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Adult snow crab, Chionoecetes opilio, display body-wide exoskeletal resistance to the effects
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ABSTRACT

Structural and mechanical properties of the decapod exoskeleton affect foraging, defense, and
locomotion. Ocean acidification (OA) poses a threat to marine biomes and their inhabitants,
particularly calcifying organisms. Vulnerability of the snow crab, Chionecetes opilio, a
commercially important, high-latitude species, to OA has not been explored. Although all oceans
are experiencing acidification, abiotic factors in high-latitude areas increase the rate of
acidification. We examined the effect of long-term (2-year) exposure to decreased seawater pH
(7.8 and 7.5; Pcoz2 ~760 and 1550 patm, respectively) on exoskeletal properties in post-terminal-
molt female C. opilio. Since the effects of OA vary among body regions in decapods, exoskeletal
properties (microhardness, thickness, and elemental composition) were measured in five body
regions: the carapace, both claws, and both third walking legs. Overall, adult C. opilio
exoskeletons were robust to OA in all body regions. Decreased pH had no effect on
microhardness or thickness of the exoskeleton, despite a slight (~6%) reduction in calcium
content in crabs held at pH 7.5. In contrast, exoskeletal properties varied dramatically among
body regions regardless of pH. The exoskeleton of the claws was harder, thicker, and contained
more calcium but less magnesium than that of other body regions. Exoskeleton of the legs was
thinner than that of other body regions and contained significantly greater magnesium
concentrations (~2.5 times higher than the claws). Maintenance of exoskeletal properties after
long-term OA exposure, at least down to pH 7.5, in adult C. opilio suggests that wild populations

may tolerate future ocean pH conditions.

INTRODUCTION

The absorption of anthropogenic COz has caused oceanic pH levels to decrease by ~0.1 units
since the beginning of the industrial revolution (Caldeira and Wickett, 2003; Orr et al. 2005;
Doney et al. 2009; Doney et al. 2020; Leung et al. 2022). This phenomenon, known as ocean
acidification (OA), is predicted to persist and cause pH in ocean surface waters to drop another
~0.3 units by 2100 and ~0.5 units by 2200 (Caldeira and Wickett 2003; Orr et al. 2005; [PCC
2014; Gattuso et al. 2015). Reduced pH of seawater, along with associated changes in carbonate

chemistry, can significantly decrease survival and growth in myriad marine taxa, with calcified
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algae, corals, and mollusks standing out as the most vulnerable (Kroeker et al. 2010; Kroeker et
al. 2013). Although crustaceans were not initially believed to be particularly vulnerable to the
effects of OA (Kroeker et al. 2010, 2013; Whittman and Portner 2013; Byrne and Fitzer 2019),
recent studies with larval and juvenile crustaceans have demonstrated that elevated pCOz2 levels
can increase mortality (Miller et al. 2016; Giltz & Taylor 2017, Long et al. 2021), reduce growth
(Swiney et al. 2017; McLean et al. 2018), and alter energetics (Long et al. 2019) and behavior
(Gravinese et al. 2019). In addition, at all crustacean life stages, OA has been shown to alter the
formation and maintenance of the mineralized exoskeleton (Taylor et al. 2015; Meseck et al.
2016; Glandon et al. 2018; Bednarsek et al. 2020; Dickinson et al. 2021; Siegel et al. 2022),
potentially limiting the defensive, predatory, and locomotive abilities of these organisms (Page et
al. 2016; Coffey et al. 2017). Much of the OA research studying physiological and ecological
responses of crustaceans to decreased pH has involved only short-term (~30 days) to medium-
term (~ 6 month) exposure to OA; however, many crustaceans can live for a decade or longer,
which makes long-term exposure experiments critically important (Whiteley 2011; Siegel et al.

2022).

There have been relatively few studies explicitly exploring the effect of OA on structural and
mechanical properties of the mineralized decapod exoskeleton. The exoskeleton protects animals
from both environmental (e.g., desiccation, hydrodynamic or mechanical forces) and predatory
risks and, in the case of the claws (chelae) and mandibles, is critical for capturing, subduing, and
consuming prey. The crab exoskeleton is multilayered, consisting of an outer epicuticle, a
procuticle composed of an outer exocuticle and inner endocuticle, and a thin, uncalcified
membranous inner layer (Travis 1963; Roer and Dillaman 1984). The exo- and endocuticle are
formed by chitin-protein nanofibrils interlacing to create helical structures known as
“Bouligand” or “twisted plywood” layers, which are embedded with nanocrystalline magnesian
calcite or amorphous calcium carbonate (Bouligand 1972; Roer and Dillaman 1984; Raabe et al.
2006; BoBlelmann et al. 2007). When the mechanical properties of the cuticle are compromised,
vital functions such as foraging, defense against predators, and locomotion, can suffer reductions
in performance efficiency (Juanes and Hartwick 1990). The cuticle provides muscle-attachment
sites in many regions of the body, making the functionality of appendages contingent on its

integrity (Meyers et al. 2013). Observed effects of OA include reduced microhardness (resistance
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to permanent or plastic mechanical deformation) in the claws—but notably not in the carapace—
of decapods; this could compromise the ‘crushing’ abilities of the claws, potentially diminishing
defense and foraging abilities (deVries et al. 2016; Coffey et al. 2017; Dickinson et al. 2021). In
order to thoroughly investigate how this complex exoskeletal structure is responding to our
rapidly changing ocean, more body-region-specific analyses must be conducted on decapod

species.

Although the entire ocean is absorbing atmospheric CO2 and experiencing acidification, high-
latitude regions are likely to acidify faster than lower-latitudes regions due to the higher
solubility of COz2 in colder waters (Fabry et al. 2009; Cumming et al. 2011). The Bering Sea has
a set of environmental conditions that make its waters particularly vulnerable to OA (Opsahl and
Benner 1997; Pilcher et al. 2019). The low temperatures, poorly buffered water, and high climate
variability in this region are just some of the factors that make the Bering Sea a research priority

in terms of potential biological responses to OA (Mathis et al. 2011a).

The snow crab, Chionoecetes opilio, is one of the many valuable commercial species that inhabit
the Bering Sea. It has a distribution that spans the northern Pacific and Atlantic Oceans, and the
Arctic Ocean (Jadamec et al. 1999). In the Bering Sea, snow crabs are distributed along the
continental shelf and upper slope, with most individuals occurring at 50-200 m (Zacher et al.
2020). The lifespan of snow crabs is estimated at 14—16 years for males, and 11-12 years for
females, making them a relatively long-lived decapod species (Adams, 1979). Both male and
female snow crabs can live 3—5 years after completing their terminal molt and reaching sexual
maturity (Alunno-Bruscia & Sainte-Marie 1998; Ueda et al. 2009). In Alaska, snow crabs have
supported valuable fisheries, bringing in an ex-vessel revenue of $101.7 million in 2020 (Garber-
Yonts and Lee, 2020; NOAA Fisheries 2021). Understanding how future ocean conditions will
impact Alaskan snow crab populations is essential to protecting these stocks from possible

overharvest (ADF&G 1991).

Carbonate chemistry in snow crab habitat varies both seasonally and spatially. Currently,
seasonal stratification combined with benthic remineralization results in pCO2 values dropping
from late summer/early fall highs of 1600 patm (pH about 7.5) to about 400 (pH 8.1) in the

winter when storms mix surface waters down (Mathis et al. 2014). Similarly, across the Bering
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Sea shelf, aragonite saturation states in the summer grade from greater than 2 (pH about 8) in
shallow water at 60 m or less, to below 1 (pH about 7.8) at depths below 100 m (Mathis et al,
2011b). Projections for the greater Bearing Sea shelf show that average shelf pH is currently
below 7.8 for about half the year and below 7.5 for a negligible amount of time, but this will
grade to being below 7.8 for about 90% of the year and below 7.5 for 40% of the year by 2100
(Pilcher et al. 2022).

The effects of OA on exoskeletal properties have not been assessed previously in snow crabs.
Previous work on a congeneric species, the southern Tanner (hereafter Tanner) crab
Chionoecetes bairdi, however, revealed high susceptibility of the adult exoskeleton to OA
(Dickinson et al. 2021). Two-year exposure to OA conditions resulted in thinning of the cuticle,
internal and external dissolution, reduction in claw hardness, and alterations in mineralogy of the
carapace. Hence, the goal of this study was to assess the effects of ocean acidification on
exoskeletal properties of adult snow crab, C. opilio. Post-terminal-molt female snow crabs were
held in ambient (~8.1) or reduced pH seawater (7.8 and 7.5) for a period of two years. We then
evaluated microhardness and thickness of the two major structural layers of the cuticle, the
endocuticle and exocuticle, within five different body regions: the carapace, left and right claws,
and left and right third walking legs. Elemental composition in each body region was also
assessed. These assessments are crucial because variations in mechanical, elemental, and

structural properties of the exoskeleton can lead to differences in functionality.

MATERIALS AND METHODS

Overview

The work presented here is part of a broader project examining the effects of OA on snow crabs,
Chionoecetes opilio. In brief, ovigerous snow crab were held in the laboratory for two years
through two brooding cycles, and embryonic development and hatching successes were
monitored. After eggs hatched in the first year, the same adult females were provided with a
male to mate with and they extruded a second clutch of embryos. All females used for
exoskeleton assessments brooded two clutches of eggs, one per year, for each of two years; there

were no differences in reproductive output among treatments. Each year, larvae that hatched
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were used in a series of experiments to determine the effects of OA on the larval phase. At the
end of the second year, the adult crabs were sacrificed and samples were taken to examine the
effects of OA on the exoskeleton of the females. The results of the embryonic and larval studies
are presented elsewhere (Long et al., 2022a & b). Sample preparation, and mechanical,

structural, and elemental testing generally followed Dickinson et al. (2021), with an expansion of

the number of body regions and exoskeletal layers assessed.

Animal collection and OA exposure

Mature female snow crabs, Chionoecetes opilio, were collected from the Bering Sea during the
eastern Bering Sea trawl survey (Daly et al. 2014) and transported to the NOAA Alaska Fisheries
Science Center’s Kodiak Laboratory. Upon arrival and throughout the experiment, crabs were
held in flow-through, sand-filtered seawater at ambient salinity from Trident Basin (intakes 15
and 26 m) chilled to 2°C with recirculating chillers. Crabs were fed to excess twice a week on a
diet of chopped squid and herring. After a brief holding period, 25 crabs were randomly assigned
to each of three pH treatments: ~8.1 (ambient), 7.8, or 7.5. Two different holding systems were
used during this experiment during different parts of the brooding cycle; however, in both
systems the holding conditions were the same, with water acidified with the addition of CO2,
temperatures chilled to a constant 2°C, and flow through seawater at ambient salinity. During the
majority of the brooding cycle, crabs were held in experimental tanks (0.6 x 1.2 x 0.6 m), one per
treatment. During this period, water was acidified per Long et al. (2013a). In brief, water was
acidified by mixing ambient seawater with seawater from a super-acidified tank (pH 5.5,
acidified via bubbling of COz2) in head-tanks (one per treatment). The ambient-treatment head-
tank contained only ambient water with no input from the super-acidified tank. Super-acidified
water was mixed into acidified head-tanks via peristaltic pumps that were regulated by
Honeywell controllers and Durafet III pH probes placed inside the head tanks (see Long et al.
2013a for a diagram of this system). As embryos neared hatching, adult female crabs were
moved into individual 68-L tubs. This was necessary so that the number of larvae hatched from
each female could be counted (see Long et al. 2022a for details). Tubs received recirculating
flow from 2000-L tanks that received flow-through water that was acidified by direct bubbling of
CO:2 controlled by a Durafet III pH probe (Fig. S1). Although this design, holding crabs in a

single tank for each treatment, or in individual tubs with water recirculating from a common
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head tank, is technically pseudoreplication, there is no known mechanism by which the presence
of other crabs might have affected the exoskeleton of each other and we ignore tank affects in all
analyses. Both of the experimental setups supplied crabs with water at the same temperatures
and, in acidified treatments, with water acidified with CO2 to the same pH and using the same
feedback mechanism. In addition, all crabs were transferred between the setups at the same time

negating any potential bias caused by the two different sets of holding conditions.

Temperature and pH (free scale) were measured in experimental units daily using a Durafet III
pH probe calibrated with TRIS buffer (Millero 1986). Water from the head tanks was sampled
once per week (N = 98 per treatment) and samples were poisoned with mercuric chloride and
analyzed for dissolved inorganic carbon (DIC) and total alkalinity (TA) at an analytical
laboratory. DIC and TA were determined using a VINDTA 3C (Marianda, Kiel, Germany)
coupled with a 5012 Coulometer (UIC Inc.) according to the procedure in DOE (1994) using
Certified Reference Material from the Dickson Laboratory (Scripps Institute, San Diego, CA,
USA; Dickson et al. 2007). The other components of the carbonate system were calculated in R
(V3.6.1, Vienna, Austria) using the seacarb package (Lavigne and Gattuso 2012). Crabs were
held in experimental conditions for two years and were monitored for mortality daily. At the end
of the two-year exposure period, surviving crabs were sacrificed and cuticle samples were taken
and kept frozen at -80°C. The total number of surviving crabs was 4 in the ambient treatment, 13
in the pH 7.8 treatment, and 10 in pH 7.5 treatment. Samples were transported on dry ice to The
College of New Jersey (Ewing, NJ) for analysis. All samples remained frozen during transit and,

upon arrival, were kept at -70°C until further use.

Table 1. Seawater chemistry parameters. pH and temperature were measured daily (N=681 per
treatment). Dissolved inorganic carbon (DIC) and alkalinity were measured weekly (N=98 per
treatment). Other parameters were calculated (see Materials and Methods). pHr, pH on the free

proton scale; Qcalcite, calcium carbonate saturation; SW, sea water. Data are means = SD.

pH 8.1 pH 7.8 pH 7.5
pHr 8.11+0.08 7.80 £ 0.02 7.50 £ 0.02
Temperature (°C) 2.09 +0.32 1.97 +0.30 2.05+0.31
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Pco2 (patm) 362.18+68.33  760.98 £+43.95 1548.29+102.11

DIC (mmol kg™! SW) 2.01 £0.04 2.09 £0.05 2.15+£0.06

HCO:- (mmol kg! SW) 1.90 £ 0.05 2.00 £0.04 2.04+£0.06

COs3* (mmol kg™! SW) 0.09 £0.02 0.05+0.00 0.02 £ 0.00

Total alkalinity (umol kg™! SW) 2110+ 20 2090 + 20 211020

Qcalcite 2.19 £0.37 1.11 £0.06 0.57 £0.04
Sample Preparation

Cuticle samples were taken from standardized locations in five body regions: the carapace, both
claws, and both third walking legs. From each crab and each body region, two cuticle samples
were cut using a water-cooled diamond band-saw (Gryphon, C-40); one of these was embedded
in epoxy resin and polished for micromechanical and structural assessments while the other was
used for elemental analyses. All segments were lyophilized for ~18 hours (Yamato, DC41-A)
immediately after cutting. Within the carapace, the two segments were cut immediately adjacent
to one another, both taken from the posterior margin. For left and right claws, the dactylus
(movable finger) and pollex (fixed finger) were cut from the manus; dactyli were embedded and
used for micromechanical and structural assessments while pollexes were used for elemental
analyses. Similarly, for the left and right legs, the most distal segment (the dactyl or
dactylopodite) was embedded and used for micromechanical and structural assessments while
the segment proximal to this (the propodus or propodite) was used for elemental analyses. Note
that a portion of the crabs were missing a claw or third walking leg at the end of the experimental
exposure so samples could not be taken; for consistently, other legs were not substituted for the

third walking leg.

Cuticle segments to be used in micromechanical and structural analyses were embedded
individually in epoxy resin (Allied High Tech, Epoxy Set), ground, and polished as described in
Coftey et al. (2017) and Dickinson et al. (2021). Samples were ground and polished on a
grinding/polishing machine (Allied High Tech, M-Prep 5 or Met-Prep3 PH-4). Grinding steps
employed a series 180, 320, 600 and 800 grit silicon carbide papers, followed by polishing with a
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1 pm diamond suspension and a 0.04 pm colloidal silica suspension until the samples were
completely smooth and free of scratches. Griding and polishing was used to produce a cross-
section along the anterior-posterior axis of carapace samples (normal to the dorsal surface of the
carapace), while grinding/polishing of claw and leg dactyl samples produced a cross-section

along the longest (longitudinal) axis. Polished samples were stored in a desiccator until testing.

Micromechanical properties

Vickers microhardness testing was conducted on embedded and polished samples. Testing was
conducted on a microindentation hardness tester (Mitutoyo, HM-200) following standard
procedures (ASTM 2017). Indents were made at 1 g load, 5 s dwell time. Two series of indents
were made: one in the endocuticle and one in the exocuticle. The two cuticle layers could be
readily differentiated from one another on the hardness tester (under reflected light), as there was
a dramatic difference in the thickness of Bouligand layers when moving from the endocuticle to
the exocuticle (i.e., layers were more densely packed in the exocuticle). Within each layer, 10
replicate indents were made, with the first indent approximately 500 um from the edge of the
sample and each subsequent indent spaced about 200 pum apart. For leg (dactylopodite) samples,
the most distal tip of the sample was avoided, as cuticle wear and damage was visible in many
samples. Individual indents were measured directly on the hardness tester under a 100 X
objective and Vickers microhardness values were automatically calculated. Microhardness of
replicate indents within a sample and within a cuticle layer were averaged to determine the mean

microhardness for each sample.

Cuticle thickness

Following microhardness testing, the same embedded samples were used to quantify four
structural metrics: total thickness of the cuticle, exocuticle thickness, endocuticle thickness, and
thickness of individual Bouligand layers that comprise the endocuticle. Samples were imaged
under a reflected light microscope (Zeiss, AxioScope Al with a Zeiss, AxioCam 105 color
camera) using a 2.5 X objective (~100 X total magnification) and darkfield illumination.
Panoramic images of the entire sample were constructed using the camera’s analysis software
(Zeiss, Zen v. 2.3; Fig. S2). Thickness was measured on digital images following the methods of
Nardone et al. (2018) and Coffey et al. (2017). A grid was placed on each image (200 x 200 um
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for carapace samples; 500 x 500 pm for claw and leg samples) and cuticle thickness was
measured using a linear line tool each time the grid crossed the sample. Total thickness and
endocuticle thickness were measured separately at each point; exocuticle thickness was
calculated as the difference between total and endocuticle thickness. The endo- and exocuticle
layers were differentiated from one another based on the thickness of Bouligand layers (Roer and
Dillaman 1984); there was a distinct shift when moving from the endocuticle to the exocuticle in
Bouligand layer thickness (i.e., layers were thinner and more densely packed in the exocuticle;
Fig. S2). This resulted in a clear shift in coloration under darkfield illumination. At least 10
replicate measurements were made for each parameter within each sample, with the total number
of measurements dependent on the size of the sample. Replicate measurements for each metric
(total thickness, exocuticle thickness, endocuticle thickness) were averaged separately to
determine the mean for each sample. Thickness of the Bouligand layers that comprise the
endocuticle was measured by taking three additional images of the endocuticle under a 50 X
objective (~1,600 X total magnification) and brightfield illumination. The three images were
spaced roughly evenly along the length of the polished sample. Within each image, three
separate distance lines were drawn perpendicular to the Bouligand layers using the camera’s
analysis software; each line spanned 10 distinct Bouligand layers. The total length of the line was
divided by 10 to determine average thickness of individual Bouligand layers. The 9 replicate
measurements (3 images with 3 measurements per image) were averaged to determine the mean
Bouligand thickness for each sample. A similar procedure was attempted within the exocuticle,

but the density of Bouligand layers precluded accurate measurements.

Elemental composition

Elemental composition was measured at the U.S. Geological Survey’s Coastal and Marine
Science Center, St. Petersburg, FL. Inductively coupled plasma optical emission spectrometry
(ICP-OES) was used to measure calcium, magnesium, and strontium content within the carapace,
right and left claws, and right and left third walking leg. Methods followed those described in
Gravinese et al. (2016) and Steffel et al. (2019). Samples were cut from each body region, as
described above, and any adhering tissue was removed using a scalpel and forceps. Samples
were first oxidized by sonication in a 1:1 mixture of 30% H202 and 0.1 M NaOH for 20 minutes.

This was followed by sonication in Milli-Q water for 5 minutes. This oxidation procedure was

10
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repeated before samples were removed from solution and dried overnight at 90°C. Dried samples
were ground into a fine powder by mortar and pestle, and the oxidation process described above
was repeated on the powdered samples. Oxidized samples were dried again at 90°C for at least 3
hours before analyses. Samples were weighed and acidified in 2% HNO3, then measured for
Ca?", Mg+, and Sr** using a PerkinElmer 7300 dual-view ICP-OES. Elemental weight-
percentages were calculated for each sample by multiplying concentration by the volume of
HNO3 added prior to ICP-OES analysis, and then dividing by the total dry weight of the sample
using the conversion 1 ppm = 1 mg/L (Long et al., 2013b).

Statistical analysis

The exoskeletal properties of C. opilio were assessed using a combination of multivariate and
univariate statistical procedures. Multivariate approaches incorporated all measured variables to
assess the effect of seawater pH on exoskeletal properties, as well as if these properties varied
among body regions. Variables were normalized (expressed in terms of their z value) before
multivariate analysis and visualized with a non-metric multidimensional scaling (nMDS) plot
based on a Euclidian-distance resemblance matrix. Differences among treatments were then
analyzed with a permutational analysis of variance (PERMANOVA) with treatment fully crossed
with body region and crab identification number (unique to each individual crab) nested within
treatment as factors. Differences in dispersion were analyzed with a permutational analysis of
dispersion (PERMDISP) in order to help differentiate between effects of differences in data
location and dispersion. These analyses were followed by a principal component analysis (PCA)
and SIMPER analysis, which were used to identify the factors driving differences among body
regions. Multivariate analyses were conducted using Primer (v. 7, Primer-E). The effect of
seawater pH and body region on each individual micromechanical, structural, or elemental
variables was assessed using a general linear model (GLM) for each variable, followed by Tukey
HSD post hoc testing. Treatment pH and body region were treated as fixed factors; crab
identification number was used as a blocking factor, with crab identification number nested
within treatment pH. Univariate analyses were conducted in SPSS (v. 25, IBM Analytics). For
nMDS, PERMANOVA, PERMDISP, and PCA data for each individual body region (i.e.,
carapace, left claw, right claw, left leg, right leg) was included separately within the analyses.

Data from the two claws and two legs were combined for SIMPER and univariate analyses. All

11
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datasets generated during the current study are available as a supplemental document and sample

sizes for structural, mechanical and chemical analyses are included in Table S1.

RESULTS

Exoskeletal properties of snow crabs differed among body regions but not among pH treatments
(PERMANOVA, Table S2). Dispersion, a measure of spread in multivariate data analogous to
variance in univariate statistics, differed among body regions (pseudoF = 2.755, p = 0.033), but
not pH treatments (pseudoF = 0.829, p = 0.440) or crabs (pseudoF = 0.661, p = 0.860). When
both PERMDISP and PERMANOVA are significant, this indicates that either just the dispersion
differs among treatments or that both dispersion and location (multivariate analog for the mean)
differ; examination of an nMDS plot can help to distinguish between these two possibilities
(Anderson et al. 2008). The nMDS plot showed clear differences among sampled body regions
with legs, claws, and the carapace all separating from one another and having virtually no
overlap; from this we conclude that the significant PERMANOVA was driven by differences in
both location and dispersion (Fig. 1A). Conversely, there were no differences among pH
treatments (Fig. 1B), at least under the experimental conditions and sample size tested here. Post-
hoc pairwise comparisons (PERMANOVA) showed that each body region differed significantly
from all other body regions (p < 0.05), except that the left and right legs were not significantly
different from one another. Of note, and as shown in in Fig. 1A, post-hoc pairwise comparisons
show a significant difference between the left and right claws (p < 0.05), although there is some
overlap of the two in the nMDS plot (Fig. 1A).

12
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Fig. 1. Non-metric multidimensional scaling (nMDS) plots incorporating micromechanical,
structural, and elemental variables. The same plot is coded by either (A) body region or (B) pH

treatment. Data were normalized prior to analysis (see text for details). Stress is 0.14.

Principal component analysis (PCA) was used to visualize which factors drove the differences
among body regions and SIMPER analysis was used to quantify the differences (Fig 2; Table
S3). In general, the exoskeleton of claws was thicker, harder, and had higher calcium content
(but lower magnesium content) than that of the carapace and legs. The carapace exoskeleton was

thicker but less hard than that of the legs. Magnesium content tended to be highest in the legs.

13
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Fig. 2. Principal component plot of observations of exoskeletal properties (microhardness,
elemental content, and structure) among body regions. Data were normalized prior to analysis
(see text for details). Vectors indicate the loadings of the variables. PC1 and PC2 contain 46%

and 20% of the overall variance, respectively.

To further assess the effects of seawater pH, body region, and their interaction, each
micromechanical, structural, or elemental variable was also assessed individually. Results were
generally in agreement with multivariable assessments showing a strong effect of body region,
but minimal effect of seawater pH, on exoskeletal properties. Seawater pH did not affect
microhardness in either the endocuticle or exocuticle (GLM: p > 0.05; Fig. 3 & Tables S4 & S5).
Microhardness, however, varied among body regions for both cuticle layers (GLM: p < 0.0001).
Endocuticle microhardness of the claws was 73% greater than that of the carapace and 38%
greater than the legs (Tukey HSD: p < 0.05). Exocuticle hardness was ~60% greater in the claws
and legs as compared to the carapace (Tukey HSD: p <0.05) but did not differ significantly
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371
372  Fig. 3. Vickers microhardness tested in the C. opilio exocuticle (A) and endocuticle (B) after

373  exposure to one of three pH levels for 2 years. Means + SE are shown. Different letters represent
374  significant pairwise differences between body regions (Tukey HSD: p < 0.05). pH treatments did

375 not differ from one another. N = 3-22.
376

377  Treatment pH did not affect any of the structural variables assessed (GLM: p > 0.05; Fig. 4 &
378  Tables S4 & S5), but the effect of body region was significant in all cases (GLM: p < 0.0001).
379  For total cuticle thickness and endocuticle thickness, each body region differed from each other
380 region (Tukey HSD: p <0.05; Fig. 4A & C); total thickness was greatest in the claw,

381 intermediate in the carapace, and lowest in the legs. Exocuticle thickness showed the opposite
382  response, with thickness lower in the claws as compared to the carapace and legs (Tukey HSD: p
383  <0.05; Fig. 4B). Thickness of the Bouligand layers that comprise the endocuticle differed among
384  each body region, with Bouligand layer thickness greatest in the claws and lowest in the carapace
385 (Tukey HSD: p <0.05; Fig. 4D). The interaction of pH and body region was not significant for
386 any of the structural variables assessed.

15



387
388

389
390
391
392
393
394

m8.1 m8.1
m738 C 120 . ®78
ars5
600 o75
A A
100
A
500 {_ B
B

i
8
3
i

S
o
1

Total thickness (um)
N w
8 8

Exocuticle thickness (um)
(=]
o

-
8
"
N
o
i

o
o
I

Carapace Legs Claws Carapace Legs Claws
Body region Body region
C pH D pH
m8.1 (93 m8.1
m7.8

m7.8 —
600 - o756 75 -

-
o
vs)

A

g

N
8
,_}_|
@

g

Endocuticle thickness (um)
- w
8 8
Bouligand layer thickness (um)
>

Carapace Legs Claws Carapace Legs Claws
Body region Body region

Fig. 4. Structural variables measured in the C. opilio cuticle after exposure to one of three pH
levels for 2 years. Means + SE are shown. Different letters represent significant pairwise
differences between body regions (Tukey HSD: p < 0.05). pH treatments did not differ from one
another. N = 3-22.

Unlike other measured variables, there was a slight, but significant, effect of treatment pH on

calcium and magnesium content (GLM: p < 0.05; Fig. 5A-B & Table S4). Calcium content was
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~6% greater in crabs held at pH 8.0 and 7.8 as compared to those at pH 7.5 (Tukey HSD: p <
0.05). Magnesium content differed between the pH 7.8 and pH 7.5 treatments, with magnesium
content about 8% higher at pH 7.5 (Tukey HSD: p < 0.05). Overall, the effect of pH treatment on
strontium content was not significant (GLM: p = 0.075; Fig. 5C & Tables S4 & S5). The effect
of body region was significant for all elemental variables assessed (GLM: p <0.0001; Fig. 5 &
Table S4). Among body regions, each body region differed from each other body region for
calcium and magnesium content (Tukey HSD: p < 0.05). Calcium content was greatest in the
claws, intermediate in the carapace, and lowest in the legs with calcium content in the legs about
half that of the claws. In contrast, magnesium content was greatest in the legs, intermediate in the
carapace, and lowest in the claws; magnesium content was 2.5 times greater in the legs than the
claws. Strontium content was greater in the claws as compared to the legs and carapace (Tukey
HSD: p < 0.05), but did not differ between the legs and carapace. The interaction of pH and body

region was not significant for calcium, magnesium, or strontium content.
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Fig. 5. Elemental content measured in the C. opilio cuticle after exposure to one of three pH
levels for 2 years. Means &+ SE are shown. Letters denote significant pairwise differences
between body regions and brackets represent significant pairwise differences between pH

treatments (Tukey HSD: p < 0.05). N =3-22.

DISCUSSION

In this study, we quantified the effects of OA on adult snow crab exoskeletons in multiple body
regions after a two-year exposure in order to understand how future ocean conditions might

influence activities crucial to survival such as feeding, defense, and locomotion. Multivariate
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analyses of all measured variables and body regions showed no effect of exposure pH on the
exoskeletal properties of C. opilio, at least under the experimental conditions (reduced pH 7.8
and 7.5) and sample sizes tested here. Although there was a slight (~6%) decrease in exoskeletal
calctum content at reduced seawater pH (7.5), microhardness and thickness were unaffected by
decreased pH at any level, suggesting that this difference may have little practical consequence.
On the other hand, there were substantial differences among the body regions, which highlights
that the structural and mechanical properties of the decapod exoskeleton are well-adapted to the
physical demands placed on those particular body regions. In contrast to other decapod species
(e.g., Coffey et al. 2017; Dickinson et al. 2021), it appears that adult snow crabs are relatively

resilient to the effects of reduced pH in terms of exoskeletal properties.

Since decapods use calcium carbonate, in the form of nanocrystalline magnesian calcite or
amorphous calcium carbonate, to harden their exoskeletons (Roer and Dillaman 1984; Dillaman
et al. 2005), it is possible that changes in seawater carbonate chemistry could affect both the
formation and maintenance of their cuticles (Siegel et al. 2022). There are three primary
mechanisms by which reduced pH could affect the decapod exoskeleton. First, if the calcium
carbonate saturation state of seawater (2) drops below 1 then external (abiotic) dissolution could
occur (i.e. thermodynamically, dissolution is favored; Waldbusser et al. 2016). In decapod
crustaceans, the epicuticle, the predominantly organic (wax and protein) outermost layer of the
cuticle (Roer and Dillaman, 1984; Fabritius et al., 2012), effectively protects the calcified cuticle
layers from direct contact with seawater (Ries et al. 2009). Hence, external dissolution would be
restricted to either sites where the epicuticle had been damaged or sites, such as on the denticles
on the claws, where the epicuticle has been worn off by constant use (Rosen et al. 2020;
Dickinson et al. 2021). Second, shifts in environmental pH can cause changes in the hemolymph
pH of decapods in the short-term, and the extent to which these changes are compensated for can
vary among species (Pane and Barry, 2007). If osmoregulatory functions, which are the primary
means by which decapods maintain acid-base balance in their hemolymph (Melzner et al. 2009;
Whitely 2011), are unable to completely compensate for the change in pH, a prolonged decrease
in hemolymph pH could make it more difficult to precipitate calcium carbonate during shell
formation or lead to internal dissolution of the exoskeleton. It is important to note, however, that

most decapods that are able to maintain acid-base homeostasis under ocean acidification
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conditions do so, at least in part, by buffering their hemolymph with bicarbonate via CI/HCO3
exchange at the gills (Pane and Barry 2007; Whiteley 2011, Appelhans et al. 2012). This
response could make precipitation of calcium carbonate more likely, and could explain why
many decapods show increased calcification rates or content in response to ocean acidification
(Ries et al. 2009; Long et al. 2013b; Glandon et al. 2018). Finally, ocean acidification can induce
changes in the expression of genes involved in cuticle formation; red king crab adults and
juveniles both exhibited an increase in the expression of such genes (Stillman et al. 2020). The
findings of this study, showing that the micromechanical and structural properties of the snow
crab were not altered by exposure to decreased pH levels, suggests that snow crabs may be
relatively resistant to long-term exposure to reduced pH. Thus, post-terminal molt snow crabs
may possess a largely in-tact epicuticle, have strong acid-base regulatory capacity, are able to
alter their gene expression to maintain their cuticles, or a combination of these traits. Future
experiments should examine the physiological response and gene expression patterns in snow

crab to elucidate the mechanism(s) of exoskeletal growth and maintenance.

Elemental analysis of the exoskeleton revealed a slight, but significant, reduction in calcium
content and increase in magnesium content in crabs exposed to pH 7.5. This shift in elemental
composition of the carapace also increased the Mg?*:Ca?* ratio of the exoskeleton. Higher calcite
Mg?":Ca** ratios correspond to higher solubility (Morse et al. 2006; Andersson et al. 2008; Chen
et al. 2008) but also higher strength, as substitution of Mg?" within the calcium carbonate matrix
can impact fracture propagation and dislocation motion (Magdans and Gies 2004; Kunitake et al.
2012; Kunitake et al. 2013). Despite these alterations in mineral content of the cuticle, there were
no changes in cuticle thickness or micromechanical properties. This suggests that either the 6%
reduction in calcium content was not sufficient to cause a detectible difference in
micromechanical properties of the cuticle, or that the elevated magnesium content increased the
hardness of the mineral resulting in no net change in overall hardness levels. These results also
highlight that calcium content alone is not a direct predictor of cuticle mechanical or structural
properties in decapods. In both juvenile red and blue king crabs, elevated calcium content under
OA conditions was accompanied by diminished microhardness (Coffey et al. 2017). Similarly in
Tanner crabs, calcium content in the claws was unchanged despite decreased microhardness,

whereas in the carapace a decrease in calcium content did not affect microhardness (Dickinson et

19



481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

al. 2021). Like the snow crabs in this study, the decreased calcium content in the carapace of
Tanner crabs was accompanied by an increase in magnesium content and FTIR spectroscopy
showed a shift in the mineral phase of calcium carbonate from amorphous calcium carbonate to
calcite (Dickinson et al. 2021). It may be, then, that the disconnect between calcium and
hardness is at least partially explained by the mineral phase of calcium carbonate. These findings
highlight that researchers should be cautious in making inferences regarding cuticle strength or

mechanical properties in decapods based on calcium content measurements alone.

The finding that exoskeletal properties of adult snow crabs are not particularly susceptible to OA
is unexpected because of the apparent vulnerability of the Tanner crab (Chionoecetes bairdi), the
snow crab’s close relative, to OA. Both the snow crab and the Tanner crab have life expectancies
upwards of 10 years, live at similar depths, and endure the highly variable pH fluctuations of the
Bering Sea for the duration of their relatively long lives. A similar long-term OA exposure
experiment showed that adult Tanner crabs experienced 15% and 31% reductions in the total
thickness in the claw and carapace, respectively, in response to exposure to pH levels of 7.5
(Dickinson et al. 2021). Reduced pH also caused decreased endocuticle hardness of adult Tanner
crabs, whereas the micromechanical properties of snow crabs were unaffected by pH treatment
level. Although the mechanisms driving observed differences between Chionoecetes species in
susceptibility to OA remain unknown, it is worth noting that the species-specific differences
described here mirror those reported for other life stages in these species. For example, in Tanner
crab, OA exposure during oogenesis resulted in a 70% reduction in hatch success (Swiney et al.
2016). OA increased mortality and reduced growth and calcification in juvenile Tanner crabs
(Long et al., 2013a), and in adults, increased hemocyte mortality and decreased intracellular pH
were observed after OA exposure (Meseck et al. 2016). In contrast, hatching success, survival,
and embryonic morphology were unaffected by OA in snow crabs, and both direct and carryover
effects of OA on larval survival, morphology, and calcification were negligible (Long et al.
2022a & b). The findings of this study paired with previous findings support that snow crabs,
although morphologically and ecologically similar to the Tanner crabs, are better equipped for

survival in extreme pH conditions.
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Although there was little variation in exoskeletal properties among pH treatments, exoskeletal
properties varied dramatically among body regions. We found that claws were harder and
thicker, and that they contained more calcium but less magnesium than the carapace and legs.
The exoskeleton of the legs was thinner than other body regions but contained substantially more
magnesium. These observations add to a growing body of evidence that the structural and
mechanical properties of the crustacean exoskeleton vary, often dramatically, with function (e.g.,
BoBelmann et al. 2007; Chen et al. 2008; Politi et al. 2019; deVries et al. 2021; Inoue et al. 2021;
Wang et al. 2022). Such variation in exoskeletal properties among body regions has been
observed both in animals assessed directly after field-collection (e.g. Steffel et al. 2019; Rosen et
al. 2020) as well as those exposed to laboratory conditions for months to years (e.g. Coffey et al.
2017; Dickinson et al. 2021; deVries et al. 2021; Lowder et al. 2022). Here, claws were found to
be hard and resistant to mechanical deformation within the exo- and endocuticle, making them
resistant to wear and abrasion and able to withstand high mechanical force from predatory or
defensive uses. Though thin, the outer mineralized layer of the legs, the exocuticle, showed
microhardness substantially higher than the inner endocuticle (consistent with Chen et al. 2008),
with exocuticle microhardness comparable to that of the claws. As the most distal segment of the
leg, the dactylopodite is likely to experience almost constant wear and abrasion as they are the
segment of the leg that comes in contact with the sea floor; the enhanced microhardness of the
leg exocuticle found here supports greater resistance to wear and abrasion. Elevated magnesium
content in the legs may contribute to elevated hardness (Kunitake et al. 2012; 2013) and may
also stabilize amorphous calcium carbonate (ACC) within the exoskeleton (Weiner et al. 2003;
Addadi et al. 2003). Calcium content, magnesium content, and thickness of the carapace was
intermediate to the legs and claws, with consistently lower hardness as compared to the claws.
Although the carapace must protect the internal organs, it must also be sufficiently flexible and
elastic to enable movement (Bofelmann et al. 2007). Altogether, the body region specific
differences observed support highly-adaptable mineralization processes within the Crustacea

(Lowenstam and Weiner 1989).
In terms of body-region-specific differences in exoskeletal properties, one surprising finding was

the separation of left and right claws in multivariate analyses. The right claw was thicker but

exhibited lower hardness in both the exo- and endocuticle compared with the left claw. This
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exoskeletal asymmetry is unusual because, unlike crab species that display strong claw
dimorphism, snow crabs appear by eye to have bilateral chelal symmetry. For example, fiddler
crabs not only have evident bilateral chelal asymmetry, but the right and left claws differ in
function (Pope et al. 2000; Darnell et al. 2011). The major claw of the male fiddler crab
functions as an ornament and weapon in courtship contests, whereas the minor claw is used for
feeding, foraging, and grooming (Crane 1966; Christy 1982). Although the male fiddler crab
serves as an extreme example, chelal asymmetry as a result of handedness, or heterochely, is
well-developed and immediately apparent in many decapod species (Vermeij 1977; Abby-Kalio
and Warner 1989; Seed and Hughes 1997; Schenk and Wainwright 2001). Behavioral bias in
claw preference for performing various activities can induce morphological asymmetries in
Brachyrun crabs, resulting in species-wide heterochely (Smith and Palmer 1994). There is very
little evolutionary insight into the heterochely of snow crabs, as handedness in other members of
the genus Chionoecetes, C. japonicus and C. bairdi, has not been examined. The basis for
varying chela micromechanical properties in this species may very well be attributed to
functional differences between the two claws (Govid et al. 1985; Herrick 1895). Experiments
assessing the snow crab’s behavioral responses to predator and prey presence would be

beneficial in gaining more insight on these aspects of Chionoecetes behavior.

CONCLUSIONS

Exoskeletal structural integrity is critical in crustacean locomotive, predatory, and defensive
activities. Although decreased pH levels can cause exoskeletal dissolution in a number of
crustaceans (Pansch et al. 2014; Nardone et al. 2018; Bednarsek et al. 2020; Dickinson et al.
2021), adult snow crab, C. opilio, display resilience to predicted changes in seawater chemistry,
at least under the experimental conditions tested here. These findings suggest that snow crab
populations in the eastern Bering Sea may not be drastically affected by ocean acidification,
although studies with a more extreme reduction in pH (i.e., below 7.5) are necessary to fully
assess their physiological tolerance. This study also revealed a dichotomy within the
Chionoecetes genus. The susceptibility of Tanner crabs to exoskeletal dissolution was
particularly high (Dickinson et al. 2021), whereas snow crabs did not experience any apparent

cuticle dissolution when exposed to reduced seawater pH (down to pH 7.5). This is despite the
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fact that C. bairdi and C. opilio reside in the same depths of the eastern Bering Sea and have
similar life histories. Additional ecophysiological assessments of these closely related species are

needed to determine the mechanisms driving the differences between these species.

Supplementary Information. The online version contains supplementary material available at:
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