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We study a proper definition of Rényi mutual information (RMI) in quantum field theory as
defined via the Petz Rényi relative entropy. Unlike the standard definition, the RMI we compute
is a genuine measure of correlations between subsystems, as evidenced by its non-negativity and
monotonicity under local operations. Furthermore, the RMI is UV finite and well-defined in the
continuum limit. We develop a replica path integral approach for the RMI in quantum field theories
and evaluate it explicitly in 1+1D conformal field theory using twist fields. We prove that it bounds
connected correlation functions and check our results against exact numerics in the massless free
fermion theory.

Introduction.—Entanglement is a fundamental feature
of quantum systems and has been the subject of exten-
sive research in recent years across a wide range of fields.
Studies of the entanglement structure of quantum field
theories have proven to be particularly fruitful with land-
mark achievements including characterizations of critical
phases [1], c-theorems [2], and spacetime emergence [3]
to name a few (see [4, 5] for excellent recent reviews).

In pure quantum states the von Neumann entropy of a
subregion A, defined as SvN (A) := −TrρA log ρA, where
ρA is the reduced density matrix, fully characterizes the
entanglement between A and its complement. However,
in mixed states, the von Neumann entropy does not pro-
vide information regarding correlations between subre-
gions. A useful replacement is the quantum mutual in-
formation, which is defined as a linear combination of
von Neumann entropies

I(A;B) := SvN (A) + SvN (B)− SvN (AB). (1)

Mutual information characterizes the total (quantum and
classical) correlations between subsystems A and B as ev-
idenced by its bound on all connected correlation func-
tions of localized operators [6]

I(A;B) ≥ 〈OAOB〉2c
2|OA|21|OB |21

. (2)

A one-parameter family of mutual informations has
been studied frequently in the literature by replacing the
von Neumann entropies with Rényi entropies Sα(A) =

1
1−α log Trρα [7–32]. While these mutual informations
are often easier to compute than (1), they are not good
measures of correlations because they are not monotoni-
cally decreasing under local operations and can even be
negative. It is still highly desirable to study generaliza-
tions of the mutual information that are well-behaved
and provide complementary information to the mutual
information. This is in analogy with the fact for pure
states that knowing all of the Rényi entropies (and hence
the full spectrum of ρA) provides significantly more in-
formation about the entanglement structure than simply
the von Neumann entropy. In this Letter, we study one

such Rényi generalization of (1) that we call the Petz
Rényi mutual information (PRMI), proving both its util-
ity and computability.

We first note that the mutual information may be writ-
ten in an equivalent way to (1) using the relative entropy
D(ρ||σ) := Tr(ρ log ρ− ρ log σ)

I(A;B) = D(ρAB ||ρA ⊗ ρB). (3)

The relative entropy is positive semi-definite (for unit
trace ρ and σ) and monotonically decreasing under
quantum channels (which include local operations) [33].
Therefore, the mutual information inherits these quali-
ties. There is a natural one-parameter generalization of
the relative entropy which we refer to as the Petz Rényi
relative entropy (PRRE) defined as

Dα(ρ||σ) :=
1

α− 1
log
[
Tr
(
ρασ1−α)] . (4)

The PRRE is positive and limits to the relative entropy
when α→ 1. It is furthermore monotonic under quantum
channels for α ∈ [0, 2] [34–36]. We are then motivated to
define the PRMI as1

Iα(A;B) := Dα(ρAB ||ρA ⊗ ρB). (5)

This Rényi mutual information is well-behaved and gives
new information about the correlation structure between
A and B. Iα is monotonically increasing with α, so for
all α ≥ 1, the inequality in (2) continues to hold. A more
nontrivial bound can be demonstrated at α = 1/2 where
the PRMI equals minus the logarithm of Holevo’s fidelity
[42]. This fidelity satisfies the following bounds

1− e−I1/2/2 ≤ T (ρAB , ρA ⊗ ρB) ≤
√

1− e−I1/2 , (6)

1 A similar but distinct definition of RMI that replaces ρB with a
minimization over all states on B has been analyzed in [37–40]
and given an operational interpretation via quantum hypothesis
testing. The PRMI we study provides an upper bound for this
RMI. Several interesting results including areas laws for proper
Rényi generalizations are also given in [41].
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where T (ρ, σ) := 1
2 |ρ − σ|1 is the trace distance which

satisfies

〈OAOB〉c
2|OA|1|OB |1

≤ T (ρAB , ρA ⊗ ρB). (7)

Therefore,

I1/2(A;B) ≥ log

 1

1− 〈OAOB〉2c
4|OA|21|OB |21

 . (8)

Furthermore, a Pinsker-like inequality holds for the
PRREs (Dα ≥ 2 min[α, 1]T 2) [41], such that

Iα(A;B) ≥ min[α, 1]〈OAOB〉2c
2|OA|21|OB |21

. (9)

These inequalities are complementary to the classic result
using the usual mutual information (2).

We remark that another advantage of relative entropies
is that they are well-defined in continuum quantum field
theory, unlike the von Neumann entropy which is univer-
sally ultraviolet divergent. In particular, the PRREs may
be rigorously defined without ever referencing ill-defined
density matrices by using Tomita-Takesaki theory [43].
Nevertheless, we will use density matrices due to their
convenience in illustration of explicit computations.

Replica Approach.—Replica tricks have been leveraged
considerably to compute different correlations measures
(see e.g. [44–48]). The main technical contribution of
this work is to develop a replica path integral approach
for the computation of the PRMI which involves a new
ingredient to account for the difference between the two
states ρAB and ρA⊗ρB . It is generally easier to evaluate
traces of positive integers of density matrices. In order
to account for the exponent of 1 − α in the PRRE, we
introduce the following “double” replica trick that has
been used previously in random matrix theory calcula-
tions [49]

Dα(ρ||σ) = lim
m→1−α

1

α− 1
log [Tr (ρασm)] . (10)

Here, α and m are first taken to be positive integers.
Then the function is analytically continued by taking
m → 1 − α and arbitrary α. While the analytic con-
tinuation of functions defined on the positive integers is
a priori ambiguous, this invaluable approach has become
standard and we will see that the natural analytic con-
tinuation passes several consistency checks.

Quantum states and similarly reduced density matrices
may be conveniently prepared using path integrals with
the matrix elements corresponding to boundary condi-
tions (see e.g. [50]). For concreteness, we now specify to
disjoint intervals A = (−lA, 0) and B = (d, lB + d) in
1+1D quantum field theories where pictures are simpli-
fied, though we stress that the replica approach is much

FIG. 1. The path integral computing the matrix elements of
ρAB in the vacuum state.

FIG. 2. The replica manifold that computes Tr(ραAB(ρA ⊗
ρB)m). The lines correspond to the gluing structure between
the replicas.

more general. In the vacuum state, the (unnormalized)
density matrix ρAB corresponds to the Euclidean path
integral on the plane with two slits at the locations of
the intervals (see Figure 1). Similarly, the density ma-
trices ρA and ρB are path integrals with a single slit.
The tensor product state is simply the product of these
two path integrals. The trace structure in (10) enforces
a gluing between the α + 2m replica sheets as shown in
Figure 2. Note that, unlike the von Neumann entropy
replica trick, the gluing between the sheets is different
for regions A and B. Ordering the sheets such that the
α double-slitted sheets come first, the m A-slitted sheets
next, and the m B-slitted sheets last, the permutation
group elements on the two regions in cycle notation are

gA = (1, . . . , α, α+ 1, . . . α+m), (11)

gB = (1, . . . , α, α+m+ 1, . . . α+ 2m). (12)

Crucially, the composition of g−1
A and gB does not give

the identity element

g−1
A gB = (1, α+m, . . . , α+ 1, α+m+ 1, . . . , α+ 2m),

(13)

where the first “. . . ” are decreasing and the second are
increasing. The partition functions on these replica man-
ifolds can be conveniently evaluated by computing cor-
relation functions of twist operators generating the per-
mutations at the boundaries of A and B in the product
theory of α + 2m copies. We now demonstrate this ex-
plicitly in 1+1D conformal field theory.
Conformal Field Theory.—In 1+1D, the boundaries of

A and B are points, so the twist operators are local fields.
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The conformal dimensions of the twist fields may be de-
termined directly from their cycle structure

∆ := ∆gA = ∆gB =
c

12

(
α+m− 1

α+m

)
, (14)

∆g−1
A gB

=
c

12

(
2m+ 1− 1

2m+ 1

)
, (15)

where c is the central charge.

The twist fields are scalar conformal primaries, so we
are now in position to perform explicit calculations. We
begin with a consistency check by considering the pure
state limit where B is the complement of A. The PRMI
of pure states must equal 2S3−2α(ρA) as can be easily
deduced from the Schmidt decomposition of pure states.
In this case

Tr (ρασm) = 〈σg−1
A gB

(0)σ−1

g−1
A gB

(lA)〉 = l
−2∆

g
−1
A

gB

A , (16)

where we have used in the second equality that the two
point function is fixed by conformal invariance. We then
find

Iα = c
2(2− α)

3(3− 2α)
log

lA
ε
, (17)

where ε is an ultraviolet cutoff that was implicit in the
definition of the twist fields and may be thought of as the
lattice spacing. This precisely matches 2S3−2α(ρA) which
was computed in [44, 45]. We observe that the PRMI
diverges as α→ 3/2 which is still well within the regime
where PRRE is monotonic under local operations. This is
because the density matrix has an infinite number of non-
zero eigenvalues. When α → 3/2, the PRMI becomes
twice the max entropy (or Hartley entropy) which equals
the logarithm of the rank of ρAB . See [51] for an explicit
calculation of this continuous eigenvalue spectrum of ρAB
in 1+1D conformal field theories.

After having passed this consistency check, we may
progress to new results. For adjacent intervals, we must
evaluate the following three-point function, which is also
fixed by conformal symmetry

Tr (ρασm) = 〈σgA(−lA)σg−1
A gB

(0)σ−1
gB (lB)〉

=
Cα,m

(lAlB)
∆
g
−1
A

gB (lA + lB)
2∆−∆

g
−1
A

gB

, (18)

where Cα,m is the operator product expansion (OPE)
coefficient that takes a universal (only dependent on c,
α, and m) form due to the replica manifold being genus-
0, as can be readily checked using the Riemann-Hurwitz
formula. The replica limit leads to

Iα(A;B) = c
(2− α)

3(3− 2α)
log

lAlB
ε(lA + lB)

+O(1). (19)

We can also back away from the adjacent intervals limit
by considering the four-point function

Tr (ρασm) = 〈σgA(−lA)σ−1
gA (0)σgB (d)σ−1

gB (lB + d)〉. (20)

This is no longer fixed by conformal symmetry and in-
stead depends on the full operator content of the theory.
However, conformal symmetry still buys us the prediction
that the PRMI only depends on the conformally invariant
cross-ratio

x =
lAlB

(lA + d)(lB + d)
. (21)

For sufficiently small (but finite) d, (19) is valid for dis-
joint intervals by replacing ε with d. For sufficiently large
d, one may take the OPEs of the A operators and B
operators separately. The leading term is the identity
operator which leads to trivial PRMI as expected for a
correlation measure of distant intervals. There will be
subleading corrections controlled by the lightest opera-
tors in the theory, in analogy with [9, 12].

We may also study the correlations in the thermal
Gibbs state at inverse temperature β by considering the
correlation function on the cylinder with circumference
β. For adjacent intervals,

Tr (ρασm) = 〈σgA(−lA)σg−1
A gB

(0)σ−1
gB (lB)〉β . (22)

We can map this correlation function to the complex
plane using the conformal transformation e2πz/β . The
twist fields transform as Virasoro primaries, such that

Tr (ρασm) =

(
2π

β

)∆
g
−1
A

gB

(
4π2

β2
e

2π
β (lB−lA)

)∆

〈σgA(e−2πlA/β)σg−1
A gB

(1)σ−1
gB (e2πlB/β)〉C. (23)

Taking lA = lB = l, we have

Iα(A;B) = c
(2− α)

3(3− 2α)
log

(
β

2πε
tanh

πl

β

)
+O(1) (24)

which is monotonically decreasing with temperature, re-
flecting the fact that finite temperature effects destroy
entanglement. This is consistent with the thermal area
laws derived in [41].
Free Fermions.—We would like to support our uni-

versal conformal field theory results with an indepen-
dent check. For this purpose we study a single massless
chiral fermion with central charge 1/2 and Hamiltonian
H = − i

2

∫
dx
(
ψ†∂ψ − ∂ψ†ψ

)
. This Hamiltonian may be

discretized on the lattice as

H = − i
2

∑
j

(
ψ†jψj+1 − ψ†j+1ψj

)
, (25)

where {ψi, ψj} = δij . The ground state is a so-called
Gaussian state, which is fully characterized by the two-
point functions [C]jl = 〈ψjψ†l 〉 [52]. Following the tech-
niques of [53, 54], it is straightforward to derive an ex-
pression for the PRMI in terms of the correlation matrix
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FIG. 3. The PRMI is plotted for various values of α which
are labeled in the legend. Here, l = lA = lB . The ×’s are
numerical data while the solid black curves are (19) with the
regularization dependent O(1) shift fitted.

restricted to regions A and B

Iα(A;B) = −αTr log (1− C)

1− α
− Tr log (1− C ′)

−
Tr log

(
1 +

(
C

1−C

)α
2
(

C′

1−C′

)1−α (
C

1−C

)α
2

)
1− α

. (26)

Here

C ′ =

(
CAA 0

0 CBB

)
, (27)

where CAA and CBB are submatrices of C. The setting
of the off-diagonal terms to zero reflects that there are
no correlations between A and B in C ′. For the ground
state, the correlation function is given by [55]

[C]jl =

{
(−1)j−l−1
2πi(j−l) , j 6= l

1
2 , j = l

. (28)

We may now efficiently simulate the PRMI in the ground
state. In Figure 3, the PRMI is shown for various values
of α with excellent agreement with the theoretical pre-
diction (19). An additional advantage of numerics is that
we may reliably move beyond the universal adjacent in-
tervals limit. We demonstrate in Figure 4 that the PRMI
for disjoint intervals only depends on the conformally in-
variant cross-ratio, as expected.

Discussion.—In this Letter, we have developed a
replica path integral method for computing a Rényi gen-
eralization of the quantum mutual information. This
RMI was shown to obey the important properties of
monotonicity under local operations and positivity. Fur-
thermore, we demonstrated that it places strong bounds
on connected correlation functions. In 1+1D conformal
field theory, we found that the PRMI behaves univer-
sally for a variety of set-ups, confirming this in the chiral
fermion conformal field theory.

0.0 0.2 0.4 0.6 0.8 1.0

x

10 3

10 2

10 1

100

I

10
20
40
60

FIG. 4. The PRMI is plotted for different values of l =
lA = lB as labeled in the legend. The three bands are
α = {.1, .5, 1.25} from bottom to top. The collapsing of the
curves show that the PRMI only depends on the conformal
cross-ratio, though we see minor deviations when l is not large
enough and hence experiences finite-size effects.

There are many (known and unknown) applications of
the techniques we developed. For instance, it would be
fascinating to study the dynamics of the PRMI, its be-
havior in typical (Page) states and tensor networks, and
develop a holographic formula. It may also be generalized
to other families of RMIs using different divergences such
as the sandwiched Rényi relative entropy [56, 57]. Each
RMI has their own operational interpretation and will
sharpen our understanding of correlations in many-body
quantum states. One may furthermore hope the RMIs to
impose nontrivial constraints on correlation functions be-
yond (8) in the spirit of [58]. We hope to present progress
in some of these directions in upcoming work [59].
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in quantum critical spin chains, Phys. Rev. B 90, 045424
(2014), arXiv:1403.6157 [cond-mat.stat-mech].

[26] R. R. P. Singh, M. B. Hastings, A. B. Kallin, and R. G.
Melko, Finite-Temperature Critical Behavior of Mu-
tual Information, Phys. Rev. Lett. 106, 135701 (2011),
arXiv:1101.0430 [cond-mat.str-el].
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