J Exp Mar Biol Ecol 495: 1-12.
656 <https://doi.org/10.1016/j.jembe.2017.05.011>

657 Crane J (1966). Combat, display and ritualization in fiddler crabs (Ocypodidae, genus Uca).
658 Philos Trans R Soc Lond B Biol Sci 251:459-472. <https://doi.org/10.1098/rstb.1966.0035>

659 Cummings V, Hewitt J, Van Rooyen A, Currie K, Beard S, Thrush S, Norkko J, Barr N, Heath P,
660 Halliday NJ (2011) Ocean acidification at high latitudes: potential effects on functioning of the
661 Antarctic bivalve *Laternula elliptica*. PloS one 6: e16069.
662 <https://doi.org/10.1371/journal.pone.0016069>

663 Daly BJ, Armistead CE, Foy RJ (2014). The 2014 eastern Bering Sea continental shelf bottom
664 trawl survey: results for commercial crab species. NOAA Technical Memorandum, NMFS-
665 AFSC-282: 1-167 pp

666 Darnell MZ, Munguia P (2011) Thermoregulation as an alternate function of the sexually
667 dimorphic fiddler crab claw. Am Nat 178: 419-428. <https://doi.org/10.1086/661239>

668 Devries MS, Webb SJ, Tu J, Cory E, Morgan V, Sah RL, Dehenn DD, Taylor JR (2016) Stress
669 physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions. Sci
670 Rep 6: 1-15. <https://doi.org/10.1101/srep38637>

671 Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO₂
672 measurements. PICES Special Publication 3: 191 p

673 Dickinson GH, Bejerano S, Salvador T, Makdisi C, Patel S, Long WC, Swiney KM, Foy RJ,
674 Steffel BV, Smith KE (2021) Ocean acidification alters properties of the exoskeleton in adult
675 Tanner crabs, *Chionoecetes bairdi*. J Exp Biol 224: jeb232819.
676 <https://doi.org/10.1242/jeb.232819>

677 Dillaman R, Hequembourg S, Gay M (2005) Early pattern of calcification in the dorsal carapace
678 of the blue crab, *Callinectes sapidus*. J Morphol 263: 356-374.
679 <https://doi.org/10.1002/jmor.10311>

680 DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon
681 dioxide system in sea water. Version 2. ORNL/CDIAC-74: 197 p

682 Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO₂ problem.
683 Ann Rev Mar Sci 1: 169-192. <https://doi.org/10.1146/annurev.marine.010908.163834>

684 Doney SC, Busch DS, Cooley SR, Kroeker KJ (2020) The impacts of ocean acidification on
685 marine ecosystems and reliant human communities. Ann Rev Environ Resour 45: 83-112.
686 <https://doi.org/10.1146/annurev-environ-012320-083019>

687 Fabry VJ, McClintock JB, Mathis JT, Grebmeier JM (2009) Ocean acidification at high latitudes:
688 the bellwether. Oceanogr 22: 160-171. <https://doi.org/10.5670/oceanog.2009.105>

689 Garber-Yonts BE, Lee JT (2020) Stock assessment and fishery evaluation report for the king and
690 Tanner crab fisheries of the Gulf of Alaska and Bering Sea/Aleutian Islands area: economic
691 status of the BSAI king and Tanner crab fisheries off Alaska, 2019. North Pacific Fishery
692 Management Council. <https://doi.org/10.4027/fsam.1998.03>

693 Giltz SM, Taylor CM (2017) Reduced growth and survival in the larval blue crab *Callinectes*
694 *sapidus* under predicted ocean acidification. J Shellfish Res 36: 481-485.
695 <https://doi.org/10.2983/035.036.0219>

696 Glandon HL, Kilbourne KH, Schijf J, Miller TJ (2018) Counteractive effects of increased
697 temperature and pCO² on the thickness and chemistry of the carapace of juvenile blue crab,
698 *Callinectes sapidus*, from the Patuxent River, Chesapeake Bay. J Exp Mar Biol Ecol 498: 39-45.
699 <https://doi.org/10.1016/j.jembe.2017.11.005>

700 Govind C, Blundon JA (1985) Form and function of the asymmetric chelae in blue crabs with
701 normal and reversed handedness. Biol Bull 168: 321-331. <https://doi.org/10.2307/1541244>

702 Gravinese PM, Enochs IC, Manzello DP, van Woesik R (2019) Ocean acidification changes the
703 vertical movement of stone crab larvae. Biol Lett 15: 20190414.
704 <https://doi.org/10.1098/rsbl.2019.0414>

705 Gravinese PM, Flannery JA, Toth LT (2016) A Methodology for Quantifying Trace Elements in
706 the Exoskeletons of Florida Stone Crab (*Menippe Mercenaria*) Larvae Using Inductively
707 Coupled Plasma Optical Emission Spectrometry (ICP-OES). US Department of the Interior, US
708 Geological Survey. <https://doi.org/10.3133/ofr20161148>

709 Gattuso J-P, Magnan A, Billé R, Cheung WW, Howes EL, Joos F, Allemand D, Bopp L, Cooley
710 SR, Eakin CM (2015) Contrasting futures for ocean and society from different anthropogenic
711 CO₂ emissions scenarios. *Science* 349: aac4722. <https://doi.org/10.1126/science.aac4722>

712 Inoue T, Hara T, Nakazato K, Oka S (2021) Superior mechanical resistance in the exoskeleton of
713 the coconut crab, *Birgus latro*. *Mater Today Bio* 12: 100132.
714 <https://doi.org/10.1016/j.mtbiol.2021.100132>

715 IPCC (2014) Climate change 2014 fifth assessment synthesis report. Intergovernmental Panel on
716 Climate Change: 132 p. <https://doi.org/10.1017/cbo9781107415416>

717 Jadamec L, Donaldson W, Cullenberg P (1999) Biological field techniques for *Chionoecetes*
718 crabs. AK-SG-99-02: 80 p. <https://doi.org/10.4027/bftcc.1999>

719 Juanes F, Hartwick E (1990) Prey size selection in Dungeness crabs: the effect of claw damage.
720 *Ecology* 71: 744-758. <https://doi.org/10.2307/1940327>

721 Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable
722 effects of ocean acidification on marine organisms. *Ecol Lett* 13: 1419-1434.
723 <https://doi.org/10.1111/j.1461-0248.2010.01518.x>

724 Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP
725 (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and
726 interaction with warming. *Glob Chang Biol* 19: 1884-1896. <https://doi.org/10.1111/gcb.12179>

727 Kunitake ME, Baker SP, Estroff LA (2012) The effect of magnesium substitution on the
728 hardness of synthetic and biogenic calcite. *MRS Commun* 2: 113-116.
729 <https://doi.org/10.1557/mrc.2012.20>

730 Kunitake ME, Mangano LM, Peloquin JM, Baker SP, Estroff LA (2013) Evaluation of
731 strengthening mechanisms in calcite single crystals from mollusk shells. *Acta Biomater* 9: 5353-
732 5359. <https://doi.org/10.1016/j.actbio.2012.09.030>

733 Lavigne H, Gattuse J (2012) seacarb: Seawater carbonate chemistry with R. <http://CRAN.R-project.org/package=seacarb>. R package version 2.4.6 edn.

735 Leung JY, Zhang S, Connell SD (2022) Is ocean acidification really a threat to marine calcifiers?
736 A systematic review and meta-analysis of 980+ studies spanning two decades. *Small* 18:
737 2107407. <https://doi.org/10.1002/smll.202107407>

738 Lowder KB, deVries MS, Hattingh R, Day JM, Andersson AJ, Zerofski PJ, Taylor JR (2022)
739 Exoskeletal predator defenses of juvenile California spiny lobsters (*Panulirus interruptus*) are
740 affected by fluctuating ocean acidification-like conditions. *Front Mar Sci* 9: 909017.
741 <https://doi.org/10.3389/fmars.2022.909017>

742 Long WC, Swiney KM, Foy RJ (2022) Effects of high pCO₂ on snow crab embryos: Ocean
743 acidification does not affect embryo development or larval hatching. *bioRxiv* 2022:
744 2022.10.06.511099. <https://doi.org/10.1101/2022.10.06.511099>

745 Long WC, Swiney KM, Foy RJ (2022) Effects of high pCO₂ on snow crab larvae: Carryover
746 effects from embryogenesis and oogenesis reduce direct effects on larval survival. *bioRxiv* 2022:
747 2022.10.06.511100. <https://doi.org/10.1101/2022.10.06.511100>

748 Long WC, Swiney KM, Foy RJ (2013a) Effects of ocean acidification on the embryos and larvae
749 of red king crab, *Paralithodes camtschaticus*. *Mar Pollut Bull* 69: 38-47.
750 <https://doi.org/10.1016/j.marpolbul.2013.01.011>

751 Long WC, Swiney KM, Harris C, Page HN, Foy RJ (2013b) Effects of ocean acidification on
752 juvenile red king crab (*Paralithodes camtschaticus*) and Tanner crab (*Chionoecetes bairdi*)
753 growth, condition, calcification, and survival. *PLoS One* 8, e60959.
754 <https://doi.org/10.1371/journal.pone.0060959>

755 Long WC, Pruisner P, Swiney KM, Foy RJ (2019) Effects of ocean acidification on respiration,
756 feeding, and growth of juvenile red and blue king crabs (*Paralithodes camtschaticus* and *P.*
757 *platypus*). *ICES J Mar Sci* 76: 1335-1343. <https://doi.org/10.1371/journal.pone.0060959>

758 Long WC, Swiney KM, Foy RJ (2021). Effects of ocean acidification on young of the year
759 golden king crab (*Lithodes aequispinus*) survival and growth. *Mar Biol* 168: 126.
760 <https://doi.org/10.1007/s00227-021-03930-y>

761 Lowenstam HA, Weiner S (1989). On biomineralization. Oxford University Press, New York

762 Mathis JT, Cross JN, Bates NR (2011a) The role of ocean acidification in systemic carbonate
763 mineral suppression in the Bering Sea. *Geophys Res Let* 38:L19602.
764 <https://doi.org/10.1029/2011gl048884>

765 Mathis JT, Cross JN, Bates NR (2011b) Coupling primary production and terrestrial runoff to
766 ocean acidification and carbonate mineral suppression in the eastern Bering Sea. *J Geophys Res*
767 *Oceans* 116: C02030. <https://doi.org/10.1029/2010JC006453>

768 Mathis JT, Cross JN, Monacci N, Feely RA, Stabeno P (2014). Evidence of prolonged aragonite
769 undersaturations in the bottom waters of the southern Bering Sea shelf from autonomous sensors.
770 *Deep Sea Res Part II: Top Stud Oceanogr* 109: 125-133.
771 <https://doi.org/10.1016/j.dsr2.2013.07.019>

772 Magdans U, Gies H. (2004). Single crystal structure analysis of sea urchin spine calcites:
773 systematic investigations of the Ca/Mg distribution as a function of habitat of the sea urchin and
774 the sample location in the spine. *Eur J Mineral* 16: 261-268. <https://doi.org/10.1127/0935-1221/2004/0016-0261>

776 McLean EL, Katenka NV, Seibel BA (2018) Decreased growth and increased shell disease in
777 early benthic phase *Homarus americanus* in response to elevated CO₂. *Mar Ecol Prog Ser* 596:
778 113-126. <https://doi.org/10.3354/meps12586>

779 Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M,
780 Portner HO (2009) Physiological basis for high CO₂ tolerance in marine ectothermic animals:
781 pre-adaptation through lifestyle and ontogeny? *Biogeosciences* 6: 2313-2331.
782 <https://doi.org/10.5194/bg-6-2313-2009>

783 Meseck SL, Alix JH, Swiney KM, Long WC, Wikfors GH, Foy RJ (2016) Ocean acidification
784 affects hemocyte physiology in the Tanner crab (*Chionoecetes bairdi*). *PloS one* 11: e0148477.
785 <https://doi.org/10.1371/journal.pone.0148477>

786 Meyers MA, McKittrick J, Chen P-Y (2013) Structural biological materials: critical mechanics-
787 materials connections. *Science* 339: 773-779. <https://doi.org/10.1126/science.1220854>

788 Miller JJ, Maher M, Bohaboy E, Friedman CS, McElhany P (2016) Exposure to low pH reduces
789 survival and delays development in early life stages of Dungeness crab (*Cancer magister*). Mar
790 Biol 163: 1-11. <https://doi.org/10.1007/s00227-016-2883-1>

791 Millero FJ (1986). The pH of estuarine waters. Limnol Oceanogr 839-847.
792 <https://doi.org/10.4319/lo.1986.31.4.0839>

793 Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf
794 sediments to rising atmospheric pCO₂ and “ocean acidification”: role of high Mg-calcites.
795 Geochim Cosmochim Acta 70: 5814-5830. <https://doi.org/10.1016/j.gca.2006.08.017>

796 Nardone JA, Patel S, Siegel KR, Tedesco D, McNicholl CG, O'Malley J, Herrick J, Metzler RA,
797 Orihuela B, Rittschof D, Dickinson GH (2018) Assessing the impacts of ocean acidification on
798 adhesion and shell formation in the barnacle *Amphibalanus amphitrite*. Front Mar Sci 5: 369.
799 <https://doi.org/10.3389/fmars.2018.00369>

800 NOAA Fisheries. Landings report.
801 <https://www.fisheries.noaa.gov/foss/f?p=215:200:2033928566340>

802 Opsahl S, Benner R (1997) Distribution and cycling of terrigenous dissolved organic matter in
803 the ocean. *Nature* 386: 480–482. <https://doi.org/10.1038/386480a0>

804 Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida
805 A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG,
806 Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ,
807 Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-
808 first century and its impact on calcifying organisms. *Nature* 437: 681-686.
809 <https://doi.org/10.1038/nature04095>

810 Page TM, Worthington S, Calosi P, Stillman JH (2017) Effects of elevated p CO₂ on crab
811 survival and exoskeleton composition depend on shell function and species distribution: a
812 comparative analysis of carapace and claw mineralogy across four porcelain crab species from
813 different habitats. ICES J Mar Sci 74: 1021-1032. <https://doi.org/10.1093/icesjms/fsw196>

814 Pane EF, Barry JP (2007) Extracellular acid-base regulation during short-term hypercapnia is
815 effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar Ecol Prog Ser 334: 1-9.
816 <https://doi.org/10.3354/meps334001>

817 Pansch C, Schaub I, Havenhand J, Wahl M (2014) Habitat traits and food availability determine
818 the response of marine invertebrates to ocean acidification. Glob Chang Biol 20: 765-777.
819 <https://doi.org/10.1111/gcb.12478>

820 Pilcher DJ, Naiman DM, Cross JN, Hermann AJ, Siedlecki SA, Gibson GA, Mathis JT (2019)
821 Modeled effect of coastal biogeochemical processes, climate variability, and ocean acidification
822 on aragonite saturation state in the Bering Sea. Front Mar Sci 5: 508.
823 <https://doi.org/10.3389/fmars.2018.00508>

824 Pilcher D, Cross J, Hermann A, Kearney K, Cheng W, Mathis J (2022) Dynamically downscaled
825 projections of ocean acidification for the Bering Sea. Deep Sea Res Part II: Top Stud Oceanogr
826 198: 105055. <https://doi.org/10.1016/j.dsr2.2022.105055>

827 Politi Y, Bar-On B, Fabritius H-O (2019) Mechanics of arthropod cuticle-versatility by structural
828 and compositional variation. In: Estrin Y, Bréchet Y, Dunlap J, Fratzl P (eds) Architectured
829 materials in nature and engineering. Springer, Cham, pp 287-327. https://doi.org/10.1007/978-3-030-11942-3_10

831 Pope DS (2000) Testing function of fiddler crab claw waving by manipulating social context.
832 Behav Ecol Sociobiol 47: 432-437. <https://doi.org/10.1007/s002650050687>

833 Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi S-B, Servos G, Hartwig H (2006)
834 Microstructure and crystallographic texture of the chitin–protein network in the biological
835 composite material of the exoskeleton of the lobster *Homarus americanus*. Mat Sci Eng A 421:
836 143-153. <https://doi.org/10.1016/j.msea.2005.09.115>

837 Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO₂-
838 induced ocean acidification. Geology 37: 1131-1134. <https://doi.org/10.1130/g30210a.1>

839 Roer R, Dillaman R (1984) The structure and calcification of the crustacean cuticle. Am Zool 24:
840 893-909. <https://doi.org/10.1093/icb/24.4.893>

841 Rosen MN, Baran KA, Sison JN, Steffel BV, Long WC, Foy RJ, Smith KE, Aronson RB,
842 Dickinson GH (2020) Mechanical resistance in decapod claw denticles: contribution of structure
843 and composition. *Acta Biomater* 110: 196-207. <https://doi.org/10.1016/j.actbio.2020.04.037>

844 Schenk SC, Wainwright PC (2001) Dimorphism and the functional basis of claw strength in six
845 brachyuran crabs. *J Zool* 255: 105-119. <https://doi.org/10.1017/s0952836901001157>

846 Seed R, Hughes R (1997) Chelal Characteristics and Foraging Behaviour of the Blue
847 Crab *Callinectes sapidus* Rathbun. *Estuar Coast Shelf Sci* 44: 221-229.
848 <https://doi.org/10.1006/ecss.1996.0214>

849 Siegel KR, Kaur M, Grigal AC, Metzler RA, Dickinson GH (2022) Meta-analysis suggests
850 negative, but pCO₂-specific, effects of ocean acidification on the structural and functional
851 properties of crustacean biomaterials. *Ecology and Evolution* 12: e8922.
852 <https://doi.org/10.1002/ece3.8922>

853 Smith LD, Palmer AR (1994) Effects of manipulated diet on size and performance of brachyuran
854 crab claws. *Science* 264:710-712. <https://doi.org/10.1126/science.264.5159.710>

855 Steffel BV, Smith KE, Dickinson GH, Flannery JA, Baran KA, Rosen MN, McClintock JB,
856 Aronson RB (2019) Characterization of the exoskeleton of the Antarctic king crab *Paralomis*
857 *birsteini*. *Invertebr Biol* 138: e12246. <https://doi.org/10.1111/ivb.12246>

858 Stillman JH, Fay SA, Ahmad SM, Swiney KM, Foy RJ (2020) Transcriptomic response to
859 decreased pH in adult, larval and juvenile red king crab, *Paralithodes camtschaticus*, and
860 interactive effects of pH and temperature on juveniles. *J Mar Biol Assoc UK* 100: 251-265.
861 <https://doi.org/10.1017/s002531541900119x>

862 Swiney KM, Long WC, Foy RJ (2016) Effects of high p CO₂ on Tanner crab reproduction and
863 early life history—Part I: long-term exposure reduces hatching success and female calcification,
864 and alters embryonic development. *ICES J Mar Sci* 73: 825-835.
865 <https://doi.org/10.1093/icesjms/fsv201>

866 Swiney KM, Long CW, Foy RJ (2017) Decreased pH and increased temperatures affect young-
867 of-the-year red king crab (*Paralithodes camtschaticus*). ICES J Mar Sci 74: 1191-1200.
868 <https://doi.org/10.1093/icesjms/fsw251>

869 Taylor JR, Gillean JM, Allen MC, Deheyn DD (2015) Effects of CO₂-induced pH reduction on
870 the exoskeleton structure and biophotonic properties of the shrimp *Lysmata californica*. Sci Rep
871 5: 10608. <https://doi.org/10.1038/srep10608>

872 Travis DF (1963) Structural features of mineralization from tissue to macromolecular levels of
873 organization in the decapod Crustacea. Ann N Y Acad Sci 109: 177-245.
874 <https://doi.org/10.1111/j.1749-6632.1963.tb13467.x>

875 Ueda Y, Ito M, Hattori T, Narimatsu Y, Kitagawa D (2009) Estimation of terminal molting
876 probability of snow crab *Chionoecetes opilio* using instar-and state-structured model in the
877 waters off the Pacific coast of northern Japan. Fish Sci 75: 47-54.
878 <https://doi.org/10.1007/s12562-008-0016-6>

879 Vermeij GJ (1977) Patterns in crab claw size: the geography of crushing. Syst Biol 26: 138-151.
880 <https://doi.org/10.1093/sysbio/26.2.138>

881 Waldbusser GG, Hales B, Haley BA (2016) Calcium carbonate saturation state: on myths and
882 this or that stories. ICES J Mar Sci 73: 563-568. <https://doi.org/10.1093/icesjms/fsv174>

883 Wang C, Shi G, Que F, Xia Y, Li X, Yang H, Shi L, Wu W, Ding A, Li X (2022) Effect of
884 microstructure and chemical proximate composition on mechanical properties of *Procambarus*
885 *clarkii* shell. LWT 165: 113731. <https://doi.org/10.1016/j.lwt.2022.113731>

886 Weiner S, Levi-Kalisman Y, Raz S, Addadi L (2003) Biologically formed amorphous calcium
887 carbonate. Connect Tissue Res 44: 214-218. <https://doi.org/10.1080/03008200390181681>

888 Whiteley NM (2011) Physiological and ecological responses of crustaceans to ocean
889 acidification. Mar Ecol Prog Ser 430: 257-271. <https://doi.org/10.3354/meps09185>

890 Wittmann AC, Pörtner H-O (2013) Sensitivities of extant animal taxa to ocean acidification. Nat
891 Clim change 3: 995-1001. <https://doi.org/10.1038/nclimate1982>

892 Zacher L, Richar J, Foy R (2020) The 2019 eastern and northern Bering Sea continental shelf
893 trawl surveys: results for commercial crab species. NOAA Technical Memorandum, NMFS-
894 AFSC-400